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Abstract. A comprehensive salinity monitoring program has been conducted in a portion of 
the Arkansas Valley in southeastern Colorado from 1999 to the present.  This area was 
selected for study because it provides a good illustration of a salinity-affected area.  The 
main objective of this presentation is to utilize spatial statistical modeling using information 
from remote sensing, GIS, GPS, along with field data to develop salinity maps and predict 
yield. The approach presented in this paper involves integrating remotely sensed data with 
topographical data (elevation, slope, and aspect) and field data (water table fluctuation, 
groundwater salinity, soil texture, yield data, and soil salinity) to establish and validate the 
appropriate spatial techniques to accurately predict crop yield in relation to soil salinity. For 
the field scale study, several fields were selected to represent different irrigation systems, soil 
types, and crop patterns. In each field, 7 to 15 wells were installed. At these fields, water 
table depth, groundwater salinity, soil salinity, and yield samples are collected regularly 
during the growing season. In addition to field data collection, a satellite image from 
IKONOS on July 11was acquired. It has four bands (blue, green, red, and infrared) with a 4-
meter spatial resolution. In this study, trend surface models, which describe the large-scale 
spatial variability, have been developed based on the lowest values Akaike Information 
Criterion Corrected (AICC) and high R2.  P-Value of each related variable and for all the 
related variables together should be less than 0.05 to guarantee a strong relation among the 
variables. Also, P-Value from Moran should be greater than 0.05 to guarantee that there is no 
autocorrelation among the residuals.  

1 Introduction 

1.1 Overview: 
Soil salinity is a severe environmental hazard which increasingly 

impacts crop yields and agricultural production. Salinity refers to the 
presence in soil and water of various electrolytic mineral solutes in 
concentrations that are harmful to many agricultural crops (Hillel 2000). 
Natural salinization or primary salinization results form the long-term 
influence of natural processes. In contrast, human-induced salinization or 
secondary salinization is the result of salt stored in the soil profile being 
mobilized by extra water from human activities such as irrigation (Szabolcs 
1989). On average, 20% of the world's irrigated lands are affected by salts, 
but this figure increases to more than 30% in countries such as Egypt, Iran 
and Argentina (Ghassemi et al. 1995).  

Remote sensing data has great potential for monitoring dynamic 
processes, including salinization.  Remote sensing of surface features using 
aerial photography, videography, infrared thermometry and multispectral 
scanners has been used intensively to identify and map salt-affected areas 

©Hydrology Days 2004 
 



Eldeiry and Garcia 

(Robbins and Wiegand 1990). Multispectral data acquired from platforms 
such as the Landsat, SPOT, and the Indian Remote Sensing (IRS) series of 
satellites, have been found to be useful in detecting, mapping, and monitoring 
salt-affected soils (Dwivedi and Rao 1992).  However, the digital analysis of 
multispectral data using the spectral response pattern of salt-affected soils is 
plagued by misclassification.  In order to improve the detectability of these 
soils and other natural features using remote sensing data, various image 
transforms have been developed.  These transforms not only enhance the 
detectability of these features, but also aid data compression resulting in 
substantially reduced computational time and cost. Hill and Donald (2003) 
and Wilhelm et al. (2000) used vegetation indices to estimate ground pattern. 
Wiegand et al. (1994) carried out a procedure to assess the extent and 
severity of soil salinity in fields in terms of economic impact on crop 
production and effectiveness of reclamation efforts. Golovina et al. (1992) 
made an effort to automate methods of air photo interpretation in order to 
speed up and make the interpretation process more objective when compiling 
maps of soil salinization. Srivastava et al. (1997) made a scheme of image 
processing and GIS techniques using false color, vegetation indices, density 
slicing, overlaying, and supervised classification and applied it on IRS-1B 
LISSS II data. Band ratios of visible to near-infrared and between infrared 
bands have proven to be better for identifying salts in soils and salt-stressed 
crops than individual bands (Craig et al., 1998; Hick and Russell, 1990; and 
Hick et al., 1984). 

The integration of remotely sensed data, Geographic Information 
Systems (GIS), and spatial statistics provides useful tools for modeling large-
scale variability to predict the distribution, presence, and pattern of exotic and 
native plant species as well as soil characteristics (Kalkhan et al. 2000).  This 
integration also provides tools for assessing the landscape-scale structure of 
forest and rangelands (Chong et al. 2001).  Large sample size can provide 
better estimates of the variable of interest; however, collecting field data can 
be time consuming and self-limiting (Scheaffer et al. 1990; Olsen and 
Schreuder 1997). 

