
Thesis

Consistent Hidden Markov Models

Submitted by

Pradyumna Kumar Narayana Rao Gari

Department of Computer Science

In partial fulfillment of the requirements

For the Degree of Master of Science

Colorado State University

Fort Collins, Colorado

Fall 2014

Master’s Committee:

Advisor: Bruce A. Draper

Ross Beveridge
Chris Peterson



Copyright by Pradyumna Kumar Narayana Rao Gari 2014

All Rights Reserved



Abstract

Consistent Hidden Markov Models

Activity recognition in Computer Vision involves recognizing the appearance of an object

of interest along with its action, and its relation to the scene or other important objects.

There exist many methods that give this information about an object. However, these

methods are noisy and are independent of each other. So, the mutual information between

the labels is lost. For example, an object might be predicted to be a tree, whereas its action

might be predicted as walk. But, trees can’t walk.

However, the compositional structure of the events is reflected by the compositional

structure of natural language. The object of interest is the predicate, usually a noun, the

action is the verb, and its relation to the scene may be a preposition or adverb. The lost

mutual information that says that trees can’t walk is present in natural language. The

contribution of this thesis is a method of visual information fusion based on exploiting the

mutual information from Natural language databases.

Although Hidden Markov Models (HMM) are the traditional way to smooth noisy stream

of data by integrating information across time, they can’t account for the lost mutual infor-

mation. This thesis proposes an extension to HMM (Consistent HMM) that can integrate

visual information to the lost mutual information by exploiting the knowledge from language

databases.

Consistent HMM performs better than other state of the art HMMs on synthetic data

generated to simulate the real world behavior. Although the performance gain of integrating

the knowledge from language databases both during training phase and run-time is better,

ii



when considered individually, the performance gain is more when the knowledge is integrated

during run-time than training.

iii



Acknowledgements

I would like to thank my advisor, Professor Bruce A. Draper, for giving me the opportu-

nity to be involved in Computer Vision research. His guidance and encouragement in every

step of my research made this thesis possible. I would also like to thank Dr. Ross Beveridge

for being supportive throughout my Masters degree, and Dr. Chris Peterson for introducing

me to the term Segre Variety. I am grateful to the faculty and staff of Computer Science

department for making me feel the department as my second home.

I also am grateful to my colleagues Stephen O’Hara, Quanyi Mo, Maggie Wigness and

Hao Zhang who provided valuable support and advice, especially in my initial days. I extend

my gratitude to my friends Wimroy, Somtirtha, Hrushikesh, Rahul Dutta, Jatin for all the

help and support through thick and thin. In particular, I would acknowledge Wimroy for

helping me become familiarize with Linux and scripting. I am indebted to Satya Abhishek

who supported me as a brother and made sure that I didn’t miss my family.

I am deeply thankful to the love and support of my family. My parents and brother

sacrified all their comforts and always gave me beyond their limits. They always put me first

in their life and allowed me to cherish my dreams. My special thanks to my uncles Prasad

and Srinivas for being a constant support to my family. I am also thankful to my grand

parents, cousins and my extended family for believing and instilling confidence in me. Last

but not the least, I am thankful for having Harini in my life who added colors to my plain

life. Moreover, she is responsible for all the eye candy images in this thesis.

iv



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Chapter 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2. Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3. Thesis Organization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Chapter 2. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1. Hidden Markov Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2. A Concrete Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3. Extensions to Hidden Markov Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4. Constrained HMM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5. English language Ontological Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.6. HMMs in Computer Vision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.7. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Chapter 3. Consistent Hidden Markov Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1. Terminology related to Consistent HMM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2. Extended Viterbi Algorithm with Consistency Constraints . . . . . . . . . . . . . . . . . . . . 35

3.3. Extended Baum-Welch Algorithm with Consistency Constraints . . . . . . . . . . . . . . . 41

3.4. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Chapter 4. Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

v



4.1. Synthetic Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2. Pilot Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3. Experiment 1: Performance of Extended Viterbi Algorithm without retraining . 61

4.4. Experiment 2: Performance of Extended Baum-Welch Algorithm . . . . . . . . . . . . . . 66

4.5. Experiment 3: Performance of Consistent HMM trained using extended

Baum-Welch algorithm and run by extended Viterbi algorithm . . . . . . . . . . . . . . . . 71

4.6. Experiment 4: Performance of Consistent HMM with respect to FHMM,

FCHMM and BHMM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.7. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Chapter 5. Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.1. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2. Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Appendix A. Extended Viterbi Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Appendix B. Extended Baum-Welch Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Appendix C. Experiment 1: Additional Plots of Performance of Integrating the

Consistency Constraints only during Run-Time. . . . . . . . . . . . . . . . . . . . . . . . . 94

Appendix D. Experiment 2: Additional Plots of Performance of Integrating

Consistency Constraints only during Training . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Appendix E. Experiment 3 : Additional Plots of Performance of Integrating

Consistency Constraints both during training and run-time . . . . . . . . . . . . . 110

vi



Appendix F. Experiment 4: Additional Plots of Performance of Consistent HMM with

respect to FHMM, FCHMM and BCHMM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

vii



List of Figures

1.1 Person tracked over multiple frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Dependencies between States and Observations in a Hidden Markov Model . . . . . . . 9

2.2 Example of a State Trellis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Probability of being in state Si at time t and Sj at time t+1 . . . . . . . . . . . . . . . . . . . . . 14

2.4 Example of a Hidden Markov Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 Factorial Hidden Markov Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.6 Linked Hidden Markov Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.7 Hidden Markov Decision Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.8 Coupled Hidden Markov Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1 Projection between factorial and consistent state spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Extended Viterbi Algorithm with Consistency Constraints . . . . . . . . . . . . . . . . . . . . . . . 42

3.3 Transition matrices stacked in form of block diagonal matrices . . . . . . . . . . . . . . . . . . . 44

3.4 Observation Matrices stacked in the form of block diagonal matrices . . . . . . . . . . . . . 45

3.5 Extended Baum-Welch Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.6 Extended Baum-Welch Algorithm with Consistency Constraints Integrated

Multiple Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.1 PilotStudy: Plot of train set size vs accuracy for different values of observation

error of a FCHMM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2 Experiment 1: Plots of Observation error percentage vs Accuracy for different

percent of inconsistent states. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

viii



4.3 Experiment 1: Plots of Inconsistent state percentage vs Accuracy for different

percent of observation error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.4 Experiment 1: Plots of Inconsistent states percentage vs Accuracy for appearance,

action, trajectory chains, and triplet for an observation error of 20% . . . . . . . . . . . . . 64

4.5 Experiment 1: Plots of Inconsistent states percentage vs accuracy for appearance,

action, trajectory chains, and triplet for an observation error of 80% . . . . . . . . . . . . . 65

4.6 Experiment 2: Plots of Observation error percentage vs Accuracy for different

percent of inconsistent states. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.7 Experiment 2: Plots of Inconsistent state percentage vs Accuracy for different

percent of observation error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.8 Experiment 2.1: Plots of Observation error percentage vs Accuracy for different

percent of inconsistent states. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.9 Experiment 2.1: Plots of Inconsistent state percentage vs Accuracy for different

percent of observation error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.10 Experiment 3: Plots of Observation error percentage vs Accuracy for different

percent of inconsistent states. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.11 Experiment 3: Plots of Inconsistent state percentage vs Accuracy for different

percent of observation error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.12 Experiment 4: Plots of Observation error percentage vs Accuracy for different

percent of inconsistent states. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.13 Experiment 4: Plots of Inconsistent state percentage vs Accuracy for different

percent of observation error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

ix



C.1 Plots of Observation error percentage vs accuracy for appearance, action,

trajectory, and triplet for an inconsistent states of 0% . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

C.2 Plots of Observation error percentage vs accuracy for appearance, action,

trajectory, and triplet for an inconsistent states of 20%. . . . . . . . . . . . . . . . . . . . . . . . . . . 95

C.3 Plots of Observation error percentage vs accuracy for appearance, action,

trajectory, and triplet for an inconsistent states of 40%. . . . . . . . . . . . . . . . . . . . . . . . . . . 96

C.4 Plots of Observation error percentage vs accuracy for appearance, action,

trajectory, and triplet for an inconsistent states of 60%. . . . . . . . . . . . . . . . . . . . . . . . . . . 97

C.5 Plots of Observation error percentage vs accuracy for appearance, action,

trajectory, and triplet for an inconsistent states of 80%. . . . . . . . . . . . . . . . . . . . . . . . . . . 98

C.6 Plots of Inconsistent states percentage vs accuracy for appearance, action,

trajectory, and triplet for an observation error of 40% . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

C.7 Plots of Inconsistent states percentage vs accuracy for appearance, action,

trajectory, and triplet for an observation error of 60% . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

D.1 Plots of Observation error percentage vs accuracy for appearance, action,

trajectory, and triplet for an inconsistent states of 0% . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

D.2 Plots of Observation error percentage vs accuracy for appearance, action,

trajectory, and triplet for an inconsistent states of 20%. . . . . . . . . . . . . . . . . . . . . . . . . . . 102

D.3 Plots of Observation error percentage vs accuracy for appearance, action,

trajectory, and triplet for an inconsistent states of 40%. . . . . . . . . . . . . . . . . . . . . . . . . . . 103

D.4 Plots of Observation error percentage vs accuracy for appearance, action,

trajectory, and triplet for an inconsistent states of 60%. . . . . . . . . . . . . . . . . . . . . . . . . . . 104

x



D.5 Plots of Observation error percentage vs accuracy for appearance, action,

trajectory, and triplet for an inconsistent states of 80%. . . . . . . . . . . . . . . . . . . . . . . . . . . 105

D.6 Plots of Inconsistent states percentage vs accuracy for appearance, action,

trajectory, and triplet for an observation error of 20% . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

D.7 Plots of Inconsistent states percentage vs accuracy for appearance, action,

trajectory, and triplet for an observation error of 40% . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

D.8 Plots of Inconsistent states percentage vs accuracy for appearance, action,

trajectory, and triplet for an observation error of 60% . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

D.9 Plots of Inconsistent states percentage vs accuracy for appearance, action,

trajectory, and triplet for an observation error of 80% . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

E.1 Plots of Observation error percentage vs accuracy for appearance, action,

trajectory, and triplet for an inconsistent states of 0% . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

E.2 Plots of Observation error percentage vs accuracy for appearance, action,

trajectory, and triplet for an inconsistent states of 20%. . . . . . . . . . . . . . . . . . . . . . . . . . . 111

E.3 Plots of Observation error percentage vs accuracy for appearance, action,

trajectory, and triplet for an inconsistent states of 40%. . . . . . . . . . . . . . . . . . . . . . . . . . . 112

E.4 Plots of Observation error percentage vs accuracy for appearance, action,

trajectory, and triplet for an inconsistent states of 60%. . . . . . . . . . . . . . . . . . . . . . . . . . . 113

E.5 Plots of Observation error percentage vs accuracy for appearance, action,

trajectory, and triplet for an inconsistent states of 80%. . . . . . . . . . . . . . . . . . . . . . . . . . . 114

E.6 Plots of Inconsistent states percentage vs accuracy for appearance, action,

trajectory, and triplet for an observation error of 20% . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

xi



E.7 Plots of Inconsistent states percentage vs accuracy for appearance, action,

trajectory, and triplet for an observation error of 40% . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

E.8 Plots of Inconsistent states percentage vs accuracy for appearance, action,

trajectory, and triplet for an observation error of 60% . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

E.9 Plots of Inconsistent states percentage vs accuracy for appearance, action,

trajectory, and triplet for an observation error of 80% . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

F.1 Plots of Observation error percentage vs accuracy for appearance, action,

trajectory, and triplet for an inconsistent states of 0% . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

F.2 Plots of Observation error percentage vs accuracy for appearance, action,

trajectory, and triplet for an inconsistent states of 20%. . . . . . . . . . . . . . . . . . . . . . . . . . . 120

F.3 Plots of Observation error percentage vs accuracy for appearance, action,

trajectory, and triplet for an inconsistent states of 40%. . . . . . . . . . . . . . . . . . . . . . . . . . . 121

F.4 Plots of Observation error percentage vs accuracy for appearance, action,

trajectory, and triplet for an inconsistent states of 60%. . . . . . . . . . . . . . . . . . . . . . . . . . . 122

F.5 Plots of Observation error percentage vs accuracy for appearance, action,

trajectory, and triplet for an inconsistent states of 80%. . . . . . . . . . . . . . . . . . . . . . . . . . . 123

F.6 Plots of Inconsistent states percentage vs accuracy for appearance, action,

trajectory, and triplet for an observation error of 20% . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

F.7 Plots of Inconsistent states percentage vs accuracy for appearance, action,

trajectory, and triplet for an observation error of 40% . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

F.8 Plots of Inconsistent states percentage vs accuracy for appearance, action,

trajectory, and triplet for an observation error of 60% . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

xii



F.9 Plots of Inconsistent states percentage vs accuracy for appearance, action,

trajectory, and triplet for an observation error of 80% . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

xiii



CHAPTER 1

Introduction

1.1. Motivation

The ultimate goal of computer vision is to visualize and understand a scene as humans

do. The computer vision field is far from making such a system a reality. But, the first

goal of such a system would be to recognize the activities/events of the important objects

in a scene. Activity recognition of an object of interest is possible by first recognizing the

object, and the action it is doing, along with its relation to the scene or other important

objects. The compositional structure of the events is reflected by the compositional structure

of natural language. The object of interest is the predicate, usually a noun, the action is

the verb, and its relation to the scene may be a preposition or adverb. There exist many

methods in computer vision to recognize what the object is, what it is doing, and its relation

to the scene or other objects in the scene. When these methods are independent of each

other, mutual information between them is lost. For example, the object might be predicted

to be a tree, whereas its action might be predicted as walk. But, trees can’t walk. The

mutual information that says that trees can’t walk is present in natural language. The

contribution of this thesis is a method of visual information fusion based on exploiting the

mutual information from natural language databases.

The first step of activity recognition is to recognize the important objects in a scene.

The important objects in a scene, the ones that may be the predicates of verbs, for example

people and cars, typically move. The first step of focusing attention on objects that move is

usually done using background subtraction [42] for fixed cameras, or motion segmentation

[11, 24] when a camera is in motion. Once the objects that move are found, they can be

1



Frame 40Frame 80Frame 120Frame 160

Figure 1.1. Person tracked over multiple frames

tracked in multiple frames using adaptive correlation filters [8]. Thus, a video can be divided

into a collection of regions of interest spanning into multiple consecutive frames called tracks.

