
DISSERTATION

DECISION AND LEARNING IN LARGE NETWORKS

Submitted by

Zhenliang Zhang

Department of Electrical and Computer Engineering

In partial fulfillment of the requirements

For the Degree of Doctor of Philosophy

Colorado State University

Fort Collins, Colorado

Fall 2013

Doctoral Committee:

Advisor: Ali Pezeshki
Co-Advisor: Edwin K. P. Chong

Haonan Wang
Rockey J. Luo



Copyright by Zhenliang Zhang 2013

All Rights Reserved



ABSTRACT

DECISION AND LEARNING IN LARGE NETWORKS

We consider two topics in this thesis: 1) learning in feedforward and hierarchical networks;

and 2) string submodularity in optimal control problems.

In the first topic, we consider a binary hypothesis testing problem and an associated net-

work that attempts jointly to solve the problem. Each agent in the network takes a private

signal of the underlying truth, observes the past actions of his neighboring agents, and makes

a decision to optimize an objective function (e.g., probability of error). We are interested in

the following questions:

• Will the agents asymptotically learn the underlying truth? More specifically, will the

overall decision converges (in probability) to the underlying truth as the number of

agents goes to infinity?

• If so, how fast is the convergence with respect to the number of agents?

To answer these questions, we investigate two types of networks: Feedforward network and hi-

erarchical tree network, which arise naturally in social and technological networks. Moreover,

we investigate the following three parameters: 1. memory size; 2. private signal ‘strength;’ 3.

communication noisiness. We establish conditions on these parameters such that the agents

asymptotically learn the underlying truth. Moreover, we study the relationship between the

convergence rates and these parameters.

First, we consider the feedforward network, consisting of a large number of nodes, which

sequentially make decisions between two given hypotheses. Each node takes a private signal

of the underlying truth, observes the decisions from some immediate predecessors, and makes
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a decision between the given hypotheses. We consider two classes of broadcast failures: 1)

each node broadcasts a decision to the other nodes, subject to random erasure in the form of a

binary erasure channel; 2) each node broadcasts a randomly flipped decision to the other nodes

in the form of a binary symmetric channel. We are interested in whether there exists a decision

strategy consisting of a sequence of likelihood ratio tests such that the node decisions converge

in probability to the underlying truth. In both cases, we show that if each node only learns from

a bounded number of immediate predecessors, then there does not exist a decision strategy

such that the decisions converge in probability to the underlying truth. However, in case 1, we

show that if each node learns from an unboundedly growing number of predecessors, then the

decisions converge in probability to the underlying truth, even when the erasure probabilities

converge to 1. We also derive the convergence rate of the error probability. In case 2, we show

that if each node learns from all of its previous predecessors, then the decisions converge in

probability to the underlying truth when the flipping probabilities of the binary symmetric

channels are bounded away from 1/2. In the case where the flipping probabilities converge to

1/2, we derive a necessary condition on the convergence rate of the flipping probabilities such

that the decisions still converge to the underlying truth. We also explicitly characterize the

relationship between the convergence rate of the error probability and the convergence rate of

the flipping probabilities.

Second, we consider the hypothesis testing problem in the context of balanced binary

relay trees, where the leaves (and only the leaves) of the tree correspond to N identical and

independent sensors. The root of the tree represents a fusion center that makes the overall

decision. Each of the other nodes in the tree is a relay node that combines two binary messages

to form a single output binary message. In this way, the information from the sensors is

aggregated into the fusion center via the relay nodes. We consider the case where the fusion

rules at all nonleaf nodes are the Bayesian likelihood ratio tests. In this case, we describe

the evolution of the Type I and Type II error probabilities of the binary data as it propagates

from the leaves towards the root. Tight upper and lower bounds for the total error probability
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at the fusion center as functions of N are derived. These bounds characterize the decay rate

of the total error probability to 0 with respect to N , even if the individual sensors have error

probabilities that converge to 1/2. We further investigate this problem in the case where

nodes and links fail with certain probabilities. Naturally, the asymptotic decay rate of the

total error probability is not larger than that in the non-failure case. However, we derive an

explicit necessary and sufficient condition on the decay rate of the local failure probabilities

(combination of node and link failure probabilities at each level) such that the decay rate of

the total error probability in the failure case is the same as that of the non-failure case. We

also consider a more general M -ary relay tree configuration, where each non-leaf node in the

tree has M child nodes. We derive upper and lower bounds for the Type I and Type II error

probabilities associated with this decision with respect to the number of sensors, which in turn

characterize the converge rates of the Type I, Type II, and total error probabilities. We also

provide a message-passing scheme involving non-binary message alphabets and characterize

the exponent of the error probability with respect to the message alphabet size.

In the second topic, we extend the notion of submodularity to optimal control problems.

More precisely, we introduce the notion of string submodularity in the problem of maxi-

mizing an objective function defined on a set of strings subject to a string length constraint.

We show that the greedy strategy achieves a (1 − e−1)-approximation of the optimal strat-

egy. Moreover, we can improve this approximation by introducing additional constraints on

curvature, namely, total backward curvature, total forward curvature, and elemental forward

curvature. We show that if the objective function has total backward curvature σ, then the

greedy strategy achieves at least a 1
σ
(1 − e−σ)-approximation of the optimal strategy. If the

objective function has total forward curvature ε, then the greedy strategy achieves at least a

(1− ε)-approximation of the optimal strategy. Moreover, we consider a generalization of the

diminishing-return property by defining the elemental forward curvature. We also introduce

the notion of string-matroid and consider the problem of maximizing the objective function

subject to a string-matroid constraint. We investigate three applications of string submodular
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functions with curvature constraints: 1) designing a string of fusion rules in balanced binary

relay trees such that the reduction in the error probability is maximized; 2) choosing a string

of actions to maximize the expected fraction of accomplished tasks; and 3) designing a string

of measurement matrices such that the information gain is maximized.
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CHAPTER 1

INTRODUCTION

As we engage more with online social networks, our opinions get influenced by what we

learn from our friends. Meanwhile, there is always the danger of a “herding” mentality —

when people simply follow a group consensus. Can the network learn the true state of the

world and maximize the “wisdom of the crowd?” Moreover, many modern technological sys-

tems are networked systems. Networked systems are informationally decentralized, comprise

many nodes carrying disparate information, and are subject to constraints on power, com-

munication, and computation. A typical question is how to efficiently aggregate disparate

information from a networked system to jointly achieve an overall objective such as detection,

target tracking, etc.

We consider a binary hypothesis testing problem and an associated social network that

attempts (jointly) to solve the problem. The network consists of a set of agents with inter-

connections among them. Each of the agents makes a measurement of the underlying true

hypothesis, observes the past actions of his neighboring agents, and makes a decision to op-

timize an objective function (e.g., probability of error). In this thesis, we are interested in

the following questions: Will the agents asymptotically learn the underlying true hypothesis?

More specifically, will the overall network decision converges in probability to the correct

decision as the network size (number of agents) increases? If so, how fast is the convergence

with respect to the network size? In general, the answers to these questions depend on the

social network structure. There are two structures primarily studied in the previous literature.

• Feedforward structure: Each of a set of agents makes a decision in sequence based on its

private measurement and the decisions of some or all previous agents. For example, we

usually decide on which restaurant to dine in or which movie to go to based on our own

taste and how popular they appear to be with previous patrons. Investors often behave

similarly in asset markets.
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• Hierarchical tree structure: Each of a set of agent makes a decision based on its private

measurement and the decisions of its descendent agents in the tree. This structure is

common in enterprises, military hierarchies, political structures, online social networks,

and even engineering systems (e.g., sensor networks).

The problem of social learning as described above is closely related to the decentralized

detection (also known as distributed detection) problem. The latter concerns decision making

in a sensor network, where each of the sensors is allowed to transmit a summarized message of

its measurement (using a compression function) to an overall decision maker (usually called

the fusion center). The goal typically is to characterize the optimal compression functions

such that the error probability associated with the detection decision at the fusion center is

minimized. However, this problem becomes intractable as the network structure gets compli-

cated. Much of the recent work studies the decentralized detection problems in the asymptotic

regime, focusing on the problems of the convergence and convergence rate of the error prob-

ability.

1.1 Related Work

The literature on social learning is vast spanning various disciplines including signal pro-

cessing, game theory, information theory, economics, biology, physics, computer science, and

statistics. Here we only review the relevant asymptotic learning results in the two aforemen-

tioned network structures.

1.1.1 Feedforward Structure

Consider a large number of nodes, which sequentially make decisions about the underlying

truth θ, which equals to one of two given hypotheses H0 and H1. At stage k, node ak takes

a measurement Xk (called its private signal), receives the decisions of mk < k immediate

predecessors, and makes a binary decision dk = 0 or 1 about the prevailing hypothesis H0 or
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H1, respectively. It then broadcasts a decision to its successors. Note that mk is often referred

to as the memory size.

The research on our problem begins with a seminal paper by Cover [1], which considers

the case where each node only observes the decision from its immediate previous node, i.e.,

mk = 1 for all k. This structure is also known as a serial network or tandem network and

has been studied extensively in [1]–[12]. We use Pj and πj to denote the probability measure

and the prior probability associated with Hj , j = 0, 1, respectively. Cover [1] shows that if

the (log)-likelihood ratio for each private signal Xk is bounded almost surely, then using a

sequence of likelihood ratio tests the (Bayesian) error probability

Pke = π0P0(dk = 1) + π1P1(dk = 0)

does not converge in probability to 0 as k → ∞. Conversely, if the likelihood ratio is un-

bounded, then the error probability converges to 0. In the case of unbounded likelihood

ratios for the private signals, Veeravalli [8] shows that the error probability converges sub-

exponentially with respect to the number k of nodes in the case where the private signals

are independent and follow identical Gaussian distribution. Tay et al. [9] show that the con-

vergence of error probability is in general sub-exponential and derive a lower bound for the

convergence rate of the error probability in the tandem network. Lobel et al. [10] derive a

lower bound for the convergence rate in the case where each node learns randomly from one

previous node (not necessarily its immediate predecessor). In the case of bounded likelihood

ratios, Drakopoulos et al. [11] provide a non-Bayesian decision strategy, which leads to the

convergence of the error probability.

Another extreme scenario is that each node can observe all the previous decisions; i.e.,

mk = k − 1 for all k. This scenario was first studied in the context of social learning [13],

[14], where each node uses the Bayesian likelihood ratio test to make its decision. In the case

of bounded likelihood ratios for the private signals, the authors of [13] and [14] show that the

error probability does not converge to 0, which results in arriving at the wrong decision with
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positive probability. In the case of unbounded likelihood ratios for the private signals, Smith

and Sorensen [15] study this problem using martingales and show that the error probability

converges to 0. Krishnamurthy [16], [17] studies this problem from the perspective of quickest

time change detection. Acemoglu et al. [18] show that the nodes can asymptotically learn the

underlying truth in more general network structures.

Most previous work including those reviewed above assume that the nodes and links are

perfect. We study the sequential hypothesis testing problem when broadcasts are subject to

random erasure or random flipping.

1.1.2 Hierarchical Tree Structure

In many relevant situations, the social network structure is very complicated, wherein each

individual makes its decision not by learning from all the past agent decisions, but from only a

subset of agents that are directly connected to this individual. For complex network structures,

Acemoglu et al. [18] provide some sufficient conditions for agents to learn asymptotically

from a Bayesian perspective. Jadbabaie et al. [19] study the social learning problem from a

non-Bayesian perspective. Cattivelli and Sayed [20] study this problem using a diffusion ap-

proach. However, analyzing the convergence rate on learning for complex structures remains

largely open.

Recent studies suggest that social networks often exhibit hierarchical structures [21]–[31].

These structures naturally arise from the concept of social hierarchy, which has been observed

and extensively studied in fish, birds, and mammals [21]. Hierarchical structures can also

be observed in networks of human societies [22]; for example, in enterprise organizations,

military hierarchies, political structures [25], and even online social networks [29].

In the special case where the tree height is 1, this structure is usually referred as the star

configuration [32]–[50]. This structure has also been intensively investigated in the context of

decentralized detection in sensor networks. The main idea is as follows: Consider a hypothesis

testing problem in a network of sensors under two scenarios: centralized and decentralized.
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Under the centralized network scenario, all sensors send their raw measurements to the fusion

center, which makes a decision based on these measurements. In the decentralized network

scenario, because of the recourse and communication constraint, sensors can only send sum-

maries (e.g., single-bit messages) of their measurements and observations to the fusion center.

The fusion center then makes a decision between the given hypotheses. In a decentralized

network, information is summarized into smaller messages using quantizing functions. Evi-

dently, the decentralized network cannot perform better than the centralized network. It gains

because of its limited use of resources and bandwidth; through transmission of summarized

information it is more practical and efficient. A fundamental question is how to quantize the

measurements at the sensors and fuse the messages at the fusion center so that the fusion cen-

ter makes the best decision, in the sense of minimizing an objective function. For example,

under the Neyman-Pearson criterion, the objective is to minimize the probability of missed de-

tection with an upper bound constraint on the probability of false alarm. Under the Bayesian

criterion, the objective is to minimize the total error probability. A typical result is that under

the assumption of (conditionally) independent sensor observations, likelihood ratio quantizers

are optimal. Another venue is to study how fast the error probability decays with respect to

the number of sensors in a large-scale network. A well-known result is Stein’s Lemma, which

states that under the Newman-Pearson criterion, the decay rate of the error probability in the

parallel architecture is exponential.

Tree networks with bounded height (greater than 1) are considered in [50]–[59]. In a tree

network, measurements are summarized by leaf agents into smaller messages and sent to their

parent agents, each of which fuses all the messages it receives with its own measurement (if

any) and then forwards the new message to its parent agent at the next level. This process takes

place throughout the tree, culminating at the root (also known as the fusion center) where

an overall decision is made. In this way, information from each agent is aggregated at the

root via a multihop path. Note that the information is ‘degraded’ along the path. Therefore,

the convergence rate for tree networks cannot be better than that of the star configuration.

5



More specifically, under the Neyman-Pearson criterion, the optimal error exponent is as good

as that of the parallel configuration under certain conditions. For example, for a bounded-

height tree network with limτN→∞ `N/τN = 1, where τN denotes the total number of agents

and `N denotes the number of leaf agents, the optimal error exponent is the same as that of

the parallel configuration [52]. under the Bayesian criterion, the error probability converges

exponentially fast to 0 with an error exponent that is worse than the one associated with the

star configuration [55].

The variation of detection performance with increasing tree height is still largely unex-

plored. If only the leaf nodes have sensors making observations, and all other nodes simply

fuse the messages received and forward the new messages to their parents, the tree network is

known as a relay tree. The balanced binary relay tree has been addressed in [60], in which it

is assumed that the leaf nodes are independent sensors with identical Type I error probability

(also known as the probability of false alarm, denoted by α0) and identical Type II error prob-

ability (also known as the probability of missed detection, denoted by β0). It is shown there

that if the sensor error probabilities satisfy the condition α0 +β0 < 1, then both the Type I and

Type II error probabilities at the fusion center converge to 0 as the the number N of leaf nodes

goes to infinity. If α0 + β0 > 1, then both the Type I and Type II error probabilities converge

to 1, which means that if we flip the decision at the fusion center, then the Type I and Type

II error probabilities converge to 0. Because of this symmetry, it suffices to consider the case

where α0 + β0 < 1. If α0 + β0 = 1, then the Type I and II error probabilities add up to 1 at

each node of the tree. In consequence, this case is not of interest.

Kanoria and Montanari [61] provide an upper bound for the convergence rate of the error

probability in M -ary relay trees (directed trees where each nonleaf node has indegree M and

outdegree 1), with any combination of fusion rules for all nonleaf agents. Their result gives

an upper bound on the rate at which an agent can learn from others in a social network. To

elaborate further, the authors of [61] provide the following upper bound for the convergence

6



rate of the error probability PN at the fusion center (with respect to the number N of leaf

nodes) with any combination of fusion rules:

log2 P
−1
N = O(N logM

M+1
2 ). (1.1)

They also provide the following asymptotic lower bound for the convergence rate in the case

of majority dominance rule with random tie-breaking: log2 P
−1
N = Ω(N logM bM+1

2
c). In the

case where M is odd, the majority dominance rule achieves the upper bound in (1.1), which

shows that the bound is the optimal convergence rate. However, in the case where M is even,

there exists a gap between these two bounds because of the floor function in the second bound.

In this case, [61] leaves two questions open:

Q1. Does the majority dominance rule achieve the upper bound in (1.1)?

Q2. Do there exist other strategies that achieve the upper bound in (1.1)?

In this thesis, for the case where M is even, we answer the first question definitively by

showing that the majority dominance rule does not achieve the upper bound in (1.1). For the

second question, we provide a strategy that is closer to achieving the upper bound in (1.1) than

the majority dominance rule.

The result in this thesis also differs from (and complements) [61] in a number of other

ways. For example, our analysis also includes non-asymptotic results. Moreover, we also

consider the Bayesian likelihood ratio test1 (the fusion rule for Bayesian learning) as an alter-

native fusion rule, not considered in [61]. These differences should become clear as we clarify

the contributions of this thesis in the next section.

In the study of social networks, M -ary relay trees arise naturally. First, as pointed out

before, many organizational structures are well described in this way. Also, it is well-known

1By the Bayesian likelihood ratio test, we mean a likelihood ratio test in which the threshold is given by the
ratio of the prior probabilities.
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that many real-world social networks, including email networks [62] and the Internet [63], are

scale-free networks; i.e., the probability P (`) that ` links are connected to a node is P (`) ∼

c`−γ , where c is a normalization constant and the parameter γ ∈ (2, 3). In other words, the

number of links does not depend on the network size and is bounded with high probability.

Moreover, Newman et al. [64] show that the average degree in a social network is bounded

or grows very slowly as the network size increases. Therefore, to study the learning problem

in social networks, it is reasonable to assume that each nonleaf node in the tree has a finite

number of child nodes, in which case the tree height grows unboundedly as the number of

agents goes to infinity.

1.2 Our Contributions

In this thesis, we study the distributed hypothesis testing problem in the context of feed-

forward networks and tree networks with unbounded heights. The organization of the thesis

is as follows:

• In Chapter 2, we assume that each node uses a likelihood ratio test to generate its binary

decision. We call the sequence of likelihood ratio tests a decision strategy. We want

to know whether or not there exists a decision strategy such that the node decisions

converge in probability to the underlying true hypothesis. We consider two classes of

broadcast failures: 1) random erasure and 2) random flipping. For case 1, we show that

if each node can only learn from a bounded number of immediate predecessors, i.e.,

there exists a constant C such that mk ≤ C for all k, then for any decision strategy, the

error probability cannot converge to 0. We also show that if mk → ∞ as k → ∞, then

there exists a decision strategy such that the error probability converges to 0, even if the

erasure probability converges to 1 (given that the convergence of the erasure probability

is slower than a certain rate). In the case where an agent learns from all its predecessors,

the convergence rate of the error probability is Θ(1/
√
k). More specifically, we show
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that if the memory size mk = Θ(kσ), σ ≤ 1, then the error probability decreases as

Θ(1/kmin (σ,1/2)).

For case 2, we show that if each node can only learn from a bounded number of immedi-

ate predecessors, then for any decision strategy, the error probability cannot converge to

0. We also show that if each node can learn from all the previous nodes, i.e.,mk = k−1,

then the error probability converges to 0 using the myopic decision strategy when the

flipping probabilities are bounded away from 1/2. In this case, we show that the error

probability converges to 0 as Ω(1/k2). In the case where the flipping probability con-

verges to 1/2, we derive a necessary condition on the convergence rate of the flipping

probability (i.e., how fast it must converge) such that the error probability converges to

0. More specifically, we show that if there exists p > 1 such that the flipping probability

converges to 1/2 as O(1/k(log k)p), then it is impossible that the error probability con-

verges to 0. Therefore, only if the flipping probability converges as Ω(1/k(log k)p) for

some p ≤ 1 can we hope for asymptotic learning. Under this condition, we characterize

explicitly the relationship between the convergence rate of the flipping probability and

the convergence rate of the error probability.

• In Chapter 3, we study the detection performance for balanced binary relay trees. We

derive explicit upper and lower bounds for the total error probability at the fusion center

as functions of the number of leaf nodes. These bounds characterize the asymptotic

convergence rate for the total error probability as the number of leaf nodes goes to

infinity. We also show that the total error probability converges to 0 even if the leaf

nodes are asymptotically crummy; i.e., the sum of Types I and II error probabilities goes

to 1 as the number of leaf nodes goes to infinity, provided that the rate of crumminess is

not sufficiently fast.

• In Chapter 4, we investigate the detection performance in balanced binary relay trees

where nodes and links fail with certain probabilities. We show that the asymptotic decay
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rate of the total error probability is not larger than that in the non-failure case. We show,

however, that if the given failure probabilities decrease to 0 sufficiently quickly as the

nodes get closer to the fusion center, then the scaling law of the decay rate for the total

error probability at the fusion center remains the same as that of the non-failure case.

Conversely, if the given failure probabilities do not decrease to 0 sufficiently quickly,

then the scaling law of the decay rate is strictly smaller than that of the non-failure case.

• In Chapter 5, we consider a more general M -ary relay tree configuration, where each

non-leaf node in the tree has M child nodes. We consider two fusion rules: Majority

dominance and the Bayesian likelihood ratio test. We derive upper and lower bounds

for the Type I and Type II error probabilities with respect to the number of leaf agents,

which in turn characterize the converge rates of the Type I, Type II, and total error

probabilities. We also provide a message-passing scheme involving non-binary mes-

sage alphabets and characterize the exponent of the error probability with respect to the

message alphabet size.

• In Chapter 6, we introduce the notion of string submodularity in the problem of max-

imizing an objective function defined on a set of strings subject to a string length con-

straint. We show that the greedy strategy achieves at least a (1 − e−1)-approximation

of the optimal strategy. Moreover, we can improve this approximation by introducing

additional constraints on curvature, namely, total backward curvature, total forward

curvature, and elemental forward curvature. We show that if the objective function has

total backward curvature σ, then the greedy strategy achieves at least a 1
σ
(1 − e−σ)-

approximation of the optimal strategy. If the objective function has total forward curva-

ture ε, then the greedy strategy achieves at least a (1− ε)-approximation of the optimal

strategy. Moreover, we consider a generalization of the diminishing-return property

by defining the elemental forward curvature. We also introduce the notion of string-

matroid and consider the problem of maximizing the objective function subject to a
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string-matroid constraint. We investigate three applications of string submodular func-

tions with curvature constraints: 1) designing a string of fusion rules in balanced binary

relay trees such that the reduction in the error probability is maximized; 2) choosing a

string of actions to maximize the expected fraction of accomplished tasks; and 3) de-

signing a string of measurement matrices such that the information gain is maximized.

• In Chapter 7, we conclude this thesis and discuss some further research directions.

1.3 Notation

In this thesis, we use the following notation to characterize the asymptotic relationship:

For positive functions f and g defined on the positive integers, if there exist positive constant

c1 such that f(N) ≥ c1g(N) for all sufficiently large N , then we write f(N) = Ω(g(N)). If

there exist positive constant c2 such that f(N) ≤ c2g(N) for all sufficiently large N , then we

write f(N) = O(g(N)). We write f(N) = Θ(g(N)) if and only if f(N) = Ω(g(N)) and

f(N) = O(g(N)). For N → ∞, the notation f(N) ∼ g(N) means that f(N)/g(N) → 1,

f(N) = ω(g(N)) that f(N)/g(N)→∞, and f(N) = o(g(N)) that f(N)/g(N)→ 0.
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CHAPTER 2

FEEDFORWARD NETWORKS

In this chapter, we study the binary hypothesis testing problem in the context of feedfor-

ward networks. Consider a large number of nodes, which make decisions and broadcast their

decisions to others sequentially. We will investigate the cases where the broadcast messages

are subject to random erasure or random flipping:

1) Random erasure: Each broadcasted decision is erased with a certain erasure probability,

modeled by a binary erasure channel. If the decision broadcasted by a node is erased,

then none of its successors will observe that decision. We investigate this case in Sec-

tion 2.2.

2) Random flipping: Each broadcasted decision is flipped with a certain flipping probabil-

ity, modeled by a binary symmetric channel. If the broadcasted decision of a node is

flipped, then all the successors of that node observe that flipped decision. We investigate

this case in Section 2.3.

2.1 Preliminary

We use P to denote the underlying probability measure. We use πj to denote the prior

probability (assumed nonzero), Pj to denote the probability measure, and Ej to denote the

conditional expectation associated withHj , j = 0, 1. Consider a large number of nodes which

make decisions sequentially. As shown in Fig. 2.1, at stage k, node ak takes a measurement

Xk of the scene and makes a decision dk = 0 or dk = 1 about the prevailing hypothesis H0 or

H1. It then broadcasts a potentially corrupted form d̂k of that decision to its successors. Note

that in case 1, if the decision is erased, it is equivalent to saying that the corrupted decision

d̂k is e, which is a message that carries no information and is not useful for decision-making.

Inserting e in place of erased messages allows us to unify the notation for cases 1 and 2. The
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Figure 2.1: Feedforward network.

decision dk of node ak is made based on the private signal Xk and the sequence of corrupted

decisions D̂mk = {d̂1, d̂2, . . . , d̂mk} received from the mk immediate predecessor nodes using

a likelihood ratio test.

Our aim is to find a sequence of likelihood ratio tests such that the probability of making

a wrong decision about the state of the world tends to 0 as k →∞; i.e.,

lim
k→∞

Pke = lim
k→∞

(π0P0(dk = 1) + π1P1(dk = 0)) = 0.

Before proceeding, we introduce the following definitions and assumptions:

1. The private signal Xk takes values in a set S, endowed with a σ-algebra S. We assume

that Xk is independent of the broadcast history D̂mk . Moreover, the Xks are mutually

independent and identically distributed with distribution PXj , under Hj , j = 0, 1. (Note

that PXj is a probability measure on the σ-algebra S.) We assume that the underlying

hypothesis, H0 or H1, does not change with k.

2. The two probability measures PX0 and PX1 are equivalent; i.e., they are absolutely con-

tinuous with respect to each other. In other words, if A ∈ S , then PX0 (A) = 0 if and

only if PX1 (A) = 0.

3. Let the likelihood ratio of a private signal s ∈ S be

LX(s) =
dPX1
dPX0

(s),

13



where dPX1 /dPX0 denotes the Radon–Nikodym derivative (which is guaranteed to exist

because of the assumption that the two measures are equivalent). We assume that the

likelihood ratios for the private signals are unbounded; i.e., for any set S ′ ⊂ S with

probability 1 under the measure (PX0 + PX1 )/2, we have

inf
s∈S′

dPX1
dPX0

(s) = 0

and

sup
s∈S′

dPX1
dPX0

(s) =∞.

We note that this assumption is saying that the private signals are very ‘strong.’ More-

over, this assumption can be significantly relaxed in the tree networks, which we will

investigate in Chapters 3,4,5.

4. Suppose that θ is the underlying truth. Let b̄k = P(θ = H1|Xk), which we call the

private belief of ak. By Bayes’ rule, we have

b̄k =

(
1 +

π0

π1

1

LX(Xk)

)−1

. (2.1)

5. Recall that node ak observesmk decisions D̂mk from its immediate predecessors. Let pkj

be the conditional probability mass function of D̂mk under Hj , j = 0, 1. The likelihood

ratio of a realization Dmk is

LkD(Dmk) =
pk1(Dmk)
pk0(Dmk)

=
P1(D̂mk = Dmk)
P0(D̂mk = Dmk)

.

6. Let bk = P(θ = H1|D̂mk), which we call the public belief of ak. We have

bk =

(
1 +

π0

π1

1

LkD(D̂mk)

)−1

. (2.2)

7. Each node ak makes its decision using its own measurement and the observed decisions

based on a likelihood ratio test with a threshold tk > 0:

dk =

{
1 if LX(Xk)L

k
D(D̂mk) > tk,

0 if LX(Xk)L
k
D(D̂mk) ≤ tk.
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If tk = π0/π1, then this test becomes the maximum a-posteriori probability (MAP) test,

in which case the probability of error is locally minimized for node ak. If tk = 1, then

the test becomes the maximum-likelihood (ML) test. If the prior probabilities are equal,

then these two tests are identical. A decision strategy T is a sequence of likelihood ratio

tests with thresholds {tk}∞k=1. Given a decision strategy, the decision sequence {dk}∞k=1

is a well-defined stochastic process.

8. We say that the system asymptotically learns the underlying true hypothesis with deci-

sion strategy T if

lim
k→∞

P(dk = θ) = 1.

In other words, the probability of making a wrong decision goes to 0, i.e.,

lim
k→∞

Pke = 0.

The question we are interested in is this: In each of the two classes of failures, is there a

decision strategy such that the system asymptotically learns the underlying true hypoth-

esis?

2.2 Random Erasure

In this section, we consider the sequential hypothesis testing problem in the presence of

random erasures, modeled by binary erasure channels [65] (see Fig. 2.2). Recall that the

binary message dk is the input to a binary erasure channel and d̂k is the output, which is either

equal to dk (no erasure) or is equal to a symbol e that represents the occurrence of an erasure.

The erasure channel matrix at stage k is given by P(d̂k = i|dk = j), j = 0, 1 and i = j, e.

Recall that each node ak observes mk immediate previous broadcasted decisions. We divide

our analysis into two scenarios: A) {mk} is bounded above by a positive constant; B) mk goes

to infinity as k →∞.
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Figure 2.2: Binary erasure channel.

2.2.1 Bounded Memory

Theorem 2.2.1. Suppose that there exists C and ε > 0 such that for all k, mk ≤ C and

P(d̂k = e|dk = j) ∈ [ε, 1− ε] for j = 0, 1. Then, there does not exist a decision strategy such

that the error probability converges to 0.

Proof. We first prove this claim for the special case of the tandem network, where mk = 1

for all k. For each node ak, with a nonzero probability P(d̂k = e|dk = j), the decision

dk−1 = j of the immediate predecessor is erased and ak makes a decision based only on its

own private signal Xk. We use Ek to denote this event. Conditioned on Ek, we claim that the

error probability as a sequence of k,

P(dk 6= θ|Ek)

= π0P0(dk = 1|Ek) + π1P1(dk = 0|Ek)

= π0P0(LX(Xk) > tk) + π1P1(LX(Xk) ≤ tk),

is bounded away from 0. We prove the above claim by contradiction. Suppose that there exists

a decision strategy with threshold sequence {tk} such that P(dk 6= θ|Ek) → 0 as k → ∞.

Then, we must have P1(LX(Xk) ≤ tk) → 0 because π1 is positive. Because PX0 and PX1 are

equivalent measures, we have P0(LX(Xk) ≤ tk) → 0. Hence we have P0(LX(Xk) > tk) →

1. Therefore, P(dk 6= θ|Ek) does not converge to 0.

We use ECk to denote the complement event of Ek. By the Law of Total Probability, we
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have

Pke = P(Ek)P(dk 6= θ|Ek) + P(ECk )P(dk 6= θ|ECk )

≥ P(Ek)P(dk 6= θ|Ek).

Because P(Ek) ≥ ε, we conclude that the error probability does not converge to 0.

We can now generalize this proof to the case of a general bounded mk sequence. Let Ek be

the event that ak receives mk erased symbols e. Then, the probability P(Ek) is bounded below

according to

P(Ek) ≥

 min
j=0,1

m=k−1,...,k−mk

P(d̂m = e|dm = j)

mk

≥ εmk .

We have already shown that given this event the error probability does not converge to 0. Using

the Law of Total Probability, It is easy to see that the error probability does not converge to

0.

Remark 2.2.1. We use P(d̂k = e|dk = j) ∈ [ε, 1 − ε] for j = 0, 1 to mean that the erasure

probability P(d̂k = e|dk = j) is bounded away from 0 and 1.

This result is straightforward to understand. If the memory sizes are bounded for all nodes,

then for each node, there exists a positive probability such that all the decisions received from

its immediate predecessors are erased, in which case the node has to make a decision based on

its own measurement. The error probability cannot converge to 0 because of the equivalent-

measure assumption.

2.2.2 Unbounded Memory

Suppose that each node ak observes mk immediate previous decisions. In this section, we

deal with the case wheremk is unbounded.2 More specifically, we consider the case wheremk

2The assumption that mk is unbounded is not sufficiently strong to guarantee the convergence of error
probability to 0. An example is that the memory size mk equals

√
k if
√
k is an integer and it equals 1 otherwise.

In this case, we can use a similar argument as that in the proof of Theorem 2.2.1 to show that the error probability
does not converge to 0.
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goes to infinity. We first consider the case where the erasure probabilities are bounded away

from 1. We have the following result.

Theorem 2.2.2. Suppose that mk goes to infinity as k → ∞ and there exists ε > 0 such that

for all j = 0, 1 and for all k, P(d̂k = e|dk = j) ≤ 1− ε. Then, there exists a decision strategy

such that the error probability converges to 0.

Proof. We prove this result by constructing a certain tandem network within the original net-

work using a backward-searching scheme. The scheme is the following: Consider node ak

in the original network. Let nk be the largest integer such that each node in the sequence

{ak−n2
k
, ak−n2

k−1, . . . , ak} of n2
k + 1 nodes has a memory size that is greater than or equal to

nk. Note that an nk satisfying this condition is guaranteed to exist. Moreover, because mk

goes to infinity as k → ∞, we have nk → ∞ as k → ∞. Consider the event that ak re-

ceives at least one decision j, which is not erased, from {ak−nk , . . . , ak−1}, its nk immediate

predecessors. The probability of this event is at least

1− max
j=0,1

m=k−nk,...,k−1

P(d̂m = e|dm = j)nk ,

which is bounded below by 1− (1− ε)nk by the assumption on the erasure probabilities. We

denote the node that sends the unerased decision by ak1 . Similarly, with a certain probability,

ak1 receives at least one decision, which is not erased, from its nk immediate predecessors.

Recursively, with a certain probability, we can construct a tandem network with length nk

using nodes from among the n2
k + 1 nodes above within the original network. Let Ek be the

event that such a tandem network exists. The probability P(Ek) is at least (1 − (1 − ε)nk)nk .

Recall that limk→∞ nk =∞, which implies that

lim
k→∞

(1− (1− ε)nk)nk = 1.

Hence we have

lim
k→∞

P(Ek) = 1.
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Conditioned on Ek, by using the strategy T consisting of a sequence of likelihood ratio tests

with monotone thresholds described in [1], we can get the conditional convergence of the

error probability, given Ek, to 0. We can also use the equilibrium strategy described in [10].

Therefore, by the Law of Total Probability, we have

lim
k→∞

P(dk 6= θ)

= lim
k→∞

(
P(dk 6= θ|Ek)P(Ek) + P(dk 6= θ|ECk )(1− P(Ek)

)
≤ lim

k→∞
(P(dk 6= θ|Ek) + (1− P(Ek)) = 0. (2.3)

Note that given a strategy, the convergence rate for the error probability in this case de-

pends on how fast P(Ek) converges to 1 and how fast P(dk 6= θ|Ek) converges to 0.

First let us consider the convergence rate of P(Ek). Obviously this convergence rate de-

pends on the convergence rate of nk. Moreover, the convergence rate of nk depends on the

convergence rate of mk. For example, if mk goes to infinity extremely slowly, then nk grows

extremely slowly with respect to k, which means that P(Ek) converges to 1 extremely slowly

with respect to k. Next we assume thatmk increases as Θ(kσ), where σ ≤ 1. We first establish

a relationship between the convergence rate of mk and the convergence rate of nk when using

the backward-searching scheme.

Proposition 2.2.1. Suppose that mk = Θ(kσ) where σ ≤ 1. Then, we have

nk =

{
Θ(
√
k) if σ ≥ 1/2,

Θ(kσ) if σ < 1/2.

Proof. Suppose that we can form a tandem network with length nk within the original net-

work. Recall that nk is the largest integer such that each node in the sequence {ak−n2
k
, ak−n2

k−1, . . . , ak}

of n2
k + 1 nodes has a memory size that is greater than or equal to nk. Therefore, the memory

size mk−n2
k

of ak−n2
k

must be larger than or equal to nk by assumption. Hence we have

mk−n2
k

= (k − n2
k)
σ ≥ nk.
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Moreover, the memory size mk−(nk+1)2 of ak−(nk+1)2 must be strictly smaller than nk + 1

(otherwise we can construct a tandem network with length nk + 1). Hence we have

mk−(nk+1)2 = (k − (nk + 1)2)σ < nk + 1.

From the above two inequalities, we easily obtain the desired asymptotic rates for nk.

Remark 2.2.2. Note that if σ < 1/2, then the scaling law of nk is identical to that of mk: The

faster the scaling of mk, the faster the scaling of nk also. However, for σ ≥ 1/2, the scaling

law of nk “saturates” at
√
k, no matter how fast mk scales.

We have derived the convergence rate for nk. Recall that P(Ek) converges to 1 at least in

the rate of Θ(nk(1−ε)nk) (by expanding the term (1−(1−ε)nk)nk and keeping the dominating

term). From this fact and Proposition 2.2.1, we derive the convergence rate for P(Ek).

Corollary 2.2.1. Suppose that mk = Θ(kσ) where σ ≤ 1. Then, we have

1− P(Ek) =

{
O(
√
k(1− ε)

√
k) if σ ≥ 1/2,

O(kσ(1− ε)kσ) if σ < 1/2.

Second, let us consider the convergence rate of P(dk 6= θ|Ek). Recall that Ek denotes

the event that a tandem network with length nk exists. Conditioned on Ek, if we use the

the equilibrium strategy3 described in [10], then it has been shown that the error probability

converges to 0 as Θ(1/nk), with appropriate assumptions on the distributions of the private

signal. From this fact and Proposition 2.2.1, we derive the convergence rate for P(dk 6= θ|Ek).

Corollary 2.2.2. Suppose that mk = Θ(kσ) where σ ≤ 1. Then, we have

P(dk 6= θ|Ek) =

{
Θ(1/

√
k) if σ ≥ 1/2,

Θ(1/kσ) if σ < 1/2.

