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ABSTRACT 

 

ENHANCING THE TEST AND EVALUATION PROCESS:   

IMPLEMENTING AGILE DEVELOPMENT, TEST AUTOMATION,  

AND MODEL-BASED SYSTEMS ENGINEERING CONCEPTS  

 

With the growing complexity of modern systems, traditional testing methods are falling 

short. Test documentation suites used to verify the software for these types of large, complex 

systems can become bloated and unclear, leading to extremely long execution times and confusing, 

unmanageable test procedures. Additionally, the complexity of these systems can prevent the rapid 

understanding of complicated system concepts and behaviors, which is a necessary part of keeping 

up with the demands of modern testing efforts. 

Opportunities for optimization and innovation exist within the Test and Evaluation (T&E) 

domain, evidenced by the emergence of automated testing frameworks and iterative testing 

methodologies. Further opportunities lie with the directed expansion and application of related 

concepts such as Model-Based Systems Engineering (MBSE). This dissertation documents the 

development and implementation of three methods of enhancing the T&E field when applied to a 

real-world project. First, the development methodology of the system was transitioned from 

Waterfall to Agile, providing a more responsive approach when creating new features. Second, the 

Test Automation Framework (TAF) was developed, enabling the automatic execution of test 

procedures. Third, a method of test documentation using the Systems Modeling Language 

(SysML) was created, adopting concepts from MBSE to standardize the planning and analysis of 

test procedures.  
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This dissertation provides the results of applying the three concepts to the development 

process of an airborne Electronic Warfare Management System (EWMS), which interfaces with 

onboard and offboard aircraft systems to receive and process the threat environment, providing the 

pilot or crew with a response solution for the protection of the aircraft. This system is 

representative of a traditional, long-term aerospace project that has been constantly upgraded over 

its lifetime. Over a two-year period, this new process produced a number of qualitative and 

quantitative results, including improving the quality and organization of the test documentation 

suite, reducing the minimum time to execute the test procedures, enabling the earlier identification 

of defects, and increasing the overall quality of the system under test. The application of these 

concepts generated many lessons learned, which are also provided. Transitioning a project’s 

development methodology, modernizing the test approach, and introducing a new system of test 

documentation may provide significant benefits to the development of a system, but these types of 

process changes must be weighed against the needs of the project. This dissertation provides details 

of the effort to improve the effectiveness of the T&E process on an example project, as a 

framework for possible implementation on similar systems. 
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CHAPTER 1:  INTRODUCTION 

 

Testing is an essential part of the development life cycle of a system or product. Proper 

verification and validation efforts help ensure that the product has been developed as intended and 

that it meets customer needs. However, traditional testing methods are not performing this task in 

an efficient or timely manner, as evidenced by NASA’s estimation that test efforts account for 

between 75 to 88 percent of the total software development cost of large aerospace projects [1]. 

As seen in Figure 1 below, highly complex systems are necessitating extremely large source code 

baselines (e.g., the F-35 fighter and support software totals over 24 million source lines of code 

(SLOC) as of 2012) that require a significant testing effort for proper verification [2].  

 

Figure 1: SLOC for Select Avionics Programs [2] 

Additionally, modern software engineering practices often do not provide support for the 

management of regression testing necessary to ensure software quality [3]. With the growing 

complexity of modern systems and a focus on relatively new aspects of system development such 
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as cybersecurity, which can add significant testing requirements to normal verification efforts, 

traditional testing methods are in need of optimization and innovation. 

1.1. Statement of the Problem 

As of 2007, “data from industry show that the size of the software for various systems and 

applications has been growing exponentially for the past 40 years" [4]. This type of exponential 

growth directly flows into the size and complexity of the procedures used to test those systems. 

Also, as products mature and as they are sustained over time, the size of the test suite developed 

for the product can and will increase significantly [5]. Typically, this type of growth results in a 

large set of test procedures that evolves over time to create a test suite that could be treated, in 

some ways, as a product itself. The evolution of this test suite has possibly been carried out by 

multiple test engineers, adding to a potentially inconsistent style and an additional layer of 

complexity. This high level of complexity creates the potential for a variety of test-related issues: 

• Long test execution times [6]  

• Confusing test procedures [7] 

• Incomplete test coverage [8]  

• Duplicate test procedures with overlapping test scope [9]  

• Incomplete requirements tracing [10]  

• Inability to focus regression testing on specific functionality [11] 

If left uncorrected, these issues have the potential to impact the overall development 

process in the following ways: 

• Inability to quickly release new updates [12]  

• Inability to adapt to design changes [13]  

• Release of inadequately tested products [14]  
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• Wasted test effort for components that did not change [15]  

1.2. Motivation 

The researcher is a Senior Research Engineer in the Quality Control and Test Branch 

(QCTB) in one of the divisions of the Georgia Tech Research Institute (GTRI) in Atlanta, Georgia, 

and has associate management responsibilities over the Test Engineering personnel and activities 

of the branch. As part of those responsibilities, it is within the researcher's purview to provide 

leadership for test process and technology improvement. 

Over the past several years, there has been a significant increase in the amount of Test 

Engineering work assigned to QCTB. That, along with the researcher's goal of increasing 

productivity and efficiency, led to the following objectives for the branch: 

• Improve the maintainability of test procedure suites 

o Smaller systems may have test procedures that total less than 100 pages, while 

larger systems may have test procedures that span hundreds to thousands of pages. 

o Some test procedures have become bloated and confusing, leading to more 

investigation time when something goes wrong. 

• Improve traceability between requirements and test procedures 

o Requirements mapping is not always consistent among systems.  

o Depending on the history of the program and customer requirements, some systems 

have no requirements tracing, while others have requirements tracing to the test 

steps. 

• Reduce test execution times for both minor and major releases 

o For simpler or more informal systems (i.e., minor), formal test execution time 

averages a few days to a few weeks. 
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o For the most complex systems (i.e., major), formal test execution time (dry runs 

and formal acceptance) can reach 18 weeks or more. 

• Introduce test automation 

o Historically, all testing has been performed manually. 

o Within the last several years, the researcher has been spearheading an effort towards 

test automation. 

• Reduce test engineer training time 

o Depending on the engineer, proper training (i.e., understanding the system and test 

process) can take between six to eight months for a complex embedded system and 

between one to three months for a support tool. 

Thus, the researcher has been investigating the application of a combination of Agile 

development processes, automated testing, and Systems Engineering methodologies to the Test 

and Evaluation (T&E) domain as a potential solution to some of these factors.  

1.3. Overview of Solution 

The research described herein is an attempt to resolve the issues discussed previously. The 

solution is attained through three measures:  

1. The change to an Agile development process 

2. The implementation of test automation 

3. The incorporation of Model-Based Systems Engineering (MBSE) concepts 

Transitioning to an Agile process modifies the manner in which a product is developed, 

but it also provides benefits such as increasing the overall product quality, increasing project 

visibility, and reducing risk. Additionally, including some concepts from DevOps like Continuous 

Integration (CI) can increase deployment speed by streamlining the process. Specifically for this 
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dissertation, the focus of an Agile transition was the impacts to system access for test engineers, 

team productivity, engineer training time, and the importance of requirements. 

While test automation typically refers to the transitioning of test procedures from a manual 

process (i.e., a test engineer physically completes the steps in a procedure and records the results) 

to an automated process (i.e., a test engineer develops scripts that perform the actions of the test 

procedures and automatically record results), the benefits of test automation are far more numerous 

than only the gains associated with a machine executing the test procedures as fast as possible. 

These benefits, which are discussed further in later sections, include an increased organization of 

test artifacts, a higher quality in both the testing of the product and the product itself, decreased 

test execution times, and the generation of several opportunities to optimize the overall product 

development process. 

The incorporation of MBSE concepts and techniques into the T&E domain provides the 

potential for a greater understanding of the system, a method of mapping functionality and 

components of the system, and a strategy for targeting regression testing to increase its efficiency. 

A system model created for test purposes has the potential to be utilized effectively in ways such 

as: 

• Identifying efficient test points based on stressing operational conditions [16]  

• Defining the context for test cases in terms of items such as dependencies, external 

interactions, and applicable policies and standards [17] 

• Analyzing and understanding ambiguous test results [18]  

• Providing traceability between system components [19]  

• Managing and communicating the scope of regression testing [20]  
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CHAPTER 2:  RESEARCH AREA BACKGROUND 

 

The word “testing” has several different nuanced meanings across multiple industries and 

professions. The definitions of the typical components of testing, validation and verification, have 

been discussed and elaborated to the point of confusion. For purposes of this research, it becomes 

necessary to define key terminology and concepts related to the area of testing in order to provide 

a foundation for the discussion that will follow. 

2.1. Overview of Testing 

Testing involves the evaluation of an item (i.e., a product or system), ascertaining the extent 

to which it performs its intended role. The general purpose of testing is to identify and eliminate 

as many defects as possible within the project’s resource and time constraints [21]. It also includes 

the evaluation of quality measures such as defect density, reliability, maintainability, usability, and 

security. 

Testing is typically discussed as being comprised of the validation and verification 

components [22]. Validation can be defined as checking to make sure that the item that has been 

produced meets the expectations of its customers. Stated another way, validation assures that the 

developed product is suitable for its intended role. Verification can be defined as checking that the 

product conforms to its defined requirements. In other words, verification assures that the 

developed product performs as designed [21]. 

2.1.1. Traditional Testing Levels 

The following sections describe four traditional levels of testing that are typically 

employed during the development life cycle of a system. 
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2.1.1.1. Unit Level Testing 

Testing performed at the unit level focuses on the lowest level of the system. According to 

Clune and Rood, “a unit test exercises a single unit (i.e., a function or subroutine) by comparing 

output generated from a set of synthetic input values with corresponding output values” [23]. 

Testing at this level generally shows that the individual pieces of software or hardware perform as 

expected, while ignoring the overall system functionality. 

Many modern software applications take advantage of automated unit testing frameworks 

that encourage developers to create unit tests while initially writing software code [24]. These 

automated unit testing frameworks, such as CruiseControl or MSBuild, allow unit tests to be 

planned during the writing of the functional units and repeatedly executed on command. These 

types of tests help to ensure that a change in the application code did not adversely affect the 

performance of a separate section of code. 

2.1.1.2. Integration Level Testing 

Testing performed at the integration level focuses on the middle level of the system. This 

is the point at which the smaller pieces of the system have been unit tested and are ready to be 

combined into their larger functional blocks. Testing at this level generally shows that all of the 

smaller pieces of the system can interface with each other and perform according to the 

specifications for that specific larger element of the system [25]. 

2.1.1.3. System Level Testing 

Testing performed at the system level focuses on the highest level of the system. This is 

normally the point at which functional requirements are tested. Test engineers demonstrate that 

the system performs the tasks it was designed to perform, typically through a series of stimuli to 
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generate a specific behavior. Testing at this level shows functionality of the end-product and 

satisfies high-level objectives of the system [26]. 

2.1.1.4. Acceptance Level Testing 

The purpose of acceptance testing is to prove that the developed system satisfies customer 

or business requirements in order to qualify for final delivery to the end user [27]. Additionally, 

acceptance testing can refer to the verification that delivered products from subcontractors or 

vendors meet the specifications and requirements provided to them. The process of acceptance 

testing typically refers to a formal event with some degree of participation by the customer. This 

type of activity is usually summarized in a final test report as part of the formal deliverables for 

the system.  

2.1.2. Traditional Verification Methods 

Typically, requirements are assigned one or more methods of verification at the time of 

creation, indicating a general approach to how the requirement will be satisfied. The four 

traditional verification methods are Demonstration, Inspection, Analysis, and Test. 

Demonstration is when verification that the properties, characteristics, and parameters of 

the item are determined by observation alone. Pass or fail criteria are simple accept or reject 

indications of functional performance since no quantitative values exist. 

Inspection is when verification that a specified requirement is met through visual methods, 

including physical measurements in order to determine that no deficiencies exist. Emphasis is 

placed on cables and cabling, safety features, configuration, design requirements, and 

workmanship. 

Analysis is verification through technical evaluations of calculations, computations, 

models, analytical solutions, reduced data, and representative data to determine if the item 
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conforms to the specified requirements. Analyses are not limited to raw data but must contain 

justification as to how the data verifies that the requirement will be met. 

Test is the verification that a specified requirement is met by exercising the applicable item 

under specified conditions using appropriate instrumentation in accordance with test procedures. 

Actual measured values are recorded and pass or fail criteria is determined by comparing the 

measured value to the specified value. 

2.1.3. Types of Testing 

There are several types of testing used to verify the correct operation of a product or system. 

Some of the more traditional types are discussed below. 

2.1.3.1. Regression Testing 

As parts of a system are modified to add new features or to correct discovered issues, the 

possibility of inadvertently modifying other related or unrelated components of the system exists. 

Regression testing involves the execution of a large portion, or sometimes all, of the test 

procedures of the modified system to provide confidence that those modifications to the system 

did not unintentionally change the behavior of the other unmodified components of the system 

[28]. This is typically a significantly time-intensive process, requiring a large effort from the Test 

Engineering team [29]. It has been estimated that regression testing activities account for up to 

50% of software maintenance costs [30]. Therefore, it is important to be able to down-select or 

prioritize test cases chosen for regression testing to produce the most efficient strategy for 

verification of the system under test. 
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2.1.3.2. Black-Box vs. White-Box Testing 

The concepts of black-box and white-box testing are related to the test engineer's insight 

as to the inner workings of the system under test. These terms define from what aspect the test 

engineer performs the verification of the system.  

In black-box testing, the test engineer does not have an understanding of how the system 

is performing its tasks; they do not have access to its source code [31]. From the tester's 

perspective, the system responds to inputs with specific behaviors or outputs as defined by the 

requirements of the system. 

Alternatively, in white-box testing, the test engineer is more concerned with the way the 

system is performing its tasks [31]. White-box testing may include inspections of code to 

determine the quality of programming logic and the lack of errors. It is a verification that the 

internal structure of the system meets its specifications. 

Both black-box and white-box testing are an important part of the testing process and are 

focused on different aspects of the system being tested. White-box testing is typically more a part 

of low-level testing, sometimes performed by the system developers, while black-box testing is 

traditionally more in line with formal system-level testing performed by test engineers. 

2.1.3.3. Security Testing 

Security testing refers to the exercising of a system in order to identify and correct risks 

and vulnerabilities that could lead to a compromise of the system. It involves probing system 

interfaces and connections for exploitable pathways into the system, but it also includes analyzing 

the internal structure of the system to identify critical programming mistakes or errors that could 

open the possibility for an attacker to change the way the system works or behaves [32]. For 

systems with sensitive data, security testing helps develop the body of data needed to support an 
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Authorization to Operate certification or approval under the Department of Defense’s Risk 

Management Framework. 

With the massive number of networked devices and the daily increase in the number and 

rate of cybersecurity threats and attacks, a large effort has been increasingly dedicated towards the 

development of secure systems [33]. The use of a Secure Software Development Life Cycle 

(SSDLC) promotes the incorporation of secure software practices from the inception of the product 

[34]. SSDLC processes generally enhance and complement the existing development life cycle 

chosen for the project by bringing security concerns and design to the forefront of early 

development discussions.  

Verification activities occur at all points along the development process, including “threat 

modeling for security risk identification during the software design phase, the use of static analysis 

code-scanning tools and code reviews during implementation, and security focused testing 

including ‘fuzz testing’ during the test phase” [35]. Due to the sensitivity of cybersecurity threats, 

verification that security designs and implementations are correct is necessary to ensure the 

integrity of the system after development has been completed. 

2.1.3.4. Functional Testing 

Functional testing is typically considered the most basic type of testing. As system 

functions are highly visible to the end user and are the reason the system was created in the first 

place, generally a large effort is expended by the test team to make sure the system performs its 

defined functions. Functional testing involves the examination of a system in order to prove that it 

can perform a listed set of functions, usually defined by system requirements [36]. Functional 

testing determines that the system behaves as expected and performs the tasks that it was designed 

to perform. 
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2.1.3.5. Performance Testing 

As discussed in the section above, a large portion of the testing effort of a system is devoted 

to the identification of defects that cause crashes or incorrect overall behavior, as these are 

generally easier to find and more visible to the end user. A specific type of functional testing, 

performance testing, involves the optimization of system processes, and is somewhat harder to 

characterize without clear and specific requirements defined against the system.  

Performance testing attempts to identify degradation in the operation of the system over 

time, through an analysis of system behaviors and speed, or through the measured allocations of 

required attributes such as available memory or processing power [37]. It also examines factors 

such as robustness, resiliency, and stability in the presence of abnormal environments and 

conditions. This type of testing often makes use of test cases that introduce various levels of stress 

to the system by injecting stimuli to which the system must respond. Being able to measure system 

performance at those various levels of stress help characterize scenarios in which there may be 

potential for optimization. 

An additional purpose of performance testing can be to characterize the maximum 

performance of the system in extreme conditions. This provides feedback to the design to 

understand the true capabilities of the system, allowing designers to balance resources or identify 

opportunities to include additional capabilities.  

2.1.3.6. Safety Testing 

Safety testing focuses on the identification of defects that impact the system's ability to 

operate safely with regard to its operating environment, end users, maintainers, or other related 

personnel [38]. These tests may deal with the system's conformance to accepted safety standards 
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or codes, or the inclusion of safeguards to protect from unintended consequences of the system 

operation at inappropriate times. 

2.1.4. Testing Processes 

A discussion of the aspects of the test process is provided below. 

2.1.4.1. Test Phases 

There are various methods of performing the test process defined throughout literature 

[39]; therefore, it becomes necessary to describe the organization of the test process expected by 

this research. For this discussion, the test process will be organized into four phases: Test Planning, 

Test Development, Test Execution, and Test Reporting. These phases are discussed further below. 

2.1.4.1.1. Test Planning 

Proper Test Planning involves full use of a test engineer’s abilities to document: 

• Organization of testing into sections or groups, typically done to the test case level 

• High-level descriptions of the testing to be performed (i.e., pseudo-steps) 

• Test case alignment with and tracing to the given requirements for the system under test 

• Explanation and rationale for the testing being designed 

• Necessary equipment, data, or artifacts to procure or create during later phases 

Typically, test plans are organized into a document that describes each planned test case in 

detail. The information described above is included to present the test engineer’s approach to the 

testing of the system. It is here that the test engineer most utilizes their creativity and experience 

in order to craft testing that both covers the necessary functionality and stays within the project’s 

budget and time constraints [40]. 

The Test Planning phase is widely considered one of the most important parts of the test 

process, but often it is rushed or skipped due to various reasons such as time constraints, lack of 



   
 

14 
 

test engineer training, or insistence by management to see results quickly [41]. Unfortunately, it is 

sometimes viewed as an optional part of the Test Engineering process, due to the creation of only 

a preliminary test design, rather than the executable test product. However, investment in the Test 

Planning phase is vital to an organized, coherent test design that leads to a more sustainable and 

understandable test suite. 

2.1.4.1.2. Test Development 

The primary purpose of the Test Development phase is to transform the more abstract test 

plans defined previously into specific, executable, step-by-step test procedures. Minimally, test 

procedures that are developed contain a list of actions to be performed, a list of expected results 

that must be observed in order to pass, and a trace to the requirements that drive the purpose of 

that test case. These test procedures should exercise the functionality of the system under test as 

described in the Test Planning phase. 

To fully understand how the system under test works, usually part of the Test Development 

phase includes hands-on exploratory or focused testing with the system being developed, 

depending on the availability of access or maturity of the system. The goal of this early exposure 

to the system is to:  

• Increase test engineers’ experience with the system to help guide the creation of test 

procedures 

• Identify any blatant or easily-discovered defects in early builds 

• Identify any missing or defective test equipment, data, or artifacts 

• Provide feedback on user-experience of the system to developers 

During the Test Development stage, test engineers also create any necessary test data or 

artifacts that are necessary for the execution of the developed test cases. 



   
 

15 
 

2.1.4.1.3. Test Execution 

The Test Execution phase involves running the tests that were created previously, either by 

manual or automated means. Test procedures are normally executed a minimum of two times: once 

to perform an initial test to identify any problems with the test procedures themselves or 

preliminary defects in the system (i.e., dry run testing), and again for formal acceptance of the 

system. Any additional runs of the test procedures help build confidence in both the system under 

test and the procedures used to test the system. 

During this phase, any defects that are identified are documented and either resolved 

through the re-development of functionality or not addressed due to conflicting factors. Both 

resolved and unresolved defects are logged for the next phase. 

Similar to the Test Development phase, there is potentially a period of exploratory testing 

during the Test Execution phase; however, this testing has a different purpose than increasing test 

engineers’ familiarity with the system. The purpose of exploratory testing during the Test 

Execution phase is to stress the system in ways that are outside of the bounds of the formal test 

procedure, with the intention of finding high-rarity or edge-case defects [42]. Due to time and 

budget constraints, these types of tests are not typically built in to the final set of formal test cases, 

and as such are generally performed in an ad-hoc manner to take most advantage of a test 

engineer’s experience and creativity in discovering failure points of the system [43]. 

2.1.4.1.4. Test Reporting 

In the Test Reporting phase, the results of testing are gathered and summarized in a manner 

suitable for presentation to internal and external customers. This may include copies of the actual 

test procedures that were executed, but minimally includes: 

• A list of the test cases that were executed 
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• The result (pass/fail) of each test case 

• A list of defects that were discovered during testing 

• A list of known defects 

• Recommendations for the resolution of any defects 

• A log of test case executions, including who ran the test, when, and where 

This phase also includes any final cleanup and storage of test artifacts from the Test 

Execution phase and sometimes delivery of the test documentation. 