Tracking a detected object over multiple frames is essential as the activities we are trying

to recognize occur over multiple frames. A track of a person over multiple frames is shown

in the figure 1.1. Here, the track which spans over multiple frames is overlayed in a single

image for better visual representation.

Once a video is divided into tracks, the information of the tracked object is required. We

consider appearance, action, and trajectory information in this thesis. Many factors influence

the appearance of an object. One of the most significant factor is the viewpoint. An object

may appear differently from different viewpoints. For example, a tree appears differently

when viewed from above compared to its view from the ground. So, it is important to

know what the detected object is irrespective of the view point. Infact it has been studied,

and there exists a viewing sphere where the appearance look the same. A set of such

2



qualitatively similar viewpoints form an aspect [31]. An appearance is a set of qualitatively

similar images from an object, which implies an aspect but also possibly lighting, expression,

etc. The appearance of the object is denoted by a noun. Multiple appearances can map

to a single noun, and nouns can have synonyms as well. Appearances such as leaf, branch,

and trunk map to a noun tree. Car, tree, and person are some examples of the appearance

of an object. In addition to the appearance of an object, it is important to to recognize

what the objects are doing. It can be recognized by analyzing the motion of the track over

multiple time frames and is called the action of the object. Actions are represented by verbs.

Walk, jump, and drive are examples of actions performed by objects. In addition to the

appearance, and action, the relation of an object to the scene is another important aspect

of activity recognition. The position of the object with respect to the scene is a special kind

of relation used in this thesis. This special relation of an object with respect to the scene is

called trajectory. The trajectory gives information about how fast the object is moving with

respect to the scene, usually an adverb, for example “quickly”. Moreover, trajectory also

gives information about the direction of motion of the tracked object which is a preposition.

Trajectory information is important because the appearance and action of an object are

related to its trajectory. For example, trees can’t move and standing is not possible while

moving fast.

Appearance, action, and trajectory information of a tracked object can be estimated at

every instance. The appearance of a track can be estimated using clustering methods as

shown by Wigness et al. [45]. Appearance clustering methods estimate the appearance of

a track at every instance by looking at a single instance of the track. However, actions

typically occur over time. Classifiers can be trained to predict the action of an object over

time. For example, the action of an object can be estimated by clustering tracks on a product

3



manifold [27]. The trajectory of a track is calculated by measuring the displacement of the

center of the track in consecutive frames. We define an appearance labeling system to be a

classifier that predicts an appearance label to every instance of a track. Similarly, we define

an action labeling system, and a trajectory labeling system to be the classifiers that assign

action and trajectory labels at every instance of a track respectively.

The labeling systems are not perfect and the labels they assign are often noisy. For

example, appearance labeling system often confuse persons with trees because both trees

and persons are elongated parallel vertical structures with unpredictable textures. So, a tree

may be mislabeled as a person or vice versa. Moreover, in some cases the labeling systems

might not predict any label for some instances of a track. An intelligent vision system must

account for noisy or missing labels along with lost mutual information. As discussed later in

the thesis, Hidden Markov Models (HMMs) are the traditional way to integrate information

across time by smoothing the noise. Appearance, action and trajectory labels of a foreground

object do not change often and have structure in time. The noise in appearance, action and

trajectory labels can be smoothed using an HMM.

However, apperance, action, and trajectory labels of a track are assigned by independent

processes. As a result, the mutual information that exists between the appearance, action,

and trajectory labels is lost. HMMs can integrate given information across time. But, they

do not account for lost mutual information. The contribution of this thesis is to propose

an extension of HMMs that can integrate visual information along with the lost mutual

information between them by exploiting it from language databases.

4



1.2. Thesis Contributions

The contribution of this thesis is to propose a new formulation of HMMs that inte-

grates visual information from multiple sources along with the mutual information associ-

ated with them. This mutual information can be exploited from language databases such

as wordnet[17], verbnet [40], and framenet [1]. The information regarding these databases

is explained in chapter 2. The mutual information exploited from natural language can

be expressed in the form of binary constraints. Binary constraints have a value of 1 if a

state combination is valid, 0 if not. For example, wordnet, verbnet, and framenet contain

knowledge such as people can walk, trees can’t walk, and standing is not possible while mov-

ing. This information can be expressed in terms of binary constraints. Alternatively, the

binary constraint knowledge can also be built manually. Fusing this knowledge with visual

information results in better information fusion.

The Baum-Welch algorithm is an expectation-maximization algorithm used to train

HMMs. This algorithm is discussed in section 2.1.5. This thesis proposes an extended

Baum-Welch algorithm that takes the knowledge from language databases into account with-

out requiring an excessive number of training samples.

The Viterbi algorithm is a method for determining the most likely state sequence, given

an observation sequence. This algorithm is discussed in section 2.1.6. This thesis also

proposes an extended Viterbi algorithm that improves the prediction of states over the

standard Viterbi algorithm by taking binary constraints knowledge from language databases

into account. The advantage of the proposed Viterbi algorithm is that the binary constraints

can be imposed without retraining the HMM.

We compare the performance of the proposed HMM with other extensions of the HMM on

synthetic data generated to mimic real world behavior. Other extensions of HMM considered

5



in this thesis are Factorial HMM, Fully Coupled HMM, and Brand CHMM, all of which are

discussed in chapter 2. The synthetic data is explained in chapter 4. It can be seen that

Consistent HMM performs better on synthetic datathan other HMMs listed above. The

performance gain of integrating the knowledge from language databases both during training

phase and run-time is better. However, when considered individually, the performance gain

is more when the knowledge is integrated during run-time.

1.3. Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 will provide necessary back-

ground to understand the HMMs. In addition it introduces the different extensions of HMM

to integrate information from multiple sources along with the use of HMMs in computer

vision. Moreover, the chapter also introduces the English language databases that provide

knowledge constraints. Next, Chapter 3 proposes a new formulation of HMMs that takes

knowledge from language databases into account. New algorithms to train the HMM and

run it are also discussed in this chapter. A detailed description of the synthetic data and

the experimental results are discussed in Chapter 4. Finally, concluding remarks and future

work are discussed in Chapter 5.

6



CHAPTER 2

Background

This chapter provides the necessary background to understand the algorithms presented

in chapter 3 and the experiments in chapter 4. In particular, section 2.1 begins with a

tutorial introduction to the concepts and notation of Hidden Markov Models (HMMs). The

algorithms to train and run HMMs are discussed next. A concrete example of an HMM is

provided in section 2.2 which is in line with the data used in this thesis. Readers familiar with

HMMs can directly jump to section 2.3 that surveys techniques for combining or coupling

HMMs to model multiple streams of data. A special emphasis is placed on Coupled HMMs

as their structure is the most appropriate one for the data used in this thesis. Constrained

HMMs are discussed in section 2.4, as the HMM we are proposing share some commonalities

with Constrained HMMs. Section 2.5 reviews natural language knowledge databases that can

provide linguistic constraints. Finally, the uses of HMMs in Computer Vision are discussed

in section 2.6.

2.1. Hidden Markov Models

Real-world processes have structure in time and produce either discrete or continuous ob-

servable outputs called signals. These signals are often corrupted with noise. Modeling such

real-world processes is useful in many applications including, but not limited to, computer

vision. Hidden Markov Models (HMMs) is a popular method to model such processes [9, 33].

Hidden Markov Models are a special kind of Bayesian network for modeling time series

data. They represent probability distributions over sequences of observations [19, 25]. The

Hidden Markov Model gets its name from two defining properties. First, an HMM can be

7



considered as a doubly stochastic model. A stochastic model, also known as a random model,

represents the evolution of some random variable, or system, over time. Unlike deterministic

models, which can only evolve in one way, stochastic models evolve with some randomness.

In an HMM, one stochastic model can be observed as a sequence of observations, while

another stochastic model is hidden (states). The hidden stochastic model can be evaluated

only through the observations [12]. Second, it assumes that the hidden state satisfies the

first order Markov property: that is, the state at time t is dependent only on the state at

time t − 1 and is independent of all the states prior to it. The observations also satisfy

a first order Markov property with respect to the states: given a state, its corresponding

observation is independent of all other states and observations [19]. Figure 2.1 shows a

graphical representation of the dependencies between states and observations in an HMM.

The first order Markov property of an HMM is evident from the graph in the figure 2.1. In

the figure, the observations are represented by circles and the hidden states are represented

by rectangles. This representation is common throughout this thesis.

In the following subsections, we will discuss the terminology related to HMMs along with

forward variables and backward variables. Then, we will examine the three basic problems

that HMMs solve. In addition, we will explore the Baum Welch algorithm and Viterbi

algorithm to solve the basic problems for HMMs.

2.1.1. Elements of HMM

• Set of States: S = {S1, S2, ..., SN} where |S| = N. The state at time t is denoted by

qt = Si ∈ S.

• Set of observation symbols: V = {v1, v2, ..., vM} where |V | = M. The observation

symbol at time t is denoted by Ot.

8



…
S1 S2 ST�2 ST�1 ST

O1 O2 OT�2 OT�1 OT

Figure 2.1. Dependencies between States and Observations in a Hidden
Markov Model

• Transition Probabilities: A = {aij}, where {aij} = P [qt+1 = Sj|qt = Si], 1 ≤

i, j ≤ N (Probability of going from state Si to state Sj).

• Emission Probabilities: B = {bj(k)}, where bj(k) = p[Ot = vk|qt = Sj], 1 ≤ j ≤

N, 1 ≤ k ≤M (Probability of outputting symbol vk from state Sj).

• Initial State Probabilities: π = {πi}, where πi = P (q1 = Si), 1 ≤ i ≤ N (Proba-

bility of initial state being Si).

Given the elements of an HMM, an HMM is defined as λ = (A,B, π), where N and M are

implicitly represented by A and B. An HMM also requires a sequence of observed symbols:

O = O1O2...OT .

Given an HMM λ, and an observation sequence O, the first order Markov properties of

states and observations allows us to reformulate the joint distribution of a sequence of states

9



and observations as follows:

P (S1:T , O1:T |λ) = P (S1)P (O1|S1)
T∏

t=2

P (St|St−1)P (Ot|St) (2.1)

2.1.2. Forward Variables

Forward probability (αt(i)) is the probability of the partial observation sequence, O1O2...Ot,

and state Si at time t, given the model λ. In other words, it is the probability of the state

sequence to end at a state Si at time t, having seen the observations till time t.

αt(i) = P (O1O2O3...Ot, qt = Si|λ) (2.2)

A dynamic programming approach is used to calculate the forward probability of all states

over all time steps. The forward probability(αt(i)) is calculated inductively using dynamic

programming as follows:

(1) Initialization

α1(i) = πibi(O1), 1 ≤ i ≤ N (2.3)

(2) Induction

αt+1(i) =

[
N∑

j=1

αt(j)aij

]
bi(Ot+1), 1 ≤ t ≤ T − 1, 1 ≤ j ≤ N (2.4)

This dynamic programming approach for forward variable calculation can be visualized

as a state trellis of length T and size N. A visualization of a state trellis is shown in figure 2.2.

The dynamic programming approach allows us to calculate the forward variable in the state

trellis in O (TN2) time.

10



.....

.....

.....

.....

.....

…………

Figure 2.2. Example of a State Trellis

2.1.3. Backward Variables

Backward probability (βt(i)) is the probability of the observation sequence from time t+1

to the end, given a state i at time t and model λ. It is the probability of observing an

observation sequence from time t+1 to the end by starting at a state Si at time t.

βt(i) = P (Ot+1Ot+2Ot+3...OT |qt = Si, λ) (2.5)

Similar to the forward variable, a dynamic programming approach is used to calculate

the backward probability of all states over all time steps. Backward probability (βt(i)) is

calculated inductively using dynamic programming as follows:

(1) Initialization

βT (i) = 1, 1 ≤ i ≤ N (2.6)

11



(2) Induction

βt(i) =
N∑

j=1

βt+1(j)aijbj(Ot+1), T − 1 ≥ t ≥ 1, 1 ≤ j ≤ N (2.7)

The complexity of the backward probability calculation in a state trellis of length T and

width N is O (TN2).

2.1.4. Three Basic Problems for HMMs

HMMs address three different problems:

(1) Estimating the probability of an observation sequence given a specific HMM.

(2) Estimating the most likely state sequence, given an observation sequence.

(3) Learning the HMM parameters based on the observations.

Problem 1 calculates the probability of an observation sequence O, given the model

λ, i.e.,P(O|λ). It is the measure of how likely the observation sequence is generated by

the given model. This measure is important to solve the third problem of HMM, namely,

finding the model that best explains the data where the HMM parameters are adjusted

to maximize the value of P(O|λ). Forward variables and backward variables calculated by

equations (2.4) and (2.7) are required to calculate P(O|λ) [4, 6]. Once the forward and

backward variables are calculated, the probability of the observation sequence is calculated

as:

P (O|λ) =
N∑

i=1

αt(i)βt(i) (2.8)

P (O|λ) =
N∑

i=1

αT (i) (2.9)

12



Problem 2 of an HMM is to find the most likely state sequence that produces a given

observation sequence. As already stated, in an HMM, states are hidden, and the observations

they generate are visible. So, the hidden states must be inferred from observations. In

general, there will be multiple state sequences that generate a given observation sequence.

The Viterbi algorithm is an efficient way to calculate one such most likely sequence. It is

explained in subsection 2.1.6.

Problem 3 addresses the training of HMMs to maximize the probability of a given obser-

vation sequence. The HMM parameters are adjusted until convergence, so as to maximize

the value of P (O|λ). The Baum-Welch algorithm discussed in subsection 2.1.5 is used to

train the HMM with the Expectation Maximization method.

2.1.5. Baum Welch Algorithm

The Baum Welch algorithm addresses the problem 3 of HMMs by training HMMs to maxi-

mize the probability of a given observation sequence. The Baum-Welch algorithm [3, 4, 6, 23]

is used to train the HMM with the Expectation Maximization method [15]. The following

terms calculated using forward and backward variables are used in HMM training.

• ξt(i, j): Probability of being in state Si at time t, and state Sj at time t+1, given

the model and observation sequence.

ξt(i, j) = P (qt = Si, qt+1 = Sj|O, λ) (2.10)

ξt(i, j) =
αt(i)aijbj(Ot+1βt+1(j)

P (O|λ)
(2.11)

13



...
...

...
...

Si Sj

aijbj(Ot+1)

↵t(i) �t+1(j)

Figure 2.3. Probability of being in state Si at time t and Sj at time t+1

• γt(i): Probability of being in state Si at time t, given the observation sequence O,

and the model λ.