3Note that this equilibrium strategy is not the only strategy such that the error probability converges to 0 in
a tandem network.
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Notice that the convergence rate of P(dk 6= θ|Ek) is much smaller than that of P(Ek). More-

over by (2.3), the convergence rate of P(dk 6= θ) depends on the smaller of the convergence

rates of P(dk 6= θ|Ek) and P(Ek). We derive the convergence rate for the error probability as

follows.

Corollary 2.2.3. Suppose that mk = Θ(kσ) where σ ≤ 1. Then, we have

P(dk 6= θ) =

{
Θ(1/

√
k) if σ ≥ 1/2,

Θ(1/kσ) if σ < 1/2.

We have considered the situation where the erasure probabilities are bounded away from

1. Now consider the case where the erasure probability P(d̂k = e|dk = j) converges to 1.

Theorem 2.2.3. Suppose that P(d̂k = e|dk = j) → 1 and there exists ε > 1 and c > 0 such

that P(d̂k = e|dk = j) ≤ (cnk)
−ε/nk . Then, there exists a decision strategy such that the error

probability converges to 0.

Proof. We use the scheme described in the proof of Theorem 2.2.2. The probability that a tan-

dem network with length nk exists is at least (1− ((cnk)
−ε/nk)nk)nk = (1− (cnk)

−ε)nk , which

converges to 1 as k →∞. Using the same arguments as those in the proof of Theorem 2.2.2,

we can show that the error probability converges to 0.

As an example, we consider the situation where each node observes all the previous de-

cisions; i.e, mk = k − 1 for all k. In this case, it is easy to show that using the backward-

searching scheme, with a certain probability, we can form a tandem network with length

nk = b
√
k − 1c. Suppose that the erasure probabilities are bounded away from 1. Then, the

error probability converges to 0 as Θ(1/
√
k). Moreover, the error probability converges to 0

even if the erasure probability converges to 1, provided that P(d̂k = e|dk = j) ≤ (cnk)
−ε/nk .
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Figure 2.3: Binary symmetric channel.

2.3 Random Flipping

We study in this section the sequential hypothesis testing problem with random flipping,

modeled by a binary symmetric channel [65] (see Fig. 2.3). Recall that dk is the input to a

binary symmetric channel and d̂k is the output, which is either equal to dk (no flipping) or is

equal to its complement 1 − dk (flipping). The channel matrix is given by P(d̂k = i|dk = j),

i, j = 0, 1. We assume that P(d̂k = 1|dk = 0) = P(d̂k = 0|dk = 1) = qk, where qk denotes

the probability of a flip. The assumption of symmetry is for simplicity only, and all results

obtained in this section can be generalized easily to a general binary communication channel

with unequal flipping probabilities, i.e., P(d̂k = 1|dk = 0) 6= P(d̂k = 0|dk = 1). We assume

that each node ak knows the probabilities of flipping associated with the corrupted decisions

D̂mk received from its predecessors.

2.3.1 Bounded Memory

Theorem 2.3.1. Suppose that there exists C and ε > 0 such that for all k, mk ≤ C and

qk ∈ [ε, 1 − ε]. Then, there does not exist a decision strategy such that the error probability

converges to 0.

Proof. We first prove this theorem in the case where each node observes the immediate pre-

vious node; i.e., mk = 1 for all k. Node ak makes a decision dk based on its private signal Xk

and the decision d̂k−1 from its immediate predecessor. Recall that qk = P(d̂k = 1|dk = 0) =
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P(d̂k = 0|dk = 1). The likelihood ratio test at stage k (with a threshold tk > 0) is

dk =

{
1 if LX(Xk)L

k
D(d̂k−1) > tk,

0 if LX(Xk)L
k
D(d̂k−1) ≤ tk,

where for each jk−1 = 0, 1

LkD(jk−1) =
pk1(jk−1)

pk0(jk−1)
=

P1(d̂k−1 = jk−1)

P0(d̂k−1 = jk−1)
,

and Pj(d̂k−1 = jk−1), j = 0, 1 is given by

Pj(d̂k−1 = jk−1) = qk(1− Pj(dk−1 = jk−1)) + (1− qk)Pj(dk−1 = jk−1)

= qk + (1− 2qk)Pj(dk−1 = jk−1). (2.4)

Let tk(d̂k−1) = tk/L
k
D(d̂k−1) be the testing threshold for LX(Xk) when d̂k−1 is received.

Then, the likelihood ratio test can be rewritten as

dk =

{
1 if LX(Xk) > t(d̂k−1),

0 if LX(Xk) ≤ t(d̂k−1).

From (2.4), we notice that Pj(d̂k−1) depends linearly on Pj(dk−1). Without loss of generality,

henceforth we assume that qk ≤ 1/2.4 It is obvious that tk(0) ≥ tk(1) because LkD(j) =

P1(d̂k−1 = j)/P0(d̂k−1 = j) is non-decreasing in j. Therefore, the likelihood ratio test

becomes

dk =


1 if LX(Xk) > tk(0),

0 if LX(Xk) ≤ tk(1),

d̂k−1 otherwise,

and we can write the Type I and Type II error probabilities, denoted by P0(dk = 1) and

P1(dk = 0), respectively, as follows:

P0(dk = 1) = P0(LX(Xk) > tk(0))P0(d̂k−1 = 0)

+ P0(LX(Xk) > tk(1))P0(d̂k−1 = 1)

4Note that the system is symmetric with respect to qk = 1/2. For example, if the probability of flipping is 1,
i.e., qk = 1, then the receiver can revert the received decision back since it knows the predecessor always ‘lies.’
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and

P1(dk = 0) = P1(LX(Xk) ≤ tk(0))P1(d̂k−1 = 0)

+ P1(LX(Xk) ≤ tk(1))P1(d̂k−1 = 1).

The total error probability at stage k is

Pke = π0P0(dk = 1) + π1P1(dk = 0)

= π0(P0(LX(Xk) > tk(0))

+ P0(tk(1) < LX(Xk) ≤ tk(0))P0(d̂k−1 = 1))

+ π1(P1(tk(1) < LX(Xk) ≤ tk(0))P1(d̂k−1 = 0)

+ P1(LX(Xk) ≤ tk(1))).

We prove the claim by contradiction. Suppose that there exists a strategy such that Pke → 0

as k → ∞. Then, we must have P0(LX(Xk) > tk(0)) → 0 and P1(LX(Xk) ≤ tk(1)) → 0.

Recall that PX0 and PX1 are equivalent measures. We have P1(LX(Xk) > tk(0)) → 0 and

P0(LX(Xk) ≤ tk(1))→ 0. These imply that Pj(tk(1) < LX(Xk) ≤ tk(0))→ 1 for j = 0, 1.

But

Pj(d̂k−1 = 1− j) = qk(1− Pj(dk−1 = 1− j))

+ (1− qk)Pj(dk−1 = 1− j)

= qk + (1− 2qk)Pj(dk−1 = 1− j),

which is bounded below by qk. Hence Pke is also bounded below away from 0 in the asymptotic

regime. This contradiction implies that Pke does not converge to 0.

We now extend the proof to the case where each node observesmk ≥ 1 previous decisions.

The likelihood ratio test in this case is given by

dk =

{
1 if LX(Xk) > t(d̂k−1, . . . , d̂k−mk),

0 if LX(Xk) ≤ t(d̂k−1, . . . , d̂k−mk),
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where t(d̂k−1, . . . , d̂k−mk) = tk/L
k
D(d̂k−1, . . . , d̂k−mk) denotes the testing threshold. Note that

among all possible combinations of {d̂k−1, . . . , d̂k−mk}, it suffices to assume that the likeli-

hood ratio in the case where each decision equals 0 (denoted by 0mk) is the smallest and that

in the case where each decision equals 1 (denoted by 1mk) is the largest. Otherwise, we can

always find the smallest and largest likelihood ratio. The case where the likelihood ratios for

all possible combinations are equal can be excluded because it means the decisions observed

have no useful information for hypothesis testing; and the node has to make a decision based

on its own measurement, in which case the error probability does not converge to 0.

From these, we can define the Type I and II error probabilities:

P0(dk = 1) =

P0(LX(Xk) > tk(0
m
k ))P0(d̂k−1 = 0, d̂k−2 = 0, . . . , d̂k−mk = 0)

+ P0(LX(Xk) > tk(1, 0, 0, . . . , 0))P0(d̂k−1 = 1, d̂k−2 = 0, . . . , d̂k−mk = 0) + . . .

+ P0(LX(Xk) > tk(1
mk))P0(d̂k−1 = 1, d̂k−2 = 1, . . . , d̂k−mk = 1)

= P0(LX(Xk) > tk(0
mk)) + P0(tk(1, 0, 0, . . . , 0) < LX(Xk) ≤ tk(0

mk))

P0(d̂k−1 = 1, d̂k−2 = 0, . . . , d̂k−mk = 0) + . . .

+ P0(tk(1
mk) < LX(Xk) ≤ tk(0

mk))P0(d̂k−1 = 1, d̂k−2 = 1, . . . , d̂k−mk = 1)

and

P1(dk = 0) =

P1(LX(Xk) ≤ tk(0
mk))P1(d̂k−1 = 0, d̂k−2 = 0, . . . , d̂k−mk = 0)

+ P1(LX(Xk) ≤ tk(1, 0, 0, . . . , 0))P1(d̂k−1 = 1, d̂k−2 = 0, . . . , d̂k−mk = 0) + . . .

+ P1(LX(Xk) ≤ tk(1
mk))P1(d̂k−1 = 1, d̂k−2 = 1, . . . , d̂k−mk = 1)

= P1(tk(1
mk) < LX(Xk) ≤ tk(0

mk))P1(d̂k−1 = 0, d̂k−2 = 0, . . . , d̂k−mk = 0)

+ P1(tk(1
mk) < LX(Xk) ≤ tk(1, 0, 0, . . . , 0))P0(d̂k−1 = 1, d̂k−2 = 0, . . . , d̂k−m = 0)

+ . . .+ P1(LX(Xk) ≤ tk(1
mk)).
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With the similar argument as that in the tandem network case, we have

Pke = π0P0(dk = 1) + π1P1(dk = 0).

Suppose that Pke → 0 as k → ∞. Then, we must have P0(LX(Xk) > tk(0
mk)) → 0 and

P1(LX(Xk) ≤ tk(1
mk)) → 0. Recall that PX0 and PX1 are equivalent measures. Hence we

have Pj(tk(1mk) < LX(Xk) ≤ tk(0
mk))→ 1 for j = 0, 1. We have

Pj(d̂k−1 = jk−1, d̂k−2 = jk−2, . . . , d̂k−mk = jk−mk) =

Pj(d̂k−1 = jk−1|d̂k−2 = jk−2, . . . , d̂k−mk = jk−mk)·

Pj(d̂k−2 = jk−2|d̂k−3 = jk−3, . . . , d̂k−mk = jk−mk)·

. . .Pj(d̂k−mk+1 = jk−mk+1|d̂k−mk = jk−mk)·

Pj(d̂k−mk = jk−mk).

We already know that Pj(d̂k−mk = jk−mk) is bounded away from 0 by qk. Similarly, we can

show

Pj(d̂k−i = jk−i|d̂k−i−1 = jk−i−1, . . . , d̂k−mk = jk−mk)

= (1− qk)Pj(dk−i = jk−i| . . . , d̂k−mk = jk−mk)

+ qk(1− Pj(dk−i = jk−i| . . . , d̂k−mk = jk−mk))

= qk + (1− 2qk)Pj(dk−i = jk−i| . . . , d̂k−mk = jk−mk).

Hence Pke is also bounded below by qmkk ≥ qCk . This contradiction implies that Pke does not

converge to 0 with any decision strategy.

2.3.2 Unbounded Memory

In this section, we consider the case where ak can observe all its predecessors; i.e., mk =

k − 1. We will show that using the myopic decision strategy, the error probability converges
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to 0 in the presence of random flipping when the flipping probabilities are bounded away

from 1/2. In the case where the flipping probability converges to 1/2, we derive a necessary

condition on the convergence rate of the flipping probability such that the error probability

converges to 0. Moreover, we precisely describe the relationship between the convergence

rate of the flipping probability and the convergence rate of the error probability.

If we state the conditions on the private signal distributions in a symmetric way, then it

suffices to consider the case when the true hypothesis is H0. In this case, our aim is to show

that the Type I error probability converges to 0, i.e., P0(dk = 1)→ 0. We consider the myopic

decision strategy; i.e., the decision made by the kth node is on the basis of the MAP test.

Again, the corruption from dk to d̂k is in the form of a binary symmetric channel with flipping

probability denoted by qk. Without loss of generality, we assume that qk ≤ 1/2 (because of

symmetry). We define the public likelihood ratio of Dk = (j1, j2, . . . , jk) to be

Lk(Dk) =
pk1(Dk)
pk0(Dk)

=
P1(D̂k = Dk)
P0(D̂k = Dk)

.

We will consider two cases:

1) The flipping probabilities are bounded away from 1/2 for all k; i.e., there exists c > 0

such that qk ≤ 1/2 − c for all k. This ensures that the corrupted decision still contains

some useful information about the true hypothesis. We call this the case of uniformly

informative nodes.

2) The flipping probabilities qk converge to 1/2; i.e., qk → 1/2 as k → ∞. This means

that the broadcasted decisions become increasingly uninformative as we move towards

the latter nodes. We call this the case of asymptotically uninformative nodes.

2.3.2.1 Uniformly informative nodes

We first show that the error probability converges to 0. Recall that b̄k = P(θ = H1|Xk)

denotes the private belief given by signal Xk. Let (G0,G1) be the conditional distributions of
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the private belief b̄k:

Gj(r) = Pj(b̄k ≤ r).

Note that Gj does not depend on k because the Xks are identically distributed. These distri-

butions exhibit two important properties:

a) Proportionality: This property is easy to get from Bayes’ rule: for all r ∈ (0, 1), we

have
dG1

dG0

(r) =
r

1− r ,

where dG1/dG0 is the Radon-Nikodym derivative of their associated probability mea-

sures.

b) Dominance: G1(r) < G0(r) for all r ∈ (0, 1), and Gj(0) = 0 and Gj(1) = 1 for

j = 0, 1. Moreover, G1(r)/G0(r) is monotone non-decreasing as a function of r.

We note that the dominance property can be shown using Assumption 3) and the details of the

proof is omitted.

We define an increasing sequence {Fk} of σ-algebras as follows:

Fk = σ〈X1, X2, . . . , Xk; d̂1, d̂2, . . . , d̂k〉.

Evidently d̂k and Lk(D̂k) are adapted to this sequence of σ-algebras. Moreover, given D̂k−1 =

{d̂1, d̂2, . . . , d̂k−1} and Xk, the decision dk is completely determined. Therefore, dk is also

adapted to this sequence of σ-algebras.

Lemma 2.3.1. Under hypothesis H0, the public likelihood ratio sequence {Lk(D̂k)} is a mar-

tingale with respect to {Fk} and Lk(D̂k) converges to a finite limit almost surely.
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Proof. The expectation of Lk+1(D̂k+1) conditioned on H0 and Fk is

E0[Lk+1(D̂k+1)|Fk] =
∑

d̂k+1=0,1

P0(d̂k+1|Fk)Lk+1(D̂k+1)

=
∑

d̂k+1=0,1

P0(d̂k+1|Fk)Lk(D̂k)
P1(d̂k+1|Fk)
P0(d̂k+1|Fk)

= Lk(D̂k)
∑

d̂k+1=0,1

P0(d̂k+1|Fk)
P1(d̂k+1|Fk)
P0(d̂k+1|Fk)

= Lk(D̂k).

Moreover, note that ∫
|L1(D̂1)| dP0 = 1 <∞.

Since Lk(D̂k) a non-negative martingale, by Doob’s martingale convergence theorem [68], it

converges almost surely to a finite limit.

Let L∞ be the almost sure limit of Lk(D̂k) conditioned on H0, and note that L∞ < ∞

almost surely. This claim holds for both cases 1 and 2. By (2.2), we know that the public

belief bk < 1 almost surely. The implication is that the public belief cannot go completely

wrong. Moreover, for case 1, we can show that the public likelihood ratio converges to 0

almost surely.

Lemma 2.3.2. Suppose that the flipping probabilities are bounded away from 1/2. Then under

H0, we have L∞ = 0 almost surely.

Proof. For the public likelihood ratio, we have the following recursion:

Lk+1(D̂k+1) =
P1(D̂k+1)

P0(D̂k+1)

=
P1(d̂k+1|D̂k)

P0(d̂k+1|D̂k)
Lk(D̂k). (2.5)

Consider the event A = {L∞ > 0}. On A, we have

P1(d̂k+1|D̂k)

P0(d̂k+1|D̂k)
→ 1, (2.6)
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almost everywhere. Now

P1(d̂k+1|D̂k)

P0(d̂k+1|D̂k)
=

∑
dk+1

P1(dk+1|D̂k)P(d̂k+1|dk+1)∑
dk+1

P0(dk+1|D̂k)P(d̂k+1|dk+1)

=
P1(dk+1|D̂k)(1− 2qk) + qk

P0(dk+1|D̂k)(1− 2qk) + qk
. (2.7)

Equation (2.7) together with (2.6) implies

P1(dk+1|D̂k)

P0(dk+1|D̂k)
→ 1,

or Pj(dk+1|D̂k) → 0 for j = 0, 1, almost everywhere on A. We note that another possible

situation is that there exists a subsequence of {P1(dk+1|D̂k)

P0(dk+1|D̂k)
} that converges to 1 and for its

complement subsequence, we have Pj(dk+1|D̂k) → 0 for j = 0, 1, almost everywhere on A.

However, the proof for this situation is similar with others and it is omitted.

We will show that A has probability 0. Suppose that there exists ω ∈ A such that

lim
k→∞

P1(dk+1 = dk+1(ω)|D̂k = D̂k(ω))

P0(dk+1 = dk+1(ω)|D̂k = D̂k(ω))
= 1.

Note that dk+1(ω) = 0 or 1. Without loss of generality, consider the situation where dk+1(ω) =

0, we have

lim
k→∞

P1(dk+1 = 0|D̂k = D̂k(ω))

P0(dk+1 = 0|D̂k = D̂k(ω))
= 1. (2.8)

Note that the statement dk+1 = 0 is equivalent to

LX(Xk+1)Lk(D̂k) ≤
π0

π1

.

Because of the independence between Xk+1 and D̂k, we obtain

Pj(dk+1 = 0|D̂k = D̂k(ω)) = Pj
(
LX(Xk+1)Lk(D̂k) ≤

π0

π1

∣∣∣∣ D̂k = D̂k(ω)

)
= Pj

(
LX(Xk+1)Lk(D̂k(ω)) ≤ π0

π1

)
.

Thus (2.8) is equivalent to

lim
k→∞

P1(LX(Xk+1)Lk(D̂k(ω)) ≤ π0
π1

)

P0(LX(Xk+1)Lk(D̂k(ω)) ≤ π0
π1

)
= 1. (2.9)
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By (2.1) and the definitions of G1 and G0, (2.9) is equivalent to

lim
k→∞

G1((1 + Lk(D̂k(ω)))−1)

G0((1 + Lk(D̂k(ω))−1)
= 1.

Because G1 and G0 are right-continuous, we have G1/G0 is also right-continuous. Moreover,

G1/G0 is monotone non-decreasing. Therefore, we have

G1((1 + L∞(ω))−1)

G0((1 + L∞(ω))−1)
= 1.

However, this contradicts the dominance property (described earlier). We can use a similar

argument to show that there does not exist ω such that Pj(dk+1 = dk+1(ω)|D̂k = D̂k(ω))→ 0.

Therefore, no such ω exists and this implies that P0(A) = 0. Hence, P0(L∞ = 0) = 1.

Theorem 2.3.2. Suppose that the flipping probabilities are bounded away from 1/2. Then,

Pke → 0 as k →∞.

Proof. We know that the likelihood ratio test states that ak decides 1 if and only if b̄k >

1− bk−1. The probability of deciding 1 given that H0 is true (Type I error) is given by

P0(dk = 1) = P0(b̄k > 1− bk−1)

= E0(1−G0(1− bk−1)).

Since L∞ = 0 almost surely, we have bk → 0 almost surely. We have

lim
k→∞

P0(dk = 1) = lim
k→∞

E0(1−G0(1− bk−1)).

By the bounded convergence theorem, we have

lim
k→∞

P0(dk = 1) = 1− E0( lim
k→∞

G0(1− bk−1))

= 1−G0(1) = 0.

Similarly, we can prove that limk→∞ P1(dk = 0) = 0 (i.e., Type II error probability

converges to 0). Therefore, the error probability converges to 0.
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Remark 2.3.1 (Additive Gaussian noise). Note that our convergence proof easily generalizes

to the additive Gaussian noise scenario: Suppose that after ak makes a decision dk ∈ {0, 1},

it broadcasts the decision through a Gaussian broadcasting channel, in other words, the other

nodes recieves d̂k = Fkdk+Nk, where Fk ∈ (0, 1) denotes a fading coefficient andNk denotes

zero-mean Gaussian noise. Then, we can show that the error probability converges to 0 if Fk

are bounded away from 0 and the noise variances are bounded for all k. In other words, the

signal-to-noise ratios are bounded away from 0.

Now let us consider the convergence rate of the error probability. Without loss of gener-

ality, we assume that the prior probabilities are equal; i.e., π0 = π1 = 1/2. The following

analysis easily generalizes to unequal prior probabilities. Recall that bk = P(θ = H1|D̂k)

denotes the public belief. It is easy to see that the error probability converges to 0 if and only

if bk → 0 almost surely given H0 is true and bk → 1 almost surely given H1 is true. Recall the

proportionality property:
dG1

dG0

(r) =
r

1− r .

Moreover, we assume G1 and G0 are continuous and therefore under each of H0 and H1, the

density of the private belief exists. By the above property, we can write these densities as

follows:

f 1(r) =
dG1

dr
(r) = rρ(r),

and

f 0(r) =
dG0

dr
(r) = (1− r)ρ(r),

where ρ(r) is a non-negative function.

Without loss of generality, we assume thatH0 is the true hypothesis. Moreover, we assume

that ρ(1) > 0 and ρ is continuous near r = 1. This characterizes the behavior of the tail

densities. We will generalize our analysis to polynomial tail densities later, where ρ(r) → 0

as r → 1.
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The Bayesian update of the public belief when d̂k+1 = 0 is given by:

bk+1 = P(θ = H1|D̂k+1)

=
P1(d̂k+1 = 0|D̂k)bk∑

j=0,1 Pj(d̂k+1 = 0|D̂k)P(θ = Hj|D̂k)

=
(qk + (1− 2qk)P1(dk+1 = 0|D̂k))bk∑

j=0,1(qk + (1− 2qk)Pj(dk+1 = 0|D̂k))P(Hj|D̂k)
. (2.10)

It is easy to show that the public belief converges to 0 in the fastest rate if d̂k = 0 for all k. We

will establish the rate in this special case to bound the converge rate of the error probability.

Notice that P(θ = H1|D̂k) = bk and P(θ = H0|D̂k) = 1 − bk. By Lemma 2.3.2, we have

Lk(D̂k) → 0 almost surely, under H0. This implies that bk → 0 almost surely. If bk is

sufficiently small, then we have

P1(dk+1 = 0|D̂k) = 1−
∫ 1

1−bk
f 1(x)dx

' 1− ρ(1)(bk −
b2
k

2
) (2.11)

and

P0(dk+1 = 0|D̂k) = 1−
∫ 1

1−bk
f 0(x)dx

' 1− ρ(1)
b2
k

2
. (2.12)

Note that ' means asymptotically equal. We can also calculate the (conditional) Type I error

probability:

P0(dk+1 = 1|D̂k) = 1− P0(dk+1 = 1|D̂k)

=

∫ 1

1−bk
f 0(x)dx

' ρ(1)
b2
k

2
. (2.13)

Note that (2.13) characterizes the relationship between the decay rate of Type I error proba-

bility and the decay rate of bk. Next we derive the decay rate of bk.
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Substituting (2.11) and (2.12) into (2.10) and removing high order terms we obtain

bk+1 '
(1− qk)bk − (1− 2qk)ρ(1)b2

k

(1− qk)
.

This implies that

bk+1 ' bk

(
1− 1− 2qk

1− qk
ρ(1)bk

)
. (2.14)

For any sequence that evolves according to (2.14), the following lemma characterizes the

convergence rate of the sequence.

Lemma 2.3.3. Suppose that a non-negative sequence ck satisfies ck+1 = ck(1 − δcnk), where

n ≥ 2, c1 < 1, and δ > 0. Then, for sufficiently large k, there exists two constants C1 and C2

such that
C1

(δk)1/n
≤ ck ≤

C2

(δk)1/n
.

This implies that ck → 0 as k →∞ and ck = Θ(k−1/n).

Proof. First it is easy to see that ck → 0 because it is the only fixed point of the recursion.

To show the convergence rate, we treat the recursion (2.14) as an ordinary difference equation

(ODE). Therefore, we have
dck
dk

= −δcn+1
k .

The solution to this ODE is for some C > 0

ck =
C

(δk)1/n
.

Therefore, for sufficiently large k, there exists two constants C1 and C2 such that

C1

(δk)1/n
≤ ck ≤

C2

(δk)1/n
.

which implies that

ck = Θ(k−1/n).
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Theorem 2.3.3. Suppose that the flipping probabilities are bounded away from 1/2 and ρ(1)

is a non-negative constant. Then, the Type I error probability converges to 0 as Ω(k−2).

Proof. Using (2.14) and Lemma 2.3.3, we can get the convergence rate of the public belief

conditioned on event that d̂k = 0 for all k, in which case we have bk = Θ(k−1). Recall that the

public belief converges to 0 the fastest in this case among all possible outcomes. Therefore,

we have bk = Ω(k−1) almost surely.

Recall that dk = 1 if and only if b̄k > 1 − bk−1. Therefore, the Type I error probability is

given by

P0(dk = 1) = P0(b̄k > 1− bk−1)

= E0(1−G0(1− bk−1)). (2.15)

Because ρ is continuous at 1, we have if x < 1 is sufficiently close to 1, i.e., 1− x is positive

and sufficiently small, then

1−G0(x) =

∫ 1

x

(1− x)ρ(x)dx

≥ ρ(1)

2

∫ 1

x

(1− x)dx

=
ρ(1)(1− x)2

4
. (2.16)

From (2.15) and (2.16) and invoking Jensen’s Inequality, we obtain

P0(dk = 1) ≥ ρ(1)

4
E0[b2

k−1]

≥ ρ(1)

4
(E0[bk−1])2. (2.17)

Because bk = Ω(k−1) almost surely, we have P0(dk = 1) = Ω(k−2).

Assume that ρ(0) > 0 and ρ is continuous at 0. Then, we can use the same method

to calculate the decay rate of the Type II error probability, which is the same as that of the

Type I error probability. Note that the decay rate of the error probability depends linearly on

(1− 2qk)
−2.
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2.3.2.2 Asymptotically uninformative nodes

In this part, we consider the case where qk → 1/2 as k → ∞, which means that the

broadcasted decisions become asymptotically uninformative. Let

Qk =
1− 2qk
1− qk

.

Note that qk → 1/2 implies that Qk → 0. This parameter measures how “informative” the

corrupted decision is: For example, if qk = 0 (where there is no flipping), then the decision is

maximally informative in terms of updating the public belief. However if qk = 1/2, in which

case Qk = 0, then the decision is completely uninformative in terms of updating the public

belief.

We will derive a necessary condition on the decay rate of Qk to 0 for the public belief

bk to converge to 0 under H0, which gives us a necessary condition on Qk for asymptotic

learning. For any sequence that evolve according to (2.14), the following lemma characterizes

necessary and sufficient conditions such that the sequence converges to 0.

Lemma 2.3.4. Suppose that a non-negative sequence {ck} follows ck+1 = ck(1−δkcnk), where

n ≥ 1, c1 > 0, and δk > 0. Then, ck converges to 0 if and only if there exists k0 such that∑∞
k=k0

δk =∞.

Proof. We will use the following claim to prove the lemma: For a non-negative sequence

satisfying ck+1 = ck(1 − rk), where c1 > 0 and rk ∈ [0, 1), we have ck → 0 if and only if

there exists k0 such that
∑∞

k=k0
rk =∞. To show this claim, we have

ck+1 = c1

k∏
i=1

(1− ri).

Applying natural logarithm, we obtain

ln ck+1 = ln c1 +
k∑
i=1

ln(1− ri).
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From the above equation, we have ck → 0 if and only if
∑∞

i=1 ln(1 − ri) = −∞. In the case

where there exists a subsequence of {rk} such that the subsequence is bounded away from 0,

we have
∑∞

i=1 ln(1 − ri) = −∞. Therefore, ck → 0 as k → ∞. In the case where rk → 0,

there exists k0 such that ri ≤ − ln(1− ri) ≤ 2ri for all i ≥ k0. Therefore, we have ck → 0 if

and only if
∑∞

k=k0
rk =∞.

We now show the lemma. First we show that the condition is necessary. Suppose that

ck → 0. Then, we have
∑∞

k=1 δkc
n
k = ∞. Since ck < 1, we have

∑∞
k=1 δk = ∞. Second

we show by contradiction that the condition is sufficient. Suppose that there exist k0 such

that
∑∞

k=k0
δk = ∞ and ck does not converge to 0. Since ck is monotone decreasing, ck

must converge to a nonzero limit c. Therefore, for all k, we have ck ≥ c. Then, we have

ck+1 ≤ ck(1− δkcn). We have

∞∑
k=k0

δkc
n = cn

∞∑
k=k0

δk =∞.

Therefore, we have ck → 0.

Theorem 2.3.4. Suppose that there exists p > 1 such that

Qk = O

(
1

k(log k)p

)
.

Then, the public belief converges to a nonzero limit almost surely.

Proof. Suppose that there exists p > 1 such that Qk = O (1/(k(log k)p)) . Then, we have

∞∑
k=2

Qk <∞.

Therefore, by Lemma 2.3.4, bk in (2.14) does not converge to 0. Recall that (2.14) represents

the recursion of bk conditioned on the event that the node broadcast decisions are all 0. There-

fore, the public belief is the smallest among all possible outcomes. Hence, the public belief

converges to a nonzero limit almost surely.
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By (2.17), it is evident that if bk converges to a nonzero limit almost surely, then P0(dk =

1) is bounded away from 0 and P0(dk = 0) is bounded away from 1. Therefore, the system

does not asymptotically learn the underlying truth. Hence Theorem 2.3.4 provides a necessary

condition for asymptotically learning.

Theorem 2.3.4 also implies that for there to be a nonzero probability that the public belief

converges to zero, we must have that there exists p ≤ 1 such that Qk = Ω(1/k(log k)p). If

the public belief does not converge to zero, then it is impossible for there to be an eventual

collective arrival at the true hypothesis. To explain this further, Let H denote the event that

there exists a (random) k0 such that the sequence of decisions dk = 0 for all k ≥ k0. Occur-

rence of this event signifies that after a finite number of decisions, the agents arrive at the true

underlying state. Such an outcome also means that, eventually, each agent’s private signal is

overpowered by the past collective true verdict, so that a false decision is never again declared.

In the literature on social learning, this phenomenon is called information cascade (e.g., [66],

[67]) or herding (e.g., [15]). We use L to denote the event {bk → 0}. Notice that H occurs

only if L occurs. Hence, H is a subset of the event that bk → 0, i.e., H ⊂ L. These leads to

the following corollary of Theorem 2.3.4.

Corollary 2.3.1. If Qk = O(1/k(log k)p) for some p > 1, then P(H) = 0.

So, by the corollary above, only if Qk = Ω(1/k(log k)p) for some p ≤ 1 can we hope for

there to be a nonzero probability that bk → 0 and thus of information cascade to the truth.

Even under the situation that bk → 0, i.e., conditioned on L, we expect that the rate at which

bk → 0 depends on the scaling law of Qk. The following theorem relates the scaling laws of

{Qk} with those of {bk} and the Type I error probability sequence {P0(dk = 1)}.

Theorem 2.3.5. Conditioned on L, we have the following:

(i) Suppose that Qk = Θ(1/k1−p) where p ∈ (0, 1). Then, bk = Ω(k−p) almost surely and

P0(dk = 1) = Ω(k−2p).
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(ii) Suppose that Qk = Θ(1/k). Then, bk = Ω(1/ log k) almost surely and P0(dk = 1) =

Ω(1/(log k)2).

(iii) Suppose that Qk = Θ (1/(k(log k)p)) where p ∈ (0, 1). Then, bk = Ω(1/(log k)q)

almost surely, where 1/q + 1/p = 1, and P0(dk = 1) = Ω(1/(log k)2q).

(iv) Suppose that Qk = Θ (1/(k log k)). Then, bk = Ω(1/ log log k) almost surely and

P0(dk = 1) = Ω(1/(log log k)2).

Proof. (i). Suppose that Qk = Θ(1/k1−p) where p ∈ (0, 1). Conditioned on H, we have

recursion (2.14) for the public belief bk. Using this recursion, we can get similar results as

those in Lemma 2.3.3, that is, there exists C1 > 0 and C2 > 0 such that

C1

kQk

≤ bk ≤
C2

kQk

. (2.18)

Plugging in the convergence rate of Qk in (2.18) establishes the claim.

(ii)-(iv). Suppose that Qk = Θ(1/k(log k)p), where p ∈ [0, 1]. Then, by (2.14), we have

bk+1 − bk =
Cb2

k

k(log k)p

for some constant C > 0. For p = 0, the solution to this ODE satisfies bk = Θ(1/ log k),

which proves (ii). When p ∈ (0, 1), the solution satisfies bk = Θ(1/(log k)q), where 1/q +

1/p = 1. This establishes (iii). Finally, when p = 1, the solution satisfies bk = Θ(1/ log log k).

Note that all these rates are derived conditioned on H. By the fact that conditioned on H, the

decay rate is the fastest among all outcomes, we obtain the desired results. Having established

the convergence rate of bk, the convergence rate for the error probability in each claim follows

from (2.17).

Note that Theorem 2.3.5 provides upper bounds for the convergence rates of the public

belief and error probability. However, recall that H is a subset of the event that bk → 0.
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Therefore, even if bk → 0 with certain probability, the probability of H is not guaranteed to

be nonzero. Next we provide a necessary condition such that the probability ofH is nonzero.

Theorem 2.3.6. Suppose that there exists p ≤ 1 such that

Qk = O

(
(p+ log k)(log k)p−1

(k(log k)p)1/2

)
.

Then, we have P(H) = 0.

Proof. We first state a key lemma which is a corollary of the Borel-Cantelli lemma [68].

Consider a probability space (S,S,P) and a sequence of events {Ek} in S. We define the

limit superior of {Ek} as follows:

lim sup
k→∞

Ek ≡
∞⋂
k=1

(⋃
n=k

En
)
.

Note that this is the event that infinitely many of the Ek occur. We use ECk to denote the

complement of Ek.

Lemma 2.3.5. Suppose that

∞∑
k=1

P(Ek|ECk−1, ECk−2, . . . , EC1 ) =∞.

Then,

P(lim sup
k→∞

Ek) = 1.

The proof of this lemma is omitted. Now we prove the theorem. Let Ek be the event that

dk = 1, i.e., ak makes the wrong decision given H0. Notice that ECk is the event that dk = 0. If

Qk = O

(
(p+ log k)(log k)p−1

(k(log k)p)1/2

)
,

then using the similar analysis as those in Theorem 2.3.5, we have

P0(Ek|ECk−1, ECk−2, . . . , EC1 ) = Ω

(
1

k(log k)p

)
.
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This implies that these terms are not summable, i.e.,
∑∞

k=1 P0(Ek|ECk−1, ECk−2, . . . , EC1 ) = ∞.

Therefore we have P0(lim supk→∞ Ek) = 1, which means that with probability 1, dk = 1

occurs for infinitely many k. Consequentially, we have P0(H) = 0. By symmetry, P1(H) = 0.

This concludes the proof.

Suppose that the flipping probability converges to 1/2 sufficiently fast. Then, even if

the public belief converges to 0, its convergence rate is very small because the broadcasted

decisions become uninformative in a fast rate. In this case, the private signals are capable to

overcome the public belief infinitely often because of the slow convergence rate of the public

belief.

2.3.2.3 Polynomial tail density

We now consider the case where the private belief has polynomial tail densities, that is,

ρ(r)→ 0 as r → 1 and there exist constants β, γ > 0 such that

lim
r→1

ρ(r)

(1− r)β = γ. (2.19)

Note that β denotes the leading exponent of the Taylor expansion of the density at 1. The

larger the value of β, the thiner the tail density. Note that Theorem 2.3.4 (necessary condition

for P(L) > 0) which was stated under the constant density assumption is also valid in the

polynomial tail density case. We can use the similar analysis as before to derive the explicit

relationship between the convergence rate of Qk and the convergence rate of the public belief

conditioned on L. The following theorem establishes the scaling laws of the public belief and

Type I error probability for both uniformly informative and asymptotic uninformative cases.

Theorem 2.3.7. Consider the polynomial tail density defined in (2.19).

1) Uniformly informative case: Suppose that the flipping probabilities are bounded away

from 1/2. Then, we have bk = Ω(k−1/(β+1)) almost surely and P0(dk = 1) = Ω(k−(β+2)/(β+1)).
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2) Asymptotically uninformative case: Suppose that the flipping probabilities converge to

1/2, i.e., Qk → 0. Conditioned on L, we have

(i) if Qk = Θ(1/k1−p) where p ∈ (0, 1), then bk = Ω(k−p/(β+1)) almost surely and

P0(dk = 1) = Ω(k−(β+2)p/(β+1)),

(ii) if Qk = Θ(1/k), then bk = Ω((log k)−1/(β+1)) almost surely and P0(dk = 1) =

Ω((log k)−(β+2)/(β+1)),

(iii) if Qk = Θ (1/(k(log k)p)) where p ∈ (0, 1), then bk = Ω((log k)−q/(β+1)) almost

surely, where 1/q + 1/p = 1, and P0(dk = 1) = Ω((log k)−(β+2)q/(β+1)),

(iv) if Qk = Θ (1/(k log k)), then bk = Ω((log log k)−1/(β+1)) almost surely and

P0(dk = 1) = Ω((log log k)−(β+2)/(β+1)).