2.1.4.2. Testing Methods 

Testing is performed as either a manual process, an automated one, or one in which both 

methods are utilized. These methods are discussed below. 

2.1.4.2.1. Manual Testing 

Traditional testing is generally considered to be by a manual method, or by a test engineer 

physically interacting with the system under test to perform actions and record behavior. The test 

engineer follows predefined test procedures in order to provide a stimulus, observe a reaction to 

that stimulus, and record the result manually based on conformance to expected observations (i.e., 

pass/fail).  

2.1.4.2.2. Automated Testing 

Automated testing refers to the use of software and/or machinery to perform evaluation of 

a produced item without a human performing the actions necessary to stimulate the item. 

Generally, automated testing is preplanned by a human using a scripting language or framework 

to set up scenarios with which to exercise the functionality covered by the requirements [44]. The 

tester uses his or her knowledge of the system to define inputs and expected outputs to be covered 
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by the automation code [45]. The automation framework executes the test scenarios and provides 

detailed feedback as to the results of the testing [46].  

In some cases, automated testing refers to the ability of a piece of software to be pointed at 

an application and generate tests automatically through the use of machine algorithms [47]. This 

is typically performed as automatic unit tests or code coverage tests. For purposes of this research, 

this scenario will not be covered. 

Automated testing takes the procedures that would be performed by a human via manual 

means and executes them automatically through the use of some equipment or application. In many 

cases, automated testing also relies on the use of software instrumentation messages to inform the 

testing framework that a specific checkpoint was reached or to output specific data needed for the 

targeted verification. It requires the creation of test scripts to take the place of manual test 

procedures [48].  

The incorporation of automated testing on a project can produce some or all of the 

following benefits: 

• Organization 

o Improves test organization and flow 

o Increases maintainability of the test procedures [49]  

o Allows test cases to be maintained like source code 

• Quality 

o Increases quality of test cases 

o Increases confidence of software under test [50]  

o Increases quality of the system [51]  

o Reduces variability of the test approach 
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o Removes human error due to execution mistakes [52] 

o Removes the need to repeat testing due to incomplete recording of results 

• Execution 

o Allows execution of test cases during off-work hours 

o Increases number of test executions significantly [53] 

• Opportunity 

o Allows expansion of testing to components that were too costly to fully test [54] 

o Removes the need for an extended, dedicated dry run period 

o Allows for dedicated exhaustive testing of most important components [55]  

o Allows for more exploratory testing [56] 

2.1.4.2.3. Advantages and Disadvantages 

Manual and automated testing both have inherent advantages and disadvantages; neither is 

better than the other, only different. Typically, automated testing complements the manual testing 

already being performed, and the best testing solution is one that utilizes both methods [57].  

2.1.4.2.3.1. Perspective 

Manual testing is performed in the same manner as an end user of the system would 

perform actions; therefore, it is a good approximation of the end user experience. Test engineers 

know how to use the system and can provide usability feedback regarding its design. This high-

level (e.g., system-level, integration-level) testing is valuable, but is limited by its perspective. 

Lower-level testing performed manually, while possible, is generally limited to the Inspection 

verification method, which is typically the least preferred method of testing. Automated testing 

provides an opportunity to interact with the system at a deeper level (e.g., unit-level), going beyond 

what is considered a valuable use of manual testing efforts.  
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2.1.4.2.3.2. Human Interaction 

True exploratory testing, that is, testing without a predefined path, cannot be done in an 

automated environment. Automation forces testing to be locked into a specific set of 

predetermined parameters without the ability to change course if a test procedure technically 

passes [58]. This makes it hard to discover defects that are hiding at the edge of test coverage for 

that test. Automation thrives in a regression environment, where tests are expected to pass and just 

need to be executed frequently to ensure nothing has changed unexpectedly; however, it is not 

usually the best way to discover new issues with the system. 

Frequently, experienced test engineers will notice a behavior of the system that, while not 

violating test expectations, does not seem appropriate for the parameters of the test [59]. 

Depending on the type of test being performed at the time (i.e., informal vs. formal), the test 

engineer can either divert from the current test procedures to investigate the issue further, or make 

a note to come back and investigate at a later time. This is a large source of discovered defects of 

systems and is a necessary part of the test process.  

2.1.4.2.3.3. Speed 

Automated testing increases the speed at which test procedures can be executed, and also 

does not require a human to be working while they are being executed [60]. Through the use of 

Continuous Integration (CI) methods, it is possible for testing to performed on demand, on a 

schedule, or with a predefined trigger (e.g., any change in the system under test) [61]. This allows 

for automated testing to be performed almost constantly, with or without a human presence. When 

comparing this potential to traditional manual testing methods, where a test case may be executed 

at most two to three times, test case executions are increased significantly [62]. 
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2.1.4.2.3.4. Costs 

One of the main problems with a purely manual test process is the labor cost to execute the 

test procedures. As more tests are developed, it leads to a larger regression period at the end of a 

test cycle. The cost of executing the entire suite of test cases can be prohibitive, either forcing the 

development of the system to stop early to accommodate testing or cutting corners on testing and 

hoping that no show-stopping defects are identified after release [63]. Automated testing shortens 

that regression period significantly, potentially allowing development to continue further into the 

overall timeline of the project. 

However, automated testing is not necessarily the solution to saving money on testing. 

While the value of incorporating automated testing generally increases exponentially over time, 

initial costs to incorporate it are high [64]. Also, for automated testing to be successful, it is 

necessary to maintain both the automation framework and the test cases themselves.  

2.1.5. Testing within Traditional System Development Processes 

The process of testing takes on different characteristics depending on the development 

process used. The application of testing within typical system development models is discussed 

below. 

2.1.5.1. Waterfall Methodology 

In the Waterfall Methodology, credited to Winston Royce in 1970, each step of the 

development process is performed in a sequential order, with one phase “falling” into the next in 

a specifically downward trajectory [65].  
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A basic diagram of this methodology can be seen in Figure 2 below. 

Figure 2: Waterfall Methodology 

As can be seen by the diagram, verification is the fourth phase in the process. The model 

assumes that the system being developed has been completely designed and implemented before 

testing activities can occur. Success of this methodology is highly dependent on well-defined 

requirements as inputs to design, implementation, and verification. An inherent problem with this 

model is that it is extremely difficult and costly to move backwards to a previous phase, and even 

more so to move backwards multiple phases [66]. A basic principle of testing is that the earlier a 

defect is identified, the less costly it is to fix. Defects found during the system testing phase of a 

project typically cost around ten times more to correct than defects found during the requirements 

or design phase [67]. This methodology does not allow for defects to be caught early in the process, 

therefore causing all identified defects to have a high cost to correct. 

Regarding the Test Phases described previously, under the Waterfall methodology, each 

phase is performed in sequence for all requirements or functionality being tested at once. In other 

Requirements

Design

Implementation

Verification

Maintenance
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words, the test engineer plans all test cases at one time based on requirements and design, then 

transitions to developing all of the planned test cases, then executes them all together, and finally 

reports on the entire suite. This method makes it hard to rework test cases based on late-stage 

changes to the system and requires the test engineer to know everything about the system up front, 

which is rarely a true assumption that can be made. 

2.1.5.2. Spiral Methodology 

Originally proposed by Barry Boehm, the Spiral Methodology iterates through the 

following distinct phases:  

1. Determine objectives, alternatives, and constraints 

2. Evaluate alternatives, identify and resolve risks 

3. Develop and verify next-level product 

4. Plan the next phase 
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A diagram of the Spiral Methodology can be seen below in Figure 3 [68]. 

 

Figure 3: Spiral Methodology [68] 

This model centers on risk analysis and prototyping in order to qualify the design of the 

product. A primary motivation for this approach is the idea that requirements are unable to be fully 

and correctly stated at the beginning of a project, necessitating requirements and design to evolve 

together as the system matures. Testing within this framework is done within the third stage of the 

process and is performed iteratively within the sequential cycles of the spiral using the prototype 

available at the time of the iteration [69]. The test engineer is still responsible for completing all 

four phases of the test process in order and at the same time, similar to Waterfall, but in multiple 

iterations as a prototype is built upon over time. This model builds in a way to overcome the 

problem of late defect identification inherent to the Waterfall Methodology by making several 
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passes at testing during the various stages of maturity of the product. However, building in several 

rounds of iteration through the different stages can be costly, causing this model to work best for 

large, long-term projects where there is a high likelihood of significant risk [70]. 

2.1.5.3. Agile Development 

An Agile development approach is similar to the Spiral Methodology, but with less focus 

on risk analysis. It is also an iterative approach, sometimes breaking the development of a product 

into Sprints that are distinct measures of time, usually lasting between one to four weeks [71]. 

Alternatively, some Agile methodologies break development into small incremental features that 

are not time-bound. During development, the goal of the team is to focus on specific functionality 

at a given time rather than the entire planned release. The team generates requirements, creates 

design, implements the functionality, tests for defects, and releases a build including that 

functionality added to the core build. As each feature is accomplished, the product gains more 

features that have been prioritized before beginning the development effort. A fundamental 

principle of Agile is that each feature or Sprint delivers working code that is fully tested and 

documented. As a new feature or Sprint is started, the feature list is typically reviewed to verify 

that priorities have not shifted since the last review.  

Testing within an Agile methodology is performed iteratively as part of each Sprint or 

feature being developed. For each small piece of functionality that is added at a time, the team 

accomplishes the four phases of the test process before development ends for that piece. A key 

idea of Agile is that all team members can and should be testers, effectively verifying their own 

work before it gets officially passed to members of the Test Engineering team [72]. As defects are 

found, it is intended by the methodology that they are corrected as soon as possible, with the goal 

of releasing builds without any known issues. The expectation of Agile methods is that the product 
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will be fully verified at the end of final development since all new features were verified as they 

were implemented. However, it is usually good practice to complete a full regression test at the 

end of new feature development, to verify that no unintended defects were introduced. This is 

either accomplished through a final test-only Sprint or a period of regression testing after all 

Sprints have been completed [73]. 

2.2. Overview of Modeling and Model-Based Systems Engineering 

The following section provides a brief discussion of modeling and Model-Based Systems 

Engineering, as this topic is vital to the research described herein.  

2.2.1. Engineering Modeling 

The concept of modeling within the field of engineering refers to the creation of “an 

abstract generalization or representation of a system” [74], usually for analysis or descriptive 

purposes. Models can help to describe a system that may be overly complex as a whole; they allow 

for more in-depth analysis of the interactions between smaller modules of the system. Some types 

of models include the following: 

• Iconic: A scaled down physical representation of the original system 

• Visual: A representation of the system graphically 

• Mathematical: A representation of the system using mathematical techniques [74] 

• Data Processing: A representation of how data flows through the system and is processed 

by the system 

• Composition: A representation of the parts of the system and their related interfaces 

• Architectural: A representation of the major subsystems and how they are architected [75]  

Although several different types of models exist, they are generally categorized into two 

classifications: descriptive and prescriptive [76]. Descriptive models attempt to define an existing 
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system so that it can be studied, possibly for improvement. Prescriptive models attempt to define 

a system that does not yet exist and can be used as a type of plan for the creation of the system.  

Because of their ability to be applied to almost all systems, models are greatly used 

throughout several types of industries. As an example, mathematical models can be used to 

describe the interaction of network packets [77]. Different protocols such as TCP, IP, and TELNET 

can be modeled to help identify possible problems with certain network architectures. Models also 

play a major role in the oil and gas industry. “Modeling can be a critical success factor in oil and 

gas company performance because it is a highly efficient means for identifying, planning, and 

managing production facilities and the corresponding infrastructure” [78]. Using models at these 

earlier stages of a project, such as requirements definition and system planning, has the potential 

to create the greatest benefit in terms of program cost and risk. Models have also been used to 

describe trends in global air pollution, specifically “the intercontinental transport and chemical 

transformation of O3 between North America, Europe, and Asia using a global chemical transport 

model” [79]. These models allow scientists to link pockets of air pollution to environmental 

changes. 

2.2.2. Model-Based Systems Engineering 

The field of Systems Engineering makes great use of models. Through the use of the 

Unified Modeling Language (UML), and more specifically SysML, systems engineers are able to 

define models in a standard form. SysML was created as a profile of UML, adding and deprecating 

specific language features, to more specifically address the needs of Systems Engineering for 

activities such as requirements management and performance analysis. SysML contains the 

framework for the creation of several aspects of modeling and includes the following nine types 

of diagrams [80]:   
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• Package Diagram: Provides organization of the model’s elements 

• Requirement Diagram: Provides textual requirements statements and shows connections 

between requirements and other model elements 

• Activity Diagram: Provides flow-based behavior, including the execution order of actions 

and inputs, outputs, and controls 

• Sequence Diagram: Provides message transmissions between model elements 

• State Machine Diagram: Provides depiction of how a model element transitions between 

states based on events 

• Use Case Diagram: Provides functionality of system uses from the perspective of external 

entities 

• Block Definition Diagram: Provides structural model elements, including classification 

and composition 

• Internal Block Diagram: Provides internal structure of a model element, including 

connections and interfaces 

• Parametric Diagram: Provides mathematical/formulaic constraints or relationships used for 

engineering analysis 
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The inheritance relationship between diagrams can be seen in Figure 4 below. 

Figure 4: SysML Diagrams 

These types of diagrams help to define the end system in a way that is recognizable by 

anyone familiar with SysML. MBSE takes advantage of the power of this modeling language to 

define a model-driven approach to the development of systems that contrasts the traditional 

document-driven approach [80]. The International Council on Systems Engineering (INCOSE) 

provides the following definition of MBSE: “the formalized application of modeling to support 

system requirements, design, analysis, verification and validation activities beginning in the 

conceptual design phase and continuing throughout development and later life cycle phases” [81]. 

While the roots of model-based approaches to engineering are grounded in mid-twentieth 

century large-scale system development, the concept of MBSE was not introduced formally until 

Wayne Wymore proposed “a mathematical formulism” for the approach in 1993 [80]. Relying on 

the increasing power of computing technology and the development of standard modeling 

languages like UML and its Systems Engineering extension SysML, MBSE has become an 

increasingly adopted approach since its inception [82].  

SysML 

Diagram

Behavior 

Diagram

Activity 

Diagram

Sequence 

Diagram

State Machine 

Diagram

Use Case 

Diagram

Requirement 

Diagram

Structure 

Diagram

Block 

Definition 

Diagram

Internal Block 

Diagram

Parametric 

Diagram

Package 

Diagram



   
 

29 
 

The MBSE approach attempts to transition from traditional document-centered system 

development to a model-based approach to support all system development activities [80]. Under 

the MBSE approach, the output of the Systems Engineering team is a complete model of the system 

that can be used to perform activities such as describing system behaviors, specifying relationships 

between system components, and enhancing the quality of specification and design in a way that 

is more detailed and dynamic than a set of independent design documents [80].  

An example Block Definition Diagram (BDD) and State Machine Diagram are provided 

in Figure 5 and Figure 6 below. 

 

Figure 5: Example Block Definition Diagram 
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Figure 6: Example State Machine Diagram 

2.2.2.1. Benefits 

System modeling is very useful in that it allows for easier analysis of complex systems. 

Davis, Hertz, and Nelson identify five benefits of modeling [78]. First, it makes resource allocation 

visible. Modeling helps with resource allocation and management through its ability to set up a 

framework to identify and record system performance and costs for later analysis. This data can 

be used to reallocate resources and provide a central management location for several concurrent 

projects that may share resources. Second, it improves communication. Since a well-defined model 

should be an easily understood snapshot of the system, it can allow team members to communicate 

efficiently. Third, it increases collaboration. Models allow all stakeholders to have a detailed 

description of the system. Decision-making at all levels of the management process for a large 

system can be performed efficiently and accurately when everyone involved understands the 

system. Fourth, it increases productivity and quality. A model can help to provide an accurate 

estimate of required resources. Since modeling helps with resource allocation, productivity and 
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quality will increase due to apt application of those resources. Fifth, it provides cost savings. 

Through the improved resource allocation, communication, collaboration, productivity, and 

quality, models help to reduce costs. They allow for less waste with regard to resources, materials, 

maintenance, as well as engineering and system redesign. 

Friedenthal, Moore, and Steiner extend the benefits of MBSE described above to include 

three more benefits [80]. First, development risk is reduced. Under MBSE, validation and 

verification of design and requirements is an ongoing process, leading to a better understanding of 

the risks associated with the development of the system. Second, knowledge transfer is enhanced. 

Describing the system in a standard way allows for faster access, analysis, and reuse of domain 

knowledge. Standard descriptions of the system provide the ability to quickly train engineers new 

to the system. Third, models can be reused downstream in the process. As the system model is 

kept up-to-date in near real-time, the models are still accurate after the development of the system 

has been completed. These models can be used to support downstream lifecycle phases such as 

operator training, troubleshooting, maintenance, modification, upgrading, and technology 

obsolescence mitigation.  

Finally, Douglass provides three additional benefits of a model-based approach [73]. First, 

the precision of engineering data is increased. Traditional engineering describes data inputs in 

terms of textual statements that are open to interpretation. A model restricts that interpretation and 

removes possible ambiguities. Second, there is greater consistency across work products. A model 

provides for formal traceability to other information within the model, but also across related 

information. This traceability within components leads to the ability to fully assess the impact of 

a change in design or requirements. Third, a model exists as the common source for engineering 

truth. The development of a model used by the entire team provides a single source for final design 
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and specification information. This reduces time wasted due to analysis of conflicting 

specifications or problems that arise from conflicting documentation of the system. 

2.2.2.2. Limitations 

The limitations of modeling are usually based around the implementation of the model. 

Models are only as good as the descriptive details used to create them. Faulty models can be caused 

by bad original source data or even sloppy implementation by the modeler. When a model is 

created using bad source data, the end result will always be a model that does not represent the 

original system well. It is important to gather as much pertinent and accurate information about 

the system as possible before modeling begins; this will guide the model in the correct direction 

during its creation. 

If a system modeler gets too focused on small details, the final model of the system can be 

overly complex and not understandable to a normal system user [75]. This can also lead to the 

model becoming too expensive and time-consuming to maintain as the system evolves, leading to 

its eventual abandonment. Conversely, if a system modeler gets too focused on the high-level 

details, a model can be created that does not give any useful information about the system. If either 

of these becomes true, the model has failed its purpose. Lastly, if the model is designed well, there 

is the additional risk of confusion between the original system and the model [76]. As Ludewig 

states, “Good models can replace the original very well. Therefore, good models tend to be 

confused with the original” [76]. 

A limitation of the model can also be the modeling language itself. If engineers or other 

stakeholders are not trained to understand the meaning of the different aspects of SysML (or the 

modeling language chosen), it may be difficult to comprehend the information within the model 

[83]. 
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2.2.3. Model-Based System Architecture Process Methodology 

The primary approach to system modeling used in this research is based on the Model-

Based System Architecture Process (MBSAP) methodology as proposed by Dr. John M. Borky 

and Dr. Thomas H. Bradley in Effective Model-Based Systems Engineering [84]. This process will 

drive the strategy for how the action of system modeling is performed but attempt not to limit the 

results of the research. The adoption of a system modeling method is intended to apply a standard 

technique across all researched systems in order to focus the research on the derived improvements 

to the Test Engineering domain rather than the implementation of system modeling itself. The 

MBSAP methodology is summarized in the sections below. 

2.2.3.1. Overview 

MBSAP is an object-oriented Systems Engineering methodology used “as the engine for 

translating customer needs into delivered solutions that are both effective and elegant and that 

remain so over the lifetime of the system or enterprise” [84]. It uses the SysML profile of UML as 

its modeling language standard. This process is an approach to system modeling that focuses on 

system architecture but has a strong integration with an overall MBSE development approach. 

MBSAP is a framework, based on proven practices and techniques, developed with the goal of 

providing systems engineers and architects a methodology for more successful implementation of 

MBSE concepts [84]. It is an ideal method for demonstrating the benefits of the application of 

system modeling to the Test Engineering discipline. 

2.2.3.2. Basic Principles 

MBSAP incorporates the following basic principles into its implementation [84]: 

• Use of Object-Orientation (OO) 
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o A core idea of the framework is the reuse of modules when applicable. If a 

component has been designed and modeled once, it should still be the same 

component no matter how many times it is used. This provides for consistency and 

adherence to the principles of OO such as abstraction, encapsulation, 

generalization, and others. 

• Use of Architectural Models as Core Systems Engineering Process Materials 

o The system model should be the basis for understanding, communication, and 

collaboration when referring to the system. This provides a constant, core 

knowledgebase that protects against issues due to conflicting information. 

• Rigorous Traceability from Requirements to Architecture Components 

o A system model should show how the design and specifications of the system flow 

into the lower level components. Accuracy and clarity of the model must be 

maintained in order to facilitate proper use of the model. 

• Support for Service-Oriented Architecture (SOA) 

o Many modern systems provide interfaces that behave as services. MBSAP must 

support this type of architecture. 

• Enforcement of Quality Attributes 

o Non-functional requirements are not typically well tracked by modeling 

frameworks. However, to completely cover requirements MBSAP relies on Quality 

Attributes (e.g., accessibility, modifiability, relevance) to describe and trace these 

types of requirements. 

• Incorporation of Simulation when Applicable 
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o The use of simulation is encouraged and supported to resolve architectural issues 

and to evaluate design. 

• Linkage of Architecture to Physical and Virtual Prototypes 

o The model of the system is ever evolving and must be flexible to adjust to feedback 

from the development of prototypes. 

