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ABSTRACT 
 
 
 

TRANSIENT ANALYSIS OF CLOSED- AND OPEN-REGION ELECTROMAGNETIC 

PROBLEMS USING HIGHER ORDER FINITE ELEMENT METHOD AND METHOD OF 

MOMENTS IN THE TIME DOMAIN 

 
 

The principal objective of this dissertation is to develop computational electromagnetic 

(CEM) methodology and tools for modeling of closed (waveguide and cavity based) and open 

(radiation and scattering) electromagnetic structures in the time domain (TD), employing two 

CEM approaches. The first method is a novel higher order and large-domain Galerkin finite 

element method (FEM) for transient analysis of multiport microwave waveguide devices with 

arbitrary metallic and dielectric discontinuities. It is based on geometrical modeling using 

Lagrange interpolation generalized hexahedral elements, spatial field expansion in terms of 

hierarchical curl-conforming polynomial vector basis functions, time-stepping with an implicit 

unconditionally stable finite difference scheme using the Newmark-beta method, and mesh 

truncation introducing the waveguide port boundary condition. The second method is a novel 

spatially large-domain and temporally entire-domain method of moments (MoM) proposed for 

surface integral equation (SIE) modeling of 3-D conducting scatterers in the TD. The method 

uses higher order curved Lagrange interpolation generalized quadrilateral geometrical elements, 

higher order spatial current expansions based on hierarchical divergence-conforming polynomial 

vector basis functions, and temporal current modeling by means of orthogonal weighted 

associated Laguerre basis functions. It implements full temporal and spatial Galerkin testing and 

marching-on-in-degree (MOD) scheme for an iterative solution of the final system of spatially 
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and temporally discretized MoM-TD equations. Numerical examples of waveguides and 

scatterers, modeled using flat and curved large elements in conjunction with field/current 

expansions of orders from 2 to 9, demonstrate excellent accuracy, efficiency, convergence, and 

versatility of the proposed methodologies. The results obtained by higher order TD-FEM and 

TD-MoM are in an excellent agreement with indirect solutions obtained from FEM and MoM 

analyses in the frequency domain (FD) in conjunction with discrete Fourier transform and its 

inverse, as well as with measurements and alternative full-wave numerical solutions in both TD 

and FD. 
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1 HIGHER ORDER FINITE ELEMENT METHOD FOR VECTOR 

WAVE EQUATION MODELING IN TIME DOMAIN1 

 
 
1.1 Introduction  

 
The finite element method (FEM) has been effectively used in full-wave three-dimensional 

(3-D) solutions to both open-region (e.g., antenna and scattering) and closed-region (e.g., 

waveguide and cavity) problems based on discretizing partial differential equations (PDEs) in 

electromagnetics [1]–[6]. The FEM has been well established as a method of choice for analysis 

and design of waveguide-based multiport passive microwave devices and systems, of arbitrary 

shapes and material compositions, in the frequency domain (FD) [7]–[11]. A rather 

disproportionate body of work exists, on the other hand, in the development of methods and tools 

for the FEM analysis and modeling in the time domain (TD) [1], [2], [6], [12]–[24], in spite of 

the fact that TD analysis and characterization of microwave structures and evaluation of 

associated transient electromagnetic phenomena are also of great practical importance for a 

number of well-established and emerging areas of microwave theory and engineering. 

FEM techniques for direct modeling of electromagnetic phenomena in the time domain 

(TDFEM techniques) are based on a direct numerical discretization of TD PDEs governing such 

phenomena (Maxwell’s equations or wave equations in the time domain) [1], [2], [6], [12]–[23]. 

Alternatively, the TD response of a microwave structure can be obtained indirectly, using the 

FEM analysis in the frequency domain (FDFEM) in conjunction with the discrete Fourier 

transform (DFT) and its inverse (IDFT) [24]. Efficient FDFEM-DFT/IDFT modeling of 

                                                 
1 © 2013 IEEE. Reprinted, with permission, from N. J. Šekeljić, M. M. Ilić, and B. M. Notaroš, “Higher Order 
Time-Domain Finite Element Method for Microwave Device Modeling with Generalized Hexahedral Elements,” 
IEEE Transactions on Microwave Theory and Techniques, Vol. 61, No. 4, pp. 1425-1434, April 2013. 
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waveguide discontinuities and the first time-from-frequency-domain FEM solver are presented in 

[24]. This present paper focuses on the TDFEM (direct) approach. 

In terms of the particulars of the numerical discretization in space, practically all the existing 

3-D TDFEM electromagnetic tools are low-order (also referred to as small-domain or sub-

domain) techniques, with the electromagnetic structure being modeled by volume geometrical 

elements (most frequently, tetrahedra with planar sides) that are electrically very small and the 

fields within the elements are approximated by low-order (zeroth-order and first-order) basis. 

This results in a very large number of unknowns (unknown field-distribution coefficients) 

needed to obtain results of satisfactory accuracy, with all the associated problems and large 

requirements in computational resources. An alternative approach, the higher order (also known 

as the large-domain or entire-domain) computational approach, which utilizes higher order basis 

functions defined in large curved geometrical elements, and which can greatly reduce the number 

of unknowns for a given problem and enhance the accuracy and efficiency of the computation 

[25], seems to have not been fully employed in the TDFEM analysis yet. Namely, almost none of 

the reported TDFEM results and applications in the literature demonstrate actual using and 

implementation of models of orders higher than two (high-order modeling). Notable examples of 

high-order TDFEM modeling are the transfinite-element TD method for analysis of multiport 

waveguide structures proposed in [20], where nearly orthogonal Nedelec hierarchical bases of 

orders from zero to three are used, and TDFEM solutions to cavity and waveguide problems in 

[23], where the results for hierarchical basis functions of up to mixed fourth order (order 3.5) on 

tetrahedral cells are presented. In addition, none of the works employ large elements (or a 

combination of large and small elements) in the TDFEM model (large-domain modeling). 
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This dissertation proposes a novel higher order and large-domain Galerkin-type finite element 

method for 3-D electromagnetic modeling in the time domain based on higher order geometrical 

modeling, higher order field modeling, and an implicit unconditionally stable time-stepping 

finite difference scheme invoking the Newmark-beta method, and presents its implementation in 

the TDFEM analysis of multiport microwave waveguide devices with arbitrary metallic and 

dielectric discontinuities. The geometry of the structure is modeled using Lagrange-type 

interpolation generalized hexahedra of arbitrary geometrical-mapping orders, and the fields in 

the elements are expanded in terms of hierarchical curl-conforming 3-D polynomial vector basis 

functions of arbitrarily high field-approximation orders. The finite element mesh is truncated 

introducing the waveguide port boundary condition (WPBC) at the waveguide ports, which is 

able to launch an incident wave into the waveguide and at the same time absorb the reflections 

from waveguide discontinuities in the 3-D TDFEM analysis [21]. Once the TD solution is 

obtained, the broadband frequency response (if needed) is computed applying the DFT to the 

TDFEM solution in the postprocessing. 

Proposed technique represents the first truly higher order 3-D TDFEM method (the results 

demonstrate using field expansions of orders from 2 to 9) and the first set of large-domain 

TDFEM modeling examples (the examples demonstrate very effective large-domain TDFEM 

models of 3-D waveguide discontinuities using minimal numbers of large conformal finite 

elements and minimal numbers of unknowns). Overall, the examples demonstrate excellent 

accuracy, efficiency, stability, convergence, and versatility of the presented method. 

 

 

 



4 
 

1.2 Finite-Element Spatial Discretization 

 
Consider a general multiport waveguide structure with an arbitrary metallic and/or dielectric 

discontinuity shown in Fig.1.1. In order to apply the FEM analysis, the computational domain is 

first truncated by imposing fictitious planar surfaces at each of the ports. 

 

 

Figure 1.1. 3-D multiport waveguide structure with an arbitrary discontinuity, simulated by a 
higher order TDFEM method. 
 

The bounded structure thus obtained is then tessellated using Lagrange-type generalized 

parametric hexahedra of arbitrary geometrical orders uK , vK , and wK  ( uK , vK , 1wK ), 

analytically described as [4] 

),()()(),,(
0 0 0

wLvLuLwvu wv

u v w

u K
p

K
n

K

m

K

n

K

p

K
mmnp
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 rr     ,1,,1  wvu         (1.1) 

with ),,( pnmmnp wvurr   being the position vectors of interpolation nodes and uK
mL  representing 

Lagrange interpolation polynomials 

,)(
,0







u

u

K

mll lm

lK
m uu

uu
uL              (1.2) 

and similarly for )(vL vK
n  and )(wLKw

p . Equations (1.1) and (1.2) define a mapping from a cubical 

parent domain to a generalized hexahedron, as shown in Fig. 1.2. 
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The same Lagrange interpolating scheme is used to model continuously inhomogeneous material 

properties of a hexahedron (if applicable) in the mesh [11]. 

 

 

Figure 1.2. Generalized curved parametric hexahedron defined by (1.1) and (1.2); cubical parent 
domain is also shown. 
 

1.3 Time Domain Finite Element Method Formulation 

 
The general waveguide problem in Fig. 1.1 can be analyzed in the time domain starting from 

the source-free time-dependent Maxwell’s equations. Considering a linear, homogeneous or 

continuously inhomogeneous medium within a finite-sized computational domain V, bounded by 

the surface S, the following time-dependent electric field vector wave equation is obtained, 

which, together with associated initial and boundary conditions, defines a well-known boundary 

value problem [1], [6]: 

   
0

,1
,

1
2

2

r2
0r










t

t

c
t

rE
rE             (1.3) 

where r  and r  are relative permittivity and permeability of the medium, respectively, and 0c  is 

the speed of light ( 000 /1 c ). By multiplying (1.3) with space-dependant weighted (testing) 

vector functions (independent of time), )(rw , integrating over the domain V (weighted residual 
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method), and applying the first Green’s vector identity, the weak formulation of the vector wave 

equation in the time domain is derived as follows: 

         
0d

,
)(

1
d)(,
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t

c
StVt

VSV

rE
rwrwrEnrErw        (1.4) 

with n  standing for the outward-looking unit normal to the surface S. Within each finite element 

in Fig. 1.2, the time-variant electric field intensity vector is expanded using higher order 

hierarchical-type curl-conforming vector basis functions f  and unknown time-dependent 

coefficients )(t  

kjiw
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)()()(),(        (1.5) 

where the functions f  are defined as [4] 

,)()( ukj
i

kjiu wPvPu af      ,)()( vk
j

ikjiv wPvuP af      .)()( w
k

jikjiw wvPuP af        (1.6) 

The P-functions are simple polynomials representing a higher-order generalization of one-

dimensional rooftop functions 

















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 .1,,1,

odd,3,
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1,1

0,1

)( wvu

iuu
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uP

i

ii            (1.7) 

Parameters uN , vN , and wN  ( uN , vN , 1wN ) are the adopted orders of the polynomials along u-, 

v-, and w-directions of the local parametric coordinate system of each hexahedral element. 

Hierarchical functions f  enable using different approximation orders in different elements in the 

model for efficient selective discretization of the solution domain, because each lower-order set 

of functions is a subset of higher-order sets. The reciprocal unitary vectors ua , va , and wa  in 

(1.6) are obtained as   ,/ Jwvu aaa     ,/ Juwv aaa   and   ,/ Jvuw aaa   with 

  wvuJ aaa   being the Jacobian of the covariant transformation and uu  /ra , vv  /ra , 
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and ww  /ra  the unitary vectors, where r  is given in (1.1). Substituting (1.5) into (1.3) and 

applying the Galerkin testing procedure (testing functions are the same as basis functions), the 

following semi-discrete system of linear equations, expressed in the matrix form, is obtained: 

         
G

t

t
B

c
tA 




2

2

2
0 d

d1
             (1.8) 

where the column vector of unknown coefficients is given by       T)(,)(,)()( tttt wvu  , and 

the entries of matrices  A  and  B  are calculated as 

    VA j

V

iji d
1

r
, ff 


      NjNiVB j

V

irji ,...2,1,...,2,1,d,   ff        (1.9) 

where if  and jf  symbolically represent testing and basis functions defined in (1.6) and (1.7), and 

N is the total number of basis/testing functions. Note that matrices  A  and  B  are completely 

time-independent and are computed only once. The right-hand side of (1.8) is intentionally left in 

the form 

   StG
S

i d),(
1

r

rEnf 


            (1.10) 

as this surface integral conveniently provides the interface for excitation and reflectionless 

truncation of the finite element mesh, which is explained in the following sections. 