γt(i) = P (qt = Si|O, λ) (2.12)

γt(i) =
N∑

j=1

ξt(i, j) (2.13)

Summing γt(i) over t, i.e.,
∑T−1

t=1 γt(i) is the expected number of times the state Si is

visited, given a model λ and an observation sequence O. Similarly, summing ξt(i, j) over t,

i.e.,
∑T−1

t=1 ξt(i, j) gives the expected number of transitions from state Si to Sj, given a model

14



λ and an observation sequence O. Then, the parameters of HMM are adjusted as follows:

π̄i = γ1(i) (2.14)

āij =

∑T−1
t=1 ξt(i, j)∑T−1
t=1 γt(i)

(2.15)

b̄j(k) =

∑T
t=1

s.t.Ot=vk

γt(j)
∑T

t=1 γt(j)
(2.16)

The updated model is represented as λ̄ = (Ā, B̄, π̄). The process is repeated again with

the updated model until P(O|λ) converges to a local optimum. The Baum-Welch algorithm

is guaranteed to converge to a local optimum [7]. The updated model, if not converged,

results in better probability of given observation sequence than the previous model, i.e.,

P(O|λ̄)≥P(O|λ) [5, 7]. The initial model is crucial for training, as the Baum-Welch algorithm

finds a local optima.

2.1.6. Viterbi Algorithm

An observation sequence can be produced from many different state sequences. It is not

practically feasible to find the best state sequence by examining all possible state sequences

of an HMM. The Viterbi Algorithm [18, 44] allows us to estimate the most likely state

sequence given an observation sequence using dynamic programming. The Viterbi algorithm

is similar to the forward algorithm except that the summation in equation (2.4) is replaced

with a max. The Viterbi algorithm has an additional backtracking step, as is the case with

most dynamic programming algorithms, to find the most likely sequence.

Given observation sequence O = {O1O2...OT}, let Q = {q1q2...qT} be the most likely state

sequence. Let the best score probability along a single path ending at state Si accounting

15



for first t observations be denoted as δt(i).

δt(i) = arg max
q1,q2,...qt−1

P [q1q2...qt = Si, O1O2...Ot|λ] (2.17)

Let ψ be the array to store the best states that maximizes δ at each step. This backpointer

array is used to retrieve the most likely state sequence. Having defined δ and ψ, the Viterbi

algorithm can be stated as follows:

(1) Initialization

δ1(i) = πibi(O1), 1 ≤ i ≤ N (2.18)

ψ1(i) = 0 (2.19)

(2) Induction

δt+1(j) = max
1≤i≤N

[δt(i)aij] bj(Ot+1), 1 ≤ t ≤ T − 1, 1 ≤ j ≤ N (2.20)

ψt+1(i) = arg max
1≤i≤N

[δt(i)aij] , 1 ≤ t ≤ T − 1, 1 ≤ j ≤ N (2.21)

(3) Backtracking

qT = arg max
1≤i≤N

[δT (i)] (2.22)

qt = ψt+1(qt+1), t = T − 1, T − 2, ...., 1 (2.23)

The state sequence Q = {q1q2...qT} generated by the Viterbi algorithm is the most likely

state sequence, given an observation sequence and an HMM. The complexity of the Viterbi

algorithm is O (TN2)

16



2.2. A Concrete Example

Having defined the terminology related to an HMM, along with the algorithms to train

and run it, we present a tangible example going forward. This example is also useful to

explain the generation of synthetic data in section 4.1. Consider an appearance labeling

system that labels a tracked object at every instance. Let the objects that the system

recognizes be a person, a car and a tree. In an ideal world, the appearance of the tracked

object is always the same. In other words, a person can’t transform into a car or vice versa.

But, due to tracker errors, a track may jump from one object to other. So, appearance

transitions occur. In addition, the labels generated by the appearance labeling system are

noisy. Smoothing this noisy stream data can be cast as a Hidden Markov Model problem,

where the observation sequences are the noisy labels generated by the appearance labeling

system and the hidden states are the actual labels of the tracked object. This problem can

be considered as a special case of HMMs, where there is a one-to-one mapping from states to

observations, and in fact we use the same names for states and observations, distinguished

only by subscripts. For example, persono is the observation of (noisily) looking like a person,

while persons is the state of actually being a person. The graphical representation of this

HMM is shown in figure 2.4.

An HMM is defined by the set of states, observations, prior probabilities, transition prob-

abilities, and observation probabilities. The structure of the HMM is already known here.

The states and observations are the labels generated by the system. Prior transition table

can be generated by assuming each state as being equally likely. Transition and observa-

tion probabilities are assigned randomly and the HMM is trained using the Baum-Welch

algorithm until convergence as discussed in subsection 2.1.5. After training, the observation

17



Person Car Tree

Car

TreePerson

Start

Figure 2.4. Example of a Hidden Markov Model

table captures the error distribution of the appearance labeling system, whereas the transi-

tion table captures how often the track jumps from one object to the other. Once the HMM

is trained, the labels generated by the appearance labeling system (observation sequences)

are smoothed by running the Viterbi algorithm discussed in subsection 2.1.6.

Figure 2.4 shows one HMM for object appearance. In addition, we have a similar HMM

for actions, where the states and observations are walk, stand, and drive, and yet another

HMM for trajectories. The rest of this thesis addresses how to best combine HMMs such as

these, knowing that certain combinations of states are not allowed, e.g. trees can’t walk.

18



2.3. Extensions to Hidden Markov Models

Although HMMs are useful to model many time series models, they have limitations

in the context of interacting time series models. Many real world signals are generated by

multiple processes. These signals can be considered as multiple channels of data generated

by multiple processes which may be dependent or independent. The voices in a cocktail party

is an example of multiple channels of independent data. Whereas, human behavior is made

up of multiple interacting processes. The appearance of an object is obviously correlated to

the action it does. A person can walk whereas a tree can’t.

Signals from systems with multiple processes are common in the real world. Such signals

have structure both in time and space. As HMMs can represent a single variable, signals from

multiple processes can be modeled by an HMM by representing the states of the HMM as

the combination of the states from all channels. The resulting HMM is called a fully coupled

HMM (FCHMM). If there are C chains, each with N states, the FCHMM has NC states.

The complexity of FCHMM is untenable, particularly because enormous amounts of data is

required to train such a system. There is often insufficient data to train a FCHMM, leading

to undersampling. In other words, a large number of states result in overfitting the data. As

the FCHMM is not practical, even for a small number of channels with limited states, HMMs

can be extended by coupling, such that the number of states and the amount of training

data is manageable. Different types of couplings are discussed in the next subsection.

2.3.1. Varieties of Couplings

Standard HMMs can be extended to model multiple chains of data from multiple processes,

either by coupling the outputs or coupling the states. Factorial HMMs, Linked HMMs,

19



S’

T = 1

O

S

T = 2 T = 3 T = N � 1 T = N

Figure 2.5. Factorial Hidden Markov Model

Hidden Markov Decision Trees, and Coupled HMMs are different extensions of HMMs to

model multiple streams of data. They are explained below.

One extension of an HMM can be done by modeling each process as a different HMM

and coupling their outputs. These models are called factorial Hidden Markov Models

(FHMM) [20] and are shown in figure 2.5. This is the weakest coupling and is suited for

modeling data from independent processes. FHMMs have a clear advantage over FCHMMs

to model data from independent processes: to model each C processes each with N states,

FCHMMs require NC states whereas FHMMs require only NC states.

Although, FHMMs can model multiple independent processes, many interesting applica-

tions have multiple channels of data that carry complementary information. Modeling such

data with FHMMs is inappropriate as any variation of the interacting processes is modeled

as noise. For example, consider appearance and action of a subject as two chains of data. If

20



a FHMM is used to model this data, at a given instance an HMM may predict the appear-

ance of an object as tree, whereas other HMM may predict the action of the same object as

walk. But, trees can’t walk. To model such multiple dependent processes, a variety of other

inference graph structures have been proposed.

Linked HMMs (LHMM) were proposed by Saul and Jordan [39]. LHMMs are parallel

Boltzmann chains coupled by weights that connect their hidden state nodes to exploit the

correlation between them as shown in figure 2.6. Saul and Jordan proposed a O (TN3)

algorithm to train two Boltzmann chains using decimation, a statistical mechanics method

to obtain correlation on a connected pair of nodes. The coupling we propose in this thesis

is similar to LHMMs except that the consistency constraints are imposed between hidden

states of various chains instead of correlation.

Hidden Markov Decision Trees (HMDT) were proposed by Jordan and Ghahramani [21]

to represent hierarchical structure in a signal. They model the constraints imposed by a

master process on a slave process as shown in figure 2.7.

Another framework to model data from multiple dependent processes is Coupled HMM

(CHMM). CHMMs are appropriate to model processes that have their own internal dynamics

but influence each other as shown in figure 2.8. For example, in tennis, both players play

according to their own dynamics. But, a player going to the net will drive the opponent

back, weak serves will pull him forward. Such models can be modeled well with CHMMs.

CHMMs are used for comparison in this thesis and are discussed in detail in the next section.

2.3.2. Coupled Hidden Markov Models

A fully coupled HMM can best model multiple chains of data. But, it requires enormous

amounts of training data and has exponential complexity. So, CHMMs are proposed as

21



O0

O

T = 1 T = 2 T = 3 T = N � 1 T = N

S0

S

Figure 2.6. Linked Hidden Markov Model

an extension of standard HMMs to model multiple chains of data from multiple dependent

processes. In a CHMM, a state at time t depends on states at time t-1 of all chains as shown

in figure 2.8. Different variations of CHMMs are proposed by Rezek et al. [35, 36], Brand et

al. [9, 10], Zhong and Ghosh [46].

For a two chain CHMM, Rezek et al. proposed the likelihood function that encodes the

HMM model as

P (S,O|λ) = P (S1)P (S ′1)
T∏

t=1

P (Ot|St)P (O′t|S ′t)P (St+1|St, S ′t)P (S ′t+1|St, S ′t) (2.24)

22



O

T = 1 T = 2 T = 3 T = N � 1 T = N

S0

S

S00

Figure 2.7. Hidden Markov Decision Tree

where,

• St denotes the state at time t of the first chain at time t

• S ′t denotes the state of the second chain at time t

• Ot is the observation of first chain at time t

• O′t is the observation of second chain at time t

• P (St+1|St, S ′t) are the state transition probabilities of the first chain

• P (S ′t+1|St, S ′t) are the state transition probabilities of the second chain

• P (Ot|St), P (O′t|S ′t) are the observation densities of the first and second chains re-

spectively

• P (S1), P (S ′1) are the prior probabilities of first and second chains respectively

23



O0

O

T = 1 T = 2 T = 3 T = N � 1 T = N

S0

S

Figure 2.8. Coupled Hidden Markov Model

They maximized the likelihood function in equation (2.24) using maximum likelihood

estimation [35] or Maximum a Posteriori Estimation [36]. Irrespective of the methods to

maximize the likelihood function, the CHMM model proposed by Rezek et al. requires to

estimate a transition table of size NC × NC . Although the number of parameters in the

proposed transition table is less than that of a FCHMM, the complexity is still exponential.

Brand et al. proposed a factor and couple HMM to couple HMMs with causal influ-

ences [10]. This HMM is based on projections between standard HMMs and a FCHMM.

HMMs are coupled by introducing coupling parameters between hidden state variables of

different chains. In a factor and couple HMM, training is done in the fully coupled state

24



space via standard HMM methods. Then a subspace manifold is embedded within the fully

coupled state space that represents all possible parameterizations of a much smaller system of

coupled HMMs. For a factor and couple HMM of C chains, each with N states, the transition

table dimensions are NC × NC. Although the parameters to learn are not exponential in

the number of chains, the training of a factor and couple HMM still takes place in cartesian

state space. The factor and couple HMM has the same time complexity as a FCHMM.

Brand proposed a deterministic N-heads dynamic programming approach to train CHMM

in O (T (CN)2) time [9] via Expectation Maximization. Inference on a CHMM of C chains

requires to visit all paths in the joint state trellis that is NC states wide. An N-heads

dynamic programming algorithm relaxes the assumption that all state transitions must be

visited. The posterior probability mass of a HMM is not evenly distributed among all the

state sequences. It is concentrated in the state sequences that are close to the MAP state

sequence. The sequences with low probability carry relatively little information. So, the

N-heads dynamic programming problem samples a subset of paths that have the highest

probability paths to closely approximate the full combinatoric result. N-heads dynamic

programming performs slightly better than factor and couple HMM in terms of log likelihood

of the probability of observation sequences. N-heads dynamic programming was also used

by Oliver et al. for modeling human interactions[28].

Zhong and Ghosh proposed a new formulation of CHMM in which the joint transition

probability of a CHMM is modeled as a linear combination of transition probabilities and

coupling probabilities [46]. The weights of the linear combination is a factor of the influence

of one chain on the other. The formulation of Zhong and Ghosh has C2 additional parame-

ters to learn than that of Brand. These additional parameters capture the influence of one

chain on the other. The presence of coupling parameters in the joint transition probability

25



equation makes it no longer in pure product form. So, the dynamic programming tricks

can’t be applied here as done by Brand. The complexity of the training of the proposed

CHMM is equal to that of FCHMM. Zhong and Ghosh approximated the learning using

Lagrangian multipliers to make the computation practical. Unfortunately, although the log

likelihood of the approximated inference is better than that of exact inference, the classifi-

cation/recognition accuracy of the approximated inference algorithm is not very close to the

exact inference method.

2.4. Constrained HMM

Constrained HMMs build some topology into the hidden state representation [37]. Con-

strained HMM constrains the transition parameters of an HMM to make sure that the hidden

states evolve in a structured way. Left-to-right HMMs can be considered as a special case of

Constrained HMMs. In left-to-right HMMs, the transition matrix of an HMM is constrained

to be an upper diagonal matrix. In a similar way, Constrained HMMs’ transition table is ini-

tialized with random values. Based on the topology, the values of the impossible transitions

are set to zero. Then, the Constrained HMM has same inference procedures as a standard

HMM. The learning procedure for a Constrained HMM is much easier in some cases, as

the transition probabilities that are constrained by the topology need not be learned. The

similarity of Constrained HMM to the proposed HMM lies in constraining the transition

and observation probabilities based on the consistency constraints. There are other works

by Christiansen et al. by the name Constrained HMM [13, 14]. But, they constrain the

observations emitted by a state. Such models are not relevant to the applications proposed

in this thesis.