Proof. Proof of claim 1: If the flipping probabilities are bounded away from 1/2, then the

public belief bk converges to 0 and conditioned onH we have

P1(dk+1 = 0|D̂k) = 1−
∫ 1

1−bk
f 1(x)dx

' 1− γ

β
bβ+1
k (2.20)

and

P0(dk+1 = 0|D̂k) = 1−
∫ 1

1−bk
f 0(x)dx

' 1− γ

β + 1
bβ+2
k . (2.21)

We can also calculate the (conditional) Type I error probability in this case:

P0(dk+1 = 1|D̂k) = 1− P0(dk+1 = 1|D̂k)

=

∫ 1

1−bk
f 0(x)dx

' γ

β + 1
bβ+2
k . (2.22)
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Note that (2.22) describes the relationship between the decay rate of Type I error probability

and the decay rate of bk. Next we derive the decay rate of bk.

By (2.20) and (2.21), we can derive the recursion for the public belief as follows:

bk+1 = bk −
γ

β
Qkb

β+2
k . (2.23)

By Lemma 2.3.3, we know that bk → 0 and the decay rate is bk = Θ(k−1/(β+1)). Recall that

conditioned on the event that d̂k = 0 for all k, the convergence of bk is the fastest. Therefore,

we have bk = Ω(k−1/(β+1)) almost surely. From (2.22) and invoking Jensen’s Inequality, we

obtain

P0(dk = 1) ≥ γ

β + 1
E0[bβ+2

k ]

≥ γ

β + 1
(E0[bk])

β+2. (2.24)

Because bk = Ω(k−1/(β+1)) almost surely, we have P0(dk = H1) = Ω(k−(β+2)/(β+1)).

Proof of claim 2: Using Lemma 2.3.3, we can show that there exist two positive constants

C1 and C2 such that

C1

(kQk)1/(β+1)
≤ bk ≤

C2

(kQk)1/(β+1)
. (2.25)

Therefore, if Qk = 1/k1−p, then using (2.25) and the fact that bk given H is the smallest

among all possible outcomes, we have bk = Ω(k−p/(β+1)). This establishes (i). For (ii)-(iv),

we can solve the ODEs given by (2.23) and the solutions give rise to the convergence rates for

bk, which in turn characterize the convergence rates of the error probabilities.

Next we provide a necessary condition such thatH has nonzero probability.

Theorem 2.3.8. Suppose that there exists p ≤ 1 such that

Qk = O

(
(p+ log k)(log k)p−1

(k(log k)p)1/(β+2)

)
.

Then, we have P(H) = 0.
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Proof. The proof is similar to that of Theorem 2.3.6 and is omitted.

Note that as β gets larger, this necessary condition states that Qk has to decay very slowly

in order that it is possible forH to occur.

Similarly we can calculate the decay rate for the Type II error probability P1(dk = 0).

Assume that the tail density is given by

lim
r→0

ρ(r)

rβ̄
= γ̄

where β̄, γ̄ > 0. Then, we can show that if the flipping probabilities are bounded away from

1/2, then

P1(dk = 0) = Ω(k−(β̄+2)/(β̄+1)).

The decay rate of the error probability is given by

Pke = Ω
(
k−(1+1/(max (β,β̄)+1))

)
.
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CHAPTER 3

BALANCED BINARY RELAY TREES

In this chapter, we study the binary hypothesis testing problem in the context of balanced

binary relay trees. We derive explicit upper and lower bounds for the total error probability

at the fusion center as functions of the number of leaf nodes. These characterize the decay

rate of the total error probability in the asymptotic regime. We also show that the total error

probability converges to 0 even if the sensors are asymptotically crummy.

3.1 Problem Formulation

We consider the problem of binary hypothesis testing between H0 and H1 in a balanced

binary relay tree, as shown in Fig. 3.1. Leaf nodes are sensors undertaking initial and indepen-

dent detections of the same event in a scene. These measurements are summarized into binary

messages and forwarded to nodes at the next level. Each nonleaf node with the exception of

the root, the fusion center, is a relay node, which fuses two binary messages into one new

binary message and forwards the new binary message to its parent node. This process takes

place at each node culminating in the fusion center, at which the final decision is made based

on the information received. Only the leaves are sensors in this tree architecture.

In this configuration, the closest sensor to the fusion center is as far as it could be, in terms

of the number of arcs in the path to the root. In this sense, this configuration is the worst

case among all relay trees with N sensors. Moreover, in contrast to the configuration in [52]

and [54] discussed earlier, in our balanced binary tree we have limτN→∞ `N/τN = 1/2 (as

opposed to 1 in [52] and [54]). Hence, the number of times that information is aggregated is

essentially as large as the number of measurements (cf., [52] and [54], in which the number of

measurements dominates the number of fusions). In addition, the height of the tree is logN ,

which grows as the number of sensors increases. (Throughout this thesis, log stands for the

binary logarithm unless specified.)
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Figure 3.1: A balanced binary relay tree with height k. Circles represent sensors making
measurements. Diamonds represent relay nodes which fuse binary messages. The rectangle
at the root represents the fusion center making an overall decision.

We assume that all sensors are independent given each hypothesis, and that all sensors

have identical Type I error probability α0 and identical Type II error probability β0. We apply

the likelihood ratio test [69] with threshold 1 as the fusion rule at the relay nodes and at the

fusion center. This fusion rule is locally (but not necessarily globally5) optimal in the case

of equally likely hypotheses H0 and H1; i.e., it minimizes the total error probability locally

at each fusion node. In the case where the hypotheses are not equally likely, the locally

optimal fusion rule has a different threshold value, which is the ratio of the two hypothesis

probabilities. However, this complicates the analysis without bringing any additional insights.

Therefore, for simplicity, we henceforth assume a threshold value of 1 in our analysis. We are

interested in following questions:

• What are these Type I and Type II error probabilities as functions of N?

• Will they converge to 0 at the fusion center?

5We will discuss the global optimality in Section 6.5 of Chapter 6.
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• If yes, how fast will they converge with respect to N?

Fusion at a single node receiving information from the two immediate child nodes where

these have identical Type I error probabilities α and identical Type II error probabilities β

provides a detection with Type I and Type II error probabilities denoted by (α′, β′), and given

by [60]:

(α′, β′) = f(α, β) :=


(1− (1− α)2, β2), α ≤ β,

(α2, 1− (1− β)2), α > β.
(3.1)

Evidently, as all sensors have the same error probability pair (α0, β0), all relay nodes at

level 1 will have the same error probability pair (α1, β1) = f(α0, β0), and by recursion,

(αk+1, βk+1) = f(αk, βk), k = 0, 1, . . . logN − 1, (3.2)

where (αk, βk) is the error probability pair of nodes at the kth level of the tree.

The recursive relation (3.2) allows us to consider the pair of the Type I and II error proba-

bilities as a discrete dynamic system. In [60], which focuses on the convergence issues for the

total error probability, convergence was proved using Lyapunov methods. The analysis of the

precise evolution of the sequence {(αk, βk)} and the total error probability decay rate remains

open. In this chapter, we will establish upper and lower bounds for the total error probability

and deduce the precise decay rate of the total error probability.

To illustrate the ideas, consider first a single trajectory for the dynamic system given by

(3.1), and starting at the initial state (α0, β0). This trajectory is shown in Fig. 3.2. It exhibits

different behaviors depending on its distance from the β = α line. The trajectory approaches

β = α very fast initially, but when (αk, βk) approaches within a certain neighborhood of

the line β = α, the next pair (αk+1, βk+1) will appear on the other side of that line. In the

next section, we will establish theorems that characterize the precise step-by-step behavior

of the dynamic system (3.2). In Section 3.3, we derive upper and lower bounds for (twice)

the total error probability PN at the fusion center as functions of N . These bounds show that

the convergence of the total error probability is sub-exponential. Specifically, the exponent
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of PN is essentially
√
N (cf., [52], [54], and [55], where the convergence of the total error

probability is exponential in trees with bounded height; more precisely, under the Neyman-

Pearson criterion, the optimal error exponent is the same as that of the parallel configuration if

leaf nodes dominate; i.e., limτN→∞ `N/τN = 1; but under the Bayesian criterion it is worse).

0 0.2 0.4 0.6 0.8 1
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(α0, β0)

Figure 3.2: A trajectory of the sequence {(αk, βk)} in the (α, β) plane.

3.2 Evolution of Type I and II Error Probabilities

The relation (3.1) is symmetric about both of the lines α + β = 1 and β = α. Therefore,

it suffices to study the evolution of the dynamic system {(αk, βk)} only in the region bounded

by α + β < 1 and β ≥ α. We denote

U := {(α, β) ≥ 0|α + β < 1 and β ≥ α}

to be this triangular region. Similarly, define the complementary triangular region

L := {(α, β) ≥ 0|α + β < 1 and β < α}.

We denote the following region by B1:

B1 := {(α, β) ∈ U|(1− α)2 + β2 ≤ 1}.
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If (αk, βk) ∈ B1, then the next pair (αk+1, βk+1) = f(αk, βk) crosses the line β = α to the

opposite side from (αk, βk). More precisely, if (αk, βk) ∈ U , then (αk, βk) ∈ B1 if and only if

(αk+1, βk+1) = f(αk, βk) ∈ L. In other words, B1 is the inverse image of L under mapping f

in U . The set B1 is shown in Fig. 3.3(a). Fig. 3.3(b) illustrates this behavior of the trajectory

for the example in Fig. 3.2. For instance, as shown in Fig. 3.3(b), if the state is at point 1 in

B1, then it jumps to the next state point 2, on the other side of β = α.

Denote the following region by B2:

B2 := {(α, β) ∈ U|(1− α)2 + β2 ≥ 1 and (1− α)4 + β4 ≤ 1}.

It is easy to show that if (αk, βk) ∈ U , then (αk, βk) ∈ B2 if and only if (αk+1, βk+1) =

f(αk, βk) ∈ B1. In other words, B2 is the inverse image of B1 in U under mapping f . The

behavior of f is illustrated in the movement from point 0 to point 1 in Fig. 3.3(b). The set B2

is identified in Fig. 3.3(a), lying directly above B1.

Now for an integer m > 1, recursively define Bm to be the inverse image of Bm−1 under

mapping f , denoted by Bm. It is easy to see that

Bm := {(α, β) ∈ U|(1− α)2(m−1)

+ β2(m−1) ≥ 1 and (1− α)2m + β2m ≤ 1}.

Notice that U =
⋃∞
m=1Bm. Hence, for any (α0, β0) ∈ U , there exists m such that (α0, β0) ∈

Bm. This gives a complete description of how the dynamics of the system behaves in the

upper triangular region U . For instance, if the initial pair (α0, β0) lies in Bm, then the system

evolves in the order

Bm → Bm−1 → . . .→ B2 → B1.

Therefore, the system enters B1 after m− 1 levels of fusion; i.e., (αm−1, βm−1) ∈ B1.

As the next stage, we consider the behavior of the system after it enters B1. The image of

B1 under mapping f , denoted by RL, is (see Fig. 3.3(a))

RL := {(α, β) ∈ L|
√

1− α +
√
β ≥ 1}.
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Figure 3.3: (a) Regions B1, B2, and RL in the (α, β) plane. (b) The trajectory in Fig. 3.2
superimposed on (a), where solid lines represent boundaries of Bm and dashed lines represent
boundaries of R.

We can define the reflection of Bm about the line β = α in the similar way for all m.

Similarly, we denote by RU the reflection of RL about the line β = α; i.e.,

RU := {(α, β) ∈ U|
√

1− β +
√
α ≥ 1}.

We denote the region RU ∪ RL by R. We will show that R is an invariant region in the sense

that once the dynamic system enters R, it stays there. For example, as shown in Fig. 3.3(b),

the system after point 1 stays inside R.

Proposition 3.2.1. If (αk0 , βk0) ∈ R for some k0, then (αk, βk) ∈ R for all k ≥ k0.

Proof. First we show that B1 ⊂ RU ⊂ B1 ∪B2.

Notice that B1, RU , and B1 ∪ B2 share the same lower boundary β = α. It suffices to

show that the upper boundary of RU lies between the upper boundary of B2 and that of B1

(see Fig. 3.4).

First, we show that the upper boundary of RU lies above the upper boundary of B1. We
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have

1− (1−√α)2 ≥
√

1− (1− α)2

⇐⇒ 2
√
α− α ≥

√
2α− α2

⇐⇒ α2 + α− 2α3/2 ≥ 0,

which holds for all α in [0, 1). Thus, B1 ⊂ RU .

Now we prove that the upper boundary of RU lies below that of B2. We have

(1− (1− α)4)1/4 ≥ 1− (1−√α)2

⇐⇒ 1− (1− α)4 ≥ (2
√
α− α)4

⇐⇒ −2(
√
α− 1)2α(−α3/2 + α(

√
α− 1) + 4

√
α(
√
α− 1) + α− 2) ≥ 0,

which holds for all α in [0, 1) as well. Hence, RU ⊂ B1 ∪B2.

Without loss of generality, we assume that (αk0 , βk0) ∈ RU . It means that either (αk0 , βk0) ∈

B1 or (αk0 , βk0) ∈ B2 ∩ RU . If (αk0 , βk0) ∈ B1, then the next pair (αk0+1, βk0+1) lies in RL.

If (αk0 , βk0) ∈ B2 ∩ RU , then (αk0+1, βk0+1) ∈ B1 ⊂ RU and (αk0+2, βk0+2) ∈ RL. By

symmetry considerations, it follows that the system stays inside R for all k ≥ k0.

So far we have studied the precise evolution of the sequence {(αk, βk)} in the (α, β) plane.

In the next section, we will consider the step-wise reduction in the total error probability and

deduce upper and lower bounds for it.

3.3 Error Probability Bounds

In this section, we will first derive bounds for the total error probability in the case of

equally likely hypotheses, where the fusion rule is the likelihood ratio test with unit thresh-

old. Then we will deduce bounds for the total error probability in the case where the prior

probabilities are unequal but the fusion rule remains the same.
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Figure 3.4: Upper boundaries of B1, B2, and RU .

The total error probability for a node with (αk, βk) is (αk + βk)/2 in the case of equal

prior probabilities. Let Lk = αk + βk, namely, twice the total error probability. Analysis of

the total error probability results from consideration of the sequence {Lk}. In fact, we will

derive bounds on logL−1
k , whose growth rate is related to the rate of convergence of Lk to 0.

We divide our analysis into two parts:

I We study the shrinkage of the total error probability as the system propagates from Bm

to B1;

II We study the shrinkage of the total error probability after the system enters B1.

3.3.1 Case I: Analysis as the System Propagates from Bm to B1

Suppose that the initial state (α0, β0) lies in Bm, where m is a positive integer and m 6= 1.

From the previous analysis, (αm−1, βm−1) ∈ B1. In this section, we study the rate of reduction

of the total error probability as the system propagates from Bm to B1.

Proposition 3.3.1. Suppose that (αk, βk) ∈ Bm, where m is a positive integer and m 6= 1.

Then,

1 ≤ Lk+1

L2
k

≤ 2.
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Proof. If (αk, βk) ∈ Bm, where m is a positive integer and m 6= 1, then

Lk+1

L2
k

=
1− (1− αk)2 + β2

k

(αk + βk)2
.

The following calculation establishes the lower bound of the ratio Lk+1/L
2
k:

Lk+1 − L2
k = 1− (1− αk)2 + β2

k − (αk + βk)
2

= −2α2
k − 2αkβk + 2αk

= 2αk(1− (αk + βk)) ≥ 0,

which holds in Bm.

To show the upper bound of the ratio Lk+1/L
2
k, it suffices to prove that

Lk+1 − 2L2
k = 1− (1− αk)2 + β2

k − 2(αk + βk)
2

= −3α2
k − 4αkβk + 2αk − β2

k ≤ 0.

The partial derivative with respect to βk is

∂(Lk+1 − 2L2
k)

∂βk
= −2βk − 4αk ≤ 0,

which is non-positive, and so it suffices to consider values on the upper boundary of B1.

Lk+1 − 2L2
k = 1− (1− αk)2 + β2

k − 2(αk + βk)
2

= 2β2
k − 2(αk + βk)

2 ≤ 0.

In consequence, the claimed upper bound on the ratio Lk+1/L
2
k holds.

Fig. 3.5 shows a plot of values of Lk+1/L
2
k in

⋃∞
m=2Bm. With the recursive relation given

in Proposition 3.3.1, we can derive the following bounds for logL−1
k .
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Proposition 3.3.2. Suppose that (α0, β0) ∈ Bm, where m is a positive integer and m 6= 1.

Then, for k = 1, 2, . . . ,m− 1,

2k
(
logL−1

0 − 1
)
≤ logL−1

k ≤ 2k logL−1
0 .

Proof. From Proposition 3.3.1 we have, for k = 0, 1, . . . ,m− 2,

Lk+1 = akL
2
k

for some ak ∈ [1, 2]. Then for k = 1, 2, . . . ,m− 1,

Lk = ak−1 · a2
k−2 . . . a

2k−1

0 L2k

0 ,

where ai ∈ [1, 2] for each i. Hence,

logL−1
k =− log ak−1 − 2 log ak−2 − . . .− 2k−1 log a0 − logL2k

0 .

Since logL−1
0 > 0 and 0 ≤ log ai ≤ 1 for each i, we have

logL−1
k ≤ 2k logL−1

0 .
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Finally,

logL−1
k ≥ −1− 2− . . .− 2k−1 + 2k logL−1

0

≥ −2k + 2k logL−1
0 = 2k

(
logL−1

0 − 1
)
.

Suppose that the balanced binary relay tree has N leaf nodes. Then, the height of the

fusion center is logN . For convenience, let PN = LlogN be (twice) the total error probability

at the fusion center. Substituting k = logN into Proposition 3.3.2, we get the following result.

Corollary 3.3.1. Suppose that (α0, β0) ∈ Bm, where m is a positive integer and m 6= 1. If

logN < m, then

N
(
logL−1

0 − 1
)
≤ logP−1

N ≤ N logL−1
0 .

Notice that the lower bound of logP−1
N is useful only if L0 < 1/2. Next we derive a lower

bound for logP−1
N which is useful for all L0 ∈ (0, 1).

Proposition 3.3.3. Suppose that (αk, βk) ∈ Bm, where m is a positive integer and m 6= 1.

Then,
Lk+1

L
√

2
k

≤ 1.

Proof. If (αk, βk) ∈ Bm, where m is a positive integer and m 6= 1, then

Lk+1

L
√

2
k

=
1− (1− αk)2 + β2

k

(αk + βk)
√

2
.

To prove the upper bound of the ratio, it suffices to show that

ψ(αk, βk) = 1− (1− αk)2 + β2
k − (αk + βk)

√
2 ≤ 0.
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The second-order partial derivative of ψ with respect to αk is non-positive:

∂2ψ

∂α2
k

= −2−
√

2(
√

2− 1)(αk + βk)
√

2−2 ≤ 0.

Therefore, the minimum of ∂ψ/∂αk is on the lines αk + βk = 1 and (1 − αk)
2 + β2

k = 1.

It is easy to show that ∂ψ/∂αk ≥ 0. In consequence, the maximum of ψ is on the lines

αk + βk = 1 and (1 − αk)2 + β2
k = 1. If αk + βk = 1, then it is easy to see that ψ = 0. If

(1− αk)2 + β2
k = 1, then ψ = 2β2

k − (αk + βk)
√

2. It is easy to show that the maximum value

of ψ lies at the intersection of αk + βk = 1 and (1− αk)2 + β2
k = 1, where ψ = 0. Hence, the

ratio Lk+1/L
√

2
k is upper bounded by 1.

Fig. 3.6 shows a plot of values of Lk+1/L
√

2
k in

⋃∞
m=2 Bm. With the inequality given

in Proposition 3.3.3, we can derive a new lower bound for logP−1
N , which is useful for all

L0 ∈ (0, 1).
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Figure 3.6: Ratio Lk+2/L
√

2
k in

⋃∞
m=2Bm. Each line depicts the ratio versus αk for a fixed βk.

Proposition 3.3.4. Suppose that (α0, β0) ∈ Bm, where m is a positive integer and m 6= 1. If

logN < m, then

logP−1
N ≥

√
N logL−1

0 .
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Proof. From Proposition 3.3.3 we have, for k = 0, 1, . . . ,m− 2,

Lk+1 = akL
√

2
k

for some ak ∈ (0, 1]. Then for k = 1, 2, . . . ,m− 1,

Lk = ak−1 · a
√

2
k−2 . . . a

√
2
k−1

0 L
√

2
k

0 ,

where ai ∈ (0, 1] for each i. Hence,

logL−1
k =− log ak−1 −

√
2 log ak−2 − . . .−

√
2
k−1

log a0 − logL
√

2
k

0 .

Since logL−1
0 > 0 and log ai ≤ 0 for each i, we have

logL−1
k ≥

√
2
k

logL−1
0 .

Therefore, we have

logP−1
N ≥

√
N logL−1

0 .

3.3.2 Case II: Analysis when the System Stays inside R

We have derived error probability bounds up until the point where the trajectory of the

system enters B1. In this section, we consider the total error probability reduction from that

point on. First we will establish error probability bounds for even-height trees. Then we will

deduce error probability bounds for odd-height trees.

3.3.2.1 Error probability bounds for even-height trees

If (α0, β0) ∈ Bm for some m 6= 1, then (αm−1, βm−1) ∈ B1. The system afterward stays

inside the invariant region R (but not necessarily inside B1). Hence, the decay rate of the total

error probability in the invariant region R determines the asymptotic decay rate. Without loss
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of generality, we assume that (α0, β0) lies in the invariant region R. In contrast to Proposition

3.3.1, which bounds the ratio Lk+1/L
2
k, we will bound the ratio Lk+2/L

2
k associated with

taking two steps.

Proposition 3.3.5. Suppose that (αk, βk) ∈ R. Then,

1 ≤ Lk+2

L2
k

≤ 2.

Proof. Because of symmetry, we only have to prove the case where (αk, βk) lies in RU . We

consider two cases: (αk, βk) ∈ B1 and (αk, βk) ∈ B2 ∩RU .

In the first case,
Lk+2

L2
k

=
(1− (1− αk)2)2 + 1− (1− β2

k)
2

(αk + βk)2
.

To prove the lower bound of the ratio, it suffices to show that

Lk+2 − L2
k = (1− (1− αk)2)2 + 1− (1− β2

k)
2 − (αk + βk)

2

= (1− αk − βk)((βk − αk)3 + 2αkβk(βk − αk)

+ (βk − αk)2 + 2α2
k) ≥ 0.

We have 1−αk−βk > 0 and βk ≥ αk for all (αk, βk) ∈ B1, resulting in the above inequality.

To prove the upper bound of the ratio, it suffices to show that

Lk+2 − 2L2
k = α4

k − 4α3
k + 2α2

k − 4αkβk − β4
k ≤ 0.

The partial derivative with respect to βk is

∂(Lk+2 − 2L2
k)

∂βk
= −4αk − 4β3

k ≤ 0,

which is non-positive. Therefore, it suffices to consider its values on the curve βk = αk, on

which Lk+2 − 2L2
k is clearly non-positive.
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Now we consider the second case, namely (αk, βk) ∈ B2 ∩RU , which gives

Lk+2

L2
k

=
1− (1− αk)4 + β4

k

(αk + βk)2
.

To prove the lower bound of the ratio, it suffices to show that

Lk+2 − L2
k = (1− (1− αk)4) + β4

k − (αk + βk)
2

= (1− αk − βk)(α3
k − α2

kβk − 3α2
k + αkβ

2
k

+ 2αkβk − β3
k − β2

k + 4αk) ≥ 0.

Therefore, it suffices to show that

φ(αk, βk) =α3
k − α2

kβk − 3α2
k + αkβ

2
k + 2αkβk − β3

k − β2
k + 4αk ≥ 0.

The partial derivative with respect to βk is

∂φ

∂βk
= −(αk − βk)2 − 2β2

k + 2(αk − βk) ≤ 0.

Thus, it is enough to consider the values on the upper boundaries
√

1− βk +
√
αk = 1 and

αk + βk = 1.

If αk + βk = 1, then the inequality is trivial, and if
√

1− βk +
√
αk = 1, then

Lk+2 − L2
k = 2α2

k(1− 2
√
αk)(2αk − 6

√
αk + 5)

and the inequality holds because αk ≤ 1
4

in region B2 ∩RU .

The claimed upper bound for the ratio Lk+2/L
2
k can be written as

Lk+2 − 2L2
k = (1− (1− αk)4) + β4

k − 2(αk + βk)
2

= −α4
k + 4α3

k − 8α2
k + 4αk − 4αkβk + β4

k − 2β2
k ≤ 0.

The partial derivative with respect to βk is

∂(Lk+2 − 2L2
k)

∂βk
= −4αk + 4β3

k − 4βk ≤ 0.
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Again, it is sufficient to consider values on the upper boundary of B1. Hence,

Lk+2 − 2L2
k = 2β2

k − 2(αk + βk)
2 ≤ 0.

Fig. 3.7(a) and Fig. 3.7(b) show plots of values ofLk+2/L
2
k inB1 andB2∩RU , respectively.
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Figure 3.7: (a) Ratio Lk+2/L
2
k in B1. (b) Ratio Lk+2/L

2
k in B2 ∩ RU . Each line depicts the

ratio versus αk for a fixed βk.

Proposition 3.3.5 gives bounds on the relationship between Lk and Lk+2 in the invariant

region R. Hence, in the special case of trees with even height, that is, when logN is an even

integer, it is easy to bound PN in terms of L0. In fact, we will bound logP−1
N which in turn

provides bounds for PN .

Theorem 3.3.1. Suppose that (α0, β0) ∈ R and logN is even. Then,

√
N
(
logL−1

0 − 1
)
≤ logP−1

N ≤
√
N logL−1

0 .
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Proof. If (α0, β0) ∈ R, then we have (αk, βk) ∈ R for k = 0, 1, . . . , logN − 2. From

Proposition 3.3.5, we have

Lk+2 = akL
2
k

for k = 0, 2, . . . , logN − 2 and some ak ∈ [1, 2]. Therefore, for k = 2, 4, . . . , logN , we have

Lk = a(k−2)/2 · a2
(k−4)/2 . . . a

2(k−2)/2

0 L2k/2

0 ,

where ai ∈ [1, 2] for each i. Substituting k = logN , we have

PN = a(k−2)/2 · a2
(k−4)/2 . . . a

2(k−2)/2

0 L2log
√
N

0

= a(k−2)/2 · a2
(k−4)/2 . . . a

√
N/2

0 L
√
N

0 .

Hence,

logP−1
N =− log a(k−2)/2 − 2 log a(k−4)/2 − . . .−

√
N

2
log a0 +

√
N logL−1

0 .

Notice that logL−1
0 > 0 and 0 ≤ log ai ≤ 1 for each i. Thus,

logP−1
N ≤

√
N logL−1

0 .

Finally,

logP−1
N ≥ −1− 2− . . .−

√
N

2
+
√
N logL−1

0

≥ −
√
N +

√
N logL−1

0 =
√
N
(
logL−1

0 − 1
)
.

Notice the lower bound for logP−1
N in Theorem 3.3.1 is useful only if L0 < 1/2. We

further provide a lower bound for logP−1
N which is useful for all L0 ∈ (0, 1).

Proposition 3.3.6. Suppose that (αk, βk) ∈ R. Then,

Lk+2

L
√

2
k

≤ 1.
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Proof. In the case where (αk, βk) ∈ B2 ∩ RU , from Proposition 3.3.3, we have Lk+1 ≤ L
√

2
k .

Moreover, it is easy to show that Lk+2 ≤ Lk+1. Thus, we have Lk+2 ≤ L
√

2
k .

In the case where (αk, βk) ∈ B1, it suffices to prove that

ϑ(αk, βk) = (1− (1− αk)2)2 + 1− (1− β2
k)

2 − (αk + βk)
√

2 ≤ 0.

We take second-order partial derivative of ϑ with respect to αk along the lines αk +βk = c

in this region. It is easy to show that the derivative is non-negative:

∂2ϑ

∂α2
k

= 12((1− αk)2 − β2
k) ≥ 0.

Therefore, we conclude that the maximum of ϑ lies on the boundaries of this region. If αk +

βk = 1, then we have ϑ(αk, βk) = 0. If (1 − αk)
2 + β2

k = 1, then we have αk+1 = βk+1.

Moreover, if αk+1 = βk+1, then we can show that Lk+2 = Lk+1. Hence, it suffices to show

that Lk+1/L
√

2
k ≤ 1 on the line (1 − αk)

2 + β2
k = 1, which has been proved in Proposition

3.3.3. If βk = αk, then Lk+1 = Lk and (αk+1, βk+1) lies on the lower boundary of RL, on

which we have Lk+2/L
√

2
k+1 ≤ 1. Thus, we have Lk+2/L

√
2

k ≤ 1.

Fig. 3.8(a) and Fig. 3.8(b) show plots of the ratio inside B1 and B2 ∩ RU , respectively.

Next we derive a new lower bound for logP−1
N .

Proposition 3.3.7. Suppose that (α0, β0) ∈ R and logN is even. Then,

logP−1
N ≥

4
√
N logL−1

0 .

Proof. From Proposition 3.3.6 we have, for k = 0, 2, . . . , logN − 2,

Lk+2 = akL
√

2
k

for some ak ∈ (0, 1]. Then for k = 2, 4, . . . , logN , we have

Lk = a(k−2)/2 · a
√

2
(k−4)/2 . . . a

√
2
(k−2)/2

0 L
√

2
k/2

0 ,
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Figure 3.8: (a) Ratio Lk+2/L
√

2
k in B1. (b) Ratio Lk+2/L

√
2

k in B2 ∩RU . Each line depicts the
ratio versus αk for a fixed βk.

where ai ∈ (0, 1] for each i. Therefore,

logL−1
k =− log a(k−2)/2 −

√
2 log a(k−4)/2 − . . .−

√
2

(k−2)/2
log a0 − logL

√
2
k/2

0 .

Since logL−1
0 > 0 and log ai ≤ 0 for each i, we have

logL−1
k ≥

√
2
k/2

logL−1
0 .

Therefore, we have

logP−1
N ≥

4
√
N logL−1

0 .

3.3.2.2 Error probability bounds for odd-height trees

Next we explore the case of trees with odd height; i.e., logN is an odd integer. Assume

that (α0, β0) lies in the invariant region R. First, we will establish general bounds for odd-

height trees. Then we deduce bounds for the case where there exists (αm, βm) ∈ B2 ∩RU for

some m ∈ {0, 1, . . . , logN − 2}.

For odd-height trees, we need to know how much the total error probability is reduced by

moving up one level in the tree.
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Proposition 3.3.8. Suppose that (αk, βk) ∈ U . Then,

1 ≤ Lk+1

L2
k

and
Lk+1

Lk
≤ 1.

Proof. The first inequality is equivalent to

Lk+1 − L2
k = 1− (1− αk)2 + β2

k − (αk + βk)
2

= 2αk(1− (αk + βk)) ≥ 0,

which holds for all (αk, βk) ∈ U .

The second inequality is equivalent to

Lk+1 − Lk = 1− (1− αk)2 + β2
k − (αk + βk)

= (αk − βk)(1− (αk + βk)) ≤ 0,

which holds for all (αk, βk) ∈ U .

Fig. 3.9(a) and Fig. 3.9(b) show plots of values of Lk+1/L
2
k and Lk+1/Lk in U .

Using Propositions 3.3.5 and 3.3.8, we are about to calculate error probability bounds for

odd-height trees as follows.

Theorem 3.3.2. Suppose that (α0, β0) ∈ R and logN is odd. Then√
N

2

(
logL−1

0 − 1
)
≤ logP−1

N ≤
√

2N logL−1
0 .

Proof. From Proposition 3.3.8, we have

L1 = ãL2
0

for some ã ≥ 1. And, by Proposition 3.3.5, the following identity holds.

Lk+2 = akL
2
k
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Figure 3.9: (a) Ratio Lk+1/L
2
k in U . (b) Ratio Lk+1/Lk in U . Each line depicts the ratio versus

αk for a fixed βk.

for k = 1, 3, . . . , logN − 2 and some ak ∈ [1, 2]. Hence, we can write

Lk = ã2(k−1)/2 · a(k−1)/2 · a2
(k−3)/2 . . . a

2(k−3)/2

1 L2(k+1)/2

0 ,

where ai ∈ [1, 2] for each i and ã ≥ 1. Let k = logN , we have

logP−1
N = −2(k−1)/2 log ã− log a(k−1)/2 − . . .− 2(k−3)/2 log a1 +

√
2N logL−1

0 .

Notice that logL−1
0 > 0 and for each i, log ai ≥ 0. Moreover, log ã ≥ 0. Hence,

logP−1
N ≤

√
2N logL−1

0 .

It follows by Proposition 3.3.8 that

Lk = ãLk−1

for some ã ∈ (0, 1]. By Proposition 3.3.5, we have

Lk+2 = akL
2
k

for k = 0, 2, . . . , logN − 3 and some ak ∈ [1, 2]. Thus,

Lk = ã · a(k−3)/2 · a2
(k−3)/2 . . . a

2(k−3)/2

0 L2(k−1)/2

0 ,
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where ai ∈ [1, 2] for each i and ã ∈ (0, 1]. Hence,

logP−1
N = − log ã− log a(k−1)/2 − . . .− 2(k−3)/2 log a1 +

√
N

2
logL−1

0 .

Notice that logL−1
0 > 0 and for each i, 0 ≤ log ai ≤ 1 and log ã ≤ 0. Thus,

logP−1
N ≥ −

√
N

2
+

√
N

2
logL−1

0 =

√
N

2

(
logL−1

0 − 1
)
.

Next we consider the special case where there exists m ∈ {0, 1, . . . , logN − 2} such that

(αm, βm) ∈ B2 ∩RU .

Proposition 3.3.9. Suppose that (αk, βk) ∈ B1 and (αk−1, βk−1) ∈ B2 ∩RU . Then,

1

2
≤ Lk+1

Lk
≤ 1.

Proof. The upper bound for Lk+1/Lk is trivial. By Proposition 3.3.1, if (αk−1, βk−1) ∈ B2 ∩

RU , then

1 ≤ Lk
L2
k−1

≤ 2;

i.e.,
1

2
≤ L2

k−1

Lk
≤ 1,

and in consequence of Proposition 3.3.5, if (αk−1, βk−1) ∈ B2 ∩RU , then

1 ≤ Lk+1

L2
k−1

≤ 2.

Therefore, we have
1

2
≤ Lk+1

Lk
.
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Figure 3.10: Ratio Lk+1/Lk in the region f(B2∪RU). Each line depicts the ratio versus α for
a fixed β.

Fig. 3.10 shows a plot of values of Lk+1/Lk in this case.

We have proved in Proposition 3.3.5 that if (αk, βk) is inB2∩RU , then the ratio Lk+2/L
2
k ∈

[1, 2]. However, if we analyze each level of fusion, it can be seen that the total error probability

decreases exponentially fast from B2 ∩ RU to B1 (Proposition 3.3.1). Proposition 3.3.9 tells

us that the fusion from B1 to RL is a bad step, which does not contribute significantly in

decreasing the total error probability.

We can now provide bounds for the total error probability at the fusion center.

Theorem 3.3.3. Suppose that (α0, β0) ∈ R, logN is an odd integer, and there exists m ∈

{0, 1, . . . , logN − 2} such that (αm, βm) ∈ B2 ∩RU .

If m is even, then

√
2N
(
logL−1

0 − 1
)
≤ logP−1

N ≤
√

2N logL−1
0 .

If m is odd, then√
N

2

(
logL−1

0 − 1
)
≤ logP−1

N ≤
√
N

2
logL−1

0 +

√
N

2m+2
.
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Proof. If (αm, βm) ∈ B2 ∩RU and m is even, then by Proposition 3.3.1, we have

Lm+1 = ãL2
m

for some ã ∈ [1, 2].

By Proposition 3.3.5, we have

Lk+2 = akL
2
k

for k = 0, 2, . . . ,m− 2,m+ 1, . . . , logN − 2, and some ak ∈ [1, 2]. Hence,

Lk = a(k−1)/2 · a2
(k−3)/2 . . . a

2(k−1)/2

0 L2(k+1)/2

0 ,

where ai ∈ [1, 2] for each i.

Let k = logN , we have

logP−1
N = − log a(k−1)/2 − 2 log a(k−3)/2 − . . .− 2(k−1)/2 log a0 +

√
2N logL−1

0 .

Notice that logL−1
0 > 0 and for each i, 0 ≤ log ai ≤ 1. Thus,

logP−1
N ≤

√
2N logL−1

0 .

Finally,

logP−1
N ≥ −

√
2N +

√
2N logL−1

0 =
√

2N
(
logL−1

0 − 1
)
.

If (αm, βm) ∈ B2 ∩RU and m is odd, then by Proposition 3.3.9 we have

Lm+2 = ãLm+1

for some ã ∈ [1/2, 1].

It follows from Proposition 3.3.5 that

Lk+2 = akL
2
k
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for k = 0, 2, . . . ,m− 1,m+ 2, . . . , logN − 2 and some ak ∈ [1, 2]. Therefore,

Lk = a(k−3)/2 · a2
(k−3)/2 . . . a

2(k−3)/2

0 · ã2(k−m−2)/2

L2(k−1)/2

0 ,

where ai ∈ [1, 2] for each i and ã ∈ [1/2, 1]. Hence,

logP−1
N = −

√
N

2m+2
log ã− log a(k−3)/2 − . . .−

√
N/2

2
log a0 +

√
N

2
logL−1

0 .

Notice that logL−1
0 > 0 and for each i, 0 ≤ log ai ≤ 1 and −1 ≤ log ã ≤ 0. Thus,

logP−1
N ≤

√
N

2
logL−1

0 +

√
N

2m+2
.

Finally,

logP−1
N ≥ −

√
N

2
+

√
N

2
logL−1

0 =

√
N

2

(
logL−1

0 − 1
)
.

Finally, by combining all of the analysis above for step-wise reduction of the total error

probability, we can write general bounds when the initial error probability pair (α0, β0) lies

inside Bm, where m 6= 1.

