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ABSTRACT OF THESIS
EXPERIMENTS WITH A SPECTRAL TROPICAL CYCLONE MODEL

The three-layer balanced axisymmetric tropical cyclone model
presented by Ooyama (1969a) is generalized to three dimensions and the
resultant primitive equations are solved using the spectral (Galerkin)
method with Fourier basis functions on a doubly-periodic mid-latitude 8-
plane. The nonlinear terms are evaluated using the transform method
(Orszag, 1970; Eliasen et al., 1970) where the necessary transforms are
performed using FFT algorithms. The spectral equations are transformed
so that the dependent variables represent the normal modes of the
linearized equations. For the three-layer model the normal modes
correspond to internal or external gravity or rotational modes or to
inertial oscillations associated with the constant depth boundary layer.
When the governing equations are written in terms of the normal modes,
the application of the nonlinear normal modelinitialization scheme
proposed by Machenhauer (1977) is straightforward. For the
initialization scheme, the rotational modes and inertial oscillations
are defined as the slow modes and the gravity modes are defined as the
fast modes.

The model is run with an axisymmetric initial condition on an f-
plane and it is shown that many of the results presented by Ooyama
(1969a) can be reproduced. The energy of the gravity modes and
rotational modes are calculated for this simulation and it is shown that

the gravity mode energy is more than an order of magnitude smaller than
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the rotational mode energy. This provides some justification for the
use of periodic boundary conditions. The model is then run on the g-
plane and it is shown that the variation of the Coriolis parameter with
Tatitude causes the tropical cyclone'to move towards the northwest at
about 2 ms'l, in agreement with several other authors. It is also shown
that the dispersion of'the rotational modes causes the tropical cyclone
to elongate towards the west and develop sharper geopotential gradients
towards the east. These features are similar to features of storms
found in nature. The model is also run with a basic state wind profile
and it is shown that the interaction between the storm circulation and
the basic state wind causes large asymmetries to develop. The effect of
the basic state wind on the storm size and intensity is also studied.

[t is shown that the basic state wind in the upper layer can interact
with the storm outflow to either increase or decrease the storm
intensification rate, while the basic state in the Tower layer can
affect the intensification rate as well as the size of the model
tropical cyclone.

The effect of initialization procedures on a tropical cyclone
forecast is also studied. The results from linear and nonlinear normal
mode initialization procedures and results from applying an
initialization procedure based on the nonlinear balance equation are
compared. It is shown that the nonlinear normal mode initialization
procedure results in much smaller track and intensity forecast errors,
and prevents the excitation of spurious gravity waves.

Several exampies of tropical cyclone motion in the nondivergent
barotropic model are presented. It is shown that this simple model can

predict the track of the tropical cyclone in the primitive equation
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model except during periods of rapid intensification. It is also shown
that the spectral truncation, horizontal diffusion coefficient and the
tangential wind profile outside of the radius of maximum wind can each

affect the track of a tropical cyclone in the barotropic model.
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CHAPTER 1
INTRODUCTION

The tropical cyclone, with its intense low-level wind and
torrential rain, must rank among the most amazing and interesting
meteorological phenomena. Observational and theoretical studies have
shown that the existence of tropical cyclones is due to a complex
interaction between the synoptic scale and cumulus convection which,
through latent heat release, provides the energy to drive the system.
This interaction between scales of motion, which are dynamically quite
different, makes tropical cyclone forecasting a difficult task and
presents a challenging problem for numerical modelers.

Linear theory of a convectively unstable atmosphere indicates that
the disturbances with the smallest horizontal scales will grow the
fastest (Bjerknes, 1938). This appears to indicate that convective
instability will not lead to the growth of a disturbance with a
horizontal scale as large as a tropical cyclone. Ooyama (1964) and
Charney and Eliassen (1964) showed that the cumulus clouds and the
larger scale tropical cyclone circulation could enhance each other.
Although this early work, which was based on Tinear theory, could not
explain the development of a tropical cyclone to the mature stage, it
did introduce the concept of a cooperation rather than competition
between the different scales of motion. This cooperative interaction is

often referred to as Conditional Instability of the Second Kind (CISK).



One of the first numerical simulations which produced the
development of a vortex similar to an average tropical cyclone was
presented by Qoyama (1969a, 1969b). Ooyama's model was axisymmetric and
balanced, and treated the large scale environment as three layers of
incompressible fluid. The effects of cumulus clouds were included as a
mass transport between two of the fluid layers. The nmgnitude:of the
mass transport was proportional to the vertical velocity at the top of
the boundary layer and to a vertical stability parameter which depended
on the vertical distribution of temperature‘and moisture. This implicit
treatment of the effects of cumulus clouds is a relatively simple
example of what is now referred to as cumulus parameterization.

Since the early work of Ooyama and others, many more sophisticated
models have been developed. As computers became more powerful, vertical
and horizontal resolution increased and more complicated cumulus
parameterization schemes could be used. For example, Kurihara and
Tuleya (1981) used an 11-Tevel primitive equation model to study the
development of a wave into a closed vortex and Hack and Schubert (1981a)
used a parameterization scheme which considered an ensemble of cumulus
clouds. A comprehensive review of the development of tropical cyclone
models can be found in Anthes (1982).

Although the physics and geometry used in tropical cyclone models
have become more sophisticated, the numerical methods used to solve the
governing equations have remained relatively constant. The basic
modeling procedure has been to write finite difference approximations to
the governing equations and then to solve these approximate equatians
for the values of the dependent variables on some specified grid. An

alternate approach to finite difference methods is to use a spectral



method. In spectral methods the spatial dependence of the dependent
variables is represented by a finite series of an appropriate set of
basis functions. The governing equations are then used to give a set of
ordinary differential equations for the time dependent amplitudes of the
finite series which are usually solved using time differencing.

Spectral methods have been used on many problems in meteorology and
fluid dynamics (see Machenhauer (1979) and Orszag (1979) for examples)
and have been shown to be much more accurate per degree of freedom
compared to finite difference methods. Spectral methods can also reduce
computational dispersion which is caused by an artificial reduction in
the phase speed of waves with wavelengths close to twice the grid
spacing in a finite difference model. With careful evaluation of
nonlinear terms, the nonlinear instability of the type described by
Phillips (1959) can also be eliminated with the use of spectral methods.
Despite these computational advantages, spectral methods have never been
applied to a tropical cyclone model.

In this thesis, a three-dimensional primitive equation tropical
cyclone model will be developed and solved using a spectral method. The
physical model is based on the early tropical cyclone model developed by
Ooyama (1969a). His model is generalized by relaxing the axisymmetric
and balance assumptions and including a variable Coriolis parameter.
Ooyama's model was chosen for study because it contained a relatively
simple cumulus parameterization scheme and vertical structure, yet was
capable of reproducing many aspects of tropical cyclones found in
nature. Bliss (1980) used a generalized version of Ooyama's model and
showed that this system of equations is also capable of simulating the

transformation of a wave into a closed vortex.



In meteorology, the term spectral method usually refers to a
specific form of the spectral method known as the Galerkin method. In
the Galerkin method, the dependent variables are expanded in a finite
series of basis functions which are orthogonal with respect to some
inner product and satisfy the same boundary conditions as the dependent
variables. The equations for the time dependent amplitudes are found by
substituting the series expansions into the governing equations, and
then taking the inner product of the equations with each of the basis
functions. For global or hemispheric problems, spherical harmonics,
Hough functions and trigonometric functions have been used as basis
functions. In limited area models the boundary conditions are usually
more complicated and it is often difficult or impossible to find basis
functions which satisfy these conditions and are also appropriate to use
for a series expansion. It is possible, however, to simulate an
infinite domain by considering a domain which is periodic in both the x
and y directions, but is relatively large compared to the size of the
disturbance being studied. The appropriate basis functions for the
Galerkin method are then Fourier components, and the series expansions
become truncated double Fourier series. This method will be used to
solve the governing equations for the generalized version of Ooyama's
model.

The method of solution presented here can be generalized to include
more complicated boundary conditions by using a spectral method known as
the tau method (Gottlieb and Orszag, 1977). In the tau method, the
dependent variables are expanded in truncated series, but the basis
functions are not required to satisfy the boundary conditions

individually. Extra degrees of freedom are added in such a way that the



series as a whole satisfies the boundary conditions. The appropriate
basis functions for this case are Chebyshev polynomials. Haidvogel et
al. (1980) have used this method in an ocean model with open boundaries.
A disadvantage of this method, however, is that the Chebyshev
polynomials oscillate rapidly near the boundaries. This extra boundary
resolution makes it necessary to use a very small time step or an
implicit time differencing scheme. For this reason, only Fourier basis
functions will be used here.

Another advantage to using Fourier basis functions is that the
Fourier components are proportional to the normal modes of the
linearized governing equations. It will be shown that this makes it
possible to evaluate the linear terms exactly by multiplying the
governing equations by appropriate integrating factors. This allows the
use of a time step larger than required by the CFL criterion for
external gravity waves since the motion of these waves are governed by
the Tinear terms. ‘The fact that the basis functions are proportional to
the normal modes also makes the application of nonlinear normal mode
initialization relatively straightforward. In chapter three it will be
shown how the nonlinear normal model initialization procedure introduced
by Machenhauer (1977) can be applied in the current model.

After the Galerkin procedure is applied, the governing equations
are transformed into a series of ordinary differential equations for the
Fourier coefficients. When these equations are solved using time
differencing it is necessary to evaluate the transform of the nonlinear
terms at each time step. Historically, this restricted early spectral
models to very Tow resolution since the method used to calculate the

nonlinear terms (the interaction coefficient method) required large



numbers of arithmetric operations and large amounts of computer storage.
For the interaction coefficient method, the nonlinear terms are computed
by directly multiplying series expansions together and then multiplying
éach term by the appropriate interaction coefficient which takes into
account the inner products of the various combinations of basis
functions which appear. Not only was this method inefficient, but it
also made the inclusion of physical processes difficult since at any
given time, only the series amplitudes were known. These difficulties
were removed when a new method for computing the nonlinear terms (the
transform method) was introduced by Orszag (1970) and Eliasen et al.
(1970). For the transform method, the nonlinear terms are computed by
first transforming the dependent variables to physical space on some
specified grid. The nonlinear products are then calculated at the grid
points and the inverse transform is evaluated using an appropriate
numerical quadrature rule. Except for very low spectral truncations,
the transform method is more efficient than the interaction coefficient
method and also eliminates the need for large amounts of storage for the
interaction coefficients. The transform method also makes the inclusion
of physical processes straightforward since the dependent variables are
calculated in physical space at each time step. It will be shown that
when the transform method is used with Fourier basis functions, both the
transforms and inverse transforms can be written in terms of discrete
Fourier transforms so that Fast Fourier Transform (FFT) algorithms can
be applied to greatly improve the model efficiency.

The development of the physical model will be discussed in Chapter
2 and the details of the solution using the Galerkin method with Fourier

basis functions will be presented in Chapter 3. In Chapter 4, results



from four simulations will be presented. The model is run with an
axisymmetric initial vortex on an f-plane and on the g-plane. The model
is also run on the g-plane with a nonzero zonal wind field and with a
wave-like initial condition. These results show that the current model
can reproduce many of the results presented by Ooyama (1969a) and Bliss
(1980), and also can simulate many aspects of tropical cyclones observed
in nature. Since the model is formulated in terms of the normal modes
of the linearized governing equations, the amplitudes of the gravity and
rotational modes are known explicitly. In Chapter 4, the energy of
various modes of the solution is calculated for a tropical cyclone
simulation.

Tropical cyclones which occur in nature exhibit a wide variation in
size and strength (e.g. Merrill, 1982). The development of weaker
tropical disturbances is also highly variable, and extremely difficult
to forecast. For example, during a typical Atlantic hurricane season,
only about 9 out of 27 tropical depressions develop into tropical storms
(winds > 17 ms'l) and only about 5 develop into hurricanes (winds > 33
ms'l) (Herbert, 1978). Many studies have been made to determine what
parameters control tropical cyclone genesis and intensification, yet no
one process has been shown to be sufficient to explain which tropical
systems will intensify. Climatological $tudies (e.g. Gray, 1979) have
indicated the existence of several necessary conditions such as a warm
sea surface temperature and a nonzera Coriolis parameter. Other studies
have shown that the synoptic scale environment can influence tropical
cyclone genesis and intensification. Studies such as those by Hawkins
and Rubsam (1968) and Frank and Clark (1979) have shown that tropical

cyclones often form from pre-existing synoptic scale disturbances.
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Other studies have shown-that upper level weather systems can affect
tropical cyclones. For example, Lewis and Jorgensen (1978) presented a
case study of the dissipation of a hurricane as it interacted with an
upper level trough. Although the inf]uenée of the large scale
environment has been documented in many observational studies,
theoretical and modeling studies in this area have been limited. In
Chapter 5 the effect of a horizontally sheared basic state wind in the
upper and lower layers on a tropical cyclone simulation is investigated.
An example of the interaction of a tropical cyclone with a trough in the
upper layer of the model is also presented.

From a forecasting point of view, it is perhaps more important to
be able to predict the track of a tropical cyclone rather than its
intensity changes. Dynamical models have been used for this purpose for
many years and have ranged in complexity from barotropic models (Sanders
et al., 1975) to full primitive equation models with moving nested grids
(Hovermale and Livezey, 1977). One problem with using primitive
equation models for track forecasting is that the initialization
procedure can affect the track of the storm. In Chapter 6, the
applicability of nonlinear normal mode initialization to primitive
equation track forecasting is investigated. For this purpose, initial
data is obtained from a previous model simulation and several
jnitialization procedures are applied. The effect of the initialization
js assessed by comparing the model simulations to the simulation where
the initial data was not changed. Results from a nondivergent
barotropic model are also presented in Chapter 6 to investigate the

effect of several model parameters on a tropical cyclone track forecast.



The relevance of barotropic model track forecasts is evaluated by

comparing the barotropic and primitive equation model results.



CHAPTER 2
GOVERNING EQUATIONS

In this chapter a brief description of the governing equations is
presented. The physical model is based on the work of Ooyama (1969a)
and the reader is referred to the original paper for further details.
Ooyama's model treats the large scale atmosphere as three layers of
incompressible fluid with the effects of cumulus convection included as
a mass flux between two of the fluid Tayers. The magnitude of the mass
flux is parameterized in terms of the large scale variables. Ooyama's
model is generalized by relaxing the axisymmetric and balance
approximations and by solving the governing equations on a mid-latitude
B-plane. Further details on the derivation of the three-dimensional

version of Ooyama's model can be found in Bliss (1980).
2.1 Large-Scale Governing Equations

Consider a fluid which consists of three stably stratified
homogeneous layers as shown in Fig, 1. The equations which govern the
motion of this fluid are the momentum and continuity equations for each

layer which are given by

PRV A -
0 = . W -
el fkxV, + v b, = -( W, v) v, o (\vo \v1)+ |F0 , (2.1)

B\V1 +

X = . W -
——a—t‘:—“"ka\Vl"'V(bl'-(\Vl V)\V1+W(\VO \V1)+|F1 »

(2.2)
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B—\V—Z-+fﬁx\v +9 ¢, = -(W,e V)V, +IF, , (2.3)
3 2 2 2 2 2
H, V-\VO +w=0, (2.4)
ﬂi+HVWV-w=—wm\V)- Q. (2.5)
ot 1 1 171
?t‘z“L Hy oW, = - ve(h, W,) +é Q, (2.6)
where
\Vi = ui€ + vig = horizontal velocity of layer i (i=0,1,2)
ui = pastward component of horizontal velocity of layer i
Vi = northward component of horizontal velocity of layer i
w = vertical velocity at the top of layer 0
Hi = mean thickness of layer i
hi = deviation of thickness of layer i from the mean thickness
f = Coriolis parameter
g = acceleration of gravity
IFi = friction term of layer i
Q = mass per unit area and time transported from layer 1 to layer 2
p; = density of layer i
g€ = pz/p1
¢ = g(h1 + ehz)
o = g(h1 + ehz)
¢ = 9g(h; +h,)
W= 172 (|w] + w)
wo=1/2 (|w] - w)
Vo= i+ 2]
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H,+h, Pr=€P WV, —»
VAN
Hyth Pi=P W —
AW
A |
Ho Po=pP Vo —>

T I T I

Figure 1. The Ooyama fluid system.
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As can be seen in Fig. 1, variables with subscripts 0, 1 or 2
correspond to the Towest, middle or upper layers respectively.
Following Ooyama, Tayer 0 is assumed to have a constant thickness, and
the same density as layer 1. Layer 0 is included so that atmospheric
boundary layer processes can be simulated. Since the thickness of layer
0 is constant, the continuity equation (2.4) is simplified and the
pressure gradient terms are the same for layers 0 and 1 in (2.1) and
(2.2). Since the density of layers 0 and 1 is the same, it is possible
for mass to travel across the interface between these layers when w # O.
The second term from the right in (2.1) and (2.2) must be included so
that the total momentum of layers 0 and 1 is conserved when this
transport occurs.

The mass transport term Q which appears in (2.5) and (2.6) allows
the inclusion of diabatic effects in the incompressible fluid system.

In a compressible fluid, diabatic processes allow fluid parcels to move
across surfaces of constant potential temperature. 1In the
incompressible system, diabatic processes allow fluid parcels to move
between layers of different density. In section 2.3 it will be shown
how Q can be diagnosed from the large scale variables to simulate the
diabatic effects of cumulus convection.

The remaining terms in (2.1)-(2.6) are fairly conventional. The
friction terms in (2.1)-(2.3) are functions of the dependent variables
and will be discussed in more detail in the next section. Assuming the
friction terms can be calculated and Q can be diagnosed, (2.1)-(2.6) are
a closed system of nine scalar equations with independent variables x, y

and t and dependent variables Ups Vs Ws Ups Vo5 Ugs Vo, h1 and h2.
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2.2 Specification of Friction Terms

The friction terms in (2.1)-(2.3) are given by

F = 5 W [V + avzw (2.7)
0 H0 0'"0 0’
(W, -V,)
1-V2
IFy = ARV - VR (2.8)
(W, -V,) (W, -=V,)
_ 1°Vo) g V-V
Fa = WV, TRy e TRy (B9

(A) (B) (C) (D)

where l\Vo| is the magnitude of the boundary layer horizontal velocity.
Term A, which appears only in the boundary layer equation, represents
the surface drag calculated from the bulk aerodynamic formula. The drag
coefficient CD is assumed to have a constant value of 0.0015, The terms
labeled (B) represent horizontal eddy diffusion of momentum where the
horizontal eddy diffusion coefficient A is assumed to have a constant
value of 103 m25~1. The terms labeled (C) represent the effect of
vertical diffusion due to the velocity shear across the interface
between layers 1 and 2. These terms act in the usual downgradient sense
(i.e. to reduce the vertical shear) and the shear stress coefficient p
has a constant value of 5 x 10°% ms™. Term (D) represents the effect
of the mixing of momentum when mass is transported from layer 1 to layer
2. This term can be derived by considering an amount of mass per unit
area pAh which is transported from layer 1 to layer 2 in time at. The
horizontal velocity of layer 1 is not changed by this process, but the

thickness of this layer decreases by an amount Ah. Assuming this mass

conserves the momentum of layer 1 and mixes with the momentum of layer
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2, the horizontal velocity of layer 2 becomes the mass weighted average

of the two velocities which is given by

EP \Vz(t)(Hz"'hz) + pAh \Vl(t)

The change of \V2 in time At then becomes
\V2(t+At) - Wy(t) _ B \Vl(t) -\vz(t)J (2.11)
At At e(H2+h2) +Ah

In the 1imit as At and ah approach zero, the above equation becomes

-—————?l ) (2.12)

2.3 Cumulus Parameterization

As discussed in section 2.1, diabatic effects ih the incompressible
fluid system are represented by a mass flux from layer 1 to layer 2. In
order to simulate a tropical cyclone, the diabatic effects of cumulus
convection must be included, but the absense of true thermodynamics as
well as the coarse vertical resolution of the model prohibit the
treatment of individual cumulus clouds. Following Qoyama, the diabatic
term Q which represents the collective effects of many cumulus clouds is
incorporated into the model. This section summarizes the
parameterization of Q in terms of the large scale variables.

If a moist parcel of air is lifted without mixing, its temperature
will decrease dry adiabatically until the condensation level is reached.
After this point, the temperature of the air parcel will decrease at the

moist adiabatic lapse rate. Fig., 2 shows the path of an air parcel on a
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e
/

-30 -20

T (°C)

Figure 2. The paths of air parcels (dashed lines) on a Tephigram when
Tifted from 1000, 900 and 800 mb for the mean tropical
atmosphere from Jordan (1958).
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thermodynamic diagram when lifted from various levels of the mean
tropical atmosphere from Jordan (1958). When the temperature of an air
parcel becomes greater than that of the environment it becomes buoyant
and will continue to rise. As can be seen in Fig. 2, the only parcels
which become buoyant are those which are lifted from below about 900 mb.
This is caused by the higher temperatures and mixing ratios (as
indicated by the higher dewpoint temperatures) in the Tower levels. In
order to support convective activity for a period of time longer than
the time scale of an individual cumulus cloud it is apparently necessary
to supply convectively unstable air in the lower levels through
convergence. In the context of the three-layer model, it is then
assumed that Q is given by
nw if w>0
Q = (2.13)
0 if wgoO
where n is a nondimensional constant of proportionality.

When cumulus convection occurs, the rising air does not remain
isolated from the surrounding environment as in simple parcel arguments,
but rather entrains some of the environmental air. Equation (2.13)
indicates that for every unit of boundary layer air that goes up in a
convective cloud, (n-1) units are entrained from layer 1 and n units are
added to layer 2. The moist static energy M of a unit mass of air is
given by

M= cpT +1lq +g9z, (2.14)

where cp is the specific heat at constant pressure, T is temperature, L
is the latent heat of condensation, q is the mixing ratio of water vapor
and gz is the geopotential energy. The moist static energy of the

saturated air which enters the upper layer is then the mass weighted
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average of the boundary layer air and the entrained layer 1 air which is

given by
Mo+(n-1) M1

M2= n >

(2.15)

where Mo’ M1 and M2 are the moist static energy of layers 0, 1 and 2

respectively. Solving (2.15) for n gives

2 (2.16)

The value of M2 in (2.16), which represents the moist static energy of
the air inside the cumulus clouds, can be approximated by the moist
static energy of the environmental air in layer 2 with the value of g
replaced by the saturation value G- This can be done since the cloud
air has approximately the same temperature as the environment when it
reaches the upper layer, but is saturated.
The differential relation between M and equivalent potential

temperature 8 is given by

c T

M = [5;’—] g - (2.17)

c T
Since the term 69—- varies slowly, (2.16) can be written in terms of ee.
e

For convenience let the following definitions be made:

0 e’0

Ay =(8g)y -0 ; (2.18)
*

1\2 = (ee)2 -0

where (Oe)0 and (ee)1 are the equivalent potential temperatures of
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layers 0 and 1 respectively, (ee*)2 is the saturated equivalent

potential temperature of layer 2 and © is a constant reference

temperature. Using (Z2.18), equation (2.16) can then be written as
Ao = Ay

n:l-!-—-—————A T . (2-19)
' 2 1

In order to calculate n using (2.19) it is necessary to cé]culate
the equivalent potential temperature of each layer. Following Ooyama,
the variations of the mid-level ee are neglected and Al is set to a
constant value of -10 K. Ooyama argued that the variation of e1 was not
of critical importance in the basic dynamics of tropical cyclones and
the success of his model tends to confirm this assumption.

As a tropical cyclone forms, the upper levels near the storm center
can warm by as much as 15°C (e.g. Hawkins and Imbembo, 1976). This
upper level warming greatly increases the vertical stability which
decreases the strength of the deep convection. In order to include this
effect in the incompressible fluid system, it is necessary to develop

the diagnosis of A, from an analogous compressible system. The

2
hydrostatic equation for a compressible fluid can be written as

% _ _
= (2.20)

where ¢ is the geopotential, 0 is potential temperature and = is defined
by (p/1000)" where « = R/cp, P is the pressure in mb and R is the gas

constant for dry air. Integrating (2.20) from ¢1 to ¢2 gives

by - ¢
2 Y1 _
Tt T, - Cp em > (2.21)

where qn is the mean potential temperature between ¢1 and ¢2. Equation

(2.21) can be written as
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0p' = by -

“%IT?}%"= “p (em"em) ’ (2.22)
where ém is the horizontal average of em and ¢' represents the deviation
from the horizontal average of ¢. Ooyama noted that the saturated
equivalent potential temperature at 300 mb varies from about 340 to
370 K as the mean potential temperafure between 700 mb and 300 mb varies
from 324 to 339 K. Assuming level 1 and level 2 represent 700 mb and
300 mb respectively, and assuming a simple linear relationship between

* .
ee2 and em gives

0F - 0 5= 2.0 (om - em) .
or

l\,2 = [_\2 + 2.0 (()m - (-)m) . (2.23)

Eliminating 8, ém between (2.22) and (2.23) gives

~ 7 2-0 ] !
AN CAE) (6" -6¢") - (2.24)

Equation (2.24) is strictly valid only for a compressible fluid. The
analogy with the incompressible system is made by considering the
similar roles of ¢2' and ¢1' in the compressible system and ¢1 and ¢2
which appear in (2.1)-(2.3). Using this analogy and the definitions of

91 and ¢2, (2.24) can be written as

py =B, + L (1-e)hy (2.25)

c p

2

where again it was assumed that layers 1 and 2 correspond to 700 and 300

mb so that = could be calculated. This gives the nondimensional

1~ "2

constant Y in (2.25) a value of 10.3. As h2 increases in (2.25), Az
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increases so that n in (2.19) and the magnitude of Q in (2.13) decrease.
Thus, the use of (2.25) to diagnose A2 simulates the effect of upper
Tevel warming on convection using the analogy between the increase in
thickness of an incompressible fluid layer and the increase in
temperature of a compressible fluid layer.

The remaining thermodynamic variable necessary for the calculation
of Q is the boundary layer equivalent potential temperature deviation
Ab' Again following Qoyama, Ao is treated as a prognostic variable and

is predicted from the conservation equation given by

Eﬁ9'= » BAO BAO

v W 2
ot 0 39X 0 a3y H0

Cg
Mo ¥R W (ag - Ag).

(2.26)

The first two terms on the right side of (2.26) represent horizontal
advection and the third term represents vertical advection. The fourth
term represents diffusion where the horizontal eddy diffusion
coefficient A is assumed to be the same as the coefficient which appears
in the momentum diffusion terms in (2.7)-(2.9). The last term on the
right side of (2.26) represents the surface flux of equivalent potential
temperature as calculated from the bulk aerodynamic formula, where 1\.S is
the sea-surface saturation equivalent potential temperature deviation
and CE is the air-sea exchange coefficient. The value of CE is assumed
to be equal to the exchange coefficient for momentum CD which appears in
(2.7).

The saturation equivalent potential temperature of the sea surface

is given by

LqS
c. T ?

8. * =0_ exp [
S p's

es (2.27)
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where b5 is the potential temperature at the surface pressure PS and sea
surface temperature Ts’ G is the saturation mixing ratio at TS, PS and
L is the latent heat of condensation. In order to allow ees* to depend

on the surface pressure, 6__* is expanded in a Taylor series at a fixed

es
value of Ts which gives

aee; _
Oae % O BT * P lp 1 (Ps’Ps) . (2.28)
s’'s s’'s

In the incompressible fluid system, the deviation of the surface

pressure from the mean value is given by pg(h, + €h Evaluating the

1 2).
right side of(2.28) at TS = 28°C and Ps = 1015 mb, substituting for (Ps—

ﬁs) and subtracting © from both sides gives

Ay =R - 2 (hy +ehy) , (2.29)
p

where the constant o is equal to about 1.87. Since the mean surface

pressure PS is constant, KS is a function of TS. In all of the model

simulations ES is set to 30 K which corresponds to a sea surface

temperature of about 28°C.

In summary, the diabatic term Q is given by (2.13) where n is given
by (2.19). The parameter n is a function of.Ao, Al and A2 which
represent the equivalent potential temperature deviations of each of the
fluid layers where A2 is diagnosed using (2.25), A, is assumed to be

1
constant and A, is predicted using (2.26).

2.4 Equations of Motion on a Mid-Latitude g-plane

Since many early tropical cyclone models were axisymmetric, it was
necessary to neglect the variation of the Coriolis parameter f with

latitude. As three-dimensional models were developed it became possible
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to allow f to vary with latitude. Several authors (e.g. Madala and
Piacsek, 1975; Kitade, 1980) have shown that when f varies with
latitude, a model tropical cyclone will no longer remain stationary but
will drift to the northwest at speeds between 1 and 3 ms'l. Anthes and
Hoke (1975) have shown that the variation of f with latitude can cause a
tropical cyclone to become asymmetric with a tendency for confluence to
the east and diffluence to the west of the storm center in the low
levels.

The simplest way to include the variation of f with latitude in a

model with cartesian geometry is to make the g-plane approximation.