26



2.5. English language Ontological Databases

This thesis explores a way to couple HMMs to model appearance, actions and relations

without increasing the number of samples required to train the HMMs. The information that

links objects, actions and relations comes from natural language databases. The knowledge

corpi of natural language has information about words, along with their parts of speech and

the knowledge of what words occur together. WordNet, VerbNet, and FrameNet are such

knowledge corpi for the English language. In this thesis, the constraints are generated by

hand, but in principle they could be generated from these sources. The knowledge databases

are discussed in the following subsections.

2.5.1. WordNet

WordNet is a lexical database for the English language. It contains information about

some 110,000 nouns, 11,000 verbs, 22,000 adjectives, and 4,500 adverbs. WordNet groups

words based on their meanings by interlinking words with a semantic relation. As a result,

words that are found in close proximity to one another in the network are semantically

disambiguated [17].

The relations supported by WordNet are polysemy, synonymy, hyponymy, and meronymy.

Synonymy is the main relation among words in WordNet. It groups words with similar

meaning together, for example, the words car and automobile. A group of synonyms is

called a synset. Polysemy represents one-to-many relation where one word has many different

meanings. Hyponymy can be considered as an IS-A relation. It links more general words

such as a vehicle to a more specific word such as car. Meronymy is a bidirectional relation

that represents a part-whole relation. It holds between words such as car and wheel.

27



The mapping from appearances to nouns is many to many, whereas the mapping from

appearances to synsets is many to one. Although, WordNet groups words based on different

relations, it doesn’t have the linkages between nouns and verbs that we are looking for. For

example, using WordNet, we can know that car is a vehicle. But, there is no relation which

states that vehicles can’t walk. To find such mutual information between different parts of

speech, we will look into another lexical database called VerbNet in the next subsection.

2.5.2. VerbNet

WordNet doesn’t provide a comprehensive account of all possible syntactic frames and pred-

icate argument structures associated with a verb. VerbNet is developed to account for this

shortcoming of WordNet. VerbNet is a verb lexicon compatible with WordNet, but with

explicitly stated syntactic and semantic information. VerbNet denotes the semantic rela-

tionship between predicate and argument [40]. As this information represents the relation

between verbs and nouns, we can exploit this information from VerbNet and WordNet.

Moreover, VerbNet is also compatible with FrameNet which is discussed next.

2.5.3. FrameNet

FrameNet is a lexical resource for English, based on frame semantics and supported by

corpus evidence. FrameNet contains a wide range of semantic and syntactic combinatory

possibilities for each word in each of its senses. Word senses are grouped into conceptual

structures called frames that represent cognitive concepts. A frame is a schematic repre-

sentation of a situation involving various participants, propositions, and other conceptual

roles. Thus, FrameNet can recognize the relationship between different parts of speech[1, 38].

For example, walk is described by the “self motion” frame in FrameNet. The definition of

28



this frame is “The self mover, a living being, moves under its own direction along a path”.

WordNet hypernymy relation, links walk with self-propelled motion, and person with a living

being. We can link WordNet and FrameNet and say that cars can’t walk, and walk is not

possible without motion. Thus, WordNet, VerbNet, and FrameNet can be used to find the

mutual information between the appearance, action, and trajectory labels. In this thesis,

the constraints are generated by hand, but in principle they could be generated from these

sources.

2.6. HMMs in Computer Vision

There are numerous works in Computer Vision that uses HMMs. Out of all those works,

the one by Siddharth et al.[41] is the closest one to ours. They integrate natural language

concepts with computer vision as we do. But, the way language is used is different. The

work by Siddharth et al. is an extension to the simultaneous object detection, tracking, and

event recognition work by Barbu et al. [2]. Barbu et al. used an object detector for each

of the objects to be recognized. They over generate the detections to alleviate the problem

of false negatives. From the over generated set of detections, they select the detections

in multiple frames that abide to the optical flow in the detections. Once, the detections

are tracked over multiple frames, the tracks that conform to the event model are selected.

Tracking in multiple frames is accomplished by optical flow, and event recognition is done

using an HMM, based on the detections that depend on the event model. Thus, Barbu et

al. simultaneously perform object detection, tracking and event recognition. However, the

events that can be recognized by this system is confined to a unary predicate.

Siddharth et al. extended the simultaneous object detection, tracking, and event recog-

nition system to recognize complex events that have multiple predicates by exploiting the

29



similarities in the compositional structure of language and events. Given a sentence, a video,

and a lexicon, their system detects the activity given by the sentence in the video. This is

done by parsing the sentence based on lexicon to detect the nouns, adjectives, verbs, ad-

verbs, and prepositions. An object detector is used for each of the nouns in the sentence.

The detections in multiple frames that adhere to the optical flow are considered a track.

The tracks that adhere to the verbs, adverbs, adjectives, and prepositions in the sentence

are selected based on the rules in the lexicon. Thus, sentence-guided activity recognition in

video is accomplished.

If the activity in the video is unknown, the algorithm systematically searches the space

of all possible sentences that can be generated by a context-free grammar and finds the

sentence that has the maximum score. In a real world setting, the search space is huge,

possibly infinite, and searching in this space is intractable. But, the authors suggest that

beam search can give an approximate answer, while being tractable. However, the beam

search method reduces the complexity that arises from the recursion of grammar to generate

sentences. But, real world has a large number of nouns, verbs, adverbs, prepositions, and

adjectives. The grammar quickly grows even if we restrict to simple grammar and the method

quickly becomes intractable. Moreover, the method is specific to the lexicon, and can’t be

easily extended. One reason is that the method uses object detectors, and it is not possible

to have an object detector for all possible objects in the world. Another reason is that it is

not possible to write rules for all verbs, adverbs, adjectives, and prepositions. For example,

one can’t write a rule for actions like clap, or wave unless there is a hand detector.

Although Siddharth et al. tries to integrate vision and language as we do, the way the

language is used is different. They use language to parse sentences to find different parts

of speech. Based on the parsed sentence, and pre-compiled rules, the activity recognition is

30



done along with object detection, and tracking simultaneously. In contrast, we exploit the

consistency constraints from language and integrate it into HMMs to account for the lost

mutual information. Our method is simple and more general and can be applied to real

world without exploding the complexity. Moreover, the HMMs need not be retrained when

some constraints are added or changed.

Dragon and Van Gool estimated the ground plane from a monocular camera using a

Hidden Markov Model [16]. Assuming that the motion of the camera is orthogonal to the

ground plane normal, they formulated the problem as a continuous HMM. They jointly solve

the problem of estimating the motion of the camera along with ground plane estimation by

formulating the unknowns as hidden states i.e., the camera motion vector and ground plane

normal. The hidden states are estimated by decomposing homographies. They use blocked

Gibbs sampling to refine the solution proposed by their HMM. The proposed approach works

robustly in a large variety of sequences, including tilted cameras and wobbling images. The

suggested approach can be easily extended to track other structures like vanishing points

over time.

Peng et al. used HMMs for full body gesture recognition. They use two uncalibrated

cameras to make the gesture recognition view invariant. They extract silhoutte images

from two cameras and do a multilinear projection on them to get view invariant pose and

orientation vectors. Then, an HMM is applied to the pose vectors for gesture recognition

[30]. Rajko and Qian proposed reduced parameter HMM models for gesture recognition.

The proposed models have O (n) and O (1) complexity, and their performance is comparable

to standard HMMs for gesture recognition [34]. Peng and Qian used the reduced HMM

parameter proposed by Rajko and Qian to make their view invariant full body gesture

recognition to work in real time [29].

31



Tang et al. proposed a conditional variant of a variable duration HMM to learn latent

temporal structure of complex events in Internet videos [43]. Unlike, standard HMMs, where

a state emits only one observation, variable duration HMM states can emit an observation

sequence. The conditional variant proposed by Tang et al. is similar to a conditional

random field [32]. The proposed HMM achieves competitive accuracies on event detection

and activity recognition tasks while being simple and fast.

2.7. Summary

In this chapter, we reviewed the basics of an HMM along with the algorithms to train, and

run them. Then, we looked into various extensions of HMMs to model multiple sequences of

data. Having learned that CHMM is the appropriate extension to model multiple streams

of data from dependent processes, we reviewed the previous works on CHMMs. In addition,

we looked into Constrained HMMs as we impose constraints on some combination of states

in a similar way. As we are exploiting the information from natural language databases, we

reviewed WordNet, VerbNet, and FrameNet. Finally, we reviewed some latest applications

of HMMs in the field of Computer Vision.

32



CHAPTER 3

Consistent Hidden Markov Models

Hidden Markov Models (HMMs) are popular probabilistic models to integrate informa-

tion over time. Given a set of observation sequences, HMM can be trained using the Baum-

Welch algorithm as discussed in section 2.1.5. Given an HMM model, and an observation

sequence, the Viterbi algorithm discussed in section 2.1.6 is used to find the most likely state

sequence. A standard HMM is represented as λ = (A,B, π) and the related terminology is

explained in section 2.1.1

Traditionally HMMs are used to model data generated from a single process. However,

in the context of computer vision applications, such as activity recognition, data generated

from multiple processes must be integrated. As traditional HMMs don’t integrate data

from multiple processes, HMMs need to be extended to model data from multiple processes.

There are varieties of couplings to extend HMMs as discussed in section 2.3.1. Each coupling

serves its own purpose. The contribution of this thesis is to propose a new formulation of

an extended HMM that allows us to exploit the knowledge from natural language without

requiring significantly more training data.

Section 3.1 explains the terminology of a consistent HMM. This section is essential to

understand the following sections. The extended version of the Viterbi algorithm, to find

the most likely state sequence, is explained in section 3.2. Finally, section 3.3 explains the

extended Baum-Welch algorithm we propose to train a consistent HMM

33



3.1. Terminology related to Consistent HMM

The following terminology is important to explain the extended Baum-Welch and Viterbi

algorithms that integrates knowledge from multiple processes. Data generated by each pro-

cess is considered a chain in this thesis. The mutual information between chains is lost when

they are interpreted independently. The algorithms presented below exploits knowledge from

natural language to capture the mutual information between different chains. The following

terminology is applicable to an HMM that should fuse information from different chains.

• C: Number of chains.

• Set of States: S =
C⋃
c=1

S(c), where S(c) is the set of states for cth chain. The total

number of states |S| =
∑C

c=1 |S(c)|. The state at time t for chain c is denoted by

q
(c)
t = S

(c)
i ∈ S(c).

• Cartesian product states: S⊗ =
C⊗
c=1

S(c). Cartesian product states are all the possible

combinations of states from C chains. The total number of cartesian product states

|S⊗| = ∏C
c=1 |Sc| where each state is a C-tuple.

• Set of observation symbols: V =
C⋃
c=1

V (c), where V (c) is the set of observation symbols

for cth chain. The total number of observation symbols are |V | = ∑C
c=1 |V (c)|. The

observation symbol at time t for chain c is denoted by O
(c)
t .

• Cartesian product observation symbols: V ⊗ =
C⊗
c=1

V (c). Cartesian product observa-

tion symbols are all the possible combinations of observation symbols from C chains.

The total number of cartesian product observation symbols |V ⊗| = ∏C
c=1 |V c| where

each observation symbol is a C-tuple.

• Ā is the vector of transitional probability matrices: Ā = {A(1), A(2), ..., A(C)}.

• B̄ is the vector of observation probability matrices: B̄ = {B(1), B(2), ..., B(C)}.

• π̄ is the vector of prior probability vectors: π̄ = {π(1), π(2), ..., π(C)}.

34



• κ is the binary constraint knowledge extracted from language databases. κ is a

vector of length |S⊗| such that for each of the cartesian product states s ∈ S⊗, the

corresponding κ value is 1 if the state s is consistent, 0 otherwise.

κ[i] =





1 S⊗i is consistent

0 otherwise

Having defined the above terminology, the proposed HMM is defined as λκ = (Ā, B̄, π̄, κ)C

3.2. Extended Viterbi Algorithm with Consistency Con-

straints

The power of an HMM lies in recovering the most likely state sequence that produced

the given observation sequence O, given a model λ. While there might be multiple state

sequences that generate a given observation sequence, the Viterbi algorithm finds the most

likely sequence. The Viterbi algorithm for a standard HMM is discussed in subsection 2.1.6.

The goal of this section is to extend the standard Viterbi algorithm to integrate data

from multiple channels so as to satisfy consistency constraints. Extended Viterbi algorithm

is accomplished by running the standard Viterbi algorithm on each chain as though they

are independent. However, at every timestep the algorithm enforces consistency constraints

across chains.

The standard Viterbi algorithm calculates the best score probability along a single path

in a chain c ending at a state S
(c)
i accounting for the first t observations. The best score

probability of state i is represented by δ
(c)
t (i) and is calculated by equation 2.20. At a given

timestep, this value can be calculated for every state s ∈ S. Let ∆t be the vector of the

best score probabilities for all states s ∈ S at time t as shown in equation 3.1. Let Ωt be

35



the best score probability vector for all states if the chains are coupled as a fully coupled

HMM as shown in equation 3.2. ∆t can be considered as a point in |S| dimensional space.

Let us call this space a factorial state space. Similarly, Ωt can be considered as a point in

|S⊗| dimensional space. Let us call this space a cartesian state space.

∆t = {δ(c)t (i)} ∀S(c)
i ∈ S (3.1)

Ωt = {δt(i)} ∀Si ∈ S⊗ (3.2)

The consistency constraints κ exploited from language are in cartesian state space. How-

ever, the HMMs are trained in the factorial state space i.e., HMMs are trained by assuming

each chain as independent. So, the Viterbi algorithm runs in factorial state space, but at

every timestep the algorithm projects the vector ∆ into cartesian state space, applying the

consistency constraints. Then the point in cartesian state space is projected back into the

factorial state space.

Projecting a point from cartesian state space to factorial state space is straight forward.

The probability of a state S
(c)
i in factorial state space is the sum of probabilities of all states

in cartesian state space S⊗ that has state S
(c)
i in it. If a state in factorial state space S

(c)
i

is in the C-tuple of a state in cartesian state space S⊗j , it is represented as S
(c)
i ∈ S⊗j .

Mathematically, the probability of a state in factorial state space is calculated from the

probabilities in cartesian state space by the following equation.