The approach presented in this research involves integrating remotely 
sensed data with topographical data (elevation, slope, and aspect) and field 
collected data (water table fluctuation, groundwater salinity, soil texture, 
yield data, soil salinity) to establish the appropriate spatial techniques and the 
way in which these techniques should be applied to accurately predict crop 
yield in relation to salinity.  The approach is being tested on data collected in 
the lower Arkansas River Valley in Colorado.  Most data indicate that the 
main factor influencing yield in this region is salinity.  In some cases, yield is 
being reduced by a combination of soil salinity, poor irrigation water, high 
water table, and groundwater salinity. 
 
1.2 The Problem in the Arkansas River: 

The Arkansas River is one of the most saline rivers of its size in the 
United States.  Salinity levels, measured as dissolved solid concentrations, 
increase from 300 mg/L near Pueblo to over 4,000 mg/L at the Colorado-

56 



Spatial Modeling using Remote Sensing, GIS, and Field Data to Assess Crop Yield and Soil 
Salinity 

Kansas border (Ghassemi et al. 1995). According to data collected between 
April 1990 and March 1993, concentrations increased 183%, or about 30 
mg/L per mile, from Las Animas on the western edge of John Martin 
Reservoir to Coolidge, Kansas. The water of the Arkansas is used to irrigate 
crops in the river valley, and farmers are facing decreasing crop yields due in 
part to these high levels of salinity. In some areas, land is being taken out of 
production due to unsustainable crop yields.  It was estimated that in 1977 
over 200,000 acres in the Arkansas Valley were being irrigated with water 
that contains salinity concentrations greater than 1,400 mg/L (Miles 1977).   

2 Site Description and Data Preparation and Utilization 

2.1 Site Description: 
 
The area of study is located in southeastern Colorado primarily in 

Otero County. Data has been collected in several fields during the last five 
years. The fields were selected to represent different cases.  The first field 
(#7) is 260 acres located west of Highway 207 and south of the Arkansas 
River. The soil type is loam, and the field is irrigated with a center pivot.  
Alfalfa has been cultivated in the field since 1999. 13 wells have been 
installed in this field. The second field (#17) is located south of the Rocky 
Ford Canal and west of Highway 71.  The field covers 97 acres and is 
irrigated with a furrow system through gated pipes. The soil type is sandy 
loam. Field 17 was planted with corn in 1999, 2000, and 2001. Onions were 
planted in 2002 and left fallow in 2003. We have 11 wells in this field. The 
third field (#20) is 9.8 hectares. The soil type is loam, and the field is 
irrigated with a furrow system through gated pipes.  Corn was planted in 
2001, onions in 2002, and wheat in 2003. The fourth field (#40) is located 
north of the town of Swink, about 1.5 miles north of Highway 50 and east of 
County Road 25. 20.2 acres of the field are irrigated, and 18 acres are not 
irrigated. The soil type is sandy clay loam.  The field is irrigated with a 
furrow system through gated pipes.  The field was planted with corn in 1999, 
2000, and 2001.  It was left fallow in 2002 and 2003. The fifth field (#80) is 
23.4 acres. The soil type is clay loam. The field is irrigated with furrow 
irrigation through siphons. Corn was planted in the field in 1999, 2000, and 
2001.  The field was left fallow in 2002 and planted with sorghum in 2003. 

 
2.2  Field data collection:  

 
A comprehensive salinity monitoring program has been conducted in 

the Arkansas Valley from 1999 to the present.  Field data on variables that 
can affect salinity or crop yield are being collected. The fields for the study 
were selected to represent a variety of scenarios with different soils, irrigation 
systems, and irrigated crops. Examples of data being collected are: water 
table fluctuation, groundwater salinity, soil salinity, crop samples, 
evapotranspiration, rainfall, and soil texture. During the growing season, data 
pertaining to water table, groundwater salinity, rainfall, and 
evapotranspiration are collected on a weekly basis. For one month after the 
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season is finished data are collected bi-weekly.  Data is collected monthly 
during the rest of the year. Soil salinity is usually measured three times 
during the irrigation season: at the beginning, middle, and end of the season. 
Soil salinity is measured by using a EM38 and taking a vertical and 
horizontal reading, and these readings are transferred to dS/m (decicemns per 
meter units) using a calibration equation. In addition to EM38, soil samples 
are collected for each field (from 12 to 20 positions) at four depths (1 foot, 2 
feet, 3 feet, and 4 feet) and analyzed in the laboratory using a Hatch salinity 
kit. Crop samples are collected in the form of number of plants, green leaf 
area, biomass, and grain yield. 
      