• Consistency with Current and Emerging Standards 

o Conforming to best practices and established standards in the industry is important 

to the creation of a relevant architecture. 

• Adaptability to Wide Range of Architecture Categories 

o As MBSAP is developed as a system architecture process, it must adapt to the 

current range of architecture types in use today. 

• Provide for External Standards and Reference Architectures 

o Multiple standards exist that are in use by different segments of the industry for 

different purposes. The framework should not prevent conformance with those 

standards. 

2.2.3.3. Approach 

Generally, MBSAP focuses effort on defining the system at the highest level first before 

drilling down into the lower level components of the system [84]. This is performed by describing 

the system in terms of three levels or viewpoints. 

First is the Operational Viewpoint. At this level, customer requirements are transformed 

into model elements, creating the foundation for system design [84]. An attempt should be made 

to keep the design at this stage abstract, focusing instead on overall structure, behavior and 

information content [84]. 
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Second is the Logical/Functional Viewpoint. This stage of the process includes 

decomposing the high-level elements created at the Operational Viewpoint into individual 

elements with more detailed design information. At this point, the details of how a system performs 

its tasks is designed, without specifying a specific technology or product [84]. 

Third is the Physical Viewpoint. At this final level, decisions are made about specific 

hardware/software used to build the designs from the Logical/Functional Viewpoint. Standards are 

introduced and the specifics of the implementation of the system are modeled. 

Each of the viewpoints described above is further broken down and organized into the 

following perspectives [84]:  

• Behavioral 

o Describes action-based functionality of the system (e.g., system functions, class 

functions) 

• Structural 

o Describes partitioning of elements and relationships between elements (e.g., 

components, interfaces, high-level organization) 

• Data 

o Describes any structure that pertains to specific information within the model (e.g., 

XML schemas, databases, information categories) 

• Services 

o Describes behaviors pertaining to a service-oriented function (e.g., message 

registration, domain services) 

• Contextual 

o Describes supporting information (e.g., graphics, design documents) 
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These perspectives are captured through the use of specific types of model elements that 

correspond to each perspective [84]. 

2.3. Overview of Model-Based Testing Activities 

There are two different aspects of test activities in a model-based environment that are 

valuable for discussion regarding the proposed research. First is the actual implementation of 

model-based testing through the use of simulation software. Second are the gains made through 

the availability of the model when performing test activities. These are discussed further in the 

sections below. 

2.3.1. Execution of Modeled Elements 

Model-Based Testing (MBT) refers to the use of system representations (i.e., models) to 

perform verification of system design and/or requirements by generating predefined, executable 

test scenarios and running them against the model [73]. MBT can also refer to the automatic 

generation of test cases based on algorithmic extrapolation of modeled pathways [85], but for 

purposes of this research, MBT is discussed in terms of the first definition. 

A core concept of MBSE is the continual verification of model elements throughout the 

design and implementation phases of system development [73]. MBT accomplishes this by 

providing a method for verification of design and requirements before the system has been 

developed [86]. Many leading SysML tools contain utilities for performing validation and 

verification of the model through items such as automated checking for language violations and 

using simulation to ensure completeness and correctness. MBT relies on the generation of models 

that describe system or component behavior, depending on the level of testing being performed 

[87]. While MBT does not assume that an MBSE approach will be used, MBT and MBSE are 

complementary practices since they share much of the same data. If a strategy of MBT is to be 
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pursued on a project, it certainly reduces the Test Engineering burden if the Systems Engineering 

or Systems Architecture team is already creating models that support simulation. In terms of 

SysML, these types of models typically come from the Behavior diagrams subset (i.e., Activity, 

Sequence, State Machine, Use Case), as they define system behaviors that are verifiable.  

With support from MBSE practices, simulation can be a useful tool for Test Engineering 

when applied at various levels of abstraction of the system. At the operational level, simulation 

refines the operating environment by identifying factors that provide external stress to the system, 

which is an important input into creating valid test cases. At the process/workflow level, simulation 

describes major system behaviors and allows the manipulation of input characteristics; this 

especially useful when the system has a human-interaction element. At the logical architecture 

level, simulation provides early feedback as to the accuracy of timing, dependencies, and other 

internal architecture logic. At the physical level, simulation provides a data source for predicted 

test outcomes and can help diagnose and investigate issues that arise during testing. 

The process of MBT is highly dependent on the method of modeling chosen and the 

simulation tool used to perform the execution of test cases. Therefore, discussion of this concept 

will continue only in the general sense.  
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A generic MBT process can be seen in Figure 7 below [17]. 

 

Figure 7: Model-Based Testing Process [17] 

In this process, Requirements are used as inputs to both the Model (1) and the Test 

Selection Criteria (2). The Test Selection Criteria are used to guide the creation of a Test Case 

Specification (3) that defines scope and boundary conditions for certain model elements, 

components, or interfaces. From there, the Model and the Test Case Specifications lead to the 

creation of Test Cases (4) that are direct inputs to the executable model driven by the Test Script 

(5-1). The execution of the model generates a verifiable list of Verdicts (5-2) that determine pass 

or failure of the original Test Case Criteria selected at the beginning of the process [17]. 

The intent of MBT is to provide quicker verification that the design is conforming to the 

requirements by logically checking that the cases defined by the behavioral models are an accurate 
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and complete representation of the original requirements. As this is typically performed early in 

the development process, it helps to find defects potentially before any prototype has been created, 

reducing costs and rework [88]. Additionally, as these types of tests are driven by software through 

the model, it lends itself easily to some form of automation. This creates the potential for large 

increases in test efficiency and coverage due to the replacement of manual testing with automated 

testing. 

2.3.2. Benefits of Testing in a Model-Based Environment 

In addition to the direct benefits of being able to simulate the execution of the system from 

the developed models, there are more indirect side effects of testing within a model-based 

environment that provide additional benefits to the Test Engineering team. 

The field of system testing can take advantage of the concept of modeling through the use 

of simplifying complex systems. A test engineer, especially at the unit and integration levels, needs 

to be able to analyze the system at a much more detailed level than the end user. Using the concept 

of abstraction through modeling, these lower-level details can be magnified, possibly allowing a 

test engineer to see elements that need to be tested further. 

Modeling also allows the test engineer to understand the overall system as a whole, giving 

a greater opportunity to increase efficiency when testing. If a tester is introduced to a new complex 

system without being able to see well-defined models of it, more time will be taken to understand 

the system. If accurate smaller-scale models (possibly of modular system elements) are in place, 

the tester can use these to define test cases before fully understanding the complexity of the system. 

Especially if the new test engineer already has the ability to understand the modeling language 

used by the system model, having the system fully defined in a standard way decreases spin-up 

and training time for new projects. 
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The creation and maintenance of a living model of the system also fosters preservation of 

system behavior descriptions [87]. In many cases, this can be a problem for follow-on efforts if 

the test cases and scenarios were not properly documented (e.g., not using well-formed and 

properly stereotyped SysML blocks). The test engineer new to the project may have to spend 

valuable time examining the test case itself or the test scripts in order to analyze the purpose of the 

test case. If the model clearly defines system behavior and traces to those test cases appropriately, 

this type of uncertainty is managed. 

Lastly, provided that appropriate dependencies are captured in the model, full traceability 

between requirements and modules of the system allows for the team to quickly analyze the effects 

of a requirement or design change, all the way to impacts to test procedures [89]. This traceability 

also allows the Test Engineering team to more accurately assess which test cases should be 

executed when a module has been modified, due to the ability to build traceability between test 

cases and all model elements [90].  

2.4. Overview of Agile Development Methodologies 

Agile refers to a set of values and principles originally described in the Manifesto for Agile 

Software Development published in 2001 [91]. This document was an attempt by 17 leaders in the 

software development industry to find common ground among the various trends and processes in 

the industry at the time. This resulted in the creation of the Agile Manifesto, which provides four 

value statements discussing the relative priorities of the authors, as well as a list of 12 principles 

intended to provide helpful guidance for the successful development of software.  

Overall, the Agile concept stresses adaptability to change through incremental 

development to provide customers with high-quality, working software that takes customer 

feedback into consideration while allowing development teams to use the methods and processes 
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that work best for them [92]. Agile is not supposed to be a methodology by itself, but rather a set 

of guidelines for the creation of an Agile development process that captures the spirit of the original 

manifesto authors’ intentions. While there are several development methodologies that have 

adopted and built upon the core components of the Agile Manifesto, the two specific Agile 

methodologies described below are referred to later by this research. 

2.4.1. Scrum 

Scrum is an Agile development methodology that intends for product development to be 

performed both iteratively and incrementally. It focuses development around periods of time called 

Sprints which are at most one month long. The expectation of Scrum is that at the end of each 

Sprint, the developed product is deployable, meaning fully designed, developed, documented, and 

tested [93]. The product could be delivered to the customer as-is at the end of the Sprint with all 

included features properly working. 
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Figure 8 below displays key roles, components, and activities within the Scrum process 

[94]. These items are also discussed in more detail below. 

 

Figure 8: Scrum Development Process [94] 

2.4.1.1. Roles 

Roles are important and specific under the Scrum process and are defined further below. 

2.4.1.1.1. Product Owner 

The Product Owner is responsible for the product under development and has final 

authority for the decisions made with regard to the direction of the product. They are tasked with 

continually identifying and prioritizing features that the product will have, which feed directly into 

the work that the team will perform. The Product Owner has to have knowledge of what features 

will provide the most value for the product, taking into consideration items such as satisfying 

customers, meeting strategic objectives, and managing risks [94]. 
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2.4.1.1.2. Scrum Team Member 

The Scrum Team is responsible for building the product that the Product Owner describes 

through the list of features. Ideally, the team is between five to nine people with cross-functional 

skills that provide the ability to accomplish any task given to them without bringing in external 

help. The team is also responsible for organizing and managing itself without the need for a 

traditional project or functional manager [95]. 

2.4.1.1.3. Scrum Master 

The Scrum Master is responsible for providing Scrum expertise to empower and facilitate 

the rest of the Scrum Team to function optimally. They serve as a coach and mentor, protecting 

the team from external interference and solving facilitation problems that may arise throughout the 

project [96]. They are not a manager and do not have any power over the team other than to ensure 

that the Scrum process is followed. They support the team however they can. 

2.4.1.2. Components 

The components of the Scrum process are described below. 

2.4.1.2.1. Product Backlog 

The Product Backlog is the entire list of features or tasks for the product that is managed 

by the Product Owner. This is where the Product Owner prioritizes items for the team to work. 

Each item typically includes at least a description of the work to be done and an estimate to 

complete it. The Product Owner continually assesses the priorities of the Product Backlog to ensure 

that the highest value items are at the top of the list (i.e., to be worked before other items).  
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2.4.1.2.2. Sprint Backlog 

The Sprint Backlog is the subset of the Product Backlog that the Scrum Team is actively 

working in a Sprint. Each item is typically broken into smaller tasks to facilitate easier 

conceptualizing of the work that is to be performed. 

2.4.1.2.3. Velocity 

Velocity refers to the amount of work a Scrum Team can accomplish in a Sprint. It is 

dependent on estimates assigned to each item that is worked and is the mechanism by which a 

team understands how much work can be committed to in an upcoming Sprint. 

2.4.1.3. Activities 

Activities of the Scrum process are described below. 

2.4.1.3.1. Sprint Planning 

Sprint Planning is the process by which the items to be worked in a Sprint are chosen. This 

activity involves the entire team. The Scrum Master facilitates the meeting and provides Scrum 

guidance when necessary. The Product Owner communicates the highest priority items in the 

Product Backlog and explains their perspective with regard to these items. The team determines 

how they will break up the items in the Product Backlog and decides how many items they will 

commit to completing for the upcoming Sprint. Those items are transferred to the Sprint Backlog 

and work begins on the Sprint. 

2.4.1.3.2. Daily Scrum 

During execution of the Sprint, the Scrum Team gathers for a quick meeting every day 

called the Daily Scrum. The purpose of this meeting is for each team member to communicate the 

following three items to the rest of the team:  

1. What did you accomplish since the last meeting? 
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2. What do you plan to accomplish by the next meeting? 

3. Is there anything blocking you from accomplishing work? 

The Daily Scrum is supposed to help the team coordinate their actions and identify any 

problem areas that need to be discussed further or resolved. It typically will lead to follow-on 

meetings with less than the full team to help other team members or resolve problems. 

As the team is supposed to be self-managing and mostly self-sufficient, Scrum discourages 

managers from attending the Daily Scrum. It is expected that if the team has a problem that must 

be resolved by a manager or someone with authority in that area, the team will seek out that person 

when needed. 

2.4.1.3.3. Backlog Refinement 

At some point during the Sprint, the entire team meets again for the Backlog Refinement 

activity. This purpose of this activity is to look forward to ensure that the next one or two Sprints 

are adequately defined and prepared to be pulled into a future Sprint. This could include 

requirements analysis, item decomposition, and estimation activities. Backlog Refinement is 

necessary to keep the team’s operation running smoothly for future Sprints.  

2.4.1.3.4. Sprint Review 

At the end of a Sprint, the Sprint Review activity is an opportunity for the entire team to 

communicate about the direction of the product. It is to encourage discussion between the team 

and the Product Owner, through the use of a demonstration of developed functionality, to align the 

vision for the product with what is being built. It is also an opportunity to invite other stakeholders 

to a discussion about the product to solicit feedback on the current state of the product. 
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2.4.1.3.5. Sprint Retrospective 

While the Sprint Review is product-focused, the Sprint Retrospective is process-focused. 

The purpose of this activity is to identify process-related successes to be celebrated and 

improvement opportunities that should be worked. It occurs at the end of a Sprint after the Sprint 

Review. There are many possible ways of performing the Sprint Retrospective, but the basic 

concept is to identify a list of things that went well (i.e., successes) and things that could have gone 

better (i.e., improvement opportunities) [97]. The end result is to define an action plan to try to 

make the process better in the next Sprint. 

2.4.2. Kanban 

Kanban is also an incremental development methodology; however, instead of focusing on 

a strict time period to complete a set amount of work, restrictions are placed on how many items 

can be worked at a time [98]. This is referred to as limiting work-in-progress (WIP) and is a core 

principle of the Kanban methodology. Kanban is not an iterative process (i.e., there are no Sprints), 

but rather focuses on pushing features through the process with an end result of deployment for 

that feature. In Kanban, the product can be ready to deploy at any time, but only with those features 

that have been fully transitioned through the entire process.  

2.4.2.1. Kanban Board 

The Kanban board is the central organization mechanism for the Kanban process. A basic 

Kanban board includes three columns: To-Do, In Progress, and Done. Each column has a limit for 

how many items can be in a column at a time, with the goal of maximizing productivity by keeping 

everyone focusing and working while also limiting the scope of what team members should be 

working on at any given time [99]. More complex Kanban boards could have additional columns 
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to further refine the process, but the basic idea remains the same: a Kanban team should only be 

working on a set number of items at a time in order to keep them focused and productive.  

2.4.2.2. Roles 

Unlike Scrum, in Kanban there are no specific roles for team members. Teams are not 

necessarily cross-functional and can bring in needed resources as required. A Product Owner may 

still be involved, but only to prioritize the Product Backlog that feeds the Kanban board. Teams 

are expected to manage themselves as necessary to get the work done. 

2.4.2.3. Cycle Time 

The main metric for the Kanban estimation is Cycle Time. This refers to the amount of 

time it takes for a feature to travel through the entire process. It is used to estimate how much work 

can be done over a time period, forecasting how long it might take to build a set of features for a 

specific product. 
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CHAPTER 3:  SYSTEM DESCRIPTION 

 

The system used as the basis for this research, named System X for discussion purposes in 

this dissertation, is an Electronic Warfare Management System (EWMS), which interfaces with 

onboard and offboard aircraft systems to receive and process the threat environment, providing the 

pilot or crew with a response solution for the protection of the aircraft. It also controls integrated 

systems to provide a unified response to threats.  

System X is fielded on multiple aircraft platforms that have major differences in installed 

avionics and other mission specific systems. While System X hardware is mostly common across 

platforms, System X software includes significant differences between platforms due to the 

uniqueness of each platform and the preferences of operators. A major challenge in the 

development of System X is the maintenance of common functionalities while also adapting to 

these differences among platforms. 

GTRI’s role in the development of the system is to upgrade and sustain the internal 

software, and on occasion the hardware, of System X, providing modern EW capabilities for the 

older aircraft platforms that operate with System X installed. 

3.1. Previous Development Process 

The development process for System X has historically been Waterfall. The overall project 

included a typical set of milestone events (e.g., System/Software Requirements Review (SRR), 

Preliminary Design Review (PDR), Critical Design Review (CDR), Formal Dry Run Testing, Test 

Readiness Review (TRR), Formal Testing, Release), with a customer-provided list of Change 

Requests (CRs) for a specific release. Those requirements were translated into system and 

component-specific requirements, which were used as the basis for design, development, and 
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testing. Representatives from each functional discipline (i.e., Systems Engineering, Software 

Engineering, Test Engineering) performed their respective tasks to complete the list of CRs. At 

the end of development, the Test Engineering team performed a formal test procedure dry run and 

an acceptance test to verify functionality in a lab environment before release. Formal validation of 

the release was performed at Flight Test after delivery to the customer. 

3.2. Process Improvement Opportunities 

System X has been an on-going project at GTRI for more than 20 years. While GTRI has 

remained modern with regard to technology used during the development lifecycle (e.g., process 

management software, lifecycle development software, coding practices and standards), the 

overall development process for System X had mostly remained the same Waterfall approach. 

Additionally, the longevity and increased scope of System X over the years resulted in a few shifts 

in the process that provided opportunities for improvement. 

3.2.1. Multiple Releases 

When System X was first developed, it supported only one aircraft platform. Over time, 

with the success of the System X project, it expanded to a total of four aircraft platforms. Each of 

these platforms included a different version of System X for a release, due to the differences 

inherent to the aircraft. These platforms all had different schedules that needed to be coordinated, 

leading to multiple releases of similar, but different, versions of System X that were continuously 

in work. 

The history of the development of System X created an environment where each release 

for each platform was treated as a separate project. The top level of project management stayed 

the same, but the teams were almost always on parallel and separate paths. Sharing of related 
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functionality and documentation was performed, but always required a port of functionality rather 

than pulling from a truly common baseline.  

This provided an opportunity to deliberately consolidate the multiple paths of System X 

development, creating a common basis for all supported platforms. 

3.2.2. Requirements 

At the beginning of System X, the customer did not provide any requirements beyond an 

initial mandate to provide a set of new capabilities. Eventually, as the project matured, it was 

treated less as an experiment and more as a formal product. This led to an inherent problem where 

requirements development was always trying to catch up with the state of the system. Over the 

years, multiple pushes to perform proper requirements analysis and rework were mostly 

successful; however, requirements must be constantly maintained. Periodic rework is costly and 

cannot keep current with the state of the system. The customer and the development team found 

themselves in a place where requirements were no longer the driving force behind the development 

of System X; rather, CRs from the customer became the basis of discussion regarding system 

functionality. Requirements development was still performed, but less emphasis was placed on 

keeping them consistent or properly traced to documentation. 

This provided an opportunity to rethink the development, tracking, and maintenance of 

requirements. 

3.2.3. Documentation 

Historically, documentation is a problem area for most large-scale engineering projects. 

While there is usually a large amount of documentation that is created, it tends to be overwhelming, 

low-quality, and constantly out-of-date [100]. The documentation for System X suffered from 

these problems as well. Documentation was typically performed after the project was mostly 



   
 

52 
 

developed, rather than at the time of development, leading to extra cost, potentially forgotten 

aspects of functionality, and rushed work.  

With regard to the test documentation, the test procedures had been worked and reworked 

multiple times throughout the history of the project. This created a variety of different testing styles 

and strategies incorporated into the test documentation. Additionally, the test suite included 

multiple test cases that should have been one-time tests (e.g., testing a corrected defect), but were 

left in the core of the regression test. While this created highly thorough and detailed tests, it also 

created bulky, confusing, and overall less valuable test procedures. 

This provided an opportunity to develop a new method of documentation that would be 

more sustainable.  

3.2.4. Regression Timeline 

Due to the size of the test procedures being developed for System X, the time to execute 

the full suite of test procedures was incredibly long. As an example, 18 weeks was dedicated to 

the regression period for the last release of System X performed with the old process. This was 

time dedicated to dry run and formal acceptance testing, with the expectation that no new 

development was on-going. To put this in perspective, an overall period of performance (i.e., 

project initiation to release) for a System X project is normally 6-18 months.  

This provided an opportunity and desire to decrease test execution times from both GTRI 

and the customer. 

3.2.5. Team Knowledge and Training 

The development of System X was highly technical, requiring its engineers to attain a depth 

of knowledge that only comes through years of experience. That, combined with the size and scope 

of the project, made training new engineers to the project a time-intensive and costly experience. 
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Jumping in and being productive quickly was very difficult, especially when only a small number 

of people knew everything important about the system. The Waterfall process did not make this 

any easier, as coming on to the team in the middle of the project meant the new engineer had 

missed all of the important conversations and meetings about all of the functionality changes. 

Additionally, due to the nature of project organization, there was a lack of cross-functional 

teams. While the integrated teams worked well together and were successful, the representatives 

from each discipline (i.e., Systems Engineering, Software Engineering, and Test Engineering) 

worked on the tasks that were related to that functional team only. This style of system 

development created many experts who were highly knowledgeable about their specific function 

but did not have much knowledge at all about the rest of the project. 