P (S
(c)
i ) =

|S⊗|∑

j=1

S
(c)
i
∈S⊗

j

P (S⊗j ) (3.3)

36



The probability of a state in factorial state space is the sum of probabilities of corre-

sponding states in cartesian state space as shown in equation 3.3. This can be written as

a linear combination of probabilities of all cartesian states where the corresponding weights

are either 0 or 1. Therefore, there exists a matrix ρ that projects the probability vector from

a cartesian state space to a factorial state space. The dimensions of ρ matrix are |S| × |S⊗|.

The rows of ρ matrix are indexed by the states S, whereas the columns are indexed by the

cartesian product states S⊗. The values of the ρ matrix are filled with binary values based

on equation 3.3 as shown in the following equation.

ρ[i][j] =





1 if Si ∈ S⊗j

0 otherwise

(3.4)

Having defined ∆,Ω, and ρ, the probability vector Ω in the cartesian state space can be

projected to the probability vector ∆ in the factorial state space by the following equation.

∆ = ρΩ (3.5)

However, dependency information is lost when a point in a high dimensional cartesian

state space is projected to a point in a low dimensional factorial state space. The information

captured by |S⊗| dimensions can’t be captured by |S| dimensions. Projecting back from

factorial state space to cartesian state space doesn’t recreate the original high dimensional

vector as the information lost during projection onto factorial state space can’t be recovered

unless the participating chains are independent. If the participating chains are independent,

except for the consistency constraints κ, we can integrate the consistency constraints κ into

37



the projection step as shown below.

P (S⊗) = κ�
C⊗

c=1

P (S(c)) (3.6)

However, usually there are other dependencies between the chains that we are not aware

of. Moreover, if we project from a factorial state space to a cartesian state space by applying

only consistency constraints as shown in equation 3.6, the projection is not “stable”. That

is, a different vector is generated everytime a projection is done from factorial state space

to cartesian state space by equation 3.6, and the cartesian state vector is projected back by

equation 3.5. This is because the dependency information is lost when a point is projected

from a cartesian product space to a factorial state space. In other words, applying equation

3.6 followed by equation 3.5 does not produce the same probability vector you started with.

We need to integrate consistency constraints into the cartesian state space vector such

that the consistency information κ is not lost in projections between two spaces, to the extent

possible. Therefore we pose this problem as a linear optimization problem that finds the

closest cartesian vector that follows the consistency constraints κ and can be best explained

by a factorial model. This cartesian vector Ω is the vector that abides by the consistency

constraints κ and minimizes the L2 norm between ∆ and the projection of Ω onto the factorial

state space. Let f(∆, ρ, κ) be a function that projects the probabilities from the factorial

state space to a fully coupled state space by imposing binary consistency constraints. The

optimization problem can be written as:

38



f(∆, ρ, κ) = Min ||∆− ρΩ||2

s.t 1.Ω = 1 and Ω >= 0 and 1.((1− κ)� Ω) = 0 (3.7)

The constraint 1.Ω = 1 makes sure that the probabilities of Ω sum to 1. The constraint

Ω >= 0 along with 1.Ω = 1 constrains the probability values to be between 0 and 1 inclusive.

1.((1− κ)� Ω) = 0 imposes the consistency constraints in Ω.

In other words, we can assume that there exists a manifold in the cartesian state space

where each point on the manifold can be mapped to the factorial state space without any

loss of information. By definition, when a point from a factorial state space is projected onto

the cartesian state space by assuming independence between the chains, the resultant point

lies on this manifold in the cartesian state space. However, when consistency constraints are

imposed, the resulting point is no longer on this manifold. The optimization step projects

the knocked off point back onto the manifold such that the consistency constraints stay

intact, and this new point, when projected back to the factorial state space, lies close to the

original points. This is pictorially depicted in the figure 3.1.

Algorithm 3.1 gives the pseudo code for the proposed algorithm. Conceptually, the al-

gorithm is similar to running the standard Viterbi algorithm in every chain. But, at every

time step, the optimization function defined in equation 3.7 is applied, and the resultant

vector is projected back as shown in equation 3.5. The steps represented by red color in the

algorithm shows our contribution to enforce the consistency constraints κ. The optimization

method used in lines 3 and 8 of the algorithm is any linear optimization method that can

solve the optimization problem laid out in equation 3.7. Other steps are the standard Viterbi

39



INDEPENDENCE
  ASSUMPTION

P (S
(c)
i ) =

|S⌦|X

j=1

S
(c)
i

2S
⌦
j

P (S⌦
j )

Chain 1

Chain 2

Chain 3

INDEPENDENCE 
ASSUMPTION

P (S⌦) =

CO

c=1

P (S(c))
Consiste

ncy**

Constra
ints*

Appearance*

Ac/on*

Trajectory*

Figure 3.1. Projection between factorial and consistent state spaces

algorithm steps, except that the Viterbi algorithm is applied to multiple chains simultane-

ously. The extension of standard Viterbi algorithm steps to apply the Viterbi algorithm on

multiple chains simultaneously is shown in the algorithms presented in appendix A.

The same algorithm is shown in figure 3.2. The green, brown, and blue rectangles depicts

the best score probability vectors for each chain at a time step. The vector of all such prob-

abilities is denoted by ∆. Optimization step is performed to project ∆ to a cartesian state

space with consistency constraints. The resulting vector Ω is represented by red rectangles

in the figure. This vector is projected back to the factorial state space and the Viterbi step

is run to calculate best score probabilities at next time step.

The algorithm presented in this section allows us to find the most likely state sequence

that generates the given observation sequence by imposing consistency constraints. The ad-

vantage of this method is that constraints can be imposed during run time without retraining

the HMMs. This algorithm will be evaluated in chapter 4. The next section discusses our

extension of the Baum-Welch algorithm which is used to train the HMMs. The extended

40



Algorithm 3.1 Extended Viterbi Algorithm

Input: An HMM λκ = (Ā, B̄, π̄, κ)C ;
Factorial states S;
Cartesian states S⊗;
A sequence of observed symbols: O = {O(1), O(2), ..., O(C)} where O(c) =

O
(c)
1 O

(c)
2 O

(c)
3 ...O

(c)
T ;

Output: An array Q of length C × T , where each row is indexed by a chain, and each
column is indexed by a time step. The Q array holds the indices of most likely states
that generates the observation sequence O.

1: ρ, SEQSCORE,BACKPTR = INITIALIZE(S, S⊗, π̄)
2: ∆ = SEQSCORE[:, 1]
3: Ω = OPTIMIZE(∆, ρ, κ)
4: SEQSCORE[:, 1] = ρΩ
5: for t = 2 to T do
6: SEQSCORE,BACKPTR = VITERBI STEP(SEQSCORE,BACKPTR, λκ)
7: ∆ = SEQSCORE[:, t]
8: Ω = OPTIMIZE(∆, ρ, κ)
9: SEQSCORE[:, t] = ρΩ
10: end for
11: Q = BACKTRACK(SEQSCORE,BACKPTR,C, S)
12: return Q

Baum-Welch algorithm allows us to impose consistency constraints during training as shown

in the next section.

3.3. Extended Baum-Welch Algorithm with Consistency

Constraints

HMMs can recover the most likely state sequence that produced an observation sequence

O by the Viterbi algorithm. But the Viterbi algorithm requires a model λ to recover the most

likely sequence. The model λ is trained to maximize the likelihood of the observation se-

quence. The Baum-Welch algorithm to train HMMs based on the expectation maximization

method is discussed in subsection 2.1.5.

41



...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

......

Viterbi Step

Viterbi Step

Viterbi Step

Viterbi Step

Viterbi Step

Viterbi Step

t t + 1 t + 1 t + 2

�t+1 �
t+1

⌦t+1

f(�, ⇢, ) ⇢⌦t+1

Figure 3.2. Extended Viterbi Algorithm with Consistency Constraints

This section extends the standard Baum-Welch algorithm to train HMMs by integrating

data from multiple channels along with the consistency constraints. The extended Baum-

Welch algorithm learns the same parameters as a factorial HMM, but the consistency con-

straints are weakly embedded within the parameters. The consistency constraints thus em-

bedded do not need any additional parameters. The extended Baum-Welch algorithm is

accomplished by first initializing the models for each chains as in the standard Baum-Welch

42



algorithm. However, once the models are initialized, the algorithm enforces consistency

constraints across the initial models. Then each model is trained using the standard Baum-

Welch algorithm as if they are independent. Integrating the consistency constraints after

the models are initialized results in a better starting state for the standard Baum-Welch

algorithm.

The standard Baum-Welch algorithm trains an HMM model for a chain c denoted by

λ(c) = {A(c), B(c), π(c)}. There are different transition probability and observation probability

matrices for each chain. There is a need to represent the transitions probability matrices from

all the chains in a single matrix to integrate the consistency constraints in them. The same is

the case with the observation probability matrices. As the dimensions of these matrices vary

across the chains, the matrices can’t be stacked either horizontally or vertically. To overcome

this issue, the matrices can be stacked in a block diagonal fashion as show in figures 3.3 and

3.4. Moreover, it is easier to project a transition or an observation matrix from a cartesian

state space to a factorial state space in the block diagonal format.

Let the block diagonal matrix for the transition probabilities be denoted by AC . The rows

and columns of this matrix are indexed by the set of states S and the dimension of the matrix

is |S| × |S|. If the row and the column labels corresponds to the states from the same chain,

the corresponding entry is filled with the transition probability value from the respective

chain. If the row and the column labels corresponds to different chains, the corresponding

entry is set to zero. Figure 3.3 shows the block diagonal transitional probability matrix.

Transition probability matrices from different chains are represented with different colors

and the white spaces represent 0. Mathematically, it is represented as

43



.   .      .         .            .               .   

S(0)

S(0) S(1) S(C)

S(1)

S(C)

Figure 3.3. Transition matrices stacked in form of block diagonal matrices

AC [i][j] =





A(c)[k][l] ∃c, k, l : Si = S
(c)
k and Sj = S

(c)
l

0 otherwise

(3.8)

The block diagonal matrix for the observation probabilities is denoted by BC . It is similar

to AC except that the columns are indexed by the set of observations V. The dimension of

this matrix is |S| × |V |. If the row and column labels corresponds to the same chain, the

corresponding entry is filled with the observation probability value from the respective chain.

44



.   .      .         .            .               .   

V (0) V (1) V (C)

S(0)

S(1)

S(C)

Figure 3.4. Observation Matrices stacked in the form of block diagonal matrices

Else, the value is set to zero. Figure 3.4 shows the block diagonal observation probability

matrix where different colors represent the observation probability matrices from different

chains and the white spaces represent 0. Mathematically, the matrix BC is represented as

BC [i][j] =





B(c)[k][l] ∃c, k, l : Si = S
(c)
k and Sj = V

(c)
l

0 otherwise

(3.9)

45



Let η be the function that generates the block diagonal matrix from a vector of individual

matrices. The inverse of this function extracts the individual matrices from the given block

diagonal matrix. For the transition and the observation probability matrices, the function

is represented as

η(Ā) = AC (3.10)

η(B̄) = BC (3.11)

η−1(AC) = Ā (3.12)

η−1(BC) = B̄ (3.13)

Let A⊗ represent the transition probability matrix and B⊗ represent the observation

probability matrix in the cartesian state space. Projecting these matrices from the cartesian

state space to a factorial state space can be accomplished by summing over multiple values

in the cartesian state space. The transition probability in the factorial state space between

states i and j of chain c, P [S
(c)
i |S(c)

j ], is the sum of transition probabilities between the

states that has S
(c)
i and S

(c)
j in the cartesian state space S⊗. Mathematically, the transition

probability between two states in the factorial state space is calculated from the transition

probabilities in the cartesian state space by the following equation.

P (S
(c)
i |S(c)

j ) =

|S⊗|∑

k=1

S
(c)
i
∈S⊗

k

|S⊗|∑

l=1

S
(c)
j
∈S⊗

l

P (S⊗k |S⊗l ) (3.14)

46



The transition probability between two states in the factorial state space is the sum of the

corresponding transition probabilities in the cartesian state space as shown in equation 3.14.

In other words, a transition probability value in the factorial state space can be calculated

by summing over corresponding rows and columns in the cartesian state space transition

probability matrix. This can be written as a linear combination of transition probabilities of

all cartesian states where the corresponding weights are either 0 or 1. Therefore, there exists

a matrix υS that sums over the rows of the cartesian space transition probability matrix.

The transpose of this matrix sums over the required columns. The dimensions of υS matrix

are |S| × |S⊗|. The rows of υS matrix are indexed by the states S, whereas the columns

are indexed by the cartesian product states S⊗. The values of the υS matrix are filled with

binary values based on equation 3.14 as shown in the following equation.

υS[i][j] =





1 Si ∈ S⊗j

0 otherwise

(3.15)

Having defined the υS matrix, the transition probability matrix can be projected from

the cartesian state space to a factorial state space by premultiplying the cartesian space

transition probability matrix by υS and post multiplying the resultant with the transpose of

υS as shown in the following equation.

AS = υS.A
⊗.υTS (3.16)

The resulting matrix AS is in the block diagonal format. But the non diagonal blocks

are not filled with zeros, unlike AC . To zero out the non diagonal blocks, we define a

binary matrix ζ that has ones in the diagonal blocks, and zeros elsewhere. Point wise

47



multiplication of matrix ζ with AS converts the matrix to the required block diagonal format

AC . Mathematically, the matrix ζ is defined as

ζ[i][j] =





1 ∃c : Si ∈ S(c) and Sj ∈ S(c)

0 otherwise

(3.17)

Pointwise multiplication of equation 3.16 with ζ as shown in equation 3.18 results in

the transition probabilities in the factorial state space in the defined block diagonal for-

mat. Combining equation 3.18 with equation 3.12 gives the vector of transition probability

matrices Ā in the factorial state space as shown in equation 3.19.

AC = ζ � (υS.A
⊗.υTS ) (3.18)

Ā = η−1(ζ � (υS.A
⊗.υTS )) (3.19)

Similarly, the observation probability matrix can be projected from the cartesian state

space to a factorial state space except that the summation of columns is different for the

observation probability matrix. Transition probability matrix is indexed by the same rows

and columns. So, the transpose of υS was sufficient to sum over columns. But, the observa-

tion probability matrix rows are indexed by states S⊗, whereas the columns are indexed by

observation symbols V ⊗. So, the probability of observing an observation V
(c)
i given a state

S
(c)
j in the factorial state space can be calculated by summing over all the probabilities of

observing an observation that has V
(c)
i in it, given the cartesian state space that has factorial

state space S
(c)
j in it. Mathematically, it can be expressed by the following equation.