Theorem 3.3.4. Suppose that (α0, β0) ∈ Bm, where m is an integer and m 6= 1.

If logN < m, then (Corollary 3.3.1)

N
(
logL−1

0 − 1
)
≤ logP−1

N ≤ N logL−1
0 .

If logN ≥ m, and logN −m is odd, then

√
2m−1N

(
logL−1

0 − 1
)
≤ logP−1

N ≤
√

2m−1N logL−1
0 .

If logN ≥ m, and logN −m is even, then

√
2m−2N

(
logL−1

0 − 1
)
≤ logP−1

N ≤
√

2mN logL−1
0 .
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Proof. If logN < m, then this scenario is the same as that of Corollary 3.3.1. Therefore,

N
(
logL−1

0 − 1
)
≤ logP−1

N ≤ N logL−1
0 .

If logN ≥ m and logN −m is odd, then it takes (m − 1) steps for the system to move

into B1. After it arrives in B1, there is an even number of levels left because logN−m is odd.

By Proposition 3.3.1, we have

Lk+1 = ãkL
2
k

for k = 0, 1, . . . ,m− 2 and some ãk ∈ [1, 2], and in consequence of Proposition 3.3.5,

Lk+2 = akL
2
k

for k = m− 1,m− 3, . . . , logN − 2 and some ak ∈ [1, 2]. Thus,

Lk = a(k+m−3)/2 · a2
(k+m−5)/2 . . . a

2(k+m−3)/2

0 L2(k+m−1)/2

0 ,

where ai ∈ [1, 2] for each i.

Let k = logN . Then we obtain

logP−1
N = − log a(k+m−3)/2 − 2 log a(k+m−5)/2 − . . .

−
√

2m−1N

2
log a0 +

√
2m−1N logL−1

0 .

Note that logL−1
0 > 0, and for each i, 0 ≤ log ai ≤ 1. Thus,

logP−1
N ≤

√
2m−1N logL−1

0 .

Finally,

logP−1
N ≥ −

√
2m−1N +

√
2m−1N logL−1

0

=
√

2m−1N
(
logL−1

0 − 1
)
.

For the case where logN −m is even, the proof is similar and it is omitted.

Remark 3.3.1. Notice again that the lower bounds for logP−1
N above are useful only if L0 <

1/2. However, similar to Proposition 3.3.7, we can derive a lower bound for logP−1
N , which

is useful for all L0 ∈ (0, 1). It turns out that this lower bound differs from that in Proposition

3.3.7 by a constant term. Therefore, it is omitted.
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3.3.3 Invariant Region in B1

Consider the region {(α, β) ∈ U|β ≤ √α and β ≥ 1− (1−α)2}, which is a subset of B1

(see Fig. 3.11(a)). Denote the union of this region and its reflection with respect to β = α by

S. It turns out that S is also invariant.

Proposition 3.3.10. If (αk0 , βk0) ∈ S, then (αk, βk) ∈ S for all k ≥ k0.

Proof. Without loss of generality, we consider the upper half of S, denoted by SU . As we shall

see, the image of SU is exactly the reflection of SU with respect to the line β = α (denoted by

SL). We know that SU := {(α, β) ∈ U|β ≤ √α and β ≥ 1− (1− α)2}.
The image of SU under f can be calculated by

(α′, β′) = f(α, β) = (1− (1− α)2, β2),

where (α, β) ∈ U . The above relation is equivalent to

(α, β) = (1−
√

1− α′,
√
β′).

Therefore, we can calculate images of boundaries for RU under f .

The image of the upper boundary β ≤ √α is√
β′ ≤

√
1−
√

1− α′;

i.e.,

α′ ≥ 1− (1− β′)2,

and that of the lower boundary β ≥ 1− (1− α)2 is√
β′ ≥ 1− (1− (1−

√
1− α′))2;

i.e.,

α′ ≤
√
β′.

The function f is monotone. Hence, images of boundaries of SU are boundaries of SL.

Notice that boundaries of RL are symmetric with those of RU about β = α. We conclude that

S is an invariant region.

71



Fig. 3.11(b) shows a single trajectory of the dynamic system which stays inside S.
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Figure 3.11: (a) Invariant region S (between dashed lines) lies insideB1 (between solid lines).
(b) A trajectory of the system which stays inside S.

We have given bounds for PN , which is (twice) the total error probability. It turns out that

for the case where (α0, β0) ∈ S, we can bound the Type I and Type II errors individually.

Proposition 3.3.11. If (αk, βk) ∈ S, then

1 ≤ αk+2

α2
k

≤ 4

and

1 ≤ βk+2

β2
k

≤ 4.

Remark 3.3.2. It is easy to see that as long as the system stays insideB1, then in a similar vein,

these ratios αk+2/α
2
k and βk+2/β

2
k are lower bounded by 1 and upper bounded by a constant.

But recall that B1 is not an invariant region. Thus, it is more interesting to consider S.

Proofs are omitted because they are along similar lines to those in the other proofs. As

before, these inequalities give rise to bounds on sequences {αk} and {βk}. For example, for

{αk}, we have the following.
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Corollary 3.3.2. If (α0, β0) ∈ S and k is even, then

2k/2
(
logα−1

0 − 2
)
≤ logα−1

k ≤ 2k/2 logα−1
0 .

3.3.4 Unequal Likely Hypotheses

In this section we consider the situation of unequally likely hypotheses; that is, π0 6= π1.

Suppose that the fusion rule is as before: The likelihood ratio test with unit threshold. The

resulting total error probability for the nodes at level k is equal to L̂k = π0αk + π1βk, and the

total error probability at the fusion center is P̂N = L̂logN . We are interested in bounds for P̂N .

Because the fusion rule is the same as before, the previous bounds for logL−1
k hold. From

these bounds, we now derive bounds for P̂N . Without loss of generality, we assume that

π0 ≤ π1. We obtain the following:

π0Lk ≤ π0αk + π1βk ≤ π1Lk.

From these inequalities, we can derive upper and lower bounds for log P̂−1
N . For example, in

the case where (α0, β0) ∈ R and logN is even (even-height tree), from Theorem 3.3.1, we

have
√
N(logL−1

0 − 1) ≤ logP−1
N ≤

√
N logL−1

0 ,

from which we obtain

√
N(logL−1

0 − 1) + log π−1
1 ≤ log P̂−1

N ≤
√
N logL−1

0 + log π−1
0 .

We have derived error probability bounds for balanced binary relay trees under several

scenarios. In the next section, we will use these bounds to study the asymptotic rate of con-

vergence.
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3.4 Asymptotic Rates

The asymptotic decay rate of the total error probability with respect to N is considered

while the performance of the sensors is constant is the first problem to be tackled. Then we

allow the sensors to be asymptotically crummy, in the sense that α0 + β0 → 1. We prove that

the total error probability still converges to 0 under certain conditions. Last, we will compare

the detection performance by applying different strategies in balanced binary relay trees.

3.4.1 Asymptotic Decay Rate

Notice that as N becomes large, the sequence {(αk, βk)} will eventually move into the

invariant region R at some level and stays inside from that point. Therefore, it suffices to

consider the decay rate in the invariant region R. Because error probability bounds for trees

with odd height differ from those of the even-height tree by a constant term, without loss of

generality, we will only consider trees with even height.

Proposition 3.4.1. If L0 = α0 + β0 is fixed, then

logP−1
N = Θ(

√
N).

Proof. If L0 = α0 + β0 is fixed, then by Proposition 3.3.7 we immediately see that PN → 0

as N → ∞ (logP−1
N → ∞) and there exists a finite k such that Lk < 1/2. To analyze the

asymptotic rate, we may assume that L0 < 1/2. In this case, the bounds in Theorem 3.3.1

show that logP−1
N = Θ(

√
N).

This implies that the convergence of the total error probability is sub-exponential; more

precisely, the exponent is essentially
√
N .

In the special case where (α0, β0) ∈ S, the Type I and Type II error probabilities decay to

0 with exponent
√
N individually. Moreover, it is easy to show that the exponent is still

√
N

even if the prior probabilities are unequal.
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Given L0 ∈ (0, 1) and ε ∈ (0, 1), suppose that we wish to determine how many sensors

we need to have so that PN ≤ ε. If L0 < 1/2, then the solution is simply to find an N (e.g.,

the smallest) satisfying the inequality

√
N
(
logL−1

0 − 1
)
≥ − log ε.

In consequence, we have

N ≥ ((logL−1
0 − 1) log ε)2.

The smallest N grows like Θ((log ε)2) (cf., [60], in which the smallest N has a larger growth

rate). If L0 ≥ 1/2, then by Proposition 3.3.7 we can deduce how many levels k are required

so that Lk < 1/2:
4
√
N logL−1

0 > − log
1

2
= 1.

Therefore, N has to satisfy

N > (logL−1
0 )−4,

which implies that

k > 4 log(logL0
−1)−1.

Combining with the above analysis for the case where L0 < 1/2, we can then determine the

number of sensors required so that PN ≤ ε.

3.4.2 Unequal Prior Probabilities

Using the Bayesian likelihood ratio test (the threshold given by the ratio of the prior prob-

abilities), if the one of the two child nodes at level k sends ‘0’ and the other node sends ‘1’,

then the test is given by
αk(1− αk)
βk(1− βk)

H1

≷
H0

π0

π1

= c.

This rule reduces to ‘AND’ or ‘OR’ rule depends on the ratio. We wish to show that the system

will not choose the same rule for consecutive 3 times. Suppose that αk and βk are sufficiently

small and
αk(1− αk)
βk(1− βk)

= c.
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Then, we have αk ≈ cβk. Moreover, αk+1 ≈ 2αk = 2cβk, βk+1 = β2
k , and

αk+1(1− αk+1)

βk+1(1− βk+1)
> c.

Then, we have αk+2 ≈ α2
k+1 = 4c2β2

k and βk+2 ≈ 2βk+1 = 2β2
k . Also, αk+3 ≈ α2

k+2 = 16c4β4
k

and βk+3 = 4β2
k . Then we have

αk+3(1− αk+3)

βk+3(1− βk+3)
≈ 16c4β2

k ≤ c

for sufficiently small βk. Hence, the system will not choose the same fusion rule for consecu-

tive 3 times. In this case, we can show that

logP−1
N = Θ(

√
N).

3.4.3 Crummy Sensors

In this part we allow the total error probability of each sensor, denoted by L(N)
0 , to depend

on N but still to be constant across sensors.

If L(N)
0 is bounded by some constant L ∈ (0, 1) for all N , then clearly PN → 0. It is more

interesting to consider L(N)
0 → 1, which means that sensors are asymptotically crummy.

Proposition 3.4.2. Suppose that L(N)
0 = 1− ηN with ηN → 0.

(1) If ηN ≥ c1/
4
√
N , then PN ≤ e−c1 .

(2) If ηN = ω(1/ 4
√
N), then PN → 0.

(3) If ηN ≤ c2/
√
N , then PN ≥ e−c2 .

(4) If ηN = o(1/
√
N), then PN → 1.

Proof. First we consider part (1). We have

4
√
N log(L

(N)
0 )−1 = − 4

√
N log(1− ηN).
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But as x→ 0, − log(1− x) ∼ x/ ln(2), from which we obtain

4
√
N log(L

(N)
0 )−1 ∼ ηN

4
√
N/ ln(2).

From Proposition 3.3.7, it is easy to see that if we have ηN ≥ c1/
4
√
N , then for sufficiently

large N we obtain

logP−1
N ≥

4
√
N log(L

(N)
0 )−1 ≥ c1/ ln(2),

that is,

PN ≤ 2−c1/ ln(2) = e−c1 .

Moreover, if ηN
4
√
N →∞, that is, ηN = ω(1/ 4

√
N), then PN → 0. This finishes the proof for

part (2).

Next we consider parts (3) and (4). We have

√
N log(L

(N)
0 )−1 = −

√
N log(1− ηN),

from which we obtain
√
N log(L

(N)
0 )−1 ∼ ηN

√
N/ ln(2).

From Theorem 3.3.1, it is easy to see that if we have ηN ≤ c2/
√
N , then for sufficiently large

N we obtain

logP−1
N ≤

√
N log(L

(N)
0 )−1 ≤ c2/ ln(2),

that is,

PN ≥ 2−c2/ ln(2) = e−c2 .

Moreover, if ηN
√
N →∞, that is, ηN = o(1/

√
N), then PN → 1.

Using part (3) of the above proposition, we derive a necessary condition for PN → 0.

Corollary 3.4.1. Suppose that L(N)
0 = 1 − ηN with ηN → 0. Then, PN → 0 implies that

ηN = ω(1/
√
N).
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3.4.4 Comparison of Simulation Results

We end this section by comparing the quantitative behavior of the unit-threshold likelihood

ratio rule with that of other fusion rules of interest. First, we define two particular fusion rules

that can be applied at an individual node:

• OR rule: the parent node decides 0 if and only if both the child nodes send 0;

• AND rule: the parent node decides 1 if and only if both the child nodes send 1.

Notice that the unit-threshold likelihood ratio rule reduces to either the AND rule or the OR

rule, depending on the values of the Type I and Type II error probabilities at the particular level

of the tree. For our quantitative comparison, we consider three system-wide fusion strategies

that we will compare with the case that uses the unit-threshold likelihood ratio rule at every

node:

• OR strategy: Every fusion uses the OR rule;

• AND strategy: Every fusion uses the AND rule;

• RAND strategy: At each level of the tree, we randomly pick either the AND rule or the

OR rule with equal probability, and independently over levels, and apply that rule to all

the nodes at that level.

In Fig. 3.12, we show plots of the total error probability as a function of N for the tree that

uses the unit-threshold likelihood ratio rule at every node (the one analyzed in this thesis). We

also plot the total error probabilities for the AND and OR strategies, as well as the average

total error probability over 100 independent trials of the RAND strategy. For comparison

purposes, we also plot the error probability curve of the centralized parallel fusion strategy.

We can see from Fig. 3.12 that the total error probability for the centralized parallel strat-

egy decays to 0 faster than that of the binary relay tree that uses the unit-threshold likelihood
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Figure 3.12: Total error probability plots. Dashed line: centralized parallel fusion strategy.
Solid line: unit-threshold likelihood ratio rule for balanced binary relay tree. Dotted line with
‘�’ marker: OR strategy. Dotted line with ‘+’ marker: AND strategy. Dash-dot line: RAND
strategy.

ratio rule at every node. This is not surprising, because the former is known to be exponential,

as discussed earlier, while the latter is sub-exponential with exponent
√
N , as shown in this

thesis. The AND and OR strategies both result in total error probabilities converging mono-

tonically to 1/2, while the RAND strategy results in an average total error probability that

does not decrease much with N .
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CHAPTER 4

BALANCED BINARY RELAY TREES WITH NODE AND LINK

FAILURES

We have studied the detection performance of balanced binary relay trees in the last chap-

ter. However, we have not accounted for the possibility of node and link failures, and we have

assumed that all messages are received reliably. In this chapter, we address these two issues.

4.1 Related Work

In practical scenarios, the nodes are failure-prone and the communication channels are not

perfect in the decentralized network, wherein messages are subject to random erasures. The

literature on hypothesis testing problem in tree networks with node and link failures is quite

limited. Tay et al. [70] provide asymptotic analysis about the impact of imperfect nodes and

links modeled as binary symmetric channels in trees with bounded height using branching

process, Chernoff bounds, etc. However, the detection performance for unbounded-height

trees with failure-prone nodes and links is still open.

In this thesis, we investigate the distributed detection problem in the context of balanced

binary relay trees where nodes and links fail with certain probabilities. This is the first perfor-

mance analysis for unbounded-height trees with imperfect nodes and links. We derive non-

asymptotic bounds for the total error probability PN as functions of N , which characterize the

asymptotic decay rate of the total error probability. We show that the detection performance

in this failure case cannot be better than that in the non-failure case. However, we derive an

explicit necessary and sufficient condition on the decay rate of the local failure probabilities

pk (combination of node and link failure probabilities at each level) such that the decay rate of

the total error probability in the failure case is the same as that of the non-failure case. More

precisely, we show that logP−1
N = Θ(

√
N) if and only if log p−1

k = Ω(2k/2).
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4.2 Problem Formulation

We consider the problem of binary hypothesis testing between H0 and H1 in a balanced

binary relay tree with failure-prone nodes and links, shown in Fig. 4.1 (the notation there will

be defined below). Each sensor (circle) sends a binary message upward to its parent node.

Each relay node (diamond) fuses two binary messages from its child nodes into a new binary

message, which is then sent to the node at the next level. This process is repeated culminating

at the fusion center, where an overall binary decision is made. We assume that all sensors are

conditionally independent given each hypothesis, and that all sensor messages have identical

Type I error probability α0 (also known as probability of false alarm) and identical Type II

error probability β0 (also known as probability of missed detection). Moreover, we assume

that each node at level k fails with identical node failure probability nk (a failed node cannot

transmit any message upward). We model each link as a binary erasure channel as shown in

Fig. 2.2. With a certain probability, the input message X (either 0 or 1) gets erased and the

receiver does not get any data. We assume that the links between nodes at height k and height

k + 1 have identical probability of erasure `k.

Consider a nodeNk at level k connected to its parent nodeNk+1 at level k + 1. We define

several events as follows:

• E(1)
k : the event that the node Nk does not have a message to transmit; i.e., Nk does not

receive any messages from both its child nodes. We denote the probability of this event

by Pk and we call it the starvation probability.

• E(2)
k : the event that either the node Nk fails or the link from Nk to Nk+1 fails. We call

the occurrence of E(2)
k a local failure and we denote by pk the local failure probability.

• E(3)
k : the event thatNk+1 does not receive a message fromNk. We denote the probabil-

ity of this event by qk and we call it the silence probability.
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Figure 4.1: A balanced binary relay tree with node and link failures.

Note that E(3)
k occurs if and only if either (i) the nodeNk does not have a message to transmit

(event E(1)
k ), or (ii) the node Nk does have a message to transmit but a local failure occurs

(event E(2)
k ). The probability of case (i) is simply Pk. The probability of case (ii) is pk, which

equals the conditional probability ofE(3)
k given Ē(1)

k (the complement eventE(1)
k , which means

that Nk has a message to transmit). Thus,

pk = P(E
(2)
k )

= P(E
(3)
k |Ē

(1)
k )

= nk + `k − nk`k.

By the law of total probability, we have

qk = P(E
(3)
k )

= P(E
(1)
k ) + P(E

(3)
k |Ē

(1)
k )P(Ē

(1)
k )

= Pk + pk(1− Pk).

Consider the parent node Nk+1. This node does not have a message to transmit (event

E
(1)
k+1) if and only if it does not receive messages from both its two child nodes. The probability
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Pk+1 of this event is

Pk+1 = q2
k = (Pk + pk(1− Pk))2.

Recursively, we can show that the probability of the event that the parent node of Nk+1 does

not receive messages from Nk+1 is

qk+1 = Pk+1 + pk+1(1− Pk+1)

= q2
k + pk+1(1− q2

k),

where pk+1 = nk+1 + `k+1 − nk+1`k+1 denotes the local failure probability for level k + 1.

Again, we denote the Type I and Type II error probabilities for the nodes at level k by

αk and βk, respectively. If Nk+1 receives data from only one of its two child nodes, then the

Type I and Type II error probabilities do not change since the parent node receives only one

binary message and directly sends this message without fusion. The probability of this event

is 2qk(1− qk), in which case we have

(αk+1, βk+1) = (αk, βk).

If the parent node receives messages from both child nodes, then the scenario is the same as

that in Chapter 3. The probability of this event is (1− qk)2, in which case we have

(αk+1, βk+1) =

{
(1− (1− αk)2, β2

k), if αk ≤ βk,

(α2
k, 1− (1− βk)2), if αk > βk.

Consider the mean Type I and Type II error probabilities conditioned on the event that the

parent node receives at least one message from its child nodes; i.e., the parent node has data.

We have

(αk+1, βk+1, qk+1) = f(αk, βk, qk),

where

f(αk, βk, qk) :=
(

(1−qk)(2αk−α2
k)+2qkαk

1+qk
,

(1−qk)β2
k+2qkβk

1+qk
, q2
k + (1− q2

k)pk+1

)
, if αk ≤ βk,(

(1−qk)α2
k+2qkαk

1+qk
,

(1−qk)(2βk−β2
k)+2qkβk

1+qk
, q2
k + (1− q2

k)pk+1

)
, if αk > βk.

(4.1)
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Recall that all sensors have the same error probability triplet (α0, β0, q0), where q0 = p0 =

n0 + `0−n0`0. Therefore, by the above recursion (4.1), all relay nodes at level 1 will have the

same error probability triplet (α1, β1, q1) = f(α0, β0, q0) (where α1 and β1 are the conditional

mean error probabilities). Similarly we can calculate error probability triplets for nodes at all

other levels. We have

(αk+1, βk+1, qk+1) = f(αk, βk, qk), k = 0, 1, . . . , (4.2)

where (αk, βk, qk) is the error probability triplet of nodes at the kth level of the tree.
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Figure 4.2: (a) An example trajectory of (αk, βk, qk) in the (α, β, q) coordinates. (b) The
trajectory in 4.2(a) projected onto the (α, β) plane.

Consider (αk, βk, qk) as a discrete dynamic system governed by (4.2) with pk as its input.

Notice that the dynamic system depends on the exogenous parameters nk and `k only through

pk. An example trajectory of this dynamic system is shown in Fig. 4.2(a), with the local failure

probabilities given by pk+1 = p2
k. We observe that qk decreases very quickly to 0 in this case.

In addition, as shown in Fig. 4.2(b), the trajectory approaches β = α at the beginning. After

(αk, βk) gets too close to β = α, the next pair (αk+1, βk+1) will be repelled toward the other

side of the line β = α. This behavior is similar to the non-failure scenario (see Chapter 3), in

which case there exists an invariant region in the sense that the system stays in the invariant

region once the system enters it.
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Is there an invariant region in the failure case where pk 6= 0? We answer this question

affirmatively by precisely describing this invariant region in R3 in Section 4.3. In doing so,

we derive bounds on the total error probability as explicit functions of N in Section 4.4. This

allows us to characterize the decay rate of the total error probability as N goes to infinity.

4.3 Evolution of Type I, Type II, and Silence Probabilities

Our analysis here builds on the method in Chapter 3. Notice that the recursion (4.1) is

symmetric about the hyperplanes α + β = 1 and β = α. Thus, it suffices to study the

evolution of the dynamic system only in the region bounded by α + β < 1, β ≥ α, and

0 ≤ q ≤ 1. Let

U := {(α, β, q) ≥ 0|α + β < 1, β ≥ α, and q ≤ 1}

be this triangular prism. Similarly, define the complementary triangular prism

L := {(α, β, q) ≥ 0|α + β < 1, β < α, and q ≤ 1}.

First, we introduce the following region:

B :={(α, β, q) ∈ U|β ≤ −q/(1− q)+√
q2 + (1− q)2(2α− α2) + 2q(1− q)α/(1− q)}.

It is easy to show that if (αk, βk, qk) ∈ B, then the next triplet (αk+1, βk+1, qk+1) jumps across

the plane β = α away from (αk, βk, qk). This process is shown in Fig. 4.2(b) from 0 to 1. More

precisely, if (αk, βk, qk) ∈ U , then (αk, βk, qk) ∈ B if and only if (αk+1, βk+1, qk+1) ∈ L. In

other words, B is the inverse image of L in U under mapping f .

Note that if the initial error probability triplet is outside B; i.e., (α0, β0, q0) ∈ U \ B, then

before the system enters B, we have αk+1 > αk and βk+1 < βk. Thus, the dynamic system

moves toward the β = α plane, which means that if the number N of sensors is sufficiently

large, then the dynamic system is guaranteed to enter B.
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Next we consider the behavior of the system after it enters B. If (αk, βk, qk) ∈ B, we

consider the position of the next pair (αk+1, βk+1, qk+1); i.e., we consider the image of B

under f , which we denote by RL. Similarly we denote by RU the reflection of RL with

respect to β = α. This region is shown in Fig. 4.3 in the (α, β, q) coordinates. We find that

RU := {(α, β, q) ∈ U|β ≤ −α + 2(
√
q2 + (1− q2)α− q)/(1− q)}.

The setsRU andB have some interesting properties. We denote the projection of the upper

boundary of RU and B onto the (α, β) plane for a fixed q by Rq
U and Bq, respectively. It is

easy to see that if q1 ≤ q2, then Rq1
U lies above Rq2

U in the (α, β) plane. Similarly, if q1 ≤ q2,

then Bq1 lies above Bq2 in the (α, β) plane. Moreover, we have the following proposition.
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Figure 4.3: RU in the (α, β, q) coordinates.

Proposition 4.3.1. B ⊂ RU .

Proof. B and RU share the same lower boundary β = α. Thus, it suffices to prove that the

upper boundary of B lies below that of RU for a fixed q; i.e., Bq lies above Rq
U in the (α, β)

plane.

The upper boundary of B is given by

β =
−q +

√
q2 + (1− q)2(2α− α2) + 2q(1− q)α

1− q .

86



The upper boundary of RU is given by

β = −α + 2

√
q2 + (1− q2)α− q

1− q .

We need to prove the following:

−q +
√
q2 + (1− q)2(2α− α2) + 2q(1− q)α

1− q ≤ −α + 2

√
q2 + (1− q2)α− q

1− q .

The above inequality can be simplified as follows:√
q2 + (1− q)2(2α− α2) + 2q(1− q)α ≤ −α(1− q)− q + 2

√
q2 + (1− q2)α.

Squaring both sides and simplifying, we have

2
√
q2 + (1− q2)α(α(1− q) + q) ≤ 2(q2 + (1− q2)α)− (1− q)2(α− α2).

Again squaring both sides and simplifying, we have

4(q2 + (1− q2)α)((1− q)α + q)2 ≤

4(q2 + (1− q2)α)2 + (1− q)4(α− α2)2 − 4(q2 + (1− q2)α)(1− q)2(α− α2),

which can be simplified as follows:

4(q2 + (1− q2)α)(q2 + 2q(1− q)α+

(1− q)2α2 − q2 − (1− q2)α + (1− q)2(α− α2))

≤ (1− q)4(α− α2)2.

Fortuitously, the left-hand side turns out to be identically 0. Thus, the inequality holds.

Note that B and RU share the same lower boundary β = α. Thus, it suffices to proof that

the upper boundary of B lies below that of RU for a fixed q; i.e., Bq lies above Rq
U in the

(α, β) plane. The reader can refer to Figs. 4.4(a) and 4.4(b) for plots of the upper boundaries

of RU and B projected onto the (α, β) plane for two fixed values of q.

Let us denote by R the region RU ∪RL. Then, so far we have shown that if the tree height

is sufficiently large the system enters R. Next we show below that R is an invariant region in

the sense that once the system enters R, it stays there.
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Proposition 4.3.2. Suppose that (αk0 , βk0 , qk0) ∈ R for some k0 and the sequence {qk} is

non-increasing for k ≥ k0. Then, (αk, βk, qk) ∈ R for all k ≥ k0.

Proof. Without loss of generality, we assume that (αk, βk, qk) ∈ RU . We know that RL is

the image of U in L. Thus if the next state (αk+1, βk+1, qk+1) ∈ L, then it must be inside

RL. We already have qk+1 ≤ qk, which indicates that Rqk+1

U lies above Rqk
U in the (α, β)

plane. Moreover, for a fixed q, the upper boundary Rq
U is monotone increasing in the (α, β)

plane. We already know that αk+1 > αk and βk+1 < βk. As a result, if the next state

(αk+1, βk+1, qk+1) ∈ U , then the next state is in fact inside RU . Note that in Fig. 4.2(b), the

dynamic system stays in a neighbor region of β = α after it gets close to β = α.
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Figure 4.4: (a) Upper boundaries for RU and B for q = 0.1. (b) Upper boundaries for RU and
B for q = 0.01.

To study the asymptotic detection performance, we can simply analyze the case where

the system lies inside the invariant region and stays inside it. We assume that {qk} is a non-

increasing sequence. We will show in the next section that without this assumption, the decay

rate is strictly more slowly than that of the non-failure case. Note that {qk} is a sequence

depending on the input pk, which in turn depends on the exogenous parameters nk and `k.

Next we provide a sufficient condition for {qk} to be non-increasing.
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Proposition 4.3.3. Suppose that pk+1 ≤ pk for all k and q1 ≤ q0. Then, {qk} is a non-

increasing sequence.

Proof. The recursive relation for qk is:

qk+1 = q2
k + (1− q2

k)pk+1.

Since {pk} is non-increasing, we have

qk+2 = q2
k+1 + (1− q2

k+1)pk+2

≤ q2
k+1 + (1− q2

k+1)pk+1.

Notice that this recursion is simply a weighted sum of 1 and pk+1. From the initial condition

that q1 ≤ q0, it is easy to see that qk+1 ≤ qk using mathematical induction.

Henceforth, we assume that pk is non-increasing and therefore qk is monotone non-increasing

as well. Based on the above propositions, in the next section we study the reduction of the

total error probability when the system lies in R to determine the asymptotic decay rate.

4.4 Error Probability Bounds and Asymptotic Decay Rates

In this section, we first compare the step-wise reduction of the total error probability be-

tween the failure case and non-failure case. Then, we show that the decay of the failure case

cannot be faster than that of the non-failure case. However, we provide a sufficient condition

such that the scaling law of the decay rate in the failure case remains the same as that of the

non-failure case and we discuss how this sufficient condition is satisfied in terms of the input

parameter pk.

4.4.1 Step-wise Reduction and Asymptotic Decay Rate

We will first consider the case where the prior probabilities are equal; i.e., π0 = π1 = 1/2.

We define Lk = αk + βk to be (twice) the total error probability for nodes at level k.
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4.4.1.1 Step-wise reduction

In this part, we show that in the failure case, the decay of the total error probability for a

single step cannot be faster than that of the non-failure case.

Proposition 4.4.1. Let L(q)
k+1 = α

(q)
k+1 + β

(q)
k+1 be (twice) the total error probability at the next

level from the current state (αk, βk, q). Suppose that (αk, βk, q1) and (αk, βk, q2) ∈ U . If

q1 < q2, then

L
(q1)
k+1 ≤ L

(q2)
k+1

with equality if and only if αk = βk.

Proof. It is easy to show the following inequality

2αk − α2
k + β2

k ≤ αk + βk

⇐⇒β2
k − α2

k ≤ βk − αk

holds in the region αk + βk < 1 and βk ≥ αk. The equality is satisfied if and only if βk = αk.

From the recursion described in (4.1), we have

L
(q)
k+1 =

1− q
1 + q

L
(0)
k+1 +

2q

1 + q
(αk + βk),

where L(0)
k+1 = 2αk − α2

k + β2
k . Notice that

1− q
1 + q

+
2q

1 + q
= 1.

Therefore, we can write

L
(q1)
k+1 = δ1L

(0)
k+1 + (1− δ1)(αk + βk),

where δ1 = (1− q1)/(1 + q1). Let δ2 = (1− q2)/(1 + q2). Then, it is easy to see that δ1 ≥ δ2.

Thus, we have

L
(q1)
k+1 = δ1L

(0)
k+1 + (1− δ1)(αk + βk) + (δ2 − δ1)L

(0)
k+1 − (δ2 − δ1)L

(0)
k+1

≤ δ1L
(0)
k+1 + (1− δ1)(αk + βk) + (δ2 − δ1)L

(0)
k+1 − (δ2 − δ1)(αk + βk) = L

(q2)
k+1.
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This completes the proof.

From Proposition 4.4.1, we immediately deduce that if q > 0, then L(0)
k+1 ≤ L

(q)
k+1. This

means that the decay of the total error probability for a single step is fastest if the silence

probability is 0 (non-failure case). In other words, for the failure case, the step-wise shrinkage

of the total error probability cannot be faster than that of the non-failure case, where the total

error probability decays to 0 with exponent
√
N . In addition, we show in this section that the

asymptotic decay rate for the failure case cannot be faster than that of the non-failure case.

4.4.1.2 Asymptotic decay rate

With the assumption of equally likely hypotheses, we denote (twice) the total error proba-

bility for nodes at the fusion center by PN := LlogN . Using Proposition 4.4.1, we provide an

upper bound for logP−1
N , which in turn provides an upper bound for the decay rate.

Theorem 4.4.1. Suppose that (α0, β0, q0) ∈ R. Then,

logP−1
N ≤

√
N
(
logL−1

0 + 1
)
.

Proof. From the assumptions that qk is monotone non-increasing and (α0, β0, q0) ∈ R, we

shall see that the dynamic system stays inside R. First we show the following inequality for

the system in R:

Lk+2

L2
k

≥ 1

2
. (4.3)

The evolution of the system is

(αk, βk, qk)→ (αk+1, βk+1, qk+1)→ (αk+2, βk+2, qk+2).
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From Proposition 4.4.1, we have

L
(0)
k+2 ≤ Lk+2,

where L(0)
k+2 = 2αk+1 − α2

k+1 + β2
k+1 as defined before. To prove Lk+2/L

2
k ≥ 1/2, it suffices

to show that L(0)
k+2/L

2
k ≥ 1/2. We divide our proof into two cases: (αk, βk, qk) ∈ Ru \ B and

(αk, βk, qk) ∈ B.

Case I. If (αk, βk, qk) ∈ Ru \B, then

L
(0)
k+2

L2
k

=
2αk+1 − α2

k+1 + β2
k+1

(αk + βk)2
.

From the recursion (4.1), we have

αk+1 =
1− qk
1 + qk

(2αk − α2
k) +

2qk
1 + qk

αk ≥ αk

and

βk+1 =
1− qk
1 + qk

β2
k +

2qk
1 + qk

βk ≥ β2
k .

Thus, it suffices to show that

2αk − α2
k + β4

k

(αk + βk)2
≥ 1

2
.

It is easy to see that

2(2αk − α2
k) ≥ 1− (1− αk)4.

Hence, it suffices to show that

(1− (1− αk)4 + β4
k) ≥ (αk + βk)

2,

which has been proved in Chapter 3.

Case II. If (αk, βk, qk) ∈ B, then it suffices to show that

α2
k+1 + 2βk+1 − β2

k+1

(αk + βk)2
≥ 1

2
.
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Again from (4.1), we have

αk+1 =
1− qk
1 + qk

(2αk − α2
k) +

2qk
1 + qk

αk ≥ αk

and

βk+1 =
1− qk
1 + qk

β2
k +

2qk
1 + qk

βk ≥ β2
k .

Thus, it suffices to prove that

α2
k + β2

k

(αk + βk)2
≥ 1

2
,

which is obvious. This proves (4.3). We now prove the claim of Theorem 4.4.1. From (4.3),

we have

Lk+2 = akL
2
k

for k = 0, 1, . . . , logN − 2 and some ak ≥ 1/2. Therefore, for k = 2, 4, . . . , logN , we have

Lk = a(k−2)/2 · a2
(k−4)/2 · · · a2(k−2)/2

0 L2k/2

0 ,

where ai ≥ 1/2, i = 0, 1, . . . , (k − 2)/2. Taking logs and using k = logN , we have

logP−1
N =− log a(k−2)/2 − 2 log a(k−4)/2 − · · ·

− 2(k−2)/2 log a0 +
√
N logL−1

0 .

Notice that logL−1
0 > 0 and log ai ≥ −1 for all i. Thus,

logP−1
N ≤

√
N logL−1

0 +
√
N

=
√
N
(
logL−1

0 + 1
)
.

This completes the proof.

Theorem 4.4.1 provides an upper bound for logP−1
N . From this upper bound, it is easy to

get an upper bound for the asymptotic decay rate.
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Corollary 4.4.1. Suppose that (α0, β0, q0) ∈ R. Then,

logP−1
N = O(

√
N).

Compared with the decay rate for the non-failure case, the rate in Corollary 4.4.1 is not

faster than
√
N (note that the scaling law for decay rate for the non-failure case is exactly

√
N ). This observation is unsurprising because the case where nodes and links are perfect

has the best detection performance. But is it possible that the decay rate for the failure case

remains
√
N? In the next section, we show that this is possible if the silence probabilities

decay to 0 sufficiently fast.

4.4.2 Error Probability Bounds and Decay Rates

In this section, we first provide a sufficient condition for the ratio Lk+2/L
2
k to be bounded.

Then, we derive upper and lower bounds for the total error probability at the fusion center for

trees with even and odd heights, in the equal prior scenario. Under the sufficient condition,

we show that the decay rate of the total error probability remains the same as that of the

non-failure case. We will also discuss the non-equal prior scenario.

Proposition 4.4.2. Suppose that (αk, βk, qk) ∈ R and qk is monotone non-increasing. If

qk ≤ CLk where C ≥ 0, then the ratio Lk+2/L
2
k is bounded as

1

2
≤ Lk+2

L2
k

≤ 6C + 2.

Proof. The lower bound of Lk+2/L
2
k has been proved in Theorem 4.4.1. Here we derive the

upper bound for Lk+2/L
2
k. Again we divide our proof into two cases: (αk, βk, qk) ∈ Ru \ B

and (αk, βk, qk) ∈ B.
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Figure 4.5: (a) The ratio Lk+2/L
2
k inB for C = 1. (b) The ratio Lk+2/L

2
k inRU \B for C = 1.

Each line depicts the ratio versus βk for a fixed αk.

Case I. If (αk, βk, qk) ∈ Ru \B, then

Lk+2

L2
k

≤ Lk+1

L2
k

=
1− qk
1 + qk

2αk − α2
k + β2

k

(αk + βk)2
+

2qk
(1 + qk)(αk + βk)

. (4.4)

Since qk ≤ CLk, the second term on the right-hand side of (4.4) is upper bounded as

2qk
(1 + qk)(αk + βk)

≤ 2C.

We now show the other term is bounded above, namely,

2αk − α2
k + β2

k

(αk + βk)2
≤ 4C + 2. (4.5)

Let

φ(αk, βk) := 2αk − (4C + 3)α2
k − (4C + 1)β2

k − 2(4C + 2)αkβk ≤ 0.

We have

∂φ

∂βk
= −2(4C + 1)βk − 2(4C + 2)αk ≤ 0.