This provided opportunities to lower the learning curve for new engineer productivity and 

share knowledge cross-functionally.  
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CHAPTER 4:  CONCEPT APPLICATION 

 

A potential solution to the Test Engineering process challenges mentioned previously is 

provided through the application of Agile development, automated testing, and MBSE concepts.   

4.1. Agile Transition 

The first concept applied to the development of System X was a transition to an Agile 

development method. The history of Agile within System X’s organizational division and the 

specifics of the implemented process are described below. 

4.1.1. Organizational History of Agile  

Traditional projects within System X’s organizational division have always been 

performed using the Waterfall development process, mainly due to the strict set of milestones and 

deliverables associated with a project in the defense industry. However, with the rising popularity 

of Agile development methodologies, some new projects over the past few years were identified 

as being good candidates to try an Agile process instead. During the researcher’s involvement as 

a Test Engineering manager with these projects, the following characteristics were observed as 

being common among each: 

• Limited customer involvement 

• Limited deliverables 

• No expectation of formal milestones 

• No adherence to a strict formal meeting schedule 

• A single delivery at the end of the project 

• Relatively smaller scale and scope 
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These characteristics allowed for a flexibility that would facilitate the adoption of an Agile 

approach much more easily than a project that had rigidly formal timelines and delivery 

expectations. Therefore, it was decided to experiment with some variety of Agile, typically Scrum 

or Kanban, to organize and execute the development process. 

In the end, all of these projects were successful in terms of customer satisfaction with the 

delivery of the end product; however, most of these projects failed with respect to their adherence 

to and implementation of Agile methodologies. For the most part, these projects defaulted back to 

a predominantly Waterfall approach with a variety of loosely adhered to Agile components. 

Through an analysis of why Agile was discarded, certain trends appeared. For these projects, the 

adoption of Agile mostly failed due to:   

• A project manager unfamiliar with, and unwilling to learn, Agile principles 

• A project team that was dedicated to multiple projects at varying percentages 

• Inept implementation of Agile (e.g., too strict or too loose) 

• Lack of understanding and training 

• Improper planning (e.g., too much or too little) 

• Unwillingness or lack of buy-in from the project team 

For these projects, when the execution of the project with an Agile process became too 

tedious, plans were quickly discarded and the team returned to a familiar process that would 

facilitate the results necessary to get the job done, albeit less efficiently. 

On the other hand, a few projects succeeded both at project execution and the application 

of an Agile process. Those projects differed due to: 

• Experienced and dedicated leadership on both the project management and technical sides 

• A project team dedicated only to that project 
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• Willingness among the project team to learn new concepts and put them into practice 

• Structured, but flexible, planning of the project 

• Complete buy-in from the project team 

• Customer awareness of the implemented Agile process 

The combination of the previously listed project characteristics and the above positive 

trends provided a scenario in which the adoption of Agile processes on these projects could 

succeed.  

4.1.2. Change to Agile 

Before the transition to Agile for System X, there was not a large-scale, sustained program 

that had decided to fully adopt and transition to an Agile development methodology within System 

X’s organizational division.   

With the knowledge of the history of Agile implementations described above, there were 

several considerations that factored into the way Agile methodologies were applied to System X. 

It was clear that, for a development effort to be successful for System X, the following needed to 

be true: 

• Knowledgeable project management and technical leadership 

• Agile training for team members 

• A dedicated team with limited obligations to other projects 

• A clear process that was structured while still flexible 

• Clear communication with customers regarding the changes to historical processes 

Additionally, several aspects of the project’s process needed to change to best foster an 

environment that supported Agile development. 
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4.1.2.1. The Researcher’s Role 

Before describing the process modifications that were made, it is necessary to define the 

role of the researcher during the Agile transition. Before the change to Agile, the researcher served 

as the Test Engineering manager for System X, providing supervision and leadership for all Test 

Engineering activities for System X. The main push to change to an Agile process was initiated by 

the System X Lead Engineer at the time, who designed most of the initial structure of the process. 

As part of System X leadership, the researcher helped the Lead Engineer with this initial design 

and was the driving force for several of the process improvement that occurred during the initial 

steps of the transition. After the transition, the researcher assumed the role of Lead Test Engineer 

on the System X Discipline Leadership Team that is described further below. 

4.1.2.2. First Steps 

To support a new process, the following prerequisite tasks needed to be accomplished, 

either before, or at least concurrently with, the adoption of an Agile methodology in order to 

support the new process. 

4.1.2.2.1. Product Reorganization 

System X supported multiple aircraft platforms in different configurations. The first task 

was to consolidate the multiple System X variants into a common releasable product, keeping the 

following goals in mind: 

• Document commonality of features among all platforms 

• Merge code that should be shared 

• Unify interface menu structures and displays 
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This was a large task that was mostly worked in the background before transitioning to an 

Agile process. It was a necessary step to lay the groundwork for requirements reanalysis and test 

restructuring. 

4.1.2.2.2. Release Timelines 

In the past, each release had different timelines and development schedules. Each of these 

releases necessitated a lengthy regression testing period to ensure that the product was still working 

as expected in addition to the formal testing of new features. To support the new process, the 

various schedules were purposely aligned into a single, yearly release. With the product becoming 

common to all platforms, this delivery schedule was intended ensure a formal delivery in a regular 

rhythm that could be anticipated. It also allowed for regression testing to be performed for all 

platforms at the same time, reducing the number of test cycles per year. 

4.1.2.2.3. Development Tools 

Historically, System X used a single, monolithic development lifecycle tool in combination 

with Microsoft Office to perform within a Waterfall development process. This tool was outdated 

and not adequate for supporting a modern product development process.  

There are several development tool suites available that are helpful for productivity in an 

Agile environment [101]. GTRI as an organization had decided on the Atlassian suite of tools (e.g., 

Confluence, BitBucket, Jira) to support future Agile projects, so those tools were chosen to support 

future System X development.  

4.1.2.2.4. Documentation Methods 

Constantly updated documentation is an expectation in an Agile environment; however, 

traditional tools to create documentation (e.g., Microsoft Office) take significant time to use and 

can be burdensome with regard to formatting. In order to increase documentation productivity, 
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traditional word-processor developed documentation was reworked. The team transitioned to a 

process of using lightweight markup languages such as LaTeX or reStructuredText to build 

documentation automatically from team-developed plaintext content into polished deliverables. In 

this way, when a change occurs in the future, the team would just have to edit the source material 

for the change and will not have to worry about correctly formatting a document. 

4.1.2.2.5. Employee Commitment  

Based on the examples of Agile development within System X’s organizational division, 

having the team’s time dedicated to one project for its duration was an important factor in the 

project’s successful implementation of an Agile method. Leadership for the System X project 

worked with organizational managers to obtain a commitment for a core part of the System X team 

to stay dedicated to that one project per release cycle (i.e., one year). The expectation was that 

more team members could be added if necessary, but the core set would not be pulled off to do 

something else unless there was no other choice. 

4.1.2.2.6. Agile Knowledge and Training 

Strong leadership in Agile concepts and training for involved personnel was also seen to 

be an important factor for success. The Lead Engineer for System X was the driving force in the 

push to adopt Agile practices and was a key developer for the process that implemented. He was 

also a certified Scrum Master, providing a large amount of knowledge for the transition. 

Additionally, the core team members were provided with formal training in the Scrum process, 

which provided a good foundation for the change in processes. 

4.1.2.2.7. Automated Testing 

To support quick turnaround of features and an Agile development methodology, testing 

had to move from a manual process to an automated one. Test automation was already completed 
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for one of the support tools for System X, and so that automation framework was deployed for the 

testing of System X itself. Automated testing is discussed in later sections, but it is mentioned here 

as it is interconnected with the change in System X’s development process. 

4.1.2.3. New Process 

With the previous prerequisite steps resolved, it was necessary to define a new process that 

would support the development of System X and embrace the concepts of Agile methodologies. 

The core of the new process that was created inherited features of the Scrum methodology, but 

with adjustments to fit the unique aspects of System X’s development requirements and necessary 

processes. Additionally, some DevOps techniques were also incorporated to streamline the build 

process. The details of the new process are described below. 

4.1.2.3.1. Team Organization 

Under the traditional Waterfall process, the different discipline teams (i.e., Systems 

Engineering, Software Engineering, Test Engineering) functioned mostly on their own to 

accomplish the discipline-specific tasks associated with the features being developed. Each team 

was siloed according to their function, with limited interaction until a component was passed from 

one group to another (e.g., system requirements passed from Systems Engineering to Software 

Engineering to work software requirements, or software passed from Software Engineering to Test 

Engineering after a formal build was created). This is the natural way that teams interact when 

using a Waterfall methodology.  

For the new process, functional discipline teams were broken up to create cross-functional 

teams consisting of at least one systems engineer, one software engineer, and one test engineer. 

The new team organization structure for System X is shown in Figure 9 below. 
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Figure 9: New Team Organization 

Based on the number of available team members and the amount of backlog work to be 

performed, the number of teams could grow or shrink; the only requirement was that each team 

must have at least one engineer from each discipline.  

4.1.2.3.1.1. Roles and Responsibilities 

As in traditional Scrum, specific roles must exist to support the process. A description of 

each role and their expected responsibilities is detailed below. 

4.1.2.3.1.1.1. Program Manager 

The Program Manager is responsible for high-level budgeting, scheduling, contract 

management, facilitating formal customer meetings, and other project support activities. They help 
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bring in future work and secure resources and personnel to accomplish the work; however, they 

have almost no interaction with the Scrum process or project teams. 

4.1.2.3.1.1.2. Lead Engineer 

The Lead Engineer functions as the Product Owner for System X. They are also the primary 

technical interface with the customer. As in a traditional Scrum process, in the role of Product 

Owner, the Lead Engineer is responsible for translating customer requests into items in the Product 

Backlog and keeping that list of items prioritized. The Lead Engineer is the main source of 

technical expertise on System X, and as such, has the final say with the technical direction and 

decisions made for the project. 

4.1.2.3.1.1.3. Discipline Leads 

The Discipline Leadership Team consists of three experts in the respective fields of 

Systems Engineering, Software Engineering, and Test Engineering. They are responsible for 

providing guidance in their areas of expertise for the Scrum Teams working on items in the 

backlog. They are not officially part of a Scrum Team that works on specific Tasks, but rather they 

are expected to help any team that needs it. The Discipline Leads also help the Lead Engineer with 

Product Owner tasks when necessary. 

4.1.2.3.1.1.4. Scrum Teams 

As mentioned above, a Scrum Team consists of at least one representative from each 

discipline. However, they are encouraged to share responsibilities across disciplines and learn how 

to perform tasks for other team members. As in traditional Scrum, the team is expected to be cross-

functional, ensuring that all necessary skills to perform Tasks are located within the team. Team 

members work together to accomplish Tasks from the Product Backlog within a team-specific 

Sprint.  
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4.1.2.3.1.1.5. Scrum Master 

Unlike the traditional Scrum process, there is no Scrum Master role specifically carved out 

in this process. The System X program could not support separate Scrum Masters for each team 

dedicated to that role, there was a lack of trained Scrum Masters available, and the needs of the 

project did not support that type of role. Therefore, the process expects that the Lead Engineer and 

the Discipline Leads would share the responsibilities of Scrum Master for each of the Scrum 

Teams.  

4.1.2.3.2. Components 

The components of the new Agile process are described below. 

4.1.2.3.2.1. Sprints 

Each Scrum Team performs work under its own, independent Sprint. These Sprints are 

planned to be two weeks, with the ability to shift duration as necessary to adjust for holidays, 

project milestones, and other schedule-impacting events. It is expected that each team will stay 

consistently aligned with regard to Sprint start and end dates. Maintaining and coordinating Sprint 

timeframes is a responsibility of the Leadership Team. 

4.1.2.3.2.2. Product Backlog 

The Product Backlog is the full list of all Tasks to be performed for System X. This feeds 

the backlogs of each of the Scrum Teams and is managed by the Lead Engineer with the help of 

the Discipline Leads. The Product Backlog helps the Lead Engineer communicate priorities with 

the team. 
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4.1.2.3.2.3. Team Backlog 

The Team Backlog is the list of Tasks that a single Scrum Team has been assigned. It is a 

subset of the Product Backlog and helps the Leadership Team queue Tasks that are to be 

accomplished by a specific Scrum Team in upcoming Sprints. 

4.1.2.3.3. Activities 

All activities from the traditional Scrum process are preserved under this new process, but 

with some modifications to support the new team organization. The differences are described 

below. 

4.1.2.3.3.1. Sprint Planning  

Sprint Planning happens at the beginning of each Sprint. Each Scrum Team conducts their 

own planning meetings and decides what work the team will commit to for the next Sprint. Ideally, 

the team pulls items from the top of their Team Backlog, as the Team Backlog should contain a 

prioritized list of items assigned to that Scrum Team. The Lead Engineer and the Discipline Leads 

are expected to attend each of the team’s Sprint Planning meetings to provide guidance when 

necessary. 

4.1.2.3.3.2. Daily Scrum 

Each team meets daily, similar to traditional Scrum, to discuss previous accomplishments, 

plans, and roadblocks. Daily Scrum meetings are mandatory for team members, and optional for 

the Leadership Team. It is expected that at least one member of the Leadership Team attends each 

Daily Scrum, so that the Scrum Team has quick resolution to any potential roadblocks that may be 

discussed. 
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4.1.2.3.3.3. Backlog Refinement 

For the Backlog Refinement activity, all teams, including leadership, meet as one group to 

perform the traditional refinement process. However, the initial part of the meeting is dedicated to 

whole group discussion so that anything that needs to be covered for the entire System X team 

(e.g., a change in customer direction) can be discussed. Also, the Lead Engineer uses that time to 

make sure all teams are aware of the highest priority Tasks that have been queued for assignment. 

This is a time for the Scrum Teams to ask any specific technical questions as a group about those 

items to aid in their future refinement. 

After the initial whole group meeting is completed, each team breaks from the whole and 

performs their own Backlog Refinement activity with their individual groups. In these breakout 

sessions, each team has the following goals: 

• Identify or reassess the next set of Tasks that will fill the next two to three Sprints for that 

team 

• Define Subtasks that will be performed under each of those Tasks 

• Identify any potential blockers for those Tasks and Subtasks so that the Leadership Team 

can address them before the Task is assigned to a Sprint 

During this time, members of the Leadership Team float between the different breakout 

sessions and provide guidance when needed. This guarantees the Scrum Teams access to members 

of the Leadership Team on a weekly basis to discuss any technical questions they may have about 

future Tasks. 
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4.1.2.3.3.4. Sprint Review 

For Sprint Review meetings, all teams come together to demonstrate what they 

accomplished during the Sprint. It is a combined meeting so that all teams are able to keep current 

on the work being performed by the other teams. 

4.1.2.3.3.5. Sprint Retrospective 

All teams meet for a combined Sprint Retrospective meeting that is performed in a way 

similar to traditional Scrum. Conducting a combined meeting allows all teams to discuss and 

contribute to everyone’s successes and improvement opportunities.  

4.1.2.3.4. Schedule 

As previously described, the schedule for System X was changed to a yearly release to 

accommodate the change to an Agile methodology. This change in schedule necessitated a new 

rhythm for customer interaction due to the lack of regular Waterfall milestones around which 

traditional meetings could be planned. 

4.1.2.3.4.1. Traditional Waterfall Process 

Traditionally throughout a typical development cycle, the following customer events 

would be scheduled to align with the phases of Waterfall development: 

• Project Kickoff Meeting 

o Initial planning to start the project and determine the initial expectations for what 

will be accomplished 

• Requirements Review 

o A review of product requirements that have been created based on the features 

expected to be developed 

• Preliminary Design Review 
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o A review of the initial design of functionality based on requirements that were 

created 

• Critical Design Review 

o A review of the final design of functionality for features that will be created 

• Test Readiness Review 

o A review of the state of the developed product before beginning formal verification 

activities 

• Integration Test Events 

o Periodic test events on-site with customers to perform integration testing with real 

(i.e., non-simulated) systems 

• Acceptance Test 

o The formal verification process to prove that product meets expectations and 

satisfies requirements 

The development efforts for each platform would happen concurrently, with each having 

their own set of customer events throughout the development period. Figure 10 below shows an 

example of the typical schedule of the three platform releases being worked under a Waterfall 

process. 
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Figure 10: Typical Waterfall Schedule 

Each of the vertical arrows corresponds to a customer event. As can be seen from the 

diagram, the events were occurring almost constantly throughout the year. Each meeting was held 

to discuss only a specific subset of features in a specific state at a time. In this process, meeting 

fatigue can easily occur due to the overwhelming number of customer events.  

Another issue with this schedule is the gaps of time between specific platform releases and 

the start of the next update. Teams were expected to switch between platforms to help with other 

releases during the downtime, which led to high switching costs and decreased productivity. 

Finally, Figure 10 can be used to show how the Waterfall methodology delays the ability 

to deploy developed features, since features are not complete until the testing phase is complete. 

For the first platform, features that were designed in the first quarter will probably not be 

deployable until the fourth quarter. 

4.1.2.3.4.2. New Modified Scrum Process 

Under the new process, many of the customer events are replaced by a different type of 

meeting. Since features are being developed iteratively, there will never be a point early in the 
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schedule where all requirements or design has been completed for all features. This makes the 

specific review meetings unable to be performed in their traditional manner. Instead, quarterly 

customer meetings are scheduled during the development phase of the project. At these quarterly 

meetings, all features that have been completed are presented for review. The customer then has 

an opportunity to provide feedback on completed features in case these need to be redesigned and 

inserted back into the Product Backlog. Figure 11 below shows the layout of customer events with 

the new process, and how the teams work Tasks throughout the timeframe. 

 

Figure 11: New Process Schedule 

As can be seen above, the number of meetings is significantly reduced by the new process. 

Integration Test events are still necessary but are reduced to twice per year. There are no longer 

gaps in the schedule, where teams must incur switching costs by shifting to the development of a 

new platform. Additionally, all development stops at the end of the year to make room for a six-

week Yearly Regression period and final release. This period of regression testing is required by 

the process to provide a final verification that the system under test is ready for release. Each 
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numbered block in the diagram corresponds to an Epic, or feature, that is being worked by the 

specific team at that time. 

4.1.2.3.5. Process Walkthrough 

To illustrate the process, the following sections provide a walkthrough of an example 

feature from conception through release. 

4.1.2.3.5.1. Epic Creation  

An Epic is the highest level of Task that can get created in the process. Items at the Epic 

level are typically large, multi-task features that will probably take multiple Sprints to accomplish. 

Epics are the primary level at which features are discussed with the customer and are usually more 

of a big idea or request rather than a detailed set of Tasks.  

While the list of Epics is maintained by the System X team, the customer is primarily 

responsible for creating and prioritizing them. Epics are typically the center of communication 

between the customer and the System X team. The list of Epics that will be targeted for the yearly 

release are identified and discussed at the Project Kickoff Meeting. These Epics would be entered 

into the Product Backlog with a status of “Triage.” 

For this example, a theoretical Epic is “Add support for Subsystem Y to System X.” 

Subsystem Y might be any particular system that can integrate with System X, but for this 

discussion, Subsystem Y is a new Radar Warning Receiver (RWR) that has never been integrated 

with System X’s environment. New subsystem support is a common addition for the System X 

project, so this example will illuminate a typical scenario. 

4.1.2.3.5.2. Epic Breakdown 

After the list of Epics is decided in the Project Kickoff Meeting and prioritized against 

other Epics, the Lead Engineer makes an initial attempt at breaking up the Epic into smaller, more 



   
 

71 
 

manageable Tasks. The goal of this activity is not necessarily to break the Epic into small enough 

Tasks to go into a Sprint, but to serve as a starting point for the Backlog Refinement process. For 

the example Epic, some initial Tasks could be: 

• Create communication interface for Subsystem Y 

• Process sensor tracks from Subsystem Y 

• Support loading of Subsystem Y data files 

These Tasks are entered into the Product Backlog with a status of “Triage.” After being 

prioritized against each other by the Lead Engineer, their status is changed to “Prioritized.” This 

is the signal that they are ready for further refinement in the future. 

4.1.2.3.5.3. Task Refinement 

The Tasks created by the Lead Engineer remain mostly untouched in the Product Backlog 

until they are close enough to the top of the Product Backlog to get refined in one of the weekly 

Backlog Refinement meetings. When that occurs, Scrum Teams take those Tasks and attempt to 

break them up further to prepare them to be pulled into future Sprints. The goal of this activity is 

to: 

1. Split Tasks into small enough pieces to be accomplishable in a single Sprint 

2. Provide a Story Point estimation for each Task for future Sprint planning 

3. Identify any potential roadblocks or other items necessary to complete those Tasks in the 

future 

4. Begin defining pseudo-requirements to get a jumpstart on the requirements process 

To further describe the example, a breakdown of the first Task is defined below: 

• Epic: Add support for Subsystem Y to System X 

o Original Task 1: Create communication interface for Subsystem Y 
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o Refined Tasks: 

▪ Update bus controller to initialize Subsystem Y message traffic 

▪ Define message structure for Subsystem Y 

▪ Add Subsystem Y message traffic to Bus 2 

▪ Create translation protocol files for Subsystem Y messages 

Taking the first refined Task (Update bus controller to initialize Subsystem Y message 

traffic) as a further example, a team might determine the following during Backlog Refinement: 

• Story Points: 5 

• Roadblocks: Support tool updates are required to simulate and monitor Subsystem Y 

traffic. These tool updates are a prerequisite for this Task. 