2.3 Spatial Statistical Modeling: 

 
All the above data from the topology data to the field data to the 

remote sensing data can be integrated together with spatial statistical 
modeling. Spatial statistical modeling has the power to detect the relation 
among many variables.  With the help of the Splus program, researchers are 
able to read the data in the right format, take the weighted distance of the 
data, and check which variables have relation with stepwise regression. With 
the ordinary least squares method (OLS) we can decide the best model to use. 
The best model should have the smallest value of AICC (Akaike Information 
Criterion Corrected) and higher value of R2.  Also, a small value for P (less 
than 0.05) to guarantee that the selected variables have strong relation with 
both yield and salinity, and high value for P from Moran (> 0.05) to make 
sure that there is no autocorrelation in the residuals. 

3 Methodology and Procedure 

Many variables effect yield production either directly or indirectly, 
such as soil salinity, groundwater salinity, water table, and soil texture. In our 
study area, salinity is the main factor influencing yield, but other variables 
might have either direct or indirect effects.  The main objective of this paper 
is to predict yield from the related variables such as soil salinity, groundwater 
salinity, water table, topology data (elevation, aspect, and slope), and texture 
type (sand, clay, and silt). Also, yield will be predicted from the IKONOS 
image. The same will be done with salinity. Therefore, all the variables which 
might influence either yield or salinity will be tested with stepwise and 
ordinary least squares (OLS) regression analysis to select the best model. The 
best model should include only the variables which have strong relation to 
either yield or salinity.  

Yield and salinity will be predicted from the IKONOS image only for 
the sub-basin and tested for two fields. The main benefit of predicting yield 
and salinity from an image is that it can give a general estimation without any 
fieldwork, saving money and effort. Then, salinity will be predicted from the 
collected field data of groundwater salinity and water table, and yield will be 
predicted from salinity, groundwater salinity, and water table. Yield and 
salinity will also be predicted from topology data (elevation, aspect, and 
slope) and from soil texture classification (sand, clay, and silt). 
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The sets of bands, which should be used with each predicted variable, 
must be carefully selected. The following table describes the IKONOS data. 
The designation and principal applications can be used as guidelines when 
making predictions from remote sensing data.  
 
Table 1: Description of IKONOS data. 

Type Width (µm) Spatial Resolution 
Designation and 
Principal 
Application 

Band1 (Blue) 0.45-0.53 4 m Water penetration 

Band2 (Green) 0.52-0.61 4 m Vegetation for 
vigor assessment. 

Band3 (Red) 0.64-0.72 4 m Vegetation 
discrimination. 

Band4 (NIR) 0.77-0.88 4 m Healthy vegetation 
and water bodies. 

 
Table 1 shows that all IKONOS bands can be used for predicting 

yield. Since both IKONOS images used in this study were taken during the 
growing season, they are suitable for predicting crop yield. 

4 Analysis and Results 

The criterion that will be followed in selecting the best model to 
predict either yield or salinity will be based on the following: 

1. Smallest value of AICC (Akaike Information Criterion 
corrected). 

2. Higher Multiple R2.  
3. Small P-Value (less than 0.05) of each related variable and for 

all the related variables together to guarantee a strong relation 
among the variables. 

4. High P-Value (2-side) of Moran (larger than 0.05) to 
guarantee that there is no autocorrelation in the residuals. 

5. Smallest Residual Standard error.  
 
The analysis used in this paper was based on the field scale only. It 

cannot be applied to the sub-basin scale because the study area encompasses 
a total of five fields, one planted with alfalfa, one not covered by the image, 
and a third in which the corn crop was damaged by cows. The collected data 
from the remaining two corn fields are not enough to describe the sub-basin. 