Thus, the maximum of φ is on the line αk + βk = qk/C and the upper boundary of B. If

αk + βk = qk/C, then we have

2αk − α2
k + β2

k

(αk + βk)2
=

2( qk
C
− βk) + qk

C
(2βk − qk

C
)

(qk/C)2
.

95



The partial derivative of the above term with respect to βk is non-positive. Therefore, the

maximum lies on the intersection of αk + βk = qk/C and the upper boundary of B. Hence, it

suffices to show (4.5) on the upper boundary of B, which is given by

β =
−q +

√
q2 + (1− q)2(2α− α2) + 2q(1− q)α

1− q .

Let ϕ(α, q) :=
√
q2 + (1− q)2(2α− α2) + 2q(1− q)α. We have

φ(αk, βk) =− (2q2
k + (1− qk)2(2αk − α2

k) + 2qk(1− qk)αk − 2qkϕ(αk, qk))/(1− qk)2

+ 2αk − (4C + 3)α2
k − (4C)β2

k − 2(4C + 2)αkβk

=
2qkβk
1− qk

− 2qkαk
1− qk

− (4C + 2)α2
k − (4C)β2

k − 2(4C + 2)αkβk.

Since qk ≤ C(αk + βk), φ(αk, βk) is non-positive. This proves (4.5). Moreover, we have

(1− qk)/(1 + qk) ≤ 1, which combined with (4.5), gives

1− qk
1 + qk

2αk − α2
k + β2

k

(αk + βk)2
≤ 4C + 2.

Thus, we have

Lk+2

L2
k

≤ 6C + 2.

Case II. We now show that

Lk+2

L2
k

≤ 6C + 2

for the case where (αk, βk, qk) ∈ B, From Proposition 4.4.1 we have

L
(qk)
k+2 ≥ Lk+2,

where L(qk)
k+2 denotes the total error probability if we use qk to calculate Lk+2 from Lk+1.

Therefore, it suffices to prove that

L
(qk)
k+2 − (6C + 2)L2

k = αk+2 + βk+2 − (6C + 2)(αk + βk)
2 ≤ 0.
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We have

βk+1 =
1− qk
1 + qk

β2
k +

2qk
1 + qk

βk.

Since qk ≤ CLk, we have βk ≥ qk/(2C) and

∂βk+1

∂βk
=

2(1− qk)
1 + qk

βk +
2qk

1 + qk
≤ (6C + 2)βk.

From recursion (4.1), we have

βk+2 =
1− qk
1 + qk

(2βk+1 − β2
k+1) +

2qk
1 + qk

βk+1

= −1− qk
1 + qk

β2
k+1 +

2

1 + qk
βk+1.

Therefore,

∂βk+2

∂βk
= −2

1− qk
1 + qk

βk+1
∂βk+1

∂βk
+

2

1 + qk

∂βk+1

∂βk
≤ 2(6C + 2)βk.

Consequently,

∂
(
L

(qk)
k+2 − (6C + 2)L2

k

)
∂βk

≤ 2(6C + 2)βk − 2(6C + 2)αk − 2(6C + 2)βk ≤ 0.

We can consider the line αk + βk = qk/C and the lower boundary of B, which is given by

βk = αk. With a similar argument, the maximum can be shown to lies on the intersection of

αk + βk = qk/C and the lower boundary of B. Moreover, we know that if βk = αk, then

Lk+1 = Lk and (αk+1, βk+1) lies on the lower boundary of RL. Following a similar argument

to Case I, we arrive at

Lk+2

L2
k

=
Lk+2

L2
k+1

≤ 6C + 2.

Note that if C = 0, then qk = 0 for all k and the problem reduces to the non-failure case,

where the ratio Lk+2/L
2
k is bounded above by 2 (see Proposition 3.3.5). Figs. 4.5(a) and (b)
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show the behavior of Lk+2/L
2
k in the regions B and RU \ B for the case where C = 1; i.e.,

qk ≤ Lk. This example provides a visualization of the two-step reduction of the system.

Proposition 4.4.2 establishes bounds on the reduction in the total error probability for every

two steps. From these, we can derive bounds for logP−1
N for even-height trees; i.e., logN is

even.

Theorem 4.4.2. Suppose that (α0, β0, q0) ∈ R and qk is monotone non-increasing. If qk ≤

CLk where C is a positive constant and k = 0, 1, . . . , logN−1, then for the case where logN

is even,

√
N
(
logL−1

0 − log(6C + 2)
)
≤ logP−1

N ≤
√
N
(
logL−1

0 + 1
)
.

Proof. If (α0, β0, q0) ∈ R and qk is monotone non-increasing, then we have (αk, βk, qk) ∈ R

for k = 0, 1, . . . , logN − 2. From Proposition 4.4.2, we have

Lk+2 = akL
2
k,

for k = 0, 1, . . . , logN − 2 and some ak ∈ [1/2, 6C + 2]. Hence, for k = 2, 4, . . . , logN , we

have

Lk = a(k−2)/2 · a2
(k−4)/2 · · · a2(k−2)/2

0 L2k/2

0 ,

where ai ∈ [1/2, 6C + 2], i = 0, 1, . . . , (k − 2)/2. Taking logs and using k = logN , we have

logP−1
N =− log a(k−2)/2 − 2 log a(k−4)/2 − . . .− 2(k−2)/2 log a0 +

√
N logL−1

0 .

Notice that logL−1
0 > 0 and −1 ≤ log ai ≤ log(6C + 2) for all i. Thus,

logP−1
N ≤

√
N logL−1

0 +
√
N

=
√
N
(
logL−1

0 + 1
)
.
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Finally,

logP−1
N ≥ − log(6C + 2)

√
N +

√
N logL−1

0

=
√
N
(
logL−1

0 − log(6C + 2)
)
.

For odd-height trees, we need to calculate the reduction in the total error probability asso-

ciated with a single step. For this, we have the following proposition.

Proposition 4.4.3. If (αk, βk, qk) ∈ U , then we have

Lk+1

L2
k

≥ 1 and
Lk+1

Lk
≤ 1.

From Propositions 4.4.2 and 4.4.3, we give bounds for the total error probability at the

fusion center for trees with odd height.

Theorem 4.4.3. Suppose that (α0, β0, q0) ∈ R and qk is monotone non-increasing. If qk ≤

CLk where C is a positive constant and k = 0, 1, . . . , logN−1, then for the case where logN

is odd, √
N

2

(
logL−1

0 − log(6C + 2)
)
≤ logP−1

N ≤
√

2N
(
logL−1

0 + 1
)
.

Proof. From Proposition 4.4.3, we have

L1 = ãL2
0

for some ã ≥ 1. And, by Proposition 4.4.2, the following identity holds.

Lk+2 = akL
2
k
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for k = 1, 3, . . . , logN − 2 and some ak ∈ [1/2, 6C + 2]. Hence, we can write

Lk = ã2(k−1)/2 · a(k−1)/2 · a2
(k−3)/2 · · · a2(k−3)/2

1 L2(k+1)/2

0 ,

where ai ∈ [1/2, 6C + 2] for each i = 1, 3, . . . , (k − 1)/2, and ã ≥ 1. Taking logs and using

k = logN , we have

logP−1
N =− 2(k−1)/2 log ã− log a(k−1)/2 − · · ·

− 2(k−3)/2 log a1 +
√

2N logL−1
0 .

Notice that logL−1
0 > 0 and log ai ≥ −1 for all i. Moreover, log ã ≥ 0. Hence,

logP−1
N ≤

√
2N(logL−1

0 + 1).

We now establish the lower bound. It follows from Proposition 4.4.3 that

Lk = ãLk−1

for some ã ∈ (0, 1]. By Proposition 4.4.2, we have

Lk+2 = akL
2
k

for k = 0, 2, . . . , logN − 3 and some ak ∈ [1/2, 6C + 2]. Thus,

Lk = ã · a(k−3)/2 · a2
(k−3)/2 · · · a2(k−3)/2

0 L2(k−1)/2

0 ,

where ai ∈ [1/2, 6C + 2] for each i = 0, 2, . . . , (k − 3)/2, and ã ∈ (0, 1]. Hence,

logP−1
N =− log ã− log a(k−1)/2 − · · ·

− 2(k−3)/2 log a1 +

√
N

2
logL−1

0 .

Notice that logL−1
0 > 0 and −1 ≤ log ai ≤ log(6C + 2) for all i, and log ã ≤ 0. Thus,

logP−1
N ≥ − log(6C + 2)

√
N

2
+

√
N

2
logL−1

0

=

√
N

2

(
logL−1

0 − log(6C + 2)
)
.

This completes the proof.
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Theorems 4.4.2 and 4.4.3, respectively, establish upper and lower bounds for logP−1
N for

trees with even and odd heights, for the case where hypotheses H0 and H1 are equally likely.

For the case where the prior probabilities are not equal; i.e., π0 6= π1, we can derive bounds for

the total error probability in a similar fashion. Suppose that the fusion rule is as before; i.e.,

the likelihood ratio test with unit-threshold. The total error probability at the fusion center is

P̂N = π0αlogNπ1βlogN . Without loss of generality, we assume that π0 ≤ π1. We are interested

in bounds for log P̂−1
N .

Theorem 4.4.4. Suppose that (α0, β0, q0) ∈ R and qk is monotone non-increasing. If qk ≤

CLk where C is a positive constant and k = 0, 1, . . . , logN−1, then for the case where logN

is even, we have

√
N(logL−1

0 − log(6C + 2)) + log π−1
1 ≤ log P̂−1

N

≤
√
N(logL−1

0 + 1) + log π−1
0 .

For the case where logN is odd, we have√
N

2
(logL−1

0 − log(6C + 2)) + log π−1
1 ≤ log P̂−1

N

≤
√

2N(logL−1
0 + 1) + log π−1

0 .

Proof. First we consider the even-height tree case. Recall that PN = LlogN = αlogN + βlogN .

We have

π0PN ≤ P̂N = π0αk + π1βk ≤ π1PN .

From the upper and lower bounds for logP−1
N derived in Theorem 4.4.2, we can get the upper

and lower bounds for log P̂−1
N :

log P̂−1
N ≥ log π−1

1 + logP−1
N

≥ log π−1
1 +

√
N(logL−1

0 − log(6C + 2))
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and

log P̂−1
N ≤ log π−1

0 + logP−1
N

≤ log π−1
0 +

√
N(logL−1

0 + 1).

For the odd-height tree case, we can mimic the proof using the bounds in Theorem 4.4.4.

The details are omitted.

We now discuss the asymptotic decay rates. The system enters the invariant region R

eventually if the height of the tree is sufficiently large. Therefore to consider the asymptotic

decay rate, it suffices just to consider the decay rate when the system lies inR. In addition, the

bounds in Theorems 4.4.2–4.4.4 only differ by constant terms, and so it suffices to consider

only the asymptotic decay rate for trees with even height in the equal prior probability case.

Moreover, when we consider the asymptotic regime; i.e., N →∞, the sufficient condition in

Theorems 4.4.2–4.4.4; i.e., qk ≤ CLk, can be written as qk = O(Lk). We have the following

result.

Corollary 4.4.2. Suppose that (α0, β0, q0) ∈ R and qk is monotone non-increasing. If qk =

O(Lk), then the asymptotic decay rate is

logP−1
N = Θ(

√
N).

This implies that the decay of the total error probability is sub-exponential with exponent
√
N . Thus, compared to the non-failure case, the scaling law of the asymptotic decay rate does

not change when we have node and link failures in the tree, provided that the probabilities of

silence qk decay to 0 sufficiently fast.
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4.4.3 Discussion on the Sufficient Condition

We have shown that if qk = O(Lk), then the scaling law for the asymptotic decay rate

remains the same as that of the non-failure case discussed in Chapter 3. Notice that the silence

probability sequence {qk} depends on the local failure probabilities {pk}, which we regard as

an exogenous input. Next we consider how the decay rate of pk determines the decay rate of

qk. Recall that the recursion of qk is

qk+1 = q2
k + (1− q2

k)pk+1.

Since qk is non-increasing, the first term q2
k decays at least quadratically fast to 0 and (1 −

q2
k) ↗ 1 in the second term. Therefore, if pk decays more slowly than quadratically, then the

value of qk linearly depends on pk.

Proposition 4.4.4. Suppose that {pk} is monotone non-increasing. Then, the decay rate of

the total error probability remains
√
N , i.e., logP−1

N = Θ(
√
N), if and only if the decay rate

of pk is not smaller than 2k/2, i.e., log p−1
k = Ω(2k/2).

Proof. By Corollary 4.4.1, we have logP−1
N = O(

√
N). This together with monotonicity of

PN imply that logP−1
N is either Θ(

√
N) or o(

√
N).

First we show that if log p−1
k = Ω(2k/2), then logP−1

N = Θ(
√
N). From Corollary 4.4.1,

we know that the decay rate of the total error probability is not better than
√
N , that is,

logP−1
N = O(

√
N). We divide our proof into three cases based on the decay rate of pk.

If log p−1
k = Ω(2k), that is, if pk decays at least exponentially fast with respect to 2k, then

we can easily show that qk = O(Lk). If pk decays more slowly than the above rate and

log p−1
k = ω(2k/2), then for sufficiently large k we have

qk+1 = q2
k + (1− q2

k)pk+1 ≤ 2pk+1.

In consequence, qk decays faster than the sequence 2pk and therefore it decays faster than

Lk, that is., qk = O(Lk), in which case by Corollary 4.4.2, the decay rate of the total error
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probability at the fusion center remains
√
N . In the case where log p−1

k = Θ(2k/2), we prove

the claim by contradiction. We assume that logP−1
N = o(

√
N). Therefore, we can write

Lk = PlogN > 2−c2
k/2 for all c > 0. Moreover, there exists c1 such that qk ≤ 2pk ≤ 2−c12k/2 .

In this case the ratio Lk+2/L
2
k is upper bounded:

Lk+2

L2
k

≤ 1 +
qk

(1 + qk)L2
k

+
qk+1

(1 + qk+1)L2
k

+
qk

(1 + qk)

qk+1

(1 + qk+1)
L−2
k

< 1 +
2−c12k/2 + 2−c12(k+1)/2

+ 2−c12k/22−c12(k+1)/2

L2
k

< 1 + 3
2−c12k/2

L2
k

.

Because Lk > 2−c2
k/2 for all c > 0, we have Lk+2/L

2
k < 4. Using the same analysis as that of

Theorem 4.4.2, we can show that logP−1
N = Θ(

√
N), which contradicts with the assumption.

Hence, we conclude that if log p−1
k = Ω(2k/2), then the decay rate of the total error probability

remains
√
N , i.e., logP−1

N = Θ(
√
N).

Next we show that if log p−1
k = o(2k/2), then logP−1

N = o(
√
N). This claim is also proved

by contradiction. Suppose that the local failure probability does not decay sufficiently fast,

more precisely, log p−1
k = o(2k/2) and the decay rate of the total error probability remains

√
N . For sufficiently large k we have

qk+1 = q2
k + (1− q2

k)pk+1 ≥ pk+1/2.

Therefore we can write qk > 2−c2
k/2 for all c > 0, in which case the ratio Lk+2/L

2
k is lower

bounded:

Lk+2

L2
k

≥ qk
(1 + qk)

qk+1

(1 + qk+1)
(αk + βk)

−1

>
2−c12k/22−c22(k+1)/2

4(αk + βk)

=
2−2k/2(c1+

√
2c2)

4(αk + βk)
, (4.6)

for all positive c1 and c2. However, from the assumption that logP−1
N = Θ(

√
N), we have

Lk ≤ 2−c32k/2 for sufficiently large k, where c3 is a positive constant. In consequence, we
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have shown the ratio (4.6) is not bounded above and Lk+2/L
2
k → ∞. Therefore, the decay

rate of the total error probability cannot remain
√
N and this rate is dominated by that of the

non-failure case, i.e., logP−1
N = o(

√
N).

The above proposition tells us that the decay exponent of the total error probability remains
√
N if and only if the local failure probability decays to 0 sufficiently fast. For illustration

purposes, in Figs. 4.6(a) and (b) we plot the total error probability PN versus the number N of

sensors and log logP−1
N versus logN , respectively. We set the prior probability P (H0) = 0.4

and the local failure probability p0 = 0.1. As shown in Figs. 4.6(a) and (b), the solid (black)

lines represent the total error probability curves in the non-failure case. The dashed (red)

lines represent the total error probability curves in the failure case where the local failure

probabilities decay quadratically, i.e., pk+1 = p2
k. This corresponds to a special case where

qk < Lk for sufficiently large k, for which the decay rate remains
√
N . The dotted (blue)

lines represent the total error probability curves in the failure case where the local failure

probabilities are identical, i.e., pk+1 = pk. This corresponds to a case where qk ≥ 0.05 for

all k, for which the decay rate is strictly smaller than
√
N . The plots are illustrative of the

differences in decay rates as reflected by our analytical results.

In the non-failure case and the quadratically decaying case described above, we have

logP−1
N = Θ(

√
N), which means that there exist positive constants c1 and c2 such that

c1

√
N ≤ logP−1

N ≤ c2

√
N . Therefore, we have

log c1 +
1

2
logN ≤ log logP−1

N ≤ log c2 +
1

2
logN.

Notice that in Fig. 4.6(b) for sufficiently large logN (> 8), the slopes for the non-failure case

and the quadratically decaying case are approximately 1/2, consistent with the bounds above.

We have studied the detection performance of balanced binary relay trees with node and

link failures. We have shown that the decay rate of the total error probability is O(
√
N),
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Figure 4.6: (a) Total error probability PN versus the number N of sensors. (b) Plot of
log logP−1

N versus logN . Solid (black) lines represent the non-failure case. Dashed (red) lines
represent the case where the local failure probabilities decay quadratically, i.e., pk+1 = p2

k.
Dotted (blue) lines represent the case where the local failure probabilities are identical, i.e.,
pk+1 = pk.

which cannot be faster than that of the non-failure case. We have also derived upper and

lower bounds for the total error probability at the fusion center as functions of N in the case

where the silence probabilities decay to 0 sufficiently fast. These bounds imply that the total

error probability converges to 0 sub-exponentially with exponent
√
N . Compared to balanced

binary relay trees with no failures, the step-wise shrinkage of the total error probability in the

failure case is slower, but the scaling law of the asymptotic decay rate remains the same. By

contrast, if the silence probabilities do not decay to 0 sufficiently fast, then the decay rate in

the failure case is strictly smaller than that in the non-failure case.
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CHAPTER 5

M -ARY RELAY TREES AND NON-BINARY MESSAGE

ALPHABETS

5.1 Problem Formulation

We consider the problem of binary hypothesis testing in the context of M -ary relay tree

shown in Fig. 5.1, in which leaf agents (circles) are agents making independent measurements

of the underlying true hypothesis. Only these leaves have direct access to the measurements in

the tree structure. These leaf agents then make binary decisions based on their measurements

and forward their decisions (messages) to their parent agents at the next level. Each nonleaf

agent, with the exception of the root, is a relay agent (diamond), which aggregates M binary

messages received from its child agents into one new binary message and forwards it to its

parent agent again. This process takes place at each agent, culminating at the root (rectangle)

where the final decision is made between the two hypotheses based on the messages received.

We denote the number of leaf agents by N , which also represents the number of measure-

ments. The height of the tree is logM N , which grows unboundedly as the number of leaf

agents goes to infinity.

We assume that the decisions at all the leaf agents are independent given each hypothesis,

and that they have identical Type I error probability (also known as false alarm probability,

denoted by α0) and identical Type II error probability (also known as missed detection proba-

bility, denoted by β0). In this chapter, we answer the following questions about the Type I and

Type II error probabilities:

• How do they change as we move upward in the tree?

• What are their explicit forms as functions of N?

• Do they converge to 0 at the root?
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Figure 5.1: An M -ary relay tree with height k. Circles represent leaf agents making direct
measurements. Diamonds represent relay agents which fuse M binary messages. The rectan-
gle at the root makes an overall decision.

• If yes, how fast will they converge with respect to N?

For each nonleaf agent, we consider two ways of aggregating M binary messages:

• In the first case, each nonleaf agent simply aggregates M binary messages into a new

binary decision using the majority dominance rule (with random tie-breaking), which is

a typical non-Bayesian fusion rule. This way of aggregating information is common in

daily life (e.g., voting). For this fusion rule, we provide explicit recursions for the Type

I and Type II error probabilities as we move towards the root. We derive bounds for the

Type I, Type II, and total error probabilities at the root as explicit functions of N , which

in turn characterize the convergence rates.

• In the second case, each nonleaf agent knows the error probabilities associated with

the binary messages received and it aggregates M binary messages into a new binary

decision using the Bayesian likelihood ratio test, which is locally optimal in the sense

that the total error probability after fusion is minimized. We derive an upper bound for

the total error probability, which shows that the convergence speed of the total error
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probability using this fusion rule is at least as fast as that using the majority dominance

rule.

5.2 Majority Dominance

In this section, we consider the case where each nonleaf agent uses the majority domi-

nance rule. We derive explicit upper and lower bounds for the Type I, Type II, and total error

probabilities with respect to N . Then, we use these bounds to characterize the asymptotic

convergence rates.

5.2.1 Error Probability Bounds

We divide our analysis into two cases: oddary tree (M odd) and evenary tree (M even).

In each case, we first derive the recursions for the Type I and Type II error probabilities and

show that all agents at level k have the same error probability pair (αk, βk). Then, we study

the step-wise reduction of each kind of error probability. From these we derive upper and

lower bounds for the Type I, Type II, and the total error probability at the root.

5.2.1.1 Oddary tree

We first study the case where the degree of branching M is an odd integer. Consider an

agent at level k, which aggregates M binary messages uk−1
i = {uk−1

1 , uk−1
2 , . . . , uk−1

M } from

its child agents at level k − 1, where uk−1
t ∈ {0, 1} for all t. Suppose that uko is the output

binary message after fusion, which is again sent to the parent agent at the next level. The

majority dominance rule, when M is odd, is simply

uko :=

{
1, if

∑M
t=1 u

k−1
t ≥M/2,

0, if
∑M

t=1 u
k−1
t ≤M/2.

Suppose that the binary messages {uk−1
t }Mt=1 have identical Type I error probability α and

identical Type II error probability β. Then, the Type I and Type II error probability pair (α′, β′)
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associated with the output binary message uko is given by:

α′ = P0(uko = 1)

=
M∏
t=1

P0(uk−1
t = 1) +

(
M

1

)
P0(uk−1

s = 0)
M−1∏
t=1

P0(uk−1
t = 1) + . . .

+

(
M

(M − 1)/2

) (M−1)/2∏
s=1

P0(uk−1
s = 0)

(M+1)/2∏
t=1

P0(uk−1
t = 1)

= f(α),

where f(α) := αM +
(
M
1

)
αM−1(1− α) + . . .+

(
M

(M−1)/2

)
α(M+1)/2(1− α)(M−1)/2 and

β′ = P1(uko = 0)

=
M∏
t=1

P1(uk−1
t = 0) +

(
M

1

)
P1(uk−1

s = 1)
M−1∏
t=1

P1(uk−1
t = 0) + . . .

+

(
M

(M − 1)/2

) (M+1)/2∏
s=1

P1(uk−1
s = 1)

(M−1)/2∏
t=1

P1(uk−1
t = 0)

= f(β).

We assume that all the binary messages from leaf agents have the same error probability

pair (α0, β0). Hence, all agent decisions at level 1 will have the same error probability pair

after fusion: (α1, β1) = (f(α0), f(β0)). By induction, we have

(αk+1, βk+1) = (f(αk), f(βk)), k = 0, 1, . . . , logM N − 1,

where (αk, βk) represents the error probability pair for agents at the kth level of the tree. Note

that the recursions for αk and βk are identical. Hence, it suffices to consider only the Type I

error probability αk in deriving the error probability bounds. Before proceeding, we provide

the following lemma.

Lemma 5.2.1. Let hMk (x) = xk +
(
M
1

)
xk−1(1− x) + . . .+

(
M
k

)
(1− x)k, where k and M are

integers. Suppose that 0 < k < M . Then, hMk is a monotone decreasing function of x ∈ (0, 1).
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Proof. We use induction in M to prove the claim. First we note that hM0 (x) = 1 for all M .

Suppose that M = 2. Then, we have h2
1(x) = 2 − x. Suppose that M = 3. Then, we have

h3
1(x) = 3−2x and h3

2(x) = x2−3x+3. Clearly, in these cases hMk are monotone decreasing

functions of x ∈ (0, 1).

Now suppose that hjk are monotone decreasing functions of x ∈ (0, 1) for all j = 2, . . . ,m−

1 and k = 1, . . . , j − 1. We wish to show that hmk are monotone decreasing functions of

x ∈ (0, 1) for all k = 1, . . . ,m− 1. We know that the binomial coefficients satisfy(
m

i

)
=

(
m− 1

i− 1

)
+

(
m− 1

i

)
=

(
m− 1

i− 1

)
+

(
m− 2

i− 1

)
+

(
m− 2

i

)
= . . .

=

(
m− 1

i− 1

)
+

(
m− 2

i− 1

)
+ . . .+

(
k

i− 1

)
+

(
k

i

)
.

We apply the above expansion for all the coefficients in hmk (x):

hmk (x) = xk +

(
m

1

)
xk−1(1− x) + . . .+

(
m

k

)
(1− x)k

= xk +

(
k

1

)
xk−1(1− x) + . . .+

(
k

k

)
(1− x)k

+

(
k

0

)
xk−1(1− x) + . . .+

(
k

k − 1

)
(1− x)k + . . .

+

(
m− 1

0

)
xk−1(1− x) + . . .+

(
m− 1

k − 1

)
(1− x)k

= 1 + (1− x)hkk−1(x) + . . .+ (1− x)hm−1
k−1 (x)

= 1 + (1− x)
m−1∑
j=k

hjk−1(x).

By the induction hypothesis, hjk−1 are monotone decreasing for all j = k, . . . ,m − 1. More-

over, it is easy to see that hjk−1 are positive for all j = k, . . . ,m − 1. Therefore, because the

product of two positive monotone decreasing functions is also monotone decreasing, hmk is a

monotone decreasing function of x ∈ (0, 1). This completes the proof.

Next we will analyze the step-wise shrinkage of the Type I error probability after each
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fusion step. This analysis will in turn provide upper and lower bounds for the Type I error

probability at the root.

Proposition 5.2.1. Consider an M -ary relay tree, where M is an odd integer. Suppose that

we apply the majority dominance rule as the fusion rule. Then, for all k we have

1 ≤ αk+1

α
(M+1)/2
k

≤
(

M

(M − 1)/2

)
.

Proof. Consider the ratio of αk+1 and α(M+1)/2
k :

αk+1

α
(M+1)/2
k

= α
(M−1)/2
k +

(
M

1

)
α

(M−3)/2
k (1− αk) + . . .

+

(
M

(M − 1)/2

)
(1− αk)(M−1)/2.

First, we derive the lower bound of the ratio. We know that

1 = (αk + 1− αk)(M−1)/2 = α
(M−1)/2
k +

(
(M − 1)/2

1

)
α

(M−3)/2
k (1− αk)

+ . . .+

(
(M − 1)/2

(M − 1)/2

)
(1− αk)(M−1)/2.

Moreover, it is easy to see that
(
M
k

)
≥
(

(M−1)/2
k

)
for all k = 1, 2, . . . , (M − 1)/2. Con-

sequently, we have αk+1/α
(M+1)/2
k ≥ 1. Next, we derive the upper bound of the ratio. By

Lemma 5.2.1, we know that the ratio αk+1/α
(M+1)/2
k is monotone increasing as αk → 0.

Hence, we have
αk+1

α
(M+1)/2
k

≤
(

M

(M − 1)/2

)
.

The bounds in Proposition 5.2.1 hold for all αk ∈ (0, 1). Furthermore, the upper bound

is achieved at the limit as αk → 0: limαk→0 αk+1/α
(M+1)/2
k =

(
M

(M−1)/2

)
. Using the above

proposition, we now derive upper and lower bounds for log2 α
−1
k .
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Theorem 5.2.1. Consider an M -ary relay tree, where M is an odd integer. Let λM = (M +

1)/2. Suppose that we apply the majority dominance rule as the fusion rule. Then, for all k

we have

λkM

(
log2 α

−1
0 − log2

(
M

λM

))
≤ log2 α

−1
k ≤ λkM log2 α

−1
0 .

Proof. From the inequalities in Proposition 5.2.1, we have αk+1 = ckα
(M+1)/2
k = ckα

λM
k ,

where ck ∈
[
1,
(

M
(M−1)/2

)]
. From these we obtain

αk = ck−1c
λM
k−2 . . . c

λM
k−1

0 αλM
k

0 ,

where ci ∈
[
1,
(

M
(M−1)/2

)]
for all i, and

log2 α
−1
k =− log2 ck−1 − λM log2 ck−2 − . . .− λk−1

M log2 c0 + λkM log2 α
−1
0 .

Since log2 ci ∈
[
0, log2

(
M

(M−1)/2

)]
, we have log2 α

−1
k ≤ λkM log2 α

−1
0 . Moreover, we obtain

log2 α
−1
k ≥− log2

(
M

(M − 1)/2

)
− λM log2

(
M

(M − 1)/2

)
− . . .

− λk−1
M log2

(
M

(M − 1)/2

)
+ λkM log2 α

−1
0

=− λkM − 1

λM − 1
log2

(
M

(M − 1)/2

)
+ λkM log2 α

−1
0

≥λkM
(

log2 α
−1
0 − log2

(
M

(M − 1)/2

))
=λkM

(
log2 α

−1
0 − log2

(
M

λM

))
.

The bounds for log2 β
−1
k are similar and they are omitted for brevity. Note that our result

holds for all finite integer k. In addition, our approach provides explicit bounds for both Type I

and Type II error probabilities respectively. From the above results, we immediately obtain

bounds at the root simply by substituting k = logM N into the bounds in Theorem 5.2.1.
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Corollary 5.2.1. Let PF,N be the Type I error probability at the root of an M -ary relay tree,

where M is an odd integer. Suppose that we apply the majority dominance rule as the fusion

rule. Then, we have

N logM λM

(
log2 α

−1
0 − log2

(
M

λM

))
≤ log2 P

−1
F,N ≤ N logM λM log2 α

−1
0 .

5.2.1.2 Evenary tree

We now study the case where M is an even integer and derive upper and lower bounds for

the Type I error probabilities. The majority dominance rule in this case is

uko :=


1, if

∑M
t=1 u

k−1
t > M/2,

1 w.p. Pb, if
∑M

t=1 u
k−1
t = M/2,

0 w.p. 1− Pb, if
∑M

t=1 u
k−1
t = M/2,

0, if
∑M

t=1 u
k−1
t < M/2,

where Pb ∈ (0, 1) denotes the Bernoulli parameter for tie-breaking. We first assume that

the tie-breaking is fifty-fifty; i.e., Pb = 1/2. We will show later that this assumption can be

relaxed. The recursions for the Type I and Type II error probabilities are as follows:

αk = P0(uko = 1)

=
M∏
t=1

P0(uk−1
t = 1) +

(
M

1

)
P0(uk−1

s = 0)
M−1∏
t=1

P0(uk−1
t = 1) + . . .

+
1

2

(
M

M/2

)M/2∏
s=1

P0(uk−1
s = 0)

M/2∏
t=1

P0(uk−1
t = 1)

= g(αk−1),

where g(αk−1) := αMk−1 +
(
M
1

)
αM−1
k−1 (1− αk−1) + . . .+ 1

2

(
M
M/2

)
α
M/2
k−1 (1− αk−1)M/2 and

βk = P1(uko = 0)

=
M∏
t=1

P1(uk−1
t = 0) +

(
M

1

)
P1(uk−1

s = 1)
M−1∏
t=1

P1(uk−1
t = 0) + . . .

+
1

2

(
M

M/2

)M/2∏
s=1

P1(uk−1
s = 1)

M/2∏
t=1

P1(uk−1
t = 0)

= g(βk−1).
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Next we study the step-wise reduction of each type of error probability when each nonleaf

agent uses the majority dominance rule. Again it suffices to consider αk since the recursions

are the same.

Proposition 5.2.2. Consider an M -ary relay tree, where M is an even integer. Suppose that

we apply the majority dominance rule as the fusion rule. Then, for all k we have

1 ≤ αk+1

α
M/2
k

≤ 1

2

(
M

M/2

)
.

Proof. We consider the ratio of αk+1 and αM/2
k :

αk+1

α
M/2
k

= α
M/2
k +

(
M

1

)
α

(M−2)/2
k (1− αk) + . . .+

1

2

(
M

M/2

)
(1− αk)M/2.

First, we show the lower bound of the ratio. We know that

1 = (αk + 1− αk)M/2

= α
M/2
k +

(
M/2

1

)
α

(M−2)/2
k (1− αk) + . . .+

(
M/2

M/2

)
(1− αk)M/2

and
(
M
k

)
≥
(
M/2
k

)
for all k = 1, 2, . . . ,M/2. Moreover, we have

(
M
M/2

)
/2 ≥

(
M/2
M/2

)
=

1. In consequence, we have αk+1/α
M/2
k ≥ 1. Notice that αk+1/α

M/2
k = hMM/2(αk)/2 +

hMM/2−1(αk)/2. By Lemma 5.2.1, the ratio is monotone increasing as αk → 0. Hence, we

have αk+1/α
M/2
k ≤ 1

2

(
M
M/2

)
.

The upper bound is achieved at the limit as αk → 0; i.e., limαk→0 αk+1/α
M/2
k =

(
M
M/2

)
/2.

In deriving the above results, we assumed that the tie-breaking rule uses Pb = 1/2. Sup-

pose now that the tie is broken with Bernoulli distribution with some arbitrary probability

Pb ∈ (0, 1). Then, it is easy to show that

Pb ≤
αk+1

α
M/2
k

≤ 2M .

The bounds above are not as tight as those in Proposition 5.2.2. However, the asymptotic

convergence rates remain the same as we shall see later.

Next we derive upper and lower bounds for the Type I error probability at each level k.
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Theorem 5.2.2. Consider an M -ary relay tree, where M is an even integer. Let λM = M/2.

Suppose that we apply the majority dominance rule as the fusion rule. Then, for all k we have

λkM

(
log2 α

−1
0 − log2

(
M

λM

))
≤ log2 α

−1
k ≤ λkM log2 α

−1
0 .

Proof. From the inequalities in Proposition 5.2.2 been derived, we have

αk+1 = ckα
M/2
k = ckα

λM
k ,

where ck ∈
[
1,
(
M
M/2

)
/2
]
. From these we obtain

αk = ck−1c
λM
k−2 . . . c

λM
k−1

0 αλM
k

0 ,

where ci ∈
[
1,
(
M
M/2

)
/2
]

for all i, and

log2 α
−1
k =− log2 ck−1 − λM log2 ck−2 − . . .− λk−1

M log2 c0 + λkM log2 α
−1
0 .

Since log2 ci ∈
[
0, log2

(
M
M/2

)
− 1
]
, we have log2 α

−1
k ≤ λkM log2 α

−1
0 . Moreover, we obtain

log2 α
−1
k ≥ − log2

(
M

M/2

)
− λM log2

(
M

M/2

)
− . . .

− λk−1
M log2

(
M

M/2

)
+ λkM log2 α

−1
0

≥ λkM

(
log2 α

−1
0 − log2

(
M

M/2

))
.

Similar to the oddary tree case, we can provide upper and lower bounds for the Type I

error probability at the root.

Corollary 5.2.2. Let PF,N be the Type I error probability at the root of an M -ary relay tree,

where M is an even integer. Suppose that we apply the majority dominance rule as the fusion

rule. Then, we have

N logM λM

(
log2 α

−1
0 − log2

(
M

λM

))
≤ log2 P

−1
F,N ≤ N logM λM log2 α

−1
0 .
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Remark 5.2.1. Notice that the above result is only useful when M ≥ 4. For the case where

M = 2 (balanced binary relay trees), we have αk+1 = α2
k + αk(1 − αk) = αk and βk+1 =

β2
k + βk(1− βk) = βk; that is, the Type I and Type II error probabilities remain the same after

fusing with the majority dominance rule.

Remark 5.2.2. We have provided a detail analysis in Chapter 3 of the convergence rate of

the total error probability in balanced binary relay trees (M = 2) using the unit-threshold

likelihood ratio test at every nonleaf agent. We show explicit upper and lower bounds for the

total error probability at the root as function of the number N of leaf agents, which in turn

characterizes the convergence rate
√
N . Moreover, we show that the unit-threshold likelihood

ratio test, which is locally optimal, is close-to globally optimal in terms of the reduction in the

total error probability.

Remark 5.2.3. Notice that the bounds in Corollaries 5.2.1 and 5.2.2 have the same form.

Therefore, the odd and even cases can be unified if we simply let λM = b(M + 1)/2c.

In the next section, we use the bounds above to derive upper and lower bounds for the total

error probability at the root in the majority dominance rule case.

5.2.1.3 Total error probability bounds

In this section, we provide upper and lower bounds for the total error probability PN at the

root. Let π0 and π1 be the prior probabilities for the two underlying hypotheses. It is easy to

see that PN = π0PF,N + π1PM,N , where PF,N and PM,N correspond to the Type I and Type II

error probabilities at the root. With the bounds for each type of error probability in the case

where the majority dominance rule is used, we provide bounds for the total error probability

as follows.

Theorem 5.2.3. Consider an M -ary relay tree, let λM = b(M + 1)/2c. Suppose that we

apply the majority dominance rule as the fusion rule. Then, we have

N logM λM

(
log2 max{α0, β0}−1 − log2

(
M

λM

))
≤ log2 P

−1
N

≤ N logM λM (π0 log2 α
−1
0 + π1 log2 β

−1
0 ).
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Proof. From the definition of PN ; that is, PN = π0PF,N+π1PM,N ,we have PN ≤ max{PF,N , PM,N}.

In addition, we know that αk and βk have the same recursion. Therefore, the maximum be-

tween the Type I and Type II error probabilities at the root corresponds to the maximum at the

leaf agents. Hence, we have

N logM λM

(
log2 max{α0, β0}−1 − log2

(
M

λM

))
≤ log2 P

−1
N .