This approximation assumes f is given by a two term Taylor series of the

form
f o fo + B(y-—yo) , (2.30)
where
_of
BT lyey,
and '

where ¢ is latitude, a is the radius of the earth and 60 is the
reference latitude. As discussed by Lfndzen (1967), there are two types
of g-plane approximations which can be made. The first of these is the
equatorial g-plane where the reference atitude eo is assumed to be the
equator and f is equal to gy. The second of these is the mid-latitude
B-plane where eo js assumed to be some Tatitude away from the equator.
For the mid-latitude g-plane it is necessary to neglect gy compared to
fo, except where f is differentiated. 1In the current model, it will he

assumed that each of the dependent variables is periodic in the x and y
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directions so that they can be expanded in Fourier series. If the
equatorial g-plane is used, the equations of motion will contain gy
terms which will not be periodic in the north-south direction. If the
mid-latitude g-plane is used, however, the only additional terms which
appear will be proportional to fo or B since gy is always neglected
compared to fo. Thus, the only terms in the governing equations which
are related to the variation of f with latitude will have constant
coefficients. If the initial values of the dependent variables are
specified to be periodic in x and y, then the dependent variables will
remain periodic for this case. For this reason, the mid-latitude 8-
plane can be used with a domain which is periodic in the north-south
direction.

In order to use the mid-latitude g-plane approximation it is
necessary to use the differentiated form of the momentum equations. For
the differentiated momentum equations, the dependent variables us and Vs

are replaced by the vorticity ci and divergence 61 where

PR
ci X oy
P (2.31)
Qu. oV
6.::,__1-*-__1_
i ax y |

and the subscript i refers to layer 0, 1 or 2.

The prognostic equation

for z; can be derived by taking g%-of the \Z momentum equation and

subtracting g%-of the u; momentum equation. Using (2.1)-(2.3), (2.30)

and neglecting By compared to fo except where f is differentiated gives
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oz o
St T TS YRy T (2.32)
2 Iy 3 C 3y +F
S (ugeg) - B (i) + B () - & (U F),
where
S oW S vy,
Vo © H, (ug-uy)s Yy0 He (vg-vq)

+
- W _ = W -
Yx1 = TR (ug-ug)s Yy1 7 TR (vg-vy)>

0 »

-
H

Vx2 =0,

and in and Fyi are the x and y components of IFi defined in (2.7)-

(2.9). Similarly, the prognostic equation for 51 can be derived by

3
oy

for Vs and again neglecting By compared to fo except where f is

taking é%—of the equation for uj and adding it to of the equation

differentiated which gives

36 2
—t - Tofq tBu; + V0, = (2.33)

3 3 uf + vy 3 (e 5 )

. 2f 1 1 o_ . o AV L) .
B 5§'(uici) T3 (Vici) -V [ 2 ] T ax (in+vx1) T3y (Fy1 Vy1
In order to use (2.32) and (2.33) in place of (2.1)-(2.3) it is
necessary to relate the velocity components uj and v to Ci and 61.

This is accomplished by defining a streamfunction wi and velocity

potential X for each layer as follows:

i 3y X
o0 . (2.34)
V. = .i+__)£i

i~ Tex oy
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Substituting the above equations into (2.31) gives

= v2
SR

(2.35)

2

If Vs and X; are considered the unknowns, then (2.32) and (2.33) for i =
0, 1, 2 are six equations which can be used in place of the six scalar
momentum equations (2.1)-(2.3).

In the Tinear case, all the terms on the right side of (2.32) and
(2.33) are neglected. These equations can be combined with linearized
forms of the continuity equations (2.4)-(2.6) to give a system of nine
equations in nine unknowns. In the linear case the forcing and friction
terms are neglected so that solutions should be oscillatory in time.
Stevens et al. (1977) have shown that this will be true only if the
velocity potential contribution to the BV, term in (2.32) and the
streamfunction contribution to the sui term in (2.33) are neglected.

Equations (2.32) and (2.33) then become

s ea
AR T

d 9 3_ 9 _(y +F . 2.36
- §§'(uizi) Ty (Vigi) * X (V) *Fyq) oy (Vx1 Fx1) i ( )

y1 yi
36, ;o
ot Tl TR TV T
3 5 ug® vy’
3 3 O (v 4F L)+ D (v 4 _vz[ ]
Ty (U1C1) T (V1C1) T ax (in in) P (Vy1 y1) ?

It will be shown in chapter 3 that the eigenfrequencies of the linear
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equations correspond to the usual mid-Tatitude g-plane Rossby waves or

inertia-gravity wave

2.5 Summary of the Governing Equations

S.

For convenience, the complete system of equations for the three-

dimensional version of Ooyama's model on a mid-Tatitude g-plane are

Tisted below:

R LT
2 3 5 2 ,
<o (Eg) - 5y (g * g Gytfyg) - 5y Wygtfyg) - (2.38)
98 oY
1 e 24 =
3 3 3 5 ui v
o __ _yg2| 1
- ay (e *ax (asg) * gy ygtFy) * 5 gt - 7 [ 7 ]’
_ (2.40)
H060 +w=20,
3h
_1 " I _ 9
sttt H8y - W= -5 (hpup) - 55 (hyvy) - Qs (2.41)
3h
2 5 3
St + H262 T (hzuz) v (h2V2) +=Q, (2.42)
Q= nw , (2.43)
Ao-A -
n=1+-9-2 (2.44)

My -4y



X0

FXO

x1

x1 ~

= o _.Il 2

- ﬂ _
A2 * 3 (1-¢) h2 s
P
- 10 K ,
oA oA - C
9 _ 0 _w_ _ 2 _E
X Vo ay Ho (Ao Al) v AoJr HO I\VOI(AS_A

- Yo
AS C (h1+€h2) )
p
2 - 2
V w,i L] 61 - V X.l )
] N
oy ax ? i 9X dy °?
¢ = g(hy + ehy) ,
g(hy +hy)

v -
-4 (U -ug) Vo = -1 (v -v,) ,
HO o 1 yo H0 o 1

o oF
H +hy (up-up) Vo1 ® T *hy) (vo-vq)
o, Vy2 = 0,

c C

- b 2
o |\V0|v0+>\v Yo

(ul-u2 (Vl'VZ)

0

-]

)s

=z . 2 = - 2
UW+ AV Ul . Fyl u H1+h1 + AV Vl , (2.

.45)

.46)

.47)

.48)

.49)

.50)

.51)

.52)

.53)

.54)

.55)

.56)

57)
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(u;-u,) (uy-u,)
i 17Y2 A R
P = ¥ e,y V2T e H2+h2)l
- (2.58)
(v=vg) g %)
Fyz = ¥ Eliwh,T F A7 Y2 T e THy,T
v =1 (- W) (2.59)
wo= 3 |wl+ w) o, wo=3 (Jw]-w) .,
(2.60)

= 2 2
l\Vol"‘/uo Vo

Table 1 lists the prognostic and diagnostic

the above equations and gives the values of

variables which appear in

the specified parameters

whfch were used in all of the model integrations. The value of the sea

surface temperature is 28°C as discussed previously and fo and g are

evaluated at 20°N.
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TABLE 1.

Summary of Dependent Variables and Related Parameters.

Prognostic Diagnostic Specified Equations where
Variables Variables Parameters parameters appear
s Zy H0 =1 km several
X3 85 H1 = H, - 5 km several
h1 u, e =20.9 several
h, Vs f, values (2.38), (2.39)
A, W B at 20°N (2.38), (2.39)
n g=9.8 ms'2 several
Q c, = 1004 J deg™ kg™ (2.45), (2.48)
A2 AZ =0 K (2.45)
A Ay = -10 K (2.46)
¢ Rk, =30K (2.48)
vy = 10.3 (2.45)
o= 1.87 (2.48)
Cp = 0.0015 (2.56)
CE = 0.0015 (2.47)
A = 10%m%s™!? several
u=5x10""m s~! (2.57), (2.58)




CHAPTER 3
SOLUTION USING THE FOURIER-GALERKIN METHOD

As discussed in chapter 1, all of the tropical cyclone models to
date have been solved using finite difference methods. Spectral methods
have been shown to have many computational advantages over finite
difference methods including much greater accuracy per degree of
freedom, reduction of computational dispersion and elimination of
nonlinear instability (Gottlieb and Orszag, 1977). In order to gain
these computational advantages, a spectral method will be used to solve
the governing equations developed in chapter 2.

In the meteorological Titerature, the term spectral method has a
fairly specific meaning, but as discussed by Gottlieb and Orszag (1977),
this term can refer to one of three methods known as the Galerkin, tau
and collocation methods. For each of these methods, the spatial
dependence of the dependent variables is expanded in a finite series of
some appropriate basis functions. The governing equations are then used
to give a system of equations for the series amplitudes. The
differences between these methods are the way in which boundary
conditions are treated and the way the equations for the series
amplitudes are determined.

For the Galerkin method, the basis functions are chosen so that
they satisfy the same boundary conditions as the dependent variables and
are orthogonal with respect to some inner product. The equations for

the time dependent series amplitudes are then found by substituting the
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series expansions into the governing equations and taking the inner
product of each equation with each of the basis functions. In
meteorology, this method has been used extensively for probiems in
spherical geometry with either spherical harmonics or Hough functions as
basis functions (e.g., Hoskins and Simmons, 1975; Kasahara 1977, 1978).

The tau method is a variation of the Galerkin method where the
basis functions are still orthogonal, but are not required to satisfy
the boundary conditions individually. Instead, extra degrees of freedom
are added in such a way that the series as a whole satisfies the
boundary conditions. With the exception of the extra terms in the
series expansions, the time dependent series amplitudes are determined
in the same way as for the Galerkin method. The tau method is generally
used for problems with limited area domains and general boundary
conditions and the appropriate basis functions for this case are
Chebyshev polynomials.

For collocation (also referred to as the psuedospectral method),
the equations for the time dependent series amplitudes are determined by
substituting the series expansions into the governing equations and then
forcing the equations to be satisfied exactly on a set of grid points
(collocation points), where the number of collocation points is chosen
to be equal to the number terms in the series expansions. For
collocation, the equations are solved in physical space, while for the
Galerkin and tau methods, the equations are solved in spectral space.

Each of the three spectral methods described above could be used to
solve the governing equations derived in chapter 2. At first glance,
the tau method appears to be the best choice since it allows the

inclusion of a radiation type boundary condition. As mentioned in
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chapter 1, however, the Chebyshev pd]ynomia]s oscillate rapidly near the
boundaries. This extra boundary resolution makes it necessary to use a
very small time step or use some type of implicit time differencing
scheme. The simplest type of implicit scheme which could be used is the
semi-implicit method where only the linear terms are treated implicitly.
Semi-implicit methods have been used in finite difference models (Kwizak
and Robert, 1971) to reduce the stability criterion required by the
gravity wave part of the solution. When the semi-implicit method is
applied in a finite difference model, an elliptic equation must be
solved at each time step. The elliptic equation which appears can be
solved fairly easily using relaxation methods or by direct elimination.
When the semi-implicit method is applied using the tau method with
Chebyshev basis functions, the system which must be solved is
considerably more compiicated. Basically, this is because in a second-
order finite difference model, for example, derivative operators couple
the value of a dependent variable at a grid point only to the values at
the neighboring grid points. For the tau method with Chebyshev basis
functions, however, derivative operators couple all of the series
amplitudes, so the Tinear system which results from the implicit terms
contains a full matrix. It may be possible to overcome this difficulty
by solving the linear system using an interative procedure. Haidvogel
et al. (1980) used a scheme based on the alternating direction implicit
(ADI) method in a balanced barotropic ocean model solved with the tau
method where the advection terms on the boundaries were treated
implicitly. The above procedure would be more difficult in the current
model since the terms which govern the motion of the gravity waves would

also have to be treated implicitly.
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In order to keep the current model tractable, the Galerkin method
was chosen over the tau method. For the Galerkin method the basis
functions must satisfy the same boundary conditions as the dependent
variables. For this reason it is not possible to include a radiation
type boundary condition in the model. Instead, an infinite domain is
simulated by using a domain which is periodic in the x and y directions,
but is relatively large compared to the size of the disturbance being
studied. For this case, the appropriate basis functions are Fourier
components and the series expansions are truncated double Fourier
series. This reduces the need for the use of implicit time differencing
since the Fourier components have uniform resolution over the domain.

It turns out, however, that when Fourier components are used as basis
functions, semi-implicit time differencing can be implemented quite
easily since the Fourier components are the eigenfunctions of the linear
operators which appear. It is then not necessary to solve a linear
system at each time step since all the series amplitudes which appear in
the linear terms are decoupled. In fact, in the current model, the
linear terms can be calculated exactly, as will be shown in section 3.4.

The governing equations in chapter 2 could also be solved using
collocation with the Fourier components as basis functions without
encountering the numerical difficulties discussed for the tau method.

As mentioned previously, the governing equations are solved in physical
space for the collocation method, and in spectral space for the Galerkin
method. Since the Fourier components are the eigenfunctions of the
Tinear operators which appear in the governing equations, the linear
terms have a very simple form in spectral space. For this reason the

Galerkin method was chosen over collocation.



35

A possible objection to the use of a doubly-periodic domain in a
tropical cyclone model is that the gravity wave energy which is
generated by the forcing cannot leave the domain. The linear theory of
geostrophic adjustment (e.g. Schubert et al., 1980) indicates that when
an impulsive heat source is applied in Tow latitudes, most of the
forcing generates gravity wave motion and only a small portion generates
geostrophically balanced flow. These results can be quite misleading,
however, since they are based on initial value problems where all the
heat is added instantaneously. Silva Dias et al. (1983) have shown in a
linear model on a equatorial Bg-plane, that when the heating occurs over
a finite amount of time which is longer than the period of the gravity
wave oscillations, considerably less gravity wave energy is generated.
In the current model the diabatic heating is parameterized in terms of
the large scale variables so it should generally change slowly in time
compared to the period of the gravity waves. As will be shown in
section 3.3, the amplitude of the gravity wave portion of the total
solution can be calculated explicitly. In chapter 4 it will be shown
that the amount of energy in the gravity wave part of the solution is
more than an order of magnitude smaller than the amount of energy in the

balanced part of the solution during a typical model run.
3.1 Spectral Form of the Governing Equations

In this section the Galerkin method is applied to give an
approximate solution to the governing equations derived in chapter 2.
In order to illustrate the method, a simple example is presented.

Consider the following equation on the x domain (a,b):



36

5€-+ u =20 (3.1)

where u=u(x,t) and L is some differential operator which may be
nonlinear. To solve (3.1) using the Galerkin method, approximate u(x,t)

by a finite series of the form

u;(t) £:(x) (3.2)
1

=
—~
x
-

t
~
l

[end
—
X
w

P
~
1]

it ™~ 2

where it is assumed that the basis functions Ei(x) satisfy the same
boundary conditions as u(x,t) and are orthonormal with respect to the

inner product defined by
b
(u,v) = [ uv*dx (3.3)
a

where ( )* indicates complex conjugate. The inner product of Ei(x) with

Ej(x) is then given by

(g5 £) (3.4)

= G'ij

where 6, is the Kronecker delta. Substituting (3.2) into (3.1) and

taking the inner product with Ej(x) gives

~ N

du A

qot @l T wgdsg) =0 §=1,2--N (3.5)
=1

where (3.4) was used to eliminate all but the Gj term in the time
derivative. Equation (3.5) then represents N ordinary differential
equations which can be solved using time differencing for the series

amplitudes.
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The Galerkin method is based on an orthogonality principle which

can be seen by considering (3.5) in the following form:

sz, £) =0 §=L2oN (3.6)

As N +~«, (3.6) implies that %¥-+ Lu is orthogonal to an infinite set

of the basis functions. Assuming the basis functions form a complete

set, then g: + Lu must be zero since the only vector which can be

orthogonal to all the elements of a complete set is the zero vector.

ou
ot

For the governing equations it is assumed that all of the dependent

When N is finite, then + Lu is approximately zero.
variables are periodic on the x interval [O,LX] and the y interval
[O,Ly]. Each of the dependent variables can then be expanded in

truncated double Fourier series given by

F(x XsYs t) Z z sz(t) Ekﬁ,(x"y) s .(3.7)
)
Fralt) = (Fixoyst), £ o (xsy)) (3.8)
where )
+
FETUL L2 | (3.9)
1 L Ly
(usv) “OL [ [ uv* dxdy , (3.10)
0 O
(=BT meoslad, 4= 0l . (311)
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0 if k # k' or 2 # 2'

(3.12)

(E sg||)=
ko> “k's 1if k = k'and g = 8

and F(x,y,t) represents any of the dependent variables.

When series expansions of the form of (3.7) are substituted into
the governing equations and the inner product is taken with each basis
function Ekx’ the constant coefficient linear terms are transformed in a
very simple way. This can be seen by considering a term of the form ggu

Applying the Galerkin procedure to this term gives

5F .3 A
ax ” G LI Fg(t) g £l
k &

> 1T ik Fg(8) (g Eyog)
k 2

Lk F

ax t)

kl( (3.13a)

where the orthonormality condition (3.12) has been used. Similarly,

other constant coefficient linear terms will be transformed as follows:

5y 7 1 Fie(t) (3.13b)
3%F 27
axZ ~ K Fi(t) (3.13¢)
3%F 2F
e " Rt (3.134)

P) dt : (3.13e)
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The transformation of the nonlinear terms is more complicated and will

be discussed in the next section. However, nonlinear terms of the form

§;-(FG) can be integrated by parts as follows:

d
—gX (FG) - ( X [FG]3 gk'ﬁ,')
9

Similarly,

] .
W (FG) > 12'(FGs Eklg]l) .

(3.13f)

(3.13q)

Substituting truncated series expansions of the form of (3.7) into

(2.38)-(2.42) and (2.47), taking the inner product with each basis

function and using (3.13) then gives

~

dz

ike L . A .
at t ToSike ¥ KB Uy, =
kA 4B ik (V F (U
KA g = 8By * KV + Fuape) - 1280V 40
ds

_ik& 7 sva o 2,024 _
gt~ Tobike T OIKB Xy - (KHH)0s, o =

A A

kB P TRV e * Fuike

) + 4k (V F

~10A500

A

HoSokg * Wkg =0

xiks " Fxika) *

Frigg) » (3.15)
(3.16)

2 2 -

KE+L2)E g
(3.17)
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1k£: A A _ . A . A } A
at T H101ke " Wikp T mTKCppe w180y - Oy (3.18)
dﬂ A ~ ~ 1 A
2k = o3 3 S
Tt Habopy TkCopg = 180540 * 2 Ue (3.19)
da, e e . .
T " " Yoke ~ Foke Lokzi-Mokz"k(k 2 A k2 (3.20)
where Ai = Uiy Bi = Vs
C1 = uihi Di = v1h1
u12 + vy 2
- )
oA ol
Jo = Uo X Ko = Yo 3y
oW
L0 = —;-(A0 - Al) (3.21)
C
M= E

0 - H—O— I\VO’ (AS - AO).

Equations (3.15)-(3.20)‘are the prognostic equations for the Fourier
series amplitudes of the dependent variables which must be solved for
all wavenumbers k and 2. If the above system of equations is
linearized, all the terms on the right are set to zero, and the
resulting set of equations can be solved separately for each wave
number, since the linear terms are decouplied. This cannot be done in

the nonlinear case, however, since the nonlinear terms contain products
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of the series expansions which couple all of the Fourier series
amplitudes.

The diagnostic relations between}the dependent variables can also
be transformed to give diagnostic relations between the Fourier series
amplitudes. As will be seen in the next section, the nonlinear products
of the dependent variables which appear will be calculated in physical
space so that it is only necessary to transform the linear diagnostic
relations (2.49)-(2.52). Applying the Galerkin procedure to these
equations gives

A

Cikg = (K40 by S, ™ ~(K49) Xy (3.22)
Ui = =805+ KXy Vigg = Kyt 8y (3.23)
o1 = ppp, = Iy *ehypg) (3.24)
$2k2 = g(?\lkz + ngz) (3.25)

3.2 Evaluation of the Nonlinear Terms
Using the Transform Method

In order to solve (3.15)-(3.20) using time differencing, it is
necessary to evaluate the nonlinear terms on the right side of each
equation, given the series amplitudes of the dependent variables. As
discussed in chapter 1, the nonlinear terms can be calculated
efficiently using the transform method introduced by Orszag (1970) and
Eliasen et al. (1970). In the transform method, the dependent variables
are first transformed from spectral to physical space on some specified
grid. The nonlinear products are computed at the physical space grid

points and then transformed to spectral space using an appropriate
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quadrature rule. When the basis functions are Fourier components, the
transform from physical to spectral space can be calculated exactly for
quadratic nonlinear terms provided 3M+1 or 3N+1 point trapezodial
quadrature is used to evaluate the x and y integrals which appear.

To illustrate the transform method, consider the calculation of the
term lez which represents the Fourier series amplitudes of the
nonlinear product of UyZqe Using (3.8)-(3.10) and the definition of A1

n (3.21) gives

L, L
X .
- f [ ug(ys )z (6, t) e 1Y) gy (3.26)
0 O

>

L
1k L.t xty

Evaluating the x and y integrals in the above equations using 3M+1 and

3N+1 point trapezodial quadrature gives

1 1 N -1 (kx 2y,
2 = T3N+1) (3W+1) L1 oupx p*Yqe )Ty (xp ey st)e (3.27)
q=0 p=0

= >
[y

where

(3.28)

<
O
i)
N
w
=2
+
—
——
L0

and N and M are the truncation limits of the Fourier series. At any
given time, the series amplitudes of the dependent variables are known
from initial conditions or were calculated at the previous time step, so
Uy and z, at the grid points xp, yq can be calculated using (3.7) which

gives



(kxp+2yq) )
Ul(xpsyqst) z 2 ulkl(t) e
k 2
L (3.29)
(kx +2y )
p g
51 (xp¥qet) E E TTAL ,

In summary, the nonlinear terms are evaluated by first transforming the
needed dependent variables from spectral space to physical space at the
grid points xp, yq using equations of the form of (3.29). The nonlinear
products are computed at the grid points and then transformed to
spectral space using an equation of the form of (3.27).

In (3.26), ul(x,y,t) and Cl(x,y,t) are rebresented by truncated
Fourier series with maximum wavenumbers of (2"/Lx)M and (Zn/Ly)N in the

x and y directions. The product of up s z, and the exponential factor in

1
the integrand of (3.26) is then represented by truncated Fourier series
with maximum wave numbers of (Zn/LX)3M and (2n/Ly)3N. From the theory
of numerical quadrature (Krylov, 1962) it can be shown that 3M+1 and
3N+1 point trapezodial quadratures are exact if the integrand is a
truncated Fourier series with a maximum wéve number less than or equal

0 (2n/Lx)3M or (Zn/Ly)BN. Thus, quadratic nonlinear terms are
evaluated exactly when (3.27) is used for the transformation from
physical space to spectral space. Since the quadratic nonlinear terms
are evaluated exactly, no aliasing error is introduced, which prevents
nonlinear instability of the type described by Phillips (1959).

Some of the nonlinear terms which appear in the governing

equations, such as the diabatic term Q and the surface flux terms, are
not quadratic in the dependent variables. For these terms, the

trapezodial quadrature will not be eXact, and some aliasing error will

\
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occur. Bourke et al. (1977) have shown that in a 5-level hemispheric
spectral model with moist physics, the aliasing error introduced by the
higher order nonlinear terms is negligible. Thus, all the nonlinear
terms are calculated using the minimum number of grid points necessary
to resolve the quadratic nonlinear terms.

In a typical model run, most of the computing time is used to
evaluate the series shown in (3.27) and (3.29). Both of these series
can be written in terms of discrete Fourier transforms as shown in
Appendix A, so that efficient Fast Fourier Transform (FFT) algorithms
can be used. The current model uses FFT routines which were written in
vector code for a Cray-1 computer. Fig. 3 shows the ratio of the
computing time needed to transform a variable from spectral to physical
and back to spectral space when the series are evaluated directly, to
the time needed when the FFT algorithms are used, for various series
truncations. In Fig. 3 it is assumed that the series truncation is the
same in the x and y directions (M=N). For the case when M=N=35, (36
Fourier modes in Fig. 3) which was used in most of the model
simulations, the transforms can be evaluated about 13 times faster when
the FFT algorithms are used. Since most of the model computing time is
used for the transforms, the use of the FFT algorithm greatly increases

the efficiency of the model.
3.3 Derivation of the Model Normal Modes

The linear terms which appear on the left side of (3.15)-(3.20) are
a system of nine coupled equations in nine unknowns, for each wavenumber

k and 2. The linear terms can be simplified by transforming the
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No. of Fourier modes

Figure 3. The ratio of computing time needed for two-dimensional
transforms from spectral to physical and back to spectral
space without FFTs to the time needed with FFTs.
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spectral equations into a system for the normal modes of the linear

equations.

To simpify the discussion, it is convenient to eliminate w

k2

between (3.17) and (3.18) and to use the diagnostic relations (3.22)-

(3.25) to

-(k*+2%)

-(k*+22)

-(k2+12)

~(k2+22)

-(k2+2?)

- (k2+22)

write (3.15)-(3.19) as

dy . .
ok& - 2,02 .
dt (k4 >foxok£+'1k8wokz

+HX

2 2 o
- (K*+22) (Hyx o Xk

_ 2 2 A . A
dr - (KT g * TKBU

2002Y\f cvae o (b2402) (R o
gt -t (K2R2)F ug o+ TkBxqy ) - 9(K2+22) (hy veh,) o)

2,020 o
- (k*+2 )H2X2k2

di . .
2k 24,2 .
dt (K*+22)F Xopat TkBY,g

A

Xokg,

2 2 N . A _ 2 5 A ~
gt ()0 * TRy - 9(KE425) (hyy gt o)

2 2 A . A 2 2 A A -
at T (k=4 )f0¢0k24'1kBXok2"g(k i )(h1k2+€h2k2)

(3.37)

where ﬁlkz through ﬁskz represent the nonlinear terms. The first step

in finding the Tinear normal modes of the above equations is to decouple

the dependent variables for each layer.

using a procedure described by Veronis and Stommel (1956) for an

oceanographic model.

The basic idea of the method is to add and

This can be accomplished by
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subtract the equations for each layer in such a way that the linear
combinations of the dependent variables which appear are proportional to
each other,

In order to decouple the layer 0 terms, (3.33) and (3.34) are
subtracted from (3.30) and (3.31) which gives

dg Pal Pal A ”~
2,02 okg 2,02 . = -
~(k2+22) T (k2+2 )f0v0k2-+1kssok2 Plkz P4k£ (3.38)
2 2 dQOkQI 2 2 ~ . A A A
-(k2+22) -t (k2?+2 )fosokg-nksvok2 = P2k2' P5k£ (3.39)
where
S = -

Voks = Xoke = X1k

H ' .
Adding ﬁl- times (3.33) and (3.34) to (3.30) and (3.31), and rewriting
0

(3.32) gives

Ef‘_l_@ (2 = p (3.41)
dt oXsks 3k% .
dy . R o H .
sk 2:.02 s = __1_
-(k2422) —g7 = (KER5)F x gy + TkBUGy o p1kz+H0 Paks (3.42)
dy . . H A
sk® . 1v/,2.002
~(E%) g (R Uyeq ¥ TKBX g - 9% ) (KE42E) (g Fehpy )
= Pyt H—o- Pe s (3.43)

where
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~ ~ Hy » )
Yske = Yokn T ﬁ;' Y1ke
o (3.44)
~ ~ H1 ~
Xske = Xokg ¥ ﬁ;' X1ke

Equations (3.38)-(3.39) and (3.41)-(3.43) can be used in place of
(3.30)-(3.34). When this is done, the equations for Sokja and Vokz are
decoupled from the remaining six equations in the linear case.

In order to decouple the variables with subscripts s or 1 from the
layer 2 variables, (3.41)-(3.43) are added to arbitrary constants C1s Co

and c, times (3.35)-(3.37). When this is done, several combinations of

3
the dependent variables appear in the resulting three equations.

Requiring the combinations of dependent variables which appear to be

proportional gives the following relations

N

(WgatCavorg) = d (gpatco¥ory) W

A

(XgkgtCoXoka) = plXgygtCaxXoks) (3.45)

(HoXsiatC1HaXope) = d3(Xgya™CaXoyg)
H H . .