 

1.4 Waveguide Port Boundary Condition in the Frequency Domain 

 
Due to the continuity of the tangential component of the magnetic field intensity vector, Hn  , 

and hence the vector  En   in (1.10) across the interface between any two finite elements in 

the FEM model, the right-hand side in (1.8) contains the surface integral (1.10) across the overall 

boundary of the entire FEM domain, and not over the internal boundary surfaces between the 
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individual finite elements in the model, which for the waveguide problem reduces to the surface 

integral across the waveguide ports. The total electric field vector at a cross section of a 

waveguide with discontinuities can be expressed as a superposition of the incident electric field 

and reflections from discontinuities that are modeled as a sum of orthogonal waveguide modes 

[1], [6], 

          z
nmz

m n
nmtnm

z

m n
nmtnm

nmnm eyxzyxbeyxazyxzyx



















  ],ˆ,[,,,,, TM

1 1

TM

0 0

TEinc eeeEE     (1.11) 

where TE
t nme  and TM

t nme  are transversal components of eigen-functions for arbitrary TE and TM 

modes, respectively, and nm  is the propagation constant of the corresponding mode. If the 

waveguide operates in the dominant-mode regime and it is assumed that the ports are placed far 

enough from all discontinuities, substituting (1.11) into  En   in (1.10) and taking 

advantage of the orthogonality property of eigen- functions, the following boundary condition at 

the ports can be derived: 

 










ports) (receiving

port)n (excitatio2

01

01
inc

01

E

EE
En         (1.12) 

where, for a rectangular waveguide of transversal dimensions a and b (a > b),  22
001 /j ak  , 

with 00 /2 cfk   being the free-space wave number and f the operating frequency, 

zi eE 10
010

nc  eE  at the excitation port, and ye ˆ)/sin()/(210 axba  . 

 

1.5 Waveguide Port Boundary Condition in the Time Domain 

 
Since our goal is to analyze waveguide discontinuities directly in the TD, we employ the TD 

representation of the waveguide boundary condition in (1.12), as derived in [6] and [21], using 
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the inverse Laplace transform (ILT) and applying it for the dominant mode. Before the ILT is 

applied to (1.12), 01  can be expressed as follows: 

         j,////j 2
0

22
0

222
001 scsakaak       (1.13) 

The ILT of the final equality in (1.13) can be found in [26] and it yields the following TD 

operator: 

  th
tc 10

0
01 d

d1
            (1.14) 

where * stands for the convolution in the time domain and  th10  is the impulse response of the 

dominant waveguide mode, given by 

     tutckJ
t

k
th 0101

10
10             (1.15) 

with ak /10  ,  tu  denoting the unit step function, and 1J  the first-kind Bessel function of the 

first order. Note that the singular point at t = 0 in (1.15) can be avoided by applying L’Hospital’s 

rule and recurrence relation for derivative of the Bessel function 2/)]()([)( 11
' zJzJzJ nnn   , 

where z  is the argument of the Bessel function (in this case, tckz 010 ). Therefore, at t = 0, the 

impulse response of the dominant waveguide mode is equal to 2/)0( 0
2
1010 ckh  . Now, combining 

expressions in (1.12), (1.14), (1.15), and (1.5), we can incorporate the time-domain boundary 

condition into the surface integral in (1.10) to obtain 
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where S1 and S2 are the surfaces of the waveguide cross sections at the excitation and receiving 

ports, respectively. Due to the surface integration across the ports, only the unknown coefficients 

related to the tangential components of the vector basis functions at the ports are taken into 

account. Note that in (1.16), the TD operator 01  acts only on time-dependent unknown 

coefficients and the incident electric field. Substituting (1.16) into (1.8), we obtain the final semi-

discretized spatial form of the vector wave equation, 

                     ftqC
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 10
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d1        (1.17) 

where the entries of matrices      21 CCC  ,   tq10 , and  f  are computed as  

    NjipSC
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jijip ,...2,1,;2,1,d
,
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0

S

i Stfthtf
tc

E
f enfn        (1.20) 

and  tf inc  stands for the incident pulse function. 

 

1.6 Implicit Unconditionally Stable Time-Stepping Finite Difference Scheme – Newmark-

beta Method 

 
Discretization of (1.17) in the TD can be done using different finite-difference schemes. The 

forward and backward difference approximations are first-order accurate, while the central 

difference approximation provides second order accuracy. In addition, the forward difference 

scheme is a numerically unstable method, the backward difference scheme is unconditionally 

stable, and the central difference scheme is a conditionally stable method, as shown in [1], [6], 
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[13], and [14]. The most preferable and frequently used time-stepping scheme is the Newmark-

beta method, which applies central differences for the first and second derivatives and a 

weighted average for the undifferentiated quantity [6]. It is shown in [27] that the Newmark-beta 

method is an implicit unconditionally stable scheme if 4/1  (  being the parameter that 

controls the accuracy and stability of the method). Employing this formulation for 4/1  to 

discretize (1.17) in the time domain, we obtain 

         11
22

2

2
1

d

d  



 nnn

tt

t
          (1.21) 

       11

2

1

d

d  



 nn

tt

t
           (1.22) 

         11 2
4

1   nnnt           (1.23) 

where the discrete-time representation of unknown field coefficients at a time step tntn   is 

       ntnt  . The initial state of the field inside the structure is defined by the causality 

condition      0,0  tt , and the convolution integral in (1.19) is discretized using the 

trapezoidal rule  

            i
n

i
n

nn tinhtthh
t

q 


 




1

1
10

0
101010 0

2
.       (1.24) 

Finally, combining (1.21)–(1.24) yields the following unconditionally stable two-step update 

scheme:  

             nnnnn qCDDfD 10
r

3
1

2
1

1
1


 

        (1.25) 

with the  D  matrices being given by  

   
 

   C
tc

B
tc

AD
r





0

2
0

1 2

11

4

1
          (1.26) 
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          (1.27) 

   
 

 B
tc

AD
2

0
3

2

2

1


 .           (1.28) 

The resultant time-stepping scheme in (1.25) implies that the linear system of equations is 

solved at each time step, but the matrix  1D  on the left-hand side of the equation is inverted only 

once. Also, the discretized version of the impulse response in (1.15), as well as the convolution 

integral in (1.20), can be precalculated and stored in the memory before the marching in time 

starts. Unfortunately, the convolution on the left-hand side of (1.25) has to be computed at each 

time step, which significantly increases the overall simulation time. This problem can be 

remedied by a truncation of the impulse response in (1.15) or by performing the convolution in 

the form of a Toeplitz matrix-vector multiplication, as suggested in [21], [28]. 

 

1.7 Modal Amplitudes at Waveguide Ports and Scattering Parameters 

 
Once the matrix of unknown electric field coefficients   tNN  is obtained solving (1.25), 

these coefficients are substituted back into (1.5), and the modal amplitudes of the dominant mode 

across the waveguide ports at each time step are calculated using the following expressions: 

  dS)( -  dS),(dS),(),()(
1

1

1

1

1

1

incinc
10 zz

S

zz

S

zz

S

tftttta    10101010 eerEerErEe  (at excitation port), 

dS),()(

2

210  
S

zzttb rEe10  (at receiving port).        (1.29) 

Finally, the scattering parameters of the structure in Fig. 1.1 are computed as the ratio of the 

DFT of the modal amplitudes in (1.29),  kfA10  and  kfB10 , respectively, to the DFT of the 

excitation pulse signal  kfF inc  
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where the DFT of a function in the time domain can be computed as 

1,...,1,0,,e)()()( f
f

s

2
j

0

f

f







 Nk

N

f
kftfkFfF k

nk
N

N

n
nk ,       (1.31) 

with Nf  standing for the number of frequency samples (in our case Nf = Nt) and fs for the 

sampling frequency. 

 

1.8 Conclusion 

 
This chapter has proposed a novel higher order and large-domain Galerkin-type FEM for 

direct 3-D electromagnetic modeling in the time domain and has presented its implementation in 

the TD-FEM analysis of multiport microwave waveguide devices with arbitrary metallic and 

dielectric discontinuities. The method is based on the geometrical modeling using Lagrange-type 

interpolation generalized hexahedra of arbitrary geometrical-mapping orders, field expansion in 

terms of hierarchical curl-conforming 3-D polynomial vector basis functions of arbitrarily high 

field-approximation orders, time-stepping with an implicit unconditionally stable finite 

difference scheme invoking the Newmark-beta method, and mesh truncation introducing the 

waveguide port boundary condition. Numerical results and validation of the method are 

presented in the following chapter. 
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2 TD-FEM – NUMERICAL RESULTS AND DISCUSSION2 

 
 

Numerical examples include transient analysis of a variety of 3-D waveguide structures with 

metallic and penetrable discontinuities of different shapes, composed of homogeneous and 

continuously inhomogeneous materials. The results show excellent agreement with indirect 

numerical solutions obtained from higher order FEM in the frequency domain and alternative 

full-wave low-order small-domain numerical solutions, as well as with measurements. The 

emphasis is on the p-refinement and convergence properties of the solution, along with 

conformal geometrical modeling. The examples demonstrate very effective higher order 

hexahedral meshes constructed from a very small number of large curved conformal finite 

elements (large domains) and p-refined higher-order field expansions, which results in solutions 

with minimal total number of unknowns. 

 

2.1 Convergence Analysis – Empty Rectangular Waveguide 

 
As the first example, consider a short section of an empty rectangular waveguide, shown in 

Fig. 2.1. The waveguide section is modeled by means of a single FEM hexahedral element of the 

first geometrical order (Ku = Kv = Kw = 1), which in this case reduces to a brick. Note that this is 

literally an entire-domain FEM model (an entire computational domain is represented by a single 

finite element). In order to verify the numerical stability, accuracy, and convergence of the 

method, the waveguide is analyzed by the higher order TDFEM and the reflection coefficient, 

                                                 
2 A portion of this chapter (sections 2.1–2.4, 2.7) has been published in IEEE Transactions on Microwave Theory 
and Techniques. © 2013 IEEE. Reprinted, with permission, from N. J. Šekeljić, M. M. Ilić, and B. M. Notaroš, 
“Higher Order Time-Domain Finite Element Method for Microwave Device Modeling with Generalized Hexahedral 
Elements,” IEEE Transactions on Microwave Theory and Techniques, Vol. 61, No. 4, pp. 1425-1434, April 2013. 
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which theoretically vanishes, is computed in the frequency range from 1.5 GHz to 4.5 GHz. 

(Note that λg = 7.071 cm at f = 4.5 GHz, λg being the wavelength of TE10 mode). 

 

Figure 2.1. Short empty rectangular waveguide section modeled by a single large finite element 
(literally an entire-domain FEM model) and higher order TDFEM. Dimensions of the waveguide 
are a = 10 cm, b = 5 cm, and l = 10 cm. © 2013 IEEE. 
 

