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A Multichannel Temporally Adaptive System
for Continuous Cloud Classification

From Satellite Imagery
Kishor Saitwal, Student Member, IEEE, Mahmood R. Azimi-Sadjadi, and Donald Reinke

Abstract—A two-channel temporal updating system is pre-
sented, which accounts for feature changes in the visible and
infrared satellite images. The system uses two probabilistic neural
network classifiers and a context-based predictor to perform con-
tinuous cloud classification during the day and night. Test results
for 27 h of continuous classification and updating are presented on
a sequence of Geostationary Operational Environmental Satellite
8 images. Further test results of the system on two new sets of
data with 1–2 weeks time difference are also presented that show
the potential of this system as an operational continuous cloud
classification system.

Index Terms—Cloud classification, multispectral satellite
imaging, probabilistic neural networks.

I. INTRODUCTION

T HE GEOSTATIONARY Operational Environmental
Satellite 8 (GOES 8) provides frequent, high-resolution,

visible, and infrared (IR) images over large areas [1]. It plays
an important role in weather analysis and forecasting [2], both
of which require accurate cloud detection and classification.
However, due to the large volume of data received every day,
an automated cloud classification method is needed in order
to successfully classify sequences of images that are routinely
available at a frequency of 1 h (locally, most geostationary
systems will transmit data at 15–30-min frequencies; however,
the global data that are used in this study are available at a
common frequency of 1 h).

In processing sequences of GOES 8 satellite images, the
issue of temporal feature changes is an important consideration.
Owing to sun angle changes, the same cloud may look different
in the visible image at different times of the day. On the other
hand, because of diurnal changes of the temperature of the land
and water areas, the features of cloud/no-clouds change in the
IR channel. Although these feature variations may not be very
prominent in the short-term, their effects over a longer period
of time cannot be ignored. Thus, the performance of a fixed
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classifier can drastically deteriorate as a consequence of these
temporal variations in the feature space. This problem was first
addressed in [3] where a temporal updating mechanism using
probabilistic neural networks (PNNs) [4], [5] was proposed.
Gaussian mixture models and maximum likelihood [6] were
adopted to compute the parameters of the classifiers iteratively
as new images are received. The system uses the visible and IR
(Channel 4) data from GOES 8 satellite imagery to classify the
images into ten different cloud/no-cloud classes. Promising re-
sults were reported on a sequence of GOES 8 images. However,
the major shortcoming of this system is its inability to provide
continuous cloud classification when the visible channel is not
available during the nighttime. This problem also disrupts the
temporal updating process for the next day due to discontinuity
of the data.

To the best of our knowledge, there is no temporally adapt-
able continuous cloud classification system that can operate
24-h/day. This letter presents a new version of the temporal
updating system in [3] that circumvents the problems of the
previous version and provides a basis for an operational cloud
classification system. The modified system offers a new way of
combining the information in the visible and IR channels. The
cloud images are classified into five different classes, namely 1)
Land, 2) Water, 3) Low-level, 4) Middle-level, and 5) High-level
clouds. During the daytime, two separate PNN classifiers are
used for the two channels and their results are fused together
to give the final classification results. During the nighttime,
however, the PNN classifier for the IR channel alone can provide
cloud classification for Middle-level and High-level clouds
based upon the temperature features. The system can be applied
to any other geostationary satellite imaging instrument (where
data are available at a 1-h interval or better) and can easily be aug-
mented to include other channels to aid in cloud classification.
The classification accuracies of the system during the daytime
are computed and compared with those of the previous system in
certain areas labeled by expert meteorologists. However, during
the nighttime, since Low-level clouds are very difficult to label,
the system performance is mainly evaluated for the other four
classes. The robustness of the overall system to variation in the
training datasets has also been studied.

The organization of this letter is as follows. Section II gives
the description of the proposed multichannel system. Test re-
sults of this new system, with and without a block-partitioning
scheme are presented and discussed in Section III. Finally, Sec-
tion IV provides concluding remarks on this work.