• Pseudo-Requirements:  

o Initialize Message 1 with proper size and rate 

o Initialize Message 2 with proper size and rate 

4.1.2.3.5.3.1. Story Points 

Story Points are assigned by the team as a work estimate in Scrum. They allow the teams 

to anticipate how much work they can accomplish in a Sprint in order to aid the Sprint Planning 

activity. Story Points are not strictly time-based, rather they are supposed to be a relativistic 

measurement to compare Tasks to each other. A Story Point estimate of “2,” for example, is 

considered to be twice the effort of a “1.” When determining Story Points, teams should take time, 

complexity, and risk into account.  

At the beginning of the transition to Scrum, the teams involved were asked to describe a 

simple Task that could be used as a comparison for Story Point estimates. That Task became a “1” 

and was used as the basis for estimating Story Points until the teams got familiar with the scale. In 
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this example case, this Task is estimated as a “5,” meaning it should be roughly five times the 

effort of the original “1,” as judged by a combination of time, complexity, and risk. 

The rationale for using Story Points over a traditional time estimation is to attempt to 

remove the human element of estimation. If a time-bounded estimation is provided, it is human 

nature to finish a Task in that amount of time. If it actually takes less time to complete the Task 

than was estimated, there is a chance that the effort could be slowed down to match the expectation. 

In the opposite case, if the Task takes more effort than was originally estimated, it is probable that 

the work would be rushed to meet the deadline. This could lead to sloppy work and less than ideal 

product quality. As Story Points are not intended to be time-bound, the estimated Task will 

hopefully take as long as required to perform the work to the expected standard. Story Point 

estimations should be reviewed at the end of a Sprint, not to cast blame if something was not 

finished, but to assess if the Story Point estimates were accurate after the work has been finished. 

This hopefully is a learning opportunity for the team to become more accurate with Story Point 

estimates in the future. 

4.1.2.3.5.3.2. Roadblocks 

The team also takes the opportunity during Backlog Refinement to anticipate any future 

blockers to accomplishing the Task. In the example, it is necessary to create a simulation of 

Subsystem Y so that System X can communicate with it, as real hardware is not always provided. 

This work must be accomplished first so that the example Task can be fully completed within the 

future Sprint to which it will be assigned. 
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4.1.2.3.5.3.3. Pseudo-Requirements 

The final step for the Task in Backlog Refinement is to generate pseudo-requirements to 

help when it is time to create real requirements. This activity is generally illuminating as well, 

helping to break down the Task and identify unknowns. 

4.1.2.3.5.3.4. Status Change 

When refinement of the chosen Tasks is complete, their status is changed from 

“Prioritized” to “Queued.” This signals that each of the Tasks have been refined are ready to be 

assigned to a Sprint. 

4.1.2.3.5.4. Task Assignment 

The Task remains in the Product Backlog until it becomes assigned to a team in a Sprint 

Planning meeting. When one of the teams decides to commit to working the Task, it gets pulled 

into that team’s Team Backlog and is worked once the Sprint is started. The Task’s status is set to 

“In Progress,” meaning that a team is actively working it. 

4.1.2.3.5.5. Task in Progress 

Once the Task is being worked, the team performs normal development activities for the 

feature. The description of the example Task (Update bus controller to initialize Subsystem Y 

message traffic) is continued below. 

As each artifact/activity is completed in follow-on steps, the rest of the team is encouraged 

to review the other team members’ work, both as a peer review and to manage interdependencies 

among Tasks by increasing visibility among teams. The Leadership Team is also expected to 

review the artifacts as they are completed. 
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4.1.2.3.5.5.1. Requirements Definition 

Requirements must be the first step, as they are the drivers for all follow-on activities when 

performing the Task. The following requirements might be created for the example Task:  

• System Requirement:  

o System X shall interface with Subsystem Y 

o System X shall process tracks from Subsystem Y 

• Software Requirements:  

o The bus controller shall initialize Subsystem Y Message 1 at Remote Terminal 2, 

Subaddress 4 

o The bus controller shall initialize Subsystem Y Message 2 at Remote Terminal 4, 

Subaddress 3 

o The bus controller shall poll Subsystem Y Message 1 at a 12 Hertz rate 

o The bus controller shall poll Subsystem Y Message 1 at a 200 Hertz rate 

All team members are expected to be involved in the requirements creation process. The 

team should be able to function independently to define the requirements but can pull in someone 

from the Leadership Team if they need help. The final requirements are submitted for final 

approval by the Leadership Team. 

4.1.2.3.5.5.2. Design/Planning 

Using the requirements previously created, each team member focuses on their respective 

disciplines to plan/design their approach to the feature. The following artifacts are created during 

this step:  

• Systems Engineering: System Design 

• Software Engineering: Software Design 
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• Test Engineering: Test Plan 

4.1.2.3.5.5.3. Development 

Similar to the previous step, each Scrum Team member continues to focus on their 

discipline-specific part of the Task. The following activities are performed during this step: 

• Systems Engineering: Preliminary Testing, Documentation 

• Software Engineering: Software Development, Documentation 

• Test Engineering: Test Procedure Creation, Documentation 

4.1.2.3.5.5.4. Testing 

After initial development is complete, a build is created and passed to the rest of the team. 

This is the opportunity for the systems engineer and test engineer to perform integration testing 

with the developed components. At the same time, the test engineer also uses the previously 

created test procedures to perform a dry run test execution with the build. As defects are found, 

they are documented and communicated to the rest of the team. The team assesses if defects will 

be fixed within the Sprint or if they are large enough to become Tasks that will be worked in future 

Sprints. After the Task has been fully developed and a final working build is created, the test 

engineer performs a final execution of the test procedures associated with the Task.  

4.1.2.3.5.6. Task Ready for Regression 

When the functionality in a Task passes dry run testing, the Task is transitioned to the 

“Ready for Regression” state and effectively shelved until the Yearly Regression period. The 

assumption made at this point is that the functionality in the Task works as expected and was 

proven to be working in the Sprint, so the Task can be merged into the main development path for 

the release.  
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4.1.2.3.5.7. Task in Regression 

When the Yearly Regression period begins, all Tasks are executed formally against the 

final build. Since all of the Tasks that are in the “Ready for Regression” state have been verified 

previously against a previous build, the expectation is that this final test execution is more of a 

formality (i.e., the test procedures pass with minimal issues). However, since Tasks are developed 

concurrently by different Scrum Teams and are merged together over time, there is a potential that 

a future Task could break the implementation of a previous Task. Finding these issues and fixing 

them is a major goal of the Yearly Regression period, along with formally qualifying the release. 

Ideally, as more of the testing becomes fully automated, regression testing can be performed 

multiple times at regular intervals throughout the development process in order to earlier identify 

problems stemming from these types of interdependencies between team Tasks. Currently, 

integration issues are either discovered and fixed during the testing of a build during a development 

Sprint or identified during the Yearly Regression period. 

4.1.2.3.5.8. Task Released 

After the Yearly Regression period, the status all Tasks and Epics that were formally 

verified is changed to “Closed” and the final build is released.  

4.1.2.3.6. Task Status Workflow 

The Task Status Workflow for Tasks described above is summarized in Figure 12 below. 
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Figure 12: Task Status Workflow 

As can be seen by the diagram, if a status needs to be reverted to a previous state, it must 

return to “Triage” to be reassessed. “Triage” is highlighted red to show that it is the starting state 

and needs to be refined. Blue states are those in which the Task is going through a period of 

refinement. Orange states indicate work is being performed by a Scrum Team. Lastly, green states 

indicate terminal states, either finished or rejected. 

4.2. Test Automation 

Automated testing is essential for supporting an incremental development process [102]. It 

allows for releases to be quickly verified and regression tested multiple times over the development 

period. The automated testing system used by System X is discussed further below. 

4.2.1. Organizational History of Test Automation 

System X’s organizational division has been interested in test automation for a long time. 

However, with the way funding works for GTRI, it is very hard to get projects off the ground that 

are not directly tied back to a customer contract. The researcher was originally involved as part of 

a team focused on test automation of System X, and after that became the driving force for test 
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automation within the division. The timeline and history of test automation efforts for System X 

are described below. 

4.2.1.1. 2012: Master Test Application 

In 2012, the researcher’s team developed a white paper for one of GTRI’s primary sponsors 

to introduce the concept of test automation and an estimate of initial costs. The white paper 

described a plan to use an open source Python module called Robot Framework as the basis for a 

single tool called the Master Test Application that would drive all the various simulation/analysis 

applications for System X. This tool would be where test cases were written, managed, and 

executed. The initial estimate, just to get the application built with foundational pieces laid out, 

but with no real results, was $500,000. While this estimate was not unreasonable based on the 

typical budgets for System X, the cost was too high for the customer, especially when no actual 

automated test cases would be delivered as part of it. The sponsor declined to move forward, and 

it appeared that test automation would die before it ever even started for System X. 

4.2.1.2. 2013-2014: Pure AutoIt 

After the failure of the white paper, the push to develop the capability basically evaporated. 

There was not much support to try again with a different sponsor on a different project. However, 

the researcher decided to continue to pursue test automation, but from a different viewpoint. 

Instead of trying to build a large application for automating all of System X that would require 

input and effort from multiple stakeholders, the researcher decided to attack it from the perspective 

of the individual support tools that would have been driven by the Master Test Application. This 

would provide a much less expensive avenue and potentially provide some real results to be used 

as evidence for a later push into full test automation. The researcher had control of the test budgets 

for System X’s tools, and was able to allocate some funding towards leading a small team of 
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students to experiment with test automation, both as a learning opportunity for the students and to 

see what could possibly be accomplished. 

Since funding was not available to pay for any internal tool developer support to provide 

back-end support for automation, test automation had to be attacked from the top-down. The 

AutoIt scripting language was used to perform Graphical User Interface (GUI) manipulation of 

Windows controls as a proof of concept for test automation. It was used successfully for two 

releases, saving two weeks of manual execution time per run the first release, and three weeks for 

the second release.  

Even though the team produced good results, they also ran into many problems, most of 

which were self-inflicted. The team approached it as an experiment without thinking about long-

term goals from the beginning. It was not sustainable, as the AutoIt language is somewhat hard to 

understand, and the team was not coding in a maintainable way. AutoIt does not provide much 

feedback or control of the testing that is occurring. The team was without a real way to verify or 

have much control with regard to test management. 

4.2.1.3. 2015: C# Wrapped AutoIt 

After the team gained experience using only AutoIt, they decided to try and build their own 

automated testing framework around AutoIt in order to give more feedback and control. They 

decided to wrap the AutoIt functions in C# to provide that capability. With this method they had 

more success. For the next release of the target application, they were able to save four weeks per 

run and had some success at restructuring the test procedures to better accommodate automation. 

Also, they proved the usefulness of test automation by automating a test for a different embedded 

system that needed up to a five minute task to be run potentially hundreds of times looking for 
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specific results (i.e., a perfect case for automation). They were able to save approximately 32 hours 

of manual testing time per run and provide specific results that they were expecting to see. 

Once again, however, they ran into more problems. Wrapping AutoIt functions in C# 

provided better management, but extremely high overhead costs to build. The team would never 

be able to sustain that type of work over multiple projects. Because the team absorbed so much of 

the previous work, they still had the problem of the test automation application being treated like 

an experiment instead of a real product. There was also no high-level organization of the test 

automation effort built in. It was just a collection of automated tests rather than an organized test 

capability. 

4.2.1.4. Early 2016: Robot Framework Rediscovery 

After the dissolution of the Master Test Application, the team abandoned thoughts of using 

Robot Framework as the test management middleware for test automation efforts. At the time, the 

researcher thought it entailed too much overhead to be usable in an inexpensive way (i.e., able to 

be accomplished with the funding reserved for student work), and the team wanted to show results 

quickly. However, around April 2016, another engineer told the researcher he had been using 

Robot Framework with great success to do some simple automation for an isolated task. He knew 

what the team had been doing with AutoIt and suggested that they look back into Robot 

Framework.  

By 2016, Robot Framework was more mature than it had been in 2012, and upon 

reinvestigation, the team came to the conclusion that it already had all of the functionality that they 

were trying to build into their C# test framework.  
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4.2.1.5. Mid 2016: Internal Funding for Investigation 

Around June 2016, the researcher secured a small amount of internal funding to research 

the feasibility of using Robot Framework as the test management middleware for test automation 

efforts. Using this funding, the researcher started developing the vision for the Test Automation 

Framework (TAF), including defining a formal strategy for test automation and an internal 

standard for its development. During this time, the team also successfully used Robot Framework 

to automate some specific testing as a proof of concept.  

4.2.1.6. Late 2016-2017: Development of the TAF Infrastructure 

After the completion of the internal research, the team fully embraced Robot Framework 

as their test management core. The team dropped all of the C# wrapping they were building and, 

for the most part, had to completely rebuild from scratch based on the new strategy. However, this 

was different. The team now had a formal strategy and a mature product to drive the test 

automation capability. Using student resources once again, the team started rebuilding previously 

automated test cases, but using the newly branded Test Automation Framework. It took almost a 

year of part-time student development to get the TAF infrastructure to a mature and stable state 

and to get test cases rewritten using the new tool.  

4.2.1.7. 2018-Current: The TAF Product 

The first official use of the TAF was to support the release of one of System X’s support 

tools in March of 2018. For this application, the manual test procedures, more than 2,200 pages, 

typically took somewhere between five to six weeks for a test engineer to execute. Using the TAF, 

the execution time for running the entire procedures, with a small percentage of manual test cases, 

was two to three days. In a manual paradigm, the entire test procedures are typically executed 

twice, one dry run and one formal execution, for a release. Therefore, the automation of these 
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procedures saved somewhere between 9-11 weeks of time, equating to roughly $60K in sponsored 

funds per release. Also, this provided the ability to constantly execute test procedures during 

development, potentially pushing the discovery of issues far to the left.  

Later in 2018, with these types of results, the researcher was finally able to start securing 

dedicated money from sponsors that would directly support the test automation capability for 

System X. At peak development times, the researcher is able to support a team of around seven to 

eight people, a mixture of full-time engineers and part-time/full-time students, on the TAF project. 

The team now supports automated testing in various capacities on five different products with the 

TAF, with the goal of expanding to all products within the division. 

4.2.2. Overview of the Test Automation Framework 

The TAF is a GTRI-developed framework for the management and execution of automated 

test cases. It is centered around the open source Python module Robot Framework, which provides 

a framework for the translation of code to user-defined actions/methods/functions, automatic test 

execution, and results reporting [103]. The TAF team has wrapped the Robot Framework 

component in usability features such as standard ways of defining test cases, an application to 

execute test sessions, a custom Integrated Development Environment (IDE) with syntax 

highlighting and keyword autocompletion, and other helpful features for test engineers. The other 

core component that the team develops is the various libraries that define the interfaces between 

Robot Framework and the target systems or applications.  

4.2.2.1. The Researcher’s Role 

The researcher has been involved in his organizational division’s push for automated 

testing since the beginning. He has been the Product Owner of the TAF since its creation and is 

responsible for providing and maintaining its vision, making architectural and strategic decisions 
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for its development, and directing the TAF development team. This background provided the core 

research for the implementation of test automation for System X.  

4.2.2.2. Objectives 

Based on the history of test automation described previously, the original driving objectives 

of the TAF were:  

• Develop an automation capability that mimics the real-time actions of manual testing 

performed by a test engineer. 

• Provide a framework that can coordinate the actions of multiple machines. 

• Develop an automation capability that can control the actions of a machine while the 

display is locked. 

• Create a maintainable framework that can be easily updated for future versions of the 

software under test given normal time constraints. 

• Create a sustainable architecture that can be updated and expanded without affecting 

existing automation capabilities. 

• Provide an adaptable automation capability for future expansion into other GTRI-

developed applications. 

• Promote understandability of test cases and automation libraries by utilizing standard 

structures, standard naming conventions, and natural language. 

• Minimize the need for significant coding experience for automated test case developers. 

4.2.2.3. Basic Architecture 

A core feature of Robot Framework is the ability to create keywords that call specific, pre-

defined segments of code, with the ability to pass in parameters [104]. In typical uses of Robot 

Framework, these keywords are simple instructions such as, “Print X,” “Press X,” or “Modify X.” 
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One of the unique features of the TAF is that it takes advantage of this ability and overloads 

keywords to write natural language statements that are executable. In this way, a “keyword” in 

TAF is actually an executable test step written to look like a normal sentence; it includes an action 

to perform, any necessary parameters that can be passed in, and any explanatory text that makes 

the statement more readable. 

A basic architectural view of the TAF can be seen in Figure 13 below.  

Figure 13: Basic TAF Architecture 

Starting at the bottom of the diagram, to create a Test Automation Capability targeting a 

specific application or system, Robot Libraries are written to interface with the system under test. 

These libraries contain functions that define methods for interacting with the system. In the Robot 

Framework Keywords file, the methods from the Robot Libraries are mapped to commands that 
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will be visible to the test engineer to use for building test cases in the Robot Test Case file. This 

essentially means that an automated test case (i.e., a robot file) is a sequence of pre-defined 

keywords written in natural language that reads like a set of manual test steps. This allows the test 

case to be executed manually for debugging purposes, or if for some reason the automated 

capability breaks, and it allows the automated test case to be easily translated to a more presentable 

form for delivery to a sponsor.   

4.2.2.4. Single Keyword Example 

The following presents an example of a custom Robot Framework keyword that is defined 

within the TAF. This keyword provides the TAF user with the ability to select a specific option 

within a combobox (i.e., an editable field that includes a list of options in a drop-down menu) on 

a specific window.  

The intended keyword usage is shown in Figure 14 below:  

 

Figure 14: Combobox Interaction Keyword Usage 

This line is an example of an executable statement within TAF. A test engineer would 

include this line within a test case, provided he or she needed to select a specific option in a 

combobox. 

Items within square brackets ([]) are parameters and are passed as input to the keyword. The 

keyword itself is defined generically within a separate file that includes keywords logically 

grouped. The keyword definition can be seen in Figure 15 below: 

 

Figure 15: Combobox Interaction Keyword Definition 
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To make this keyword actually perform its function, a method of interacting with the target 

system has to be created. For this example, the previously mentioned AutoIt scripting tool, 

translated to a Python module called PyAutoIt for easier use, was used to perform the automation 

necessary to generically interact with a combobox. This function can be seen in Figure 16 below.  

 

Figure 16: Combobox Interaction PyAutoIt Method 

It accepts the parameters passed from the keyword usage through the keyword definition 

to the final method. It uses the passed values to identify the actual names associated with those 

values as stored in the code by looking them up in a JavaScript Object Notation (JSON) file that 

associates aliased labels (i.e., the word/phrase that the test engineer wants the specific item to be 

known by) with the code-based name (i.e., the name that the developer used for the specific object). 

An example of a JSON table to perform this aliasing can be seen in Figure 17 below. 

 

Figure 17: JSON Combobox Label Association 

The main purpose of the JSON file is to: 

• Maintain a list of supported objects outside of the code to interact with them 

• Allow aliasing so that the final test procedures are not reliant on standardized control names 

to make sense to an external representative 
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• Define an object type to use in the event of a collision of preferred name (e.g., a textbox 

and combobox that use the same label property) 

4.2.2.5. Example Test Case 

Figure 18 below is a screenshot of an example automated test case representative of System 

X test procedure.  
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Figure 18: Example TAF Test Case 

The different sections of the test case are described below. 
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4.2.2.5.1. Settings Section (Lines 1-5) 

The Settings section is used to declare TAF Keyword libraries that are expected to be used 

in this test case. The TAF architecture encapsulates keyword libraries by function or component 

for easier management. In this section, the test engineer imports the libraries that include keywords 

they need to perform the actions of the test case.  

4.2.2.5.2. Variables Section (Lines 7-10) 

The Variables section provides the ability to declare groups to be used later in the test case. 

Currently, the only use of this is to group requirements traced to this test case and aircraft platforms 

that are applicable for this test case. These labels are used to make it easier to identify these items 

quickly. 

4.2.2.5.3. Test Cases Section (Lines 12-51) 

The Test Cases section contains the body of the test procedure that will be executed. 

Subsections are further discussed below. 

4.2.2.5.3.1. Title (Line 13) 

The title of the test case is declared after the Test Cases section header. In this example, a 

global test case number, its specific name, and the platform this test case uses (Plat_1) during the 

execution of the test case are listed. Note that the platform denoted here is only one of the 

applicable platforms listed in the Variables section. This test case verifies common functionality 

across three platforms, but only uses one of them to test that functionality. Since it is common, it 

is unnecessary to test for all three platforms. 

4.2.2.5.3.2. Tags (Line 14) 

Tags are a feature of Robot Framework that allow test cases to be queried/executed based 

on custom phrases that are included in the test case. For example, a test engineer could target the 
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entire test suite and command all test cases that include the tag “Requirement-01” to be executed. 

Robot Framework is able to identify which test cases those are and execute them. 

In this specific example, the variables previously defined are also tagged so that a query 

can be run based on requirements, functionality, or platform applicability. 

4.2.2.5.3.3. Comments (Lines 15; 19) 

Comments are allowed with the TAF in order to provide explanatory text for a specific 

section of test steps. Comments are not executable and are ignored by the TAF when running a 

test case. 

4.2.2.5.3.4. Setup (Line 24) 

This line is a custom keyword that sets up a test case for System X after being provided a 

configuration. There are many actions rolled into this singular keyword that prepare the system 

under test for user input, such as loading the System X hardware, verifying that configuration 

loaded correctly, and clearing the catalog of errors. Configurations are defined by test engineers 

in a separate file that TAF can read. This keyword also prints the details of the specific 

configuration used for this execution of the test case for future reference. 