48



P (V
(c)
i |S(c)

j ) =

|V ⊗|∑

k=1

V
(c)
i
∈V⊗

k

|S⊗|∑

l=1

S
(c)
j
∈S⊗

l

P (V ⊗k |S⊗l ) (3.20)

Equation 3.20 is similar to the equation 3.14 except for the outer sum that sums over

columns. So, we can reuse the υS matrix defined in equation 3.15 to sum over the rows. To

sum over the columns, we define a matrix υV that sums over the columns of the cartesian

space transition probability matrix. The dimensions of υV matrix are |S⊗| × |V |. The rows

of υV matrix are indexed by the cartesian states S⊗, whereas the columns are indexed by

the observation symbols in the factorial state space V . The values of the υV matrix are filled

with the binary values based on the equation 3.20 as shown in the following equation.

υV [i][j] =





1 Vj ∈ V ⊗i

0 otherwise

(3.21)

Observation probability matrix is projected from the cartesian state space to a factorial

state space by pre-multiplying B⊗ with υS, post-multiplying the resultant with υV , and

point wise multiplying the result with ζ matrix. The block diagonal matrices are extracted

by applying the inverse η function given by equation 3.13.

B̄ = η−1(ζ � (υS.B
⊗.υV )) (3.22)

As already discussed in section 3.2 with respect to the extended Viterbi algorithm, some

dependency information is lost during projection from cartesian state space to factorial

state space which can’t be recovered unless the participating chains are independent. If the

participating chains are independent except for the consistency constraints κ, the consistency

49



constraints κ can be integrated into the projection step as shown below.

A⊗ = (κ.κT )�
C⊗

c=1

A(c) (3.23)

B⊗ = (κ.1T )�
C⊗

c=1

B(c) (3.24)

For the transition probability matrix, both the rows and columns corresponding to incon-

sistent states must be zeroed out. k.kT in equation 3.23 produces a binary matrix of shape

|S⊗| × |S⊗| indexed by the cartesian states S⊗ where the inconsistent rows and columns are

zeroed out. In contrast, the observation probability rows are indexed by the states, whereas

the columns are indexed by the observation symbols. So, only the rows corresponding to

inconsistent states must be zeroed out in the case of observation probability matrix. κ.1T

accomplishes this by horizontally stacking the κ vector to create a matrix of dimensions

|S⊗| × |V ⊗|.

However, there may be other dependencies between the chains we are not aware of as

already discussed in the section 3.2. Moreover the projection between the factorial and carte-

sian state spaces is not stable due to the loss of mutual information in projection from the

cartesian state space to a factorial state space. That is, a different set of transition probabil-

ity matrices are generated everytime a projection is done from the factorial state space to a

cartesian state space by equation 3.23, and the cartesian state transition probability matrix

is projected back by equation 3.19. The same is the case with the observation probability

matrix.

The projections between the state spaces must be stabilized to avoid a new set of ma-

trices between multiple projections. Moreover, the projection must integrate consistency

50



constraints into the cartesian state space vector such that the consistency information κ is

not lost in the projections between two spaces. This problem is also posed as linear optimiza-

tion problem as done in section 3.2. The optimization problem finds the closest cartesian

matrix with consistency constraints κ that can be best explained by the factorial model.

This cartesian matrix abides by the consistency constraints κ and minimizes the L2 norm

between the actual block diagonal matrix in the factorial state space and the projection

of the cartesian state space matrix onto the factorial state space. Figure 3.1 explains this

optimization step for the extended Baum-Welch algorithm, similar to the extended Viterbi

algorithm.

Let g(AC , υS, ζ, κ) be a function that projects the block diagonal transition probability

matrix from the factorial state space to a fully coupled state space by imposing binary

consistency constraints. The optimization problem discussed above is formulated as:

g(AC , υS, ζ, κ) = Min ||AC − ζ � (υS.A
⊗.υTS )||2

s.t A⊗.1 = κ and A⊗ >= 0 and A⊗.(1− κ) = 0 (3.25)

The constraint A⊗.1 = κ along with A⊗ >= 0 makes sure that the rows sum to 1 if the

states are consistent and the values of the rows corresponding to inconsistent states are set to

zero. Also they constrain the probability values to be between 0 and 1 inclusive. A⊗.(1−κ) =

0 imposes the consistency constraints on columns of the cartesian state transition probability

matrix.

Let h(BC , υS, υV , ζ, κ) be a function that projects the block diagonal observation prob-

ability matrix from the factorial state space to a fully coupled state space by imposing

51



binary consistency constraints. The optimization problem can be written similar to the

above optimization problem. The only difference is that the columns are not constrained in

the observation probability matrix. The optimization problem for observation probability

matrix is written as:

h(BC , υS, υV , ζ, κ) = Min ||BC − ζ � (υS.B
⊗.υV )||2

s.t B⊗.1 = κ and B⊗ >= 0 (3.26)

The pictorial representation of the extended Baum-Welch algorithm is shown in figure

3.5. The algorithm takes initialized models for each chain and generates a block diagonal

transition probability matrix and a block diagonal observation probability matrix as shown

in equations 3.8 and 3.9 respectively. The red square in the figure is the projection of block

diagonal transition probability matrix into a cartesian state space given by the equation 3.25.

The blue square is the optimization problem given by the equation 3.26 that projects the

block diagonal observation probability matrix into a cartesian state space. The transition

and observation probabilities in the cartesian state space are projected back to the factorial

state space through red and blue rectangles. The back projection depicted as red and blue

rectangles is done as shown in equations 3.19 and 3.22 respectively. These steps embed the

consistency constraints in the factorial state space matrices. Once the consistency constraints

are embedded, the individual chains are trained independent of each other using the Baum-

Welch algorithm discussed in section 2.1.5.

The pseudo-code for the extended Baum-Welch algorithm is shown in algorithm 3.2. The

pseudo-code in red shows our contribution on top of the standard Baum-Welch algorithm.

Any linear optimization solver that can solve the optimization problems in equations 3.25

52



   g(AC , �S , ⇣, )       
      Transition                  
    Optimization

h(BC , �S , �V , ⇣, )

     Observation

    Optimization

⌘�1(⇣ � (�S .A⌦.�T
S ))

⌘�1(⇣ � (�S .B⌦.�V ))

AC

BC B⌦


A⌦


�(2) = {A(2), B(2), ⇡(2)}

�(C)

Ba
um

-W
el

ch
 A

lg
or

ith
m

�
(1)

�
(2)

�
(C)

�̄(1)


�̄(2)


�̄(C)


�(1)

Ā

B̄

.......

.......

.......

Figure 3.5. Extended Baum-Welch Algorithm

and 3.26 can be used in lines 4 and 5 respectively. The pseudo-code for the standard Baum-

Welch algorithm used in line 9 is presented in appendix B.

Algorithm 3.2 Extended Baum-Welch Algorithm

Input: States S̄ = S(0), S(1), ..., S(C);
Observation Symbols V̄ = V (0), V (1), ..., V (C); A sequence of observed symbols: O =

{O(1), O(2), ..., O(C)} where O(c) = O
(c)
1 O

(c)
2 O

(c)
3 ...O

(c)
T ;

Output: HMM model: λκ = (Ā, B̄, π̄, κ)C
1: λ̄ = InitializeModel(S̄, V̄ )
2: AC = BlockDiagonalMatrix(Ā)
3: BC = BlockDiagonalMatrix(B̄)
4: A⊗κ = TransitionOptimization(AC)
5: B⊗κ = ObservationOptimization(BC)
6: Āκ = TransitionBackProjection(A⊗κ )
7: B̄κ = ObservationBackProjection(B⊗κ )
8: for c = 1 to C do
9: λ(c) = Baum−Welch(λ(c))
10: end for
11: return λ̄

Another variant of the extended Baum-Welch algorithm is evaluated in this thesis where

the consistency constraints are integrated multiple times, unlike the above algorithm where

53



   g(AC , �S , ⇣, )       
      Transition                  
    Optimization

h(BC , �S , �V , ⇣, )

     Observation

    Optimization

⌘�1(⇣ � (�S .A⌦.�T
S ))

⌘�1(⇣ � (�S .B⌦.�V ))

AC

BC B⌦


A⌦


�(2) = {A(2), B(2), ⇡(2)}

�(C)

Ba
um

-W
el

ch
 A

lg
or

ith
m

�
(1)

�
(2)

�
(C)

�̄(1)


�̄(2)


�̄(C)


�(1)

Ā

B̄

.......

.......

.......

Figure 3.6. Extended Baum-Welch Algorithm with Consistency Constraints
Integrated Multiple Times

the consistency constraints are integrated only at the beginning of the algorithm. This

variant of the extended Baum-Welch algorithm starts as the above algorithm. But, once the

individual models converge, this consistency constraints are integrated again and the chains

are trained individually once again. This process is repeated until the observation probability

of all the chains converge between two runs. This variant of the extended Baum-Welch

algorithm is depicted in the figure 3.6. However, this variant of the extended Baum-Welch

algorithm doesn’t perform as well as the above algorithm. When the consistency constraints

are applied multiple times, they push the transition and observation probability matrices to

a space where most of the rows are identity. These results are further explained in chapter

4.

54



3.4. Summary

This chapter presented the extended Viterbi algorithm with consistency constraints to

find the best state sequence, given an observation sequence. The advantage of this algorithm

is that the consistency constraints can be included during run-time, although the models

are not trained with the consistency constraints. This chapter also presented the extended

Baum-Welch algorithm that trains the HMM by taking consistency constraints into account.

The performance of these algorithms is evaluated on synthetic data in the next chapter.

55



CHAPTER 4

Experiments

Having proposed the algorithms to train and run a Consistent HMM in the previous

chapter, we evaluate the performance of these algorithms. Synthetic data is generated to

evaluate the performance of the Consistent HMM. Synthetic data gives the flexibility to

evaluate the Consistent HMM on a variety of datasets with changing behavior, by changing

the parameters used in the data generation. The synthetic data is explained in the next

section along with the way it is generated. Then the extended Baum-Welch and extended

Viterbi algorithms are evaluated individually and both in tandem. Finally, experiments are

performed to evaluate the performance of Consistent HMM with respect to other models.

4.1. Synthetic Data

As already discussed, appearance, action and trajectory information of a track is essential

for activity recognition. Section 2.2 discussed an example with respect to appearance labels.

In addition to the appearance labels, we consider action and trajectory labels to generate

synthetic data. Let us consider five appearance labels, five action labels, and three trajectory

labels. These labels form the states and observation symbols for the respective HMMs.

The synthetic data is generated using an HMM model. A starting state is selected ran-

domly based on the prior probabilities. Then the state transition probabilities will guide

the next state changes, and the observation for a particular state is selected randomly based

on the observation probabilities. The state sequence form the ground truth of the syn-

thetic data, and the observation sequences can be considered as the data generated by the

appearance labeling, action labeling, and trajectory labeling systems.

56



An HMM model is required to generate the synthetic data. In this thesis, we are trying

to model the dependencies that occur between multiple interacting chains. So, the data

should not be generated by independent HMM models, but a cartesian state HMM. The

states and observation symbols in cartesian space are generated by the cartesian product

of appearance, action, and trajectory labels. The cartesian product results in seventy five

cartesian states, where each state is a 3-tuple.

We assume that it is equally likely to start at any state. So, the prior probability matrix

for cartesian HMM is filled uniformly such that the prior probabilities sum to 1. In other

words, the prior probability of each state is
1

75
.

The transition probability matrix for the cartesian HMM is generated by the Kronecker

product of the individual transition probability matrices. The decoupled transition proba-

bility matrices have a special structure inspired by the real world. In the real world, objects

tend to have the same appearance, do the same action, follow a specific trajectory more

often than changing them. So, the decoupled transition probability matrices are diagonally

dominant. To be more specific, the appearance of an object doesn’t change often in the

real world. So, the diagonal entry of appearance transition probability matrix is set to 0.8,

and the other values are uniformly distributed such that the sum of the probabilities of

each row is 1. Actions tend to change slightly more often, and trajectories change more

often. So, diagonals of action and trajectory probability matrices are set to 0.7 and 0.6

respectively and the non-diagonal values are uniformly distributed. The Kronecker product

of these three decoupled transition probability matrices gives the cartesian state transition

probability matrix.

In an ideal world where the labeling systems are perfect, the labeling systems always

output the states they see. In such cases, the observation probability matrix is an identity

57



matrix. But, the labeling systems often produce noisy labels. Even though the systems are

noisy, we assume that the probability of labeling a correct state is more than the probability

of labeling an incorrect state. This assumption makes the observation probability matrix

diagonally dominant. Observation error is the measure of how often the labeling systems

assign incorrect labels. Observation error can be added to the observation probability matrix

by setting the diagonal values as 1 − error

100
and uniformly setting the off diagonal values

such that the sum of individual rows is 1.

Some combinations of appearance, action and trajectory labels do not occur in real

world. In other words, some cartesian states are inconsistent. For example, trees can’t

walk. As these states don’t co-occur, the respective rows and columns in the transition

table, and the respective rows in observation table are zeroed out. Zeroing out some rows

and columns can be viewed as adding dependencies between the processes. In addition to

the consistency dependencies, there might be other dependencies that we are not aware of.

Gaussian noise is added to the transition and observation probability matrices to account for

such dependencies. Gaussian noise is generated with mean of zero and standard deviation as

the quarter of the minimum value of the respective matrix excluding zeros. The probability

values are very small, and adding a small amount of negative noise may make the probability

value negative, which is against the basic probability rules. So, the absolute of the Gaussian

noise is added to the transition and observation probability matrices, wherever the states are

consistent. As the inconsistent states are already zeroed out, Gaussian noise is not added

to the inconsistent states. After adding the inconsistencies and Gaussian noise, the matrices

are row normalized.

There are two variables in synthetic data generation - the number of inconsistent states

and the observation error. Different sets of synthetic data is generated by varying these

58



two variables. The percent of inconsistent states is varied from 0 to 80 in increments of

20 i.e., 0%, 20%, 40%, 60%, or 80%. The inconsistent states are randomly selected based

on the percentage of inconsistent states. The observation error is varied between 20 and

80 in increments of 20. So, five values are chosen for inconsistent states and four values

are chosen for observation error. Synthetic data is generated for each combination of these

two variables. Fifteen models are generated for each combination to account for random

inconsistent states and Gaussian noise. The combination of inconsistent states, observation

error and fifteen models for each inconsistent states and observation error gives 300 different

datasets.