0196-2892/03$17.00 © 2003 IEEE



SAITWAL et al.: MULTICHANNEL TEMPORALLY ADAPTIVE SYSTEM FOR CONTINUOUS CLOUD CLASSIFICATION FROM SATELLITE IMAGERY 1099

Fig. 1. Schematic diagram of proposed multichannel system. Solid lines indicate the infrared-only path, while dashed lines indicate the additionalpath that is
used when visible data are available.

II. M ULTICHANNEL TEMPORAL UPDATING SYSTEM

The new multichannel temporal updating scheme, is shown
in Fig. 1. As can be seen, the system is composed of several key
components namely; two temporally adaptive PNN classifiers,
a contextual-based predictor, comparators, a geographical mask
and a final fusion system. These components and their functions
are briefly described in the following subsections.

A. Temporally Adaptive PNNs

PNN was introduced [5] to implement the Parzen nonpara-
metric probability density function (PDF) estimation method.
To overcome the structural and computational limitations
(during the testing phase) of this network, Streit and Luginbuhl
[6] introduced a modified version of the PNN that substantially
reduces the number of neurons in the recognition layer by using
Gaussian mixture models and the Expectation Maximization
algorithm to estimate the network parameters. This type of
PNN [3] is adopted in this letter.

Assume that the previous images up to frame are cor-
rectlyclassifiedand theweightsof thePNNsareupdated to frame

.Now the new frame, consisting of visible (Channel1)and
IR (Channel 4) images, arrives. These images are partitioned into
nonoverlapping blocks (typically of size 88 corresponding to
a region of size 32 32 km) and the spectral and textural fea-
tures of each block are extracted [4] using singular value decom-
position (SVD). The Fisher criterion is then used along with the
forward floating sequential selection [7] to select three features
with high discriminatory power from each channel. These fea-
tures are then applied to the PNN classifier. Owing to the fact
that the features of the clouds and background (land/water) do
not change abruptly, there is rich temporal class contextual in-
formation between adjacent frames, which can be utilized to
design a predictor (see Section II-B) that extrapolates its de-
cision and provides classification results for the blocks of the
current frame. The predictor’s classification results can be used
as “pseudotruth” for updating the PNNs.

The temporal updating of PNN is an on-line process that es-
timates the parameters of the PNN for every new frame so that
it can more accurately represent the distribution of the tempo-
rally changed feature space. This process should satisfy two key
requirements: a) the stability of those previously established cat-
egories and b) the flexibility to accommodate temporal changes
of the data and new classes. The training samples for each PNN

at frame consist of two subsets, viz., and , where in-
cludes all of those samples for which the class label is assumed
to be known, while all the samples of unknown types form.
These subsets are determined by comparing the initial (nonup-
dated) results of the PNNs with those of the context-based pre-
dictor. That is, the classifiers perform preliminary classification
of the data using the parameters that were updated based upon
the data of the previous frame (1 h prior). The classification re-
sult of the last frame is also used as input to the predictor, which
makes a prediction of the class of the current frame by using the
contextual information in two consecutive frames. The feature
vectors of the visible or IR channels corresponding to a partic-
ular block location are put in subset when the classification
labels of the corresponding nonupdated PNN and the predictor
agree, otherwise the sample is included in. Since the subset

contains labeled data with a relatively high level of con-
fidence (pseudotruth), supervised learning is used to fine-tune
the parameters of those Gaussian components that correspond
to the selected class. This ensures the stability of the established
classes. On the other hand, for subset, since the class labels
are unknown, an unsupervised learning is used to account for
feature changes and provide flexibility needed in these situa-
tions. In the latter case, the parameters of all the Gaussian mix-
tures used to model the class distributions are slightly updated.
Both learning mechanisms are implemented using an Expecta-
tion–Maximization (EM)-based updating strategy [3]. After the
updating is completed, the block is reclassified by the updated
PNN to give the final classification results. This process is re-
peated whenever a new frame arrives.