4.2.2.5.3.5. Actions (Lines 16-17, 20-22, 26-28, 36-37, 43-44, 50) 

These lines are typical actions that would be defined in a manual test case as steps that a 

user should perform.  

4.2.2.5.3.6. Requirements Declarations (Lines 30, 34, 39, 41, 46, 48) 

While requirements are traced to the test case using the Tags section, more specificity is 

often required by the customer or project. The TAF provides a method for defining the specific 

steps that satisfy requirements through defining where the verification of the requirement begins 

and ends.  
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4.2.2.5.3.7. Expected Results (Lines 31-33, 40, 47) 

Expected results are defined using a keyword that begins with the word, “Verify.” This 

was purposely defined when building the TAF so that expected results would be evident 

throughout the test case. Syntax highlighting is also used to draw attention to these lines. 

4.2.2.5.3.8. Teardown (Line 51) 

The teardown keyword is used here to prepare the System X hardware for the execution of 

the next test case. Errors that occurred are logged in the test results and the environment is cleaned 

to reduce any variability that may affect the results of future test cases. 

4.2.2.6. Example Test Execution Output 

Figure 19 below shows an example of a test log that is output from a TAF execution. 

 

Figure 19: Example TAF Output 
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As can be seen above, many critical metrics are logged in order to fully report on the test 

execution and help identify any problems when troubleshooting the test case. 

4.2.2.7. Development Process 

The TAF project is an ongoing project, constantly developing features and automation 

libraries to support the products that use its capabilities for automated testing. It is developed using 

the Scrum methodology with two-week Sprints. Requests for new functionality are submitted via 

input into a sorted backlog and assessed on a regular basis. The TAF development team works 

with test engineers using the TAF to coordinate the development of keywords in time for them to 

be used on a specific project within a certain timeframe. 

4.2.2.8. Deployment Strategy 

The TAF is packaged in an installer that includes all libraries and usability features 

necessary for its use. As features are developed, they are automatically pushed into a new build 

upon review and approval. 

4.2.3. Test Automation Strategy 

The strategy employed when implementing test automation for System X was to utilize as 

much existing functionality and as many existing components as possible in order to minimize 

costs, limit the impact to System X, maintain the ability to execute existing manual testing, provide 

an easier transition to automated testing, and provide automated testing capabilities faster. 

These goals provided for the establishment of an automated testing framework that 

supported System X without the need to change its development path or schedule. The approach 

centered around providing automation capabilities through the existing suite of support tools that 

were used to interact with System X. These tools were used manually through a GUI by the System 

X team to provide simulation and monitoring of the System X execution environment. The initial 
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approach was to create automation libraries that could control and monitor these tools via their 

respective GUIs, which would mimic the exact actions of a test engineer performing a manual test. 

While this approach succeeded at providing test automation capabilities while adhering to 

the goals provided above, it was not the most impactful approach. However, other initial 

approaches would have been too costly or could have affected the development of System X. These 

observed inefficiencies combined with the difficulties of implementing test automation on a 

project as complex and established as System X necessitated a long-term automation strategy that 

would eventually result in an optimized test automation solution.  

This led to the concept of a phased approach to test automation, which is described below. 

• Phase 0 

o No test automation implemented. 

• Phase 1 

o Develop GUI-based test automation capabilities for new System X features being 

developed for the next release. 

o Create test cases for new features in the new automated format. 

• Phase 2 

o Develop GUI-based test automation capabilities for existing manual test cases. 

o Reassess existing test cases for adherence to items such as requirements, 

applicability, length, and complexity. 

o Convert manual test cases into the new automated format, making any necessary 

improvement steps based on the previous assessment. 

• Phase 3 
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o Develop headless (i.e., no visible GUI) test automation capabilities for existing 

automated test cases, to remove the latency involved with commanding a GUI to 

perform an action. 

o Convert existing GUI-based automated test cases into headless automated test 

cases. 

• Phase 4 

o Develop lower-level test harnesses that can talk directly to software components 

within System X, providing the ability to perform testing on each component in 

isolation from the rest of the system. 

o Develop automation capabilities to stimulate and monitor lower-level components. 

o Create headless test cases that target component-level functionality. 

• Phase 5 

o Introduce high-level commands that provide more capability to the tester (e.g., 

move threat 1 to location 5 within 20 minutes using route 2, maintain ownship 

altitude and fly in a circle with radius of 10 miles), allowing more natural and 

realistic test scenarios in a lab environment. 

It should be noted that these phases are not necessarily completed sequentially; some could 

be worked concurrently, while some could be skipped altogether. For example, on System X, TAF 

currently supports a mixture of Phase 0 through Phase 4, depending on the component. System X 

may never need TAF capability at Phase 5, but it has been discussed as a future option. 
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4.3. Model-Based Test Planning and Documentation 

Test modeling can provide standardization and organization to the test documentation of a 

project. The model-based test documentation methodology used by System X is discussed further 

below. 

4.3.1. Organizational History of MBSE 

Even though some divisions within GTRI have a rich history of using MBSE, it is not 

typically used on projects within System X’s organizational division. This is due to a variety of 

factors, including: 

• Program maturity 

• Small project budgets 

• Short project timelines 

• Lack of MBSE expertise 

• Lack of a dedicated Systems Architect 

Implementing MBSE on a project can be a large investment, especially for complex 

systems that have been established for years [105]. As these are the majority of the division’s 

projects, there has been little enthusiasm from sponsors to provide funding to implement MBSE 

on projects that are successful with their current Systems Engineering paradigms and processes. 

Most of the other projects in the division are smaller and more experimental in nature. These 

projects would not lend themselves well to MBSE as their initial budgets are relatively small and 

could not support using MBSE. 

Two projects within System X’s organizational division have used MBSE, one to enhance 

the Systems Engineering process, and another where a systems model was the main output of the 

project. The first of these projects used MBSE concepts to describe the behavior of the system, but 
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the models were more supplementary to a design rather than the design itself. The second project 

was the division’s first real foray into formalized MBSE. While the project was a success, it did 

not generate additional enthusiasm for using MBSE on future projects. Overall, within the division, 

MBSE is viewed as a method to enhance current Systems Engineering activities, but not 

necessarily as a Systems Engineering process by itself. 

4.3.2. Implementation 

MBSE was never part of the Systems Engineering process for System X. Therefore, its 

application detailed below is specific to the benefits that can be gained by the implementation of 

some MBSE concepts as part of the test process. The defined model-based test process assumes 

that a larger system model does not exist, but it also does not preclude the integration with a full 

model if it were to exist. 

4.3.2.1. The Researcher’s Role 

As part of his Test Engineering leadership role, the researcher created the process defined 

below as a solution to some of the issues described previously. He created the process, defined the 

methodology, and designed the mechanism for how the process would work. The process was 

executed by the System X Test Engineering team with the researcher’s oversight. 

4.3.2.2. Objectives 

The main goal of incorporating MBSE concepts into the test process was to promote the 

organization and structure of test artifacts in a standard, formalized way. As mentioned previously, 

many aspects of System X’s test process were in a less than ideal state. Utilizing a model-based 

approach provided a paradigm that was intended to promote the following objectives: 

• Improve the structure and clarity of test case documentation 

• Improve rapid comprehension of test procedure contents 
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• Reestablish a formal method of requirements traceability 

• Provide a method of assessing impact of upstream changes 

• Increase understanding of inter-dependencies between test cases 

• Facilitate easier review of test planning documentation 

• Provide a method to quickly identify test cases for targeted regression testing 

4.3.2.3. Model Overview 

The new process that was developed is not a solution for model-based testing. There are 

many aspects of System X that make true model-based testing a hard reality to achieve, and this is 

not within the scope of this research. Instead, this process adopts concepts of MBSE and applies 

them to a method of test documentation, specifically for the system’s test plans and procedures. It 

is intended to be a lightweight model-based solution to formalize the documentation of those test 

artifacts to make future analysis easier and to satisfy the goals stated previously. 

In this approach, the test documentation for a system lives in a standalone model. All 

requirements, inputs, messages, data, and any other components necessary to the testing of the 

system are referenced as model elements. However, to be resilient to changes to any component 

related to the test cases in the model, the detail on modeled elements external to the test engineer’s 

control is minimized. This is usually accomplished by referencing only the name of the element, 

but any stable details could be included in the model. If a larger system model existed or was 

created later, the test model could easily be linked to the larger model by sharing objects that exist 

in both. 

4.3.2.3.1. Model Organization 

The model is organized into packages, as can be seen in the high-level view of the model 

in Figure 20 below. 
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Figure 20: Containment Tree 

In the modeling tool used for this research, No Magic Cameo Systems ModelerTM, the 

Containment Tree is the main point of interaction with the model. Other modeling applications 

contain similar mechanisms for viewing the organization of the model. While diagrams in a SysML 

model provide a visual overview of the content of a model, the truth of element characteristics and 

relationships are accessed there. Each set of elements is contained within its own package. Most 

packages are used to contain groups of elements that will be used within test cases. The Test Cases 

package is the primary location where the artifacts of this process reside. 

4.3.2.3.2. Activity Diagram 

The Activity Diagram is used to create a test plan. An example test plan from the System 

X model can be seen in Figure 21 below. 
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Figure 21: System X Activity Diagram 

The intent of this diagram is to describe the flow of the test case. When reading the Actions 

and Expected Results swimlanes, this diagram should look similar to a list of pseudo-steps that 

would normally be created when planning a test case. 

4.3.2.3.2.1. Components 

The four swimlanes on these diagrams are defined as Part Properties of the Test Case block 

that will be used in the BDD. The purpose of these swimlanes is to group the elements of the test 



   
 

101 
 

case according to their function. Actions tie to Action Keywords, while Expected Results tie to 

Verify keywords. The TAF Keywords swimlane is used for identifying those associated keywords, 

while the Inputs swimlane is used to hold inputs to keywords (i.e., the exact usages of the variables 

that are contained within keywords). 

Items in the Actions swimlane are Action elements. Actions are used to describe the 

different steps that need to be performed by the test engineer or test automation software in order 

to perform the test. These actions would typically appear in the left column (Actions) on a typical 

test case. 

Items in the Expected Results swimlane are Action elements. Actions in this swimlane are used to 

describe the different verification steps that must be performed. These actions would typically 

appear in the right column (Expected Results) on a typical test case. 

Items in the TAF Keywords swimlane are Object Node elements. These items are added to 

the diagram as generic elements. Then the TAF Keyword block representing the indicated TAF 

Keyword is dragged onto the Object Node. This creates an instance of that TAF Keyword used to 

perform the action to which it is linked. 

Items in the Inputs swimlane are either Activity Parameter Node elements or Flow 

Properties of a Test Case block. Activity Parameter Nodes are used to create static inputs to TAF 

Keywords (e.g., fields, values, file paths). The goal is to create an Activity Parameter Node that 

lists the actual input planned to use as a variable to a TAF Keyword. Flow Properties are used 

when there is data that is created within the test case, as opposed to external inputs to the test case. 

The case in the example above is the capture of data initiated by a TAF Keyword that is later 

analyzed further within the test case. 
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Notes, like the one on the right of the diagram, are being used to provide additional 

information as well as indicate where requirements are being satisfied. This helps during review, 

so the rest of the team can quickly see how and where the test engineer intended to satisfy the 

requirements. Notes should be used freely to provide additional information wherever necessary. 

4.3.2.3.2.2. Relationships 

There are two different types of relationships used on this diagram. Control Flow 

relationships are used to show how the Action elements flow (i.e., how Actions are accomplished 

and generate Expected Results). Object Flow relationships are used to show how the Object Node 

elements move to provide input to the Action elements. 

4.3.2.3.3. Block Definition Diagram 

The Block Definition Diagram (BDD) is used to document the important items connected 

to a specific test case. An example BDD for a System X test case can be seen in Figure 22 below. 
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Figure 22: System X Block Definition Diagram 

4.3.2.3.3.1. Components 

Each component is represented as an individual element within the model. Custom 

Stereotypes are applied along with a custom color scheme to easily determine the difference 

between elements. The test case is represented by the gold-brown block near the middle top of the 

diagram. Other documented components in the System X example above include:  

• Requirements (Pink) 

o Specific “shall statements” that are satisfied by the test case 

• System X Software Configurations (Green) 
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o Specific list of software packages loaded on System X used by TAF to validate and 

load the correct set of software before beginning execution of the test case 

• TAF Keywords (Yellow) 

o Action/Verify statements provided by TAF to perform automated testing 

• Recorded Data Captures (Purple) 

o Data recorded during the execution of a test case to be processed by TAF to 

determine pass/fail when necessary in specific instances 

• System Messages (Blue) 

o External/Internal message traffic used to verify System X behaviors through TAF 

• Input Files (Orange) 

o Software for external hardware/software that drive or configure those systems 

• Protocol Files (Light Blue) 

o Files used by the system monitor to decode message traffic into human-readable 

form 

• External Hardware/Software (Grey) 

o External hardware or software systems used to stimulate or monitor System X 

This is not necessarily a comprehensive list, but it is what was deemed helpful to associate 

with this test case. Generally, any items that are important to trace to a test case, potentially for 

later impact analysis, should be modeled and associated with the test case. The elements that need 

to be traced for a specific project are determined by the test environment of that particular system. 

Blocks should be created and organized according to a scheme that makes it easy to find and reuse 

elements, such as the package structure presented earlier. 
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4.3.2.3.3.2. Relationships 

There are three different relationship types used in the BDD. The dashed line from the Test 

Case block to Requirements is a Dependency relationship with the Verify stereotype. It means that 

the test case verifies the requirements linked to it. The dashed line to multiple different types of 

elements is a Dependency relationship with the Usage stereotype. In most, if not all, cases, the 

Usage stereotype is not displayed on the connector, as a custom stereotype has been applied. The 

solid line with an open diamond is a Directed Aggregation. This line means that, structurally, the 

test case is made up of those keywords, but the keywords exist independently, outside of that 

specific test case. 

4.3.2.4. Process Overview 

The following provides a description of how a test engineer creates and interacts with the 

test model. This process assumes both the implementation of the Agile methodology and the TAF 

automation described in detail in previous sections. 

4.3.2.4.1. Test Preplanning 

The first step before a test engineer is able to begin working with the model is the 

generation of requirements for a specific Task. These requirements are worked first by the team to 

provide the foundation for the associated Subtasks that must be performed for its completion. Once 

the requirements are drafted and unique numbers are assigned, even if they are not in their final 

form, the test engineer adds the requirements to the model. Figure 23 below shows an example of 

a requirements table for System X. 
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Figure 23: System X Requirements Table 

The requirement text was not entered above for two reasons. The first is that the text of the 

requirement might continually change slightly during a Sprint due to constant refinement. 

However, the requirement usually has the same basic idea, which is enough to complete a test plan. 

The second reason is that the source for requirements for System X is not actually within the 

model, but rather in a separate document configuration managed in a different system. In this case, 

it is not necessary to enter the requirement text, as that would cause the problem of potentially 

having two different systems not synchronized with each other. It is better in this case to only use 

the ID of the requirements as a manual reference between the two systems. If the model is the 

source of requirements, then the actual requirement text would appear in the table. 

4.3.2.4.2. Test Planning 

The importance of the Test Planning phase of the test process along with its goals were 

discussed previously. It is a fundamental step in the creation of proper testing that both satisfies 

requirements and fully exercises the system under test. Too often, Test Planning gets skipped or 

rushed so that test procedures can be pushed through to completion before the test scenarios 

themselves are fully understood. This can lead to situations such as mediocre test procedures or 

even important test cases being completely overlooked. Even when it is performed, Test Planning 
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is not always completed in a standard, manageable way. The artifacts of planning, unless the test 

plan is a customer deliverable, are typically informal and only provide short-term utility that 

dissolves after the accompanying test procedures have been created.  

Migrating Test Planning to a SysML model resolves the issue of standardization and, with 

more formal expectations on the test engineers, provides an artifact that can be referenced in the 

future as a summary of the developed test cases.  

Under this process, Test Planning is documented in the model using Activity Diagrams. 

After requirements are added to the model under the Requirements package, the test engineer 

creates the Test Case blocks or identifies existing Test Case blocks that will satisfy the 

requirements for the Task. Under each new block, an Activity Diagram is created that represents 

the test plan for that specific case. The test engineer creates high-level actions that represent the 

different steps that will be taken and the expected results that will be verified during the test case. 

During Test Planning, the test engineer is expected to identify test dependencies, especially 

those that have not yet been developed. This includes, but is not limited to, test automation 

functionality, support tool functionality, and system instrumentation needs. Since the process is 

being performed in two-week Sprints, it is expected that the teams responsible for developing these 

additional items are highly responsive to needs and will provide necessary functionality before the 

end of the Sprint. 

In a TAF-driven test case, the content of the test case is a sequence of TAF keywords with 

specific input parameters. High-level Actions defined during Test Planning should be able to be 

tied to the keywords that drive them. After Actions and Expected Results are defined, the test 

engineer identifies the TAF keywords that will be used during the test. If the keywords do not 

exist, the test engineer proposes drafted versions and creates a ticket for the TAF team for 
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implementation. The test engineer also identifies the parameters that will be input to the keyword 

and adds them to the Activity Diagram.  

The final step is to make sure that requirements satisfied by specific Expected Results are 

tagged appropriately within the Activity Diagram. This is to facilitate easier review of the plan. 

These tags will be carried over to the written test procedures as in-line TAF requirements tags 

using the custom requirements keywords described in the TAF section.  

After the test plan is drafted, the test engineer provides the plan to the rest of the team for 

a review. The intent of the review is to make sure that everyone agrees on the strategy for the test 

case, that it has been planned correctly, and that the requirements will be fully satisfied by the 

planned test scenarios. The test plan is revised as necessary with feedback from the reviews. After 

the test plan is approved, the test engineer transitions to the Test Development phase.  

4.3.2.4.3. Test Development and Documentation 

In the Test Development phase, test engineers translate the approved test plans into test 

cases with associated test procedures. Test Documentation is not necessarily its own phase, but it 

is an important part of the process. Ideally, documentation is performed throughout the entire 

process as each test case is forming. In practice, it becomes a step that is performed towards the 

end of a Sprint as each developed test case is solidifying. This allows the test case to be more fluid 

as it is being developed, without having to continually keep the model synchronized with the 

changing procedure. 

Documentation of each test case is performed through the creation of a BDD as described 

previously. The purpose of this diagram is to document all items related to a single test case, which 

could be performed either before or after the test case has been written. Each item is stored as a 



   
 

109 
 

separate entity, categorized into the proper place in the model, and used as necessary to complete 

the BDD. Any items not available in the model already are created during this process. 

4.3.2.4.4. Test Execution and Reporting 

During Test Execution for a specific Sprint, the test procedures developed during the Sprint 

are run against an available system build to verify that the requirements have been satisfied. As 

functionality is developed and published in beta form to the team, the test engineers attempt to run 

their developed test cases and tweak as needed. Any changes to the test procedure that impact the 

model are addressed by updating the model when necessary. The results of the Test Execution 

phase are configuration managed and later summarized for the specific tickets within the Sprint 

when Test Reporting is accomplished.  

4.3.2.5. Using the Model 

While existence of a test model can help test engineers more easily understand the details 

of test artifacts, its main purpose is to be used for later analysis. This may take a variety of forms, 

but the overall use is to identify how an upstream change affects the testing of the system. For 

example, the modification of a message (e.g., adding data bits for additional information, changing 

the format to align with a new system) is a common occurrence for System X. When an aspect of 

the system is changed, it is important to perform full regression testing for impacted components. 

Without the test model, or a similar level of documentation of test cases in some other manner, 

identifying how a changed message impacts the system is difficult. Significant time could be 

wasted trying to find each test case that uses a specific message if not documented properly.  

Making use of aspects of the modeling tool allows test engineers to easily identify impacted 

components. Some of those useful features are described below. The examples are illustrated using 
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Cameo Systems Modeler, as that was the tool used to create the System X model. These types of 

features are common across most modeling tools. 

4.3.2.5.1. Model Navigation 

The most basic type of analysis is to open a diagram, select an element, and use the context 

menu to navigate to other usages of the element within the entire model. In Cameo Systems 

Modeler, this is performed by right clicking and selecting “Go To” and “Usage in Diagrams” in 

the context menu structure. This action provides a list of all diagrams that contain a specific 

element. In this way, a test engineer can quickly identify which test cases use a specific message, 

when referring back to the previous example. In the same way, a test engineer can use the tool to 

trace an element from a diagram to its actual location in the Containment Tree. This would allow 

the test engineer to view all of the various relations from that element to other elements.  

4.3.2.5.2. Relation Map 

A Relation Map shows the connections between elements based on a given starting point. 

Filters and queries can be applied to only display elements with specific characteristics in order to 

pare down the data being displayed. An example Relation Map is displayed in Figure 24 below. 
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Figure 24: Test Case Relation Map 

4.3.2.5.3. Lookup Tables 

Most modeling tools allow the user to create tables to display data in traditional rows and 

columns, to facilitate easier viewing of the data. A specific example of this type of table is used to 

enter requirements into the model, seen previously in Figure 23. 
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4.3.2.5.4. Dependency Matrices 

Dependency Matrices allow a user to display the relationships between two different 

element sets in table form. Most tools provide a wide variety of filters to help customize this 

specific type of display. A specific type of Dependency Matrix is the Requirements Traceability 

Matrix. If the Requirements Table is created appropriately, this table is created automatically by 

most tools. The purpose of this table is to show how requirements are satisfied within the model.  