The following examples show how the spatial model can be applied to 
predict either yield or salinity from all different variables in different cases. 
The first case uses the bands of the IKONOS image to predict yield, 
eliminating the need for collecting field data. This method can give good 
results if the field has no weeds. The second case predicts yield from the 
indices of the IKONOS image. Sometimes the indices work better than the 
bands. The third case predicts yield based on water table, groundwater 
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salinity, and soil salinity. The fourth case predicts yield from the soil texture 
(sand, clay, and silt). 

Soil salinity will be predicted from the IKONOS images. Although 
the field is covered by the plant material, the vegetation can be used as a 
reflection of salinity since there is a strong relation between crop and soil 
salinity. However, salinity will not be predicted from the image indices since 
most of these indices are designed for vegetation. Salinity will be predicted 
from the water table and groundwater salinity. The parameters that produce 
the best model such as R2, P-Value, etc. are summarized in the form of tables 
to make it easy to compare the models.  
 
Table 2: Parameters for selecting the best model for predicting yield in four 
different cases in Field 17  

Case (1): Predict Yield from 
IKONOS Bands (B4) 

Case (2): Predict Yield from Soil 
Salinity 

AICC 122.09 AICC 133.4 
 Coeff. P-Value  Coeff. P-Value 
Intercept -215.07 0.0221 Intercept -326.6 0.1479 
B4 0.4544 0.0001 Soil Salinity 75.4 0.0183 
R2 0.78 R2 0.4421 
P-Value 0.0001 P-Value 0.0183 
P-Value 
(2-Side) 
Moran 

0.6867 
P-Value (2-
Side) Moran 0.4936 

Residual 
Standard 
Error 

34.37 

 

Residual 
Standard 
Error 

55 

 
Case (3): Predicted Yield 
from IKONOS Indices (IR/R) 
and 1st PCA 

Case (4): Predict Yield from Soil 
Texture (Sand and Silt) 

AICC 128.15 AICC 131.6 
 Coef. P-Value  Coef. P-Value 
Intercept 291.8 0.0037 Intercept -2179.9 0.006 
(IR/R) 21.6   0.05 Sand 32.04 0.0035 
1st PCA -0.83   0.039 Silt 23.83 0.0032 
R2 0.7347 R2 0.644 
P-Value 0.0026 P-Value 0.0096 
P-Value 
(2-Side) 
Moran 

0.4653 
P-Value (2-
Side) Moran 0.615 

Residual 
Standard 
Error 

40 

 

Residual 
Standard 
Error 

46.36 

 
It is clear from the above table, that for the first case which predicts 

yield from the IKONOS bands, band 4 (the infrared band) has a very strong 
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relation with yield. This is determined from the P-value (0.0001), which is 
very small, and the R2 (0.78), which is high. Also, the P-Value (2-Side) 
Moran 0.6867 is larger than 0.05, which means that there is no 
autocorrelation in the residuals. The values of AICC (122.09) and residual 
standard (34.37) error are the smallest among all the trials for this case. 

The second case, which represents the predicted yield from soil 
salinity, shows that soil salinity has a strong relation with yield even though 
the R2 (0.4421) is not as high but the value of P (0.0183) is less than 0.05. If 
the P-Value is less than 0.05 we can accept a lower value of R2 based on our 
interest in the variables. 
 
Figure 1: The observed and predicted yield maps for four different cases in 
Field 17 

 

 
The third case, which represents the prediction of yield from the 

IKONOS indices, shows that there is a good relation between yield with 
(IR/R) and the 1st PCA (first principal component analysis). Even though the 
P-value of (IR/R) is borderline, the P-value of the overall variables is very 
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small 0.0026. Also the value of 1stPCA is less than 0.05, which supports the 
selection. The P-value (2-side) Moran 0.465 is larger than 0.05, which 
confirms that there is no autocorrelation in the residuals. Also the value of R2 
is high which makes this model the best of all the trials of different IKONOS 
indices.  

The fourth case, which represents the prediction of yield from soil 
texture, shows that sand and silt have a strong relation with yield where the 
P-value for them is 0.0035 and 0.0032 respectively. The P-value of the 
overall variables is very small 0.0096 and the P-value (2-side) Moran 0.615 is 
larger than 0.05, which means that there is no autocorrelation in residuals and 
R2 0.615, which is high.  
Table 3: The observed and predicted yield and its percentage error for four 
different cases in Field 17. 