- T 1 A
{[(1'*ﬁ;°+°3]h1kg+[€(1'*ﬁg')+°3]h2kz} = dy(hypgteihog,)

where d1 through d4 are constants of proportionality. In order for the

above equations to be satisfied, the following conditions must be met:

", T2 46)
dl = d2 =1, dy = Ho’ d4 =1+ o=+ 7= ¢ » (3.
0 0
H
= =2 3.47
C35C 7 ¢ (3.47)
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and 1 has two solutions which are the roots of

H +H H +H
o ! o 114 _

Using (3.45)-(3.48), the sum of (3.41)-(3.43) with Cys Cp OF Cq times
(3.35)-(3.37) can then be written as

d6. . . .
KL riaion _
at (K*25)H Vsrn Pake *€5Peks, (3.49)
ds- A A A H ~ H A
2,02y _JdKE (L2402 s - 1 2
-(k240%) === = (RER2)F V5 HiBKS 110 =Py pg? A Pake * S ik
(3.50)
-(k2+22) ilzi'—‘&-+ (k2+92)f § + inQ - g.(k?+22) G
dt 0>ike ske” 9 3K8
H TR
Poke® N Poye S ¢;Paka
(3.51)
where
A _ A A 1
Gike = Mke T €3N0k
~ A Hl A Hz A
Sike ™ Yok * A Vike * A C¥2ks L (3.52)
Vike T Xoke T H X1ke T A CiXeke |
M, H
= 1.2
gJ - g(1+ Ho + Ho CJ) (3.53)

and cj, j=1,2 are the roots of
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H +H H+H
PRI o Bl S I B | (3.54)
y H,

Equations (3.49)-(3.51) for j=1,2 and (3.38)-(3.39) for j=0 can be used
in place of (3.30)-(3.37). The new dependent variables ijz’ Sjkz and
ij2 are now decoupled in the linear case for j=0,1 or 2.

The linear terms can be simplified further by transforming the
governing equations so that the remaining combinations of linear terms
which appear are decoupled. For convenience, (3.49)-(3.51) and (3.38)-

(3.39) can be written in vector form as

Mo

[kSZ, - P i= (3°55)
it Pikd¥ike T Pjke 9705152
where
r ijz 3 X
. . 3
= | < i = ok .

Wi = | Sy | 3712 Uos = | (3.56)

f

v ok%
\ ijz )
Py * €5Pekad W
Pie = | UEFE) TPy 7 Pae® ﬁ" Prad| 312

o =

1 5 135 2
L [k’ﬂz’] Lo H"Psm A S 8k£]

(3.57)
- {k’ii’) [P1ke - Pake

ok% 1 A ~
- [kz'zﬁ] [P2ks = Poke

O

+
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(0 0 -Ho(k2+22) )
x _ -igk -
A = |0 T fo J=1.2
-iBk
. (k2+225 o}
okt = . . (3.58)
—f ".lBk
) (kZ+2%)

For j=1, 2, the terms on the left side of equation (3.55) represent a
linear system of three coupled equations in three unknowns. These
equations can be transformed into three scalar equations where the
linear terms are decoupled, as shown by Cane and Sarachik (1976) for an
equatorial g-plane model. To do this, let the inner product of two

column vectors ujkz and ijz with the dimensions of wjk2 be defined by

~

(U510 Vike) = (daz'kzul"f* UpVg gy ) (3.59)

*
where ups vq etc. are the components of Uskg and ijz’ ( )* denotes
complex conjugate and d;kz will be determined later to make the inner
product dimensionally correct. Using the above inner product, a scalar

transform can be defined as follows

~ ~

1
Wikar ar MWskes Kikar) (3.60)

where Kjkzr is a three component vector which is the kernel of the
transform and Ejkzr is a normalization factor. When (3.55) is

transformed using (3.60), the Tinear terms will decouple provided that

the kernel of the transform has the following property:
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~ ~ ~

Aike Ssker T Viker Sker = 0 - (3.61)

The above equation implies that Ejk are the eigenvectors of the matrix

r

Ajkz with corresponding eigenvalues '1vjkzr' If Ajkz has the property

Ajk2 ijl)', (3.62)

~

(Rike Tskee Vike) = = (U

then Kjkz is skew-Hermitian with respect to the inner product (3.59) and

or will be orthogonal. Appendix B shows that (3.62)

is satisfied provided that d;kz is given by

2 94
dipg = H;TEgizf) : (3.63)

and that E'k r is given by

the eigenvectors Ejk

jke
4 f : W
0
. BKV.p . = vy, (K2+82)
K, = Jkar _jkir +q, | j=1,2 (3.64)
Jklr (k2+22)2HO J
Waor fo
{ Hoik2+22) J
and ijzr for r=1, 2, 3 are the three roots of
-2 ey - 2,02\ - 3.
Vikgr OVgkar ™ To) = 9o (KE+2%) vypp (3.65)
where ijZr = \ﬁkzr - E§§ET . For the case when j=0, the scalar

transform in (3.60) is defined by the inner product (3.59) except that
the first term on the right does not appear. For this case, the kernel

is given by
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+ i
Kokar = | 1 | > (3.66)
with
v = Bk +‘ f
oker - TRZ+RZY X To o (3.67)

where either the plus or minus sign is chosen for r=1 or 2.

Now, taking the inner product of (3.55) with Ejkzr and multiplying

-1

by Ejkzr gives
dW. ~ o~ ~
jkar 1 p W K ) = P (3.68)
dt Ejkzr jka jke® “jkar jkar
where wjkzr is defined by (3.60) and ijzr is given by
Pikar = E " (E'kz’ |~<'kzr) . (3.69)
J jkar J J ’

Using (3.62) and (3.61), (3.68) becomes

dwjkzr

. .70
dt Wikar (3.70)

Wiker = Pikar -

The above equation is the transformed version of (3.55) which must be

solved for j=0,1,2; r=1,2,3 and for each wave number k and 2. Since

~

Ajkz is skew-Hermitian the eigenvectors Kjkzr are orthogonal, and the

inverse of the scalar transform shown in (3.60) is given by

-~ z -~ r=1g2,3 j=1,2 ( )
W =) W K., : 3.71
jk& N jkar “jkar r=1,2 3=0

provided that the normalization factor Ejkzr is given by
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= (K K

E jkar? jklr) : (3.72)

jkar

The advantage to using (3.70) instead of (3.30)-(3.37) is that all
of the linear terms have been reduced to the form of an oscillation
equation. For the linear case, ijzr=0 and the solution to (3.70) is

given by
1vjk2rt

wjkzr(t) = wjkzr(o) e (3.73)

jkzr(o) is determined from initial conditions. Thus, wjkzr

the amplitudes of normal modes of the linear equations, which oscillate

where W are

with the frequencies Vg

jkar®
For j=1,2 the frequencies ijzr are given by (3.65). If it is
assumed that ijzr is approximately equal to vjkzr’ then (3.65) becomes
2 - 2402 2
Vikgr - I3t (KHRE) H D (3.74)

In the above form, it can be seen that two of the frequencies for j=1 or
2 correspond to gravity-inertia waves. The quantity ngHo can then be

interpreted as the phase speed of a pure gravity wave. Using the values

of the parameters listed in Table 1, /ngo takes the values of 324 ms"1
and 52 ms"1 for j=1 or 2. These are similar to the pure gravity wave

speeds for the external and the first internal vertical modes of a fully

stratified model (Fulton and Schubert, 1980), If it is assumed that

Bjkzr is much smaller than f s then (3.65) becomes
Vikar = TR TR (3.75)
o0'%j0

From the above equation it can be seen that the third frequency for j=1

or 2 corresponds to a Rossby wave.
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When j=0, the frequencies are dﬁveh by (3.67). For this case, the
frequencieé correspbﬁd to inertial oscillations which are slightly
modified by 8. There are only two frgqugncies for this case because the
height of the lTowest layer was assumed to be constant. Because the
dependent variables for j=0 are related to the difference between the
layer 0 and layer 1 variables, the frequencies for this case will be
referred to as the boundary layer modes.

Some of the simulations presented in later chapters were run on an
f-plane (8=0) rather than the g-plane. For this case, (3.74) and (3.75)
are exact for j=1 or 2. The gravity wave frequencies given by (3.74)
are approximately the same as for the g-plane case, but the Rossby wave
frequencies given by (3.75) are identically zero. For the f-plane case,
these modes correspond to the part of the solution which is in exact
geostrophic balance. In the linear case, these modes do not change with
time. For convenience, the modes which do not correspond to gravity
waves for j=1 or 2 will be referred to as rotational modes for the f-
plane case and Rossby modes for the g-plane case.

In summary, (3.30)-(3.37) have been transformed to give (3.70)
which must be solved for j=0, 1, 2; r=1, 2, 3 and for each wavenumber k
and & where wjkzr are the amplitudes of the normal modes of the linear
governing equations. The normal modes oscillate with the frequencies
vjkzr which correspond to external oh 1n§erna1 gravity or Rossby waves
when j=1 or 2 and r=1, 2 or 3 and to inertial oscillations when j=0.
Fig. 4 shows the frequencies for each j and r as a continuous function
of k for several meridional wavenumbers n (z=2wn/Ly) for a 4000 by 4000
km domain. Fig. 4a shows the external and internal gravity wave

frequencies and Fig. 4b showé the external and internal Rossby wave
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frequencies and the frequencies associated with the constant depth
boundary layer. Comparing Fig. 4a with Fig. 4b it can be seen that
there is a large frequency separation between the gravity and Rossby
waves with the frequehcies of the inertial oscillations about halfway
between the two. The Rossby wave frequencies for the external and
internal modes occur in pairs and asymptotically become equal for high
wave numbers, while the frequencies of the external gravity waves are
about a factor of six larger than the frequencies of the internal

gravity waves for all wavenumbers.
3.4 Time Discretization

In the general case the transformed governing equations are
nonlinear so they must be solved using some type of time differencing.
If a fully explicit scheme is applied, the size of the time step which
can be used will be Timited by a stability condition of the formoat <1
where At is the time step and ¢ is the maximum frequency which is
allowed in the model. In the current model, this will be the frequency
of the shortest wavelength external gravity waves which have a phase
speed on the order of 300 ms'l. Since the motion of the external
gravity waves is governed by the linear terms of the model, a larger
time step can be used if the linear terms are treated implicitly. When
the governing equations are written in the form of (3.70), the linear
terms can be treated implicitly with no more work than is required for
an explicit scheme. A slight disadvantage of using a semi-implicit
scheme, however, is that although the amplitude of the external gravity
waves would not increase, some error in their phase would be introduced.

In the current model, this problem can be avoided by multiplying (3.70)
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: . -ivjkert .
by an integrating factor e which gives

'1vjk£rt) ]

e (3.76)

d
HE'(wjkzr jkar

If the quantity inside the time derivative is considered the new
dependent variable, the above equation can be solved using time
differencing where the stability criteria is related to the nonlinear
terms, without distortion of the amplitude or the phase of the external
gravity waves.

Letting t = tat and using forward time differencing for the first
time step, and the second order Adams-Bashforth scheme for all

subsequent time steps gives

1 (0) (0) v, At
ws ) (Woo . 4 MP,, ) e JKET (3.77)
jkar jkar jkar
(t+1) w(T) 1vjk2rAt |
Wigar = Yikar © (3.78)

(1) vsy..At (t-1) Ve 20t
jkar L jkar
+4t[3/2 ijlr € - % ijzr ]

where the superscript indicates the time level. The Adams-Bashforth
scheme was chosen over the leap-frog scheme because it can be applied to
both the oscillation and decay equations. Since the leapfrog scheme is
unstable for the decay equation, it would be necessary to treat the
damping terms which appear in ijzr by some other method. Another
advantage to using the Adams-Bashforth scheme is that the computational
mode which appears in any three-level scheme is damped for both the
oscillation and the decay equation. A slight disadvantage of the Adams-

Bashforth scheme is that although the computational mode is damped, the
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physical mode is slightly unstable. This is not a major problem,
however, since *he amplification factor fs proportional to (At)4 so that
for small time steps, the growth rate becomes negligible. For a typical
model simulation there was no sign of instability by the end of a four
day integration. If the weak instability of the second-order Adams-
Bashforth scheme did prove to be a problem, this difficulty could be
removed as shown by Gazdag (1976). Using the Adams-Bashforth scheme as
a predictor step and the trapezodial scheme as a corrector stép removes
the weak instability of the second-order Adams-Bashforth scheme.

When the governing equations in the form of (3.76) are solved using
the time differencing scheme shown in (3.77)-(3.79), it is necessary to
determine an appropriate time step. Since (3.76) is nonlinear, the
stability properties are difficult to determine. From numerical
experiments, a useful guide for determining the time step was found to

be

At < T (3.79)
2 |W| (Ko+L4)2

where | V| is the maximum wind speed on the physical space grid and K
and L are the maximum wavenumbers. For a 3600 km by 3600 km domain and
wavenumber truncation limits M=N=35 and a maximum wind speed of 60 ms'l,
At is about 97 seconds. In most of the model simulations, a time step
of 90 seconds was used. If the linear terms were treated explicitly,
the stability criteria of the form oAt < 1 with ¢ the maximum frequency
of the external gravity waves would require a time step of about 36

seconds. Thus, the exact treatment of the linear terms increases the

model efficiency by a factor of about 2.5.
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3.5 Nonlinear Normal Mode Initialization

When the governing equations are written in the form of (3.70), the
dependent variables represent the amplitudes of the normal modes of the
Tinearized equations. When written in this form, the application of the
nonlinear normal mode initialization procedure proposed by Machenhauer
(1977) is straightforward.

The first step in applying the procedure is to divide wj into a

kar
slow (Tow frequency) mode part and a fast (high frequency) mode part as

follows

S f

3.80
jkﬁri'w ( )

W Jkar °

jkar = ¥
As can be seen in Fig. 4, the Rossby waves can be considered the slow
modes and the gravity waves can be considered the fast modes since there
is such a large frequency separation between these waves. The
frequencies of the boundary layer modes, however, lie about halfway !
between the Rossby and gravity wave frequencies. In practice it was
necessary to consider the boundary layer modes to be slow to obtain
convergence of the initialization scheme.
Now, suppose the initial values of the dependent variables are
given so that w?k

jkar
initialization scheme, the slow mode contribution is retained and the

and wgkzr can be computed. To apply Machenauer's

fast mode contribution is discarded. The fast mode contribution is then

f
dw'kzr

recomputed assuming that ét

f . f

_ 1
Wogar = Ki Pikar - (3.81)

Jjkar

is small enough so that (3.70) gives

Since the nonlinear terms couple all of the normal modes, it is
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necessary to solve (3.81) using an iterative procedure described below:

1. Calculate w;kzr and wgkzr from initial conditions.

2. Set wgkzr to zero and calculate Pikar:
3. Calculate Wy, using (3.51).
4, Repeat step 3 with ijzr calculated using new values of w§kzr’
until the iteration converges.

The above initialization procedure allows the model to be started
smoothly for the case when the forcing term Q is nonzero. The impact of
the model initialization on the prediction of the track of a tropical

cyclone will be discussed in chapter 6.
3.6 High Wavenumber Filtering

As a tropical cyclone develops from a weak vortex the gradients of
the dependent variables become very sharp near the center of the storm.
This indicates that the Fourier representations of the dependent
variables will have Targer and larger amounts of energy in the higher
wavenumbers. Since the Fourier series are truncated at a finite
wavenumber, there is a tendency for the energy of the last few modes to
become too large. This phenomenon, known as spectral blocking, is
discussed in some detail by Machenhauer (1979) in the context of the
one-dimensional nonlinear advection equation. Machenhauer indicates
that a scale selective energy dissipatioh can be applied to reduce the
errors caused by the blocking. In global models, linear diffusion terms

4( ) have been added to the prognostic

of the form KHVZ( ) or Kyv
equations to inhibit blocking (Bourke, 1974; Simmons and Hoskins, 1978).
When linear diffusion is added to the governing equations, it should

prevent the model from developing scales of motion which are represented
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by the highest wavenumbers but should not affect the larger scales of
motion. In order to get some idea of the effect of linear diffusion,

consider the following diffusion prob]em:

L (w1 g ]
= = (-1) Aop VU

(n+1) n J
g!-= (-1) Aog VOV

where k2n is the diffusion coefficient and u and v are the x and y

n=1,2 or 3 (3.82)

components of the horizontal momentum. Equations (3.82) can be solved
straightforwardly using the Galerkin method described in section 3.1.
Applying the Galerkin procedure to (3.82) gives the following equations

for the Fourier series amplitudes of u and v:

du )
k& _ 2,020
qt = ron(KH25)u
i L (3.83)
\)
kg 2,0230
= oK) v

The solutions of the above equations are given by

N n A, (k2+22)M¢
ukl(t) = ukl(o) e Zn
(3.84)
R R —AZn(k2+£2)nt
sz(t) = sz(o) e

where sz(o) and sz(o) are found from initial conditions. To determine
the rate of energy dissipation, the kinetic energy over the whole domain
is considered. Using Parseval's relation, the kinetic energy can be

calculated from the Fourier series amplitudes as follows:
L. L

X y ~ A A ~
KE =% [ [ (u+v¥)dxdy =% L Ly T (ugul + ViV ) - (3.85)
0o o k 2
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Now, consider the following initial condition:

!

(y-y.) (x- )2+( - ,)2
u(x,y,0) = Ave d io exp { S 2! . Yo }
‘ 2r
! (3.86)
( - ) - )2+ - )2
V(X,y,O) = 'AV@ ero exp { - (x xo Z(y yo 1
_ 2r 1

The above initial condition represents a vortex in the x-y plane
centered at the point (xo,yo) with maximum wind speed A at a radius r.
For the case when the domain is much larger than r, the Fourier series

amplitudes of (3.86) are given by

A : 2 2 2
u (0) - ZﬂAVE 1 (_1)m+n ral e-r /2(k +2 )
ke L.L
Xy
(3.87)
~ _ 2uAV/e i m+n -r?/2(k?+22%)
Vkl(O) - - L L (-1) Y's ke -

Xy

The kinetic energy of the vortex defined by (3.86) for the case when the

domain is much larger than r is given by

. 1riA’e 3.88

KE(0) = = . (3.88)
Now, substituting (3.87) into (3.84) and then substituting these into
(3.85) gives the kinetic energy of the vortex as a function of time.
Normalizing the kinetic energy by the initial kinetic energy of the
vortex (3.88) then gives

-on, (k2+22)"t
4 2 (k2402

KE(t) = 3TT° 7 T (k2eg2) o™ (KTHEE) o 2n : (3.89)

LxLy o

Evaluating the above series gives the ratio of the kinetic energy of the



64

vortex at time t to the initial kinetic enrgy. Table 2 shows the amount
of time it takes for the kinetic energy to decrease to half of its
initial value fdr sévera] size vorticieé, several diffusion coefficients
and three forms of linear diffusion (n=1, 2 and 3). In a typical model
simulation the physical space resolution on the transform grid is about
35 km. The linear diffusion should then strongly damp this scale, but
should not have too large an effect of scéleé larger than this. From
Table 2 for second order diffusion (n=1) if can be seen that if the
diffusion coefficient is chosen so that it damps the r=50 km vortex in
less than a day, it also will damp the 1arger scales. For this reason
it appears that higher order d1ffus1on should be used. Both the fourth
(n=2) and sixth order diffusion (n=3) were tested in the model and both
were capable of reducing the effect of spectral blocking. Since the
sixth order diffusion is more scale selective than the fourth order
diffusion, the sixth order diffusion with A = 10°n°s™ was used in all
of the model simulations discussed in the remaining chapters. Thus,
terms of the form A6V6( ) were added to the prognostic equations (2.38)-
(2.39), (2.41)-(2.42) and (2.47). As can be seen from Table 2, this
prevents the formation of a vortex with a radius of maximum wind smaller

than about 50 km.
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TABLE 2.

Time in hours for linear diffusion of the

form AZnVZ"( ) to halve the kinetic energy

of a Gaussian type vortex with radius of

maximum wind r.

r=50 km r=100 km r=150 km r=200 km
27108 %™l 144 hes 575 hrs 1290 hes 2300 hrs
A= 10 sl 14.4 hrs 575 hrs 129 hrs 230 hrs
r=108mts"l 2001 h
4" . rs 322 hrs 1631 hrs 5160 hrs
A" 10481 2.00hrs 32.2 hrs 163 hrs 516 hrs
22 6 -1
2710 28.8 hrs 1840 hrs 21000 hrs 118000 hrs
A6™ 10238571 2.88 hrs 184 hrs 2100 hrs 11800 hrs




CHAPTER 4
NUMERICAL EXAMPLES

In this chapter four numerical integrations of the tropical cyclone
model described in chapters 2 and 3 are presented. These simulations as
well as the values of the numerical parameters used are summarized in
Table 3. Unless specified in Table 3, the values of the physical
parameters used are those which are listed in Table 1. In each of the
four simulations the Fourier series were truncated at M=N=35 and the
high wavenumber filter described in section 3.6 was applied. The grid
spacing of the transform grid used to calculate the nonlinear terms is
Tisted in Table 3 as the physical space grid resolution. A five day
model integration with a 90 sec time step required about 30 minutes of
computing time on the NCAR Cray-l1A computer.

Simulations similar to 4A and 4D in Table 3 have been presented by
Ooyama (1969a) and Bliss (1980). These simulations using the current
model are compared to the previous work in sections 4.1 and 4.4.
Simulation 4B is designed to test the effect of g on the development of
a tropical cyclone and simulation 4C shows how the motion of a tropical
cyclone can affect its structure.

4.1 Simulation of an Axisymmetric
Tropical Cyclone on an f-plane
In this section numerical results from a five day model integration

with an axisymmetric initial condition and g=0 are presented. The



TABLE 3.

Summary of the numerical simulations

presented in chapter 4

Initial Condition

Domain
Size (km)

Physical Space
Grid Resolution (km)

Time
Step (sec)

Integration
Tength (days)

Corolis
parameter

4A

4B

4c

4D

Symmetric vortex in
layers 0 and 1
Vm=10ms'1 rm=100km

Symmetric vortex in

layers 0 and 1
Vm=10msi1 r = 100km

Symmetric vortex in
layers 0 and 1 with
basic state zonal
wind .

Vm=10ms rm=150km

Wave-1ike distur-
bance in layers O
and 1 with basic
state zonal wind

3600x3600

3600x3600

3600x3600

4000x4000

33

33

33

37

90

90

90

120

B#0

B#0

g#0

L9
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purpose of this simulation is to demonstrate that the current model can
produce an axisymmetric tropical cyclone similar to storms observed in
nature and also to compare the current model to the original work of
Ooyama (1969a). If the governing equations were solved exactly on an
infinite domain with g=0 an initial axisymmetric vortex should remain
axisymmetric for all time. The magnitude of the asymmetries which
develop should then give some idea of the effect of the periodic
boundaries and the use of a numerical approximation scheme in cartesian
geometry. |

For this simulation the model is initialized with a vortex of the
form

v(r) =V (%;) exp(l-—r/rm) (4.1)

in layers 0 and 1, with layer 2 at rest. In (4.1) the maximum
tangential wind v is specified to be 10 ms™! at a radius r. of 100 km.,
The initial vortex given by (4.1) is somewhat different than the one
used by Ooyama. Ooyama's initial vortex decayed like 1/r for large
radii. In the current model it is necessary for the vortex profile to
decay more rapidly at larger radius in order to avoid a discontinuity at
the boundary. Since V decays exponentially for large r in (4.1), V is
negligible at the boundary when the vortex is centered on a 3600 by 3600
km domain. Although the vortex for this simulation decays more rapidly
than Ooyama's vortex at large radii, it is larger at smaller radii

1 at a radius of 50

(Ooyama's initial vortex had a maximum wind of 10 ms~
km). Since Ooyama's model was axisymmetric and balanced it was possible
for the spatial resolution to be very fine (Ooyama used a Ar of 5 km in

his finite difference model). As discussed in section (3.6) the
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smallest vortex the current model can resolve has a radius of maximum
wind of about 50 km so that it was necéssary to use a larger initial
vortex.

Since the streamfunction and velocity potential are used in place
of horizontal velocity components, (4.1) cannot be used directly for

initialization. The vorticity of the initial vortex as a function of r

is given by
Ve = -r/r .
- _m r
glr) = — [1-%(=)1e m (4.2)
m m
Using the relation
r= [(x-x))? + (y-y, )21 * (4.3)

where (xo,yo) are the coordinates of the vortex center, (4.2) can be
used to calculate the vorticity at the physical space grid points
defined by (3.28). Once this is done, trapezodial quadrature of the
form of (3.27) can be used to find the spectral coefficients gkz from
the grid point values. The spectral coefficients of the streamfunction
can then be found from the transformed diagnostic relation (3.22). The
Tnitial vortex is assumed to be nondivergent so that the spectral
coefficients of the velocity potential are set to zero.

Once the wind field is specified, it is necessary to calculate ¢1
and d@ in a consistent way. Since the upper level is assumed to be at
rest, ¢2 is set to zero. For the axisymmetric case ¢1(r) could be
calculated by substituting (4.1) into the gradient wind equation and
then integrating with respect to r. The spectral coefficients of ¢1
could then be found similar to the calculation of Eikz' Since this can

not be done for an asymmetric initial condition, a more general
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procedure is used. If it is assumed that initially the divergence and
the time tendency of the divergence are zero, the divergence equation

(2.39) for layer i reduces to
N 3 u2+v?

2 - _ 9 g _ g2 1 1
oy = foty - gy (e g (Vi) -7 (=) (4.4)

which is the nonlinear balance equation. 'Applying the Galerkin
procedure to the above equation and using the transformed diagnostic
equation (3.22) gives

A

= " 2-1 LR er o 22"
%ive = folike - (k2+22) ["1£Aikz+1k81kg+(k +2, )E‘kzj (4.5)

j
where Ai’ Bi and Ei are defined by (3.21). The transform of the
nonlinear terms Ai’ Bi and Ei can be computed using the transform method
described in section (3.2) so that the above equation can be used to
calculate $1kz for layer 1, given ®1kz'

The remaining dependent variable to be specified is the equivalent
potential temperature deviation Ab. For simplicity, it is assumed that
initally Ao has a constant value of 10 K which corresponds to a ee of
about 350K,

Since the numerical model predicts the amplitudes of the Fourier
series it is possible to calculate the dependent variables at any given
point in the domain. For the axisymmetric vortex in experiment 4A the
dependent variables were calculated on a cylindrical grid centered on
the vortex (at x=y=1800 km) for display purposes. The azimuthal average
of the dependent variables using eight values at each radial point was
then calculated in order to compare the current model results to

Ooyama's axisymmetric model. The tangential wind relative to the
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cylindrical coordinate system (defined at VT) was calculated to simplify
the model comparison. The standard deviation o of the dependent
variables from the azimuthal mean using the eight values at each radial
point was also calculated to test the ability of the model to remain
axisymmetric during an integration.

Fig. 5 shows the azimuthal averages of the layer 1 and 2 tangential
winds VT1 and VT2, the layer 1 and 2 geopotentials ¢1 and ¢2, the
vertical velocity at the top of the boundary layer w and the convective
stability parameter n at 0, 24, 48, 72, 96 and 120 hours. During the 5
day integration the layer 1 tangential wind increases from 10 ms'1 at a

radius of 100 km to about 50 ms >

at a radius of 60 km. The layer 2
tangential circulation which develops is cyclonic inside a radius of
about 300 km with a much larger anticyclonic circulation outside of 300
km, The cyclonic circulation which develops in layer 2 is largely due
to the transport of the layer 1 momentum by the diabatic term Q.
Consistent with the tangential winds, the radial gradient of the
geopotential deviation is positive where the wind is cyclonic and
negative where the wind is anticyclonic.

The surface pressure PS in the incompressible fluid system is given

by

P = pg[Ho+H1+h1+e(H2+h2)] . (4.6)

It is convenient to consider the deviation from the mean surface
pressure PS' where the mean surface pressure is the value of PS when

h1=h2=0. Dropping the prime, the surface pressure deviation is given by

P = pg(hyehy) = oo, - (4.7)
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Figure 5. The azimuthally averaged tangential wind VT and geopotential ¢ for layers 1 and 2, vertical
velocity at the top of the boundary layer w and vertical stability parameter n as a function of
radius r for experiment 4A. The fields at 0, 24, 48, 72, 96 and 120 hours are shown in (a)-(f):
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3

Since the density p of layer 1 is appyoximate]y equal to 1 kg m ", the

layer 1 geopotential can be interpreted in terms of a surface pressure

2 corresponds to a

deviation. For example, a ¢1 value of 100 mzs_
surface pressure deviation of 100 Pa, or 1 mb. Using (4.7) it can be
seen in Fig. 5 that the surface pressure deviation decreases from about
-3 mb to -50 mb during the 5 day simulation. Assuming a mean surface
pressure of about 1010 mb, the model tropical cyclone would have a
minimum surface pressure of 960 mb. Shea and Gray (1973) have studied
the inner structure of Atlantic hurricanes. They have shown that
hurricanes with a central pressure of 960 mb can have maximum tangential
winds ranging from 30 to 55 ms'l. They have also shown that hurricanes
with 50 ms'1 winds can have a radius of maximum wind ranging from about
10 to 70 km. Thus, the inner region of the model tropical cyclone is
similar to some of the larger storms observed in nature.