Synthetic data is generated for each model by running an HMM as already discussed. For

each model, 640 sequences are generated, each of length 100. These sequences are divided

into a training set that comprises of 128 sequences, and a testing set that comprises of 512

sequences. The states that generated the observations are stored as ground truth data to

evaluate the performance of HMMs.

A pilot study is performed in section 4.2 to show that a fully coupled HMM requires

enormous amounts of training data. A different set of synthetic data is generated for this

purpose. The percent of inconsistent states is set to zero and the observation error is chosen

to be 20, 40, 60, or 80. For each observation error, 5 models are generated resulting in 20

different models. Each model is used to generate 2500 sequences each of length 100. These

sequences are equally partitioned into train and test set.

The generated synthetic data is used to evaluate the performance of the proposed consis-

tent HMM with respect to different HMMs in the following sections. Pilot study is performed

by varying the training sample size from the pilot study synthetic data train set.

59



4.2. Pilot Study

Section 2.3 introduced various extensions to HMMs to model data from multiple inter-

acting processes. A fully coupled HMM (FCHMM) was introduced as an extension of HMM

to model data from multiple interacting processes. A FCHMM has states exponential in the

number of chains. So, the state space is huge and enormous amounts of data are necessary

to train it. As already stated, FCHMM is not practical even for a small number of chains

with limited states. This section does a pilot study that supports the above claim.

Synthetic data generated for the pilot study with 1250 train sequences and 1250 test

sequences is used for this study. A FCHMM is trained using Baum-Welch algorithm until

convergence, with training set of size varying from 1 to 1024 in the powers of 2. Once the

FCHMM is trained, Viterbi algorithm is used to estimate the most likely state sequences for

the test set.

The performance of the FCHMM is evaluated by comparing the estimated state sequence

with the ground truth data. The percentage of states correctly predicted is the accuracy of

the FCHMM and is used as a performance measure. Figure 4.1 gives the results of the pilot

study.

The above figure shows the plot of accuracy of the FCHMM versus training set size for

different observation errors. The graph shows a trend of increase in the accuracy with train

set size. The graph also shows a trend in the observation error. The less the error in the

observation probability matrix, the better the accuracy is, for a given train set size. Even

for a small dataset with 3 chains and 75 cartesian states, FCHMM achieved a maximum

accuracy of only 32.39%, for a train set of size 1024 each of length 100. Moreover, as the

observation error increased, the accuracy decreased achieving an accuracy of 4.34% for an

observation error of 80%. As FCHMM achieved a maximum accuracy of 32.39% by looking

60



20 21 22 23 24 25 26 27 28 29 210

Train size

0

5

10

15

20

25

30

35

A
cc

u
ra

cy

Pilot Study: Fully Coupled HMM

Observation Error: 20%
Observation Error: 40%
Observation Error: 60%
Observation Error: 80%

Figure 4.1. PilotStudy: Plot of train set size vs accuracy for different values
of observation error of a FCHMM

at a million data points even for a small toy problem, it is not a practical extension to model

data from multiple interacting processes.

4.3. Experiment 1: Performance of Extended Viterbi

Algorithm without retraining

One of the contributions of this thesis is to propose an extended Viterbi algorithm that

can integrate consistency constraints at run-time without the need of retraining the HMM.

This section shows the results to support the contribution.

61



20 40 60 80
Percent of Observation Error

0

20

40

60

80

100

A
cc

u
ra

cy

Inconsistent States: 20%

Factorial HMM
Consistent HMM

20 40 60 80
Percent of Observation Error

0

20

40

60

80

100

A
cc

u
ra

cy

Inconsistent States: 40%

Factorial HMM
Consistent HMM

20 40 60 80
Percent of Observation Error

0

20

40

60

80

100

A
cc

u
ra

cy

Inconsistent States: 60%

Factorial HMM
Consistent HMM

20 40 60 80
Percent of Observation Error

0

20

40

60

80

100

A
cc

u
ra

cy

Inconsistent States: 80%

Factorial HMM
Consistent HMM

Experiment 1 - Constant Percent of Inconsistent States

Figure 4.2. Experiment 1: Plots of Observation error percentage vs Accu-
racy for different percent of inconsistent states

As this experiment compares the performance of extended Viterbi algorithm without the

need of retraining, a trained HMM must be provided. The HMM is trained as a factorial

HMM using the standard Baum-Welch algorithm. Then, the extended Viterbi algorithm

discussed in section 3.2 is run using the model trained as a FHMM. The standard Viterbi

algorithm is also run to see the performance gain of the extended Viterbi algorithm. Figures

4.2 and 4.3 shows the results of this experiment.

Figure 4.2 shows four subplots, one for each percent of inconsistent states. Each subplot

shows the change in percentage of states correctly predicted(accuracy) with the observation

error. The plots show that the performance of the extended Viterbi algorithm is always better

62



0 20 40 60 80
Percent of Inconsistent States

0

20

40

60

80

100

A
cc

u
ra

cy

Observation Error: 20%

Factorial HMM
Consistent HMM

0 20 40 60 80
Percent of Inconsistent States

0

20

40

60

80

100

A
cc

u
ra

cy

Observation Error: 40%

Factorial HMM
Consistent HMM

0 20 40 60 80
Percent of Inconsistent States

0

20

40

60

80

100

A
cc

u
ra

cy

Observation Error: 60%

Factorial HMM
Consistent HMM

0 20 40 60 80
Percent of Inconsistent States

0

20

40

60

80

100

A
cc

u
ra

cy

Observation Error: 80%

Factorial HMM
Consistent HMM

Experiment 1 - Constant Percent of Observation Error

Figure 4.3. Experiment 1: Plots of Inconsistent state percentage vs Accu-
racy for different percent of observation error

than the standard Viterbi algorithm. The performance gain is more at the lower extremes

of observation error. As the observation error increases the performance gain of running

the extended Viterbi algorithm decreases. The reason for this behavior can be attributed

to the model learned by the factorial HMM. As the observation error increases, the more

noise in the data results in the noise model being learned. So, the gain in integrating the

inconsistency constraints to the noise model is less compared to the gain in integrating the

inconsistency constraints to the data model.

Figure 4.3 shows another view of the same data. Each subplot represents an observation

error and each subplot shows the trend of change in accuracy with inconsistent states. As the

63



0 20 40 60 80
Percent of Inconsistent States

0

20

40

60

80

100

A
cc

u
ra

cy

Appearance

Factorial HMM
Consistent HMM

0 20 40 60 80
Percent of Inconsistent States

0

20

40

60

80

100

A
cc

u
ra

cy

Action

Factorial HMM
Consistent HMM

0 20 40 60 80
Percent of Inconsistent States

0

20

40

60

80

100

A
cc

u
ra

cy

Trajectory

Factorial HMM
Consistent HMM

0 20 40 60 80
Percent of Inconsistent States

0

20

40

60

80

100

A
cc

u
ra

cy

Triplet

Factorial HMM
Consistent HMM

Experiment 1 - Individual Channel and Collective Performance - Constant Percent of Observation Error : 20%

Figure 4.4. Experiment 1: Plots of Inconsistent states percentage vs Accu-
racy for appearance, action, trajectory chains, and triplet for an observation
error of 20%

inconsistent states increase, the gain of using the extended Viterbi algorithm increases. The

increase in the performance gain is due to the additional knowledge that can be integrated

when a large number of states are inconsistent. Moreover, as the inconsistent states increase,

the standard deviation also increases. Although the error bars of the extended Viterbi

algorithm is higher, an identical behavior can be seen with standard Viterbi algorithm as

well. As the number of inconsistent states increase, the search space is no longer smooth

and has many local optimas resulting in high standard deviation.

Figures 4.4 and 4.5 show the plots of inconsistent states versus accuracy for appearance,

action, trajectory streams individually and the whole triplet for observation error of 20% and

64



0 20 40 60 80
Percent of Inconsistent States

0

20

40

60

80

100

A
cc

u
ra

cy

Appearance

Factorial HMM
Consistent HMM

0 20 40 60 80
Percent of Inconsistent States

0

20

40

60

80

100

A
cc

u
ra

cy

Action

Factorial HMM
Consistent HMM

0 20 40 60 80
Percent of Inconsistent States

0

20

40

60

80

100

A
cc

u
ra

cy

Trajectory

Factorial HMM
Consistent HMM

0 20 40 60 80
Percent of Inconsistent States

0

20

40

60

80

100

A
cc

u
ra

cy

Triplet

Factorial HMM
Consistent HMM

Experiment 1 - Individual Channel and Collective Performance - Constant Percent of Observation Error : 80%

Figure 4.5. Experiment 1: Plots of Inconsistent states percentage vs accu-
racy for appearance, action, trajectory chains, and triplet for an observation
error of 80%

80% respectively. As can be seen in figure 4.4, for small observation error, the performance

of the extended Viterbi algorithm is better than the standard HMM for individual chains

as well as the triplet collectively. Although the accuracy of individual chains is less for

high observation error, as can be seen in figure 4.5, the triplet accuracy is still high. The

extended Viterbi algorithm is designed to maximize the accuracy of the state combinations.

So, it is compromising on the accuracy of individual chains to increase the accuracy of the

combination.

Another interesting observation that can be made from the figure 4.5 is that the per-

formance of the extended Viterbi algorithm is less in appearance chain, followed by action

65



chain, and trajectory chain compared to the standard HMM algorithm. The synthetic data

is generated such that the appearance chain changes state less often, followed by the action

chain, and the trajectory chain that changes states more often. Moreover, the trajectory

chain has fewer states compared to the other two. By the above observations, we infer that

the performance gain in individual chains is more if they change states more often. When

the state transitions are fewer, the model learned by Baum-Welch training is good, and

adding inconsistencies during run time hampers the performance. However, the accuracy of

the extended Viterbi algorithm for the state combination triplet is always high compared to

the standard Viterbi algorithm.

Additional plots of accuracy versus observation error and accuracy versus inconsistent

states for individual chains and combinations are shown in appendix C. They exhibit the

same observations outlined above.

4.4. Experiment 2: Performance of Extended Baum-

Welch Algorithm

Experiment 2 evaluates the performance gain of integrating the consistency constraints

during the training phase. Factorial HMM is used as a comparison model. Consistent HMM

is trained by the extended Baum-Welch algorithm by integrating the consistency constraints

in the training phase as outlined in section 3.3. A factorial HMM is also trained using the

standard Baum-Welch algorithm. Standard Viterbi algorithm is run on both the trained

models to evaluate the performance gain of training the HMMs using the extended Baum-

Welch algorithm. The results of this experiment are shown in the figures 4.6 and 4.7.

66



20 40 60 80
Percent of Observation Error

0

20

40

60

80

100

A
cc

u
ra

cy

Inconsistent States: 20%

Factorial HMM
Consistent HMM

20 40 60 80
Percent of Observation Error

0

20

40

60

80

100

A
cc

u
ra

cy

Inconsistent States: 40%

Factorial HMM
Consistent HMM

20 40 60 80
Percent of Observation Error

0

20

40

60

80

100

A
cc

u
ra

cy

Inconsistent States: 60%

Factorial HMM
Consistent HMM

20 40 60 80
Percent of Observation Error

0

20

40

60

80

100

A
cc

u
ra

cy

Inconsistent States: 80%

Factorial HMM
Consistent HMM

Experiment 2 - Constant Percent of Inconsistent States

Figure 4.6. Experiment 2: Plots of Observation error percentage vs Accu-
racy for different percent of inconsistent states

Figure 4.6 shows the plots of accuracy versus observation error for different percentages

of inconsistent states. As can be seen from the figure, the accuracy of the model trained by

the extended Baum-Welch algorithm is better than that of the model trained by the standard

Baum-Welch algorithm. For a given percentage of inconsistent states, the difference in the

viterbi accuracy between the extended and standard Baum-Welch algorithms increases with

the observation error. For low observation error and less inconsistent states, the model

learned by both algorithms is almost the same. So, the gain in using the extended Baum-

Welch algorithm is less in this case. As the inconsistent states and observation error increase,

67



0 20 40 60 80
Percent of Inconsistent States

0

20

40

60

80

100

A
cc

u
ra

cy

Observation Error: 20%

Factorial HMM
Consistent HMM

0 20 40 60 80
Percent of Inconsistent States

0

20

40

60

80

100

A
cc

u
ra

cy

Observation Error: 40%

Factorial HMM
Consistent HMM

0 20 40 60 80
Percent of Inconsistent States

0

20

40

60

80

100

A
cc

u
ra

cy

Observation Error: 60%

Factorial HMM
Consistent HMM

0 20 40 60 80
Percent of Inconsistent States

0

20

40

60

80

100

A
cc

u
ra

cy

Observation Error: 80%

Factorial HMM
Consistent HMM

Experiment 2 - Constant Percent of Observation Error

Figure 4.7. Experiment 2: Plots of Inconsistent state percentage vs Accu-
racy for different percent of observation error

the models learned by both algorithms are different. This is evident from the performance

of the extended Baum-Welch algorithm.

Figure 4.7 shows another view of the data shown in figure 4.6. The figure shows the

plots of accuracy versus inconsistent states for different observation errors. The figure shows

the increase of accuracy of the extended Baum-Welch algorithm compared to the standard

Baum-Welch algorithm with the increase in the number of inconsistent states. As the number

of inconsistent states increase, more knowledge can be integrated in the training phase that

leads to an increase in performance of the extended Baum-Welch algorithm.

68



Although the extended Baum-Welch algorithm performs better than the standard Baum-

Welch algorithm, the improvement in the performance is not large. One possible reason for

this behavior is the less expressive power of the factorial model. Although the consistency

constraints are integrated in the consistent state space and the closest point is found in the

factorial space, the projection in the factorial space has no constraints. When a standard

Viterbi algorithm is run on the models in factorial state space, the consistency constraints are

not considered and the performance gain is not high. Another reason is that the consistency

constraints are integrated into the models in factorial state space at the beginning of the

Baum-Welch algorithm. Except for this step, the extended and the standard Baum-Welch

algorithms are the same. In other words, the extended Baum-Welch algorithm starts as a

better initial model compared to the standard Baum-Welch algorithm based on the consis-

tency constraints. Starting as a better initial model may place the extended Baum-Welch

algorithm in a better local optima compared to the standard Baum-Welch algorithm, but in

the vicinity of the standard Baum-Welch’s local optima. So, the performance of extended

Baum-Welch algorithm is only slightly better than the standard one.