Case (1): Predict Yield from 
IKONOS Bands (B4) 

Case (2): Predict Yield from 
Soil Salinity 

# Observ. Predict. % of 
Error 

# Observ. Predict. % of 
Error 

1 316 309 2.2 1 316 327 -3.5 
2 281 300 6.8 2 281 284 -1.1 
3 226 212 6.2 3 226 177 21.7 
4 248 289 -16.5 4 248 282 -13.7 
5 251 298 -18.7 5 251 218 13.1 
6 225 234 -4 6 225 211 6.2 
7 355 302 14.9 7 355 265 25.4 
8 209 193 7.7 8 209 251 -20.1 
9 292 294 -0.7 9 292 284 2.8 
10 281 282 -0.4 10 281 286 -1.8 
11 85 96 -12.9 11 85 203 -138.8 
12 327 285 12.4 

 

12 327 296 9.5 
 

Case (3): Predict Yield from 
IKONOS Indices (IR/R) and 
1st PCA 

Case (4): Predict Yield from 
Soil Texture (Sand and Silt) 

# Observ. Predict. % of 
Error 

# Observ. Predict. % of 
Error 

1 316 318 -0.6 1 316 283 10.4 
2 281 297 -5.7 2 281 294 -4.6 
3 226 190 15.9 3 226 243 -7.5 
4 248 286 -15.3 4 248 278 -12.1 
5 251 295 -17.5 5 251 268 -6.8 
6 225 188 16.4 6 225 250.7 -11.4 
7 355 322 9.3 7 355 268 24.5 
8 209 240 -14.8 8 209 218 -4.3 
9 292 248 15.1 9 292 320 -9.6 
10 281 294 -4.6 

 

10 281 211 24.9 
11 85 130 -52.9  11 85 136 -60 
12 327 285 12.8  12 327 325 0.6 
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Table 3 shows the error percentages of observed and predicted yield 

for the four different cases. From this table we can determine that the error 
percentage is acceptable when we take into account the errors involved in the 
collection and analysis of the crop samples.  All errors are less than 25% and 
the majority of them are around 10% to 15%. Sample 11 seems to be an 
outlier since it is the smallest of all the collected samples and the error is 
significantly high in the four different cases. A couple of reasons for this 
sample’s high error are: 1) This is a high salinity area and there could be 
weeds growing that are more tolerant to salt than the crop, and 2) The crop in 
this spot is not homogeneous which makes it difficult to collect a consistent 
sample.  
 
Table 4: Parameters of selecting the best model for predicting salinity in two 
different cases in Field 17. 

Case (1): Predict Salnity 
from IKONOS Bands (B4) 

Case (2): Predict Salinity from 
Water Table 

AICC 19.7 AICC 133.4 
 Coef. P-

Value 
 Coef. P-Value 

Intercept 4.59 0.0021 Intercept 8.93 0 
B4 0.003 0.0173 Water Table -0.63 0.0027 
R2 0.45 R2 0.6113 
P-Value 0.0173 P-Value 0.0027 
P-Value 
(2-Side) 
Moran 

0.26 

 

P-Value (2-
Side) Moran 0.38 

Residual 
Standard 
Error 

0.483 
 Residual 

Standard 
Error 

0.4053 

 
The first case, which represents the prediction of soil salinity from the 

IKONOS image bands, shows that band 4 (the infrared band) has the 
strongest relation with salinity among the four bands. The R2 value of 0.45 is 
not very high but it is acceptable since the P-value of 0.0173 is less than 0.05. 
The P-value (2-side) Moran of 0.0173 is less than 0.05, which assures that 
there is a strong relation with the selected variable. The AICC value of 19.7 
and the residual standard error of 0.483 are the least among all the trials that 
were evaluated. 

The second case, which represents the prediction of salinity based on 
the water table, shows a strong relation. The P-value of 0.0027 is less than 
0.05, which assures that there is a strong relation between salinity and water 
table. When the model contains only one selected variable, the P-value of the 
selected variable is the same value of the overall variable, in this case 0.0027. 
The P-value (2-side) Moran is larger than 0.05 which assures that there is no 
autocorrelation in the residuals. The AICC value of 133.4 and the residual 
standard error of 0.4053 are the smallest among all the trials evaluated. 
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Figure 2: Observed and predicted salinity in Field 17  

 
 

 
 
Table 5: The observed and predicted salinity and its percentage error for two 
different cases in Field 17.  