4.3.2.5.5. Data Export 

In some cases, it may be helpful to extract the data out of the model and translate it to a 

different form for easier analysis (e.g., Microsoft Excel). Most modeling tools have mechanisms 

for this, either through dedicated export capabilities, or through the creation of plugins that 

interface with an available Application Programming Interface (API).   
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CHAPTER 5:  EXAMPLE PROJECT 

 

The following section walks through a simple project, tracing a set of example 

requirements from creation to verification, highlighting the various artifacts created during the 

process. It is intended to be a basic example in order to easily illustrate outputs of the defined 

process. 

The overall process, showing how the different concepts line up with the phases of testing, 

is displayed in Figure 24 below.  

 

Figure 24: Overall Process Diagram 

5.1. System Description 

For this example, the system under test is a simple calculator software application, similar 

to those that come standard with most operating systems on personal computers, tablets, or phones. 

A mockup of its user interface is shown in Figure 25 below. 
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Figure 25: Calculator Application 

The user can either type the corresponding the key on the keyboard or click the software 

buttons in the application with a mouse or their finger, depending on the target device’s 

capabilities.  

5.2. New Features 

Suppose that the customer wants to add new functionality to the existing calculator 

application that will provide quick conversions between imperial and metric measurements for 

volume, distance, and mass. Specifically, they want to be able to convert the displayed value 

between gallons and liters, miles and kilometers, and pounds and kilograms by touching a single 

button. They also want the panel that includes these buttons to be able to be hidden or visible when 

a “convert” button is clicked. 

The team will take these features and create tickets to hold the requests. The tickets will be 

added to the project’s backlog and prioritized against other features. 
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5.3. New Requirements 

As they get closer to the top of the backlog, the tickets for the requested features will be 

further refined during the normal backlog refinement activities performed by the team. Once the 

tickets have been refined and assigned to a team, the first step is to define the requirements that 

will cover the new features.  

The following requirements could be created for the customer’s request: 

• CALC-301: The calculator application shall toggle display of the Conversion Panel upon 

user action. 

• CALC-302: The calculator application shall convert the displayed value from liters to 

gallons when initiated by the user. 

• CALC-303: The calculator application shall convert the displayed value from gallons to 

liters when initiated by the user. 

• CALC-304: The calculator application shall convert the displayed value from kilometers 

to miles when initiated by the user. 

• CALC-305: The calculator application shall convert the displayed value from miles to 

kilometers when initiated by the user. 

• CALC-306: The calculator application shall convert the displayed value from kilograms 

to pounds when initiated by the user. 

• CALC-307: The calculator application shall convert the displayed value from pounds to 

kilograms when initiated by the user. 

• CALC-308: The calculator application shall round all converted numbers to no more than 

three decimal places (thousandths). 
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After requirements are completed, the team would create an initial design of the 

Conversion Panel. A mockup of the new calculator user interface can be seen in Figure 26 below.  

 

Figure 26: Calculator Application with Conversion Buttons 

The “CNVT” button is used to hide/display the Conversion Panel. When one of the six 

conversion buttons are pressed, the number displayed in the textbox is converted to that unit. For 

example, if the user wanted to convert three gallons to liters, they would enter “3” in the calculator 

and press the “LITER” button, resulting in a converted value of “11.356.” 

5.4. Test Plan Activity Diagram 

After requirements have been defined for these features and an initial design has been 

approved, the test engineer on the team develops the test plan as an Activity Diagram in the test 

model for the system. In this example, all of the requirements defined for the Conversion Panel 

will be included in a single test case. The Activity Diagram for this test case is shown in Figure 27 

below. 
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Figure 27: Conversion Panel Test Plan Activity Diagram 
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Assuming that the original version of the Calculator Application was fully tested using 

TAF, all of the TAF Keywords listed in the Activity Diagram would already exist except 

TAFK_CALC_020. As the Conversion Panel is new for this task, TAFK_CALC_020 would need 

to be created to verify its enabled/disabled status. Also, depending on its implementation, the code 

for TAFK_CALC_002 might need to be updated to include the seven new possible inputs (CNVT, 

LITER, GALLON, KM, MILE, KG, POUND). If the keyword were implemented in a way where 

it could identify buttons dynamically through the GUI based on their label or name, it is possible 

this keyword would not need an update. As there could be several different implementations with 

a variety of GUI interaction languages, it depends on the robustness of the background code. The 

test engineer would create tickets to formally request any new keywords or updates from the TAF 

team. 

When building the Activity Diagram, the test engineer would pull in the existing TAF 

Keywords and create the block representing TAFK_CALC_020 when needed. Since 

Requirements in an Activity Diagram are only represented as Notes in this scheme, they do not 

get created as official Requirements yet.  

After this test plan is created and reviewed by the team, the test engineer moves ahead and 

starts writing the test procedure. 

5.5. Test Procedure 

The test procedure can be written using any text editor. However, TAF provides several 

tools that make working with Visual Studio Code the best choice. The test procedure, shown as 

two Visual Studio Code screenshots, is displayed below in Figure 28. 
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Figure 28: Conversion Panel Test Procedure 

Some important items to note above are: 

• Line 2: The keyword library imported for this test case is specific to the Calculator 

Application. If there were any common GUI functions utilized, it would also need to import 

a common Library. 

• Line 10: The only tags for this test case are the Requirements being tested and 

“Conversion.” This tag would allow a test engineer to query on that specific word if some 

functionality changed that affected the Conversion Panel. If multiple test cases used the 

Conversion Panel, TAF could run all affected test cases based on that query. 

• Line 15, Line 22, etc.: Requirements keywords are used to provide “to the test step” 

traceability, so that where a requirement is satisfied can be easily found. 
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• Line 16, etc.: Comments are used throughout the test case to provide explanatory 

information. 

• Line 80: “Teardown” is used here to reset the environment for a clean run of the next test 

case. 

The created test case follows the original test plan closely. After the initial creation of the 

test procedure, it would be informally executed to work out any test issues or identify problems 

with integration builds of the new feature. After the test procedure is complete and verified that it 

has no issues, it receives a final review by the team. Any issues identified by the team at this point 

are discussed and corrected by the test engineer.  

5.6. Test Documentation Block Definition Diagram 

Before the end of the Sprint that implements the feature, the test engineer is responsible for 

creating the BDD that documents the developed test case. Usually, this happens after the test 

procedure is mostly finalized so that rework does not have to be performed in the model. The BDD 

for the Conversion Panel test case is displayed in Figure 29 below. 
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Figure 29: Conversion Panel Block Definition Diagram 

As this example is much simpler than System X, the BDD for this test case is also less 

complex. However, this example shows the versatility of the test modeling process. While this 

BDD traces some items that are similar to the System X model, it also traces new items that are 

specific to the testing of the Calculator Application. In this way, the modeling scheme for 

documenting test cases can flex to become more applicable to the system under test.  

For the Calculator Application, the following items are traced to the test case: 

• Requirements 

• TAF Keywords 

• Target Device 
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• Operating System 

One item to note is that the keywords that specify requirements traceability are not included 

in this BDD. As each test case will always use at least one pair of those requirements, it is assumed 

that all test cases would need to be checked if those keywords were modified in some way, and so 

they are not deemed necessary to link to the test case.  

5.7. Test Execution Log 

After the test case has been executed formally, its corresponding Test Execution Log is 

saved for future delivery as a test artifact and summarized within the Test Report. The Test 

Execution Log for the Conversion Panel test case can be seen below in Figure 30.  

 

Figure 30: Conversion Panel Test Execution Log 

An expanded version of the same Test Execution Log showing the full list of steps can be 

seen below in Figure 31. 
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Figure 31: Conversion Panel Expanded Test Log 



   
 

124 
 

CHAPTER 6:  RESULTS AND ANALYSIS 

 

The results of applying all three concepts to the development process of System X are 

provided below, in addition to an analysis of the results and a discussion of lessons learned while 

implementing the new processes. While the application of these concepts impacted the entire 

development process, including all engineering disciplines, this discussion of results will center 

on the impacts to the test and evaluation domain. 

6.1. Qualitative Results 

Due to the integrated nature of the implemented concepts, it is difficult to quantitatively 

review the results of each in isolation. Before providing quantitative results for the overall process, 

a qualitative discussion is provided below for each concept.  

6.1.1. Agile Transition 

The transition from Waterfall to Agile, while adequately planned, was still a difficult 

paradigm shift to accomplish, especially in conjunction with the organizational changes required 

to support it. While some team members were resistant to the changes at first, others fully 

embraced it. The first several weeks of transition were filled with constant adjustment and 

tweaking of the planned Scrum process in order to work out unforeseen issues and to further refine 

specific parts of the process that had only been outlined. It did ultimately stabilize into the process 

described previously, but, in the spirit of Agile and continuous improvement, it has remained open 

to further change if necessary.  

6.1.1.1. Test Quality 

Under the traditional Waterfall process, the test team typically worked for weeks to 

prewrite test cases based on planned designs without ever seeing a software build. This led to 
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significant rework of the test procedures once a build was available near the start of the Test 

Execution phase. This type of risk can result in a less than ideal level of quality for the test suite. 

Under the new process, features were usually available for testing concurrently with the creation 

of the test procedures. Since the test engineers were working closely with the systems engineers 

and developers to fulfill that specific Task, the initial test procedures were often very close to their 

final form. Additionally, according to the new process, test procedures, like all other artifacts of 

feature development, had to undergo a review by the entire team before being approved. It was 

rare for the other disciplines to review test procedures under the older process, sometimes leading 

to inadequately tested features. Because of the greater number of reviews by the entire team, the 

overall test suite quality was positively impacted by the change to Agile. 

6.1.1.2. Product Quality 

The transition to Scrum had a direct impact on the quality of System X. Constant testing 

of software can increase confidence in its quality [106]. By ensuring that an initial test was 

performed by the test engineer before the end of a feature’s development Sprint, defects were 

identified much earlier in the overall process. Instead of waiting until the testing phase began, 

defects for a specific feature were able to be corrected even before the feature was fully complete. 

Additionally, since a preliminary build of the software was available for use at the end of each 

Sprint, the entire System X team had the opportunity to exercise all implemented functionality 

throughout the development period instead of only at the end. 

6.1.1.3. Productivity 

The team structure of the new process encouraged the training and learning of team 

members. Team members strong in a particular skill shared their knowledge with the rest of the 

team on a regular basis. This team mentality helped with onboarding new engineers, decreasing 
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their training times and increasing their productivity faster within the process. Additionally, 

focusing only on a small, well-planned Task allowed for high productivity. However, this Task-

focused approach did occasionally result in making mistakes due to not taking the bigger picture 

into account. It was possible to offset those types of mistakes by maintaining a strong leadership 

team that was regularly involved with each of the teams. 

6.1.1.4. Team Dynamics 

Changing to a Scrum process affected team structure and the dynamics between team 

members. Under the Waterfall process, team members mostly worked independently to 

accomplish a large set of Tasks by a given deadline for their specific disciplines on the project to 

which they were assigned. Most interaction between disciplines happened out of necessity or in 

regularly scheduled status meetings. Team members of the same discipline occasionally worked 

together on larger Tasks, but usually performed Tasks independently. However, the Agile 

transition broke those barriers and forced each team member to work closer with each other than 

they ever had before. The members of each team were planned from the beginning of the transition 

and were only intended to be adjusted at the end of each yearly cycle. Team members were 

expected to work together towards the goal of cross-functionality, so that each member could 

contribute to and review the team’s tasking as a whole.  

This higher level of interaction within a smaller team, combined with potential frustrations 

from stretching less used skillsets, inevitably led to personality conflicts and disagreements. With 

occasional intervention from leadership and opportunities to increase familiarity with each other, 

these types of conflicts were typically resolved without the need to restructure teams. In contrast, 

some team members generated stronger bonds from the increased interaction and used the 

opportunity to grow their technical and interpersonal skills.  
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6.1.1.5. Responsiveness 

One of the goals of changing to an Agile process is to increase responsiveness to customer 

requests. Due to the timeboxing method of using Sprints, the focus of each of the teams was able 

to be shifted quickly when a higher priority Task presented itself. This occurred multiple times 

during the last two years of System X’s development, with the most critical being a release of beta 

builds to the customer three times within a six-week period to perform hotfixes of problems found 

during preliminary field tests. The new development structure supported this considerably more 

than the old Waterfall process, leading to a much higher quality from an incremental build release.  

6.1.1.6. Visibility 

The organization of work items and the constant refining of issues within the Agile process 

with the entire team resulted in an unprecedented level of visibility into the process. Team 

members, not just management, were now able to see the future roadmap for the development of 

System X and provide direct feedback regarding the path ahead. This provided team members with 

a stake in the process, allowing them to feel more included in the direction of System X’s 

development. 

6.1.1.7. Test Awareness 

As previously stated, under the old process, test team members were mostly isolated from 

other disciplines, unless they specifically sought them out. Not many members of the other 

disciplines understood the test process or the specifics of what test engineers needed. Through the 

creation of cross-functional teams and by promoting the sharing of responsibilities between 

disciplines, both test engineers’ awareness of design decisions and other engineers’ awareness of 

the test process were increased. Working closely with each team member provided the insights to 

the entire team that they would not have had otherwise. 
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6.1.2. Test Automation 

The struggles to create a test automation capability within System X’s organizational 

division have been discussed previously. The TAF’s creation was an arduous path, suffering from 

a number of false starts along the way in addition to a general lack of support in the early stages. 

However, after the stabilization of the mature TAF product, its incorporation into System X’s test 

process was relatively seamless, except for the occasional implementation challenge and test 

environment roadblock. The TAF has become an integral part of System X’s development process, 

supporting its chosen Agile methodology extremely well. 

6.1.2.1. Test Quality 

The incorporation of test automation increased the overall quality of the test suite, due to 

improved flow and organization, increased maintainability, and reduced variability between test 

approaches. When the actions that can be performed are controlled through the use of automated 

keywords, the test cases become more standardized, leading to a greater level of understanding. 

Instead of freeform text that could be written in any number of ways, there are a set of specific 

tools and actions available to a test engineer. As with the development of software, different test 

engineers may take different approaches while still solving the problem, but the variations of how 

this can be accomplished are easier to comprehend. Additionally, significant work was performed 

to define standard approaches to the structure of test cases, such as how to perform in-line 

requirements tracing, how to comment test steps, and how to start and end a test case. Defining 

and enforcing this standard helped to make all of the automated test procedures have a consistent 

look and feel, reducing potential for confusion and increasing the maintainability of the test 

artifacts. 
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6.1.2.2. Product Quality 

Test Automation increased the overall quality of the product by allowing additional test 

executions within a given time period. A large part of the value of an automated testing method is 

the engineer time saved by not having to perform manual regression testing [107]. This allows 

more time to be spent manually exercising problematic or high priority functions of the system. 

6.1.2.3. Productivity 

The standard approach to test case creation, in conjunction with TAF usability features and 

predefined keywords, allowed for test cases to be developed faster than ever before. Storing each 

test case as a separate plaintext file and managing them with professional development tools made 

it easier to identify and reuse test logic patterns that could be applicable to future test cases.  

6.1.2.4. Team Morale 

The field of Software Engineering can be subject to a high level of burnout, due to a variety 

of factors [108]. For a test engineer, running the same set of regression tests manually over and 

over again can become tedious, especially if that effort takes significant time in comparison to 

other, more creative or skill-intensive tasks [109]. Test automation can reduce this burnout, as it 

removes some of the monotonous aspects of the job of a test engineer. In place of the time usually 

spent on regression testing, it may provide the potential for more exploratory testing to be 

performed, which has been found to identify more defects that scripted testing [110]. Exploratory 

testing, along with the creation of new test cases, makes higher use of a test engineer’s creativity 

and potentially reduces the staleness associated with performing repetitive tasks [42]. Because of 

the addition of test automation to the System X process, it was possible for the test engineers to 

spend more time on exploratory testing rather than traditional scripted testing. 
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6.1.3. MBSE Concepts 

While the main goal of performing the test modeling process, to provide a standard method 

of impact analysis, was accomplished successfully, this concept application was the least impactful 

of the three. It was generally agreed upon by the team that it was important to know how individual 

components connected to each test case; however, performing the documentation task within the 

model was considered to be unnecessarily time consuming. The frustrations with this process were 

primarily due to the following factors: 

• Only a limited number of licenses were available for the modeling tool, making it difficult 

to perform the modeling activities required. 

• The aforementioned license issue prevented timely review of created diagrams, unless they 

were extracted out of the tool and pasted to a collaborative area as a picture. 

• The main set of tools used by the team were integrated together and worked to support the 

development process; however, the modeling tool was a separate, standalone application 

with its own dedicated server-based storage. 

• The modeling tool provided a plethora of options that were unnecessary for the lightweight 

process, leading to user frustration. 

To counter most of these issues, a plugin was created for the modeling tool that would 

import a TAF test case and convert it to a BDD based on the defined methodology. This plugin 

saved significant engineer time when creating the model artifacts, but it also relegated the test 

model as just another step to perform in the process. In this way, the model became something that 

existed but was rarely used during the development process, which was not the intent. 

Using this plugin still had the desired effect of creating better documentation of test cases, 

and the model was used successfully to trace which test cases should be executed based on 



   
 

131 
 

upstream changes. However, other methods of test case documentation, such as extracting the 

information to a large spreadsheet automatically from a test case, may have been more efficient.  

Performing Test Planning within the model was largely dropped by the test team along the 

way, as it took too long to create an Activity Diagram within the model to support an Agile process. 

Additionally, the importance of maintaining test plans for each test case was questioned due to the 

improved readability and understandability of test cases written with the TAF. However, as Test 

Planning is a vital part of the test process, a substitute method, creating pseudo Activity Diagrams 

with simplified diagramming software within the working pages of Tasks, was found to be the 

preferred method of preserving the intent of this methodology. In this way, the team was able to 

create and review test plans in line with the requirements, design, and other necessary development 

prework at a much faster pace.  

Two major factors in the application of this concept were the lack of general modeling 

knowledge among the team and the lack of any preexisting model elements. If this concept were 

to be applied to a project already having a solid foundation of SysML, modeling tool experience, 

and an existing model, it is the researcher’s opinion that the test modeling process described herein 

would have a higher level of acceptance and overall use. 

6.1.3.1. Test Quality 

The maintenance of documentation on an engineering project is a common problem [100]. 

Standardizing the documentation and test planning approach facilitated easier creation and review 

of test artifacts. Test engineers knew what was expected of them and how to perform their tasks, 

leading to a higher quality output. Even though this specific method of documentation was not 

fully embraced, it resulted in an acknowledgement that maintaining this information was 
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important. Having a similar level of documentation defined by this process led to a higher test suite 

quality overall.  

6.1.3.2. Productivity 

Because test cases are all documented in the same manner with this process, training new 

test engineers was faster. Once the methodology was learned, these new engineers could use the 

model to see how the actions of a test case flow to exercise specific functionality and exactly which 

functionality components are linked to the execution of that test case. 

6.1.3.3. Regression Testing 

It is not always possible to perform a full regression test for a release, potentially due to 

items such as shortened timelines, customer deadlines, or lack of funding [41]. Without a method 

of understanding how key system components relate to each other, determining which 

functionality should be exercised in that limited time period is not always an easy process. It 

usually relies on the experience of the engineers on the team, which can potentially lead to the 

following: 

• Missed testing of system functionality that is actually related to the change [111]  

• Over-testing of functionality that was not necessary [112]  

• Wasted time and effort to make the decision at the time of each beta release [113]  

Because this process provides a systematic way of determining how individual components 

are linked to test cases, not just through requirements tracing, it provides a method for limiting the 

regression time available to the most important test cases.  

The model created by this process was used multiple times to support the scoping of 

regression testing for quick beta releases to customers. Historically, performing this type of 

regression scoping task would necessitate calling a meeting with many members of the project 
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team in order to review the needs of the test event and select specific test procedures to be executed. 

While productive, this meeting required several man-hours to perform, potentially wasting time 

when compared to the new process. The model-based process allowed a targeted regression test to 

be executed within a specific timeline based on changes or added features. Selecting test cases for 

regression testing was much easier than before, as the test cases were tied back to specific 

functionality. However, with the goal of attaining a near 100% automated test transition, there is 

a chance that maintaining this information becomes less important in the future due to the potential 

ability to execute the entire test suite in very short time period. 

6.2. Quantitative Results 

The results from the implementation of all three concepts that can be quantitatively 

described are provided below. 

6.2.1. Test Automation Capability and Test Completion 

As the automation of embedded systems is inherently more complicated than simple 

software applications [114], which is the case with System X, the transition to automated testing 

is still ongoing, even after two years of a functional test automation solution. This is partly because 

feature development of the system was not stopped to implement this transition and partly due to 

the reworking of test cases to better support automation. Additionally, due to the phased approach 

limiting impact to the system under test, the transition was less impactful than it could have been 

or will be in the future. Regardless, significant gains were produced within the first two release 

cycles, as shown in Table 1 below. 
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Table 1: Developed Capability vs. Completed Tests 

Component 
2019 

Capability 
2020 

Capability 
2019 

Completed 
2020 

Completed 

System Tests 75% 85% 5% 20% 

Module 1 Tests 90% 95% 5% 15% 

Module 2 Tests 75% 75% 20% 50% 

Module 3 Tests 95% 95% 75% 75% 

Module 4 Tests 75% 90% 50% 80% 

Module 5 Tests 100% 100% 5% 6% 

All (Weighted Average) 84% 90% 23% 38% 
 

The second and third columns in Table 1 provide a comparison of the percentage of 

automation capability that was developed per component within the first two years. During the 

first year, the development team created automation infrastructure to support approximately 84% 

of System X functionality, when weighting the percentages by relative size of component. During 

the second year of development, the team increased the automation infrastructure to support 

approximately 90% of System X functionality. 