As can be seen in Fig. 1, the two PNNs share the same con-
text-based predictor, the output of which is separately compared
with those of the two PNNs, and the comparison results are used
to update the parameters of the two PNNs separately. The PNN
for the visible channel is trained for three different classes, viz.,
Land, Water, and Clouds, as this channel does not provide height
information essential for differentiating all the five classes. The
PNN for the IR channel, on the other hand, is trained to distin-
guish all the five different classes.

During the daytime, both the PNNs provide their separate
classification results. Thus, to get the final classification results
for each image block, one needs to fuse these results together. A
multilayer back-propagation neural network (BPNN) was used
to perform this decision-level fusion based upon the results of
the two PNNs. The PNN outputs for the training data are used
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for training of this fusion system, which combines the PNNs’
outputs to classify the image blocks into five different classes.
The fusion system output is used as a memory for the predictor,
which predicts the class label for each block in the next frame
on the basis of the results of the current frame. During the night-
time, the visible PNN and fusion system indicated by the dotted
lines in Fig. 1 are shut-off and the IR PNN takes over to give the
five-class classification results.

B. Context-Based Predictor

The prediction block in Fig. 1 is designed to provide an ini-
tial guess of the class of the current data based on the previous
classification results. In a sequence of satellite imagery, certain
positions in the image tend to belong to the same class in the ad-
jacent frame (temporal class dependency context). Additionally,
most of the classes are likely to cover a relatively large area in
one frame instead of appearing in isolated blocks (spatial class
dependency context). Thus, there is a rich class dependency con-
text in GOES imagery data, as the time interval between frames
is relatively short (i.e., 1 h).

The spatial-temporal class contextual information can be
modeled by a Markov chain [3]. In order to simplify the
modeling, a first-order Markov process is considered where the
class of the current frame is solely determined based upon those
in the previous one. Moreover, for a block in the current
frame , its spatial temporal neighborhood in frame is
assumed to contain nine blocks .
Two underlying Markov chains are assumed in [3]. The first
one describes the spatial movement such as clouds drifting,
while the second one describes the possible class changes.
The class transition Markov chain is necessary; otherwise, the
current block will always be one of the types that appeared in
its spatial temporal neighborhood. This is not the case in real
situations, as certain clouds may be generated, terminated, or
evolved to other classes. Using this model, the class conditional
probabilities are computed and then compared with those
generated using the PNNs in the comparison block.

C. Geographical Mask

In addition to the multichannel nature of this new system,
there is yet another major difference in the updating of the PNNs
in comparison with that of the previous system [3]. Geograph-
ical and topographical information (Land/Water mask) is em-
bedded into the system to improve the classification accuracy
and confidence of the updating process. This process is accom-
plished by exploiting the geography map when the output of
the final AND operation is either Land or Water class. In this
case, the geography map result is given the precedence over the
AND results of the two channels. For instance, if the final AND
operation labels a particular block as Land whereas the label ac-
cording to the geography map should be Water, then this block
is put into subset as a Water sample for the supervised up-
dating of both PNNs. Since such blocks are labeled with 100%
confidence, their inclusion in the supervised learning clearly
improves the accuracy of the temporal updating process. This
process is justified because Land and Water are more likely to
be misclassified to each other owing to small temperature and
reflectivity differences.

Fig. 2. Image pair at 18 UTC on July 23, 1998.