In the tropical cyclone simulation shown in Fig. 5, the layer 1
tangential wind outside of 100 km also increases as the storm

1 winds is about 325 km

intensifies. By 120 hours the radius 6f 15 ms~
and the radius of 10 ms~ winds is about 475 km. Frank and Gray (1980)
have presented composite 850 mb tangential wind profiles from 10 years
of northwest Pacific typhoon rawinsondes and 14 years of West Indies
hurricane rawinsondes. These results show that for storms with maximum

1 1 and

tangential wind speeds between 41 and 51 ms ~, the radii of 15 ms_
10 ms'1 winds are found at about 300 km and 550 km for the composite
hurricane and at about 400 km and 700 km for the composite typhoon. The
model produced tropical cyclone at large radii is then slightly weaker
than, but similar to tropical cyclones observed in nature. Frank (1977)

has shown that 850 mb is approximately the level of maximum winds for
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typhoons. Since the layer 1 tangential wind is probably more
representative of the average tangential wind between about 900 mb and

1 and 10 ms™! winds in the model should

500 mb, the radius of the 15 ms~
be expected to somewhat smaller than those observed.

The lower portion of Fig. 5 shows the vertical velocity at the top
of the boundary layer w and the convective stability parameter n. There
is no vertical velocity at t=0 since the initial condition was
nondivergent. By 24 hours an area of rising motion has developed
between about 30 km and 120 km due to the boundary layer friction, with
the maximum at 85 km. The diabatic term Q is equal to nw when w is
positive so that the maximum value of Q is located very near the maximum
value of w. In Fig. 5b, the maximum diabatic heating occurs just inside
the radius of maximum wind which then causes the radius of maximum wind
to contract as the storm develops. In Figs. 5c¢c-5f, the maximum value of
w remains inside the radius of maximum wind as the storm intensifies.
The contraction of the radius of maximum wind during tropical cyclone
intensification has also been observed in nature. Willoughby et al.
(1982) have presented several examples of this contraction during
intensification of strong symmetric tropical cyclones.

In the Tower portion of Fig. 5 it can be seen that two areas of
negative vertical velocity develop in addition to the main area of
positive w. A very small area of negative w is found near the center of
the vortex as well as a larger area just outside of the main vertical
motion maximum. The relatively strong subsidence located between about
100 and 160 km in Fig. 5c-5f would have a tendency to suppress
convection in this area. A feature similar to this can sometimes be

observed in storms found in nature. Fig. 6 from Willoughby et al.
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ANITA ?70901H1

Domain: 300%400 ke Ne 13 Thresh(dBz)=23.,30.,35..40.,

040300 TO 042641 2

Figure 6. A digital radar reflectivity composite of hurricane .
Anita from 2 September 1977 (from Willoughby et al., 1982).
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(1982) shows a digital radar reflectivity composite of hurricane Anita
from 2 September 1977. In Fig. 6 a ring of low reflectivity occurs just
outside of the intense convection of the eye wall.

After 24 hours in Fig. 5 the vertical velocity oscil]ateé outside a
radius of about 200 km. This oscillation is probably due to lack of
enough Fourier modes to fully resolve the sharp vertical velocity peak
which occurs inside 100 km. The first part of this oscillation with a
maximum at a radius of 180 km in Fig. 5d may, however, be a real feature
of the model. The small maximum in w.at t=72 hours increases after this
time, and by 120 hours has reached 15 cﬁs"l. At t=120 hours it appears
that a secondary maximum in the layer 1 tangential wind is starting to
form at about 220 km in association with the secondary maximum in the
boundary Tayer vertical velocity. This feature is somewhat similar to
(on a larger scale) the concentric eye wall structure which has been
reported by Jordan and Schatzle (1961) and more recently by Willoughby
et al. (1982). Fig. 6 is an example of a storm with concentric eye
walls. This indicates that it may be possible to use the simplified
physics of the current model to gain some insight into the formation of
concentric eye walls and secondary wind maxima.

The convective stability parameter n is also shown in Fig. 5. As
can be seen in (2.44), n is a function of the equivalent potential
temperature Aﬁ of each of the model layers, where Ab is predicted by
(2.47), A1 is held constant and AZ is diagnosed from (2.45). The value
of n in (2.44) increases as Ao increases and decreases as A2 increases
(or as h2 increases in 2.45). At t=0 in Fig. 5 n decreases towards the

center of the vortex. This is caused by;the initial Tow value of ¢1 at

the center of the vortex since h2 is proportional to ¢2-¢1. By t=24
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hours n has increased near the center of the vortex and a minimum has
formed near r=150 km. The increase in n near the center of the vortex
is caused by the increase in Ao due to the large surface flux in the
region of the large surface winds. The low value of n 1is caused by a
decrease of Ab due to the subsidence near r=170 km. The magnitude of
the effect of the subsidence can be estimated from the vertical
advection term in (2.47) (third term on the right). Assuming Ab=10K’
A1=-10K and w =3cm s’l, this term has a magnitude of about -50 K per
day. The value of !\.0 does not change by this much since this tendency
is balanced by the other terms in (2.47), but the subsidence does cause
n to have a minimum in this region. By t=48 hours the value of n has
decreased inside about 100 km. This is partially caused by the Towered
values of Ab due to the subsidence, but also is a result of the increase
in h2. As the storm intensifies further, n continues to decrease, so
that the magnitude of the diabatic term Q decreases. It is this
decrease in n which eventually slows the intensification of the model
tropical cyclone.

Some of the weaknesses of the model can be seen by looking af the
parameter n. By t=72 hours in Fig. 5, the value of n is less than one
inside a radius of about 100 km and continues to decrease after this
time. If the model continued to run past 5 days, it would be possible
for n to become negative, which would correspond to negative diabatic
heating by the cumulus clouds. As discussed previously, the Tow values
of n are caused by the decrease in Ab due to subsidence and to the
increase in 1& due to the increase in the upper level thickness h2. The

increase in h2 near the center of the cyclone is analogous to the

formation of a warm core in a compressible fluid system, which should be
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expected to decrease the diabatic heating term. Since the periodic
domain is closed, however, the average value of h2 also increases during
the model integration so that the value of n decreases everywhere. In a
compressible system on a closed finite domain, this is equivalent to a
net heating of the model atmosphere. This indicates that the domain
size limits the length of time thé model can be integrated. For this
reason the model integrations were limited to 6 days or less.

The decrease in n due to the subsidence is caused by the vertical
advection term in (2.47). This represents a real physical process, but
it appears that the approximation of a constant A1 leads to an
overestimation of the decrease of 1\.0 due to the vertical advection. In
a tropical cyclone, the equivalent potential temperature of the
atmosphere between 900 mb and 500 mb in the inner regions of the storm
is about 5 to 10 K warmer than that of the mean tropical atmosphere
(Sheets, 1969). Thus, if Al were predicted in a more realistic way, the
magnitude of the vertical advection would be reduced as Ai increased.

The tropical cyclone simulation shown in Fig. 5 is somewhat similar
to the simulation presented by Ooyama (1969a). The current model uses
“Ooyama's incompressible fluid system and cumulus parameterization
scheme, and both models were run with the same sea surface temperature.
The initial conditions, however, are different since the initial vortex
used here has a radius of maximum wind which is twice as large as used
by Ooyama and has a vortex profile which decays more rapidly at large
radii. Another difference is that the current model uses primitive
equations, while Ooyama's model was balanced so that gravity waves were
filtered. The computational procedures also differed considerably since

Ooyama's model was solved using finite difference methods on an open
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domain while the current model was solved using the Galerkin method on a
larger doubly-periodic domain. Despite these differences, the
simulation from Ooyama (1969a) shown in Fig. 7 is similar to the
simulation shown in Fig. 5. The general structure of the tangential
winds and geopotential fields from Ooyama's model at t=162 hours are
very similar to those shown in Fig. 5f.

Comparing Fig. 7a with Fig. 5c it can be seen that the tropical
cyclone in the current model develops more rapidly than in Ooyama's
model. As pointed out by Ooyama (1969b), this is caused by the use of
the balance approximation in the boundary layer. When this assumption
was relaxed in Ooyama's later work, the tropical cyclone intensified
much more rapidly.

Although the tangential wind and geopotential profiles are similar
in Figs. 5 and 7, the vertical velocity w and convective stability
profiles are quite different. Comparing Figs. 5e or 5f with Fig. 7b it
can be seen that the maximum vertical velocity is about 5 times larger
for Ooyama's model when the two simulations had comparable maximum
winds. This difference is probably due to the greater resolution used
by Ooyama (Ooyama's grid spacing was 5 km compared to the 33 km
resolution on the transform grid in the current model). In addition to
the amplitude differences, the structure of the w profiles are also
somewhat different. The subsident area found between about 100 and 150
km in Fig. 5 is much Tess well defined in Ooyama's model results. There
is some evidence of a subsident area near 100 km in Figs. 7a and 7b, but
the amplitude is smaller. This differénce is probably related to the
use of balanced versus primitive equations, although further study is

4

necessary to resolve this question. Another difference between the two
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Figure 7. The tangential wind V and geopotential ¢ for layers 1 and 2,
vertical velocity at the top of the boundary layer w and
vertical stability parameter n as a function of radius r
from the axisymmetric balanced tropical cyclone model of
Ooyama (1969a). The fields at 47, 108 and 162 hours are
shown in (a)-(c) respectively.
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simulétions is that the maximum vertical velocity in Fig. 7 occurs
outside of the radius of maximum wind, which, as pointed out by QOoyama
(1969b), tends to cause the vortex to expand unrealistically. When the
assumption of gradient wind balance in the boundary layer was relaxed in
Ooyama's later work, the vertical velocity maximum occurred inside the
radius of maximum wind, similar to the resu]és showﬁ in Fig. 5 for the
current model. Comparing Fig. 5 after t=24 hours with Fig. 7b and 7¢ it
can be seen that the convective stability parameter n is smaller inside
about 100 km for the current model. This is caused by the subsidence
between about 100 and 150 km as well as by the effect of the convection
in a closed domain as discussed previdusly.

In summary, the current model is capable of producing an
axisymmetric tropical cyclone which is sihi]ar to those found in nature.
The model can also reproduce some of the results presented by Ooyama
(1969a,b). The differences between the two models result from the use
of primitive equations in the current model, and the differing
horizontal resolution. The use of a closed domain in the current model
appears to limit a tropical cyclone simulation to about six days.

A11 of the results show in Fig. 5 are azimuthal averages of the
dependent variables. Fig. 8b shows the standard deviation o from the
eight point azimuthal average of the dependent variables at t=96 hours
as a function of radius. The average ya]ues at t=96 hours are shown in
Fig. 8a for comparison. Fig. 8b shows that the standard deviations of

1 and

the tangential wind for layers 1 and 2 are less than about 0.2 ms~
0.3 ms'1 respectively inside a radius of 700 km. From Fig. 8a it can
then be seen that the azimuthally averaged tangential winds are about

two orders of magnitude larger than the standard deviations. Similarly,
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the azimuthally averaged geopotentials for layers 1 and 2 are also about
two orders of magnitude larger than the corresponding standard
deviations. These results indicate that after 96 hours the vortex has
remained axisymmetric inside a radius of 700 km. Thus, the use of
cartesian geometry and a doubly-periodic domain does not appear to
introduce artificial asymmetries in the wind and geopotential fields.

The Tower portion of Fig. 8b shows the standard deviation of the
vertical velocity field from the azimuthal average. From Fig. 8a it can
be seen that the standard deviation is about a factor of 10 smaller than
the mean inside 100 km, a factor of 3 smaller between 100 and 200 km and
about the same size as the meah outside 6f 200 km. Thése asymmetries
are probably due to the lack of enough Fourier modes to fully resolve
the sharp vertical velocity peak which occurs near 60 km. There is also
some contribution from gravity wave activity which propagates through
the domain and re-enters through the periodic boundary. Although not
ideal, the asymmetries in the vertical velocity field are not a major
problem since they do not appear to cause large asymmetries in the wind
and geopotential fields.

The axisymmetry of the wind and geopotential fields at t=96 hours
in a primitive equation model with large diabatic heat sources on a
doubly-periodic domain may be somewhat surprising. The linear theory of
geostrophic adjustment (e.g. Schubert et al., 1980) indicates that an
impulsive diabatic heat source with a length scale less than the Rossby
radius of deformation will largely excite gravity wave motion and only a
small fraction of the total energy produces balanced flow. This
argument is modified in regions of high inertial stability, as shown by

Schubert and Hack (1982) and discussed qualitatively by Ooyama (1982).
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The large inertial stability near the center of the tropical cyclone
causes the Rossby radius of deformation to become smaller, so that a
larger amount of the diabatic heating will produce balanced flow. In
the earlier stages of the tropical cyclone simulation, however, the
model might still be expected to produce large amplitude gravity waves.
The gravity waves should then propagate away from the storm, pass
through the periodic boundaries and eventually obscure the symmetric
balanced flow. The reason this does not occur is because the arguments
from the linear theory are largely based on initial value problems where
all the heat is added instantaneously. As discussed by Schubert et al.
(1980, section 8), Hack and Schubert (1981b), and in detail by Silva
Dias et al. (1983), the amount of gravity wave energy excited decreases
as the time scale of the forcing becomes long compared to the period of
the gravity waves. The diabatic forcing in the current model is given
by the product of n and w when w is positive. As can be seen in Fig. 5,
Q is zero initially and increases in the inner region of the vortex as
the maximum in w centered at about 65 km increases. After t=48 hours,
the maximum value of w remains approximately constant, so that Q
decreases as n decreases. Thus, a rough estimate for a characteristic
period for Q is on the order of four days or about 100 hours. Fig. 4a
shows the periods of the gravity waves as a function of wavelength for
the mid-Tatitude g-plane. For the case when g=0, the periods are
modified only slightly, since the gravity waves with the wavelengths
considered here are not sensitive to the variation of the Coriolis force
with Tatitude. For a wavelength of about 200 km (the approximate length
scale of the w maximum in Fig. 5), the periods of the gravity waves are

on the order of 1 hour for the internal mode and 0.2 hours for the
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external mode. Thus, the time scale of the diabatic forcing is much
longer than the periods of the gravity waves so that much less gravity
wave energy than predicted from an initial value problem should be
generated.

The above argument can be verified since the governing equations
are transformed so that the dependent variables are the amplitudes of
the normal modes of the linear equations as discussed in section 3.3.
For the incompressible fluid system, the total kinetic energy KE and

available potential enerqgy APE can be defined by

Ly L
KE - g[ j [H (U2+v2 )+(H +h, ) (uZ+v2 ) e (Hyth,) (u3+v3) Jdxdy (4.8)
0 O
L L
y X
APE = %Q-J J{[(l-e) (H +H 1 )24-e(H +H1+H2+h1+h2)2] - P} dxdy (4.9)
00 :
where
P= [(1-e)(H #H)? + e(H HH +H,)]

and the Tayer 1 density p is assumed to be 1.0 kg m'3. In (4.9) the

available potential energy is defined as the total potential energy of

the fluid minus the potential energy when h1 and h, are zero. The sum

2
of the kinetic and available potential enerqgy was calculated using only
certain modes of the solution. The basiﬁ procedure was to first set all
the amplitudes wjkzr equal to zero except, for example, those

corresponding to the gravity waves. The physical space variables on the
transform grid defined by (3.28) were then calculated from Nijr and the
integrals in (4.8) and (4.9) were evaluated using trapezodial

quadrature. Similar to the calculation of the nonlinear terms using the
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transform method, the integrals are computed exactly. Using this
procedure the energy of the internal rotational modes (IR), external
rotational modes (ER), internal gravity waves (IG), external gravity
waves (EG) and energy of the boundary layer modes (BL) were calculated
for the symmetric tropical cyclone simulation.

In the linear case, the definition of kinetic energy given by (4.8)
is modified by neglecting h1 and h2 compared to H1 and H2. For this
case, only quadratic terms appear in the definitions of KE and APE.
Assuming that the normal modes of the model are orthogonal, a Parseval
relation could then be derived which related KE and APE to sums of the
amplitudes of the normal modes. For this case, the sum of the modal
energies described above would be equal to the total energy. In the
nonlinear case, however, the cubic terms in the definition of KE must be
included so that a Parseval relation can not be used to determine KE.
For the nonlinear case, then, the sum of the modal energies does not add
up to the total energy. In practice, however, the contribution from the
cubic term in (4.8) was fairly small so that the sum of the modal
energies was within a few percent of the total energy. Thus, the modal
energies still give an indication of the amount of the total energy in
various modes of the solution.

The energies of the modes of the model are shown in Fig. 9 as a
function of time. Initially the amplitudes of the rotational modes are
much larger than the gravity wave amplitudes since the mass and wind
fields are in gradient wind balance. The gravity modes are not
jdentically zero, however, since the modal decomposition is based on
linear theory while the gradient wind equation (nonlinear balance

equation) contains a nonlinear term. The amplitudes of the boundary
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Figure 9. The time evolution of the energy in the internal rota-
tional modes (IR), external rotational modes (ER),
internal gravity modes (IG), external gravity modes (EG).
and the energy in the boundary layer modes (BL) for
experiment 4A.
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layer modes are identically zero initially since it was assumed that the
layer 0 and layer 1 wind fields were the same at t=0. As time
increases, the energy of all the modes increases, with the external
gravity waves and boundary layer modes increasing the most rapidly
initially. After about 12 hours, the energy of the internal gravity
waves and boundary layer modes increase at a slower rate as the system
appears to have adjusted to initial development of the boundary layer
vertical velocity.

The most important feature which can be seen in Fig. 9 is that the
energy of the rotational modes is much larger than the energy of the
gravity modes. By 96 hours the energy in either the external or
internal rotational modes is more than an order of magnitude larger than
the energy in the internal gravity waves and two orders of magnitude
larger than the external gravity wave.energy. This indicates that the
time scale of the forcing modifies the arguments of the linear theory of
geostrophic adjustment and also that the use of periodic boundary
conditions in the current model is not as severe an approximation as
might be thought.

The fact that the energy in the gravity modes is more than an order
of magnitude less than the energy in the rotational modes in Fig. 9 has
some implications for primitive equation tropical cyclone models which
include more general boundary conditions. Hack and Schubert (1981b)
have developed a boundary condition for a grid-point model which
minimizes the reflection of gravity waves. Their approach, which is
based on the work of Bennett (1976), éonsiders linearized versions of
the primitive equations in cyclindrical coordinates on an f-plane. In

order to develop a boundary condition which can be used in practice, it
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is necessary to consider limiting cases of the linearized equations
which give radiation conditions for pure gravity waves or a condition
appropriate for the balanced flow. Hack and Schubert investigate the
radiation condition for the gravity waves, but the results presented
here indicate that at times, the boundary condition for the balanced
flow may be more appropriate. The correct choice probably depends on
the length and time scales of the diabatic forcing in a particular
model. For example, the gravity wave radiation condition might be
appropriate for tropical cyclone models with explicit release of latent
heat (e.g. Rosenthal, 1978) since the diabatic forcing varies on shorter
time scales than in the current model, while the balanced flow condition
might be appropriate for models with cumulus parameterization schemes
with slowly varying diabatic forcing.

In primitive equation tropical cyclone models which use explicit
time differencing schemes, the time step is limited by the speed of the
external gravity waves. This restriction can be removed through the use
of semi-implicit methods (Kwizak and Robert, 1971) at the expense of
phase errors in the external gravity waves. As shown in Fig. 9, the
energy in the external gravity wave part of the solution is more than
two orders of magnitude smaller than the energy of the rotational mode
part of the solution. This indicates that the use of semi-implicit
methods in primitive equation tropical cyclone models is probably
justifiable.

As discussed in chapter 2, diabatic heating in the incompressible
fluid system is represented by a mass transport from layer 1 to layer 2.
During a model integration, the mean depth of layer 1 decreases and the

mean depth of layer 2 increases, which causes the mean potential energy
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in the domain to increase with time. The model is initialized so that
the mean depth of layers 1 and 2 are given by Hl‘and H2. As the model
is integrated in time, the k=2=0 modes of h1 and h2 increase as the
diabatic forcing becomes active. Since the k=2=0 mode of a double
Fourier series represents a horizontal average, these modes of h1 and h2
give some idea of how the mean potential energy of the domain increases
with time. The available potential energy defined by (4.9) was then
computed using only the k=2=0 modes of h1 and h2 at various times as
shown in Fig. 10 (curve M). Also shown in Fig. 10 are the total energy
of the domain (T) and the sum of the energy in the external and internal
rotational modes from Fig. 9. Fig. 10 shows that the largest
contribution to the increase in the total energy in the domain comes
from the increase in the mean potential energy. The fact that the
amount of energy in the rotational modes is much smaller than the total
energy in Fig. 10 indicates that the diabatic heat source is inefficient
at producing balanced flow, in agreement with the linear theory. The
diabatic heat source does not, however, produce large amplitude gravity
waves, but rather increases the mean potential energy in the domain.

The change in the mean depths of layers 1 and 2 during a model
integration has only a small effect on the dynamics of the large scale
environment (the phase speeds of the internal gravity waves are altered
slightly). The change in the mean depth of layer 2 does, however, have
an effect on the diabatic heat source since it affects the diagnosed
value of 1&. This effect was discussed previously and is analogous to a
net heating of the model domain. In future versions of the model, a
crude radiation parameterization could be included by allowing mass to

be transported from layer 2 back to layer 1 to crudely simulate the
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Figure 10. The time evolution of the total energy in the domain
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(IR+ER) for experiment 4A.
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radiative cooling of the atmosphere. This would allow for longer model

simulations when the diabatic heat source was active.

4.2 The Effect of a Variable Coriolis Parameter
on & Tropical Cyclone Simulation

In order to investigate the effect of a variable Coriolis parameter
on a tropical cyclone simulation, the model was run with the initial
condition described in the previous section, with g8 evaluated at 20°N.
The initial vortex is confined to Tayers 0 and 1 and has a maximum
tangential wind of 10 ms'1 at a radius of 100 km, as in experiment 4A.
As described in section 2.4, it was necessary to neglect the
streamfunction contribution to the 8 term in the divergence equation
(2.33) in the current model formulation. For this reason, there is no B
term in the nonlinear balance equation (4.4) which was used to obtain
the initial mass field from the wind field. Thus, the initial wind and
mass fields for the case when g is included are axisymmetric, so that
the initial conditions in experiments 4A and 4B are identical.

One of the first studies which considered the effect of a variable
Coriolis parameter on a tropical cyclone was presented by Rossby (1948).
Rossby concluded that the Targer value of the Coriolis parameter on the
poleward side of an axisymmetric cyclonic vortex would cause a poleward
acceleration of the vortex. More recent studies (e.g. Anthes and Hoke,
1975; Kitade, 1980) indicate that Rossby's argument must be modified
since an initially axisymmetric vortex will become asymmetric as it
begins to move. The later results indicate that for barotropic and
baroclinic models, a vortex similar to a tropical cyclone will move

towards the northwest at speeds between 1 and 3 ms'l. The current model
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is in agreement with these results as can be seen in Fig. 11 which shows
the track of the streamfunction minimum for experiment 4B. Fig. 11 also
shows the speed and direction of the tropical cyclone as a function of
time which were calculated using three-hourly positions of the
streamfunction minimum. During the simulation, the model tropical
cyclone accelerates until about 60 hours after which time the storm
maintains a constant speed of about 2.5 ms_l. The motion is towards a
direction slightly north of northwest with some indication of a more
northwesterly motion after about 84 hours. The cyclone track shown in
Fig. 11 is quite similar to results presented by Jones (1977a). He
found that when a variable Coriolis parameter is included in a numerical
tropical cyclone simulation, the vortex moves north-northwestward in the
developing stage and northwestward in the mature stage.

The tropical cyclone in experiment 4B differed from the tropical
cyclone in experiment 4A in several ways, in addition to the storm
movement. Fig. 12 shows the minimum surface pressure deviation PS
(defined by 4.7) and the maximum layer 1 tangential wind VT1 for each of
these simulations. From Fig. 12 it can be seen that the intensification
rate for each experiment is very similar until about 48 hours. After
this time, the intensity of the storm on the g-plane begins to Tevel
off, while the storm on the f-plane continues to intensify. By 96
hours, the f-plane storm is about 15 mb deeper with maximum winds about

10 ms™?

stronger than the g-plane storm. Thus, the inclusion of a
variable Coriolis parameter appears to inhibit the intensification of
the tropical cyclone. This result is somewhat similar to results

presented by Madala and Piacsek (1975). They have shown that in a
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three-layer tropical cyclone model, a storm took Tonger to reach
hurricane intensity when a variable Coriolis parameter was included.

In order to further compare experiments 4A and 4B, the azimuthally
averaged values of several of the depéndent variables were calculated
from a cylindrical grid similar to that described for experiment 4A.

For experiment 4B, however, the cylindrical coordinate system was always
centered on the streamfunction minimum as the storm moved. Fig. 13b
shows the azimuthally averaged layer 1 and 2 tangential winds, layer 1
and 2 geopotentials, boundary layer vertical velocity and convective
stability parameter for experiment 4B at 96 hours. The same variables
are also shown for experiment 4A at 96 hours (repeated from Fig. 5) in
Fig. 13a for comparison. Comparing Fig. 13a with 13b it can be seen
that the radial structure of the layer 1 variables is quite similar for
each experiment, except that the vortex on the f-plane is somewhat more
intense. The convective stability parameter n and w are also very
similar for each experiment. The major difference between the two
simulations is the structure of the u}per layer tangential wind profile
and corresponding geopotential. For the f-plane case there is a
cyclonic vortex in the upper layer inside about 300 km which has a
maximum tangential wind almost as large as for layer 1. For the g-plane
case there is also a cyclonic vortex in layer 2 inside about 300 km, but
the tangential wind speeds are much smaller than those of layer 1. This
difference in structure is a result of the transport of momentum from
layer 1 to layer 2 by the diabatic term Q. As described in section 2.2,
when fluid is transported from layer 1 to layer 2 it conserves the
momentum of layer 1 as it mixes with the fluid in layer 2. The cyclonic

vortex which forms in layer 2 for the f-plane case is a result of this
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process. This was verified by repeating the f-plane experiment with the
transport term set to zero. For the 3—p1ane case, the tropical cyclone
begins to move due to the differential advection of the earth's
vorticity by the storm circulation. When a vortex forms in the upper
layer of the model, it is also begins to move by this process. Since
the radial structure of the upper and Tower layer vorticies are
different, the motion induced by the g-effect will also be different.
Thus, it is more difficult to establish a concentrated area of cyclonic
rotation in the upper layer by momentum transport for the g-plane case
since the center of the upper layer vortex does not always remain
directly over the Tower layer vortex. Vertical wind shear should also
affect the vortex in a similar manner since this would also cause the
motion of the upper and lower layer vorticies to be different. Assuming
that cumulus clouds in nature also transport momentum in the vertical,
the cyclonic vortex for tropical cyclones in low vertical wind shear
environments should extend to higher altitudes than for storms in
environments with large vertical wind shear.

The difference in the structure of the upper layer tangential winds
in the f-plane and g-plane simulations may help explain the difference
in the intensification rates. In Fig. 13, the layer 2 tangential wind
for the f-plane storm has anticyclonic shear between about 80 km and 550
km, while the shear for the g-plane storm is much weaker. For the f-
plane storm, the Tayer 2 shear vorticity is larger than the curvature
vorticity outside of about 100 km so that the relative vorticity is
negative outside this radius. This indicates that the inertial
stability will be lower in this region for the f-plane storm than for

the g-plane storm since the inertial stability is related to the
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absolute vorticity. This indicates that it may be easier for the f-
plane storm to establish a radial circulation in the upper layer since
the inertial stability is a measure of the resistance to horizontal
motion. The enhanced radial circulation for the f-plane storm would
allow mass to be removed from the inner regions and allow the surface
pressure to decrease which would intensify the storm.

Another difference between experiments 4A and 4B which can be seen
in Fig. 13 is that the layer 2 tangential wind outside a radius of about
300 km has a smaller magnitude for the g-plane case. Since the g-plane
storm is weaker than the f-plane storm, it might be expected that the 8-
plane storm would also have a weaker anticyclone. Another reason for
this difference is that the outflow for the g-plane case is highly
asymmetric, so that only a portion of the wind field is represented by
the azimuthally averaged tangential wind. Fig. 14 shows the two-
dimensional structure of the wind and geopotential fields of layers 1
and 2 for the g-plane simulation at 96 hours. In Fig. 14, only a
portion of the domain is shown, and the fields which are contoured are
the geopotential heights (4/g) which have dimensions of length. The
contour interval is 20 m for layer 1 and 10 m for layer 2. As shown in
(4.7), the layer 1 geopotential can be interpreted in terms of a surface
pressure deviation. In Fig. 14, a contour interval of 20 m
approximately corresponds to a surface pressure contour interval of 2
mb. In Fig. 14 the asymmetric structure of the wind and geopotential
fields for layer 2 can be seen. There is some evidence of a cyclonic
vortex near the storm center which is axisymmetric with respect to the
storm center. Outside the cylconic region, however, the flow is highly

asymmetric with evidence of an outflow channel towards the south and
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southwest which begins on the eastern part of the storm. There is also
some evidence of a small, closed anticyclone to the west of the storm

center in layer 2. This rather complicated pattern is probably a result
of the g-effect and also the momentum transport from layer 1 to layer 2.