Polynomial orders of the FEM field expansions are varied from 2wN  to 9wN  in the 

longitudinal waveguide direction whereas they were kept constant, Nu=6 and Nv= 4, along the 

longer and shorter waveguide cross-sectional sides, respectively. The waveguide is excited by a 

modulated Gaussian pulse given by 

   V/m 2sine)( 0c

4

0

2
0

ttftE

tt














          (2.1) 

where the carrier frequency is GHz3c f , half-bandwidth is GHz5.2f ,  f /4 , and 

 4.10t . The parameters of the time-marching process are: the total duration of the time 

signature T = 10 ns, the total number of time samples Nt = 10,000, and the time step 

ps1)1/( t  NTt . The TD vector wave equation (already discretized in space applying the 

FEM) is solved at each time step using a direct solver, namely, Gaussian elimination. Note that 

iterative solvers [e.g., a conjugate gradient solver (CGS)] can also be used. In practical cases, the 

total simulation time or the total duration of the time signature, T, is determined as 

approximately twice the width of the input signal, which is usually a Gaussian or modulated 

Gaussian pulse, Neumann pulse (derivative of the Gaussian pulse), or a combination of Gaussian 
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and Neumann pulses, or based on monitoring the reflections at the input port of the analyzed 

device [20]. Shown in Fig. 2.2 are the reflection coefficients vs. frequency, computed using 

(1.30) from the TDFEM solution, for the p-refined single-large-element FEM model. The higher 

order TDFEM results are compared with the two results from [21] where a similar structure is 

analyzed, but the actual waveguide-section length and time-domain excitation parameters are not 

specified. The results show a stable behavior, as it is expected because of the Newmark-beta 

method, and excellent convergence properties with an extreme p-refinement. The reflection 

coefficient obtained by the higher order single-element TDFEM is on average practically equally 

low (around –75 dB in the given frequency span) as the one obtained by the mixed second order 

(h-refined) model from [21]. Note that the actual results will slightly vary with the choice of the 

excitation pulse and other parameters in the time-domain analysis (which are not explicitly given 

in [21]). 

1.5 2.0 2.5 3.0 3.5 4.0 4.5
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Figure 2.2. Reflection coefficient for the TE10 mode in an empty rectangular waveguide in Fig. 
2.1: convergence of the higher order TDFEM single-large-element results with p-refinement and 
comparison with the reference (h-refined mixed first- and second-order elements) results from 
[21]. © 2013 IEEE. 
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Note that the spatial discretization practically does not exist in this example, Fig. 2.1 – the 

complete computational domain is encompassed by a single finite element. Hence one might 

wonder, at this point, how a single large finite element can accurately capture the transient 

response  t,rE , within the time-stepping solution in the higher order TDFEM, at any point r in 

the element and at any time instant t. This is perhaps because the time-domain solutions are 

intuitively associated [in the spirit of the (most natural and easy to comprehend in TD 

computations) finite difference time domain (FDTD) method] with the marching in time and 

space along a very fine grid. In such a grid, the solution at the next grid point (and the next point 

in time) is obtained by iterating the solution at the present grid point (and the present time) by 

simultaneously taking a time-marching step t  and a space-marching step tcu   (where u is 

a chosen spatial coordinate and c is the speed of light in the considered medium). On the other 

hand, one can easily appreciate that if a single higher order finite element can accurately (and 

more efficiently than a number of small low-order elements) yield frequency responses (in the 

context of the FDFEM) within a certain frequency band (beyond which additional h- or p-

refinements are required, as demonstrated in [25]), the same element should equally well carry 

the same portion of a correctly rendered frequency band contained in a pulse applied as its 

excitation in the time domain (in the context of the TDFEM). In other words, one might wonder 

how well the basis functions in the higher order TDFEM are able to approximate generally band-

limited (e.g., Gaussian) pulses, typically used in time-domain analyses in practical applications 

(with band-limited systems). Because this phenomenon is strictly associated with higher order 

and large-domain FEM modeling in the time domain, and the present study appears to be the first 

study of such a method, we next present in Fig. 2.3 the least squares approximation of the 

Gaussian pulse (which is very similar in nature to the Galerkin discretization utilized in our 
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TDFEM technique) achieved by the higher order polynomial basis functions in (1.7). For the 

sake of clarity of the presentation, the approximation is shown in one dimension (1-D), along the 

local parametric (dimensionless) u-coordinate )11(  u  of a single 1-D finite element. The 

propagating Gaussian pulse is frozen at a time instant at which its peak is supposed to have 

reached the coordinate 0u , thus its spatial distribution within the element becomes 

22
0 /)(4e)(  uuuf            (2.2) 

where  f /4  and 2f . It can be concluded from the figure that basis functions in (1.7), 

of order 10uN  in this example, can indeed approximate the (practically) band-limited 

Gaussian pulse at any coordinate in the element and at any time instant extremely well. The 

same, of course, would not hold, with the same accuracy of the approximation, for sharp 

wideband pulses (e.g., a step function). 

*************************
****
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*******************************************************
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Figure 2.3. Illustration of the higher order polynomial spatial approximation using higher order 
polynomial basis functions of the Gaussian pulse in (2.2) across a large 1-D finite element. The 
pulse is frozen at the time instant at which its peak is supposed to have reached the local 
parametric coordinate 00 u . 
 
 
However, the higher order FEM solutions, being associated with significantly lower numerical 

dispersion errors [14] (originating from a numerical approximation of the wave propagation 
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speed in the given medium, which itself is of a limited accuracy) will actually yield better 

transient responses than the low order small-domain solutions, because the propagating time-

domain signals will be less distorted over longer traveling paths and will thus better maintain 

their original shape. 

Shown in Table 2.1 are the computational requirements, in terms of the relative simulation 

time and memory, for analysis of the waveguide section in Fig. 2.1, for all p-refined solutions in 

Fig. 2.2, with the accuracy of individual solutions being given in Fig. 2.2. In TDFEM 

simulations, the time marching process requires the maximum memory allocated at any point in 

time. During this process, the following matrices are allocated: ][ 1D , ][ 2D , ][ 3D , and ][C , each 

of dimension NN  , ][  and excitation matrix ][F , defined by (1.20), each of dimension tNN  , 

an t1 N  array of impulse responses }{ 10h , and two N1  arrays, }{ 10q  and }{b , where }{b  is a 

temporary array in which the right-hand side of the TD equation [(1.15), (1.24), and (1.25)] is 

stored during one pass through the time marching loop. All computations are carried out without 

parallelization on an Intel® CoreTM2 Quad CPU Q6600 at 2.40 GHz 2.39 GHz, with 8 GB RAM, 

under 64-bit Windows 7 operating system. 

 

Table 2.1. Computational requirements for analysis of the waveguide section in Fig. 2.1 for eight 
p-refined solutions. © 2013 IEEE. 

 

Expansion order, Nw 2 3 4 5 6 7 8 9 

Number of unknowns, N 144 197 250 303 356 409 462 515 

Relative simulation time 1 1.4 1.77 2.23 2.73 3.2 3.73 4.27 

Memory (MB) 22.7 31.3 40.1 49.1 58.3 67.6 77.1 86.8 
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2.2 Air-Filled WR-90 with Dielectric Post 

 
The second example is an air-filled lossless WR-90 rectangular waveguide with a dielectric 

post, as shown in Fig. 2.4. The waveguide is operating in the single mode window, hence the 

proper monomodal modeling is ensured by allowing a certain distance between the discontinuity 

and the waveguide ports, where the modal amplitudes of the electric field in (1.29) are computed 

by the higher order TDFEM. The waveguide is excited by the same type of modulated Gaussian 

pulse as in (2.1), with GHz10c f , GHz5.2f ,  f /4 , and  4.10t . The large-domain 

FEM mesh is constructed from only seven hexahedral elements (element dimensions vary from 

0.2λg to 1.5327λg at f = 12 GHz) with Ku=Kv=Kw=1 and Nu, Nv, and Nw ranging from 4 to 7 

in different elements and different directions, which results in a total of 1,791 FEM unknowns. 

 

Figure 2.4. WR-90 waveguide with a lossless dielectric ( 2.8r  ) post and its large-domain 
hexahedral FEM mesh used in higher order TDFEM computations. Dimensions of the 
waveguide and mesh elements are mm 86.22a , mm 16.10b , mm 12c , mm 6d , 

mm 72.45e , and mm 24g . © 2013 IEEE. 
 

The parameters of the time-marching process are T = 10.235 ns, Nt = 5,000, and ps047.2t . 

The obtained transient waveforms, shown in Fig. 2.5, are in an excellent agreement with 

FDFEM-DFT/IDFT results [24] and in a good agreement with EVFE responses from [29], 

having in mind that the results in [29] are obtained with a different waveguide excitation (current 
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probes with no details provided), as opposed to modal excitations in this present work, as well as 

that no details are provided in [29] about the actual locations of reference planes with respect to 

which the responses are given. Reflected and transmitted signals exhibit a stable behavior. 
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Figure 2.5. Transient waveforms of incident, reflected, and transmitted waves for the structure in 
Fig. 2.4 and excitation in (2.1) obtained by the higher order TDFEM and FDFEM-DFT/IDFT 
[24] techniques (note that rectified modulated signals are shown within the envelopes); EVFE 
results from [29] are shown in figure insets. © 2013 IEEE. 
 

Next, we compute the S-parameters at the input and output ports in Fig. 2.4 [using (1.30)]. 

The sampling frequency is GHz52.488/1s  tf  (the number of DFT samples is equal to the 

number of samples in time, Nf = Nt = 5,000). The higher order TDFEM results are shown in 

Fig. 2.6, where they are compared with FDFEM results [24] in Fig. 2.6(a) and with FETD (small 

domain approximation, 72,373 tetrahedral elements, minminmin zyx  30/mm1 g , 

maxt ps9.1 ) [29], EVFE [29], and HFSS (commercial software, direct FD) results in 

Fig. 2.6(b). 
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Figure 2.6. Modal S-parameters of the waveguide structure in Fig. 2.4: comparison of higher 
order TDFEM results with (a) FDFEM results [24] and (b) FETD [29], EVFE [29], and HFSS 
results. © 2013 IEEE. 
 



23 
 

It can be concluded based on the figures that TDFEM results practically identically match 

FDFEM-DFT/IDFT results, as well as that both sets of higher order results match extremely well 

the reference HFSS results, and in that sense they both outperform the FETD and EVFE results. 

 

2.3 WR-62 with Two Crossed Cylindrical Posts 

 
In the third example, consider a WR-62 waveguide with two crossed metallic cylindrical 

posts, with the large-domain FEM model shown in Fig. 2.7 (ten generalized hexahedral 

elements, Ku, Kv, andKw are 1 or 2, Nu, Nv, and Nw range from 2 to 5, yielding 1,184 unknowns) 

and the excitation in the form of the signal in (2.1), where GHz14c f  and GHz3f . The 

transient and frequency responses of the structure computed by the higher order TDFEM 

( ps462.1t  and Nt = 5,000) are shown in Fig.2.8. In Fig.2.8(a), we observe an excellent 

agreement between the TDFEM and FDFEM-DFT/IDFT [24] results for the reflected waveform. 