III. T EST RESULTS

A. Daytime Operation

The performance of the proposed multichannel system was
examined and compared with that of the original system [3]
on a sequence of GOES 8 satellite images. One typical image
pair, obtained at 18 UTC, July 23, 1998 is shown in Fig. 2.
These images, of size 512512 pixels (spatial resolution of 5
km/pixel), cover the Midwest and most of the Eastern part of
the United States, extending from the Rocky Mountains to the
Atlantic coast. The images cover mountains, plains, lakes, and
coastal areas where clouds have some specific features that are
tied to topography. Florida is located in the lower right, with
the Gulf of Mexico in the lower center part of the image. These
sequences are of particular interest because of the presence of a
variety of cloud types. Certain high confidence cloud/no-cloud
regions were identified and labeled for the initial training, val-
idation, and testing of the systems based on visual inspection
and other related information used by the expert meteorolo-
gists. Two experts labeled the daytime images and only those
areas where the labeling results agreed were used for initial
training, validation, and classification accuracy determination
on the testing set.

The selected SVD feature vectors (31) for each 8 8 block
of each channel were applied to the system. The goal was to
classify each block into five classes as mentioned before. The
labeled images for the visible and IR channels at 15 UTC from
July 23 and 24, 1998 were used to get the training and vali-
dation dataset for the PNNs. Half of these labeled blocks were
randomly chosen as the “training data” set, while the remaining
blocks were used as the “validation data” set. The validation
dataset is used to determine the optimally trained PNNs. That is,
the training and validation processes were repeated for ten trials,
and the classifiers that produced the best performance were se-
lected in the multichannel system to classify 27 h of continuous
data. A two-layer fusion BPNN with the structure 8-30-5 (i.e.,
eight inputs, 30 hidden-layer neurons, and five output neurons)
was trained using the normalized PNNs outputs for the training
set. The normalization was done in order to produce thea poste-
riori class condition probabilities for each class. The number of
epochs used for the training of this system was 500, while the
error goal was kept at . For given training and validation
datasets, this BPNN structure was also trained and validated for
ten different trials. The BPNN with best results on the validation
dataset was used.
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TABLE I
CONFUSIONMATRIX-PREVIOUS SYSTEM

TABLE II
CONFUSIONMATRIX-PROPOSEDSYSTEM

The performance of the proposed system was then compared
with that of the previous system [3] on the testing dataset
which included the expert labeled areas in all the other images
from 16–22 UTC. Table I presents the confusion matrix of
the previous system for the image pair shown in Fig. 2 for
July 23 at 18 UTC. The diagonal elements indicate the number
of blocks that are correctly classified, while the off-diagonal
elements represent the number of misclassified blocks for
each class. Note that the numbers on each row correspond to
the classification results of the system for a particular class.
The overall correct classification rate is around 70%. It can
be observed from this confusion matrix that there are a lot of
misclassifications particularly for Land, Water, and High-level
clouds. Table II, on the other hand, presents the confusion
matrix of the proposed two-channel system on the same image
pair. The overall correct classification rate is around 89%,
which indicates substantial improvement in the performance.
Clearly, the classification accuracies for several classes except
Middle-level clouds are increased substantially. The misclassi-
fication is mainly caused by the IR PNN, since the IR channel
textural features for Middle-level clouds are quite similar
to those of High-level clouds. In the single-channel system,
combining both the visible and IR channel features resulted
in a better performance on the Middle-level clouds while
misclassifying thin High-level clouds as Middle-level clouds.
One reason for the improved overall performance might be
due to the fact that decomposing the system into two separate
channels removes the two-channel feature interdependencies
in the previous scheme [3]. Additionally, fusion of the two
separate decisions can correct for some of the classification
errors in either of the channels.