By the fact that log2 x
−1 is a convex function, we have log2 P

−1
N ≤ (π0 log2 P

−1
F,N +

π1 log2 P
−1
M,N). Therefore, we have log2 P

−1
N ≤ N logM λM (π0 log2 α

−1
0 + π1 log2 β

−1
0 ).

These non-asymptotic results are useful. For example, if we want to know how many

measurements are required such that PN ≤ ε, the answer is simply to find the smallest N that

satisfies the inequality in Theorem 5.2.3; i.e.,

N logM λM

(
log2 max{α0, β0}−1 − log2

(
M

λM

))
≥ log2 ε

−1.

Hence we have

N ≥
(

log2 ε
−1

log2 max{α0, β0}−1 − log2

(
M
λM

))logλM
M

.

The growth rate for the number of measurements is Θ((log2 ε
−1)

logλM
M

).

5.2.2 Asymptotic Convergence Rates

From Corollaries 5.2.1 and 5.2.2, we can easily derive the decay rates of the Type I and

Type II error probabilities. For example, for the Type I error probability, we have the follow-

ing.

Proposition 5.2.3. Consider anM -ary relay tree, let λM = b(M+1)/2c. Suppose that we ap-

ply the majority dominance rule as the fusion rule. Then, we have log2 P
−1
F,N = Θ(N logM λM ).
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Proof. To analyze the asymptotic rate, we may assume that α0 is sufficiently small. More

specifically, we assume that α0 < 1/
(
M
λM

)
. In this case, the bounds in Corollaries 5.2.1 and

5.2.2 show that log2 P
−1
F,N = Θ(N logM λM ).

Remark 5.2.4. Note that logM λM is monotone increasing with respect to M . Moreover, as

M goes to infinity, the limit of logM λM is 1. That is to say, when M is very large, the decay

is close to exponential, which is the rate for star configuration and bounded-height trees. In

terms of tree structures, when M is very large, the tree becomes short, and therefore achieves

similar performance to that of bounded-height trees.

Remark 5.2.5. From the fact that the Type I and Type II error probabilities follow the same

recursion, it is easy to see that the Type II error probability at the root also decays to 0 with

exponent N logM λM .

Next, we compute the decay rate of the total error probability.

Corollary 5.2.3. Consider anM -ary relay tree, let λM = b(M+1)/2c. Suppose that we apply

the majority dominance rule as the fusion rule. Then, we have log2 P
−1
N = Θ(N logM λM ).

For the total error probability at the root, we have similar arguments with that for individual

error probabilities. For largeM , the decay of the total error probability is close to exponential.

5.3 Bayesian Likelihood Ratio Test

In this section, we consider the case where the Bayesian likelihood ratio test is used as the

fusion rule. We derive an upper bound for the total error probability, which in turn character-

izes the convergence rate. We show that the convergence rate in this case is at least as fast or

faster than that with the majority dominance rule.

Theorem 5.3.1. Let PN be the total error probability at the root in the case where the

Bayesian likelihood ratio test is used as the fusion rule in M -ary relay trees. We have

log2P
−1
N ≥ N logM λM

(
log2 L

−1
0 − log2

(
2
(
M
λM

)
max(π0, π1)

min(π0, π1)λM

))
.
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Proof. In the case where the majority dominance rule is used, from Propositions 5.2.1 and

5.2.2, it is easy to show that

1

2
≤ αk+1 + βk+1

αλMk + βλMk
≤ 2

(
M

λM

)
.

Since xλM is a convex function for all M ≥ 2, we have

αλMk + βλMk
2

≥
(
αk + βk

2

)λM
,

which implies the following:

2−λM+1 ≤ αλMk + βλMk
(αk + βk)λM

≤ 1.

Hence, we obtain

2−λM ≤ αk+1 + βk+1

(αk + βk)λM
≤ 2

(
M

λM

)
.

From these bounds and the fact that

min(π0, π1)(αk + βk) ≤ π0αk + π1βk ≤ max(π0, π1)(αk + βk),

we have
2−λM min(π0, π1)

max(π0, π1)λM
≤ π0αk+1 + π1βk+1

(π0αk + π1βk)λM
≤

2
(
M
λM

)
max(π0, π1)

min(π0, π1)λM
.

Note that π0αk + π1βk is the total error probability for agents at level k and we denote it by

Lk.

The Bayesian likelihood ratio test is the optimal rule in the sense that the total error prob-

ability is minimized after fusion. Let LLRTk be the total error probability after fusing with the

Bayesian likelihood ratio test. We have

LLRTk+1

LλMk
≤ Lk+1

LλMk
≤

2
(
M
λM

)
max(π0, π1)

min(π0, π1)λM
.

Using a similar approach as that used in proving Theorem 5.2.1, we can derive the following

lower bound for log2P
−1
N :

log2P
−1
N ≥ N logM λM

(
log2 L

−1
0 − log2

(
2
(
M
λM

)
max(π0, π1)

min(π0, π1)λM

))
.
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From the above bound, we immediately obtain the following.

Corollary 5.3.1. Consider an M -ary relay tree, and let λM = b(M + 1)/2c. Suppose that

we apply the Bayesian likelihood ratio test as the fusion rule. Then, we have log2P
−1
N =

Ω(N logM λM ).

Note that in the case where the majority dominance rule is used, the convergence rate is

exactly Θ(N logM λM ). Therefore, the convergence rate for the Bayesian likelihood ratio test is

at least as good as that for the majority dominance rule.

5.4 Asymptotic Optimality of Fusion Rules

In this section, we discuss the asymptotic optimality of the two fusion rules considered in

this thesis by comparing our asymptotic convergence rates with those in [61], in which it is

shown that with any combination of fusion rules, the convergence rate is upper bounded as

log2 P
−1
N = O(N logM

M+1
2 ). (5.1)

5.4.1 Oddary Case

In the oddary tree case, if each nonleaf agent uses the majority dominance rule, then the

upper bound in (5.1) is achieved; i.e.,

log2 P
−1
N = Θ(N logM bM+1

2
c) = Θ(N logM

M+1
2 ).

This result is also mentioned in [61]. Tay et al. [55] find a similar result in bounded-height

trees; that is, if the degree of branching for all the agents except those at level 1 is an odd

constant, then the majority dominance rule achieves the optimal exponent.

Now we consider the case where each nonleaf agent uses the Bayesian likelihood ratio

test. Since the convergence rate for this fusion rule is at least as good as that for the majority

dominance rule, it is evident that the Bayesian likelihood ratio test, which is only locally opti-

mal (the total error probability after each fusion is minimized), achieves the globally optimal
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convergence rate. This result is also of interest in decentralized detection problems, in which

the objective is usually to find the globally optimal strategy. In oddary trees, the myopically

optimal Bayesian likelihood ratio test, which is relevant to social learning problems because

of the selfishness of agents, is essentially globally optimal in terms of achieving the optimal

exponent.

Remark 5.4.1. Suppose that each nonleaf agent uses the Bayesian likelihood ratio test and we

assume that the two hypotheses are equally likely. In this case, the output message is given by

the unit-threshold likelihood ratio test:∏M
t=1 P1(uk−1

t )∏M
t=1 P0(uk−1

t )

H1

≷
H0

1.

If the Type I and Type II error probabilities at level 0 are equal; i.e., α0 = β0, then the unit-

threshold likelihood ratio test reduces to the majority dominance rule. The bounds for the

error probabilities in this case and those in the majority dominance rule case are identical.

5.4.2 Evenary Case

In the evenary tree case, our results show that with the majority dominance rule, we have

log2 P
−1
N = Θ(N logM bM+1

2
c) = Θ(N logM

M
2 ). (5.2)

This characterizes the explicit convergence rate of the total error probability (c.f. [61], in

which there is a gap between the upper and lower bounds for log2 P
−1
N ). It is evident that the

majority dominance rule in this evenary tree case does not achieve the upper bound in (5.1).

However, the gap between the rates described in (5.1) and (5.2) becomes smaller and more

negligible as the degree M of branching grows.

In the case of binary relay trees (M = 2), the gap is most significant because the total

error probability does not change after fusion with the majority dominance rule. In contrast,

we have shown in Chapter 3 that the likelihood-rate test achieves convergence rate
√
N . For
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M ≥ 4, we have shown that the convergence rate using the Bayesian likelihood ratio test is at

least as good as that using the majority dominance rule.

Now we consider the case where the alternative majority dominance strategy (tie is broken

alternatively for agents at consecutive levels) is used throughout the tree. In this case we have

αk = αMk−1 +

(
M

1

)
αM−1
k−1 (1− αk−1) + . . .+

(
M

M/2

)
α
M/2
k−1 (1− αk−1)M/2

and

αk+1 = αMk +

(
M

1

)
αM−1
k (1− αk) + . . .+

(
M

M/2− 1

)
α
M/2+1
k (1− αk)M/2−1

Using Lemma 5.2.1, it is easy to show that

1 ≤ αk

α
M/2
k−1

≤
(
M

M/2

)
and 1 ≤ αk+1

α
M/2+1
k

≤
(

M

M/2− 1

)
. (5.3)

Theorem 5.4.1. Consider an M -ary relay tree, where M is an even integer, and let λM =

M/2. Suppose that we apply the alternative majority dominance strategy. Then, for even k

we have

λ
k/2
M (λM + 1)k/2

(
log2 α

−1
0 − log2

(
M

λM

))
≤ log2 α

−1
k ≤ λ

k/2
M (λM + 1)k/2 log2 α

−1
0 .

Proof. The case where M = 2 is easy to show using the recursion for αk and the proof is

omitted. Now let us consider the case where M ≥ 4. From the inequalities in (5.3), we have

αk+1 = ckα
λM+1
k = ckc

λM
k−1α

λM (λM+1)
k ,

where ck−1 and ck ∈
[
1,
(
M
M/2

)]
. From these we obtain

αk = ck−1c
λM
k−2c

λM (λM+1)
k−3 . . . c

λM
k/2(λM+1)k/2−1

0 α
λM

k/2(λM+1)k/2

0 ,

where ci ∈
[
1,
(
M
M/2

)]
for all i. Therefore,

log2 α
−1
k =− log2 ck−1 − . . .− λMk/2(λM + 1)k/2−1 log2 c0

+ λM
k/2(λM + 1)k/2 log2 α

−1
0 .
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Since log2 ci ∈
[
0, log2

(
M
M/2

)]
, we have log2 α

−1
k ≤ λM

k/2(λM + 1)k/2 log2 α
−1
0 . Moreover,

we have log2 ci ≤ log2

(
M
M/2

)
. Hence,

log2 α
−1
k ≥− log2

(
M

λM

)
(1 + λM + λM(λM + 1) + . . .+ λ

k/2
M (λM + 1)k/2−1)

+ λM
k/2(λM + 1)k/2 log2 α

−1
0 . (5.4)

Next we use induction to show that

1 + λM + λM(λM + 1) + . . .+ λ
k/2
M (λM + 1)k/2−1 ≤ λ

k/2
M (λM + 1)k/2. (5.5)

Suppose that k = 2. Then, we have 1 + λM ≤ λM(λM + 1), which holds because λM ≥ 2.

Suppose that (5.5) holds when k = k0. We wish to show that it also holds when k = k0 + 1,

in which case we have

1 + λM + . . .+ λ
k0/2
M (λM + 1)k0/2−1 + λ

k0/2
M (λM + 1)k0/2 + λ

k0/2+1
M (λM + 1)k0/2

≤ 2λ
k0/2
M (λM + 1)k0/2 + λ

k0/2+1
M (λM + 1)k0/2

≤ 2λ
k0/2+1
M (λM + 1)k0/2 ≤ λ

k0/2+1
M (λM + 1)k0/2+1.

Therefore, we have proved (5.5). Substituting this result in (5.4), we obtain the desired lower

bound.

The bounds for log2 β
−1
k are similar and they are omitted for brevity.

Corollary 5.4.1. Let PF,N be the Type I error probability at the root of an M -ary relay tree,

where M is an even integer. Suppose that we apply the alternative majority dominance strat-

egy. Then, we have

N logM

√
M(M+2)/2

(
log2 α

−1
0 − log2

(
M

λM

))
≤ log2 P

−1
F,N ≤ N logM

√
M(M+2)/2 log2 α

−1
0 .

Corollary 5.4.2. Let PN be the total error probability at the root of anM -ary relay tree, where

M is an even integer. Suppose that we apply the alternative majority dominance strategy.

Then, we have log2 P
−1
F,N = Θ(N logM

√
M(M+2)/2) and log2 P

−1
N = Θ(N logM

√
M(M+2)/2).
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Note that when M = 2, log2 P
−1
N = Θ(

√
N). Therefore, the decay rate with this strategy

is identical with that using the Bayesian likelihood ratio test. This is not surprising because

we show in Chapter 3 that the Bayesian likelihood ratio test is essentially either ‘AND’ rule

or ‘OR’ rule depending on the values of the Type I and II error probabilities. We also show

that the same rule will repeat no more than two consecutive times. Therefore, the decay rate

in this case is the same as that using the alternative majority dominance strategy.

For the case where M ≥ 4, suppose that α0 and β0 are sufficiently small and sufficiently

close to each other. Then, it is easy to show that the Bayesian likelihood ratio test is majority

dominance rule with tie-breaking given by the values of the Type I and II error probabilities.

Moreover, we can show that the same tie-breaking will repeat no more than two consecutive

times. In this case, the error probability decays as Θ(N logM

√
M(M+2)/2).

Recall that the upper bound for the decay rate of the total error probability with all com-

binations of fusion rules is O(N logM
M+1

2 ), which involves an arithmetic mean of M + 2 and

M . In contrast, the decay rate using the alternative majority dominance strategy and Bayesian

likelihood ratio test involves the geometric mean of M + 2 and M , which means that these

two strategies are almost asymptotic optimal, especially when M is large.

The convergence rate of the total error probability using the alternative majority dominance

strategy is better that that the random tie-breaking case. For illustration purposes, in Fig. 5.2

we plot the exponent for the decay rate of the total error probability versus the spanning factor

M in these two cases. For comparison purposes, we also plot the exponent in the upper bound

(5.1). We can see from Fig. 5.2 that alternative majority dominance strategy achieves a larger

exponent than that of the majority dominance rule with random tie-breaking. Moreover, the

gap between the exponents in the alternative majority dominance strategy case and the upper

bound (5.1) is small and almost negligible.
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Figure 5.2: Plot of error exponents versus the spanning factor M . Dashed (red) line repre-
sents the alternative majority dominance strategy. Dotted (blue) line represents the majority
dominance rule with random tie-breaking. Solid (black) line represents the upper bound on
exponent in (5.1).

5.5 Non-binary Message Alphabets

In the previous sections, each agent in the tree is only allowed to pass a binary message to

its supervising agent at the next level. A natural question is, what if each agent can transmit

a ‘richer’ message? In this section, we provide a message-passing scheme that allows general

message alphabet of sizeD (non-binary). We call thisM -ary relay tree with message alphabet

sizeD an (M,D)-tree. We have studied the convergence rates of (M, 2)-trees by investigating

how fast the total error probability decays to 0. What about the convergence rate when D is

an arbitrary finite integer?

We denote by uko the output message for each agent at the kth level after fusing M input

messages uk−1
i = {uk−1

1 , uk−1
2 , . . . , uk−1

M } from its child agents at the (k − 1)th level, where

uk−1
t ∈ {0, 1, . . . ,D} for all t ∈ {1, 2, . . . ,M}.

Case I: First, we consider an (M,D)-tree with height k0, in which there are Mk0 leaf
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agents, and the message alphabet size is sufficiently large; more precisely,

D ≥Mk0−1 + 1. (5.6)

For our analysis, we need the following terminology:

Definition: Given a nonleaf agent in the tree, a subtree leaf of this agent is any leaf agent

of the subtree rooted at the agent. An affirmative subtree leaf is any subtree leaf that sends a

message of ‘1’ upward.

Suppose that each leaf agent still generates a binary message u0
o ∈ {0, 1} and sends it

upward to its parent agent. Moreover, each intermediate agent simply sums up the messages

it receives from its immediate child agents and sends the summation to its parent agent; that

is, uko =
∑M

t=1 u
k−1
t . Then we can show that the output message for each agent at the kth

level is an integer from {0, 1, . . . ,Mk} for all k ∈ {0, 1, . . . , k0− 1}. Moreover, this message

essentially represents the number of its affirmative subtree leaf.

Because of inequality (5.6), at each level k in the tree, the message alphabet sizeD is large

enough to represent all possible values of uko (k ∈ {0, . . . , k0 − 1}). In particular, the root (at

level k0) knows the number of its affirmative subtree leaves. In this case, the convergence rate

is the same as that of the star configuration, where each leaf agent sends a binary message

to the root directly. Recall that in the star configurations, the total error probability decays

exponentially fast to 0.

Case II: We now consider the case where the tree height is very large; i.e., (5.6) does not

hold. As shown in Fig. 5.3, we apply the scheme described in Case I; that is, the leaf agents

send binary compressions of their measurements upward to their parent agents. Moreover,

each intermediate agent simply sends the sum of the messages received to its parent agent;

i.e.,

uko =
M∑
t=1

uk−1
t . (5.7)

From the assumption of large tree height, it is easy to see that the message alphabet size is not

large enough for all the relay agents to use the fusion rule described in (5.7). With some abuse
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of notation, we let k0 to be the integer k0 = blogM(D − 1)c + 1 (here, k0 is not the height of

the tree; it is strictly less than the height). Note that Mk0−1 + 1 ≤ D < Mk0 + 1.

...

...

...

...

...

M

}1,0{

},...,1,0{ M

},...,1,0{ 2M ...

Figure 5.3: A message-passing scheme for non-binary message alphabets in an M -ary relay
tree.

From the previous analysis, we can see that with this scheme, each agent at the k0th level

knows the number of its affirmative subtree leaves. Therefore, it is equivalent to consider

the case where each agent at level k0 connects to its Mk0 subtree leaves directly (all the

intermediate agents in the subtree can be ignored). However, we cannot use the fusion rule

described in (5.7) for the agents at k0th level to generate the output messages because the

message alphabet size is not large enough. Hence, we let each agent at level k0 aggregate the

Mk0 binary messages from its subtree leaves into a new binary message (using some fusion

rule). By doing so, the output message from each agent at the k0th level is binary again.

Henceforth, we can simply apply the fusion rule (5.7) and repeat this process throughout the

tree, culminating at the root. We now provide an upper bound for the asymptotic decay rate in

this case.

Theorem 5.5.1. The convergence rate of the total error probability for an (M,D)-tree is equal

to that for an (Mk0 , 2)-tree, where k0 = blogM(D− 1)c+ 1. In particular, let PN be the total
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error probability at the root for an (M,D)-tree. With any combination of fusion rules at level

`k0, ` = 1, 2, . . . , we have log2 P
−1
N = O (Nρ) , where

ρ :=
ln(Mk0 + 1)

lnMk0
− logM 2

k0

.

Proof. Consider an (M,D)-tree with the scheme described above. It is easy to see that equiv-

alently we can consider a tree where the leaf agents connect to the agents at the k0th level

directly. In addition, because of the recursive strategy applied throughout the tree, it suffices

to consider the tree where the agents at the `k0th level connect to the agents at the (`+ 1)k0th

level directly for all non-negative integers `. Therefore, the convergence rate of an (M,D)-tree

is equal to that of the corresponding (Mk0 , 2)-tree.

In the asymptotic regime, the decay rate in (M, 2)-trees is bounded above as follows [61]:

log2 P
−1
N = O(N logM

(M+1)
2 ).

Therefore, the decay rate for (Mk0 , 2)-trees is also bounded above as

log2 P
−1
N = O(N log

Mk0
(Mk0+1)

2 ),

which upon simplification gives the desired result.

Suppose that each agent at level `k0 for all ` uses the majority dominance rule. Then, we

can derive the convergence rate for the total error probability as follows.

Theorem 5.5.2. Consider (M,D)-trees where the majority dominance rule is used. Let k0 =

blogM(D − 1)c+ 1. We have log2 P
−1
N = Θ (N%) , where

% :=

{
ln(Mk0+1)

lnMk0
− logM 2

k0
, if M is odd,

1− logM 2
k0

, if M is even.
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Proof. By Theorem 5.5.1, the performance of (M,D)-trees is equal to that of (Mk0 , 2)-trees,

where k0 = blogM(D − 1)c+ 1. For the asymptotic rate, we have

log2 P
−1
N = Θ(N

log
Mk0

⌊
Mk0+1

2

⌋
),

which upon simplification gives the desired result.

Remark 5.5.1. Notice that limM→∞ ln(Mk0 + 1)/ lnMk0 = 1, which means that the even and

odd cases in the expression for % are similar when M is large.

Remark 5.5.2. From Theorem 5.5.1, we can see that with larger message alphabet size, the

total error probability decays more quickly. However, the change in the decay exponent is

not significant because k0 depends on D logarithmically. Furthermore, if M is large, then the

change in the performance is less sensitive to the increase in D.

Remark 5.5.3. Comparing the results in Theorems 5.5.1 and 5.5.2, we can see that the majority

dominance rule achieves the optimal exponent in the oddary case and it almost achieves the

optimal exponent in the evenary case.

For the Bayesian likelihood ratio test, we have the following result.

Theorem 5.5.3. The convergence rate using the likelihood ratio test is at least as good as that

using the majority dominance rule; i.e., log2P
−1
N = Ω (N%) .

In the case where M is even, we can derive the decay rate using the alternative majority

dominance strategy.

Theorem 5.5.4. The convergence rate using the alternative majority dominance strategy is

log2 P
−1
N = Ω (Nσ) , where

σ =
1

2

(
1 +

ln(Mk0 + 2)

lnMk0

)
− logM 2

k0

.
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Theorem 5.5.3 and 5.5.4 follow by applying the same arguments as those made in proofs

of Corollary 5.3.1 and Theorem 5.5.1 and the proofs are omitted for brevity.

The message-passing scheme provided here requires message alphabets with maximum

size D. However, most of the agents use much ‘smaller’ messages. For example, the leaf

agents generate binary messages. It is interesting to characterize the average message size

used in our scheme. Because of the recursive strategy, it suffices to calculate the average

message size in a subtree with height k0 − 1 since the message sizes in our scheme repeat

every k0 levels.

2 4 6 8 10
1

1.1

1.2

1.3

1.4

k0

b̄
(k

0
)

2 4 6 8 10
1

1.1

1.2
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1.4
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b̄
(k

0
)

(a) (b)

Figure 5.4: (a) Average message size (dashed red line) in M = 10 case. (b) Average message
size (dashed red line) in M = 20 case. The blue lines represent the bounds in (5.8).

The message size (in bits) for agents at level t ∈ {0, 1, . . . , k0 − 1} is log2(M t + 1) and

the number of agents at level t is Mk0−t. Therefore, the average size b(k0) in bits used in our

scheme is

b(k0) =
Mk0 + . . .+M log2(Mk0−1 + 1)

Mk0 +Mk0−1 + . . .+M
=

∑k0−1
t=0 Mk0−t log2(M t + 1)∑k0−1

t=0 M t+1
.

We have

log2(M t + 1) > log2M
t = t log2M

and

log2(M t + 1) < log2(2M t) = 1 + t log2M
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for all t ≥ 1. Therefore, the average size in bits is lower bounded as

b(k0) >
Mk0 +Mk0−1 log2M + . . .+M(k0 − 1) log2M

Mk0 +Mk0−1 + . . .+M

=
Mk0

Mk0 +Mk0−1 + . . .+M
+

log2M(M2(Mk0−1 − 1)−M(M − 1)(k0 − 1))

(Mk0 +Mk0−1 + . . .+M)(M − 1)2

=
Mk0 −Mk0−1

Mk0 − 1
+
M log2M

M − 1

Mk0−1 − 1−M(M − 1)(k0 − 1)

Mk0 − 1
.

In addition, it is upper bounded as

b(k0) < 1 +
M log2M

M − 1

Mk0−1 − 1−M(M − 1)(k0 − 1)

Mk0 − 1
≤ 1 +

log2M

M − 1
.

Recall that, with sufficiently large k0, the error probability convergence rates are close to

exponential. However, from the above bounds the average message size in terms of bits in our

scheme is still very small, specifically for sufficiently large k0 we have

1 +
log2M

M − 1
− 1

M
≤ b(k0) ≤ 1 +

log2M

M − 1
. (5.8)

Fig. 5.4 shows plots of the average message sizes b(k0) versus k0 in the M = 10 and 20 cases.

Note that as M increases, the average message size becomes smaller and the bounds in (5.8)

become tighter.
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CHAPTER 6

STRING SUBMODULARITY

We introduce the notion of string submodularity to optimal control problems. We show

that the greedy strategy, consisting of a string of actions that only locally maximizes the step-

wise gain in the objective function, achieves at least a (1− e−1)-approximation to the optimal

strategy. Moreover, we can improve this approximation by introducing additional constraints

on curvature, namely, total backward curvature, total forward curvature, and elemental for-

ward curvature. We show that if the objective function has total backward curvature σ, then

the greedy strategy achieves at least a 1
σ
(1 − e−σ)-approximation of the optimal strategy. If

the objective function has total forward curvature ε, then the greedy strategy achieves at least

a (1−ε)-approximation of the optimal strategy. Moreover, we consider a generalization of the

diminishing-return property by defining the elemental forward curvature. We also introduce

the notion of string-matroid and consider the problem of maximizing the objective function

subject to a string-matroid constraint.

6.1 Introduction

6.1.1 Background

We consider the problem of optimally choosing a string of actions over a finite horizon to

maximize an objective function. Let A be a set of all possible actions. At each stage i, we

choose an action ai from A. We use A = (a1, a2, . . . , ak) to denote a string of actions taken

over k consecutive stages, where ai ∈ A for i = 1, 2, . . . , k. We use A∗ to denote the set of all

possible strings of actions (of arbitrary length, including the empty string). Let f : A∗ → R be

an objective function, where R denotes the real numbers. Our goal is to find a string M ∈ A∗,

with a length |M | not larger than K, to maximize the objective function:

maximize f(M)
subject to M ∈ A∗, |M | ≤ K.

(6.1)
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The solution to (6.1), which we call the optimal strategy, can be found using dynamic pro-

gramming (see, e.g., [72]). More specifically, this solution can be expressed with Bellman’s

equations. However, the computational complexity of finding an optimal strategy grows ex-

ponentially with respect to the size of A and the length constraint K. On the other hand, the

greedy strategy, though suboptimal in general, is easy to compute because at each stage, we

only have to find an action to maximize the step-wise gain in the objective function. The ques-

tion we are interested in is: How good is the greedy strategy compared to the optimal strategy

in terms of the objective function? This question has attracted widespread interest, which we

will review in the next section.

In this chapter, we extend the concept of set submodularity in combinatorial optimization

to bound the performance of the greedy strategy with respect to that of the optimal strat-

egy. Moreover, we will introduce additional constraints on curvatures, namely, total back-

ward curvature, total forward curvature, and elemental forward curvature, to provide more

refined lower bounds on the effectiveness of the greedy strategy relative to the optimal strat-

egy. Therefore, the greedy strategy serves as a good approximation to the optimal strategy.

We will investigate the relationship between the approximation bounds for the greedy strategy

and the values of the curvature constraints. These results have many potential applications in

closed-loop control problems such as portfolio management (see, e.g., [73]), sensor manage-

ment (see, e.g., [74]), and influence in social networks (see, e.g., [75]).

6.1.2 Related Work

Submodular set functions play an important role in combinatorial optimization. Let X

be a ground set and g : 2X → R be an objective function defined on the power set 2X of

X . Let I be a non-empty collection of subsets of X . Suppose that I has the hereditary

and augmentation properties: 1. For any S ⊂ T ⊂ X , T ∈ I implies that S ∈ I; 2. For any

S, T ∈ I , if T has a larger cardinality than S, then there exists j ∈ T \S such that S∪{j} ∈ I .

Then, we call (X, I) a matroid [76]. The goal is to find a set in I to maximize the objective
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function:

maximize g(N)
subject to N ∈ I. (6.2)

Suppose that I = {S ⊂ X : card(S) ≤ k} for a given k, where card(S) denotes the cardinal-

ity of S. Then, we call (X, I) a uniform matroid.

The main difference between (6.1) and (6.2) is that the objective function in (6.1) depends

on the order of elements in the stringM , while the objective function in (6.2) is independent of

the order of elements in the set N . To further explain the difference, we use P(M) to denote

a permutation of a string M . Note that for M with length k, there exist k! permutations. In

(6.1), suppose that for any M ∈ A∗ we have f(M) = f(P(M)) for any P . Then, under

these special circumstances, problem (6.1) is equivalent to problem (6.2). In other words, we

can view the second problem as a special case of the first problem. Moreover, there can be

repeated identical elements in a string, while a set does not contain identical elements (but we

note that this difference can be bridged by allowing the notion of multisets in the formulation

of submodular set functions).

Finding the solution to (6.2) is NP-hard—a tractable alternative is to use a greedy algo-

rithm. The greedy algorithm starts with the empty set, and incrementally adds an element to

the current solution giving the largest gain in the objective function. Theories for maximiz-

ing submodular set functions and their applications have been intensively studied in recent

years [77]–[101]. The main idea is to compare the performance of the greedy algorithm with

that of the optimal solution. Suppose that the set objective function g is non-decreasing:

g(A) ≤ g(B) for all A ⊂ B; and g(∅) = 0 where ∅ denotes the empty set. Moreover, suppose

that the function has the diminishing-return property: For all A ⊂ B ⊂ X and j ∈ X \ B,

we have g(A ∪ {j}) − g(A) ≥ g(B ∪ {j}) − g(B). Then, we say that g is a submodu-

lar set function. Nemhauser et al. [77] showed that the greedy algorithm achieves at least a

(1 − e−1)-approximation for the optimal solution given that (X, I) is a uniform matroid and

the objective function is submodular. (By this we mean that the ratio of the objective function
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value of the greedy solution to that of the optimal solution is at least (1 − e−1).) Fisher et

al. [78] proved that the greedy algorithm provides at least a 1/2-approximation of the optimal

solution for a general matroid. Conforti and Cornuéjols [79] showed that if the function g has

a total curvature c, where

c = max
j∈X

{
1− g(X)− g(X \ {j})

g({j})− g(∅)

}
,

then the greedy algorithm achieves at least 1
c
(1− e−c) and 1

1+c
-approximations of the optimal

solution given that (X, I) is a uniform matroid and a general matroid, respectively. Note that

c ∈ [0, 1] for a submodular set function, and if c = 0, then the greedy algorithm is optimal;

if c = 1, then the result is the same as that in [77]. Vondrák [80] showed that the continu-

ous greedy algorithm achieves at least a 1
c
(1 − e−c)-approximation for any matroid. Wang

et al. [81] provided approximation bounds in the case where the function has an elemental

curvature α, defined as

α = max
S⊂X,i,j∈X,i 6=j

{
g(S ∪ {i, j})− g(S ∪ {i})

g(S ∪ {j})− g(S)

}
.

The notion of elemental curvature generalizes the notion of diminishing return.

Some recent papers [71], [82]–[84] have extended the notion of set submodularity to prob-

lem (6.1). Streeter and Golovin [82] showed that if the function f is forward and backward

monotone: f(M ⊕N) ≥ f(M) and f(M ⊕N) ≥ f(N) for all M,N ∈ A∗, where ⊕ means

string concatenation, and f has the diminishing-return property:

f(M ⊕ (a))− f(M) ≥ f(N ⊕ (a))− f(N)

for all a ∈ A, M,N ∈ A∗ such that M is a prefix of N , then the greedy strategy achieves at

least a (1 − e−1)-approximation of the optimal strategy. The notion of string submodularity

and weaker sufficient conditions are established in [71] under which the greedy strategy still

achieves at least a (1− e−1)-approximation of the optimal strategy. Golovin and Krause [84]

introduced adaptive submodularity for solving stochastic optimization problems under partial

observability.
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6.1.3 Contributions

In this chapter, we study the problem of maximizing submodular functions defined on

strings. We impose additional constraints on curvatures, namely, total backward curvature,

total forward curvatures, and elemental forward curvature, which will be rigorously defined

in Section 6.2. The notion of total forward and backward curvatures is inspired by the work

of Conforti and Cornuéjols [79]. However, the forward and backward algebraic structures are

not exposed in the setting of set functions because the objective function defined on sets is

independent of the order of elements in a set. The notion of elemental forward curvature is

inspired by the work of Wang et al. [81]. We have exposed the forward algebraic structure of

this elemental curvature in the setting of string functions. Moreover, the result and technical

approach in [81] are different from those in this chapter. More specifically, the work in [81]

requires the objective function to be a “set function”; that is, independent of order of elements

in the set. In our case, order is a crucial component.

In Section 6.3, we consider the maximization problem in the case where the strings are

chosen from a uniform structure. For this case, our results are summarized as follows. Sup-

pose that the string submodular function f has total backward curvature σ(O) with respect

to the optimal strategy. Then, the greedy strategy achieves at least a 1
σ(O)

(1 − e−σ(O))-

approximation of the optimal strategy. Suppose that the string submodular function f has total

forward curvature ε. Then, the greedy strategy achieves at least a (1− ε)-approximation of the

optimal strategy. We also generalize the notion of diminishing return by defining the elemen-

tal forward curvature η. The greedy strategy achieves at least a 1− (1− 1
Kη

)K-approximation,

where Kη = (1− ηK)/(1− η) if η 6= 1 and Kη = K if η = 1.

In Section 6.4, we consider the maximization problem in the case where the strings are

chosen from a non-uniform structure by introducing the notion of string-matroid. Our results

for this case are as follows. Suppose that the string submodular function f has total backward

curvature σ(O) with respect to the optimal strategy. Then, the greedy strategy achieves at
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least a 1/(1 + σ(O))-approximation. We also provide approximation bounds for the greedy

strategy when the function has total forward curvature and elemental forward curvature.

In Section 6.5, we consider three applications of string submodular functions with curva-

ture constraints: 1) Designing a string of learning/fusion rules in balanced binary relay trees;

2) choosing a string of actions to maximize the expected fraction of accomplished tasks; and

3) designing a string of measurement matrices such that the information gain is maximized.

6.2 String Submodularity, Curvature, and Strategies

6.2.1 String Submodularity

We now introduce notation (same to those in [71]) to define string submodularity. Consider

a set A of all possible actions. At each stage i, we choose an action ai from A. Let A =

(a1, a2, . . . , ak) be a string of actions taken over k stages, where ai ∈ A, i = 1, 2, . . . , k. Let

the set of all possible strings of actions be

A∗ = {(a1, a2, . . . , ak)|k = 0, 1, . . . and ai ∈ A, i = 1, 2 . . . , k}.

Note that k = 0 corresponds to the empty string (no action taken), denoted by ∅. For a

given string A = (a1, a2, . . . , ak), we define its string length as k, denoted |A| = k. If

M = (am1 , a
m
2 , . . . , a

m
k1

) and N = (an1 , a
n
2 , . . . , a

n
k2

) are two strings in A∗, we say M = N if

|M | = |N | and ami = ani for each i = 1, 2, . . . , |M |. Moreover, we define string concatenation

as follows:

M ⊕N = (am1 , a
m
2 , . . . , a

m
k1
, an1 , a

n
2 , . . . , a

n
k2

).

IfM andN are two strings in A∗, we writeM � N if we haveN = M⊕L, for some L ∈ A∗.

In other words, M is a prefix of N .

A function from strings to real numbers, f : A∗ → R, is string submodular if

i. f has the forward-monotone property, i.e.,

∀M,N ∈ A∗, f(M ⊕N) ≥ f(M).
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ii. f has the diminishing-return property, i.e.,

∀M � N ∈ A∗,∀a ∈ A,

f(M ⊕ (a))− f(M) ≥ f(N ⊕ (a))− f(N).

In the rest of the chapter, we assume that f(∅) = 0. Otherwise, we can replace f with

the marginalized function f − f(∅). From the forward-monotone property, we know that

f(M) ≥ 0 for all M ∈ A∗.

We first state an immediate result from the definition of string submodularity.

Lemma 6.2.1. Suppose that the objective function f is string submodular. Then, for any string

N = (n1, n2, . . . , n|N |), we have

f(N) ≤
|N |∑
i=1

f((ni)).

Proof. We use mathematical induction to prove this lemma. If |N | = 1, then the result is

trivial. Suppose the claim in the lemma holds for any string with length k, we wish to prove

the claim for any string with length k+1. LetN = (n1, n2, . . . , nk, nk+1). By the diminishing

return property, we have

f((nk+1))− f(∅) ≥ f(N)− f((n1, . . . , nk)).

Therefore, by the assumption of the induction, we obtain

f(N) ≤ f((nk+1)) + f((n1, . . . , nk)) ≤
k+1∑
i=1

f((ni)).

This completes the induction proof.
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6.2.2 Curvature

We define the total backward curvature of f by

σ = max
a∈A,M∈A∗

{
1− f((a)⊕M)− f(M)

f((a))− f(∅)

}
. (6.3)

We define the total backward curvature of f with respect to string M ∈ A∗ by

σ(M) = max
N∈A∗,0<|N |≤K

{
1− f(N ⊕M)− f(M)

f(N)− f(∅)

}
, (6.4)

whereK is the length constraint in (6.1). Suppose that f is backward-monotone; i.e., ∀M,N ∈

A∗, f(M⊕N) ≥ f(N). Then, we have σ ≤ 1 and f has total curvature at most σ with respect

to any M ∈ A∗; i.e, σ(M) ≤ σ ∀M ∈ A∗. This fact can be shown using a simple derivation:

For any N ∈ A∗, we have

f(N ⊕M)− f(M) =

|N |∑
i=1

f((ni, . . . , n|N |)⊕M)− f((ni+1, . . . , n|N |)⊕M),

where ni represents the ith element of N . From the definition of total backward curvature and

Lemma 6.2.1, we obtain

f(N ⊕M)− f(M) ≥
|N |∑
i=1

(1− σ)f((ni))

≥ (1− σ)f(N),

which implies that σ(M) ≤ σ ≤ 1. We will give a lower bound for σ(M) in the next section.