In Fig.2.8(b), a very good agreement between the numerical results obtained by the TDFEM, 

FDFEM [24], and HFSS and the measured data [30] for the S11 of the structure is observed. 
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b Port1
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Figure 2.7. Higher order large-domain hexahedral TDFEM model of a WR-62 waveguide with 
two crossed metallic cylindrical posts (a = 15.7988 mm, b = 7.8994 mm, c = 20 mm, 
d = 11.51 mm, e = 2.5 mm, g = 4 mm, h = 3 mm). © 2013 IEEE. 
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Figure 2.8. Computed (a) transient and (b) frequency responses for the waveguide structure in 
Fig. 2.7 using the higher order TDFEM: comparison with FDFEM-DFT/IDFT results [24] in (a) 
and with FDFEM results [24], HFSS results, and measurements [30] in (b). © 2013 IEEE. 
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2.4 WR-15 Loaded with Continuously Inhomogeneous Dielectric Slab 

 
As the fourth example, we consider a WR-15 waveguide loaded with a continuously 

inhomogeneous dielectric slab with a relative permittivity profile given by 2
r 89)( uu  , 

11  u  and 1/2  czu , as depicted in Fig. 2.9. The transient responses for the reflected 

wave obtained by the higher order TDFEM [excitation in (2.1), GHz62c f , GHz15f , 

ps33.0t , and Nt = 5,000] for: (A) an exact continuously inhomogeneous model and (B) an 

approximate piecewise homogeneous model are shown in Fig. 2.10. Model (A), with the entire 

slab represented by a single continuously inhomogeneous finite element, consists of only three 

hexahedral finite elements with Ku = Kv = Kw = 1 (one inhomogeneous dielectric element with 

Nu=4, Nv=2, and Nw=7 and two buffer elements with Nu=4, Nv=2, and Nw=4) and 

requires only 205 unknowns. Model (B), with the slab approximated by seven homogeneous 

layers (relative permittivities of layers are given in Fig. 2.9), includes nine hexahedral elements 

(Ku = Kv = Kw = 1, Nu, Nv, and Nw range from 2 to 5) and results in 569 unknowns [24]. The 

results of the FEM-DFT/IDFT simulations for both models [24] are included for comparison. It 

can be observed from the figure that in both cases the TDFEM and FEM-DFT/IDFT results are 

practically identical, as well as that the transient responses for the continuously inhomogeneous 

model and the seven-layer model agree very well. Note that for model (A), the TDFEM 

simulation takes 2.5 times less computational time than the FEM-DFT/IDFT simulation, while 

the TDFEM simulation of model (B) takes 34% more computational time than the FEM-

DFT/IDFT simulation. Note also that the FEM-DFT/IDFT solver takes advantage of an 

extremely fast multifrequency FDFEM analysis of 3-D waveguide structures (the global FEM 

matrix is filled only once and then reused for every subsequent frequency point) needed for the 

inverse Fourier transform [24]. 
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Figure 2.9. Higher order large-domain TDFEM model of a WR-15 waveguide (a=3.76mm, 
b=1.88mm, and c=2.5mm) with a continuously inhomogeneous (quadratically varying) 
lossless dielectric load (central element); seven-layer approximate model of the load with 
piecewise constant approximation of the quadratic permittivity profile [24] is also shown.          
© 2013 IEEE. 
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Figure 2.10. Transient response for the reflected wave of the structure in Fig. 2.9: comparison of 
the higher order TDFEM and FEM-DFT/IDFT [24] results for the exact continuously 
inhomogeneous model and the approximate piecewise homogeneous model (with seven 
homogeneous layers), respectively (both models are shown in Fig. 2.9). © 2013 IEEE. 
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Figure 2.11. (a) Magnitude and (b) phase (argument) of the S11-parameter of the waveguide 
structure in Fig. 2.9 obtained by the higher order TDFEM and FDFEM [24], respectively, 
applied to the exact continuously inhomogeneous model and by HFSS applied to the 
approximate seven-layer model. © 2013 IEEE. 
 

The computed S11-parameter of the structure in Fig. 2.9 is shown in Fig. 2.11. In the graphs, 

the TDFEM solution with the continuously inhomogeneous model is compared with the FDFEM 

solution for the same model and with the HFSS solution for the seven-layer model. We observe 
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an excellent agreement of the TDFEM and FDFEM-DFT/IDFT results and a very good 

agreement of both sets of higher order results with the HFSS solution (TDFEM and FDFEM-

DFT/IDFT solutions for the seven-layer model, being in an excellent agreement with the HFSS 

results, are not shown). 

 

2.5 90° H-, E-Plane WR-75 Bends 

 
In the next example, we analyze 90° H- and E-plane WR-75 bends with uniform cross-section 

of dimensions a = 19.05 mm and b = 9.525 mm shown in Fig. 2.12. The radius of the curvature 

for H-band is RH = 21.6 mm, and for E-band RE = 12 mm, respectively. Both structures are 

excited with modulated Gaussian pulse given in (2.1) with following parameters: T = 5 ns, Δf = 3 

GHz,  fc = 12.5 GHz, Nt = 7000. The bends are modeled with only three large elements of second 

geometrical order (K = 2) where the maximum size of the elements is approximately one 

wavelength in the waveguide (emax ≈ λg). Note that we used two extra elements of length l = 10 

mm, as buffers, in order to assure dominant mode propagation (see Fig. 2.12). In Fig. 2.13, a 

very good agreement between the numerical results obtained by the higher order TDFEM, 

reference solution [31], the measured data [31], and excellent agreement with HFSS for the S11 

of the structure is observed. Our higher order solution is approximated with polynomial orders N 

= 5, 7 which results in totally 2,108 unknowns while HFSS solution requires 2,293 tetrahedral 

elements and second order field approximation which results in 14,204 unknowns. 
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Figure 2.12. Higher order large-domain TDFEM model of 90° (a) H-plane and (b) E-plane WR-
75 bends with uniform cross-section of dimensions a = 19.05 mm and b = 9.525 mm, radius of 
the curvature for H-band is RH = 21.6 mm, and for E-band RE = 12 mm, respectively, and length 
of the buffer elements l = 10 mm. 
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Figure 2.13. Computed frequency responses for the waveguide structures in Fig. 2.12 using the 
higher order TDFEM: comparison with reference [31], measurements [31], and HFSS results. 
 
 



30 
 

2.6 30° Cascaded H-Plane WR-90 Bends 

 
As the last example, we perform higher order TDFEM analysis of cascaded 30° H-plane, U- 

and S-type, WR-90 bends with cross-section dimensions a = 22.90 mm, b = 10.20 mm, and mean 

radius of the curvature R = 15.24 mm, shown in Fig. 2.14. Both models are simulated for two 

different lengths of the buffer elements: case (i) L = 5 mm, and case (ii) L = 25 mm. Higher order 

TDFEM model includes only five hexahedral elements (K = 2) as depicted in Fig. 2.14, with 

maximum dimension emax = L = 25 mm = 1.2 λg. The transient responses obtained by the higher 

order TDFEM [excitation in (2.1), GHz10c f , GHz5.2f , ns5T , and Nt = 5,000] for case 

(i) and case (ii) are shown in Figs 2.15 and 2.16, respectively. Polynomial orders of higher order 

field expansion vary from N = 4 to N = 7 resulting in 2,050 unknowns. 
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Figure 2.14. Higher order large-domain TDFEM model of cascaded 30° H-plane bends (φ = 30°) 
(a) U-type, (b) S-type with mean radius of the curvature R = 15.24 mm in WR-90 rectangular 
waveguide with a = 22.90 mm and b = 10.20 mm. 
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Figure 2.15. Transient response for the reflected and transmitted wave of the structures in 
Fig. 2.14 (a) U-bend and (b) S-bend: comparison of the higher order TDFEM and FEM-
DFT/IDFT [24] results for the case (i) L = 5 mm. 
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Figure 2.16. Transient response for the incident, reflected and transmitted wave of the structures 
in Fig. 2.14: comparison of the higher order TDFEM and FEM-DFT/IDFT [24] results for the 
case (ii) L = 25 mm. 
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Figure 2.17. Computed frequency responses for the waveguide structures in Fig. 2.14 for (a) case 
(i) L = 5 mm and (b) case (ii) L = 25 mm using the higher order TDFEM: comparison with MoM 
reference solution [32], and higher order FDFEM [24]. 
 
 
Reflection coefficient of waveguide structures in Fig. 2.14 is shown in Fig. 2.17, and excellent 

agreement is observed between three sets of solution: higher order TDFEM and FDFEM [24], 

and MoM reference solution [32]. 
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As it was expected, sufficiently long separation between curvatures (L ≈ λg, case (ii)) ensures 

that all evanescent modes excited in the junction are significantly attenuated. Therefore, the 

orientation of the bend is not important and in both structures, U- and S-type bends, we have the 

same dominant mode propagation (as presented in Fig. 2.16 in time domain, and Fig. 2.17(b) in 

frequency domain). 

 

2.7 Conclusion 

 
Numerical examples of waveguide structures that include metallic and homogeneous and 

continuously inhomogeneous dielectric discontinuities have validated the method, which appears 

to be the first truly higher order 3-D TDFEM technique (the results have demonstrated using 

field expansions of orders from 2 to 9), and have demonstrated its excellent accuracy, efficiency, 

stability, convergence, and versatility. They have demonstrated very effective large-domain 

TDFEM models of 3-D waveguide discontinuities using minimal numbers (from one to ten) of 

large conformal finite elements and minimal numbers (up to 2,108) of unknowns, which appear 

to be the first set of large-domain TDFEM modeling examples. The results obtained by the 

higher order TDFEM are in an excellent agreement with the FDFEM-DFT/IDFT solutions, as 

well as with measurements and with alternative full-wave numerical solutions in both time and 

frequency domains. 
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3 HIGHER ORDER METHOD OF MOMENTS FOR ELECTRIC FIELD 

INTEGRAL EQUATION MODELING IN TIME DOMAIN3 

 
 
3.1 Introduction 

 
The time domain (TD) surface integral equation (SIE) formulation is an effective approach to 

transient electromagnetic (EM) analysis of open-region (radiation and scattering) three-

dimensional (3-D) structures. TDSIE techniques have two unique advantages as compared to 

differential equation based numerical approaches, such as the finite element method (FEM), 

when analyzing homogeneous or piecewise homogeneous radiation and scattering structures in 

the TD. As SIE based methods, they only require surface discretization of the scatterer and 

implicitly satisfy radiation boundary condition through Green’s functions. As TD methods, they 

can provide analysis of transient, broadband, and nonlinear phenomena in a single run. 

The most explored method in solving TDSIEs is the marching-on-in-time (MOT) method 

[33]. Several MOT schemes, combined with the method of moments (MoM) Galerkin-type 

spatial testing, have been developed [34]–[39]. In terms of the numerical properties of proposed 

and implemented temporal basis functions and their orders, most MOT techniques apply linear 

approximations of the temporal current expansions [35], [36], [40]–[44]. Higher order Lagrange 

polynomial temporal basis functions, implemented up to the second order, have been suggested 

in order to enhance the accuracy of the MOT algorithm [39], [45]–[49]. 

Novel higher order temporal basis functions derived from Laguerre polynomials are 

                                                 
3 Material included in this chapter will be published in IEEE Transactions on Antennas and Propagation: N. 
J. Šekeljić, M. M. Ilić, and B. M. Notaroš, “Spatially Large-Domain and Temporally Entire-Domain Electric-Field 
Integral Equation Method of Moments for 3-D Scattering Analysis in Time Domain,” accepted, in print to appear in 
Vol. 63 No. 6 of IEEE Transactions on Antennas and Propagation.  
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introduced in [50]. These polynomials naturally satisfy the causality condition because they are 

defined on the interval from zero to infinity (entire-domain temporal basis functions); therefore, 

they are a desirable choice for transient modeling. By applying the temporal testing procedure in 

the same fashion as the spatial Galerkin-type testing, and due to the orthogonality of Laguerre 

polynomials, the temporal variable can be integrated analytically out from the final system of 

TDSIEs. Instead of the conventional MOT procedure, the final system of equations is solved in 

marching-on-in-degree (MOD) of temporal basis functions. Like implicit MOT schemes [38], 

the MOD approach does not have to satisfy the Courant-Friedrich-Levy (CFL) sampling criterion 

relating the spatial to the temporal discretization. The MOD scheme employing weighted 

Laguerre polynomials as temporal bases has been implemented within different MoM-SIE 

formulations in the TD, including the electric field integral equation (EFIE), magnetic field 

integral equation (MFIE), and combined field integral equation (CFIE) formulations, for 

transient scattering analysis of conducting and dielectric structures [51]–[58]. Compared to the 

implicit MOT scheme, which results in a sparse system matrix and where the sparsity/stability 

depends on the size of the time step, the MOD scheme produces a full system matrix 

independent of the time step/order of the time-variant basis functions. The minimal order of the 

Laguerre polynomials for the temporal support is defined by the time duration and frequency 

bandwidth product of an incident wave [51], [53]. Finally, the Laguerre polynomials decay to 

zero at infinite time, thus the solution cannot become oscillatory for late times. 