Case (1): Predict Yield from 
IKONOS Bands (B4) 

Case (2): Predict Yield from Water 
Table 

# Observ. Predict. % of 
Error 

# Observ. Predict. % of 
Error 

1 8.81 8.16 7.34 1 8.81 8.49 3.63 
2 8.13 7.89 2.95 2 8.13 8.15 -0.25 
3 6.68 7.48 -11.98 3 6.68 7.37 -10.33 
4 8.08 7.89 2.35 4 8.08 8.34 -3.2 
5 7.22 8.02 -11.08 5 7.22 7.7 -6.6 
6 7.13 7.37 -3.37 6 7.13 7.26 -1.82 
7 7.85 8.02 -2.17 7 7.85 7.79 0.76 
8 7.67 7.35 4.17 8 7.67 7.14 6.91 
9 8.1 7.96 1.73 9 8.1 7.48 7.65 
10 8.1 7.99 1.36 10 8.1 8.21 -1.36 
11 7.03 6.75 3.98 11 7.03 7.11 -1.38 
12 8.26 7.78 5.81 

 

12 8.26 8 3.15 
 

The above data shows that highest percent error is -11.98% indicating 
that the selected model is efficient. Table 5 shows that the percent error in 
sample # 11 is very small while it was very high when predicting yield. This 
supports the conclusion about the difficulty in collecting consistent yield 
samples in high salinity spots. However when measuring soil salinity it does 
not matter what the condition of the crop is (scattered or vigorously growing).     
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5.  Summary and Conclusion 

When predicting either yield or salinity from IKONOS bands, band 4, 
which is the infrared band, has the strongest relation to both yield and 
salinity. This means that salinity can be predicted from the image even 
though the crop covers the area. The crop itself can be used as an indicator 
for salinity. It can be concluded also that the indices play an important role in 
predicting yield and in some cases they might be more valuable than using 
the bands. This is clearly shown when we try to predict yield from the 
IKONOS indices, they show a strong relation with yield and both (IR/R) and 
1st PCA. P-value of (IR/R) and 1st PCA were 0.05 and 0.039 respectively 
which means that there is a strong relation between both of these variables 
with yield. Though the P-value of (IR/R) was 0.05 which is marginal, the P-
value (0.0026) of the two variables together is very small and R2 0.7347 is 
high, this assures the strong relation of both (IR/R) and 1st PCA with yield. 

In the case when we predict yield from water table, groundwater 
salinity, and soil salinity, soil salinity shows the strongest relation to yield 
with a very small P-value of 0.0183 and an R2 of 0.4421. This means that soil 
salinity shows a strong relation to yield as expected. When predicting soil 
salinity from water table and groundwater salinity, water table shows a very 
strong relation to soil salinity with a P-value of 0.0027and an R2 0.611.  This 
means that groundwater salinity does have an effect on soil salinity but not as 
strong as water table. 

In the case when we predict yield from soil texture, sand and silt show 
a very strong relation with yield with P-values of 0.0035 and 0.0032, 
respectively. The P-value from the two variables together was 0.0096, which 
assures this strong relation as well as an R2 value of 0.644. It can be 
concluded that grain size of the soil particles can affect yield.  

Some other trials were done with topology (elevation, aspect, and 
slope) but these variables did not appear to have an effect on either salinity or 
yield. The trials show very poor values of R2 (less than 0.1). Also, soil texture 
was found to play a marginal role in predicting either yield or salinity. When 
percent sand, clay or silt has an effect on either yield or salinity, the effect is 
not as strong as that of water table or groundwater salinity. 

The tables showing the summary of the observed and predicted values 
have small values for percent error. The average is around 10 %, which is 
very acceptable when trying to predict yield and salinity from remote sensing 
data and the other field data such as water table or groundwater salinity. 
Large values in the percent error mainly appear when there are a low number 
of yield samples. Most instances of medium and high yield, errors are less 
than 20%. The reason for the presence of high error with the small yield 
values is that those samples were taken in areas of the field with high salinity.  

The overall conclusion is that using of stepwise regression and 
ordinary least squares in selecting the best models for different variables 
seems to be efficient. Also, the main advantages of using the stepwise and 
ordinary least squares models appears to be very significant when the 
traditional methods do not give satisfactory results. 
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