The structure of the wind field in the upper layer is similar to
some storms which have been observed. Chen (1983) has presented a study
of the upper level flow patterns associated with tropical cyclones in
several ocean basins using 12 months of FGGE data. Observations from 79
cases where divided into three groups consisting of storms with one
outflow channel (57 cases), two outflow channels (5 cases) and no
outflow channel (17 cases). Of the storms with single outflow channels,
28 cases were towards the pole while 29 cases where towards the equator
similar to the simulation in experiment 4B. Thus, the structure of the
upper layer in the model simulation is similar to about 37% of the cases
presented by Chen., The outflow from many of the storms in the study by
Chen was affected by interaction with  mid-latitude westerlies. It is
interesting to note that in Chen's study, 8 out of 12 cases from storms
in the N.E. Pacific had single outflow channels towards the equator.
Since these storms generally form close to the equator (Gray, 1979) they
are more likely to be far removed from the westerlies, and more
representative of experiment 4B, which had no basic state wind.

In Fig. 14 it can be seen that the layer 1 fields are much more
axisymmetric than the layer 2 fields, although some asymmetry exists.
The vortex is elongated towards the west at large radii, with some
indication of a sharper geopotential gradient towards the east at sma}]
radii. This structure can be explained by considering the dispersivew

properties of the Rossby waves. As can be seen from (3.73) for the
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linear case (P 0), the analytic solution for each of the model

jkzr=
normal modes is proportional to ei\)t where v is the frequency of a given
mode. For this case the phase speed is given by -(v/k) so that a
positive frequency corresponds to a westward propagating wave.
Similarly, the zonal component of the group velocity for this case is
given by - §¥.. The phase speed determines the speed of propagation of
the individual waves while the group velocity determines the propagation
of energy by a group of waves. Fig. 4b shows the frequencies of the
Rossby waves in the model. In Fig. 4b, the negative of the slope of the
frequency curves determines the zonal component of the group velocity,
so that the group velocity is negative for low zonal wave numbers and
positive for high zonal wavenumbers. ‘This indicates that the long
Rossby waves disperse energy towards the west, while the short Rossby
waves disperse energy towards the east. Thus, the elongation of the
vortex to the west at large radii is due to the dispersion of the Tong
Rossby waves.

In Fig. 14, the sharper geopotential gradients in layer 1 are to
the east of the storm center, although they are to the west of the
initial position of the storm. Thus, the eastward dispersion of the
short Rossby wave part of the solution does not appear to explain this
feature. The nonlinear interaction of the symmetric vortex and the
advection of the earth's vorticity have resulted in a mean flow which
causes the vortex to move towards the northwest. Thus, the sharper
geopotential gradients may be interpreted in terms of the eastward

dispersion of the short Rossby wave part of the solution where the

entire pattern is advected by a mean flow.
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The asymmetric structure of the layer 1 variables is also similar
to the structure of storms observed in nature. Fig. 15 shows
streamlines and isotachs at the 850 mb level from a composite of 46
developing hurricanes in the Australian region from Holland (1983).
Although the value of the Coriolis parameter is negative in the southern
hemisphere, the value of B is positive so that the frequencies of the
Rossby waves are the same as for the northern hemisphere. In Fig. 15 it
can be seen that the composite hurricane is elongated towards the west
at large radii (about 10° longitude from the center) with the higher
wind speeds towards the east at sma]]gr radii (2-5° Tongitude from the
center). Thus, the asymmetric structure of the lower levels of the
composite hurricane can be explained by considering the dispersion of
energy by the Rossby waves, similar to that of the lower layer of the
model tropical cyclone shown in Fig. i4.

In experiment 4B, asymmetries also developed in the dependent
variables which are not shown in Fig. 14. In particular, the boundary
layer vertical velocity was quite asymmetric at very small radii (less
than 200 km). These asymmetries appear to be related to the motion of
the storm, rather than to the dispersion of wave energy. These features
will be discussed in greater detail in the next section when results
from an experiment with a basic state wind are presented.

4.3 Simulation Of A Tropical Cyclone
With A Non-Resting Basic State

In the real atmosphere, the occurrence of an isolated symmetric

tropical cyclone is quite rare. More commonly, storms are imbedded in

some type of mean current which interacts with the storm circulation.
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region (from Holland, 1983).
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Experiment 4C is an example of a tropical cyclone simulation which
includes a zonal wind.

When periodic boundary conditions are used in the north-south
direction the form of the zonal wind which can be included is somewhat
restricted. For example, it is not possible to use a zonal wind which
is constant everywhere in the domain. This can not be used since it
would be necessary to include a height field which was linear in y
(neglecting g) in order to satisfy geostrophic balance, which would not
satisfy the periodic boundary condition. Thus, it is necessary to
specify the zonal wind in such a way that it is periodic and has a
periodic anti-derivative., An obvious choice for a set of functions
which satisfy these conditions are trigonometric functions. Another
reason for choosing trigonometric functions js that it is trivial to
determine the Fourier series representations, which contain only one

term. In experiment 4C, the zonal wind for layer i was specified to be

G, = U, sin(2) (4.10)

where U_i was chosen to be -7.5 ms—1 for each layer. The zonal wind
given by (4.10) corresponds to a single sine wave in the north-south
direction, with easterlies in the southern half of the domain and
westerlies in the northern half of the domain.

In experiment 4C, the vortex defined by (4.1) was added to the
zonal wind in layers 0 and 1, and the mass field was determined using
the nonlinear balance equation as described in section 4.1. The initial
vortex for this experiment differs from the one used in experiments 4A
and 4B in that the radius of maximum wind was 150 km, and the vortex was

centered at x=2200 km and y=1400 km on a 3600 by 3600 km domain. A
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larger initial vortex was used to allow better resolution of the
asymmetries which are induced by the motion of the storm. The initial
position of the vortex was chosen to crudely simulate storms which form
in an easterly current and eventually recurve due to the g-effect and
the influence of mid-latitude westerlies. For experiment 4C, the
remaining parameters and variables are the same as those which were used
for experiments 4A and 4B.

The upper portion of Fig. 16 shows the track of the tropical
cyclone in experiment 4C. In this figure it can be seen that the storm
tracks westward initially but turns towards the north, and eventually
towards the northeast after 96 hours. This track appears to be a result
of the steering current and the g-effect. The initial motion of the
storm is simply a result of the advection by the easterly current.

After a short time, the g-effect adds a northward component to the
direction of motion, which carries the storm out of the easterly current
and into the westerly current. This accounts for the turn towards the
northeast near the end of the 5 day integration.

Fig. 16 also shows the minimum surface pressure deviation and the
maximum layer 1 wind speed for experiment 4C. For this case, the

1 since

initial value of the layer 1 wind speed is greater than 10 ms~
the initial vortex and basic state wind were added together. From this
figure it can be seen that most of the development takes place during
the first 60 hours of the integration. After this time, the storm
maintains a relatively constant intensity equivalent to a minimal
hurricane. Comparing Fig. 16 with Fig. 12 it can be seen that the

intensification which occurs in experiment 4C is similar to that in

experiment 4B, but differs from experiment 4A which produced a much more
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intense storm. This difference appears to be related to the motion of
the storm, similar to that discussed for experiment 4B.

In order to see the three-dimensional structure of experiment 4C,
the wind and geopotential fields for layers 0, 1 and 2 are shown in Fig.
17 at t=96 hours. Similar to Fig. 14, only a portion of the domain is
shown and the geopotential height contours are 20 m and 10 m for layers
1 and 2 respectively. For layer 0, the surface pressure deviation is
shown with a contour interval of 2 mb. In layers 0 and 1, the
asymmetries of the wind and height fields at large radii are similar to
those presented for experiment 4B. The vortex appears to be somewhat
elongated towards the west which is probably caused by the westward
dispersion of the long Rossby wave part of the solution. Close to the
center, however, the vortex appears to be quite symmetric, despite the
presence of a basic state wind. There does appear to be some tendency
for confluence to the east of the storm, which is most evident in layer
0. As will be discussed when the boundary layer vertical velocity is
shown, this is probably caused by both the g-effect and the motion of
the storm. The structure of the layer 2 wind and geopotential fields
are considerably more asymmetric than the lower layer fields. Similar
to experiment 4B, there is a cyclonic vortex in the upper layer near the
horizontal position of the lower layer vortex which results from the
upward transport of momentum by the diabatic heat source. Fig. 17 also
shows that there is some tendency for the outflow in layer 2 to be
towards the south and on the eastern side of the storm as was the case
in experiment 4B. Although the tropical cyclone in the lower layers
affects the layer 2 flow field, it appears that layers 1 and 2 do not

always remain coupled. In Fig. 17, the cyclonic vortex in layer 2 which
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is about 500 km to the southeast of the tropical cyclone center and the
anticyclonic region about 750 km to the south-southwest are probably a
result of the interaction of the outflow from the storm and the basic
state wind, but appear to be left behind as the storm moves.

In addition to the horizontal wind and mass fields, the boundary
layer vertical velocity and equiva]ent‘potential temperature deviation
also became quite asymmetric in experiment 4C. Fig. 18 shows the
boundary layer vertical velocity field in the region surrounding the
tropical cyclone at 24, 48, 72 and 96 hours. Initially the vertical
velocity is zero since the initial vortex is nondivergent. By 24 hours,
a vertical velocity field has developed with a maximum of about 20 cms'1
lTocated in the right front part of the storm in relation to the
direction of motion (the arrow indicates the direction of motion of the
storm). There is also a broad area of rising motion on the eastern side
of the storm which spirals back towards the southwest. At 48 hours, the
vertical motion pattern is similar to that at 24 hours although the
vertical motion maximum in the right front part of the storm has
increased to over 40 cms_l. This pattern continues at later times as
the storm moves towards the north, and then towards the northeast, with
the vertical motion maximum remaining in the front and slightly to the
right side of the storm. The larger area of vertical motion on the east
side of the storm also persists, although it is becoming less well
defined by 72 hours.

The spiral zone of rising motion to the east of the tropical
cyclone in Fig. 18 appears to be related to the g-effect. This is
similar to the result presented by Anthes and Hoke (1975), who showed

that the inclusion of g in a barotropic model causes a spiral shaped
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region of confluence to form on the eastern side of a cyclonic vortex.
In section 4.2, this was interpreted in terms of the eastward dispersion
of the short wavelength Rossby modes. The vertical motion maximum in
the right-front part of the storm, however, does not appear to be caused
by the g-effect, but rather is induced by the storm motion. The
translation of the storm results in stronger winds relative to the earth
to the right of the direction of motion. This causes the surface drag
to be asymmetric which results in asymmetric convergence and vertical
motion fields. Shapiro (1983) has presented examples of the steady
state flow in a slab boundary layer forced by the translation of a
symmetric vortex in gradient wind balance. His results show that the
translation of the vortex causes the convergence to occur in a broad arc
ahead of the storm, with the convergence maximum on the right side for
faster moving storms, in good agreement with Fig. 18. Shapiro also
presented radar reflectivities from several storms which indicate that
much of the convection occurs on the front side of the storm. Results
similar to this were also presented by Miller (1958) who observed
maximum low level convergence values in the right-front part of a
tropical cyclone. Thus, despite the coarse horizontal and vertical
resolution, the current model is capable of representing some of the
smaller scale features near the storm center found in other studies and
observed in nature.

The asymmetric structure of the layer 0 equivalent potential
temperature deviation Ao for this experiment can be seen in Fig. 19. 1In
this figure, only the inner 1800 km by 1800 km of the domain is
displayed and the contour interval is 4 K. Initially, Ao is set to a

constant value of 10 K, but gradients rapidly develop due to horizontal
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variations of the surface flux. Since the surface flux increases with
increasing wind speed, Ab increases the most along y=900 km and y=2700
km due to the zonal wind. Between these regions the zonal wind is less
so that a minimum in ./\.0 should develop. In addition to this, the
vorticity between y=900 km and y=2700 km is negative due to the shear of
the basic wind, so that weak subsidence occurs in this region. This
causes Ao to decrease due to the vertical advection term in (2.47).
These two processes result in a north-south gradient of AO with a
maximum at y=900 km, a minimum at y=1800 km and a maximum at y=2700 km.
Since the storm is initially centered at y=1400 km, it develops in an
environment where the equivalent potential temperature decreases towards
the north. This is somewhat similar to storms which form in low
latitude regions with the drier subtropical regions to the north.

In Fig. 19 at 24 hours, the interaction of the storm with the large
scale gradient of.A0 can be seen. The cyclonic circulation is advecting
the low values of A, from the north around the west side of the storm
and the higher values from the south around the east side of the storm.
Near the storm center, Ao increases m?ré rapidly due to the higher wind
speeds. By 48 hours, the low values of Ao have been advected around to
the south side of the storm, with the higher values on the north and
east sides. This pattern can also be seen at 72 and 96 hours as the
storm moves through the domain. The low values of Ab to the west of the
storm and higher values on the east side are also caused by the
structure of the vertical motion field. In Fig. 18, there is subsidence
to the north and west of the storm center, although the values are not
large enough to be contoured. This subsidence causes a decrease of AO

in addition to that which occurs by the advection of the low values from
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the north. On the east and south sides of the storm, particularly at 24
and 48 hours, there is rising motion associated with a convergence
region induced by the g-effect. This causes Ao to increase in addition
to the increase by advection. Thus it appears that the g-effect and the
interaction of the cyclone circulation with the large scale Ao field
result in higher values of Ao on the north and east side of the storm.
In the real atmosphere, this would lead to a preferential location for
convection.

Fig. 19 shows the asymmetries in the A, field discussed above. At
t=96 hours it can be seen that values of Aé to the east of the storm are
as high as 24 K while values to the northwest are as low as 4 K. Thus,
there is a gradient of A0 of about 20 K across the storm. In tropical
cyclones found in nature, the boundary layer equivalent potential
temperature (ee) near the storm center can be up to 15 K warmer than the
surrounding environment (e.g. Holland, 1983). Away from the storm
center, however, the gradients of the boundary layer ee are usually much
smaller. The model then predicts gradients of Ao which are too large.
The reason for this is that the thermodynamics of the current model are
somewhat crude. As discussed previously, the assumption of a constant
A1 Teads to an overestimation of the decrease of A, when there is
subsidence in the boundary layer. Although the gradients of A, are
somewhat overestimated, the qualitative structure of the asymmetries
gives some idea of how the tropical cyclone circulation can interact
with the boundary 1ayer‘ee field.

In summary, the asymmetric structure in this experiment is caused
by several different mechanisms. The g-effect causes the storm to be

elongated towards the west at large radii with a convergence region to
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the east at smaller radii. The motion of the storm induced by the mean
flow and the g-effect causes asymmetries in the boundary layer vertical
velocity and in the upper level flow. The basic state wind causes a
north-south gradient in the Ao field to develop which interacts with the
storm circulation resulting in low values of Ao to the west and south of
the storm and higher values to the east and'north.

4.4 Transformation of a Wave-Like

Disturbance Into A Closed Vortex

The initial conditions of all of the simulations presented
previously in this chapter have included a closed vortex. In this
section the model is initialized with a wave-like initial condition
which does not have a closed circulation. The results from this
simulation (experiment 4D) will be compared to the previous experiments
and also to the work of Bliss (1980) who presented a similar simulation
using a finite difference model.

The initial wind field for experiment 4D was obtained by adding a
weak symmetric vortex of the form of (4.1) to a zonal current given by
(4.10). Similar to experiment 4C, the zonal wind varies sinusodially in
y with an amplitude of -7.5 ms~1 so that there are easterlies in the
southern half of the domain and westerlies in the northern half. In
order that the initial wind field did not have a closed circulation, the
initial symmetric vortex had a maximum tangential wind of 5 ms'1 at a
radius of 300 km and was centered at x=2600 km and y=1400 km in a 4000
by 4000 km domain. The symmetric vortex was added only to layers 0 and
1 while the zonal wind is the same for all layers. The mass field was
obtained from the wind field using the nonlinear balance equation as

described previously, and AD was again set to a constant value of 10 K.
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The large scale vorticity field associated with the symmetric
vortex is roughly similar to, although slightly smaller than, the
vorticity field of the composite easterly wave at the 700 mb level

presented by Reed et al. (1977). For the symmetric vortex, the

vorticity exceeds 1x10'5 s_1 inside a circular area with a diameter of

-1

about 800 km and 2x10_5 S inside an area with a 600 km diameter. For

the composite easterly wave at the 700 mb level, the vorticity exceeds

1x10'5 s-1 in an eliptical region with an average diameter of about 1200

km, and exceeds 2x10'5 s'1 in a region with an average diameter of about

600 km. The vorticity near the center of the symmetric vortex, however,

is somewhat larger than that of the composite easterly wave. For the
5 571 inside an area with a
5 s-l

symmetric vortex, the vorticity exceeds 5x10~
diameter of 200 km and reaches a maximum of 9x10” at the center,
while the maximum vorticity of the composite easterly wave is about
3x107° 571,

Fig. 20 shows the wind and geopotential height fields of layer 1
for experiment 4D at t=0, 24, 48, 72, 96 and 120 hours. The contour
interval of the height field is 20 m which can be interpreted as a 2 mb
surface pressure interval and the entire domain is displayed. In Fig.
20 at t=0 it can be seen that the symmetric vortex influences an area
about 2000 km wide. By 24 hours, the disturbance has propagated towards
the west and has acquired a slight SW to NE tilt. A tilt similar to
this is often observed in the lower levels of easterly waves in the
eastern Atlantic region (Reed et al., 1977; Burpee, 1972, 1975). In
experiment 4D this tilt appears to be caused by the shear of the zonal

flow which advects the northern portion of the initially symmetric

vortex at a slower rate than the southern portion. As the simulation
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continues in Fig. 20, the disturbance becomes more concentrated as it
moves towards the west. By 48 hours it appears that a closed vortex has
formed which becomes more evident at later times. As the vortex
develops it begins to track more towards the north and by 120 hours it
has moved into the upper part of the domain where the zonal wind is
westerly. When the vortex moves from the easterlies into the westerlies
it causes the zonal band of high pressure in the middle of the domain to
fracture into separate cells.

Fig. 21 shows the layer 2 wind and geopotential height fields for
experiment 4D at t=0, 24, 48, 72, 96 and 120 hours where the contour
interval of the height field is 10 m. Initially, the upper layer
contains only the zonal wind and corresponding height field. At later
times, the upper level is affected as the lower level disturbance
develops vertical motion and diabatic heating. By 72 hours a well
developed anticyclone has formed as the lower level disturbance becomes
more organized. There is also some evidence of a small area of cyclonic
rotation near the horizontal location of the lower layer vortex. This
is a result of the momentum transport by the diabatic term, similar to
the previous experiments. This pattern continues as the lower layer
vortex moves towards the north away from the easterlies. By 96 hours,
the outflow in the upper layer has become highly asymmetric, with an
outflow jet towards the south and southwest, similar to experiments 4B
and 4C. At 120 hours it can be seen that the outflow from the
developing storm has caused an increase in the upper level easterlies
southwest of the storm. Because of the periodic boundaries, the
easterlies have also increased in the southeastern part of the domain.

At 120 hours, it appears that the easterlies in the southeastern part of
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the domain may be close enough to interact with the outflow of the
storm. This appears to be another limitation on the length of time the
model can be integrated. Before this time, however, the periodic
boundary conditions do not appear to have an influence on the solution.

In order to get an idea of the intensification rate of the
disturbance in experiment 4D, the time evolution of the minimum surface
pressure deviation and maximum layer 1 wind speed are shown in Fig. 22.
The track of the vorticity maximum associated with the disturbance is
also shown. In Fig. 22 it can be seen that the initial intensification
of the disturbance is quite slow. In the first 36 hours the maximum
wind speed increases by only 1 mle ahd the minimum surface pressure
deviation decreases by less than 1 mb, During this time the vorticity
center is not well defined so that the track appears to wobble somewhat.
After 36 hours, a closed vortex forms and the system tracks more towards
the north. By about 84 hours, the maximum layer 1 wind speed has

reached 17 ms'1

which is tropical storm strength. In comparison to
this, the tropical cyclones in experiments 4A, 4B and 4C all reached
tropical storm strength in less than 24 hours. After 96 hours, the
surface pressure begins to fall more rapidly and by the end of the 6 day
integration, the storm is approaching hurricane strength.

The fact that the initial development of the disturbance is so slow
indicates that the organizational process is quite delicate. In the
current model, the formation of convection is always linked directly to
the large scale motion. In the real atmosphere, particularly in a weak
disturbance, this assumption is probably not valid. As discussed by

Ooyama (1982), the cumulus convection in a weak large scale disturbance

is not directly controlled by the large scale dynamics. For this case
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the mesoscale and cloud scale structure may also be important. As a
system becomes more intense, the larger scale circulation organizes the
cumulus convection so that the‘two are more closely linked. In the real
atmosphere, then, the organizational process is even more delicate than
in the model, which assumes that the cumulus convection is driven by the
large scale motion for any system. This is probably one reason why it
is so difficult to determine which tropical disturbances will develop
into tropical cyclones.

The slow initial development and rapid deepening at later times in
experiment 4D can be explained by considering the response of the
tropical atmosphere to diabatic heat sources. The linear theory of
geostrophic adjustment (e.g. Schubert et al., 1980) indicates that only
a small fraction of the total energy of a heat source will produce
geostrophically balanced flow. As discussed in section 4.1, the
remaining energy does not produce gravity wave motion if the time scale
of the heating is long compared to the frequency of the gravity waves,
but the balanced flow argument is still valid. Thus, even though the
diabatic heating occurs soon after the model integration begins, the
effect on the balanced flow is fairly small. Results from balanced
models presented by Shapiro and Willoughby (1982) and Schubert and Hack
(1982) indicate that as the inertial stability increases, a diabatic
heat source becomes more efficient at producing balanced flow. For the
balanced model, the inertial stability is related to the absolute
vorticity. The disturbance should then begin to intensify more rapidly
as the vorticity increases. In Fig, 22 the storm begins to deepen
rapidly after about 96 hours. By this time, the maximum vorticity

associated with the disturbance had increased by a factor of about four,
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and the storm was organized so that the diabatic heating occurred in the
region of high vorticity near the storm center.

Bliss (1980) has presented model results which are quite similar to
experiment 4D. Bliss used a three-dimensional version of Ooyama's model
and solved the resulting equations on a doubly-periodic equatorial g-
plane using a second-order finite difference scheme. As an initial
condition, Bliss used the composite easterly wave from Reed et al.
(1977) where the 700 mb wind was used for layers 0 and 1 and the 300 mb
wind was used for layer 2. The value of Ab was initially set to a
constant value of 10 K, and the sea surface temperature was about 28°C,
which are the same values used in experiment 4D. His results showed
that the easterly wave intensified and eventually formed a closed vortex
after 96 hours, similar to experiment 4D. After 96 hours, however, the
vortex did not continue to develop, but rather maintained a constant
intensity with a maximum wind speed of about 20 ms'l. As can be seen in
Fig. 22, the maximum wind speed in experiment 4D was just less than 20
ms'1 as 96 hours, but the storm continued to develop after this time.
Bliss indicated that the lack of development past 96 hours was due to
the initial Tow values of relative vorticity. This may explain some of
the difference between the two model simulations since, as discussed
previously, the initial condition used in experiment 4D had much larger
values of relative vorticity near the wave axis than the composite
easterly wave used by Bliss. At 96 hours, however, the maximum relative
vorticity in experiment 4D was about 31x107° 571 compared to about
25x10'5 s-1 in the simulation by Bliss. Thus, the maximum relative

vorticity is about the same for both simulations after 96 hours. One

major difference between the two simulations is the horizontal
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resolution which was used. Bliss' model had a grid spacing of 114 km,
compared to the 37 km resolution on the transform grid. The Tow
resolution in the model by Bliss probably prevented further
intensification of the tropical cyclone. Thus, the results of the
current model are similar to those of Bliss but due to the increased
resolution, can better simulate the development of a tropical cyclone
from a wave-like disturbance.

The simulation of the transformation of a wave into a tropical
storm has also been presented by Kurihara and Tuleya (1981). Although
it is difficult to compare their results using an 11-level primitive
equation model to the current model results, the two simulations do have
some basic similarities. In a 96 hour period the wave-like disturbance
in the study by Kurihara and Tuleya transforms into a closed vortex as
5 to 23.7x107° §71

the maximum relative vorticity increases from 4.3x10~ s

the maximum Tow level winds increase from 10 to 17 ms"1 and the minimum
surface pressure decreases by 5.8 mb. , These are comparable to the
results from the current model where the maximum relative vorticity

increases from 7.6x10™° to 31.0x107° s'1

, the maximum layer 1 winds
increase from 9 to 19 ms_1 and the surface pressure decreases by 2.8 mb
in 96 hours. The wave at 700 mb in Kurihara and Tuleya's model also
develops a SW to NE tilt similar to the current model and observations,
and the storm which forms forces an anticyclone in the upper levels with
a small cyclonic region near the storm center. This indicates that
although the current model has very crude vertical resolution, it can
capture some of the basic structure found in more complicated models and

in nature for the case of the transformation of a wave into a closed

vortex.



CHAPTER 5
THE INFLUENCE OF THE LARGE-SCALE FLOW ON
TROPICAL CYCLONE INTENSIFICATION

The size and intensity of tropical cyclones found in nature vary
considerably from storm to storm. For example, Merrill (1982) has
presented a climatology of storm size in terms of the radius of the
outer closed isobar (ROCI). His results show that the average ROCI for
Atlantic tropical cyclones is 3° latitude, although values between 1°
and 9° have been observed. Merrill has also shown that tropical
cyclones in the Pacific are about twice as large in areal extent as
Atlantic storms. Tropical cyclones also tend to be clustered in time.
Gray (1979) has shown that more than 2/3 of all the tropical cyclones
during a twenty year period developed in less than 1/3 of the
corresponding storm seasons. These results imply that the
intensification and resulting structure of tropical cyclones are
affected by many factors. Many modeling studies have investigated the
effects of sea surface temperature and other factors which might
influence the cumulus convection. There have also been some studies
which show that the large scale environment can affect tropical
disturbances. Shapiro (1977) has shown that the vorticity of an
easterly wave can increase as it passes through an environment with
large positive vorticity. Challa and Pfeffer (1980) have presented
results from an axisymmetric tropical cyclone model which showed that

the storm structure is sensitive to eddy fluxes of angular momentum
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which could be induced by the large scale environment. In their study,
however, the effect of the large scale environment is specified so that
the interaction with the storm circulation is not simulated. Tuleya and
Kurihara (1981) have shown that the large scale environment can affect
the genesis of a tropical storm from an easterly wave. In this chapter,
results from five simulations are presented which show that the large
scale flow field in both the upper and Tower layers can affect the
structure and intensification rate of the model tropical cyclone. The
effects of horizontally sheared mean flows in the upper and lower layers
are considered in sections 5.1 and 5.2. In section 5.3, the interaction
of a developing tropical cyclone with a mid-latitude trough is
simulated. Table 4 gives a summary of the five experiments to be
discussed in this chapter.
5.1 The Effect Of Horizontal Wind Shear
In the Lower Layers

In this section the effect of a horizontally sheared basic state
wind in Tayers 0 and 1 is investigated. 1In order to keep the
simulations as simple as possible, a symmetric vortex is added to an
antisymmetric zonal wind field and g is set to zero, so that the vortex
does not move. The basic state wind field is given by (4.10) with Ui

L or 7.5 ms_1 in layers 0 and 1 for experiment 5A1 or

set to -7.5 ms~
5B1. The symmetric vortex given by (4.1) with Vm=10 ms_1 and rm=100 km
is added to the zonal wind in layers 0 and 1 and the mass field is found
from the nonlinear balance equation (4.5). The symmetric vortex is
centered on a 3600 by 3600 km domain so that the zonal wind is

antisymmetric with respect to the vortex position. From (4.10) it can

be seen that the vorticity of the zonal wind is given by



TABLE 4.

Summary of the numerical simulations

presented in chapter 5

Initial Basic Integration Coriolis

Initial Vortex State Zonal Wind Length (days) Parameter
5A1 Symmetric vortex in Anticyclonic shear

layers 0 and 1 near vortex in

Vm=10ms"1 r=100km layers 0 and 1 4 8=0
5B1 Symmetric vortex in Cyclonic shear

layers 0 and 1 near vortex in

V_=10ms 1 r. =100km Tayers 0 and 1 4 g=0
5A2 Symmetric vortex in Anticyclonic shear

layers O and 1 near vortex in

Vm=10ms'1 rm=100km layer 2 4 g=0
582  Symmetric vortex in Cyclonic shear

layers 0 and 1 near vortex in

Vm=10ms‘1 r,=100km layer 2 4 g=0
5C Symmetric vortex in Basic state in

Tayers 0 and 1 all layers, with

Vm=10ms'1 r = 150km trough in layer 2 5 g#0

AN
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ou.
- 5—1~ = -U, [%ﬂ} cos {%EXJ . (5.1)
y y y
For Ly=3600 km and |U1|=7'5 ms'l, the vorticity of the zonal wind has

extrema of magnitude 1.3x10_5 s_1 at y=0, Ly/2 and Ly' The vorticity of

the zonal wind in the region of the vortex (y=Ly/2) is negative for
experiment 5A1 and positive for experiment 5Bl. Except for the addition
of the zonal wind, experiments 5A1 and 5Bl are identical to experiment
4A, so that the three experiments can be compared.