In terms of the numerical properties of proposed and implemented spatial basis functions and 

their orders, however, practically all the existing MOT and MOD 3-D MoM-TD SIE simulation 

tools for EM scattering analysis are low-order or small-domain (subdomain) techniques, with the 

EM structure being modeled by planar triangular surface elements that are electrically very small 
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and the electric and magnetic currents over the elements are approximated by the first-order 

spatial basis functions, namely, Rao-Wilton-Glisson (RWG) functions [59]. This results in a very 

large number of spatial unknowns (unknown current-distribution coefficients) needed to obtain 

results of satisfactory accuracy, with all the associated problems and large requirements in 

computational resources. In addition, flat triangular patches do not provide enough flexibility and 

efficiency in modeling of structures with pronounced curvature. 

An alternative approach – constituting the higher order or large-domain (sometimes also 

referred to as the entire-domain) computational EM [25] – is based on using higher order basis 

functions defined on large curved geometrical elements (patches) [60], which can greatly reduce 

the number of unknowns for a given problem and enhance the accuracy and efficiency of the 

computation. However, this approach seems to have not been fully employed in the MoM-TD 

SIE analysis yet; namely, almost none of the reported MoM-MOT/MOD TD SIE results and 

applications in the literature demonstrate actual using and implementation of spatial 

discretization models with current approximation orders higher than one (higher order 

modeling). Moreover, for MoM-TD SIE modeling of general structures that may possess 

arbitrary curvature, it is convenient to have both higher order geometrical flexibility for 

curvature modeling and higher order current-approximation flexibility for spatial current 

modeling – in the same method. Also, it is convenient to use hierarchical higher order bases, 

which allow elements of different orders and sizes combined together in the same model. 

Notable examples of spatially higher order MoM-MOT TD SIE modeling are the boundary 

integral equation (BIE) method in the TD using isoparametric curvilinear quadratic 

approximation of geometry and both spatial and temporal dependence of fields [61], [62] and the 

higher order Calderon preconditioned EFIE TD solver employing Graglia-Wilton-Peterson 
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(GWP) divergence- and quasi curl-conforming (DQCC) spatial basis functions of up to third 

order on second-order curvilinear triangular elements [63]. Another example are spatially higher 

order vector basis functions (up to the second order) in conjunction with band-limited 

interpolatory functions (BLIFs) for temporal discretization have been introduced in [37]. In 

addition, none of the works employ large elements (or a combination of large and small 

elements) in the MoM-TD SIE model (large-domain modeling). 

This research proposes a novel spatially large-domain and temporally entire-domain MoM-

TD EFIE method, with full temporal and spatial Galerkin testing, for 3-D transient EM analysis 

of conducting scatterers based on higher order geometrical modeling and current expansion and 

MOD scheme. The geometry of the structure is modeled using Lagrange-type interpolation 

generalized quadrilaterals of arbitrary geometrical-mapping orders and the spatial current 

distributions over the elements are expanded in terms of hierarchical divergence-conforming 

polynomial vector basis functions of arbitrarily high current-approximation orders [60]. Note that 

the quadrilateral elements have been chosen to facilitate surface meshes that can employ very 

large elements, which is consistent with the large-domain modeling and higher order current 

expansion paradigm. Triangular elements could be used (with appropriate local parent coordinate 

systems) but with limited flexibility in terms of large-domain modeling. Time variations of the 

currents are expressed by orthogonal entire-domain temporal basis functions derived from 

Laguerre polynomials and the transient response of the scatterer is obtained by an iterative 

solution of the final system of spatially and temporally discretized MoM-TD EFIE equations in a 

MOD fashion [58]. It should be noted that the MOD is a particularly suitable choice here since 

the focus of this paper is on higher order spatial elements. However, MOD has seen limited use  
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in literature because its efficiency may often be considerably weaker than with the methods that 

use local basis functions in time, e.g., [63]. 

To the best of our knowledge, this dissertation presents the first MoM-TD SIE method with 

very high spatial and temporal expansion orders (the results demonstrate using current 

expansions of spatial orders from 2 to 8 and geometrical-mapping orders from 1 to 4 in 

conjunction with using higher order, entire-domain Laguerre polynomial temporal basis 

functions) and the first set of spatially large-domain MoM-TD SIE modeling examples (the 

electrical sizes of flat and curved patches in models are up to about 1.7 wavelengths at the 

maximum frequency in the frequency spectrum of the pulse excitation). The new method is also 

the first MoM-MOD method with spatially higher order expansions. 

 

3.2 EFIE Formulation in TD 

 
Consider a 3-D conducting, nonpenetrable (PEC – perfect electric conductor) body excited by 

an incident wave (e.g., a Gaussian pulse or its derivative), as shown in Fig. 3.1. 
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Figure 3.1. 3-D PEC scatterer excited by an incident Gaussian pulse – analysis by the MoM-
MOD TD EFIE method. 
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The total tangential electric field (superposition of incident field iE and scattered field E ) on the 

boundary surface S is equal to zero at each time instant, 

0)(,,0)),(()],([ tangitang  tStt rrErE .           (3.1) 

The scattered electric field in the unbounded homogeneous background medium of permittivity  

and permeability  is expressed in terms of surface electric current density vector JS over S as 

follows: 
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The Lorentz (retarded) potentials are given by 
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where || rr R  represents the distance between the observation point r  and the source point 

r , cRt /τ   is the time (delay) that the EM wave travels from the source to the observation 

point, and c is the intrinsic speed of propagation of the EM wave in the background medium. 

Note that in (3.4), the surface charge density sρ  is related to JS based on the continuity equation, 

t SSs ρJ . Having in mind the integral expressions for scattered electric field E in (3.2)–

(3.4), (3.1) represents the TD EFIE for JS as unknown, which is discretized and solved using the 

MoM with Galerkin testing in space-time in conjunction with the MOD scheme [56], [57]. 
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3.3 Geometrical Modeling using Higher Order Quadrilateral Surface Elements 

 
The geometry of the structure in Fig. 3.1 is modeled by means of generalized curved 

quadrilateral patches shown in Fig. 3.2 and analytically described as [60] 
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where Ku and Kv (Ku, Kv  1) are geometrical orders of the element along u and v parametric 

coordinates, respectively (note that the orders do not need to be the same within an element), klr  

are constant vector coefficients related to position vectors of the interpolation nodes, see Fig.3.2, 

)(u  represent Lagrange interpolation polynomials in the u coordinate, 
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with the nodes defined as uuj KKju /)2(  , uKj ,...,1,0 , and similarly for )(v . Usually, the 

equidistant distribution of interpolation nodes along each coordinate in parametric space is used. 

Of course, the use of specific nonequidistant node distribution, which would provide additional 

modeling flexibility and accuracy in some applications, is possible as well. Note that the 3-D 

generalization of the quadrilateral in Fig. 3.2 is used in the higher order FEM-TD method [64]. 
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Figure 3.2. Generalized curved parametric quadrilateral MoM-SIE patch defined by (3.5), with 
the square parent domain. 
 

3.4 Higher Order Temporal and Spatial Basis Functions 

 
In the novel MoM-TD EFIE method, the time-variant electric current density and the 

accompanying surface charge density over every generalized quadrilateral in the model are 

expanded using temporal and spatial higher order basis functions as follows: 
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where h is the Hertz vector introduced as the actual unknown in the MoM solution procedure in 

order to avoid temporal integration in (3.4) [65], [53], and u and v are local parametric 

coordinates of an element (SIE patch) in the model [see Eq. (3.5)]. Unknown time-dependent 

coefficients in (3.8) associated with the u-component of the Hertz vector huij are expanded using 

a linear combination of the three associated Laguerre functions with successive orders, 
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(time-dependent coefficients associated with v-component of the Hertz vector hvij can be 

expanded in a similar fashion). Here, M is the order of temporal basis functions, s is the scaling 

factor which controls the accuracy of the temporal support, huij,q are unknown constant 

coefficients, )(e)( 2/- stLst q
ts

q  , t ≥ 0, are associated Laguerre temporal basis functions, and 

)(stLq  are Laguerre polynomials of order q and argument x = st, defined as  

0,0),e(
d

d

!

e
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xL xq

q
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These polynomials satisfy the following recursive relation: 
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Linear combination of weighted Laguerre polynomials, (3.9), is suggested in [56], [58] in order 

to improve the computational efficiency as compared to the conventional MOD method where 

the time-dependent part of the Hertz vector is expanded only by a single associated Laguerre 

function set )(stq  [53], [55], [57]. The Laguerre polynomials have excellent causality, 

orthogonally, recursive-computation, and convergence properties [56], and are extremely 

convenient for the purpose of temporal expansions in the large-domain MoM-TD EFIE method. 

Functions f  in (3.8) are higher order hierarchical-type divergence-conforming spatial basis 

functions defined on each generalized quadrilateral patch (see Fig. 3.2). For the local u- and v-

components of the Hertz vector, they are given by [60] 
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(see Fig. 3 in [66] for visualization of these functions). Parameters Nu and Nv in (3.8) are the 

adopted degrees of the spatial polynomial approximation of the Hertz vector. The unitary vectors 

au and av in (3.12) are obtained as uvuvuu  /),(),( ra and vvuvuv  /),(),( ra , with r  given in 

(3.5), and  is the Jacobian of the covariant transformation, |),(),(|),( vuvuvu vu aa  . 

Furthermore, we consider the functions in the following simplified form: 
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where  are the simple 2-D power functions, 

ji
ij vuvu  ),( .             (3.14) 

Note that the lowest order of approximation (Nu=Nv=1) yields the rooftop functions on 

generalized quadrilateral patches (which, for such basis functions, then must be very small). 

Substituting (3.2)–(3.4) combined with (3.7)–(3.9) into (3.1) and applying the analytical 

expressions for the second derivative of the time dependent part of the Hertz vector hij (hij 

representing either huij or hvij), 
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with the first time-derivative being due to the magnetic vector potential term in (3.2) and the 

second due to the substitution of the surface current distribution in terms of the Hertz vector 

(3.7), the TDEFIE formulation can be finally expanded using unknown coefficients hij,q and 

higher order temporal and spatial basis functions   and f , respectively, as follows: 
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The closed form of the second derivative of the time dependent part of the Hertz vector (3.15) 

is derived satisfying the properties of Laguerre polynomials, i.e., causality and orthogonality 

[56], [67]. The error due to a finite difference approximation of this derivative, used in traditional 

MOT methods, is eliminated utilizing the analytical expression. In addition, there is no need for 

temporal interpolation of the solution. Once unknown coefficients are obtained, the current/field 

distribution over the SIE element can be computed at any instant in time. Note that in (3.16), 

when compared to (3.9) and (3.15), the terms inside the temporal summation are regrouped with 

respect to unknown coefficients hij,q instead of associated Laguerre functions q . 

 

3.5 Full Time-Space MoM Galerkin Testing 

 
The TDEFIE (3.16) is tested by means of the full temporal and spatial Galerkin method [25], 

[60], [38] i.e., using the same functions used for current (Hertz-vector) expansion. The 

generalized Galerkin impedances corresponding, respectively, to the magnetic vector potential 

and electric scalar potential terms in the expression for the scattered field E in (3.2) in the model 

can be derived, using (3.3) and (3.4), in the following form: 
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where p  and q  are, respectively, the temporal testing and basis functions, p and q are 

indices/orders of the temporal testing and basis support, and mf and nf  are the spatial testing and 

basis functions on the mth and nth generalized quadrilateral elements (Sm and Sn). The impedance 

in (3.18) is obtained applying the surface divergence theorem and the property of higher order 
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divergence conforming functions that the normal component of the testing function mf  is either 

zero at the element edges or the two contributions of the elements sharing an edge exactly cancel 

out in the final expressions for generalized impedances. The source-to-field distance R in (3.17) 

and (3.18) is computed as |),(),(| nnnmmm vuvuR rr  , with r being defined in (3.5). 