The gray-coded classified images that identify different cloud
and no-cloud areas for both systems on the same image pair
are shown in Fig. 3. Visual inspection of Fig. 3(a) and (b) re-
veals that there is substantial improvement in the results of the
two-channel system [Fig. 3(b)] as compared to those of the pre-
vious system [Fig. 3(a)]. Fig. 3(c) gives the corresponding ex-
pert labeled image with the color map. Note that only those areas
in which the labels assigned by the two meteorologists agreed

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 3. Classification results of the two systems for image pair in Fig. 2 (for 1-h
interval imagery). (a) Original system results. (b) Two-channel system results.
(c) Expert labeled image. (d) Gray map. (e) Masked (original system) results.
(f) Masked (two-channel system) results. (g) Block partitioning results. (h) Gray
map.

were selected. Fig. 3(e) and (f) gives the masked results of both
systems against the expert labeled areas. As can be observed,
the results of the new system much more closely match those of
the expert labeled areas than those of the previous system.
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Fig. 4. Two-channel system daytime continuous operation results.

The plot in Fig. 4(a) shows the percentage of correct clas-
sification accuracy for the overall system output versus
time (in hours) for 8 h (15–22 UTC, July 23) of continuous
temporal updating. The solid line corresponds to the multi-
channel system, while the dotted line is used for the previous
system. Clearly, one can see that the temporal updating in the
new system is more reliable and consistent than the previous
system. The plots in Fig. 4(b)–(f) show the comparison be-
tween the two systems for the five classes separately. These
plots, again, reveal that the proposed system has much better
accuracy for all the classes except the Middle-level clouds due
to the reason explained earlier. During daytime operation, the
overall accuracy rate varies from 84% to 95%. The overall
mean correct classification over a period of 8 h of continuous
temporal updating is 90%.

B. Block Partitioning

The classification results of the proposed scheme in Fig. 3,
however, reveals that there are a large number of isolated blocks
that are misclassified. In particular, “cloud holes,” which cover
approximately 5% of the image, will not be correctly classified.
To solve this problem, a block partitioning scheme similar to
that in [8] was adopted here. This algorithm makes use of the
classification results of 8 8 overlapping blocks to determine
the label of the 4 4 subblocks. Each 4 4 subblock is classi-
fied four times (twice for boundary blocks). In this way, resolu-
tion is improved by a factor of four without the need to redesign
the training and updating mechanisms. The probability vectors
for each individual overlapping block are computed to deter-
mine the corresponding classification labels. This probability-

based decision for the middle 44 subblock, , can
be expressed as

(1)

where , i.e., one of the five classes and
is the class label of block . Note that

subscripts 4 4 and 8 8 indicate the corresponding block
sizes. The probabilities correspond
to thea posterioriprobabilities of the class membership for the
participating overlapping 8 8 blocks. As a result, each 44
subblock is given the class label, which has the maximum total
probability among the classes for the neighboring overlapping
blocks.

Fig. 3(g) shows the classification results of the proposed mul-
tichannel system with the block partitioning algorithm for the
image pair in Fig. 2. The overall correct classification rate for
this result was found to be around 90%. This result clearly shows
that almost all the isolated blocks are removed giving much
smoother gray-coded areas and boundaries. Additionally, the
resolution is substantially improved without considerable in-
crease in the computational cost. This is accomplished because
the updating is done based upon the classification results of
8 8 nonoverlapping blocks rather than the partitioned 44
subblocks. The computation time required for the block parti-
tioning method was about 37.54 s, while the two-channel system
alone took 18.3 s to generate the gray-coded image for one pair
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of images. The time difference is mainly attributed to the in-
crease in the number of blocks that had to be classified and the
voting mechanism.

To show the potential of the proposed two-channel system
for real operational cloud classification systems, we tested the
temporal updating mechanism on two new sequences of im-
ages on July 5 (two weeks before) and July 31 (one week after).
For the sake of simplicity, the temporal updating starts with the
same previously initially trained system at 15 UTC and performs
continuous classification and parameter adaptation for several
consecutive hours. Fig. 5(a) and (b) and (e) and (f) show two
pairs of visible and IR channel images at 18 UTC on July 5
and 31, respectively. Fig. 5(c) and (g) shows the corresponding
gray-coded classification results of these images. Close evalua-
tion of these results show the effectiveness of this two-channel
system. It must be emphasized that much better results could
have been obtained if the PNN classifiers were retrained at ini-
tial frame (15 UTC) every few days.