Fig. 23a shows the minimum surface pressure deviation for
experiments 4A, 5A1 and 5B1. Initially, the surface pressure deviation
is Tower than experiment 4A for 5Bl and higher for 5Al1. This is due to
the pressure field associated with the basic state wind. By 24 hours,
the difference between the pressure deviations has decreased which
indicates that the storm with the anticyclonic basic state vorticity has
deepened the most rapidly while the positive basic state vorticity case
has deepened the slowest. By about 36 hours, the pressure of the storm
with the anticyclonic basic state wind (5A1) begins to level off while
the other two storms continue to deepen. By about 60 hours, the
pressure of the storm with no basic state wind (4A) begins to drop less
rapidly while the pressure of the storm with the cyclonic basic state
wind (5B1) drops more rapidly. By the end of the 96 hour integration,
the pressure in experiment 5Bl is almost as low as for experiment 4A,
and is dropping more rapidly.

The maximum Tayer 1 wind speeds for each of these experiments
behave similar to the surface pressure deviations, as can be seen in
Fig. 23b. Initially the wind speed in experiment 5A1 increases the most

rapidly, but levels off after about 36 hours. The wind speed in
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Figure 23. The time evolution of the minimum surface pressure
' deviation (a) and maximum layer 1 wind speed for
experiments 4A, 5A1 and 5BI1.
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experiment 4A then increases the most rapidly until about 60 hours when
the wind in experiment 5Bl increases more rapidly. By the end of the 96
hour integration, the wind speed for experiment 5B1 is almost as high as
for experiment 4A, and is increasing more rapidly.

These results indicate that the presence of the basic state wind in
the Tower layers affects the intensification rate of the storm. An
anticyclonically sheared environment appears to favor rapid initial
growth which levels off after a fairly short time, while a cyclonically
sheared environment slows the initial growth rate, but enables the storm
to continue to intensify over a longer period of time.

The fact that the addition of a basic state wind with anticyclonic
vorticity caused the storm to intensify more rapidly may seem somewhat
surprising in light of the results presented by Schubert and Hack
(1982). They have shown that in an axisymmetric balanced model, a
diabatic heat source becomes more efficient at producing balanced flow
as the inertial stability increases. Since the inertial stability
increases as the relative vorticity increases, it should then be
expected that the addition of a background vorticity which is negative
would decrease the inertial stability and the efficiency of the heat
source, which should decrease the intensification rate. In order to
determine why this does not occur, an inertial stability parameter p and
the diabatic heat source Q were calculated using azimuthally averaged
values of the dependent variables. For an axisymmetric vortex, the

inertial stability u2 is given by

2V
R S AR Ty (5.2)

where VT is the tangential wind. For each of the simulations in this
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section the value of u was calculated from (5.2) using azimuthally
averaged values of the layer 1 tangential wind. For convenience, the
values of p were normalized by the Coriolis parameter fo so that p has
the value of unity when the fluid is at rest. Equation (5.2) is
actually only valid for an axisymmetric vortex, while experiments 5Al
and 5B1 are asymmetric. The storms are fairly symmetric close to the
center, however, so that the value of u should give some indication of
the efficiency of the diabatic heat source.

Fig. 24 shows the azimuthally averaged values of p and Q as a
function of radius at 0, 24, 48 and 72 hrs for experiments 4A, 5Al1 and
5B1. At t=0 in Fig. 24, Q is zero since the initial conditions used
were nondivergent, and the inertial stahility parameters appear to be
quite similar in all three experiments. This is because for small r the
vorticity of the vortex is much larger than that of the basic state. At
larger radii, however, the vorticity of the vortex is small so that the
effect of the basic state becomes more important. For example, at r=300
km (not shown in Fig. 24) the parameter u has a value of 1.0, 0.8 and
1.3 for experiments 4A, 5A1 and 5Bl respectively. By 24 hours, a
vertical motion field has developed so that Q becomes nonzero. At this
time it can be seen that Q is larger for experiment 5A1 which had the
anticyclonically sheared basic state wind. Also at this time, the
maximum value of Q occurs at a smaller radius for experiment 5Al, so
that the inertial stability is larger in the region of the forcing.
Assuming the arguments from the axisymmetric model are valid, this
indicates that the efficiency of the diabatic heat source for producing
balanced flow will be greater for experiment 5A1l. Since the magnitude

and the efficiency of the diabatic heat source are larger for experiment
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5A1, the vortex should intensify more rapidly as was the case. A
similar argument holds for experiment 5B1 where the lower magnitude and
efficiency of Q at t=24 hr resulted in the slower intensification.

The initial development of the Q fields shown in Fig. 24 can be
explained by again considering the inertial stability. Since Q is given
by nw+ and n varies slowly as a function of r, the structure of Q is
largely determined by the structure of w. In an axisymmetric sense, the
vertical velocity field at the top of the boundary layer is a result of
the radial circulation which develops because of the surface drag.

Since the vorticity of the vortex is cyclonic, radial inflow develops in
the boundary layer. In the axisymmetric model, the inertial stability
is a measure of the resistance to radial motion. As discussed
previously, the inertial stability parameter is reduced or increased by
the basic state wind in experiments 5A1 and 5B1 respectively. Thus, it
appears that the radial circulation in experiment 5Al can penetrate
closer to the center of the vortex due to the reduced inertial stability
at fairly large radii. When this flow reaches the region of large
inertial stability near the vortex center, convergence of the radial
wind occurs which results in vertical motion. In contrast to this, it
appears that the larger inertial stability values away from the vortex
center in experiment 5Bl reduces the magnitude of the radial circulation
before it reaches the vortex center so that the vertical motion occurs
at larger radii. These results indicate that the radial structure of
the inertial stability is important for determining the location of the
parameterized heat source, and that results from studies of tropical
cyclone intensification with specified forcing must be interpreted

carefully.
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After 24 hours in Fig. 24 it can be seen that Q increases for
experiments 4A and 5B1, but has leveled off in experiment 5Al. This is
probably related to the large scale vorticity field. As the diabatic
forcing becomes active, radial inflow develops in layers 0 and 1 which
concentrates the background vorticity, which then spins up the vortex.
As the vortex spins up, the radial circulation increases resulting in
larger diabatic forcing. Since the large scale vorticity is less in
experiment 5A1, it is then more difficult for the vortex to intensify by
this process. In contrast to this, after about 72 hours when the
diabatic heat source in experiment 5Bl is established, the vortex
develops more rapidly than for experiments 4A or 5A1 as was seen in Fig.
23.

In addition to the intensification rate, the structure of the
tropical cyclones differed for each of the experiments discussed in this
section. Fig. 25a shows the radial structure of the azimuthally
averaged layer 1 tangential wind at 96 hours for each experiment. In
Fig. 25a it can be seen that the vortex in experiment 5Al is less
intense than for the other experiments (smaller maximum tangential wind)
but is also much smaller than the other two vorticies. Experiments 4A
and 5B1, however, appear to produce the same size vorticies, although
experiment 4A produced a more intense storm by 96 hours. The fact that
the storms in experiment 4A and 5B1 are the same size is probably a
result of both the larger diabatic forcing in experiment 4A (shown in
Fig. 24) and the larger background vorticity of experiment 5Bl. Since
the diabatic forcing in experiment 4A was larger before 96 hours, the
radial inflow in layers 0 and 1 out to about 800 km was larger (not

shown) so that the vortex should have spun up more. Since the
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background vorticity was larger in experiment 5B1, however, not as much
inflow was needed to spin up the storm, so that the resulting vorticies
were about the same size by 96 hours. In contrast to this, both the
diabatic heat source after 24 hours and the background vorticity were
smaller for experiment 5Al so that the vortex was considerably smaller.

Part of the difference in the vortex structure shown in Fig. 25a
can be accounted for simply by adding a symmetric vortex to the
different basic state wind fields. Experiment 5A1 had westerlies to the
north and easterlies to the south which subtracts from the tangential
wind, while the opposite was true for experiment 5Bl. The basic state
does not, however, directly change the radial wind field. 1In order to
get a better idea of how large an area is affected by the tropical
cyclones, the azimuthally averaged Tayer 0 radial wind fields at 96
hours for each experiment are shown in Fig. 25b. The structure of the
radial winds for each experiment is similar to the tangential wind
structure. In Fig. 25b it can be seen that the radial wind for
experiment 5A1 is weaker at all radii than for experiments 4A or 5B1
which indicates that this storm is considerably smaller. This figure
also shows that at 96 hours, the radial wind in layer 0 outside of about
200 km is still slightly less for experiment 5B1 than for 4A, which is
probably a result of the stronger diabatic heating in experiment 4A as
discussed previously.

Figure 26 shows the two-dimensional structure of the layer 1 wind
and geopotential height fields at 96 hours for experiments 4A, 5Al and
5B1. Despite the presence of the basic state winds, the tropical
cyclones which develop are quite symmetric near the center for

experiments 5A1 and 5B1. This lends some support to the arguments used
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to explain the intensification rates of the storms which were based on
results from an axisymmetric model. This figure also shows that the
vortex for experiment 5A1 is smaller than for 5Bl or 4A, as was apparent
in Fig. 25.
5.2 The Effect Of Horizontal Wind Shear
In The Upper Layer

In this section, the simulations presented in the previous section
are repeated except that the basic state wind appears only in the upper
layer. The basic state wind is again given by (4.10) with Ui set to
-71.5 ms'1 or 7.5 ms-1 in layer 2 for experiment 5A2 or 5B2 respectively,

and the vortex given by (4.1) with v =10 ms ™1

and rm=100 km is added in
layers 0 and 1. Analogous to experiments 5A1 and 5B1, the basic state
wind in the upper layer has anticyclonic or cyclonic shear in the region
of the vortex for experiments 5A2 and 5B2 respectively. A1l other
parameters are identical to those used for experiment 4A so that
experiments 4A, 5A2 and 5B2 can be compared.

Fig. 27 shows the minimum surface pressure deviation and the
maximum layer 1 wind speed for experiments 4A, 5A2 and 5B2. From this
figure it can be seen that the tropical cyclone in experiment 5B2
intensifies the most rapidly both in terms of minimum surface pressure
and maximum layer 1 wind speed, while experiment 5A2 intensifies the
slowest. By the end of the 96 hour integration, the storm in experiment
5B2 has a minimum surface pressure deviation about 10 mb lower and
maximum wind speed about 5 ms-1 higher than for experiment 4A. This
effect of the basic state wind in the upper layer appears to be

contradictory to some observational studies of tropical cylcones. For

example Yanai (1964) and Colon and Nightingale (1963) have indicated
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that a preexisting upper level anticyclone might be favorable for
tropical cyclone intensification. In the model simulations, however,
the storm in experiment 5A2 which had an anticyclonically sheared basic
state wind above the vortex intensified slower than experiment 4A, while
the storm in experiment 5B2 with a cyclonically sheared basic state wind
intensified more rapidly. This difference in the intensification rates
in the three simulations appears to be related to two different
processes which are discussed below.

The first process is related to the convective stability parameter
n. As shown in (2.44), n is a function Ao’ M andl\z, where Al is a
constant for all the simulations. Initially, AO is the same for each
simulation since it is set to a constant value of 10 K. The initial
value of A,, however, is proportional to h2 which is different for each
simulation. Since the nonlinear balance equation was used to determine
the mass fields, ¢2 is zero, positive\or hegative above the vortex in
experiments 4A, 5A2 or 5B2 respectively. The ¢1 fields are the same for
each experiment since the wind field in layer 1 is the same, so that h

2
is larger in experiment 5A2 and smaller in experiment 5B2 (since h, is

2
proportional to ¢2—¢1). This indicates that initially n is the largest
for experiment 5B2 and the smallest for experiment 5A2 in the region of
the vortex. At the initial time, the average value of n inside a radius
of 200 km was found to be 1.51, 1.31 and 1.72 for experiments 4A, 5A2
and 5B2. Since n is larger for experiment 5B2 it should be expected
that this storm would intensify more rapidly since this implies that Q
will be larger when the boundary layer vertical velocity field develops.

The decreased value of h, above the vortex in experiment 5B2 is

2
analogous to a colder temperature in the upper level. The increase in n
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then simulates the decreased vertical stability caused by the colder
temperatures aloft. In the real atmosphere, an upper level cyclonic
region implies colder temperatures aloft while an upper Tlevel
anticyclonic region implies warmer temperatures aloft. If a developing
tropical disturbance moves under an upper level anticyclone, the warmer
upper level temperatures might then suppress the convective activity.
From this point of view, a preexisting upper level anticyclone might not
be favorable for intensification if this stabilizing effect dominates
over any possible dynamic effects.

The larger initial values of n in experiment 5B2 probably account
for its more rapid initial development. As this tropical cyclone

intensifies, however, h_, increases because of the diabatic forcing so

2
that after about 12 hours, the average value of n inside a 200 km radius
is smaller than for the other two experiments. In Fig. 27 the storm in
experiment 5B2 continues its rapid intensification until about 36 hours,
and intensifies further after 72 hours. This continued intensification
appears to be related to the structure of the upper layer wind field.
Fig. 28 shows the wind and geopotential height fields in layer 2 at 72
hours for experiments 4A, 5A2 and 5B2. For experiment 4A, a cyclonic
region has formed in the upper layer neaf the vortex center, as
discussed previously, with a large symmetric anticyclonic region away
from the center. A symmetric cyclonic region can also be seen near the
vortex center for experiments 5A2 and 5B2, but the anticylconic regions
away from the vortex center are highly asymmetric. In experiment 5A2,
the outflow has interacted with the basic state wind so that two closed

anticyclonic vorticies have formed to the northeast and southwest of the

vortex. In experiment 5B2, two large outflow jets have formed to the
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northwest and southeast of the vortex center. It appears that the
outflow jets in experiment 5B2 export mass far from the system which
allows the surface pressure to decrease so that the intensification rate
js accelerated. For experiment 5A2 it appears that the outflow
structure is less favorable for the export of mass because of the closed
anticyclonic vorticies so that the intensification rate is reduced.
These results show that the structure of the outflow region of a
tropical cyclone is very sensitive to the large scale environment.
These results also show that the upper layer structure can affect the
intensification rate of the storm, with some indication that the
establishment of outflow jets is favorable for development.

Although the upper layer flow shown in Fig. 28 was highly
asymmetric, the Tower layers remained quite symmetric, so that
azimuthally averaged winds are representative of the entire wind field.
Fig. 29 shows the azimuthally averaged layer 1 tangential wind and layer
0 radial wind at 96 hours for experiments 4A, 5A2 and 5B2. In this
figure it can be seen that the basic state wind in experiment 5B2 has
caused the Tayer 1 vortex to be more intense and also somewhat larger.
The boundary layer inflow also is stronger in both the inner and outer
regions of the storm for experiment 5B2.

Although the amplitudes of the tangential and radial wind for each
experiment shown in Fig. 29 are different, the radial structure is quite
similar. This indicates that the basic state wind in the upper level
primarily affects the intensifictaion rate of the tropical cyclones, but
does not have a large effect on the horizontal structure. This is
somewhat different from the results in the previous section which

indicated that the basic state in the lower levels affects the
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intensification rate and the horizontal s{ructure of the wind field in

the Tower layers.
5.3 Interaction With A Trough In The Upper Layer

Tropical cyclones typically form in low latitudes and move towards
the west under the influence of the tropical easterlies (e.g. Gray,
1979). After an initial westward track storms often turn towards the
north, and sometimes recurve toward the east as they approach the mid-
latitude westerlies. Tropical cyclones which move towards the mid-
Tatitude westerlies often interact with synoptic scale disturbances
which occur in this region. In the previous two sections it was shown
that the large scale zonal wind field affected the intensification rate
and the structure of a stationary tropical cyclone on an f-plane. In
this section results are presented from an experiment (5C) with a
somewhat more realistic environment which contains an idealized upper
level trough on a g-plane.

The initial conditions used in experiment 5C are identical to those
used in experiment 4C, except that an area of positive vorticity is
added to layer 2 in the northern part of the domain. Similar to
experiment 4C, the basic state zonal wind is given by (4.10) with Ui
equal to -7.5 ms'1 for all layers, so that the southern half of the
domain contains easterlies, and the northern half contains westerlies.
The symmetric vortex given by (4.1) with Vm=10 ms_1 and rm=150 km was
added to layers 0 and 1 at x=2200 km and y=1400 km on a 3600 by 3600 km
domain. In order to simulate an upper level wave, a symmetric vortex

given by



Vo=V (;—m) exp % [1- (%n-) 3 (5.3)

was added in the upper layer at x=1800 km and y=2250 km. In (5.3), the
maximum tangential wind Vm was specified to be 7 ms“1 at a radius g of
450 km. The vortex was positioned in the part of the domain where the
basic state wind is from the west so that a wave-like disturbance
results.

Fig. 30 shows the layer 2 wind and geopotential height fields for
experiment 4C and 5C at 0, 24, 48 and 72 hours. As mentioned
previously, the initial conditions are identical for each experiment
except for the added upper layer disturbance in experiment 5C, which can
be seen in Fig. 30. The position of the layer 1 streamfunction minimum
associated with the tropical cyclone is indicated in Fig. 30 by the
synoptic symbol for a hurricane. At t=0, the layer 2 wind field in
experiment 4C consists of the zonal flow, while there is a trough to the
northwest of the storm in experiment 5C. By 24 hours, the storms in
each experiment have moved towards the west and have begun to develop.
For both cases a small region of cyclonic rotation has formed near the
storm center with some evidence of an anticyclonic vortex towards the
northeast. By this time, the trough in experiment 5C has moved toward
the east so that the tropical cyclone is just to the east of the trough
axis. At 48 hours, both storms have intensified further (the maximum
layer 1 wind speed is about 30 ms'1 for both experiments) and the
outflow patterns have become more well defined. At this time it can be
seen that the structure of the outflow for each storm is quite
different. 1In experiment 4C, the initial outflow is towards the north,

but rapidly acquires anticyclonic curvature resulting in a closed

\



152

EXPERIMENT 5C

EXPERIMENT 5C
LAYER 2 t=Ohrs
3600

LAY =
3600 ER 2 t=24nhrs

2400
3
X
5
1200+
° c 1200 240 3600 -
0 .
X(KM) 0 000 ; 1200 X(KM) 2400 3600
UG MR 1000 T8 1000 CONTRA INTERNAL @ 1090 aaatiam gt CONIOUR FAGR 000000 TR 40.008  CONTAM laMAVAL @ 18.000 —ye
EXPERIMENT 4C EXPERIMENT 4C
LAYER 2 B LAYER 2 H
3600 120 brs 3600 t=24hrs

Y(KM)

0
0
0 1200 X(KM) 2400 3600 1200

v_reat 01
" N CmtaR WReVK @ 0.0 waeian Kerm (miem om0 000 19 e e

X(KM) 2400 3600

Figure 30. The layer 2 wind and geopotential height fields at
0, 24, 48 and 72 hours for experiment 5C (upper) and
4C (lower). The height contour interval is 10 m and
the Tayer 1 position of the tropical cyclone is indi-
cated by the synoptic symbol for a hurricane.



153

EXPERIMENT 5C EXPERIMENT 5C
LAYER 2 t=48hrs LAYER 2

3600

. 0
o] 1200 X(KM) 2400 3.600 0 1200 X(KM) 2400 3600
IR TR W0 Te e (MO WM W 10 400 Smartme Ko v CHMIOM AN 0008 T8 WG  CENOU INTINVAL & 19,000 i Koren
EXPERIMENT 4C EXPERIMENT 4C
LAYER 2 = 48hr LAYER 2 t= hr
3600 - 8 -S 3600 7ghrs

T —

2400 3600 0 1200

TOIGR PR 2.0 T8 TEME  CONIAM INNRVM O 1000

X(KM) 2400 3600

.
CONIGA PN M OE T8 .80 CEIRA ISTImA @ 1000t marns Hcren

X(KM)

*_noe
mndn Form

Figure 30. (Continued)



154

anticyclonic vortex to the east of the storm center. It also appears
that much of the mass eventually flows towards the south and connects
with the easterly current. In experiment 5C the initial outflow is also
towards the north, but then turns towards the east, apparently in
response to the upper level trough. Because of this, much of the mass
flows towards the north and northeast and connects with the westerly
current. At 72 hours, the outflow structure is similar to that at 48
hours as the trough in experiment 5C continues to move towards the east.
At this time it appears that the outflow in experiment 4C has acted to
increase the easterly wind to the south of the storm center while the
outflow has increased the westerly wind to the northwest of the storm
center in experiment 5C.

The above results indicate that mid-latitude disturbances can
influence the structure of the outflow layer. In the current case, the
upper level trough acted to change the direction of the main branch of
the outflow. As shown by Chen (1983), the structure of the outflow from
tropical cyclones is highly variable. These results indicate that a
large part of the variability can probably be explained by considering
differences in the large scale environment in the upper levels.

The upper level trough in experiment 5C also had an effect on the
track of the tropical cyclone. Fig. 3la shows the difference between
the position of the layer 1 streamfunction minimum for experiments 5C
and 4C. In this figure, a positive Ax or Ay indicates that the storm in
experiment 5C was east or north of the storm in experiment 4C. The
actual position of the storm in experiment 5C could be found by adding
Ax and Ay at any given time to the position of the storm in experiment

4C shown in Fig. 16. This figure shows that in the first 24 hours, the
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upper level trough had almost no influence on the position of the storm.
After 24 hours, the storm is deflected towards the south as the trough
axis moves to the east of the storm center. Since the storm in
experiment 5C is further to the south, it moves more rapidly towards the
west since the zonal wind is stronger towards the south. After about 60
hours, the storm in experiment 5C begins to move back towards the y
position of the storm in experiment 4C and by 75 hours is further to the
north. The storm in experiment 5C remains north of the storm in
experiment 4C until about 116 hours when it again is further to the
south, It is interesting that the y position of the storm in experiment
5C appears to oscillate around the y position of the storm in experiment
4C after 72 hours when the trough is far to the east. This indicates
that the track of the vortex appears to be stable. In experiment 5C,
the storm was deflected from its track by the upper level trough, but
returned to its original north-south position after the trough had
passed. It also appears that the storm "overshot" its original position
so that its track oscillates around the track of the storm without the
upper level trough.

The north-south oscillation of the storm track induced by the upper
layer trough is somewhat different than the classical trochoidial
oscillation described by Kuo (1969) and Jones (1977a). The trochoidial
oscillation appears to be caused by the asymmetries in the frictional
forces which result from a vortex moving through a uniform current, and
typically has a period of less than about 20 hours. In Fig. 3la it can
be seen that Ay has a period of almost 90 hours so that it is probably
related to a different process. In Fig. 4 it can be seen that none of

the normal modes of the model have a period near 90 hours. This



157

indicates that this oscillation is probably related to a nonlinear
interaction of the vortex with the large scale environment. Further
study is necessary to better explain this result.

Although the upper layer trough in experiment 5C had a large effect
on the structure of the outflow layer and some effect on the storm
track, it had only a small effect on the storm intensity. Fig. 31b
shows the difference between the minimum surface pressure deviations and
the maximum layer 1 wind speeds for experiments 5C and 4C. A positive
AVl or negative APS indicates that the storm in experiment 5C had a
lTarger maximum wind speed or lower surface pressure. In this figure it
can be seen that the minimum surface pressure deviation and the maximum
layer 1 wind speed are very well correlated so that either of these
parameters gives a measure of the difference in the intensity of the two
storms. Between about 12 and 48 hours it can be seen that the storm in
experiment 5C is slightly more intense when it is affected by the upper
level trough. After this time the storm in experiment 5C is slightly
less intense until about 60 hours when it again becomes slightly more
intense than the storm in experiment 4C. Until 84 hours, however, the

1 and

difference in the maximum layer 1 wind speed is less than 0.7 ms~
the minimum surface deviations are within 0.6 mb for the two
experiments. This indicates that the effect of the upper level trough
on the intensification rate is quite small. The only significant
difference between the two simulations occurred between about 84 and 120
hours when the storm in experiment 4C became about 2.5 mb deeper and had
a maximum wind about 3 ms'1 stronger than the storm in experiment 5C.

Since the only difference between these two simulations was the presence

of the upper level trough, this difference in intensity must be related
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to this feature, although the storm was far from the trough by this
time. There is some indication that this difference might be related to
the difference in the storm tracks since APs and AVl are fairly well
correlated with Ay (with about a 4-5 hour time lag) during this time.

Observations of the influence of upper level troughs on tropical
cyclone intensification rates have been presented by several authors.
For example, Lewis and Jorgensen (1978) have presented an example of how
a baroclinic wave in the upper levels caused the rapid decay of a
tropical cyclone. These authors concluded that the vertical shear as
well as the upper level convergence suppressed the convection which then
caused the rapid decay of the storm. In their case, however, the trough
axis passed directly over the tropical cyclone. In the current
simulation the trough passed to the north of the storm so that the inner
cyclonic region of the storm was not strongly influenced. In addition
to this, the diabatic term Q in the model is largely dependent on the
vertical velocity at the top of the boundary layer. For this reason,
the effect of convergence and subsidence in the upper layer on the
cumulus convection may be underestimated with the current cumulus
parameterization scheme. This indicates that it may be necessary to use
a more complicated parameterization scheme to better simulate this
interaction.

In contrast to the above results, Sadler (1976) has presented
several examples of storms which intensified rapidly as they interacted
with upper level troughs. In most of the cases presented by Sadler, the
developing tropical cyclones typically had outflow jets towards the
equator until they interacted with a tropical upper-tropospheric trough.

After this time, the storms developed a second outflow jet towards the
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pole and intensified rapidly. This is somewhat similar to the results
presented in Fig. 30 which indicated that the upper level trough changed
the direction of the outflow channel. In the current simulation,
however, the storm Tost its outflow channel to the south when the
outflow channel to the north formed, which may explain why the intensity
of the storm was not affected. The results presented by Sadler appear
to be somewhat similar to the results from experiment 5B2 which did
intensify rapidly when two outflow channels formed.

The above discussion indicates that upper level troughs can either
increase or decrease the intensification rates of tfopica] cyclones.
The effect probably depends on the position of the storm relative to the
trough, and also possibly on the vertical structure of the trough. In
the results presented by Sadler, the trough was restricted to the upper
troposphere, while in the case presented by Lewis and Jorgensen, the
trough was a stronger baroclinic disturbance which extended through a
much deeper layer. Due to the crude vertical structure of the model the
results presented here are probably more representative of the influence

of a trough which extends through a deep layer.



CHAPTER 6
TROPICAL CYCLONE MOTION

Dynamical models have been used operationally to predict tropical
cyclone tracks since the development of the SANBAR model by Sanders and
Burpee (1968). The errors which occur in track prediction models can
result from inadequate model physics, lack of initial data and numerical
approximations. The original SANBAR model used the simple two-
dimensional nondivergent barotropic vorticity equation which was
initialized with the rotational part of a vertically averaged wind
field. More recently, primitive equation models have been developed for
tropical cyclone track prediction which have ranged in complexity from a
three-level model with specified heating (Harrison, 1973) to a 10-level
model with moving nested grids (Hovermale and Livezey, 1977). When
primitive equation models are used for track forecasts, the
initialization problem becomes more difficult than for the case of
balanced models. In addition to the lack of observations of the large
scale environment, it is difficult to specify initial mass and wind
fields which are consistent with each other so that spurious gravity
wave noise is not generated. This problem is even more difficult if the
model contains diabatic heat sources since these will be quite large
near the tropical cyclone center and will excite large amplitude gravity
waves if the model is not initialized carefully. Much progress has been
made in this area since the introduction of nonlinear normal mode

initialization procedures by Machenhauer (1977) and Baer and Tribbia
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(1977). Since this time these techniques have been used extensively in
global prediction problems (e.g. Daley, 1979;'Temperton and Williamson,
1979). In this chapter the application of nonlinear normal mode
initialization to the tropical cyclone track prediction problem is
discussed. |

Although more complicated models have been developed, the SANBAR
model still remains competitive with .the newer models and also with
statistical techniques (Goldenberg, 1982). One reason for this is
probably the lack of good initial data in the region of a tropical
cyclone. It seems possible that the addition of complicated model
physics which can not be initialized correctly might not add to the
accuracy of a model forecast. The success of the SANBAR model also
indicates that tropical cyclone motion is largely governed by vorticity
advection. This will be verified in section 6.2 by comparing primitive
equation model track forecasts to nondivergent barotropic model
forecasts.