Due to causality and orthogonality of Laguerre polynomials [56], temporal integrals in (3.17) 

and (3.18) can be handled analytically first, resulting in the two types of Green’s functions for 2-

D spatial integrals, as follows 
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Taking into account the parametric representation of the quadrilateral surface element, in 

(3.5), and simplified representation of the spatial basis functions in (3.13) and (3.14), generalized 

impedance terms in (3.17) and (3.18) corresponding to the testing functions defined by indices im 

and jm on the mth quadrilateral and the basis function defined by indices in and jn on the nth 

quadrilateral become 
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In these equations, Nu
(m) and Nv

(m) are the Hertz-vector approximation orders of the mth 

quadrilateral along the u- and v-coordinate, respectively, Nu
(n) and Nv

(n) are the corresponding 

orders for the nth quadrilateral, and the integration limits in both quadrilaterals are u1=v1=1 

and u2=v2=1. In addition, Ku
(m) and Kv

(m) are the geometrical orders along the u- and v-
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coordinate, respectively, rkl
(m) are the geometrical vector coefficients in the polynomial 

expansion of the mth quadrilateral, Ku
(n), Kv

(n), and rkl
(n) are the corresponding geometrical 

parameters for the nth quadrilateral in the model, and i is the basic Galerkin potential integral 

given by 
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The 1-type integral [for i = 1 in (3.22)], involving the first Green’s function based on (3.19), 

RsR/cIRg cRs
pq /eR/)()( )2/(-

1  , when q = p, has a 1/R-type singularity, which is taken care of as in 

our frequency-domain (FD) MoM-SIE methods [25], [60]. The 2-type integral [for i = 2 in 

(3.22)], with the second Green’s function RcsRLcsRLsR/cIRg qpqp
cR-s

pq /))/()/((e)/R(  )( 1
)2/(

2    

when q < p, is not singular for R approaching zero, since  /)(lim 2
0

csRg
R




; this can be proved by 

applying L’Hospital’s rule and properties of the Laguerre polynomials. 

The generalized Galerkin voltages, namely, the column-matrix elements due to the incident 

field on the right-hand side of the equation (3.16), are evaluated, after the temporal and spatial 

Galerkin testing, as 
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In order to compute the temporal integral in (3.23) numerically, the upper limit is truncated to a 

finite duration of the time-domain signature Tf multiplied by the scaling factor s, ensuring that all 

further transient variations in the spatial domain of interest can be neglected. 

Finally, the generalized Galerkin impedances corresponding to the complete set of spatial 

basis functions in (3.12) can be obtained as a linear combination of those in (3.20) and (3.21), 

corresponding to the simplified functions in (3.13) and (3.14), and similarly for the generalized 
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voltages, which greatly expedites the matrix fill process when compared to the direct 

computation of final impedances and voltages [60]. Moreover, the Galerkin impedances and 

voltages for any higher order set of basis functions of divergence-conforming polynomial type 

can also be constructed as a linear combination of the impedances for the simple 2-D power 

functions in (3.13) and (3.14). 

 

3.6 MOD Solution of MoM-TD EFIE 

 
After Galerkin testing of (3.16) in space-time, with all generalized impedance and voltage 

matrices in (3.20)–(3.23) being already precalculated, the global system of linear algebraic 

equations can be obtained in the following form: 
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where ][][][ 1,1,  mn
A
mnmn ZZZ  is the system matrix, which takes into account contributions of the 

generalized impedance matrices, from (3.20) and (3.21) (for ][ 1,A
mnZ  and ][ 1,

mnZ , respectively), for 

the 1-type integral from (3.22) combined with (3.19) for the cases when q = p. As can be seen, 

the system matrix does not depend on the orders of temporal testing and basis functions, p and q, 

respectively; therefore, it is computed and inverted only once. Generalized impedances (3.20) 

and (3.21) corresponding to the 2-type integral, with (3.22) combined with (3.19) for the cases 

when q < p, are precalculated for each combination of the temporal testing and basis function 

indices, p and q, and stored in 3-D matrices constituted by M-element arrays of 2-D matrices 

][ 2,
,

A
kmnZ  and ][ 2,

,


kmnZ , k = M – p + q, of size m × n = NMoM × NMoM, with M being the order of 
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temporal basis functions and NMoM the total number of MoM spatial unknowns. The minimal 

order M is defined by the time duration, Tf, and the frequency bandwidth, B, of the excitation so 

that M ≥ 2BTf + 1 [51], [53]. Finally, the system (3.24) is solved recursively in the marching-on-

in-degree (MOD) fashion for unknown coefficients of the Hertz vector }{ , pnh , n = 1, 2, …, NMoM, 

p = 0, 1, 2, …, M. Note that, comparing (3.24) with (3.16), the temporal summation on the right-

hand side of the system equation (which includes already known coefficients) is done up to p – 1 

instead of M because of the property (3.19), 0)( sR/cI pq  when q > p. Note also that initial 

coefficients for p = 0, }{ 0,nh , are obtained as the solution of the matrix equation }{}{][ i
0,0, mnmn VhZ  . 

In this case, the only contribution from the right-hand side of the system (3.24) is due to the 

excitation vector }{ i
0,mV , while all other terms are equal to zero because of the causality property 

of Laguerre polynomials. The system of equations (3.24) for the pth order is solved by Gaussian 

elimination for unknown coefficients }{ , pnh . By postprocessing of the obtained coefficients, the 

current Js over any generalized quadrilateral patch in the model is computed using (3.7), where 

the first derivative of )(thn  is calculated analytically as 
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Computation of electric and magnetic fields due to Js, as well as of any other quantity of interest 

for the analysis, is then straightforward. 

 

3.7 Conclusion 

 
This dissertation has proposed a novel spatially large-domain and temporally entire-domain 

method of moments for EFIE modeling of 3-D conducting scatterers in the time domain. The 
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method uses higher order geometrical elements in the form of curved Lagrange interpolation 

generalized quadrilateral patches, higher order spatial current expansions based on hierarchical 

divergence-conforming polynomial vector basis functions, temporal current modeling by means 

of orthogonal weighted associated Laguerre basis functions, full temporal and spatial Galerkin 

testing, and MOD scheme for an iterative solution of the final system of spatially and temporally 

discretized MoM-TD EFIE equations. This chapter has presented theoretical background, 

development, and implementation of all major numerical components of the new method. 

Detailed validation of the method can be found in chapter 4. 
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4 TD-MOM – NUMERICAL RESULTS AND DISCUSSION4 

 
 

In this chapter, six PEC scattering structures in free space are analyzed to validate and 

evaluate the proposed spatially large-domain and temporally entire-domain MoM-MOD TD 

EFIE method. In all the examples, we solve for the induced transient surface current densities, as 

the most rigorous representative of the solution accuracy, critical for all near field parameters 

and quantities. Generally, the accuracy of far field computations is much better than that for the 

current distribution. All the structures are illuminated by an incident Gaussian pulse as shown in 

Fig. 4.1 and given by 

),ˆ(
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),( 000
w
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w
0i

2

krErE 


  tctc
TT

t            (4.1) 

where the vector amplitude E0 takes into account the polarization of the wave, k̂  is the unit 

vector in the propagation direction of the incident wave, r is the position vector of the 

observation point with respect to the global coordinate origin, c0 is the speed of light, t0 

represents a time delay of the Gaussian peak from the time origin, and Tw is the width of the 

Gaussian pulse. Time units in the examples are expressed in terms of light meters (lm), tct 0[lm]  . 

 

 

 

                                                 
4 A portion of this chapter (sections 4.2–4.7) will be published in IEEE Transactions on Antennas and Propagation: 
N. J. Šekeljić, M. M. Ilić, and B. M. Notaroš, “Spatially Large-Domain and Temporally Entire-Domain Electric-
Field Integral Equation Method of Moments for 3-D Scattering Analysis in Time Domain,” accepted, in print to 
appear in Vol. 63 No. 6 of IEEE Transactions on Antennas and Propagation. 
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Figure 4.1. Incident Gaussian pulse defined in (4.1) (shown for xE ˆ00 E  and zk ˆˆ  ) and 
associated spherical coordinate system defining elevation and azimuthal angles,   and  , 
respectively – as excitation of conducting scatterers analyzed by the MoM-MOD method. 
 

4.1 1-D Preliminary Results – Scattering from a Wire Scatterer 

 
The preliminary results given in the first example demonstrate very good accuracy and 

convergence properties of TD MoM-MOD method on a simple 1-D scattering model. Consider a 

thick wire scatterer along z-axis of length L = 2 m and radius a = 12.5 mm illuminated by a 

Gaussian pulse (4.1) with E0 = 1 V/m, Tw = 1 lm, and t0 = 3 lm at different angles of incidence 

with respect to z-axis. Spatial distribution of the current along the wire is approximated with 

rooftop basis functions (Nu = Nv = 1) while for the temporal dependence in the method, we adopt 

M = 90. In Fig. 4.2, computed current distribution at f = 300 MHz, is presented for different 

incident angles: o90  (normal incidence) and oo 75,30  (oblique incidence). TD-MoM 

results in conjunction with DFT are compared with FD-MoM results, and we observe an 

excellent agreement of the two sets of MoM results. 
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(c) 

Figure 4.2. Current distribution (magnitude and phase) along the wire scatterer at f = 300 MHz, 

for three angles of incidence: (a) o90 , (b) o30 , and (c) o75 . 
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4.2 Convergence Analysis – Square Plate 

 
As the next example, we perform the convergence analysis of the new MoM-MOD method 

for a metallic square plate with edge length a = 2 m. Excitation is by a Gaussian pulse (Fig. 4.1) 

normally impinging on a plate with E0 = 1 V/m, Tw = 4 lm, and t0 = 6 lm. The wave is linearly 

polarized with its electric field vector being parallel to one pair of plate edges. We consider in all 

examples that the pulse has significant spectral components up to fmax where the spectral 

amplitude decays to 0.1% of the maximal value. In this example it is approximately 

fmax = 250 MHz. We consider two models of the first geometrical order (Ku = Kv = K = 1) for the 

plate scatterer: (A) plate subdivided into 3 × 3 equal square SIE elements, of electrical size eA = 

a/3 = 0.556λ (λ being the free-space wavelength) at fmax, and (B) entire-domain model of the 

plate with a single SIE element, of electrical size eB = a = 1.667λ at fmax [note that even eA in 

model (A) is approximately six times larger than the size of elements used in low-order small-

domain MoM techniques, esmall-domain ≈ 0.1λ]. First, we investigate the optimal order of temporal 

basis functions, varying M in model (A) from 10 to 80, for a fixed order of spatial basis functions 

Nu = Nv = N = 4 (an overly safe choice based on our study of higer order parameters for the 

MoM-FD SIE method in [68]), which results in a total of NMoM = 264 spatial unknowns, and a 

fixed scaling factor s = 109. Fig. 4.3(a) shows that M = 30 is sufficient for accurate results. Next, 

shown in Fig. 4.3(b) is the p-refinement of model (B), with N ranging from 2 to 5, for the fixed 

order of temporal current approximation M = 30 and scaling factor s = 109, so chosen to provide 

accurate transient solution. Note that parameters M and s are the same as for model (A); as 

expected, they are not influenced by the size of the element, only parameter N is. The higher 

order results are compared with a low-order MoM-MOT solution [45], which includes 112 flat 

triangular patches and 153 spatial unknowns (the surface current density is approximated using  
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Figure 4.3. Convergence analysis of the presented MoM-MOD method for a metallic square 
plate scatterer in terms of the orders of temporal and spatial basis functions, M and Nu = Nv = N, 
in computing transient responses of the x-directed surface current density at the center of the 
plate: (a) increasing M for a fixed N in model (A) (plate subdivided into 3 × 3 SIE elements) and 
(b) p-refinement of model (B) (entire-domain model, with a single SIE element) for a fixed M. 
The higher order results are compared with the low-order MoM-MOT solution [45]. 
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RWG spatial basis functions and triangular temporal basis functions). We observe from the 

figure that the higher order results converge monotonically and quickly with the p-refinement 

and that the solution corresponding to N = 5, resulting in NMoM = 40 unknowns only, agrees very 

well with the reference solution. With the entire-domain model (B), NMoM is reduced by a factor 

of 6.6 with respect to model (A) with N = 4, and by a factor of 3.8 when compared to the 

reference solution [45]. 