Symmetrically, we define the total forward curvature of f by

ε = max
a∈A,M∈A∗

{
1− f(M ⊕ (a))− f(M)

f((a))− f(∅)

}
. (6.5)

Moreover, we define the total forward curvature with respect to M by

ε(M) = max
N∈A∗,0<|N |≤K

{
1− f(M ⊕N)− f(M)

f(N)− f(∅)

}
. (6.6)
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If f is string submodular and has total forward curvature ε, then it has total forward curvature

at most ε with respect to any M ∈ A∗; i.e., ε(M) ≤ ε ∀M ∈ A∗. Moreover, for a string

submodular function f , it is easy to see that for any M , we have ε(M) ≤ ε ≤ 1 because of the

forward-monotone property and ε(M) ≥ 0 because of the diminishing-return property.

We define the elemental forward curvature of the string submodular function by

η = max
ai,aj∈A,M∈A∗

f(M ⊕ (ai)⊕ (aj))− f(M ⊕ (ai))

f(M ⊕ (aj))− f(M)
. (6.7)

Moreover, we define the K-elemental forward curvature as follows:

η̂ = max
ai,aj∈A,M∈A∗,|M |≤2K−2

f(M ⊕ (ai)⊕ (aj))− f(M ⊕ (ai))

f(M ⊕ (aj))− f(M)
. (6.8)

For a forward-monotone function, we have η ≥ 0, and the diminishing-return is equivalent to

the condition η ≤ 1. By the definitions, we know that η̂ ≤ η for all K.

The definitions of σ(M), ε(M), and η̂ depend on the length constraint K of the optimal

control problem (6.1), whereas σ, ε, and η are independent of K. In other words, σ, ε, and η

can be treated as the universal upper bounds for σ(M), ε(M), and η̂, respectively.

6.2.3 Strategies

We will consider the following two strategies.

1) Optimal strategy: Consider the problem (6.1) of finding a string that maximizes f under

the constraint that the string length is not larger than K. We call a solution of this problem

an optimal strategy (a term we already have used repeatedly before). Note that because the

function f is forward monotone, it suffices to just find the optimal strategy subject to the

stronger constraint that the string length is equal to K. In other words, if there exists an

optimal strategy, then there exists one with length K.

2) Greedy strategy: A string Gk = (a∗1, a
∗
2, . . . , a

∗
k) is called greedy if

a∗i = arg max
ai∈A

f((a∗1, a
∗
2, . . . , a

∗
i−1, ai))− f((a∗1, a

∗
2, . . . , a

∗
i−1))
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∀i = 1, 2, . . . , k.

Notice that the greedy strategy only maximizes the step-wise gain in the objective function.

In general, the greedy strategy (also called the greedy string) is not an optimal solution to

(6.1). In this chapter, we establish theorems which state that the greedy strategy achieves at

least a factor of the performance of the optimal strategy, and therefore serves in some sense to

approximate an optimal strategy.

6.3 Uniform Structure

Let I consist of those elements of A∗ with maximal length K: I = {A ∈ A∗ : |A| ≤ K}.

We call I a uniform structure. Note that the way we define uniform structure is similar to

the way we define independent sets associated with uniform matroids. We will investigate the

case of non-uniform structure in the next section. Now (6.1) can be rewritten as

maximize f(M)
subject to M ∈ I.

We first consider the relationship between the total curvatures and the approximation

bounds for the greedy strategy.

Theorem 6.3.1. Consider a string submodular function f . Let O be a solution to (6.1). Then,

any greedy string GK satisfies

(i)

f(GK) ≥ 1

σ(O)

(
1−

(
1− σ(O)

K

)K)
f(O)

>
1

σ(O)
(1− e−σ(O))f(O),

(ii) f(GK) ≥ (1−maxi=1,...,K−1 ε(Gi))f(O).
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Proof. (i) For any M ∈ A∗ and any N = (a1, a2, . . . , a|N |) ∈ A∗, we have

f(M ⊕N)− f(M)

=

|N |∑
i=1

(f(M ⊕ (a1, . . . , ai))− f(M ⊕ (a1, . . . , ai−1)))

Therefore, using the forward-monotone property, there exists an element aj ∈ A such that

f(M ⊕ (a1, . . . , aj))− f(M ⊕ (a1, . . . , aj−1)) ≥ 1

|N |(f(M ⊕N)− f(M)).

Moreover, the diminishing-return property implies that

f(M ⊕ (aj))− f(M)

≥ f(M ⊕ (a1, . . . , aj))− f(M ⊕ (a1, . . . , aj−1))

≥ 1

|N |(f(M ⊕N)− f(M)).

Now let us consider the optimization problem (6.1). Using the property of the greedy strategy

and the above inequality (substitute M = Gi−1 and N = O), for each i = 1, 2, . . . , K we

have

f(Gi)− f(Gi−1) ≥ 1

K
(f(Gi−1 ⊕O)− f(Gi−1))

≥ 1

K
(f(O)− σ(O)f(Gi−1)).

Therefore, we have

f(GK) ≥ 1

K
f(O) +

(
1− σ(O)

K

)
f(GK−1)

=
1

K
f(O)

K−1∑
i=0

(
1− σ(O)

K

)i
=

1

σ(O)

(
1−

(
1− σ(O)

K

)K)
f(O).

Note that
1

σ(O)

(
1−

(
1− σ(O)

K

)K)
→ 1

σ(O)
(1− e−σ(O))
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from above as K →∞. This achieves the desired result.

(ii) Using a similar argument to that in (i), we have

f(Gi)− f(Gi−1) ≥ 1

K
(f(Gi−1 ⊕O)− f(Gi−1))

≥ 1

K
(f(Gi−1) + (1− ε(Gi−1))f(O)− f(Gi−1))

=
1

K
(1− ε(Gi−1))f(O).

Therefore, by recursion we have

f(GK) =
K∑
i=1

(f(Gi)− f(Gi−1))

≥
K∑
i=1

1

K
(1− ε(Gi−1))f(O)

≥ 1

K
K(1− max

i=1,...,K−1
ε(Gi))f(O)

= (1− max
i=1,...,K−1

ε(Gi))f(O).

Under the framework of maximizing submodular set functions, similar results are reported

in [79]. However, the forward and backward algebraic structures are not exposed in [79]

because the total curvature there does not depend on the order of the elements in a set. In the

setting of maximizing string submodular functions, the above theorem exposes the roles of

forward and backward algebraic structures in bounding the greedy strategy. To explain further,

let us state the results in a symmetric fashion. Suppose that the diminishing-return property

is stated in a backward way: f((a) ⊕M) − f(M) ≥ f((a) ⊕ N) − f(N) for all a ∈ A and

M,N ∈ A∗ such that N = (a1, . . . , ak) ⊕M . Moreover, a string Ĝk = (a∗1, a
∗
2, . . . , a

∗
k) is

called backward-greedy if

a∗i = arg max
ai∈A

f((ai, a
∗
i−1, . . . , a

∗
2, a
∗
1))− f((a∗i−1, . . . , a

∗
1)) ∀i = 1, 2, . . . , k.

Then, we can derive bounds in the same way as Theorem 6.3.1, and the results are symmetric.
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The results in Theorem 6.3.1 implies that for a string submodular function, we have

σ(O) ≥ 0. Otherwise, part (i) of Theorem 6.3.1 would imply that f(GK) ≥ f(O), which

is absurd. Recall too that if the function is backward monotone, then σ(O) ≤ σ ≤ 1. From

these facts and part (i) of Theorem 6.3.1, we obtain the following result, also derived in [82].

Corollary 6.3.1. Suppose that f is string submodular and backward monotone. Then,

f(GK) ≥ (1− (1− 1

K
)K)f(O) > (1− e−1)f(O).

Another immediate result follows from the facts that σ(O) ≤ σ and ε(Gi) ≤ ε for all i.

Corollary 6.3.2. Suppose that f is string submodular and backward monotone. Then,

(i)

f(GK) ≥ 1

σ

(
1−

(
1− σ

K

)K)
f(O)

>
1

σ
(1− e−σ)f(O),

(ii) f(GK) ≥ (1− ε)f(O).

We note that the bounds 1
σ
(1−e−σ) and (1−ε) are independent of the length constraintK.

Therefore, the above bounds can be treated as universal lower bounds of the greedy strategy

for all possible length constraints.

Next, we use elemental forward curvature to generalize the diminishing-return property

and we investigate the approximation bound using the elemental forward curvature.

Theorem 6.3.2. Consider a forward-monotone function f with K-elemental forward curva-

ture η̂ and elemental forward curvature η. Let O be an optimal solution to (6.1). Suppose that

f(Gi ⊕O) ≥ f(O) for i = 1, 2, . . . , K − 1. Then, any greedy string GK satisfies

f(GK) ≥ f(O)

(
1− (1− 1

Kη̂

)K
)

≥ f(O)

(
1− (1− 1

Kη

)K
)
,
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where Kη̂ = (1− η̂K)/(1− η̂) if η̂ 6= 1 and Kη = K if η̂ = 1; Kη = (1− ηK)/(1− η) if

η 6= 1 and Kη = K if η = 1.

Proof. For anyM,N ∈ A∗ such that |M | ≤ K and |N | ≤ K, by the definition ofK-elemental

forward curvature, there exists a ∈ A such that

f(M ⊕N)− f(M) =

|N |∑
i=1

(f(M ⊕ (a1, . . . , ai))− f(M ⊕ (a1, . . . , ai−1)))

≤
|N |∑
i=1

η̂i−1(f(M ⊕ ai)− f(M))

≤ (1 + η̂ + η̂2 + . . .+ η̂|N |−1)(f(M ⊕ a)− f(M))

= Kη̂(f(M ⊕ a)− f(M)).

Now let us consider the optimization problem (6.1) with length constraint K. Using the

property of the greedy strategy and the assumptions, we have for i = 1, 2, . . . , K,

f(Gi)− f(Gi−1) ≥ 1

Kη̂

(f(Gi−1 ⊕O)− f(Gi−1))

≥ 1

Kη̂

(f(O)− f(Gi−1)).

Therefore, by recursion, we have

f(GK) ≥ 1

Kη̂

f(O) + (1− 1

Kη̂

)f(GK−1)

=
1

Kη̂

f(O)
K−1∑
i=0

(1− 1

Kη̂

)i

= f(O)

(
1− (1− 1

Kη̂

)K
)
.

Because 1− (1− 1
Kη̂

)K is decreasing as a function of η̂ and η̂ ≤ η by definition, we obtain

f(O)

(
1− (1− 1

Kη̂

)K
)
≥ f(O)

(
1− (1− 1

Kη

)K
)
.
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Recall that η̂ depends on the length constraintK, whereas η does not. Therefore, the lower

bound using Kη can be treated as a universal lower bound of the greedy strategy.

Suppose that f is string submodular. Then, we have η ≤ 1. Because 1 − (1 − 1
Kη

)K is

decreasing as a function of η, we obtain the following result, which is reported in [71].

Corollary 6.3.3. Consider a string submodular function f . Let O be a solution to (6.1).

Suppose that f(Gi⊕O) ≥ f(O) for i = 1, 2, . . . , K−1. Then, any greedy string GK satisfies

f(GK) ≥ (1− (1− 1

K
)K)f(O) > (1− e−1)f(O).

The second inequality in the above corollary is given by the fact that 1 − (1 − 1
K

)K →

1− e−1 from above, as K goes to infinity. Next we combine the results in Theorems 6.3.1 and

6.3.2 to yield the following result.

Proposition 6.3.1. Consider a forward-monotone function f with elemental forward curva-

ture η and K-elemental forward curvature η̂. Let O be a solution to (6.1). Then, any greedy

string GK satisfies

(i)

f(GK) ≥ 1

σ(O)

(
1−

(
1− σ(O)

Kη̂

)K)
f(O)

≥ 1

σ(O)

(
1−

(
1− σ(O)

Kη

)K)
f(O),

(ii)

f(GK) ≥ (1− max
i=1,...,K−1

ε(Gi))
K

Kη̂

f(O)

≥ (1− max
i=1,...,K−1

ε(Gi))
K

Kη

f(O).
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Proof. (i) For any M,N ∈ A∗ and |M | ≤ K, |N | ≤ K, we have shown in the proof of

Theorem 6.3.1 that, there exists a ∈ A such that f(M⊕N)−f(M) ≤ Kη̂(f(M⊕a)−f(M)).

Now let us consider the optimization problem (6.1) with length constraint K. Using the

property of the greedy strategy and the monotone property, we have

f(Gi)− f(Gi−1) ≥ 1

Kη̂

(f(Gi−1 ⊕O)− f(Gi−1))

≥ 1

Kη̂

(f(O)− σ(O)f(Gi−1)).

Therefore, by recursion, we have

f(GK) ≥ 1

Kη̂

f(O) + (1− σ(O)

Kη̂

)f(GK−1)

=
1

Kη̂

f(O)
K−1∑
i=0

(1− σ(O)

Kη̂

)i

=
1

σ(O)

(
1− (1− σ(O)

Kη̂

)K
)
f(O).

The second inequality simply follows from the facts that 1
σ(O)

(
1− (1− σ(O)

Kη̂
)K
)

is a mono-

tone decreasing function of η̂ and η̂ ≤ η by definition.

(ii) Using a similar argument as part (i), we have

f(Gi)− f(Gi−1) ≥ 1

Kη̂

(f(Gi−1 ⊕O)− f(Gi−1))

≥ 1

Kη̂

(f(Gi−1)− f(Gi−1) + (1− ε(Gi−1))f(O)).

Therefore, by recursion,

f(GK) =
K∑
i=1

(f(Gi)− f(Gi−1))

≥
K∑
i=1

1

Kη̂

(1− ε(Gi−1))f(O)

≥ K

Kη̂

(1− max
i=1,...,K−1

ε(Gi))f(O).

The second inequality simply follows from the facts that K
Kη̂

is a monotone decreasing function

of η̂ and η̂ ≤ η by definition.
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We note that the condition in Theorem 6.3.2, f(Gi ⊕ O) ≥ f(O) for i = 1, . . . , K − 1,

is essentially captured by σ(O). In other words, even if the condition f(Gi ⊕ O) ≥ f(O) is

violated, we can still provide approximation bound using σ(O), which is larger than 1 in this

case.

6.4 Non-uniform Structure

In the last section, we considered the case where I is a uniform structure. In this section,

we consider the case of non-uniform structures.

We first need the following definition. LetM = (m1,m2, . . . ,m|M |) andN = (n1, n2, . . . , n|N |)

be two strings in A∗. We write M ≺ N if there exists a sequence of strings Li ∈ A∗ such that

N = L1 ⊕ (m1, . . . ,mi1)⊕ L2 ⊕ (mi1+1, . . . ,mi2)⊕ . . .

⊕ (mik−1+1, . . . ,m|M |)⊕ Lk+1.

In other words, we can remove some elements in N to get M . Note that ≺ is a weaker notion

of dominance than � defined earlier in Section 6.2. In other words, M � N implies that

M ≺ N but the converse is not necessarily true.

Now we state the definition of a non-uniform structure, analogous to the definition of

independent sets in matroid theory. A subset I of A∗ is called a non-uniform structure if it

satisfies the following conditions:

1. I is non-empty;

2. Hereditary: ∀M ∈ I , N ≺M implies that N ∈ I;

3. Augmentation: ∀M,N ∈ I and |M | < |N |, there exists an element x ∈ A in the string

N such that M ⊕ (x) ∈ I .

By analogy with the definition of a matroid, we call the pair (A, I) a string-matroid. We

assume that there exists K such that for all M ∈ I we have |M | ≤ K and there exists a
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N ∈ I such that |N | = K. We call such a string N a maximal string. We are interested in the

following optimization problem:

maximize f(N)
subject to N ∈ I. (6.9)

Note that if the function is forward monotone, then the maximum of the function subject to a

string-matroid constraint is achieved at a maximal string in the matroid. The greedy strategy

Gk = (a∗1, . . . , a
∗
k) in this case is given by

a∗i = arg max
ai∈A and (a∗1,...,a

∗
i−1,ai)∈I

f((a∗1, a
∗
2, . . . , a

∗
i−1, ai))− f((a∗1, a

∗
2, . . . , a

∗
i−1)),

∀i = 1, 2, . . . , k. Compared with (6.1), at each stage i, instead of choosing ai arbitrarily in A

to maximize the step-wise gain in the objective function, we also have to choose the action ai

such that the concatenated string (a∗1, . . . , a
∗
i−1, ai) is an element of the non-uniform structure

I . We first establish the following theorem.

Theorem 6.4.1. For any N ∈ I , there exists a permutation of N , denoted by P(N) =

(n̂1, n̂2, . . . , n̂|N |), such that for i = 1, 2, . . . , |N | we have

f(Gi−1 ⊕ (n̂i))− f(Gi−1) ≤ f(Gi)− f(Gi−1).

Proof. We prove this claim by induction on i = |N |, |N | − 1, . . . , 1 (in descending order).

If i = |N |, considering G|N |−1 and N , we know from the String-Matroid Axiom 3 that there

exists an element of N , denoted by n̂|N | (we can always permute this element to the end of

the string with a certain permutation), such that G|N |−1⊕ (n̂|N |) ∈ I . Moreover, we know that

the greedy way of selecting a∗|N | gives the largest gain in the objective function. Therefore, we

obtain

f(G|N |−1 ⊕ (n̂i))− f(G|N |−1) ≤ f(G|N |)− f(G|N |−1).

Now let us assume that the claim holds for all i > i0 and the corresponding elements are

{n̂i0+1, . . . , n̂|N |}. Next we show that the claim is true for i = i0. Let N̂i0 be the string after we
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remove the elements in {n̂i0+1, . . . , n̂|N |} from the original string N . We know from Axiom 2

that N̂i0 ∈ I and that |Gi0−1| < |N̂i0|, therefore, there exists an element from N̂i0 , denoted by

n̂i0 , such that Gi0−1 ⊕ (n̂i0) ∈ I . Using the property of the greedy strategy, we obtain

f(Gi0−1 ⊕ (n̂i0))− f(Gi0−1) ≤ f(Gi0)− f(Gi0−1).

This concludes the induction proof.

Next we investigate the approximation bounds for the greedy strategy using the total cur-

vatures.

Theorem 6.4.2. Let O be an optimal strategy for (6.9). Suppose that f is a string submodular

function. Then, a greedy strategy GK satisfies

(i) f(GK) ≥ 1
1+σ(O)

f(O),

(ii) f(GK) ≥ (1− ε(GK))f(O).

Proof. (i) By the definition of the total backward curvature, we know that

f(GK ⊕O)− f(O) ≥ (1− σ(O))f(GK).

Therefore, we have

f(O) ≤ f(GK ⊕O)− (1− σ(O))f(GK)

= f(GK)− (1− σ(O))f(GK) + f(GK ⊕O)− f(GK).

Let O = (o1, o2, . . . , oK). By the diminishing-return property, we have

f(GK ⊕O)− f(GK) =
K∑
i=1

(f(GK ⊕ (o1, . . . , oi))− f(GK ⊕ (o1, . . . , oi−1)))

≤
K∑
i=1

(f(GK ⊕ (oi))− f(GK)).
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By Theorem 6.4.1, we know that there exists a permutation: P(O) = (ô1, ô2, . . . , ô|O|) such

that

f(Gi−1 ⊕ (ôi))− f(Gi−1) ≤ f(Gi)− f(Gi−1),

for i = 1, 2, . . . , K. Therefore, by the diminishing-return property again,

K∑
i=1

(f(GK ⊕ (oi))− f(GK)) ≤
K∑
i=1

(f(Gi−1 ⊕ (ôi))− f(Gi−1))

≤
K∑
i=1

(f(Gi)− f(Gi−1))

= f(GK).

From the above equations,

f(O) ≤ f(GK) + f(GK)− (1− σ(O))f(GK)

= (1 + σ(O))f(GK),

and this achieves the desired result.

(ii) From the definition of total forward curvature, we have

f(GK ⊕O)− f(GK) ≥ (1− ε(GK))f(O).

From the proof of part (i), we also know that f(GK ⊕O)− f(GK) ≤ f(GK). Therefore, we

have f(GK) ≥ (1− ε(GK))f(O).

The inequality in (i) above is a generalization of a result on maximizing submodular set

functions with a general matroid constraint [78]. The submodular set counterpart involves

total curvature, whereas the string version involves total backward curvature. Note that if

f is backward monotone, then σ(O) ≤ σ ≤ 1. We now state an immediate corollary of

Theorem 6.4.2.

Corollary 6.4.1. Suppose that f is string submodular and backward monotone. Then, the

greedy strategy achieves at least a 1/2-approximation of the optimal strategy.
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Another immediate result follows from the facts that σ(O) ≤ σ and ε(GK) ≤ ε.

Corollary 6.4.2. Suppose that f is string submodular and backward monotone. Then, we

have

(i) f(GK) ≥ 1
1+σ

f(O),

(ii) f(GK) ≥ (1− ε)f(O).

Next we generalize the diminishing-return property using the elemental forward curvature.

Theorem 6.4.3. Suppose that f is a forward-monotone function with elemental forward cur-

vature η and K-elemental forward curvature η̂. Suppose that f(GK ⊕ O) ≥ f(O). If η̂ ≤ 1,

then

f(GK) ≥ 1

1 + η̂
f(O) ≥ 1

1 + η
f(O).

If η̂ > 1, then

f(GK) ≥ 1

1 + η̂2K−1
f(O) ≥ 1

1 + η2K−1
f(O).

Proof. Let O = (o1, o2, . . . , oK). From the definition of K-elemental forward curvature,

f(GK ⊕O)− f(GK) =
K∑
i=1

(f(GK ⊕ (o1, . . . , oi))− f(GK ⊕ (o1, . . . , oi−1)))

≤
K∑
i=1

(f(GK−1 ⊕ (oi))− f(GK−1))η̂i

≤
{
η̂
∑K

i=1(f(GK−1 ⊕ (oi))− f(GK−1)), if η̂ ≤ 1

η̂K
∑K

i=1(f(GK−1 ⊕ (oi))− f(GK−1)), if η̂ > 1.

From Theorem 6.4.1, there exists a permutation P of O: P(O) = (ô1, . . . , ôK), such that

f(Gi−1 ⊕ (ôi))− f(Gi−1) ≤ f(Gi)− f(Gi−1),

for i = 1, . . . , K.
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Moreover, by the definition of K-elemental forward curvature,

K∑
i=1

(f(GK−1 ⊕ (oi))− f(GK−1))

=
K∑
i=1

(f(GK−1 ⊕ (ôi))− f(GK−1))

≤
K∑
i=1

η̂K−i(f(Gi−1 ⊕ (ôi))− f(Gi−1))

≤
{∑K

i=1(f(Gi−1 ⊕ (ôi))− f(Gi−1)), if η̂ ≤ 1

η̂K−1
∑K

i=1(f(Gi−1 ⊕ (ôi))− f(Gi−1)), if η̂ > 1.

≤
{
f(GK), if η̂ ≤ 1

η̂K−1f(GK), if η̂ > 1.

Therefore, we have

f(O) ≤
{

(1 + η̂)f(GK), if η̂ ≤ 1

(1 + η̂2K−1)f(GK), if η̂ > 1.

Since η̂ ≤ η and 1
1+η̂

and 1
1+η̂2K−1 are monotone decreasing functions of η̂, we obtain the

desired results.

This result is similar to that in [81]. However, the second bound in Theorem 6.4.3 is

different from that in [81]. This is because the proof in [81] uses the fact that the value of a

set function at a set is independent of the order of elements in the set, whereas this is not the

case for a string. Recall that the elemental forward curvature for a string submodular function

is not larger than 1. We obtain the following result.

Corollary 6.4.3. Suppose that f is a string submodular function and f(GK ⊕ O) ≥ f(O).

Then, the greedy strategy achieves at least a 1/2-approximation of the optimal strategy.

Now we combine the results for total and elemental curvatures to get the following.

Proposition 6.4.1. Suppose that f is a forward-monotone function with K-elemental forward

curvature η̂ and elemental forward curvature η. Then, a greedy strategy GK satisfies
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(i) f(GK) ≥ 1
σ(O)+h(η̂)

f(O) ≥ 1
σ(O)+h(η)

f(O),

(ii) f(GK) ≥ 1−ε(GK)
h(η̂)

f(O) ≥ 1−ε(GK)
h(η)

f(O),

where h(η̂) = η̂ and h(η) = η if η̂ ≤ 1; h(η̂) = η̂2K−1 and h(η) = η2K−1 if η̂ > 1.

Proof. (i) Using the definition of total backward curvature, we have f(GK ⊕ O) − f(O) ≥

(1− σ(O))f(GK), which implies that f(GK ⊕O)− f(GK) ≥ f(O)− σ(O)f(GK). Using a

similar argument as that of Theorem 6.4.3, we know that

f(GK ⊕O)− f(GK) ≤ h(η̂)f(GK).

Therefore, we have

f(GK) ≥ 1

h(η̂) + σ(O)
f(O).

The second inequality follows from h(η̂) ≤ h(η).

(ii) Using the definition of total forward curvature, we have

f(GK ⊕O)− f(GK) ≥ (1− ε(GK))f(O).

Using a similar argument as that of Theorem 6.4.3, we know that f(GK ⊕ O) − f(GK) ≤

h(η̂)f(GK). Therefore, we have

f(GK) ≥ 1− ε(GK)

h(η̂)
f(O).

The second inequality follows from h(η̂) ≤ h(η).

From these results, we know that when f is string submodular, η̂ ∈ [0, 1] and we must

have σ(O) + η̂ ≥ 1 and ε(GK) + η̂ ≥ 1. From Theorems 6.3.1, 6.3.2, 6.4.1, and 6.4.2,

we see that the performance of the greedy strategy relative to the optimal improves as the

total forward/backward curvature or the elemental forward curvature decreases to 0. On the

other hand, the inequalities above indicate that this performance improvement with forward

and elemental curvature constraints cannot become arbitrarily good simultaneously. When
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equality in either case holds, the greedy strategy is optimal. A special case for this scenario is

when the objective function is string-linear: f(M ⊕N) = f(M) + f(N) for all M,N ∈ A∗,

i.e., η = 1 and σ = ε = 0. Recall that 0 ≤ σ(O) ≤ σ, 0 ≤ ε(GK) ≤ ε, and 0 ≤ η̂ ≤ η.

Therefore, we have σ(O) = ε(Gk) = 0 and η̂ = 1.

Remark 6.4.1. The above proposition and the discussions afterward easily generalize to the

framework of submodular set functions.

6.5 Applications

In this section, we investigate three applications of string submodular functions with cur-

vature constraints.

6.5.1 Learning in Balanced Binary Relay Trees

We consider the problem of testing binary hypothesis between H0 and H1 in a balanced

binary relay tree, with structure shown in Fig. 3.1. Let p be any fusion node (i.e., p is a

nonleaf node). We say that p is at level k if there are k hops between this node and the closest

sensor (leaf node) in the tree. We denote by C(p) the set of child nodes of p. Suppose that

p receives binary messages Yc ∈ {0, 1} from every c ∈ C(p) (i.e., from its child nodes), and

then summarizes the two received binary messages into a new binary message Yp ∈ {0, 1}

using a fusion rule λp:

Yp = λp({Yc : c ∈ C(p)}).

The new message Yp is then communicated to the parent node (if any) of p. Ultimately, the

fusion center makes an overall decision.

It turns out that the only meaningful rules to aggregate two binary messages in this case

are simply ‘AND’ and ‘OR’ rules defined as follows:

• AND rule (denoted by A): a parent node decides 1 if and only if both its child nodes

send 1;
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• OR rule (denoted byO): a parent node decides 0 if and only if both its child nodes send

0.

Henceforth, we only consider the case where each fusion node in the tree chooses a fusion

rule from Y := {A,O}.

We assume that all sensors are independent and the binary messages associated with these

sensors have identical Type I error probability α0 and identical Type II error probability β0.

Moreover, we assume that all the fusion nodes at level k (k ∈ {1, 2, . . . , h}) use the same

fusion rule λk; i.e., for each node p that lies at the kth level of the tree, λp = λk. In this

case, all the output binary messages for nodes at level k have the same Type I and Type II

error probabilities, which we denote by αk and βk respectively. Given a fusion rule λk, we can

show that the error probabilities evolve as follows:

(αk, βk) :=

{
(1− (1− αk−1)2, β2

k−1), if λk = A,
(α2

k−1, 1− (1− βk−1)2), if λk = O.

Remark 6.5.1. Note that the evolution of the error probability pair (αk, βk) is symmetric with

respect to the line α + β = 1. Hence, it suffices to consider the case where the initial pair

satisfies α0 + β0 < 1. We can derive similar result for the case where α0 + β0 > 1 (e.g., by

only flipping the decision at the fusion center). In the case where α0 + β0 = 1, the Type I and

II error probabilities add up to one regardless of the fusion rule used. Hence, this case is not

of interest.

Notice that the ULRT fusion rule is either theA rule or theO rule, depending on the values

of the Type I and Type II error probabilities at a particular level of the tree. More precisely,

we have

• If βk > αk, then the ULRT fusion rule is A;

• If βk < αk, then the ULRT fusion rule is O;
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• If βk = αk, then the total error probability remains unchanged after using A or O.

Moreover, the error probability pairs at the next level (αk+1, βk+1) after using A or O

are symmetric about the line β = α. Therefore, we call both A and O the ULRT fusion

rule in this case.

We define a fusion strategy as a string of fusion rules λj ∈ Y used at levels j = 1, 2, . . . , h,

denoted by π = (λ1, λ2, . . . , λh). Note that h denotes the height of the tree. Let the collection

of all possible fusion strategies with length h be Yh:

Yh := {π = (λ1, λ2, . . . , λh)|λj ∈ Y for j = 1, 2, . . . , h}.

For a given initial error probability pair (α0, β0) at the sensor level, the pair (αh, βh) at the

fusion center (level h) is a function of (α0, β0) and the specific fusion strategy π used. We

consider the Bayesian criterion in this chapter, under which the objective is to minimize the

total error probability π0αh+π1βh at the fusion center, where π0 and π1 are the prior probabil-

ities of the two hypotheses, respectively. Equivalently, we can find a strategy that maximizes

the reduction of the total error probability between the sensors and the fusion center. We call

this optimization problem an h-optimal problem. Without loss of generality, we assume that

the prior probabilities are equal; i.e., π0 = π1 = 1/2, in which case the h-optimal problem

(ignoring a factor of 1/2) can be written as:

maximize α0 + β0 − (αh + βh)
subject to π ∈ Yh. (6.10)

A fusion strategy that maximizes (6.10) is called the h-optimal strategy:

πo(α0, β0) = arg max
π∈Yh

(α0 + β0 − (αh + βh))

= arg max
π∈Yh

h−1∑
j=0

(αj + βj − (αj+1 + βj+1)).

In contrast, the ULRT fusion rule only minimizes the step-wise reduction in the total error

probability:

ULRT = arg max
λi∈Y

(αi + βi − (αi+1 + βi+1)) ∀i.
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Because of the equal prior probability assumption, a maximum a posteriori (MAP) fusion rule

is the same as the ULRT fusion rule. In this context, we call a fusion strategy consisting of

repeated ULRT fusion rules at all levels a ULRT (greedy) strategy.

In the next section, we derive the h-optimal fusion strategy for balanced binary relay trees

with height h using a dynamic programming approach. More specifically, we express the

solution using Bellman’s equations. We then show that the 2-optimal strategy is equivalent

to the ULRT strategy. Moreover, we show that the reduction of the total error probability is

a string submodular function, which implies that the greedy strategy is close to the optimal

fusion strategy in terms of the reduction in the total error probability.

6.5.1.1 Dynamic programming formulation

In this section, we formulate the problem of finding the optimal fusion strategy using a

deterministic dynamic programming model. First we define the necessary elements of this

dynamic model.

I. Dynamic System: We define the error probability pair at the kth level (αk, βk) as the

system state, denoted by sk. Notice that αk and βk can only take values in the interval

[0, 1]. Therefore, the set of all possible states is {(α, β) > 0|α + β < 1}. Moreover,

given the fusion rule, the state transition function is deterministic. If we choose λk = A,

then

(αk, βk) = (1− (1− αk−1)2, β2
k−1).

On the other hand, if we choose λk = O, then

(βk, αk) = (1− (1− βk−1)2, α2
k−1).

II. Rewards: At each level k, we define the instantaneous reward to be the reduction of the

total error probability after fusing with λk:

r(sk−1, λk) = (αk−1 + βk−1)− (αk + βk),

where αk and βk are functions of the previous state sk−1 and the fusion rule λk.
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Let vh−k(sk) be the cumulative reduction of the total error probability if we start the system

at state sk at level k and the strategy (λk+1, λk+2 . . . , λh) ∈ Yh−k is used. Following the above

definitions, we have

vh−k(sk) =
h∑

j=k+1

r(sj−1, λj).

If we let k = 0, that is, we start calculating the reduction from the sensor level, then the above

cumulative reward function is the same as the global objective function defined in (6.10).

Therefore, for given initial state s0, we have to solve the following optimization problem to

find the global optimal strategy over horizon h:

voh(s0) = max
π∈Yh

h∑
j=1

r(sj−1, λj).

The globally optimal strategy πo is

πo(s0) = arg max
π∈Yh

h∑
j=1

r(sj−1, λj).

Notice that sk depends on the previous state sk−1 and the fusion rule λk. We will write the state

at level k to be sk|sk−1,λk . The solution of the above optimization problem can be characterized

using Bellmam’s equations, which state that

voh(s0) = max
λ1∈Y

[
r(s0, λ1) + voh−1(s1|s0,λ1)

]
λo1(s0) = arg max

λ1∈Y

[
r(s0, λ1) + voh−1(s1|s0,λ1)

]
,

where λo1(s0) is the first element of the optimal strategy πo(s0). Recursively, the solution of

the optimization problem is given by

voh−(k−1)(sk−1) = max
λk∈Y

[
r(sk−1, λk) + voh−k(sk|sk−1,λk)

]
.

Moreover, the kth element of the optimal strategy πo(s0) is given by

λok(sk−1) = arg max
λk∈Y

[
r(sk−1, λk) + voh−k(sk|sk−1,λk)

]
.
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Remark 6.5.2. The above formulation can easily be generalized to the case where the nodes

and links in the tree fails with certain probabilities and even more complicated network ar-

chitectures simply by changing the state transition functions and the set of all possible fusion

rules. Also, we can easily generalize the above formulation to non-equal prior probability

scenario.

The complexity of the explicit solution to Bellman’s equations grows exponentially with

respect to the horizon h. Therefore, it is usually intractable to compute the h-optimal strategy

if h is sufficiently large. An alternative strategy is the ULRT strategy, which consists of

repeating ULRT fusion rule at all levels. We have shown in Chapter 3 that the decay rate of

the total error probability with this strategy is
√
N . Next we study whether the ULRT strategy

is the same as the h-optimal strategy. If not, does the ULRT strategy provide a reasonable

approximation of the h-optimal strategy?

6.5.1.2 2-optimal strategy

In this section, we show that the 2-optimal strategy is the same as the ULRT strategy.

Moreover, we give an counterexample which shows that the ULRT strategy is not 3-optimal.

Consider the 2-optimal problem in the balanced binary relay tree with height 2:

vo2(s0) = max
π∈Y2

2∑
j=1

r(sj−1, λj),

where Y2 = {(A,A), (A,O), (O,O), (O,A)}. The 2-optimal strategy in this case is

πo(s0) = arg max
π∈Y2

2∑
j=1

r(sj−1, λj).

We have the following theorem.

Theorem 6.5.1. A strategy π is 2-optimal if and only if π is the ULRT strategy.

Proof. First consider the special cases where βk = αk in the 2-optimal problem for k = 0

or k = 1. We know that when βk = αk, then both A and O do not change the total error
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probability after fusion and the next states after using A and O are symmetric with respect to

β = α line. Moreover, both A and O are called the ULRT strategy. Consequentially in this

case, the 2-optimal problem reduces to a 1-optimal problem. Hence, if π is 2-optimal, then

we can show that π is the ULRT strategy. On the other hand, if π is the ULRT strategy and

βk = αk for k = 0 or k = 1, then it is easy to show that π is always 2-optimal.

Now we show the theorem for the case where βk 6= αk for k = 0 and k = 1. First

note that the total error probability decreases strictly after fusing with the ULRT fusion rule.

However, if we apply the fusion rule other than the ULRT fusion rule in Y , then the total error

probability increases strictly after fusion. For example, if βk > αk and we apply the O fusion

rule, then the total error probability increases strictly; i.e.,

αk+1 + βk+1 = α2
k + 1− (1− βk)2 > αk + βk,

in other words, the instantaneous reward in this case is negative,

r(sk,O) < 0.

0 0.5 1

0.5

1

B1

U

L

α

β

Figure 6.1: Regions U , L, and B1 in the (α, β) plane.
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Because of symmetry, it suffices to prove this theorem in the upper triangular region U

defined as follows (see Fig. 6.1):

U := {(α, β) ≥ 0|α + β < 1 and β > α}.

We define the reflection of U with respect to β = α line to be L. Recall that if (αk, βk) ∈ B1,

where

B1 := {(α, β) ∈ U|(1− α)2 + β2 ≤ 1},

then the next state (αk+1, βk+1) ∈ L. See Fig. 6.1 for the region B1. Also recall that if

(α0, β0) lies on the boundary of B1, then the next state (α1, β1) lies on β = α line. Hence, this

boundary is not considered.

We divide the proof into two cases:

• Case I: (α0, β0) ∈ B1, in which case the ULRT strategy is (A,O);

• Case II: (α0, β0) ∈ U \B1, in which case the ULRT strategy is (A,A).

For Case I where (α0, β0) ∈ B1, it is easy to see that strategy (A,O) achieves a larger

reduction than that of (A,A), because usingA rule for the second level increases the total error

probability. Moreover, the total error probability after using (O,O) increases with respect to

the initial total error probability. Hence, this fusion rule cannot be 2-optimal. It suffices to

show that the strategy (A,O) achieves a larger reduction than that of (O,A):

r(s0,A) + r(s1,O) > r(s0,O) + r(s1,A),

which is equivalent with the following inequality

r(s0,A) + r(s1,O)− (r(s0,O) + r(s1,A)) =

(1− (1− β0)2)2 + 1− (1− α2
0)2−

((1− (1− α0)2)2 + 1− (1− β2
0)2) > 0.
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The above inequality can be reduced to

β2
0(1− β0)2 − α2

0(1− α0)2 > 0,

which holds for all (α0, β0) ∈ B1. Hence, the 2-optimal fusion strategy in this case is also

(A,O). We conclude that if (α0, β0) ∈ B1, then a strategy is 2-optimal if and only if it is the

ULRT strategy.