In most operational tropical cyclone track models, the large scale
fields are analyzed and a symmetric vortex is added which represents the
tropical cyclone circulation. In some cases, the size of the vortex is
close to the grid spacing of the model so that the details of the vortex
circulation are considered to be unresolvable (Sanders et al., 1975).
For this reason, the form of the added symmetric vortex js the same for
each forecast. When coarse resolution is used, computational dispersion
which occurs in finite difference models can be severe at times. The
interface between nested grids also can generate numerical noise. In
order to control this numerical noise, spatial filters or horizontal

diffusion terms are sometimes added. In section 6.3 the effect of the
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vortex size, horizontal resolution of the model and the addition of
horizontal diffusion on a tropical cyclone track are investigated using
the nondivergent barotropic model.
6.1 The Effect Of Nonlinear Normal Mode Initialization
On A Tropical Cyclone Track Forecast

In section (3.5), the nonlinear normal mode initialization
procedure introduced by Machenhauer (1977) was described. In this
section, the effect of this initialization procedure on a tropical
cyclone track forecast is investigated. For this purpose, experiment 4C
which considered the development of a tropical cyclone in a nonresting
basic state on the g-plane is used as a control. The simulation in
experiment 4C is stopped after 48 hours and the dependent variables are
used as initial conditions for the initialization experiments. It is
then possible to determine the effect of the initialization by comparing
the new simulation to the previous results.

In the nonlinear normal mode initialization procedure, the
amplitudes of the Rossby waves and the inertial oscillations associated
with the constant depth boundary layer are not changed, while the
gravity wave amplitudes are diagnosed as described in section 3.5.
Since the boundary layer modes are not changed, the boundary layer
inflow is only slightly changed by the initialization procedure. This
indicates that the diabatic heat source wi]} still be active after the
initialization procedure is applied. In the real atmosphere, however,
it is doubtful that this boundary layer inflow could be measured
accurately, especially in the region of a tropical cyclone. This is a
weakness of the current model which stems from the assumption of the

constant depth boundary layer. As discussed previously, this assumption
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changes the normal modes of the model. If the depth of the boundary
layer were allowed to vary, the two boundary layer modes would be
replaced by an additional Rossby mode and two more gravity modes. If it
were necessary to relax this assumption, however, the arguments for
using the incompressible fluid system would probably be less valid.
Temperton and Williamson (1979) have shown that in a fully stratified
model, Machenhauer's initialization scheme is capable of producing
boundary layer inflow. Thus, although the boundary layer inflow in the
current model is associated with the slow modes, the results are
probably representative of what would occur in a more general model
where the boundary layer inflow is associated with the fasf modes.

Since the initial data to be used in this experiment comes from a
previous simulation, the Ab field is known exactly at the initial time.
In a simulation which used real data, this would not be the case since
the initial moisture distribution would not be known. In order to keep
the experiment as simple as possible, the Ab field was not changed in
the initialization procedure.

As described in section 3.5, the diagnostic relation for the
gravity wave amplitudes is solved iteratively. Fig. 32 shows the amount
of energy in the external and internal gravity waves (calculated as
described in section 4.1) after each iteration. In this figure the i on
the x axis indicates the amount of energy fn these modes before the
initialization procedure is applied. This figure shows that the
iteration converges quite rapidly. After one iteration, the energies of
the internal gravity and external gravity modes are at about 92.7% and
99.5% of their final values. Leith (1980) has shown that on the f-

plane, the first pass through Machenhauer's initialization scheme is
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Figure 32. The energy of the internal gravity waves (IG) or external
gravity waves (EG) after each iteration of nonlinear nor-
mal mode initialization applied to experiment 4C at 48
hours. The point i on the x-axis indicates the energy in
the modes before the initialization is applied.
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analogous to applying quasi-geostrophic theory. The fast mode part of
the solution which is diagnosed in this case is then probably fairly
close to the ageostrophic motion which would be diagnosed using quasi-
geostrophic theory, except near the center of thé vortex where the
quasi-geostrophic theory breaks down.

In addition to the nonlinear normal mode initialization, two other
initialization procedures were applied. The first of these was a Tinear
normal mode initialization procedure which simply sets the amplitudes of
the fast modes to zero at the initial time. The second initialization
procedure is based on the nonlinear balance equation. For this case it
is assumed that the divergence and the time tendency of the divergence
are initially zero. Thus, the velocity potential for each layer is set
to zero and the mass field is calculated from the streamfunction using
the nonlinear balance equation (4.4). For consistency it must also be
assumed that the layer 0 and 1 streamfunctions are the same since the
pressure gradient forces are the same for these two layers.

The initialization scheme which uses the nonlinear balance equation
to diagnose the mass field from the streamfunction can be generalized to
include initial vertical motion. In the nonlinear balanced model, the
vertical velocity is diagnosed from an w-equation, analagous to the w-
equation used in quasi-geostrophic theory. Due to the extreme
complexity of the w-equation in the nonlinear balanced model, however,
the complete w-equation is rarely used in practice. For this reason,
the simplier approach of using a nondivergent initial wind field is used
here. The method used here has been used for the initialization of

operational track prediction models (e.g. Harrison, 1973).
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Fig. 33 shows the time evolution of the external and internal
gravity wave energy for each of the initialization procedures described
above. The solid Tine in this figure shows the gravity wave energy for
the control experiment 4C. 1In this figure it can be seen that the
Tinear initialization procedure causes a large amount of spurious
gravity wave energy to be excited, even though the initial gravity wave
amplitudes were set to zero (at t=48 hours). This is because the
diabatic forcing and the nonlinear interaction of the Rossby modes
rapidly produce gravity waves when the model integration begins. This
is similar to the results presented by Williamson (1976) which showed
that linear normal mode initialization was not capable of suppressing
gravity wave oscillations in a shallow water equation model.

In constrast to the linear normal mode initialization, the
nonlinear initialization did not produce much spurious gravity wave
energy. The energy of both the internal and external gravity waves
remained very close to the gravity wave energy in experiment 4C which
was not initialized at t=48 hours. This indicates that the nonlinear
normal mode initialization procedure suppressed the artificial
generation of gravity wave energy during the 72 hour simulation.

The initialization procedure based on the nonlinear balance
equation did not generate as much gravity wave energy as the linear
initialization, but did introduce some errors in the gravity wave
amplitudes. As can be seen in Fig. 33, this initialization procedure
reduced the internal and external gravity wave energy by 56% and 19%
respectively when applied at 48 hours. After this time the internal
gravity wave energy rapidly increases and after 9 hours (at 57 hours)

has exceeded the internal gravity wave energy in the control experiment.
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This rapid increase in the internal gravity wave energy is probably
related to the diabatic heat source. Since the initialization procedure
assumes that the divergence is zero, the vertical velocity at the top of
the boundary layer is zero so that the diabatic term Q is zero. Once
the integration begins, the boundary layer inflow rapidly redevelops and
Q returns to a value close to what it was before the initialization was
applied. As discussed previously, greater amounts of gravity wave
energy will be excited by a heat source which varies rapidly in time.
Thus, the assumption of a nondivergent initial wind field results in a
diabatic heat source which changes rapidly in time as the divergence
field increases since the diabatic heat source is parameterized in terms
of the boundary layer vertical velocity. This then causes the energy of
the internal gravity waves to increase rdpid]y as the model integration
begins.

After about 24 hours (by 72 hours in Fig. 33), the model appears to
have adjusted to the nonlinear balance initialization and the energy of
both the external and internal gravity waves remain fairly close to the
corresponding energies in the control experiment. In terms of the
gravity wave energy produced it then appears that nonlinear normal mode
initialization gave the best results while the nonlinear balance
initialization introduced slightly larger errors and the linear balance
initialization excited much larger amounts of spurious gravity wave
energy.

Although the amount of gravity wave energy in a model simulation
has an effect on the solution, it is probably not a primary concern of
forecasters who use operational tropical cyclone track models. Fig. 34

shows the track errors which are introduced by each of the



169

20 — T T r -
/'/ />~.\/
- . \
E ey _;4..--"‘ I/ ]
: O NN TN ——— . e & - — /
< ~~——_ y;
\ — ———
= NN~
-20 1 1 1 L 1
o} 12 24 36 48 60 72
t(hrs)
20 [ T 1 T i
/ ——-./--\ 4
€ -~ e
-g O — e T -/-'ko- aaa®ss. Lesatsasse’ A; """
> _. — TN\
< \\\—/,’\/\___,__./ \>.\
\
...20 1 1 1 1 | N
0 12 24 36 48 60 72
t{hrs)
. 1 T T T T //
£ 20t ye
= — ./‘- /
e / \———"\ / \.
‘h //\ /-—-"\-/ -\),\ ,/\.
5 10} // N / \_.
% / o~ \ / »
8 / ./'\./\\../ \v/
/ r
Ob"/ A 1 ettt et L0 aaet®e, gttt 1
0 12 24 36 48 60 72
t(hrs)
Nonlinear Linear Nonlinear
*++++++ Normal Mode ——*=Normal Mode ——=—~Balance Equation
Initialization Initialization Initialization

Figure 34. The east-west (Ax), north-south (Ay) and total position
error introduced by three initialization procedures
applied to experiment 4C at 48 hours.



170

initialization procedures described above. These errors were calculated
by comparing the tracks of the tropicai cyclones in the initialization
experiments to the track in the control experiment. In this figure a
positive Ax or Ay indicates that the initialized storm was east or north
of the storm in the control experiment and the position error is the
straight 1ine distance between the two storms. This figure shows that
in the first 48 hours, the nonlinear balance initialization procedure
introduces the largest position errors while the nonlinear normal mode
initialization results in the smallest errors. These errors appear to
be related to the assumption of a nondivergent initial wind field for
the balance equation initialization. Anthes and Hoke (1975) have shown
that the inclusion of divergence in a barotropic model causes a tropical
cyclone to track more towards the north. This also appears to be the
case in the initialization experiments since after the divergence was
set to zero in the balance equation initialization procedure, the storm
is further to the south than the control storm (Ay becomes negative in
Fig. 34). Since this storm is further to the south, it also moves more
rapidly towards the west since the storm is in a mean easterly flow
which increases towards the south at the initialization time. For the
nonlinear normal mode initialization procedure, the initial wind field
is divergent so that these errors do not occur, as can be seen in Fig.
34,

When the linear normal mode initialization procedure is applied,
the gravity wave amplitudes are set to zero and the divergent part of
the wind in the main fluid layers is reduced. For this case, however,
the divergent part of the wind in the boundary layer is not affected

since this is associated with the boundary layer modes which are
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considered slow in the current model formulation. This indicates that
the diabatic forcing was.still active after this initialization
procedure was applied. Thus, $1th0ugh the divergent wind in the main
fluid layers was reduced, it very rapidly increases after the simulation
begins due to the diabatic term so that the track errors are not as
large as for the balance initialization where both the divergent part of
the wind and the diabatic term are set to zero.

In addition to errors in the tropical cyclone track, the
initialization procedures also introduced errors in the storm intensity.
Fig. 35 shows the time evolution of the errors in the minimum surface
pressure and maximum layer 1 wind speed for each of the initialization
procedures. These errors were calculated using the control experiment
as a reference where a negative APs or positive AVl indicates that the
initialized storm had a Tower minimum surface pressure or larger maximum
wind speed. This figure shows that the nonlinear normal mode
initialization procedure resulted in the smallest errors in the
intensity of the storm both in terms of surface pressure and wind speed.
For the nonlinear balance equation initialization, the storm was less
intense than the storm in the control experiment for the first 27 hours
after the initialization procedure was applied, and also between about
39 hours and 63 hours. The initial difference in the storm intensity
was probably caused by the effect of this initialization procedure on
the diabatic forcing term as discussed previously. This indicates that
it may be advantageous to initialize a model with a nonzero diabatic
forcing.

Fig. 35 also shows that the linear normal mode initialization

procedure has a large effect on the minimum surface pressure of the
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storm. After this procedure is applied, the minimum surface pressure is
6.2 mb lower than in the control experiment. This is because near the
storm center, the geostrophic approximation is not very accurate (at the

1 at a radius

initialization time the maximum wind speed is about 30 ms~
of 85 km), while the Rossby modes in the model are near geostrophic
balance since they are based on the linearized equations. Thus, a
vortex which is in approximate gradient balance can not be represented
by Rossby modes alone, but rather projects onto both gravity and Rossby
modes. The linear initialization procedure then causes some distortion
near the center of the vortex when the gravity modes are set to zero.
As soon as the time integration begins, the surface pressure increases
very rapidly which indicates that the vortex is adjusting back towards
an approximate gradient balance. This indicates that the linear normal
mode initialization procedure is not appropriate for the case when the
wind field is very far from geostrophic balance.

The results shown in Figs. 33-35 indicate that the nonlinear normal
mode initialization produces the smallest track and intensity errors,
and prevents the excitation of spurious gravity wave energy. The
largest position error which was introduced by any of the initialization
schemes, however, was only about 23 km after 72 hours, as can be seen in
Fig. 34. 1In contrast to this, the official 72 hour forecasts for storms
in the Atlantic basin have an average position error of about 600 km
(Neumann and Pelissier, 1981). Since the official forecast is based on
numerical track predictions as well as several other techniques, the
small gain in accuracy from the normal mode initialization procedure
might be considered negligible compared to the size of the current

forecast errors. In the comparisons between the initialization
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procedures, the initial data was obtained from a previous model
simulation so that the slow modes for the normal mode procedures and the
streamfunction for the balance equation procedure were known exactly.
In a simulation using real data, this would not be the case due to poor
data coverage so that the errors using both initialization procedures
would be much larger. Assuming that the results presented here also
applied to the case when realistic initial data was used, the nonlinear
normal mode initialization could lead to a reduction in track forecast
errors. Further studies using realistic initial data are required,
however, to better answer this question.
6.2 Tropical Cyclone Motion In The
Nondivergent Barotropic Model

The relative success of the SANBAR model introduced by Sanders and
Burpee (1968) indicates that the prediction of a tropical cyclone track
is somewhat easier than the prediction of intensity changes. The SANBAR
model is governed by the equation for the conservation of absolute

vorticity which in cartesian coordinates can be written as

L L, 3 3 _ 102
5%+ 5x (ug) + 5 (vz) + Bv = AV%r . (6.1)

In the above equation the second two terms from the left are the
advection of the relative vorticity by the rotational part of the wind
and the third term represents the advection of the earth's vorticity
where the conventional mid-latitude g-plane approximation has been made.
The term on the right side is a horizontal diffusion term which is
sometimes added to crudely simulate atmospheric diffusion and has also

been used as a numerical filter. In (6.1) it is assumed that the wind
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field is nondivergent so the horizontal wind components u and v and the
relative vorticity z can be expressed in terms of a streamfunction ¢ as

follows:

(6.2)

In this section and section 6.3, examples of the motion of a vortex
motion governed by (6.1)-(6.2) will be presented. These equations were
solved on a doubly-periodic domain using the Fourier-Galerkin method
described in chapter 3 for the primitive equation model. Unless
otherwise indicated, all of the simulations were run on a 3600 by 3600
km domain with 36 Fourier modes in each direction using a three minute
time step.

As a simple test of the nondivergent barotropic model, a symmetric
vortex was added to a zonal flow and the model was integrated for 72
hours. The form of the vortex is given by

V= ?—Tﬁﬂﬁm{ (6.3)
+ r/r'm)2
where the maximum tangential wind Vm occurs at the radius T The
vorticity profile for the above vortex is given by

av 2

: —,.—mﬂ [1+(r/eg)?] . (6.4)

The vortex profile given by (6.3) was chosen since the corresponding

vorticity profile is always positive and the tangential wind profile is
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similar to solid body rotation inside the radius of maximum wind. The
zonal wind profile used is the same as that Which was used in experiment

4C which is given by

u=U sin (6.5)

—Ir
« kf

with U equal to -7.5 ms"l. This zonal wind profile has easterlies in

the southern half of the domain and westerlies in the northern half.

The vortex given by (6.3) with Vm=30 ms_1

and rm=80 km was centered at
x=2200 km and y=1400 km and the model was run without diffusion (A=0).
In the remaining part of this chapter, this simulation will be referred
to as experiment 6A.

Fig. 36 shows the wind field at t=0 and t=72 hours for the
simulation described above, where only a portion of the domain is
displayed. Also shown in this figure are the 24 hourly positions of the
streamfunction minimum associated with the vortex. 1In this figure it
can be seen that the vortex track is similar to the track of the
tropical cyclone in experiment 4C which is shown in Fig. 16. The motion
of the vortex in the nondivergent barotropic model appears to be a
combination of the effect of the mean flow and the g-effect. Initially
the track of the vortex is towards the west which is a result of the
mean flow. The g-term in (6.1) also initially causes the vortex to move
towards the west since Bv is acting to decrease the vorticity to the
east of the vortex and increase the vorticity to the west of the vortex.
As the integration continues, however, the vortex begins to turn towards
the north. This turn towards the north can be explained by considering
the effect of the advection of the earth's vorticity on the mean flow.

Since gv is acting to reduce the vorticity to the east of the vortex, it
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is tending to induce anticyclonic motion, while it is increasing the
vorticity to the west of the vortex and thus inducing cyclonic motion.
The induced anticyclonic motion to the east and cyclonic motion to the
west both result in a northward flow through the center of the vortex
which causes the vortex to move more towards the north.

The motion of a vortex in the nondivergent barotropic model is
caused by the advection of vorticity.‘ For a vortex similar to the Tower
levels of a tropical cyclone, the relative vorticity can be two orders
of magnitude larger than the earth's vorticity near the vortex center
(e.g. Hawkins, 1968). Fig. 37 shows the relative vorticity field for
experiment 6A at t=0 and t=72 hours. In this figure, the relative
vorticity is normalized by the Coriolis parameter fo evaluated at 20°N
and the contour interval is three nondimensional units. Fig. 37 shows
that the relative vorticity of the vortex is a sharp isolated peak in an
otherwise fairly uniform field. This fiqure also shows that after 72
hours, the numerical approximation scheme has allowed the vortex to move
without much distortion of the relative vorticity maximum. This
indicates that a spectral model would probably give more accurate
results when applied to tropical cyclone track prediction than a finite
difference model which would distort the sharp peak in the vorticity
field. A finite difference model would distort the vorticity maximum
because finite difference methods slow down the short wavelength part of
the solution so that artificial dispersion is introduced into the
solution. In a spectral model this problem is greatly reduced as can be
seen in Fig. 37.

The track of the vortex in experiment 6A shown in Fig. 36 is

similar to the track of the storm in experiment 4C which was predicted




EXPERIMENT 6A EXPERIMENT 6A

ZETA = -

1700 t=0hrs 2800 ZETA 1—?2 hrs

n/\__—\.

1500 2300

3 5 ] K

x k4

b4 ¥

1300 2100

1100 \\ mttenend / 1900

1900 2100y 2300 2500 900 MO0 sy 1300 1500

Figure 37. The relative vorticity field associated with the vortex in experiment 6A at O and 72

hours. The vorticity is normalized by the Coriolis parameter f, and the contour
interval is 3 nondimensional units.

6.1



180

by the primitive equation model. This suggests that the prediction of
the track of a tropical cyclone is somewhat easier than the prediction
of intensity changes. In order to better assess the ability of the
nondivergent barotropic model to predict storm tracks, results from the
primitive equation model were used as initial data for the barotropic
model. The layer 1 streamfunction from experiment 4C at t=0, 30 and 60
hours was used to initialize the barotropic model and the resulting
tracks of the streamfunction minimum are shown in Fig. 38a. Although
there are errors in the resulting tracks, the barotropic model
successfully predicts the recurvature for each case.

Fig. 38b shows the time evolution of the position error for each of
the barotropic model forecasts. The largest error occurs at t=96 hours
for the simulation which was initialized using the layer 1
streamfunction from experiment 4C at t=0. This result is not surprising
since the maximum layer 1 wind speed increased from about 13 ms—1 to 36
ms'1 in the first 96 hours in experiment 4C, while the intensity of the
vortex in the barotropic model remained approximately constant. This
indicates that the intensification does affect the track of the storm.
For the barotropic model simulations, the errors are reduced when the
model was initialized at the later times. For the simulations
initialized at 30 and 60 hours, the position errors remained less than
150 km which indicates that the barotropic model can predict the track
of the tropical cyclone in the primitive equation model in some cases.
The simulation which was initialized at 60 hours had position errors
which remained less than 100 km. These errors are fairly small when
compared to average position errors of 400 km and 600 km at 48 hours and

72 hours respectively for operational forecasts (Neumann and Pelissier,
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1981). After about 60 hours the tropical cyclone in experiment 4C was
not intensifying rapidly, as can be seen in Fig. 16, so that the
barotropic model should be expected to give better results when
initialized at this time.

The above results indicate that the barotropic model is capable of
predicting the track of the tropical cyclone in the primitive equation
model, except during periods of rapid intensification. Although a more
complicated model would be capable of simulating intensity changes, it
is doubtful that the initial conditions could be estimated well enough
so that the model would correctly forecast intensity changes. Since the
intensification affects the storm track, the inclusion of improperly
initialized model physics could lead to larger track errors. This
implies that for operational track forecasts, numerical models with
simplified physics are probably appropriate.

6.3 The Effect Of Spectral Truncation, Horizontal Diffusion

And Vortex Size On Nondivergent Barotropic
Model Track Forecasts

The barotropic model simulations presented in the previous section
were all run with 36 Fourier modes in each direction on a 3600 km square
domain. The smallest wave in the model then has a wavelength of about
100 km which could be resolved in a grid point model with a grid spacing
of 50 km. The grid spacing used in operational models varies from about
150 km for the SANBAR model (Sanders et al., 1975) to about 60 km on the
smallest grid of the moveable fine mesh model (Hovermale and Livezey,
1977). In order to get an idea of the effect of horizontal resolution
on a track forecast, experiment 6A was run with spectral truncations of

6, 12, 24, 36 and 48 Fourier modes and the results for each of the
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simulations were compared. Although the changing of the resolution in a
spectral model has a different effect than for a grid point model due to
the differences in the convergence rates, these results should give some
idea of the minimum amount of resolution necessary in a track forecast.

Figure 39a shows the track of the streamfunction minimum associated
with the vortex in experiment 6A for each of the spectral truncations
and Fig. 39b shows the position errors compared to the M=47 simulation.
This figure shows that the position errors rapidly decrease as the
spectral truncation increases. The error for the M=35 case is not shown
in Fig. 39b since the vortex position differed by less than 2 km from
the M=47 case during the 72 hour simulation. This rapid reduction in
error with increasing resolution is a reflection of the rapid
convergence of the spectral method.

The upper right corner of Fig. 39a shows the grid spacing which
would be required in a finite difference model to resolve the smallest
wave for each of the spectral truncations. For the M=11 case the grid
spacing required is 164 km which is close to the resolution of the
operational SANBAR model. Since this case has a position error of about
200 km after 72 hours, it appears that this resolution is inadequate for
accurately predicting a tropical cyclone track. Since the phases of the
smallest wavelengths in a finite difference model are very inaccurate,
the position errors would probably be even larger than the errors
presented for the spectral method.

The tracks of the vortex shown in Fig. 39a were determined by
locating the position of the streamfunction minimum every three hours.
In track forecast models, the vortex position is usually determined by

locating either a streamfunction minimum or a vorticity maximum. In
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some cases the positions of the streamfunction minimum and the vorticity
maximum start to diverge during a numerical simulation. For the
simulations shown in Fig. 39, the position of the streamfunction minimum
and vorticity maximum at 72 hours differed by 89 km for the M=5 case and
by 9 km for the M=47 case. This indicates that inadequate model
resolution may result in a divergence of these two positions.

In all of the simulations shown in Fig. 39, the basic state wind
was represented exactly since it was specified to be proportional to
wave number one in the y-direction. The symmetric vortex which was
added to the zonal wind, however, was not represented exactly since the
Fourier series are truncated. In order to get an idea of how well the
vortex was represented for each of the spectral truncations, the
azihutha] average of the magnitude of the wind was calculated using a
coordinate system centered on the streamfunction minimum using the
inifia] conditions of each simulation. Fig. 40 shows that the vortex is
not represented very well for M=5. This is not surprising since the
smallest wavelength for this case is 720 km while the vortex has a
radius of maximum wind of 80 km. As the spectral truncation increases,
the solution converges quite rapidly and the difference between the M=35
and M=47 solutions were too small to be represented on the graph. The
errors in the representation of the vortex shown in this figure result
in the position errors shown in Fig. 39. If this experiment was
repeated using a finite difference model, the initial wind components
would be specified exactly at the grid points for any resolution so it
might be argued that the errors in the initial representation would be
smaller. Since finite difference models are based on approximating

functions by truncated Taylor series, the derivatives of the wind field
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at the grid points would have initial errors so that this argument
probably would not hold.

When dynamical models were first used for operational track
prediction after the introduction of the SANBAR model by Sanders and
Burpee (1968), it was necessary to use very coarse grid resolution
because of computing constraints. One solution to this problem is the
use of variable size grids which, as described by Elsberry (1978), is
appropriate for the tropical cyclone problem since the gradients in the
dependent variables are much larger near a storm than in the large scale
environment. Harrison (1973) designed a three-level primitive equation
model for tropical cyclone track prediction that has a fine grid which
follows the storm center. One problem with Qsing variable mesh grids is
that numerical noise is sometimes created at the grid interfaces. In
order to overcome this problem, it is often necessary to apply some type
of spatial smoother to the dependent variables. For example, Harrison
(1973) added diffusion terms of the form Av2( ) to the momentum
equations to filter numerical noise.

In order to determine the effect of diffusion on the track of a
tropical cyclone, experiment 6A was run with several different values of
A, where 1 is the horizontal diffusion coefficient in (6.1). Fig. 4la

3 4 5

shows the track of the streamfunction minimum for A=0, 10°, 10" and 10

mzs'1 for the case where the initial condition was the same as for

experiment 6A. Fig. 41b shows the position errors as a function of

time, where the case without diffusion (A=0) was used as a reference.

This figure shows that the track of the vortex is not sensitive to the

4 2 -1 5
ms

diffusion coefficient until it exceeds about 10 . When x=10
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mzs'l, the center of the vortex is about 150 km away from the vortex for

the case without diffusion after a 72 hour forecast.

In order to get a better idea of how the diffusion affects the
vortex, the azimuthally averaged value of the magnitude of the wind was
calculated using a cyclindrical coordinate system centered on the
streamfunction minimum associated with the vortex, as shown in Fig. 42.
The solid line in this figure is the vortex wind profile at the initial
time while the dashed lines are the profiles after 72 hours. This
figure shows that the diffusion term acts to reduce the wind speed of
the vortex, particularly near the vortex center. Fig. 42 also shows
that when A=105 mzs_l, the vortex is almost completely dissipated by 72
hours. It might be noted that in the model by Harrison (1973),
horizontal diffusion terms were added with a diffusion coefficient as
) mzs-l

large as 2.5 x 10 . From the results presented here it appears

that this value is too large.

4 2

In Fig. 42 it can be seen that when r=10% m?s™?

the maximum wind

1

speed associated with the vortex was reduced from about 30 ms ~ to 17

ms"1 and the radius of maximum wind increased from 80 km to 140 km
during the 72 hour simulation. In Fig. 41, however, it can be seen that
the position error for this case was Tess than 20 km throughout the
simulation. This indicates that the track of a vortex in the
nondivergent barotropic model is not sensitive to the wind structure
near the vortex center. In order to further investigate this result,
experiment 6A was run after a symmetric tangential wind perturbation
given by

r 2

V= Vm' (F;TO exp 2[1 -(FiT)] (6.6)
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was added to the vortex defined by (6.3). The perturbation given by

(6.6) with V_'=30 ms™! 1

. rm’=40 km and Vm'=5 ms r,'=300 km was added
to the vortex in experiment 6A to test the sensitivitiy of the model to
the vortex structure inside and outside the radius of maximum winds.
Fig. 43 shows the tangential wind profile for experiment 6A and the
resulting profiles after the two forms of the perturbation are added.
This figure shows that the first perturbation (referred to as experiment
6B) changes the wind profile inside 150 km while the second perturbation
(6C) changes the profile outside of about 100 km. In order to resolve
the vortex structure, experiment 6B was run with a spectral truncation
of M=47, while experiment 6C was run with M=35.

Fig. 44 shows the track of the streamfunction minimum for
experiments 6A, 6B and 6C and the position errors for experiments 6B and
6C where experiment 6A was used as a reference. This figure shows that
the track of the vortex is not very sensitive to the tangential wind
profile near the radius of maixmum wind, but is sensitive to the
tangential wind at larger radii. After the 72 hour simulation the
positionvérror was only about 25 km for experiment 6B even though the
maximum tangential wind of the vortex was increased from 30 ms'1 to over
50 ms'l. In contrast to this, the position error after 72 hours in
experiment 6C was about 150 km even though the tangential wind was

increased by a maximum of 5 ms ™1

at a radius of 300 km. These results
indicate that the inclusion of some information about the size of a
tropical cyclone in a model track forecast is probably more useful than
including information about the maximum tangential winds.