 

4.3 Cubical Scatterer – Structure with Flat Surfaces and Sharp Edges 

 
As the second example of structures with flat surfaces and sharp edges, we consider the 

transient current response over sides of a PEC cube of edge length a = 1 m. For the incident 

wave in (4.1), xE ˆ00 E , (E0 = 1 V/m) and zk ˆˆ  , which corresponds to the azimuthal angle 

o0  and elevation angle o0 , as depicted in Fig. 4.1, and the Gaussian pulse is defined for 

two different cases of the analysis. In case (i), we adopt Tw = 8 lm and t0 = 12 lm, so that the 

pulse frequency spectrum has a practical upper bound of fmax1 = 125 MHz, and thus its band does 

not contain internal resonances of the cube, the lowest of which occurs at fres1 = 212.13 MHz. For 

case (ii), Tw = 2 lm and t0 = 3 lm, resulting in the upper frequency bound of fmax2 = 500 MHz for 

the covered frequency band, which includes the first six resonances of the cube (fres2 = 259.81 

MHz, fres3 = 335.41 MHz, fres4 = 367.42 MHz, fres5 = 424.26 MHz, fres6 = 450.00 MHz). For the 

temporal approximation in the method, we adopt M = 130 and s = 108 in case (i) and s = 8103  in 

case (ii). In addition, we consider two different spatial models of the cube: (A) the cube 

subdivided uniformly with three subdivisions per edge, which results in 54 flat (Ku = Kv = K = 1) 

quadrilateral patches (squares) (note that eA = a/3 ≈ 0.13λ at fmax1), with Nu = Nv = N = 2 and 

NMoM = 432 and (B) the cube modeled using only six flat surface elements representing the six 
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cube faces (eB = a = 0.42λ at fmax1 and eB = a = 1.667λ at fmax2), with N = 5 and NMoM = 300. 

Figs. 4.4(a) and (b)–(c) show, respectively, the transient current responses in the nonresonant 

band [excitation case (i)] obtained simulating both models (A) and (B) and the resonant band 

[excitation case (ii)] using model (B) only. The higher order MoM-MOD results are compared 

with low-order implicit MoM-MOT TD CFIE solutions (using 832 triangular patches and 1,248 

spatial unknowns) reported in [69], and an excellent agreement of the two sets of the results is 

observed. 
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Figure. 4.4. Comparison of results obtained by the presented MoM-MOD TD EFIE method and 
low-order implicit MoM-MOT TD CFIE solutions [69] for the transient current response of a 
PEC cubical scatterer: (a) x-directed surface current density at the center of the top face of the 
cube in the nonresonant band [excitation case (i)] for two different models (A) and (B) shown in 
the inset; and (b) x-directed JS at the center of the top face and (c) z-directed JS at the center of 
the side face of the cube in the resonant band [excitation case (ii)] using model (B) only. 
 

4.4 Spherical Scatterer – Structure with Pronounced Curvature 

 
As the first example of structures with pronounced curvature, we next analyze a metallic 

spherical scatterer, of radius a = 0.5 m, illuminated as in Fig. 4.1 with xE ˆ00 E , (E0 = 1 V/m), 

zk ˆˆ  , finite duration of the signal Tf = 40 lm, and cases (i) and (ii) from the previous example 

(note that the first three internal resonances of the sphere are fres1 = 262.02 MHz, 

fres2 = 369.77 MHz, and fres3 = 429.06 MHz). Spatial modeling of the sphere is performed using 

only six equal generalized quadrilateral SIE patches with geometrical orders (A) Ku = Kv = K = 2 

and (B) K = 4, respectively (eA = eB ≈ 0.36λ at fmax1 and eA = eB ≈ 1.34λ at fmax2). Figs. 4.5(a) and 

(b) show the convergence of the presented MoM-MOD method with respect to polynomial 

orders of spatial and temporal approximations, respectively, of the z-component of JS at the 

center of one of the six patches (this point belongs to the central equator of the sphere) in model 
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(A) in excitation case (i). Based on these results, the optimal polynomial orders of spatial and 

temporal basis functions of the Hertz vector (current), in (3.8) and (3.9), are found to be 

Nu = Nv = N = 2, which yields NMoM = 48, and M = 130 (with 810s ), respectively, for this 

example, and the agreement with results obtained by a low-order MoM-TD EFIE technique (528 

flat triangular patches and 792 spatial unknowns) in conjunction with a conventional MOD [52] 

is observed to be excellent. The convergence of the higher order results in terms of the 

geometrical order of modeling for excitation case (ii), where N = 4 and only 192 unknowns 

suffice, is presented in Fig. 4.5(c). Both models (A) and (B) provide an excellent accuracy of 

results when compared to the reference solution [52], but the results obtained with K = 4 can be 

observed to be in a better agreement with the reference solution at the current peak than those 

with K = 2. Note also that the more accurate curved geometrical model with only six higher order 

SIE elements reduces the number of spatial unknowns by a factor of 16.5 in case (i), and by a 

factor of 4.1 in case (ii), when compared to the reference model [52]. 
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Figure. 4.5. Convergence of results for a metallic spherical scatterer obtained by the presented 
MoM-MOD method with respect to polynomial orders of (a) spatial and (b) temporal 
approximations of the z-component of JS at the center of one of the six patches in model (A) (Ku 
= Kv = K = 2) shown in the figure inset in the nonresonant band [excitation case (i)], and 
(c) convergence of the method in terms of the geometrical order K of modeling in the resonant 
band [excitation case (ii)]. The higher order solutions are compared with results using the low-
order MoM-MOD method [52]. 
 

To examine the convergence of the presented MoM-MOD with spatial refinement (h-

refinement), in Fig. 4.6 we plot the relative error of the current, with respect to the analytical 
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solution obtained by Mie series, for the sphere from Fig. 4.5(c), in the frequency domain. The 

frequency domain current is obtained from the MoM-MOD solution using DFT and the relative 

error with respect to Mie series is averaged in the frequency range from 25 MHz to 300 MHz as 
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where Nf  = 12 is the number of frequency samples, for fixed o90  and o180  defining the 

point on the spherical surface in which the currents are computed and compared. The figure 

shows a family of curves with three representative polynomial current approximations N = 2, 

N = 3, and N = 5, kept constant for all elements in respective meshes. The points on the N = 2 

curve correspond, from left to right, to each of the six faces of the sphere from Fig. 4.5(c) being 

uniformly refined into 2 2, 4 4, and 6 6 elements, respectively. 
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Figure 4.6. Relative error of the TDSIE MoM-MOD computed frequency-domain current 
averaged in the frequency range from 25 MHz to 300 MHz vs. the number of (spatial) MoM 
unknowns. A family of three curves obtained using models with three constant polynomial 
expansion orders N across all the elements shows convergence of the solution with an h-
refinement of the mesh, while the fourth curve shows p-refinement of the solution for 
geometrical model (A). 
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Similarly, the points on the N = 3 curve correspond to a refinement of each of the faces into 1 1, 

2 2, and 4 4 elements, and finally the points on the N = 5 curve correspond to a refinement of 

each of the faces into 1 1 and 2 2 elements. All meshes are shown in the figure inset. 

We observe from Fig. 4.6 that the method yields monotonic convergence with h-refinement 

and that higher order polynomial current approximation yields better convergence than the lower 

order expansion. Note also that in this example our lowest achievable error is around 0.55%, 

which is consistent with the lowest errors achieved by the CFIE based MOT for the PEC sphere 

example reported in [38]. At the same time, we remark that the error of 0.56%, i.e., close to the 

minimum error limit, is achieved very quickly with N = 5 in our example, hence only two points 

are shown on this curve. We finally note that our solution with the 0.55% error in computed 

current yields 0.05% relative error in the computation of the radar cross section (RCS), which is 

consistent with the lowest reported errors in [37]. In addition, we show in Fig. 4.6 p-refinement 

of the solution for three different spatial current approximation orders N = 3, 5, and 8 on the 

same geometrical model, model (A), with only six large SIE elements of the fourth geometrical 

order, K = 4 (element size is e ≈ 1.34λ at fmax2). Note that model (A) with N = 8 reduces the 

number of spatial unknowns 1.56 times when compared to model (B) with N = 5 while 

maintaining almost the same accuracy, the error being 0.61%. Also, when compared to model 

(C) with N = 2 for the same number of spatial unknowns (NMoM = 768), the error is reduced 10 

times. Investigating further the convergence of the MoM-MOD with increasing the maximal 

order of the time domain basis M, shown in Fig. 4.7 is the averaged relative error of the 

frequency-domain current (computed with respect to the analytical Mie series solution in the 

same way as for the example in Fig. 4.6, using (4.2)). The family of curves in Fig. 4.7 is chosen 

as follows. Starting from the first curve on the top (curve I), we have a mesh where each of the 6 
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sphere faces is divided into 3 3 elements, model (E), with the polynomial current approximation 

order N = 2, which yields 54 elements and NMoM = 432 unknowns. This mesh is then h-refined, 

so that the 6 sphere faces are divided into 6 6 elements, model (D) in Fig. 4.6, and the 

polynomial current approximation order is kept the same (N = 2), which results in 216 elements 

and NMoM = 1,728 unknowns, and the error of the model in this arrangement is given via the 

second curve from the top (curve II). The third curve from the top (curve III) is obtained utilizing 

a mesh where each of the 6 sphere faces is divided into 2 2 elements, model (B) in Fig. 4.6, 

with the polynomial current approximation order N = 4, which yields 24 elements and NMoM = 

768 unknowns. Similarly as before, this mesh is h-refined so that the 6 sphere faces are divided 

into 3 3 elements, model (E) in Fig. 4.7, and the polynomial current approximation order is kept 

the same (N = 4), which gives 54 elements and NMoM = 1,728 unknowns, and the error of the 

model in this arrangement is shown as the bottom curve (curve IV). 
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Figure 4.7. Relative error of the TDSIE MoM-MOD computed frequency-domain current 
averaged in the frequency range from 25 MHz to 300 MHz vs. the order of the time-domain 
bases M. Two sets of curves, with polynomial expansion orders across all the elements in the 
mesh equal to N = 2 and N = 4, both shown for models with a coarse and an h-refined mesh, 
demonstrate the convergence of the solution with respect to p- and h-refinement, as well as with 
increase of the temporal bases order, M. 
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We conclude from Fig. 4.7 that increasing M, i.e, marching-on-in-degree, yields monotonic 

convergence in all cases. At the same time, we see that h-refinement (e.g., going from curve I to 

curve II) yields only slightly lower error (about 2%) while increasing the number of unknowns 

four times. Similarly, going from curve III to curve IV, the error decreases only slightly while 

more than doubling (2.25 times) the number of unknowns. (Note that the minimal error is 

practically reached for M = 250 in both curve III and curve IV.) On the other hand, going from 

curve I to curve III, by increasing N from 2 to 4, i.e., with a p-refinement of the solution, much 

faster convergence is achieved while the number of unknowns is increased only about 1.78 

times. 