For Case II where (α0, β0) ∈ U \ B1, it is easy to see that strategy (A,A) achieves a

larger reduction than that of (A,O). Moreover, the total error probability after using (O,O)

increases with respect to the initial total error probability. Hence, this fusion rule cannot be

2-optimal. It suffices to show that the strategy (A,A) achieves a larger reduction than that of

(O,A):

r(s0,A) + r(s1,A) > r(s0,O) + r(s1,A),

which reduces to

r(s0,A) + r(s1|s0 ,A)− (r(s0,O) + r(s1|s0 ,A)) =

(1− (1− β0)2)2 + 1− (1− α2
0)2−

(1− (1− α0)4 + β4
0) > 0.

The above inequality is equivalent to

β0(1− β0)(1 + β0)− α0(1− α0)(1− α0) > 0,

which holds for all (α0, β0) ∈ U \ B1. Therefore, the 2-optimal fusion strategy in this case is

also (A,A). We conclude that if (α0, β0) ∈ U \ B1, then a strategy is 2-optimal if and only if

it is the ULRT strategy.

This result also applies to any sub-tree with height 2 within a balanced binary relay tree

with arbitrary height h > 2. However, the ULRT strategy is not in general optimal for multiple

levels; i.e., h > 2, as the following counter-example for h = 3 shows.
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Let the initial state be (α0, β0) = (0.2, 0.3), in which case the ULRT strategy is (A,O,A).

As shown in Fig. 6.2, the solid (red) line denotes the total error probabilities at each level up

to 3. However, the 3-optimal strategy in this case is (O,A,A). The total error probability

curve of this strategy is shown as a dashed (green) line in Fig. 6.2. Similar counterexamples

can be found for cases where h > 3. Hence, the ULRT strategy is not in general h-optimal for

h ≥ 3. In the next section, we will introduce and employ the notion of string submodularity

to quantify the gap in performances between optimal and ULRT strategies for h ≥ 3.
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Figure 6.2: Comparison of the ULRT strategy and the 3-optimal strategy. The solid (red)
line represents the error probability curve using the ULRT strategy. The dashed (green) line
represents the error probability curve using the 3-optimal strategy.

6.5.1.3 String submodularity

We now apply the theory of string subnormality to learning in balanced binary relay trees

with even heights. Again we assume that the nodes at the same level use the same fusion

rule. Moreover, we assume that two fusion rules Λ of consecutive levels k and k + 1 (without

loss of generality, we assume that k is an even number) are chosen from the following set

Z = {(A,O), (O,A)}. Let Π = (Λ1,Λ2, . . . ,Λh) be a fusion strategy, where Λi ∈ Z for

all i. Let Z∗ be the set of all possible strategies (strings); i.e., Z∗ = {(Λ1,Λ2, . . . ,Λh)|h =
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0, 1, . . . and Λi ∈ Z ∀i}. Here we only prove the case where the prior probabilities are equally

likely. The following analysis easily generalizes to non-equal prior probabilities. Given the

two types of error probability (α0, β0) at level 0, the reduction of the total error probability

after applying a strategy Π is

u(Π) = α0 + β0 − (α2h(Π) + β2h(Π)),

where α2h and β2h represent the Type I and II error probabilities at level 2h after fusion with

Π.

Next we show that u is a string submodular function.

Proposition 6.5.1. For sufficiently small (α0, β0), the function u: Z∗ → R is string submod-

ular.

Proof. First we show that the function u is a monotone function. It suffices to show the

following:

u((Λ1, . . . ,Λk)⊕ (Λ∗)) ≥ u((Λ1, . . . ,Λk)),

for all Λi,Λ
∗ ∈ Z , where i = 1, 2, . . . , k. We will use (αk, βk) to denote the error probabilities

after using (Λ1, . . . ,Λk). If Λ∗ = (A,O), then we need to show that

u((Λ1, . . . ,Λk)⊕ (Λ∗))− u((Λ1, . . . ,Λk))

= αk + βk − (1− (1− αk)2)2 − (1− (1− β2
k)

2)

= fαk + fβk ≥ 0,

where fαk = αk− (1− (1−αk)2)2 and fβk = βk− (1− (1−β2
k)

2). It is evident that fα and fβ

are non-negative if αk and βk are sufficiently small. More precisely, if αk ≤ 0.3 and βk ≤ 0.3,

then the function u is monotone increasing. Therefore, if the initial error probabilities α0 and

β0 are sufficiently small, u is monotone increasing. See Fig. 6.3 for plots of fαk and fβk versus

αk and βk, respectively. If Λ∗ = (O,A), then

u(Λ∗) = αk + βk − (1− (1− α2
k)

2)− (1− (1− βk)2)2 ≥ 0,
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which also holds for sufficiently small αk and βk. This can also be proved using the symmetry

property of the problem.
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Figure 6.3: (a) Values of fαk versus αk. (b) Values of fβk versus βk.

Next we show the diminishing return property of u, that is,

u((Λ1,Λ2, . . . ,Λm)⊕ (Λ∗))− u((Λ1,Λ2, . . . ,Λm)) ≥

u((Λ1,Λ2, . . . ,Λn)⊕ (Λ∗))− u((Λ1,Λ2, . . . ,Λn))

for all m ≤ n, where Λi ∈ Z for all i and Λ∗ ∈ Z . First let us consider the simplest case

where m = 0 and n = 1; i.e.,

u((Λ∗))− u(∅) ≥ u((Λ1,Λ
∗))− u((Λ1)), (6.11)

for all Λ1,Λ
∗ ∈ Z . We know that u(∅) = 0 because the error probabilities do not change

without any fusion. Because of symmetry, it suffices to show the above inequality for the cases

where (Λ1,Λ
∗) = (A,O)⊕ (A,O) and (Λ1,Λ

∗) = (A,O)⊕ (O,A). The error probabilities

evolves as follows:

(αk, βk)
Λ1−→ (αk+2, βk+2)

Λ∗−→ (αk+4, βk+4).

Again because of symmetry, we only consider the evolution for αk.
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u((Λ1,Λ2, . . . ,Λm)⊕ (Λ∗))− u((Λ1,Λ2, . . . ,Λm))

≥ u((Λ1,Λ2, . . . ,Λm,Λm+1)⊕ (Λ∗))− u((Λ1,Λ2, . . . ,Λm,Λm+1)) (6.12)
≥ u((Λ1,Λ2, . . . ,Λm+1,Λm+2)⊕ (Λ∗))− u((Λ1,Λ2, . . . ,Λm+1,Λm+2)).

Case i: If (Λ1,Λ
∗) = (A,O)⊕ (A,O), then we can show the following

αk+4 − αk+2 − (αk+2 − αk) =

− α16
k + 8α14

k − 24α12
k + 32α10

k

− 14α8
k − 8α6

k + 10α4
k − 4α2

k + αk ≥ 0,

which holds for sufficiently small αk. See Fig. 6.4(a) for a plot of αk+4−αk+2− (αk+2−αk)

versus αk. Notice that if αk < 0.3, then the above inequality holds. This analyze easily

generalizes to the inequality for the Type II error probability by symmetry.

Case ii: If (Λ1,Λ
∗) = (A,O)⊕ (O,A), then we have

αk+4 − αk+2 − (ᾱk+2 − αk) =

− α16
k + 2α8

k + 2α4
k − 4α2

k + αk ≥ 0,

which holds for sufficiently small αk. We note that ᾱk+2 denotes the Type I error probability

after using Λ∗. See Fig. 6.4(b) for a plot of αk+4−αk+2− (ᾱk+2−αk) versus αk. Notice that

if αk < 0.25, then the above inequality holds. Therefore, the inequality (6.11) for the simplest

case holds.

From this case, it is easy to show (6.12). Then by recursion, we have

u((Λ1,Λ2, . . . ,Λm)⊕ (Λ∗))− u((Λ1,Λ2, . . . ,Λm))

≥ u((Λ1,Λ2, . . . ,Λn)⊕ (Λ∗))− u((Λ1,Λ2, . . . ,Λn))

for all m ≤ n, where Λi ∈ Z for all i and Λ∗ ∈ Z .
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Figure 6.4: (a) Values of αk+4 − αk+2 − (αk+2 − αk) versus αk. (b) Values of αk+4 − αk+2 −
(ᾱk+2 − αk) versus αk.

For a balanced binary relay trees with height 2K, the global optimization problem is to

find a strategy Π ∈ Z∗ with length K such that the above reduction is maximized; that is

maximize u(Π)
subject to Π ∈ Z∗, |Π| = K.

(6.13)

We have shown that the reduction of the total error probability u is a string submodular

function. Moreover, we know that the total error probability does not change if there is no

fusion; i.e.,

u(∅) = 0.

Therefore, we can employ Corollary 6.3.3 to the above maximization problem (6.13).

Consider a balanced binary relay tree with height 2K. We denote by u(GK) the reduction

of the total error probability after using the greedy strategy. We have shown that the ULRT

strategy is 2-optimal. Moreover, we have also shown in Chapter 3 that the ULRT strategy only

allows at most two identical consecutive fusion rules after the error probability pair enters

a certain regime in the (α, β) plane. Hence, we can conclude that a strategy is the ULRT

strategy if and only if it is the greedy strategy. We denote by u(O) the reduction of the total

error probability using the optimal strategy. We have the following theorem.
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Theorem 6.5.2. Consider a balanced binary relay tree with height 2K. We have

(1− e−1)u(O) < u(GK) ≤ u(O).

Proof. The inequality on the right hand side holds because

u(Π) ≤ u(O)

for all Π ∈ Π∗ where |Π| = K.

For the inequality on the left hand side, we have shown that u is a string submodular

function with u(∅) = 0. For any greedy string G, we have u(G) ≥ 0 because of the monotone

property. Moreover, we can show that the Type I and II error probabilities both decrease after

applying the string G. Therefore, the Type I error probability after G is not larger than the

initial Type I error probability.

We know that the mapping sΠ : αk → αk+2 is a monotone non-decreasing function respect

to αk for any fusion rule Π ∈ Z . Moreover, the optimal string O is simply a composite of

several such monotone non-decreasing functions. Hence, the Type I error probability after

applying O is a monotone non-decreasing function with respect to the initial Type I error

probability. With these, we conclude that u(G⊕O) ≥ u(O) for any greedy string G.

We know that u is a string submodular function from Proposition 6.5.1. We also know that

u(∅) = 0. Therefore, after applying Corollary 6.3.1 to this problem we complete the proof.

Remark 6.5.3. Recall that the fusion strategy is a string of fusion rules chosen from Z =

{(A,O), (O,A)}. Thus, the strategies we considered in this section have at most two consec-

utive repeated fusion rules. For example, the strategy (A,A,A, . . .) is not considered. It is

easy to show that with repeating identical fusion rule, the total error probability goes to 1/2.

Therefore, it is reasonable to rule out this situation.
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(αk+1, βk+1) :=


(

(1−qk)(1−(1−αk)2)+2qkαk
1+qk

,
(1−qk)β2

k+2qkβk
1+qk

)
, if λ = A,(

(1−qk)α2
k+2qkαk

1+qk
, (1−qk)(1−(1−βk)2)+2qkβk

1+qk

)
, if λ = O.

(6.14)

6.5.1.4 Node and link failures

We now consider balanced binary relay trees with node and link failures, in which case

the decay rate of the total error probability has been considered in Chapter 4. We assume

that each node at level k fails with identical node failure probability nk (a failed node cannot

transmit any message upward). We model each link as a binary erasure channel. With a

certain probability, the input message X (either 0 or 1) gets erased and the receiver does not

get any data. We assume that the links between nodes at height k and height k + 1 have

identical probability of erasure `k.

Consider a nodeNk at level k connected to its parent nodeNk+1 at level k + 1. We define

several probabilities as follows:

• Local failure probability pk: the probability that either the nodeNk fails or the link from

Nk to Nk+1 fails.

• Silence probability qk: the probability that Nk+1 does not receive a message from Nk.

From the above definition, we have

pk = nk + `k − nk`k.

By the law of total probability, we have

qk+1 = q2
k + pk+1(1− q2

k).

We can view qk as the exogenous input of the tree network. In this case, the evolution of the

Type I and II error probabilities are give in (6.14).

Again, we consider a balanced binary relay tree with even height 2h and the consecutive

fusion rules are chosen from Z .
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αk+2 =
(1− qk)(1− qk+1)

(1 + qk)(1 + qk+1)
(1− (1− αk)2)2 +

2qk(1− qk+1)

(1 + qk)(1 + qk+1)
α2
k

+
2qk+1(1− qk)

(1 + qk)(1 + qk+1)
(1− (1− αk)2) +

4qkqk+1

(1 + qk)(1 + qk+1)
αk. (6.15)

Proposition 6.5.2. Suppose that the silence probability sequence is upper bounded by 1/8;

that is, qk < 1/8 for all k. Then, if the initial error probabilities (α0, β0) are sufficiently small,

then the function u: Π∗ → R is string submodular.

Proof. We first show that u is non-decreasing. It suffices to show that u((A,O)) ≥ 0 start-

ing from (αk, βk). We can decompose (αk+2, βk+2) into different components, for example,

the expression for αk+2 is given in (6.15). Notice that in (6.15), the coefficient for αk is

4qk
(1+qk)(1+qk+1)

. Therefore, if qk < 1/8 for all k, then by the coefficient of αk in (6.15) is less

than 1, which implies that αk+2 ≤ αk for sufficiently small αk.

To show the diminishing return property, it suffice to consider the situation where we use

the rule (A,O) ⊕ (A,O). In this case, we need to show αk + αk+4 − 2αk+2 ≥ 0. Again,

we can write the expression for αk+2 in (6.15). Notice that if we write αk + αk+4 − 2αk+2

as a function of αk, then the coefficient for αk is not smaller than 1 − 8qk
(1+qk)(1+qk+1)

, notice

that qk ≤ 1/8 by assumption, then the coefficient for αk is positive. Therefore, we have

αk + αk+4 − 2αk+2 ≥ 0 for sufficiently small αk. We note that our argument rely on the fact

that the initial error probabilities (α0, β0) are both sufficiently small.

Note that if qk ≥ 1/8, then the function is not strictly monotone increasing. However, this

is a fair assumption considering that the failure probability usually is not as large as 1/8.

Using similar analysis as the non-failure case, we obtain the following bounds, which

capture the performance of greedy strategy compared with the optimal strategy.
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Corollary 6.5.1. Consider a balanced binary relay tree with height 2K with node and link

failures. Let GK and O denote the greedy and optimal strategies, respectively. We have

(1− e−1)u(O) < u(GK) ≤ u(O).

6.5.2 Strategies for Accomplishing Tasks

Consider an objective function of the following form:

f((a1, . . . , ak)) =
1

n

n∑
i=1

(
1−

k∏
j=1

(1− pji (aj))
)
.

We can interpret this objective function as follows. We have n subtasks, and by choosing ac-

tion aj at stage j there is a probability pji (aj) of accomplishing the ith subtask. Therefore, the

objective function is the expected fraction of subtasks that are accomplished after performing

(a1, . . . , ak). Suppose that pji is independent of j for all i; i.e., the probability of accomplish-

ing the ith subtask by choosing an action does not depend on the stage at which the action

is chosen. Then, it is obvious that the objective function does not depend on the order of

actions. In this special case, the objective function is a submodular set function and therefore

the greedy strategy achieves at least a (1− e−1)-approximation of the optimal strategy. More-

over, it turns out that this special case is closely related to several previously studied problems,

such as min-sum set cover [102], pipelined set cover [103], social network influence [104],

and coverage-aware self scheduling in sensor networks [105]. In this section, we generalize

the special case to the situation where pji depends on j. Applications of this generalization

include designing campaign strategy for political voting, etc. Without loss of generality, we

will consider the special case where n = 1 (our analysis easily generalizes to arbitrary n). In

this case, we have

f((a1, . . . , ak)) = 1−
k∏
j=1

(1− pj(aj)).

For each a ∈ A, we assume that pj(a) takes values in [L(a), U(a)], where 0 < L(a) < U(a) <

1. Moreover, let

c(a) =
1− U(a)

1− L(a)
.
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Obviously, c(a) ∈ (0, 1). The forward-monotone property is easy to check: For any M,N ∈

A∗, the statement that f(M ⊕N) ≥ f(M) is obviously true.

6.5.2.1 Uniform structure

We first consider the maximization problem under the uniform structure constraint. The

elemental forward curvature in this case is

η = max
ai,aj

(1− pi(ai))pj(aj)
pi(aj)

.

Suppose that Û = maxa∈A U(a) and L̂ = mina∈A L(a). Then, we have

η ≤ (1− L̂)Û

L̂
,

for all possible combinations of probability values pj , j = 1, 2, . . . . Note that the function is

submodular if and only if η ≤ 1. From the above equation, we conclude that f is submodular

if
(1− L̂)Û

L̂
≤ 1.

Therefore, a sufficient condition for f to be a string submodular function is

L̂−1 − Û−1 ≤ 1.

To apply Theorem 6.3.1, instead of calculating the total backward curvature with respect

to the optimal strategy, we calculate the total backward curvature for K ≤ |M | < 2K:

σ̂ = max
a∈A,K≤|M |<2K

{
1− f((a)⊕M)− f(M)

f((a))− f(∅)

}
(6.16)

= 1− min
a∈A,K≤|M |<2K

{
f((a)⊕M)− f(M)

f((a))− f(∅)

}
. (6.17)

We have

f((a)⊕M)− f(M)

f((a))− f(∅)
=

∏|M |
j=1(1− pj(aj))− (1− p1(a))

∏|M |
j=1(1− pj+1(aj))

p1(a)
.
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We then provide an upper bound for the total backward curvature for all possible combination

of pj . The minimum of the above term is achieved at pj(aj) = Û and pj+1(aj) = L̂:

min
a∈A,K≤|M |<2K

{
f((a)⊕M)− f(M)

f((a))− f(∅)

}
≥ min

a∈A,K≤k<2K

(1− Û)k − (1− p1(a))(1− L̂)k

p1(a)

≥ min
K≤k<2K

(1− Û)k − (1− L̂)k+1

L̂
.

From this we can derive an upper bound for the total backward curvature and use the upper

bound in Theorem 6.3.1. For example, suppose that (1 − Û)k/(1 − L̂)k ≥ 1 − L̂ for all

K ≤ k < 2K. Then, we can provide an upper bound for σ̂:

σ̂ ≤ 1− min
K≤k<2K

(1− Û)k − (1− L̂)k+1

L̂

= 1− (1− Û)2K−1 − (1− L̂)2K

L̂
.

Moreover, it is easy to verify that σ(O) ≤ σ̂. Therefore, we can substitute the above upper

bound of σ̂ to Theorem 6.3.1 to derive a lower bound for the approximation of the greedy

strategy.

Instead of calculating the total forward curvature with respect to the greedy strategy Gi,

we calculate

ε̂i = max
a∈A,i≤|M |<i+K

{
1− f(M ⊕ (a))− f(M)

f((a))− f(∅)

}
(6.18)

= 1− min
a∈A,i≤|M |<i+K

{
f(M ⊕ (a))− f(M)

f((a))− f(∅)

}
(6.19)

= 1− min
a∈A,i≤|M |<i+K

∏|M |
j=1(1− pj(aj))p1(a)

p1(a)
(6.20)

≤ 1− (1− Û)i+K−1. (6.21)

It is easy to show that ε(Gi) ≤ ε̂i. Moreover,

max
i=1,...,K−1

ε(Gi) ≤ max
i=1,...,K−1

ε̂i ≤ 1− (1− Û)2K−2.

We can substitute this upper bound in Theorem 6.3.1 and get a lower bound for the approxi-

mation of the optimal strategy that the greedy strategy is guaranteed to achieve.
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In Theorem 6.3.2, we need the additional assumption that f(Gi ⊕ O) ≤ f(O) for i =

1, . . . , K − 1, which can be written as
K∏
j=1

(1− pj(oj)) ≥
i∏
t=1

(1− pj(a∗j))
K∏
j=1

(1− pj+i(oj)). (6.22)

We know that
K∏
j=1

(1− pj(oj)) ≥
K∏
j=1

(1− U(oj))

and
i∏
t=1

(1− pj(a∗j))
K∏
j=1

(1− pj+i(oj)) ≤
K∏
j=1

(1− L(oj))(1− p1(a∗1)).

Therefore, a sufficient condition for (6.22) is

1− p1(a∗1) ≤
∏K

j=1(1− U(oj))∏K
j=1(1− L(oj))

=
K∏
j=1

c(oj).

Let c = mina∈A c(a). Suppose that we have

p1(a∗1) ≥ 1− cK .

Then, f(Gi ⊕O) ≤ f(O) for i = 1, . . . , K − 1.

6.5.2.2 Non-uniform structure

The calculation for the case of non-uniform structure uses a similar analysis. For example,

in Theorem 6.4.2, the calculation of the total backward curvature can be calculated in the same

way as the case of uniform structure.

Now let us consider the backward monotone property required in Theorem 6.4.3: f(GK⊕

O) ≥ f(O). This condition is much weaker than that in Theorem 6.3.2, and can be rewritten

as
K∏
j=1

(1− pj(oj)) ≥
K∏
t=1

(1− pj(a∗j))
K∏
j=1

(1− pj+K(oj)).

A sufficient condition for the above inequality is 1 − Û ≥ (1 − L̂)2. Recall that the function

is string submodular if

η ≤ (1− L̂)Û

L̂
≤ 1.
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Combining the above two inequalities, we have

η ≤ (1− L̂)Û

L̂
≤ (1− L̂)(1− (1− L̂)2)

L̂

= (1− L̂)(2− L̂) ≤ 1.

Therefore, we obtain

L̂ ≥ 1− 1

α
and Û ≤ 1

α
,

where α = 1+
√

5
2

is the golden ratio.

Now let us consider the special case where pj(a) is non-increasing over j for each a ∈ A.

It is easy to show that the function is string submodular. Moreover, the elemental forward

curvature is

η = max
ai,aj

(1− pi(ai))pj(aj)
pi(aj)

≤ max
ai

(1− pi(ai))

≤ 1− L̂.

Therefore, using this upper bound of the elemental forward curvature, we can provide a better

approximation than (1− e−1) for the greedy strategy.

Consider the special case where pj(a) is non-decreasing over j for each a ∈ A. In this

case, we have

σ(O) ≤ σ̂

= 1− min
a∈A,K≤|M |<2K

{
f((a)⊕M)− f(M)

f((a))− f(∅)

}
≤ 1−

|M |∏
j=1

(1− pj(aj))

≤ 1− (1− Û)2K−1.

Therefore, we can provide a better approximation than (1− e−1) for the greedy strategy using

this upper bound for σ(O).
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6.5.3 Maximizing the Information Gain

In this part, we present an application of our results on string submodular functions to

sequential Bayesian estimation. Consider a signal of interest x ∈ RN with normal prior

distribution N (µ, P0). In our example, we assume that N = 2 for simplicity; our analysis

easily generalizes to dimensions larger than 2. Let D denote the set of diagonal positive-

semidefinite 2× 2 matrices with unit Frobenius norm:

D = {Diag(
√
e,
√

1− e) : e ∈ [0, 1]}.

At each stage i, we choose a measurement matrix Ai ∈ D to get an observation yi, which is

corrupted by additive zero-mean Gaussian noise ωi ∼ N (0, Rωiωi):

yi = Aix+ ωi.

Let us denote the posterior distribution of x given (y1, y2, . . . , yk) byN (xk, Pk). The recursion

for the posterior covariance Pk is given by

P−1
k = P−1

k−1 + ATkR
−1
ωkωk

Ak

= P−1
0 +

k∑
i=1

ATi R
−1
ωiωi

Ai.

The entropy of the posterior distribution of x given (y1, y2, . . . , yk) is Hk = 1
2

log detPk +

log(2πe). The information gain given (A1, A2, . . . , Ak) is

f((A1, A2, . . . , Ak)) = H0 −Hk =
1

2
(log detP0 − log detPk).

The objective is to choose a string of measurement matrices subject to a length constraint K

such that the information gain is maximized.

The optimality of the greedy strategy and the measurement matrix design problem are

considered in [106] and [107], respectively. Suppose that the additive noise sequence is inde-

pendent and identically distributed. Then, it is easy to see that

f((A1, A2, . . . , Ak)) = f(P(A1, A2, . . . , Ak))
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for all permutations P . Moreover, the information gain is a submodular set function and

f(∅) = 0; see [108]. Therefore, the greedy strategy achieves at least a (1−e−1)-approximation

of the optimal strategy.

Consider the situation where the additive noise sequence is independent but not identically

distributed. Moreover, let us assume that Rωiωi = σ2
i I, where I denotes the identity matrix.

In other words, the noise at each stage is white but the variances σi depend on i. The forward-

monotone property is easy to see: We always gain by adding extra (noisy) measurements.

Now we investigate the sensitivity of string submodularity with respect to the varying

noise variances. We claim that the function is string submodular if and only if σi is monotone

non-decreasing with respect i. The sufficiency part is easy to understand: The information

gain at a later stage certainly cannot be larger than the information gain at an earlier stage

because the measurement yi becomes more noisy as i increases. We show the necessity part

by contradiction. Suppose that the function is string submodular and there exists k such that

σk ≥ σk+1. Suppose that the posterior covariance at stage k − 1 is Diag(sk−1, tk−1) and we

choose Ak = Diag(1, 0), Ak+1 = Diag(0, 1). We have

f(Ak ⊕ Ak+1)− f(Ak) = log(1 + tkσ
−2
k+1)

= log(1 + tk−1σ
−2
k+1)

≥ log(1 + tk−1σ
−2
k )

= f(Ak+1)− f(∅).

This contradicts the diminishing-return property and completes the argument.

In fact, it is easy to show that η̂ ≤ η ≤ 1 if and only if the sequence of noise variance

is non-decreasing. In this case, the greedy strategy achieves at least a factor (better than

(1− e−1)) of the optimal strategy.

For general cases where the noise variance sequence is not non-decreasing, we will provide

an upper bound for theK-elemental forward curvature η̂. For simplicity, let P0 = Diag(s0, t0).
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f(M ⊕ (Ai)⊕ (Aj))− f(M ⊕ (Ai))

= log(1 + s|M |+1σ
−2
|M |+2ej)(1 + t|M |+1σ

−2
|M |+2(1− ej))

= log(s−1
|M |+1 + σ−2

|M |+2ej)(t
−1
|M |+1 + σ−2

|M |+2(1− ej)) + log s|M |+1t|M |+1

≤ log

(
s−1
|M |+1 + σ−2

|M |+2ej + t−1
|M |+1 + σ−2

|M |+2(1− ej)
2

)2

+

max(− log(s−1
0 +

|M |+1∑
i=1

σ−2
i )t−1

0 ,− log s−1
0 (t−1

0 +

|M |+1∑
i=1

σ−2
i ))

= log

(
s−1

0 + t−1
0 +

∑|M |+2
i=1 σ−2

i

2

)2

− log s−1
0 (t−1

0 +

|M |+1∑
i=1

σ−2
i ) (6.23)

= log

(
1 + s0t

−1
0 + s0

∑|M |+2
i=1 σ−2

i

2

)
+ log

(
s−1

0 + t−1
0 +

∑|M |+2
i=1 σ−2

i

2(t−1
0 +

∑|M |+1
i=1 σ−2

i )

)

≤ log

(
1 + s0t

−1
0 + s0

∑2K
i=1 σ

−2
i

2

)
+ log

(
1

2

(
1 +

s−1
0 + maxi=1,...,2K σ

−2
i

(t−1
0 + σ−2

1 )

))
.

Without loss of generality, we assume that s0 ≥ t0. Let M = (A1, A2, . . . , A|M |) where

Ak = Diag(
√
ek,
√

1− ek) for k = 1, . . . , |M |. Let P|M | = Diag(s|M |, t|M |) where

s−1
0 ≤ s−1

|M | = s−1
0 +

|M |∑
i=1

σ−2
i ei ≤ s−1

0 +

|M |∑
i=1

σ−2
i ,

t−1
0 ≤ t−1

|M | = t−1
0 +

|M |∑
i=1

σ−2
i (1− ei) ≤ t−1

0 +

|M |∑
i=1

σ−2
i ,

and

s−1
|M | + t−1

|M | = s−1
0 + t−1

0 +

|M |∑
i=1

σ−2
i .

Next we derive an upper bound for η̂. We first derive an upper bound for the numerator

in (6.8) (definition of K-elemental forward curvature), which is given by (6.23) on the next

page.

We now derive a lower bound of the denominator in (6.8) by calculating the minimum

value of the denominator over all possible Aj . It is easy to show that the minimum is achieved
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at Aj = Diag(1, 0) or Aj = Diag(0, 1):

f(M ⊕ (Aj))− f(M) ≥ min(log(1 + t|M |σ
−2
|M |+1), log(1 + s|M |σ

−2
|M |+1))

≥ log(1 + min(s|M |σ
−2
|M |+1, t|M |σ

−2
|M |+1))

≥ log(1 + (t−1
0 +

2K−2∑
i=1

σ−2
i )−1 min

i=1,...,2K
σ−2
i ).

Therefore, we can derive an upper bound for the K-elemental forward curvature as follows:

η̂ ≤
log 1

4
(1 + s0t

−1
0 + s0

∑2K
i=1 σ

−2
i )(1 +

s−1
0 +maxi=1,...,2K σ−2

i

(t−1
0 +σ−2

1 )
)

log(1 + (t−1
0 +

∑2K−2
i=1 σ−2

i )−1 mini=1,...,2K σ
−2
i )

.

Using this upper bound, we can provide an approximation bound for the greedy strategy.

We note that this upper bound is not extremely tight in the sense that it does not increase

significantly with K only if s0 or σ−2
i are sufficiently small.

Now consider the case where σi takes an arbitrary value from [a, b], where 0 < a < b. In

this case, by substituting either a or b appropriately in the inequality above, we get an upper

bound for η̂:

η̂ ≤
log 1

4
(1 + s0t

−1
0 + 2s0Ka

−2)(1 +
s−1
0 +a−2

(t−1
0 +b−2)

)

log(1 + t0(1 + t0(2K − 2)a−2)−1b−2)
.

With the above lower bounds for η̂, we can use Theorem 6.3.2 to provide a bound for

the greedy strategy. To apply Theorem 6.3.2, we need to have f(Gi ⊕ O) ≥ f(O) for i =

1, 2, . . . , K − 1. Let A∗ ∈ D be a greedy action. We will provide a sufficient condition such

that f((A∗) ⊕M) ≥ f(M) for all M with length K. Suppose that σi ∈ [a, b] for all i. Let

A∗ = Diag(
√
e∗,
√

1− e∗) and M = (A1, . . . , AK), where At = Diag(
√
et,
√

1− et) for all

t. The inequality we need to verify can be written as

log(1 + s0(σ−2
1 e∗ +

K∑
t=1

σ−2
t+1et))(1 + t0(σ−2

1 (1− e∗) +
K∑
t=1

σ−2
t+1(1− et)))

≥ log(1 + s0(
K∑
t=1

σ−2
t et))(1 + t0(

K∑
t=1

σ−2
t (1− et))). (6.24)
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We first calculate the value of e∗. It is easy to show that the objective function after applying

(A∗) achieves the maximum when

e∗ =
1 +

t−1
0 −s

−1
0

σ−1
1

2
.

Because e∗ can only take values in [0, 1], in the case where (t−1
0 − s−1

0 )/σ−1
1 ≥ 1, the max-

imum is achieved at e∗ = 1. We will present our analysis only for this case—the analysis

for the case where (t−1
0 − s−1

0 )/σ−1
1 < 1 is similar and omitted. To show the above inequal-

ity (6.24), it suffices to show that

log(1 + s0σ
−2
1 + (s0

K∑
t=1

σ−2
t+1et))(1 + t0(

K∑
t=1

σ−2
t+1(1− et)))

≥ log(1 + s0(
K∑
t=1

σ−2
t et))(1 + t0(

K∑
t=1

σ−2
t (1− et))).

Removing the log on both sides of the inequality, we obtain

(1 + s0

K∑
t=1

σ−2
t+1et)(1 + t0

K∑
t=1

σ−2
t+1(1− et)) + s0σ

−2
1 (1 + t0

K∑
t=1

σ−2
t+1(1− et))

≥ (1 + s0

K∑
t=1

σ−2
t et)(1 + t0

K∑
t=1

σ−2
t (1− et)).

Rearranging terms, we obtain the following:

s0

K∑
t=1

et(σ
−2
t+1 − σ−2

t ) + t0

K∑
t=1

(1− et)(σ−2
t+1 − σ−2

t ) + s0σ
−2
1 (1 + t0

K∑
t=1

σ−2
t+1(1− et))

+ s0t0(
K∑
t=1

σ−2
t+1et)(

K∑
t=1

σ−2
t+1(1− et))− s0t0(

K∑
t=1

σ−2
t et)(

K∑
t=1

σ−2
t (1− et))

≥ s0

K∑
t=1

(σ−2
t+1 − σ−2

t )It + t0

K∑
t=1

(σ−2
t+1 − σ−2

t )(1− It) (6.25)

+ s0σ
−2
1 (1 + t0

K∑
t=1

σ−2
t+1(1− et)) + s0t0(b−4 − a−4)(

K∑
t=1

et)(
K∑
t=1

(1− et))

≥ s0(b−2 − a−2) + s0b
−2 +

K2

4
s0t0(b−4 − a−4),

where It = 1 if σ−2
t+1 ≤ σ−2

t and It = 0 if σ−2
t+1 > σ−2

t .
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From this we obtain a sufficient condition for f((A∗)⊕M) ≥ f(M) to hold:

b−2

a−2 − b−2
≥ K2

4
t0(a−2 + b−2) + 1.

We have shown before that the elemental forward curvature is not larger than 1 if and only if

the noise variance is non-decreasing. Moreover, if the above inequality holds, which requires

that either the length of the variance interval [a, b] or K is sufficiently small, then we can get

the (1− e−1) bound.
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CHAPTER 7

CONCLUDING REMARKS

We have studied the binary hypothesis testing problem in the context of feedforwad and

hierarchical tree networks. In feedfoward networks, we have considered two types of broad-

cast failures: erasure and flipping. In both cases, if the memory sizes are bounded, then there

does not exist a decision strategy such that the error probability converges to 0. In the case

of random erasure, if the memory size goes to infinity, then there exists a decision strategy

such that the error probability converges to 0, even if the erasure probability converges to

1. We also characterize explicitly the relationship between the convergence rate of the error

probability and the convergence rate of the memory. In the case of random flipping, if each

node observes all the previous decisions, then with the myopic decision strategy, the error

probability converges to 0, when the flipping probabilities are bounded away from 1/2. In the

case where the flipping probability converges to 1/2, we derive a necessary condition on the

convergence rate of the flipping probability such that the error probability converges to 0. We

also characterize explicitly the relationship between the convergence rate of the flipping prob-

ability and the convergence rate of the error probability. Finally, we have derived a necessary

condition such that the event herding has nonzero probability.

In hierarchical tree networks, we precisely describe the evolution of error probabilities in

the (α, β) plane as we move up the tree. This allows us to deduce error probability bounds

at the fusion center as functions of N under several different scenarios. These bounds show

that the total error probability converges to 0 sub-exponentially, with an exponent that is es-

sentially
√
N . In addition, we allow all sensors to be asymptotically crummy, in which case

we deduce the necessary and sufficient conditions for the total error probability to converge

to 0. All our results apply not only to the fusion center, but also to any other node in the tree

network. In other words, we can similarly analyze a sub-tree inside the original tree network.

We have also studied the social learning problem in the context of M -ary relay trees. We have
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analyzed the step-wise reductions of the Type I and Type II error probabilities and derived

upper and lower bounds for each error probability at the root as explicit functions of N , which

characterize the convergence rates for Type I, Type II, and the total error probabilities. We

have shown that the majority dominance rule is not better than the Bayesian likelihood ratio

test in terms of convergence rate. We have studied the convergence rate using the alternative

majority dominance strategy. Last, we have provided a message-passing scheme which in-

creases the convergence rate of the total error probability. We have shown quantitatively how

the convergence rate varies with respect to the message alphabet sizes. This scheme is very

efficient in terms of the average message size used for communication.

Our analysis leads to several open questions. We expect that our results can be extended

to multiple hypotheses testing problem, paralleling a similar extension in tandem networks

[6]. In the case of random flipping, we have not studied the case where the memory size

goes to infinity but each node cannot observe all the previous decisions. We also want to

generalize the techniques used in this thesis to more general network topologies. Moreover,

besides erasure and flipping failures, we expect that our techniques can be used in the additive

Gaussian noise scenario. With finite signal-to-noise ratios (SNR), the martingale convergence

proof in Lemma 2.3.2 easily generalizes to this scenario. However, if SNR goes to 0 (e.g.,

the fading coefficient goes to 0, the noise variance goes to infinity, or the broadcasting signal

power goes to 0), it is obvious that the convergence of error probability is not always true. We

want to derive necessary and sufficient conditions on the convergence rate of SNR such that

the error probability still converges to 0.

Social networks usually involve very complex topologies. For example, the degree of

branching may vary among different agents in the network. The convergence rate analysis for

general complex structures is still wide open.

Another question involves the assumption that the agent measurements are conditionally

independent. It is of interest to study the scenario where these agent measurements are corre-
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lated. This scenario has been studied in the star configuration [109]–[111] but not in any other

structures yet.

In the second topic of this thesis, we have introduced the notion of total forward, total

backward, and elemental forward curvature for functions defined on strings. We have de-

rived several variants of lower performance bounds, in terms of these curvature values, for the

greedy strategy with respect to the optimal strategy. Our results contribute significantly to our

understanding of the underlying algebraic structure of string submodular functions. More-

over, we have investigated two applications of string submodular functions with curvature

constraints.
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