In summary, the results from the nondivergent barotropic model

indicate that except during periods of rapid intensification, this
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simple model can predict the track of a tropical cyclone in the
primitive equation model. These results also show that the horizontal
resolution of the model, large horizcntal diffusion and the structure of
the vortex outside the radius of maximum wind all affect the vortex
track. The above results imply that it might be possible to improve
operational model track forecasts by increasing the model resolution,
including some information about the vortex size, and in some cases by

making a more careful choice of the diffusion coefficient.



CHAPTER 7
SUMMARY AND CONCLUSIONS

The three-layer hurricane model developed by Ooyama (1969a) has
been generalized to three-dimensions and the resulting equations solved
on a mid-latitude g-plane using a spectral method. The derivation of
the model equations was presented in chapter 2 and the numerical
solution using the Galerkin method with Fourier basis functions was
discussed in chapter 3. Ooyama's model was used in this study because
it is perhaps the simplest model which can produce a vortex similar to
tropical cyclones observed in nature. The solution technique presented
here could also be used for more general three-dimensional tropical
cyclone models. The major difference between the current model which
considers incompressible fluid layers and a fully stratified model is
the treatment of the vertical structure. In a fully stratified model it
would be necessary to use a finite difference method or perhaps a finite
element method (Staniforth and Daley, 1977) in the vertical. Once this
was done, the resulting discretized equations could be solved using the
method presented in chapter 3. Assuming that the vertical
discretization was consistent with the original equations, the
separation of the vertical modes would be possible so that the governing
equations could be written in terms of the model normal modes. As shown
in chapter 3, this makes it possible to calculate the linear terms of
the model exactly and makes the use of the nonlinear normal mode

initialization scheme proposed by Machenhauer (1977) straightforward.
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Another advantage to writing the governing equations in terms of the
normal modes is that the total solution can be interpreted in terms of a
gravity wave part and a Rossby wave part where the amplitudes of each
part are known explicitly.

One disadvantage of the Fourier-Galerkin method used here is that
it is necessary to assume periodicity in both the east-west and the
north-south direction. This assumption limits the way the Coriolis
parameter can be treated in the model. With periodicity in the north-
south direction, it is inappropriate to use spherical geometry or even
an equatorial g-plane since the governing equations contain operators
which are not periodic for these cases. It is possible, however, to use
the mid-latitude g-plane as was described in chapter 2. Another
disadvantage to using a doubly-periodic domain for a tropical cyclone
simulation is that the gravity waves which are generated by the
convective forcing can not leave the domain. As described in chapter 4,
this is not a severe problem in the current model since the time scale
of the diabatic forcing is long enough that the amount of gravity wave
energy generated is much smaller than might be expected from the linear
theory of geostrophic adjustment. The periodic boundary conditions also
make it difficult to use real data for initial conditions. This is not
a problem in this study since the model was primarily designed as a
research tool, but it is doubtful that this method could be used in an
operational model.

As mentioned in the introduction and in chapter 3, more general
boundary conditions could be included by using the tau method described
by Gottlieb and Orszag (1977). This method of solution is similar to

the method used here except that Chebyshev polynomials are used in place
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of the Fourier basis functions. For the tau method extra degrees of
freedom are added so that the entire series satisfies the boundary
conditions rather than each term of the series as in the Galerkin
method. This method requires more computational work, hcwever, since
the Chebyshev polynomials oscillate rapidly near the boundaries. This
makes it necessary to use semi-implicit time differencing methods in
order to avoid the need for a restrictively small time step. When semi-
implicit methods are used in the tau method with Chebyshev basis
functions, a Tinear system must be solved at each time step. The linear
system which results contains a full matrix so that iterative procedures
must be used to make the model efficient. These problems can be
overcome as was shown by Haidvogel et al. (1980) who used a method
similar to this for a balanced barotropic ocean model. It is left as a
topic for future research to apply this spectral technique to a tropical
cyclone problem. Assuming that the convergence properties of the
Chebyshev polynomials are similar to those of the Fourier components and
that the linear system required in the tau method can be solved
efficiently, it is feasible that a spectral tropical cyclone model with
open boundaries could be developed.

When spectral methods with global basis functions (basis functions
which are nonzero over the entire domain) are applied, an increase in
the number of degrees of freedom results in an increase in the
horizontal resolution over the entire domain. In grid point methods,
however, it is possible to increase the resolution in parts of the
domain by using variable mesh grids. This method has been used in
several tropical cyclone models (e.g. Jones, 1977b; Kitade, 1980) to

increase the resolution near the vortex center. The basic idea behind
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using variable mesh grids is to increase the accuracy of the solution
with & smaller increase in the number of degrees of freedom than would
be required if the resolution was increased over the entire domain.
Although it is not possible to vary the resolution over portions of the
domain in a spectral model, the advantage of using a spectral method is
similar to this. As shown by Gottlieb and Orszag (1977), when an
appropriate spectral method is used to solve a differential equation,
the approximate solution converges to the true solution exponentially as
the number of degrees of freedom increases. In comparison to this, the
approximate solution obtained using a finite difference method converges
algebraically to the true solution. For example, when second order
finite difference schemes are used, the error is proportional to the
square of the grid spacing. Thus, the use of a spectral method allows
more accurate solutions to be obtained using fewer degrees of freedom
than would be required in a conventional grid point method. The results
presented here show that the spectral method can be used to solve a
tropical cyclone problem. The best numerical method to use probably
depends on several factors including desired accuracy, the problem to be
studied and available computing time.

In chapter 4, four simulations using the spectral tropical cyclone
model developed in chapters 2 and 3 were presented. The first
simulation considered an axisymmetric vortex on an f-plane. These
results showed that the model is capable of producing a tropical cyclone
similar to those which are observed in nature. The results from the
axisymmetric case were also similar to the results presented by Ooyama
(1969a,b). The differences between the results from the current model

and Ooyama's model appeared to be related to the use of primitive
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equations in the current model and to the differing horizontal
resolution. When the model was initialized with an axisymmetric vortex,
the tropical cyclone which developed remained axisymmetric, which
indicates that the use of periodic boundary conditions was not a major
problem. For this simulation the energy of the gravity mode and
rotational mode parts of the solution were calculated and it was shown
that the gravity mode energy was more than an order of magnitude smaller
than the rotational mode energy. This verifies the argument that if the
time scale of the heating is long compared to the period of the gravity
waves, much Tess gravity wave energy will be excited than might be
expected from an initial Va]ue experiment with all the heat added
instantaneously. This also explains why the tropical cyclone remained
axisymmetric even though the gravity waves which propagated through the
boundary reentered the domain on the opposite side.

The second simulation presented in chapter 4 considered an
axisymmetric initial vortex on the g-plane. This simulation showed that
the inclusion of 8 caused the tropical cyclone to move towards the
north-northwest at about 2 ms'1 in agreement with several other authors.
The inclusion of B also slowed the intensification rate of the tropical
cyclone and caused the intensification to stop after a shorter amount of
time than on the f-plane. The structure of the g-plane storm became
asymmetric even though the initial condition was axisymmetric. In the
Tower layers there was a tendency for the vortex to be elongated to the
west and to develop sharper geopotential gradients to the east of the
storm center. This structure was explained in terms of the westward
dispersion of the long Rossby wave part of the solution and the eastward

dispersion of the short Rossby wave part. In the upper layer the
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outflow from the storm tended to form a jet towards the southwest of the
vortex center rather thar a symmetric anticyclone which occurred in the
simulation on the f-plane. On both the g-plane and the f-plane, a small
region of cyclonic rotation formed in the upper layer near the storm
center due to the upward transport of momentum by the convection (the
model included cumulus momentum transport). This cyclonic region was
much weaker for the g-plane case which appeared to be related to the
motion of the storm.

The third simulation considered a basic state wind field in
addition to the inclusion of g. The intensification rate and the large
scale storm structure for this case were similar to the previous
simulation. For this case, however, the vertical velocity at the top of
the boundary layer was also asymmetric with a vertical velocity maximum
Tocated in the right front quadrant of the storm in relation to the
direction of motion. This feature is similar to the results bf Shapiro
(1983) who presented steady state solutions of the boundary layer flow
under a moving vortex. A feature similar to this has also been observed
in nature.

The fourth simulation considered an initial condition which
contained a wave-like disturbance without a closed circulation. These
results showed that the wave axis developed a southwest to northeast
tilt similar to the structure of easterly waves which occur in the
eastern Atlantic region, and intensified to tropical storm strength in
about 96 hours. Some of the features of this simulation were similar to
results from Kurihara and Tuleya (1981) who presented a similar

simulation using much more detailed model physics.
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In chapter 5, the effect of the large scale environment on a
tropical cyclone simulation was considered. In order to keep the
experiments as simple as possible, a symmetric vortex on the f-plane was
added to a horizontally sheared zonal flow. The vortex was positioned
in such a way that the zonal wind was antisymmetric with respect to the
vortex center. This, along witﬁ setting g=0, caused the vortex to be
stationary. The results from these simulations were somewhat
surprising. When an anticyclonically sheared zonal wind was included in
the lower layers, the vortex intensified more rapidly initially, but
leveled off after a shorter amount of time than the case without the
zonal wind. The resulting tropical cyclone for this case was also much
smaller than the case without the basic state wind. When a cyclonically
shearad zonal wind was added, the vortex intensified less rapidly at
small radii, and at about the same rate at larger radii. These results
showed that the effect of large scale vorticity in the lower layers is
somewhat complicated. This is because it has an effect on the inertial
stability which can affect the rate at which a diabatic heat source will
produce balanced flow (Schubert and Hack, 1982), but also affects the
secondary circulation which in turn affects the diabatic heat source in
the current model formulation.

When the zonal wind was included in the upper layer, the
intensification rate also was affected. 1In one case, the outflow from
the tropical cyclone interacted with the large scale flow which resulted
in the formation of two outflow jets, which caused the intensification
rate to be greatly increased. When the outflow region was more
symmetric, the intensification rate of the model tropical cyclone was

reduced.
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In chapter 5, a more realistic case was also presented which
considered the effect of an upper level trough on a tropical cyclone
simulation. When a trough in the upper layer passed to the north of the
vortex, an outflow channel developed towards the trough. When this
occurred, the outflow channel which existed towards the southwest in a
control experiment was greatly reduced, and the intensity of the
tropical cyclone was only slightly affected.

The results in chapter 5 show that the large scale environment does
have an effect on tropical cyclone intensification and structure. This
is probably a partial explanation for the wide variety of tropical
cyclones which occur in nature.

The simulations which were presented in chapter 5 represent only a
small fraction of experiments which could be performed. The effect of
the inertial stability in the lower levels on the efficiency of a
diabatic heat source in relation to the effect on the secondary
circulation could probably be studied using an axisymmetric model. The
results presented in chapter 5 appear to indicate that the increased
inertial stability in a cyclonic vortex causes the diabatic heat source
to evolve more slowly and occur at a larger radius. This effect acts to
slow down the initial intensification rate and appears to be more
important than the increase in efficiency of the heating which results
from the increased inertial stability. Further study is necessary to
verify this result.

In contrast to the effect of the large scale environment in the
lTower levels, it is probably necessary to use a three-dimensional model
to study the upper level effects. The results presented here show that

the development of asymmetries in the upper layer has a large effect on
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the intensification of the model tropical cyclone. In the current
model, the outflow layer is quite thick due to the simple vertical
structure used. The upper layer of the model is about 5 km thick which
corresponds to a pressure interval of about 450 mb, while the outflow
from a tropical cyclone typically occurs in a thinner layer above about
300 mb (e.g., Frank, 1977). Further studies of the effect of the large
scale flow in the upper Tayers on a tropical cyclone should probably be
made with a model which has better vertical resolution.

In chapter 6 the effect of nonlinear normal mode initialization on
the prediction of a tropical cyclone track was studied. Results from a
previous model run were used to initialize the model using nonlinear
normal mode initialization, linear normal mode initialization and a
procedure based on the nonlinear balance equation. These simulations
showed that the nonlinear normal mode initialization resulted in the
smallest errors in the track and intensity of the tropical cyclone when
compared to the model integration when the initial data was not changed.
The nonlinear normal mode procedure was also capable of suppressing the
- excitation of spurious gravity wave energy.

The results presented in chapter 6 also show that the Tinear normal
mode procedure which sets the gravity wave amplitudes to zero is
inappropriate for a tropical cyclone model. Basically this is because
the geostrophic approximation is very inaccurate near the center of a
tropical cyclone, while the Rossby modes of the model are in approximate
geostrophic balance since they are based on linear theory. A vortex in
gradient balance will then be projected onto both Rossby and gravity
modes. When the gravity modes are set to zero the vortex will be out of

gradient balance so that an adjustment process must take place. When
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this procedure was app'ied, the minimum surface pressure changed by
about 9 mb in the first two hours as this adjustment took place.

The above results suggest that nonlinear normal mode initialization
could be used in an operational primitive equation track forecast model
such as the moveable fine mesh (MFM) model described by Hovermale and
Livezey (1977). 1In the current model, however, the vertical structure
and cumulus parmaeterization are relatively simple and the normal modes
of the model can be determined analytically. In a grid point model it
would be necessary to find the eigenvalues and eigenvectors of a matrix
which is of degree 3MN where M and N are the numter of grid points in
the x and y directions. This would be even more difficult in a limited
area model since the normal modes of the model also depend on the
boundary conditions. Despite these difficulties, Temperton and
Williamson (1979) have successfully applied Machenhauer's initialization
scheme in a global grid point model so that perhaps this technique could
be applied if the boundary conditions in a limited area model did not
prove to be a major problem.

Another problem with nonlinear normal mode initialization which did
not occur in the current model is that the scheme does not always
converge. Since the vertical structure of the current model was so
crude, only the external and first internal modes were represented. As
discussed in chapter 3, there is then a large frequency separation
between the Rossby and gravity modes.. When better vertical resolution
is used, higher vertical modes can be included, so that this frequency
separation is reduced since the high }nternal modes have smaller gravity
wave frequencies. As discussed by Daley (1981), the lack of frequency

separation can result in nonconvergence of the initialization procedure.
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The inclusion of moist physics also can result in nonconvergence of the
procedure (e.g., Puri and Bourke, 1982). This did not occur in the
current model, but might be a problem if a more detailed
parameterization scheme were used.

Several examples of tropical cyclone motion using a nondivergent
barotropic model were presented in chapter 6. These results showed that
the barotropic model could predict the track of the tropical cyclone in
the primitive equation model, except during periods of rapid
intensification. Other simple examples were presented which showed that
the horizontal resolution of the model, the inclusion of strong
diffusion and the vortex wind profile outside the radius of maximum wind
all affect the predicted tropical cyclone track. These results have
implications for procedures which are used in operational models.
Results from the barotropic model also showed that the sharp vorticity
peak associated with the vortex was not dispersed by the numerical
approximation scheme as the vortex was advected. This indicates that
the spectral method could be used to obtain accurate results in a
tropical cyclone track prediction model. A prototype model governed by
the nondivergent barotropic vorticity equation (similar to the SANBAR
model) could be solved using the tau method described previously. For
this case the model could be initialized with real data and the track
forecasting errors could be compared to the conventional SANBAR model.
The results presented here indicate that the spectral model should give

improved tropical cyclone track forecasts.
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APPENDIX A
THE USE OF FAST FOURIER TRANSFORM (FFT) ALGORITHMS
IN THE TRANSFORM METHOD

When the transform method is used to calculate nonlinear terms in
the spectral model, it is necessary to transform various combinations of
the dependent variables from spectral space to physical space and back
to spectral space at each time step. As described in chapter 3, these
transforms are performed by evaluating the following series

+ +K

~ ikx 12,y
f(Xps yq) = z Z fk,Q, e p e q , (A1)
g=-L k=-K h
3N 3M _ _
-1kx ~-igy

i * T 1 P a A.2
f = TaweTy oDy L L fx,syq) e e , (A.2)

q=0 p=0

where the transform grid points xp, yq and wave numbers k and 2 are

defined by

- X — s ee A03
Xp = (5m1) P p=0,1,2+++3M (A.3)
Ly (A.4)

Yq ~ (R @ 9=0,1,2++-3N '
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K = &m m=0,+1 220 2M (A.5)
L
X
g = 20 n=0,21,42+++N (A.6)
L
X
K = &M L = 2N (A.7)
L [
X y

and LX and Ly are the east—weét and north-south extents of the model
domain. Equation (A.1) represents a truncated double Fourier series
while (A.2) is the integral formula for the series amplitudes
approximated by the trapezodial rule. The number of grid points was
chosen so that (A.2) is exact if f(x,y) is the product of two functions
which are each represented by a truncated double Fourier series with
maximum wave numbers K and L as defined by (A.7).

In order to use FFT algorithms to evaluate the series in (A.1) and
(A.2), it is necessary to write these series in the form of a standard

discrete Fourier transform which is given by

ND-1 +2mimn

F=3 Fe M for  1n=0,1,2--ND-1 (A.8)

m

m=0
where ND is chosen to be an even number. In general, ND complex numbers
Fm are supplied and the algorithm returns ND complex numbers Fn which

are calculated using (A.8). If Fm are real numbers, then Fn have the

following property:
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Fo = Foot (R.9)
where F* denotes complex conjugate. For this case it is only necessary
to calculate Fn for n=0 to n=ND/2. Conversely, if the Fm satisfy an
equation analogous to (A.9) the corresponding Fn values will be real.
To make use of these properties, special routines have been written
where if the Fm values are all real, then the algorithm returns Fn for
n=0 to n=ND/2 (real to complex) and if ND/2 complex values Fm are
supplied and it is assumed that Fm=F$;ND’ then the algorithm returns ND
values of Fn which are all real (complex to real).

Now, in order to write (A.2) so that the summations are in the form
of (A.8), first consider the inner summation which can be written as
~ SM -1kx

= ek P =- =
flyg) = vy 20 Flxpsyq) © for  k=-K to k=K .
p:

Substituting for xp and k from (A.3) and (A.5) gives

3M -2mimp

TR M R

fm(yq) = T3 T 20 f(xp,yq) e for m=-M to m=M (A.10)
p:

(In this discussion, a subscript m or n is equivalent to a subscript k
or ). The summation in the above equation is of the form of (A.8)
except that the summation runs from p=0 to p=3M and the summation must
be evaluated for m=-M to m=M. Since f(xp,yq) represents a dependent
variable in physical space, it is always real. For this case the

Fourier series amplitudes calculated from (A.2) will satisfy the

following relation:
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(vg) (.11)

Thus, it is only necessary to evaluate the summation in (A.10) for m=0
to m=M. This summation can then be evaluated using a real to complex

FFT algorithm where the 3M+1 real values of f(x_,y ) are supplied for

pYq
each yq and §%il complex values representing fm(yq) are returned. Since
only the values up to m=M are needed, some extra computation is
performed which would not be needed if .the summation was evaluated
directly. As will be discussed later, the efficiency of the FFT
algorithm used more than compensates for this extra work. Since the
summation in (A.10) must be evaluated for each yq, an FFT routine
available on NCAR's Cray-1 was used which performs multiple FFTs to make
full use of the vector capabilities of the machine.

Once the values of %k(yq) have been calculated, the outer summation

in (A.2) can be evaluated using

A 1 3N A -.igl‘y
fio =y I flyde @ for p=-lto eeL .
q=0

Substituting for yq and ¢ from (A.4) and (A.6) gives

3N -2ming
PR S 3N+1 _ i "
fmn (3N+1) ) fm(yq) e for n=-N to n=+N . (A.12)
q=0

The above equation is again analogous to (A.8) except that the summation
runs from q=0 to g=3N and the.summation must be evaluated for n=-N to
n=N. For this case, however, %k(yq) is complex so that the summation
must be evaluated for both the positive and negative n values. The

summation in (A.12) must then be evaluated using a complex to complex
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=FT algorithm where the input are the 3N+1 complex values of ?m(yq) for
each m, and 3N+1 complex values are returned. The values which are
returned by the algorithm correspond to a summation of the form of (A.8)
with ND=3N+l1. Thus, the algorithm returns values of the summation in
(A.12) for n=0 to n=3N, while the values for n=-N to n=+N are needed.
The values of ?hn for n=0 to N are then computed directly by the FFT

algorithm. To obtain the values of fmn for negative n, it is necessary

to make use of the following relation

fo=f

fmn “ Ton+(3N+1) - (A.13)

The above relation comes from the property that n in (A.12) can be
replaced by n+(3N+1) since this is equivalent to multiplying the right

side of this equation by e~2m1q

which equals unity since q is an
integer. For this part of the summation, the values of fmn for |n|>N
are not used so, again, some extra work is required in order to make use
of the FFT algorithm. Similar to the real to complex case, special FFT
algorithms which perform multiple FFTs were used to take advantage of
the fact that (A.12) must be evaluated for each m.

Now consider the summations in (A.1). Using (A.4) and (A.6), the

outer summation can be written as

+N 2ming

P = P 3N+1 = cee

falyg) = I fope for  q=0,1,2-+-3N. (A.14)
n=-N

The above summation can be written as

N 2ming -N 2ming
= _ o 3N+1 ¢ o 3N+l
fnl¥g) = L fp e + 1 f.e , (A.15)

0 n=-1
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Noting that n in the second summation in (A.15) can be replaced by

n+(3N+1), the above two summations can be combined to give

3N 2ming
P = £ ! 3N+1 = eo e
fnl¥g) = 1 fop e for  q=0,1,2¢+-3N (A.16)
n=0
where
mﬁ = fmn for n=0,1 N
i
p I = - -|- O..ZN—
fmn 0 for n=N+1,N+2, 1
; '= f for n=2N,2N+1e-«3N

mn mn-(3N+1)

Equation (A.16) is of the form of (A.8) with ND=3N+1 so that the
summation can be evaluated using a complex to complex FFT algorithm for
each value of m.

Once the values of ?h(yq) have been calculated, the inner summation

in (A.1) can be written as

+M 2minp
2 3M+1
] = = ) ’2...3M A.l7
f(xp yq) ¥ . fm(yq) e for p=0,1 (A.17)
m:—

where (A.3) and (A.5) have been used. In the above summation f(xp,y )

q
is real so that a complex to real FFT can be used. For this case it is
only necessary to supply %m(yq) for m=0,1,... 32+1. Thus the summation

in (A.17) is evaluated using a complex to real FFT where the values of
Fm(yq) for MM which are required are set to zero.

In summary, (A.16) and (A.17) are used to evaluate the transform
from spectral to physical space and (A.10) and (A.12) are used to

evaluate the transform form physical to spectral space where each
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summation is evaluated using an FFT algorithm. The FFT routines which
were used to evaluate summations of the form of (A.8) required that the
length of the transform ND be an even number with no factors greater
than 5. Since the lengths of the transforms which appear in the
transform method are either 3M+1 or 3N+l where M and N are the Fourier
series truncations, the restriction on ND is somewhat severe. In fact,
the only values of M and N between 10 and 50 which could be used are 13,
21 and 33. In order to overcome this difficulty, the number of points
on the transform grid was increased to 3M+3 by 3N+3 so that a larger
selection of M and N values could be used. For this case the M and N
values between 10 and 50 which can be used are 11, 15, 17, 19, 23, 29,
31, 35, 39, 47 and 49. Although this extra grid resolution slightly
decreases the transform speed, it also increases the accuracy of the
nonlinear terms which are not quadratic, as discussed in chapter 3.

As discussed previously, in order to use FFT algorithms, it is
necessary to use longer transforms than would be needed if the
transforms were evaluated directly. Basically this is because for the
discrete Fourier transform the number of spectral amplitudes which are
calculated is the same as the number of physical space values supplied.
For the transform method, however, 3N+l physical space grid points are
required to evaluate the transform of quadratic nonlinear terms exactly,
but the dependent variables are represented by 2N+1 Fourier modes
(including positive and negative wavenumbers). In order to determine
whether the FFT algorithms were efficient enough to compensate for this
extra work, a Gaussian function was transformed from physical space to
spectral space and back to physical space with and without the FFT

algorithms. For the case without the FFT algorithms, the series were
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evaluated directly so that it was not necessary to increase the length
of the transforms. For both cases, all the needed trigonometric
functions were calcualted before the transform, sc that these
calculations were not included in the execution time. Fig. 3 shows the
ratio of the execution time needed without the FFTs to the time needed
with the FFTs as a function of the number of Fourier modes in each
direction (the abscissa is M+l or N+l1). This figure shows that for
M=N=35, the transforms were evaluated about 13 times faster using the

FFTs even though it was necessary to increase the transform length.



APPENDIX B
PROPERTIES OF THE NORMAL MODE TRANSFORM

In chapter 3 a normal mode transform was derived which transformed a
column vector W into a scalar. (For simplicity, the subscripts j, k and
2 which represent the vertical and horizontal modes will be dropped in

this discussion.) This transform is given by

S (8.1)
wr - E (wsKr)
r
where '
(uv) = (dPupvie+ uyvs+ ugv *) (8.2)

and E.isa normalization factor, d2 is a proportionality constant, Kr is
a column vector which is the kernel of the transform and ( )* denotes
complex conjugate. The kernel Er was chosen to satisfy the following

relation

AK = -iv K (B.3)

where A is a 3 by 3 matrix which represents the coefficients of the
Tinear terms of the governing equations as written in the form of
(3.55). Equation (B.3) implies that Er is an eigenvector of the matrix
A and that -ivr is the corresponding eigenvalue. If the matrix K is
skew-Hermitian with respect to the inner product (B.2) then the
eigenvectors Er will be orthogonal. This is a desirable property since

the inverse of the normal mode transform will be straightforward. In
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order for K to be skew-Hermitian, it must satisfy the following relation

(Au,v) = ~(u,Av) - (B.4)

Using (3.58) and (B.2), the inner products in the above equation can be

written as
(Au,v) = [g. v3]u +[T|—(;—E%z—)— fv*] Us
iBk
+ [—dzHo(kz’HLz) ik+ f V W 3* ] U3 . (B5)
- - -iBk
-(U,AV) [dzH (k2+2’2) -(T(T';ET)_ *] U2
igk
+ [‘gjvl + f V W V3*] u3 . (B.G)

Comparing (B.5) and (B.6) it can be seen that (B.4) will be satisfied

provided that

g.

2 _

Now, (B.3) can he written as

-~

(A + -ivri) K.=0 (8.8)

where I is the 3 by 3 identity matrix. In order that the above equation

have nontrivial solutions for Er’ the following condition must be met:
A+ vl =0 . (8.9)

1 Evaluating the above determinant using (3.58) gives
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o2 2 — 2 2 O
\Jr(\)r - fo) = ngo(k *02) Vv, (B.10)
where
3= v, - pri
r r = (k%227 -

The three roots of (B.10) are proportional to the eigenvalues of the
matrix A and represent the frequencies of the normal modes of the
linerized governing equations. Equation (B.8) represents three

equations for the three components of ir which can be written as

- 2,92 - s
Ho(k +22) Koz = =1 K 4 (B.11)
-igk .
(kZ+27%) Keo * foKr3 = -k (B.12)
_ _ __1iBk .
ngrl Fokpo [(323%3) Kez = -1VKpg - (8.13)

Since the magnitude of the kernel Er is arbitrary, one of the components
of Er is also arbitrary. For convenience, Krl was chosen to be equal to
fo. Then (B.11) can be used to give

1vrfo

_ B.14)
Kes H_(R7H27) (

Substituting for Krl and Kr3 in (B.13) and solving for Kr2 gives

Bkvr-vi(k2+22)
Kr2 = 3 +g. . (B.15)
(k2+22) Ho J

The kernel of the transform Er which satisfies (B.8) is then given by
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p fO W
- ﬁkvr-vi(k2+£2)
K. = + g, . (B.16)
r 240212 J .
(k2+22) H0
ivrfo
| H0 k*+2 | )

Since Er are the eigenvectors of the skew-Hermitian matrix R, they will
be orthogonal provided that the correéponding eigenvalues are distinct.
As was discussed in chapter 3, this condition is satisfied since the
three roots of (B.10) correspond to the frequencies of eastward and
westward propagating gravity waves and to a westward propagating Rossby

wave. The orthogonality condition can be written as

(K, K, =E_ & ' (B.17)

where 6rr' is the Kronecker delta. Now, provided that Er is defined as

in (B.17), the normal mode transform and its inverse can be written as

-1
W E. (. %) (B.18)

ror (B.19

The above properties of the normal mode transform are valid for the
external and internal vertical modes (j=1,2). For the boundary layer
modes (j=0), an analogous transform of W can be made. For this case,
the transform is considerably simplier since the matrix A is 2 by 2 as
can be seen in (3.58). For this case, the normal mode transform and

inverse are given by



=L, x B.20)
W= (W, K) (
r
~ 2 ~
= B.21
W=} WK, (B.21)
r=1
where
(usv) = (ugvi+ upvz) (B.22)
~ + 1
K = [ J B.23)
r 1 (

r r’or . (B.24)
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