C. Nighttime Operation

During the nighttime, the visible PNN and BPNN fusion
system indicated by the dotted lines in Fig. 1 are shut-off and
the IR PNN alone takes over to give the five-class classification
results. When the IR PNN classifies a block as Land or Water,
the geography mask is used to make the final decision. Due to
unavailability of the visible channel data during the nighttime,
Low-level clouds are not labeled as they are not distinguishable
to the naked eye. Consequently, the experts labeled the areas
into only four remaining classes for classification accuracy
determination.

Since only the IR PNN makes the decision during the night-
time, it is important to study the robustness of the system to
different initial training conditions. To introduce this variability
in the datasets, half of the randomly picked (ten different times)
samples from all the labeled blocks in the visible and IR im-
ages at 15 UTC from July 23 and 24, 1998 were used to form
the training set, while the remaining half were used to form the
validation set for selecting the best networks. Trained PNNs
and BPNN fusion systems were then used to perform contin-
uous daytime and nighttime updating over a period of 27 h from
15 UTC on July 23 to 17 UTC on July 24, and the classification
accuracies were computed in the labeled areas (excluding the
training or validation sets). The plots in Fig. 6 show the percent
correct classification versus time (in hours) for individual
classes and for ten different trials. Stars indicate the “mean” of
the classifier outputs for a particular hour, while vertical lines
indicate “standard deviations” from the mean values. Note that
in these plots, Hour 1 corresponds to 15 UTC on July 23, 1998,
while Hour 27 corresponds to 17 UTC on July 24, 1998. The
overall correct classification rate for all the trials and the frames
of data considered is around 91.42%. During the period between
23 UTC on July 23 and 12 UTC on July 24 the accuracies for
Low-level clouds are not computed due to the lack of expert
labeling. These plots show the effectiveness of this system for
daytime as well as nighttime operations.

Table III gives the confusion matrix of the IR classifier alone
system at 10 UTC (2:00A.M.) on July 24. These results indicate

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 5. Classification results of the two-channel system. (a) Visible channel
image (July 5). (b) IR channel image (July 5). (c) Two-channel system results.
(d) Gray map. (e) Visible channel image (July 31). (f) IR channel image (July
31). (g) Two-channel system results. (h) Gray map.

that the system has very good performance during the nighttime.
Some of the Land and Water blocks were misclassified as Low-
level clouds, due to the fact that they might be covered with
Low-level clouds.
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Fig. 6. Robustness of classification accuracies over 27 h of temporal updating from 15 UTC on July 23 to 17 UTC on July 24.

TABLE III
CONFUSIONMATRIX AT 10 UTC (2:00A.M.) ON JULY 24 (X: LABELED

DATA NOT AVAILABLE )

IV. CONCLUSION

A multichannel temporal updating system is introduced
in this letter, which makes continuous day/night processing
feasible. Temporal updating takes place in each channel
individually and the results are fused together using a BPNN
system. During the daytime both channels participate in deci-
sion making, while during the night the decision is made solely
based upon the IR channel. Geographical and topographical
information is also exploited to aid the classification and up-
dating of Land and Water classes. A block-partitioning scheme
is employed to improve the performance of the proposed
system and increase the resolution of the final classification
result by a factor of four. This is accomplished without a drastic
increase in the computational time. The daytime multichannel
system gave much better results than those of the previous
system, while the proposed nighttime system preserved the
continuity of the classification (except for low-level clouds).

The preliminary results in this letter show the great promise of
the proposed multichannel system, which provides a foundation
toward building an operational cloud classification system with
temporal adaptability. Surface observations may also be used
not only to aid in the temporal updating but also for the purpose
of evaluating the performance of the system. This system can
be applied to various other satellite imaging problems that
involve multichannel processing.
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