 

4.5 NASA Almond – Electromagnetic Code Consortium (EMCC) benchmark target 

 
The next example presents the higher order MoM-MOD transient analysis of a standard 

benchmarking structure – NASA almond [70] of the maximum length (from the tip to the tail of 

the almond) lmax = 1 m, illuminated as in Fig. 4.1 with xE ˆ V/m 3770  , zk ˆˆ  , Tf = 30 lm, Tw = 

4 lm, t0 = 6 lm, and fmax = 250 MHz. The almond is modeled using only 56 quadrilateral surface 

elements (e ≤ 0.1λ at fmax) of second geometrical order (Ku = Kv = K = 2), as portrayed in Fig. 

4.8(a), and the other numerical parameters of the model are Nu = Nv = 2, NMoM = 448, M = 130, 

and s = 8103 . Shown in Fig. 4.8(b) is the transient response of the current density at the center 

of the top surface of the almond. The results obtained by the presented MoM-MOD are 

compared with a low-order MoM-MOD solution (864 flat triangular elements, 1,296 spatial 

unknowns, and M = 128) [71], and we observe an excellent agreement of the two sets of MoM-

MOD results. 
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Figure 4.8. MoM-MOD scattering analysis of the NASA metallic almond: (a) geometrical model 
with 56 curved quadrilateral SIE patches and (b) comparison of results for the transient response 
of the x-directed surface current density at the center of the top face of the almond obtained by 
the presented MoM-MOD and the low-order MoM-MOD solution [71]. 
 

4.6 Realistic Model of a Military Tank 

 
As the last example, we analyze a more complex structure such as a military tank of 

dimensions 4 m × 9 m × 2.73 m, shown in Fig. 4.9(a) [note that this tank has approximately the 

same dimensions as T-80 series tank]. The structure is illuminated with a θ-polarized Gaussian 

pulse of amplitude E0 = 1 V/m impinging from the direction defined by o90  and o0 (Fig. 

4.1), with Tw = 70 lm, t0 = 90 lm, and fmax = 15 MHz. The tank is modeled using only 147 surface 
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elements with Ku = Kv = K = 1 [as indicated in Fig. 4.9(a)] and emax ≈ 0.315λ at fmax. The 

transient response of JS at the center of a flat patch on the tank side marked by the red frame in 

Fig. 4.9(a) is computed using the presented MoM-MOD algorithm with N ranging from 2 to 6, 

NMoM = 1,389, s = 8101 , and M = 70 or 100. 
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Figure 4.9. (a) WIPL-D mesh of a military tank consisting of 147 quadrilateral patches with Ku = 
Kv = K = 1 [72] and (b) transient response of JS at the center of a flat patch on the tank side 
marked by the red frame computed using the presented MoM-MOD TD SIE method and the 
higher order MoM-FD SIE method [60] in conjunction with the inverse discrete Fourier 
transform. 
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The solution is compared in Fig. 4.9(b) with frequency-domain results obtained using the higher 

order MoM-FD SIE method [60] in conjunction with the inverse discrete Fourier transform 

(IDFT) and computed from DC (extrapolated) to 50 MHz at 128 frequency samples; an excellent 

agreement of the TD and FD sets of results is observed. For exactly the same spatial model, the 

computational time for the MoM-FD SIE simulation is 125 min, while the MoM-TD SIE 

simulation with M = 70 takes less than 3 min (computer properties: Intel® Xeon® CPU E5645 

@ 2.40 GHz). Note that a similar tank model is analyzed in [58] using low-order small-domain 

MoM-MOD EFIE and MoM-MOT methods. The model in [58] includes 2,737 triangular flat 

patches, the spatial distribution of JS is expanded in terms of RWG basis functions resulting in 

3,905 unknowns, the order of temporal basis functions is M = 30, and the excitation is in the 

form of a triangular pulse with the frequency bandwidth of 50 MHz. The reported simulation 

times for this model are 1,012 min and 938 min for the MoM-MOD and MoM-MOT methods, 

respectively. With an assumption that the simulations in [58] are performed on a standard PC 

with similar or closely comparable hardware (computer used is not specified in [58]), we may 

conclude that the present method comes out to be much more efficient than methods in [58]. 

 

4.7 Conclusion 

 
The method has been validated and evaluated in six characteristic numerical examples, 

solving for the induced transient surface current densities, as the most rigorous and critical 

representative of the solution accuracy in MoM-SIE modeling, and assuming that the accuracy of 

far field computations is even better. The results have demonstrated excellent accuracy, 

efficiency, convergence, and versatility of the method, which appears to be the first MoM-TD 

SIE method with very high spatial and temporal expansion orders (the results have demonstrated 
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using current expansions of spatial orders from 2 to 8 and geometrical-mapping orders from 1 to 

4 in conjunction with higher order, entire-domain Laguerre temporal bases) and the first large-

domain MoM-MOD method with spatially higher order expansions. They have also 

demonstrated very effective spatially large-domain MoM-TD SIE models of scatterers using flat 

and curved patches of electrical sizes of up to about 1.7 wavelengths at the maximum frequency 

in the frequency spectrum of the pulse excitation and minimal numbers of unknowns, which 

appear to be the first set of spatially large-domain MoM-TD SIE modeling examples. Moreover, 

the proposed method shows great potential for p- and hp-refinement. 
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5 SUGGESTIONS FOR FUTURE RESEARCH 

 
 
5.1 Introduction 

 
Transient scattering analysis of 3-D metallic structures using novel higher order TD-MoM 

EFIE method has been introduced in chapter 3. Hence, this chapter will focus on generalized 

higher order TD-MoM-MOD method for the scattering analysis of arbitrarily shaped 3-D 

composite (metallic and dielectric) structures in TD. The geometry of a scatterer is modeled 

using the same generalized quadrilaterals of arbitrary geometrical orders presented in section 3.3. 

Formulation of the method is based on two sets of surface integral equations, EFIE and MFIE, 

discretized and solved by higher order Galerkin-type MoM-MOD approach. In the solution 

procedure, both integral equations are discretized using spatial higher order divergence-

conforming vector polynomial basis functions and orthogonal set of Laguerre polynomials as 

temporal basis functions (explained in section 3.4). Here, we will outline the main set of 

equations for generalized higher order MoM-MOD TDSIE. 

 

5.2 Coupled EFIE-MFIE Formulation in TD for Composite Metallic-Dielectric 

Structures 

 
Consider an EM system consisting of metallic and dielectric bodies excited by Gaussian 

pulse. According to the surface equivalent principle, we can break the entire system into 

subsystems, each representing one of the dielectric domains, together with the belonging metallic 

surfaces, with the remaining space being filled with the same medium. One of the domains is the 

external space surrounding the structure. The scattered electric and magnetic fields, E and H, in 
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each domain can be expressed in terms of equivalent (artificial) surface electric current density 

JS, and equivalent (artificial) surface magnetic current density MS which are placed on the 

boundary surface of the domain, with the objective to produce a zero total field in the 

surrounding space. On the metallic surfaces, only the surface electric currents exist (JS, these are 

actual currents) and MS = 0. The boundary conditions for the tangential components of the total 

(incident plus scattered) electric and magnetic field vectors on the boundary surface between any 

two adjacent dielectric domains (domains 1 and 2) yield 
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where we assume that the incident field is present only in domain 1. On the conducting (PEC) 

bodies, the boundary conditions in (5.1) reduce to (3.1), (Etot)tang = 0. In the presence of electric 

and magnetic currents, the scattered electric and magnetic fields are expressed in terms of 

magnetic and electric vector potentials, A and F, and the electric and magnetic scalar potentials, 

Φ and U, as 
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The potentials A and Φ are computed in (3.3) and (3.4), and analogous expressions hold for the 

potentials F and U, in terms of the current density MS 
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The magnetic current density vector, MS, and the magnetic surface charge density, mS , are 

expressed in terms of the magnetic Hertz vector, mh , in analogous fashion, see (3.7) and (3.8). 
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Note that the system of equations (5.1) could be solved for JS and MS as unknowns directly, but 

in order to avoid the temporal integration in (3.4) and (5.4), Hertz vectors are introduced as 

actual unknowns in the MoM solution procedure [65]. Boundary conditions in (5.1) with field 

and potential expressions (5.2), (3.3), (3.4), (5.3) and (5.4), respectively, represents a set of 

coupled EFIE and MFIE which are discretized and solved using MoM-MOD with full Galerkin 

testing as explained in chapter 3, sections 3.5 and 3.6. 

 

5.3 Hybrid Higher Order FEM-MoM Modeling in TD 

 
 

In order to extend the range of real-world transient EM applications including electrically 

large homogenous/inhomogeneous problems, one possibility for further research is to hybridize 

the TD-FEM and the TD-MoM in a higher order TD-FEM-MoM fashion. Similar work in the 

frequency domain has been reported in [5] for scattering analysis of arbitrary structures. 

Inhomogeneous objects will be discretized by the higher-order FEM [11], which is a significant 

advantage as compared to the pure MoM-SIE approach.  

Finally, to enhance the efficiency of both the TD-FEM and the TD-MoM, as well as the 

hybrid TD-FEM-MoM, special parallel versions of the TD higher order methods based on GPU 

(graphics processing unit) acceleration may be developed as future work. 
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6 CONCLUSIONS 

 
 

This dissertation has developed and demonstrated two novel general CEM methods for 

transient analysis of closed (waveguide and cavity based) and open (radiation and scattering) 

structures, respectively, employing two different numerical approaches directly in time domain. 

The first method is novel higher order and large-domain Galerkin FEM for transient analysis 

of multiport microwave waveguide devices. It is based on geometrical modeling using Lagrange 

interpolation generalized hexahedral elements, spatial field expansion in terms of hierarchical 

curl-conforming polynomial vector basis functions, time-stepping with an implicit 

unconditionally stable finite difference scheme using the Newmark-beta method, and mesh 

truncation introducing the waveguide port boundary condition. This method is developed and 

extensively tested on numerous waveguide sections with sharp edges and pronounced curvatures 

including metallic and/or dielectric discontinuities. The results obtained by the higher order 

TDFEM are in an excellent agreement with the higher order FDFEM-DFT/IDFT solutions, as 

well as with measurements and with alternative full-wave numerical solutions in both time and 

frequency domains. 

The second method is a novel higher order and large-domain Galerkin MoM in conjunction 

with the SIE formulation for transient analysis of antennas and scatterers of arbitrary shapes and 

metallic/dielectric material compositions. The method applies higher order conformal Lagrange 

generalized curved parametric quadrilateral patches and hierarchical divergence-conforming 

polynomial vector basis functions for spatial current distributions, approximation of time 

variations by orthogonal temporal basis functions derived from Laguerre polynomials, and 

iterative solution of the final system of spatially and temporally discretized SIE equations in a 
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MOD fashion. This method has been implemented for transient scattering analysis of metallic 

objects. Preliminary results are obtained for electrically large PEC 3-D structures such as cube, 

sphere, NASA almond, and military tank, by solving EFIE in TD using higher order MoM 

technique in conjunction with MOD method (MoM-MOD TDEFIE). These results, obtained 

with less than 1,500 spatial unknowns, are compared with low-order small-domain numerical 

techniques, and the agreement is very good. In order to perform transient analysis of dielectric 

and composite (metallic and dielectric) structures this method will be extended to generalized 

higher order MoM-MOD TDSIE, including both field formulations, EFIE and MFIE. 

Finally, higher order TD-FEM and TD-MoM show excellent performance in terms of 

geometrical modeling accuracy and flexibility as well as higher order modeling of transient 

field/current propagation through electrically large elements. The ultimate goal of the 

dissertation is to provide accurate, stable, and efficient transient solution to real-world 

applications. 
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