The fourth and fifth columns in Table 1 provide a comparison of the percentage of the 

expected test suite that was transitioned to automated testing within the first two years for each 

component. Ideally, these percentages would match the capability percentages in columns two and 

three; however, reworking existing manual test cases into automated ones can be a significant 

effort. This is especially true when the team is doing more than just automating existing test cases, 

but rather rebuilding them to more properly support a sustainable automated paradigm.  

In the first year of transition, the team completed 76 test cases, approximately 23% of the 

expected total test procedures based on the functionality of System X at the time. As System X is 

continuously in development, the size of the final test suite will also continue to grow, impacting 

the overall percentages when compared across releases. However, even with adding additional 

functionality to System X, in the second year the team was able to increase the percentage of 
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automated testing to approximately 38% of the entire expected test suite, which equated to 166 

test cases. 

6.2.2. Test Execution Time Savings 

By consolidating the different platforms, reassessing the existing test procedures for 

duplicates or unnecessary testing, and limiting dry run testing, the test team was able to reduce the 

baseline regression test period to 12 weeks for the first common release in 2019. The 76 automated 

test cases developed during the first year reduced that baseline timeframe by an additional three 

weeks, equating to a cost savings of approximately $15,000 per test run. The increased total of 166 

automated test cases completed after the second year reduced the baseline by a total of six weeks, 

equating to a cost savings of approximately $30,000 per test run. 

6.2.3. Defect Identification 

Under the original Waterfall process, it was rare for test engineers to have early access to 

preliminary builds of System X. Formal, fully integrated builds were usually only available to the 

Test Engineering team slightly before the Test Execution phase was scheduled to begin. This made 

the early identification of defects almost impossible. Historically, for releases under the original 

process, between 80% to 90% of all previously undiscovered defects were identified during the 

Test Execution phase or after. This late discovery of issues regularly led to the need for a pre-

release hotfix and limited retesting, which was costly under a Waterfall development method. 

With the new process changes, System X builds were continually available for testing. 

Automated tests were executed on a regular basis very early in the development process before the 

beginning of the Test Execution phase. Identified defects were either fixed within the Sprint where 

the functionality under test was developed, corrected in a future Sprint, or documented for later 

reporting and acceptance by the customer. For the first Agile release of System X in 2019, 100% 
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of defects associated with the 76 automated test cases were identified before the Yearly Regression 

period. Similar results are expected for the Yearly Regression period for the 2020 release of System 

X later this year. 

6.2.4. Test Process Impacts 

While the application of the three concepts had a major impact on the Test Execution phase, 

the process optimization, automation, and standardization brought about by the application of the 

three concepts impacted the entire test process overall. To illustrate this, a sample of 12 test cases, 

two from each module, were chosen from the existing set of 166 automated test cases. The time 

taken to complete each of the four test phases with the new process was recorded for each. Then, 

using data from previous release cycles under the old process and the experience of the Test 

Engineering team, the estimated time that it would have taken to complete each of the four test 

phases with the old process was also recorded for each of the sample test cases. Figure 32 below 

shows the comparison data for each test case. 



   
 

137 
 

 

Figure 32: Old Process vs. New Process Completion Times 

The average reduction in time across all test phases for all sampled test cases, or the 

reduction to the overall test process, was 41%. Further analysis of each test phase is provided 

below. 

6.2.4.1. Planning 

Regardless of the method used to perform the Test Planning activity, it is a vital step that 

takes dedicated engineering time to perform properly [115]. There was no change in the hours 

taken to perform this activity across all test cases. 
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6.2.4.2. Development 

The Test Development phase was reduced by 52%. This was due to the following reasons: 

• Closely aligning the different disciplines through the formation of cross-functional teams 

provided faster answers to design and functionality questions.  

• Changing to an iterative development process allowed test engineers earlier access to 

working software.  

• More detailed and standardized documentation provided greater understanding of the 

system and intended functionality. 

• Writing test procedures in a plaintext format with a keyword-based automation framework 

like the TAF provided a faster method of test case development. 

• The user-friendly and unambiguous TAF test case format provided easier reuse of common 

test steps. 

6.2.4.3. Execution 

The Test Execution phase was reduced by 82%. This was primarily because the automated 

testing performed with the TAF executed much faster than manual testing performed by a test 

engineer. One item of importance about this reduction is that the data being compared are only the 

times taken to run the test cases (i.e., manual execution vs. automatic execution). This does not 

factor in the additional savings when automated test cases are performed during non-working hours 

such as nights or weekends. If working hours were considered for this data set, the reduction would 

be much closer to 100%, as the cost to perform testing would only be for a test engineer to initiate 

the tests and review the results. 

6.2.4.4. Reporting 

The Test Reporting phase was reduced by 69%. This was due to the following reasons: 
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• Test log outputs from the execution of automated test cases with the TAF needed no 

additional interpretation. 

• The test log output format was easier to translate to a formal test report than manual 

execution logs. 

• Optimization of the reporting process decreased the time necessary for reporting activities. 

6.2.5. Example Test Budget Impact 

The time reductions to each test phase documented above provide data that can be applied 

to a theoretical test budget example for illustrative purposes. This example assumes a project that 

has fully implemented an Agile development methodology, test automation, and a standardized 

test documentation strategy. This example will also use historical data from previous System X 

releases to provide realism; however, this budget data is purely theoretical.   

For this example, the theoretical project has a testing budget of $1,000,000. Using historical 

data from System X for the costs of each test phase, Table 2 below shows a breakdown of the 

testing budget allocated to each test phase and how the budgets are reduced when applying the 

observed reductions. 

Table 2: Test Phase Budget Comparison 

Test Phase Budget Percent Original Budget Reduction Percent Final Budget 

Planning 25% $250,000 0% $250,000 

Development 50% $500,000 52% $240,000 

Execution 20% $200,000 82% $36,000 

Reporting 5% $50,000 69% $15,500 

TOTAL 100% $1,000,000 46% $541,500 
 

As can be seen above, applying the reductions to the weighted budgets results in an overall 

test budget reduction of $458,500, or approximately 46%. This type of reduction is considerable 

and creates the potential for budgetary options such as increasing the amount of testing performed, 
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increasing the number of features developed, reducing the project timeline, bidding lower on 

contract proposals, or reallocating budgets to perform other important activities. 

6.3. Lessons Learned 

During the implementation of these concepts, it was inevitable that issues would arise. A 

compilation of lessons learned is provided below. 

6.3.1. Agile Transition 

Lessons learned that are associated with the transition from Waterfall to Agile are provided 

below. 

6.3.1.1. Expect the Process to Change 

An Agile process is intended to be constantly improved [116]. Especially during a 

transition in development methodologies, processes put into practice will not always function as 

designed; they will need to be molded and adapted to the needs of the project and the team. The 

team should be flexible and expect that changes to the process, even significant ones, will be 

necessary. 

For engineers completely new to an Agile methodology such as Scrum, the process may 

be very different from their previous experiences. The transition process will take time. New 

concepts such as story pointing can be hard to grasp at first [117]. Adjusting to the boundaries of 

a Sprint can be difficult. It can also be hard to change engineering mentalities to accept that planned 

rework is acceptable and that building a product incrementally can still lead to a fully integrated 

solution [118]. For the System X transition, it took several Sprints for the methodology to stabilize 

and even longer for the teams to completely understand and embrace it. 
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6.3.1.2. Document the Process 

Even though the specifics of a chosen Agile methodology will probably change frequently 

after initial implementation, it is important to maintain documentation of the process [119]. 

Without having a reference to the current details of the process, a complete breakdown can occur, 

leading to the team falling back to the most familiar or easiest path to complete work. It can be 

hard to recover from such a breakdown in process and still preserve the planned project schedule. 

Work item management is an important part of the process that must be documented. 

Examples of questions that should be answered in process documentation include: 

• How are tickets defined?  

• What is the ticket workflow? 

• What is the minimum information that must be included in a ticket?  

• When a ticket is complete?  

• What is necessary for a ticket to be transitioned to another state? 

• How large a Task should a ticket cover? 

6.3.1.3. Find Opportunities for Team Building 

In an Agile environment, teams are expected to work closely with each other on a daily 

basis. This close interaction has the potential to lead to stronger bonds between team members, but 

it also can create frustration and disagreements [120]. To try to avoid these types of conflicts, look 

for opportunities for teams to have fun and build team comradery. Usually, increasing team 

members’ knowledge of one another increases their cooperation, which potentially leads to a 

higher level of productivity and job satisfaction. Leadership should find ways to increase 

interpersonal knowledge among teams. On System X, rather than creating generic “Team 1/2/3” 

labels for teams, each team was expected to create their own team name. Additionally, each team 
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named their individual Sprints every two weeks, which generated some fun each Sprint at the 

planning meetings. Finally, taking time for more traditional team building activities may also 

create better team bonds.  

The value of recognizing individuals for their achievements should not be overlooked. The 

researcher created custom trophies that were representative of each team (e.g., the TAF team 

trophy was a small metal toy robot) and used them to recognize an individual from the team at the 

Sprint Retrospective meeting. The receiving team member would keep the trophy for the next 

Sprint but was expected to award another team member with it in the next Sprint Retrospective 

meeting, citing the specific reason it was being awarded. Then, the cycle would be repeated in 

future Sprint Retrospective meetings. This provided some small incentive to be recognized, but 

also helped create some positive feedback for team members. 

6.3.1.4. Encourage Variety  

A core concept of Agile is to promote the cross-functionality of teams [121]. The team is 

considered an individual unit and is expected to possess the skills necessary to complete any task 

for the project. However, performing the same type of tasks on a regular basis can get stale. 

Encouraging cross-functionality allowed team members to exercise skills in different disciplines, 

increasing the variety of daily tasks.  

The large number of regular meetings associated with the Scrum process also provided an 

opportunity to reduce staleness for the teams. Each team was encouraged to occasionally vary 

meeting locations, methods, and leaders. For example, there are many different methods of running 

a Sprint Retrospective. Some methods might focus the meeting on a larger scope, while other 

methods could use a different perspective to extract unique insights from the teams. Another 

example was when one of the teams met for breakfast at a diner for their daily standup meeting 
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instead of in the office. The occasional off-site or outdoor meeting encouraged variety while also 

providing opportunities for the team members to interact more personally.  

6.3.1.5. Automate the Process 

The Scrum process creates the expectation that a releasable build is potentially ready for 

deployment every two weeks. However, to officially deploy software, a large amount of 

documentation is usually required. By converting documents to plaintext and using a markup 

language like LaTeX or reStructuredText to automatically create the final document, this process 

can be accomplished much faster [122]. Additionally, documentation is usually not the preferred 

task of most engineers, especially when working though intensive formatting issues. Allowing 

them to create the content in plaintext and automatically building the document led to less 

frustration on System X. Partially automating other items such as ticket workflows, the creation 

of builds, and the review process also reduced the time spent dealing with the process and more 

time working to create additional functionality. 

6.3.2. Test Automation 

Lessons learned from the creation and implementation of the TAF are provided below. 

6.3.2.1. Treat Test Automation as a Product 

Even if it is never intended to be delivered to an external customer, the developed 

automation code and the accompanying test procedures that use it should be treated like a real, 

releasable product. It should be designed and documented well, conforming to standard practices 

and procedures. This leads to a higher level of maintainability, which is a common issue with the 

longevity of test automation infrastructure [123]. Treating the test procedures as code also allows 

for the use of development tools, which can be an exceptional aid to productivity.  
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6.3.2.2. Start Small and Advertise Results 

Management, customers, and other stakeholders that control project funding can be hard 

to convince that test automation is worth the effort, especially if a set of manual procedures already 

exist that work as expected. If it truly makes sense for the project and would provide value, the 

team should find a way to incorporate automation somewhere along the process in a small way as 

an example of future potential [124]. Then that example can be used as evidence for the value that 

can be created by transitioning to an automated world.  

6.3.2.3. Automate Functionality That Makes Sense 

Not everything should be automated; sometimes test cases are too difficult or just too small 

to make sense [125]. Sometimes an automated approach does not always result in the most efficient 

method of testing [126]. Discretion and experience should be used to identify when functionality 

should be tested automatically. Also, the right balance between automation infrastructure 

development and test case development should be found. Not much benefit is gained by having 

great potential but no actual results. 

6.3.2.4. Standardize the Approach 

Significant effort should be put into the automation language being created. Standardizing 

the approach to the keywords that will be visible to the end users is an important part of providing 

value. If a test engineer trying to use the test automation framework has trouble identifying what 

functionality is available, it can impact productivity and result in confusion. 

Not all test engineers have programming skills. If the test automation language behaves 

more like a traditional programming language, it may make the transition from manual testing to 

automated testing harder. If the automation language reads similarly to manual steps, the only 

roadblock to using it is the tools rather than the syntax of the language. 
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Additionally, creating usability features that wrap the automation framework make the end-

user experience better, resulting it faster test case generation. Creating features such as creating a 

custom editor, integrating with the configuration management tool, highlighting keyword syntax, 

autocompleting keywords, and autogenerating test procedure frames can add significant value to 

the automation framework. 

6.3.2.5. Focus on Maintainability 

A consistent problem with test automation projects is that they tend to become 

unmanageable [127]; they are sometimes created in haste without much design or documentation 

[128]. To help ensure the success of an automation framework, maintainability should be a high 

priority. Also, the maintainability of the test procedures created with the framework is important. 

Test case length and scope should be considered for consistency during the creation of the 

procedures. 

6.3.3. MBSE Concepts 

Lessons learned from the implementation of MBSE concepts are provided below. 

6.3.3.1. Reduce Unnecessary Details 

Too much detail can profoundly impact prolonged maintainability of documentation. 

Including small details that are unnecessary to the task at hand can lead to endless rework. For 

artifacts such as test plans, which are intended to be malleable throughout the creation of the test 

procedures, it is necessary to find a balance between understandability and thoroughness. 

However, a model is only as good as its accuracy and level of detail, so it is important to make 

sure enough details exist within the model to properly serve its intended purpose. 
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6.3.3.2. Automate the Process 

Generally, automation helps improve the efficiency and speed of processes [129] (Bosch, 

2014). This model-based methodology is no different. Most modeling tools have rich APIs or other 

automation interfaces that can help perform simple, potentially monotonous tasks faster. 

Automating key aspects, such as generating a test case skeleton based on a test plan or 

programmatically building a BDD from a created test procedure can help reduce time spent on 

documentation while still maintaining the objectives of this process. 

6.3.3.3. Enforce a Standard 

Creating and documenting a standard approach to any process has the potential to improve 

efficiency by providing organization as well as a pattern to follow for future additions. If this 

methodology is adopted on a project, the details of its expected use should be documented and 

advertised to the entire team. This documentation of the process includes items such as how to 

define elements, a plan for Stereotyping, relationships that will be used, and rules for global 

numbering of items between systems or projects. Having a well-defined process can help clear 

confusion and disorganization that would harm productivity and maintenance.  

6.3.3.4. Provide Training 

Modeling tools intended to fully support MBSE can be cumbersome to use and the amount 

of options can be overwhelming. If a model-based approach is taken, training is necessary to 

reduce the burden of learning such a complicated tool and methodology. It also helps to have 

expertise and knowledge of engineers familiar with the chosen method. 

6.3.3.5. Easier with an Existing Model 

While the test document strategy described in this paper is intended to be a standalone 

modeling methodology, it can also work in cooperation with an existing system model. For System 



   
 

147 
 

X, if a system model had existed, it would have made the new process easier, as existing 

components would not have needed to be created. Additionally, if the entire team were using a 

system model rather than just the test team for test-specific items, it would have increased the 

overall importance of the model. 
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CHAPTER 7:  CONCLUSIONS 

 

As the purpose of this research and implementation was to enhance the test process, the 

results discussion primarily focused on items related to the testing of System X. However, the 

impact of these changes was significant to the entire development process and not exclusive to the 

test and evaluation domain. Modernizing the approach to software and system development is vital 

to increasing the efficiency of the process, ensuring the quality of the product, and providing value 

to the customer through responsiveness and adaptability. 

Transitioning to an Agile methodology such as Scrum has the potential to reduce 

development cycle times, leading to faster deployment to the field. It also provides a higher 

confidence in the system under test, due to an increased frequency of testing and earlier 

identification of defects. However, the transition is not without cost; strong leadership, planning, 

flexibility, and dedication is needed to complete a successful paradigm shift in development 

methodologies. A failed transition could have several negative consequences and could result in a 

less effective process than the original. 

A core benefit of automated testing is the ability to execute more testing, either faster than 

a human can perform or over longer test sessions as automated testing has no time restraint. This 

allows complex functionality to be more thoroughly tested, and potentially provides the test 

engineer more time to perform targeted testing for new features. A typical expectation is that as 

builds are being generated, a battery of automated regression test cases is executed automatically, 

showing that the change that was made did not break some other functionality of the system. The 

creation of an automated testing framework can be a valuable, but also costly, venture that should 

be carefully considered before pursuing. While initial costs for developing the capability are 
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typically high, those initial costs can be amortized over the lifetime of the framework. The more it 

is used to perform test activities, the faster the initial costs are recouped. An automated testing 

framework can provide significant reductions in test execution times, but the benefits must be 

weighed against the costs involved. 

While the test modeling methodology defined in this document had limited success in 

practice, the goals of the process were largely maintained. A standard method of performing test 

planning activities, documentation of test cases, and impact analysis is an important aspect of 

building a highly understandable and sustainable test suite. It is necessary to continue providing a 

high-quality and adequately tested product, especially for highly complex systems with long 

lifespans. The process described in this article is one method of organizing the potential chaos and 

would work well for a project that is already incorporating MBSE concepts into their development 

process. 

7.1. Research Contributions 

The research activities presented within this dissertation provide the following 

contributions to the fields of Systems Engineering and Test Engineering: 

1. This research presented an assessment of the impacts to the T&E process of a practical 

implementation of Agile development when transitioning from a traditional Waterfall 

development process on a large scale, aerospace project. Metrics of this impact included 

as-implemented measurements of T&E activity, changes in project timelines, and earlier 

defect identification. 

2. This research proposed a systematic integration and transition strategy for the migration of 

manual T&E efforts to an automated testing paradigm within an embedded software 

engineering environment. The value of this strategy was demonstrated through its 
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implementation and subsequent evaluation as detailed under the following research 

contribution.  

3. This research developed a sustainable, customer-focused automated testing approach using 

Robot Framework that includes novel mechanisms for requirements traceability, syntax 

standardization, natural language formatting, and incorporation into an Agile development 

process. Together these advancements provide test automation capabilities that support a 

modern Systems Engineering process, as validated through their effectiveness measures 

when implemented, such as test documentation, percentage of automated testing, and test 

execution timeframes.  

4. This research performed an assessment of the value of MBSE concepts by mapping the 

traditionally-asserted benefits of MBSE to the T&E domain, specifically through the use 

of SysML models to perform the Test Planning activity and to document relationships 

between test procedure contents. 

5. This research provided a measurement of the effectiveness, through the analysis of 

quantitative and qualitative results in practice, of an integrated T&E process that combines 

Agile development, test automation, and MBSE concepts to enhance the development 

process of a large aerospace project. 

Together these research contributions describe an overall enhancement to the T&E process 

through the implementation of Agile development, test automation, and MBSE to help manage the 

exponential growth of test documentation on large and complex projects in the aerospace industry.  

7.2. Future Work and Expectations 

The process and its implementation described in this dissertation are specific to a singular 

project that, while representative of a large aerospace system, does not necessarily encompass all 
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factors of engineering projects in practice. While many of the aspects of this process are intended 

to be transferrable, the implementation of this process must adapt to the specifics of the targeted 

project. Using this methodology to enhance the T&E process on additional projects, while 

documenting the necessary adaptations, could result in further useful research contributions to the 

field. Additionally, this dissertation focused on the results pertaining to the T&E field only; 

however, the changes made to the System X process impacted all disciplines, not just T&E. 

Expanding this research to capture results of its application to all disciplines could provide 

additional value.  

Future work could also be performed with regard to each applied concept. The Agile 

process documented by this dissertation provided an alternate version of Scrum that did not include 

the Scrum Master role. Additional research could be performed to document the differences in 

effectiveness of the process if Scrum were implemented in a way that included a Scrum Master. 

Second, the phased approach to test automation presented by this dissertation could benefit from 

a study of the implementation of test automation across the industry in order to provide evidence 

for how projects transition to automated testing, how they transition between phases, and which 

phases are implemented or skipped after a mature test automation solution has been established. 

Finally, the model-based Test Planning and documentation methodology was implemented on a 

project that had no existing MBSE practices or procedures. It is expected that if the modeling 

process documented by this dissertation were implemented on a project that had embraced MBSE, 

it would have been more successful. Future work could be performed to implement a similar 

strategy on a project with an existing system model to document the differences in results between 

their implementations. 
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Based on the last two years of results so far and by continuing the strategy documented by 

this research, it is expected that within two to four more release cycles, the Yearly Regression 

period for System X will be reduced to less than one week. This type of reduction, from an original 

timeline of 18 weeks, shows the potential improvement that an Agile transition, the development 

of an automated testing capability, and a standard approach to test documentation can provide. 
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