An experiment is done to see if it is advisable to integrate the consistency constraints

multiple times. This is done by running the Baum-Welch algorithm on all the chains un-

til convergence, then integrating the consistency constraints by the optimization step, and

repeating these steps until the chains converge between two iterations. This version of ex-

tended Baum-Welch algorithm resulted in low accuracy compared to that of the standard

Baum-Welch algorithm, as can be seen in figures 4.8 and 4.9. Moreover, the standard devia-

tion of the accuracy is large. Running the optimization step multiple times seemed to make

the models get stuck in optima where most of the rows in the transition and observation

probability matrices are identity. Once the models get stuck in this optima, they never to

69



20 40 60 80
Percent of Observation Error

0

20

40

60

80

100

A
cc

u
ra

cy

Inconsistent States: 20%

Factorial HMM
Consistent HMM

20 40 60 80
Percent of Observation Error

0

20

40

60

80

100

A
cc

u
ra

cy

Inconsistent States: 40%

Factorial HMM
Consistent HMM

20 40 60 80
Percent of Observation Error

0

20

40

60

80

100

A
cc

u
ra

cy

Inconsistent States: 60%

Factorial HMM
Consistent HMM

20 40 60 80
Percent of Observation Error

0

20

40

60

80

100

A
cc

u
ra

cy

Inconsistent States: 80%

Factorial HMM
Consistent HMM

Experiment 2.1 - Constant Percent of Inconsistent States

Figure 4.8. Experiment 2.1: Plots of Observation error percentage vs Accu-
racy for different percent of inconsistent states

move out of it, and the accuracy of the resulting model is less than that of the standard

Baum-Welch algorithm.

Additional plots for specific observation error and percent of inconsistent states for in-

dividual chains and combinations are shown in appendix D. The plots are for the version

of extended Baum-Welch algorithm without iterations. Additional plots show the same

behavior as outlined above.

70



0 20 40 60 80
Percent of Inconsistent States

0

20

40

60

80

100

A
cc

u
ra

cy

Observation Error: 20%

Factorial HMM
Consistent HMM

0 20 40 60 80
Percent of Inconsistent States

0

20

40

60

80

100

A
cc

u
ra

cy

Observation Error: 40%

Factorial HMM
Consistent HMM

0 20 40 60 80
Percent of Inconsistent States

0

20

40

60

80

100

A
cc

u
ra

cy

Observation Error: 60%

Factorial HMM
Consistent HMM

0 20 40 60 80
Percent of Inconsistent States

0

20

40

60

80

100

A
cc

u
ra

cy

Observation Error: 80%

Factorial HMM
Consistent HMM

Experiment 2.1 - Constant Percent of Observation Error

Figure 4.9. Experiment 2.1: Plots of Inconsistent state percentage vs Accu-
racy for different percent of observation error

4.5. Experiment 3: Performance of Consistent HMM

trained using extended Baum-Welch algorithm and

run by extended Viterbi algorithm

This experiment evaluates the performance of integrating the consistency constraints

both during training and run-time. This is done by training and running the Consistent

HMM using the proposed extended Baum-Welch algorithm and extended Viterbi algorithms

respectively. Figures 4.10 and 4.11 show the plots for this experiment. The results of

71



20 40 60 80
Percent of Observation Error

0

20

40

60

80

100

A
cc

u
ra

cy

Inconsistent States: 20%

Ext. Viterbi
Ext. Baum-Welch
Ext. Baum-Welch & Viterbi
Factorial HMM

20 40 60 80
Percent of Observation Error

0

20

40

60

80

100

A
cc

u
ra

cy

Inconsistent States: 40%

Ext. Viterbi
Ext. Baum-Welch
Ext. Baum-Welch & Viterbi
Factorial HMM

20 40 60 80
Percent of Observation Error

0

20

40

60

80

100

A
cc

u
ra

cy

Inconsistent States: 60%

Ext. Viterbi
Ext. Baum-Welch
Ext. Baum-Welch & Viterbi
Factorial HMM

20 40 60 80
Percent of Observation Error

0

20

40

60

80

100

A
cc

u
ra

cy

Inconsistent States: 80%

Ext. Viterbi
Ext. Baum-Welch
Ext. Baum-Welch & Viterbi
Factorial HMM

Experiment 3 - Constant Percent of Inconsistent States

Figure 4.10. Experiment 3: Plots of Observation error percentage vs Accu-
racy for different percent of inconsistent states

experiments 1 and 2 are also shown to see if the actual performance gain occurs during

training, running, or a combination of both.

Figure 4.10 shows the plots of accuracy versus observation error for different percentages

of inconsistent states. The plots show results for models trained and run as factorial HMMs,

models trained as consistent HMMs and run as factorial HMMs, models trained as factorial

HMMs and run as consistent HMMs, and models trained and run as consistent HMMs.

Although the model trained and run as a consistent HMM performs better than the other

models every time except for an observation error of 60%, we can see that most of the

performance gain comes from the extended Viterbi algorithm. Training the model as a

72



0 20 40 60 80
Percent of Inconsistent States

0

20

40

60

80

100

A
cc

u
ra

cy

Observation Error: 20%

Ext. Viterbi
Ext. Baum-Welch
Ext. Baum-Welch & Viterbi
Factorial HMM

0 20 40 60 80
Percent of Inconsistent States

0

20

40

60

80

100

A
cc

u
ra

cy

Observation Error: 40%

Ext. Viterbi
Ext. Baum-Welch
Ext. Baum-Welch & Viterbi
Factorial HMM

0 20 40 60 80
Percent of Inconsistent States

0

20

40

60

80

100

A
cc

u
ra

cy

Observation Error: 60%

Ext. Viterbi
Ext. Baum-Welch
Ext. Baum-Welch & Viterbi
Factorial HMM

0 20 40 60 80
Percent of Inconsistent States

0

20

40

60

80

100

A
cc

u
ra

cy

Observation Error: 80%

Ext. Viterbi
Ext. Baum-Welch
Ext. Baum-Welch & Viterbi
Factorial HMM

Experiment 3 - Constant Percent of Observation Error

Figure 4.11. Experiment 3: Plots of Inconsistent state percentage vs Accu-
racy for different percent of observation error

Consistent HMM gives a slight advantage over training as a factorial HMM. When the

extended Viterbi algorithm is run on the slightly better model from a consistent HMM, the

performance increases than the model trained as a factorial HMM and run as a consistent

HMM.

Figure 4.11 shows another view of the data shown in figure 4.10. As can be seen in

the figure, training the model using the extended Baum-Welch algorithm is useful in the

case of high observation error. When the observation error is less, the extended Viterbi

algorithm alone is enough. Training the model using the extended Baum-Welch algorithm

73



and running it using the extended Viterbi algorithm doesn’t hurt the performance, although

the performance gain in doing so is not significant.

Additional plots for specific observation error and percent of inconsistent states for in-

dividual chains and combinations are shown in appendix E. The plots exhibit the behavior

discussed above.

4.6. Experiment 4: Performance of Consistent HMM

with respect to FHMM, FCHMM and BHMM

A final experiment is performed to compare the performance of consistent HMMs with

factorial HMMs (FHMMs), fully coupled HMMs (FCHMMs) and Brand version of coupled

HMMs (BCHMMs). Each model is trained and run with their respective Baum-Welch and

Viterbi algorithms. The results of this experiment are shown in figures 4.12 and 4.13.

Figure 4.12 shows the plots of accuracy versus observation error for different percentages

of inconsistent states. As can be seen from the figure, consistent HMM performs better than

other models. A trend can be observed on the performance of different models. Consistent

HMM performs better followed by FHMM, FCHMM and BCHMM. FCHMM is performing

worse than the consistent and factorial HMMs as the data provided (128 sequences each

of length 100) is insufficient to train the cartesian space of fully coupled HMM. This was

predicted by the pilot study. BCHMM is performing the worst of all the models. The per-

formance can be attributed to the way it is defined. BCHMM trains in cartesian state space.

But after every iteration, the model is factored into a factorial space and projected back

onto a cartesian state space. Moreover, the algorithm captures the dependencies between

two chains in the factoring step. However, the synthetic data has dependencies in three

74



20 40 60 80
Percent of Observation Error

0

20

40

60

80

100

A
cc

u
ra

cy

Inconsistent States: 20%

Factorial HMM
Consistent HMM
Fully Coupled HMM
Brand CHMM

20 40 60 80
Percent of Observation Error

0

20

40

60

80

100

A
cc

u
ra

cy

Inconsistent States: 40%

Factorial HMM
Consistent HMM
Fully Coupled HMM
Brand CHMM

20 40 60 80
Percent of Observation Error

0

20

40

60

80

100

A
cc

u
ra

cy

Inconsistent States: 60%

Factorial HMM
Consistent HMM
Fully Coupled HMM
Brand CHMM

20 40 60 80
Percent of Observation Error

0

20

40

60

80

100

A
cc

u
ra

cy

Inconsistent States: 80%

Factorial HMM
Consistent HMM
Fully Coupled HMM
Brand CHMM

Experiment 4 - Individual Channel and Collective Performance - Constant Percent of Inconsistent States

Figure 4.12. Experiment 4: Plots of Observation error percentage vs Accu-
racy for different percent of inconsistent states

chains that can’t be captured as dependencies between two chains. As the BCHMM is being

trained in cartesian state space, and as it can’t capture the dependencies that exists between

multiple chains, it is performing worse than the fully coupled HMM.

Figure 4.13 shows another view of the data in figure 4.12. We can see that the consistent

HMM is the clear winner among all models. As the observation error increases, the perfor-

mance of FHMM, FCHMM, BCHMM is converging, but the consistent HMM is performing

better than the other models at all times.

75



0 20 40 60 80
Percent of Inconsistent States

0

20

40

60

80

100

A
cc

u
ra

cy

Observation Error: 20%

Factorial HMM
Consistent HMM
Fully Coupled HMM
Brand CHMM

0 20 40 60 80
Percent of Inconsistent States

0

20

40

60

80

100

A
cc

u
ra

cy

Observation Error: 40%

Factorial HMM
Consistent HMM
Fully Coupled HMM
Brand CHMM

0 20 40 60 80
Percent of Inconsistent States

0

20

40

60

80

100

A
cc

u
ra

cy

Observation Error: 60%

Factorial HMM
Consistent HMM
Fully Coupled HMM
Brand CHMM

0 20 40 60 80
Percent of Inconsistent States

0

20

40

60

80

100

A
cc

u
ra

cy

Observation Error: 80%

Factorial HMM
Consistent HMM
Fully Coupled HMM
Brand CHMM

Experiment 4 - Individual Channel and Collective Performance - Constant Percent of Observation Error

Figure 4.13. Experiment 4: Plots of Inconsistent state percentage vs Accu-
racy for different percent of observation error

Additional plots for specific observation error and percent of inconsistent states for in-

dividual chains and combinations are shown in appendix F. There are figures for fixed ob-

servation error and variable percent of inconsisten states and vice versa. All the additional

plots exhibit the behavior discussed above.

4.7. Summary

This chapter started with the discussion of the Synthetic Data used in the thesis and the

way it is generated. A pilot study is performed to show why a fully coupled HMM is not

a practical model, although it is the way to model dependencies between multiple chains of

76



data. Then the performance of the extended Viterbi algorithm is evaluated by running the

standard and extended Viterbi algorithms on a model trained as a factorial HMM. Then

the performance of the extended Baum-Welch algorithm is evaluated in isolation by training

two different models, one using the standard Baum-Welch algorithm and the other one using

the extended Baum-Welch algorithm. The standard Viterbi algorithm is run on both the

models to isolate the performance gain in training the model as a Consistent HMM. Another

experiment is performed where a model is trained and run as a Consistent HMM. A final

experiment is performed where a consistent HMM is compared to a FHMM, FCHMM and

BCHMM.

The pilot study supported our claim that although the FCHMM is a best model to

model dependencies between multiple chains, it requires enormous amounts of training data.

FCHMM achieved a best accuracy of 32.39% when the training data comprised of 1024 se-

quences each of length 100. Other experiments proved that the proposed Consistent HMM

is the best model compared to FHMM, FCHMM, BCHMM. The main performance gain of

Consistent HMM comes when the consistency constraints are integrated at run-time (ex-

tended Viterbi algorithm).

77



CHAPTER 5

Conclusion and Future Work

5.1. Conclusion

Action recognition in a scene requires the appearance, action, and trajectory information

of the important objects in the scene. Although there exists many methods to estimate the

appearance, action, and trajectory labels of a tracked object, these labels are often noisy.

Moreover, as the methods that give information about an object are independent of each

other, mutual information between them is lost. Hidden markov models (HMM) can be used

to smooth the noisy stream of labels over time. However, a simple HMM can’t model data

from multiple dependent processes.

A fully coupled HMM is an ideal model for modeling data from multiple dependent

processes. Although FCHMM is the ideal model, it is untenable, as the state space grows

exponentially in the number of chains. As a result, enormous amounts of training data are

required to train an FCHMM. The pilot study in section 4.2 explains this behavior. Even for

small synthetic dataset as discussed in this thesis, FCHMM achieves a maximum accuracy

of 32.39% given 102,400 observations. Although the FCHMM is an ideal model to model

data from multiple dependent processes, it is not practical.

On the other extreme, a factorial HMM is the simplest model to smooth noisy stream

of labels over multiple chains. A factorial HMM is an HMM where individual HMMs are

used to model separate chains. Although factorial HMM is the simplest model to smooth

data over multiple chains, it doesn’t capture mutual information between chains. As the

factorial HMM doesn’t capture the mutual information between chains and smoothes the

chains independently, the estimated labels may be inconsistent. For example, the predicted

78



labels may be tree, walk, and fast, even though, we know that trees can’t walk or move fast.

However, the knowledge that states that trees can’t walk or move fast is available in natural

language ontological databases.

This thesis proposed a new formulation of an HMM called Consistent HMM. Consistent

HMM integrates the knowledge of what state combinations are valid and what combinations

are invalid into the factorial model. The extended Baum-Welch algorithm and extended

Viterbi algorithm are proposed to integrate the knowledge of consistent states during training

and run-time respectively. The extended Baum-Welch algorithm discussed in section 3.3 and

the extended Viterbi algorithm discussed in section 3.2 integrates the consistency constraints

in the cartesian state space by finding a point on cartesian state space with consistency

constraints that can be explained by factorial models.

Experiments are performed on synthetic data generated by varying the percentage of

inconsistent states and the percentage of error in the observation table. To assess the perfor-

mance improvement of applying the consistency constraints during run time, an experiment

is performed by training the HMM as a factorial HMM, and the consistency constraints were

integrated at run-time by the extended Viterbi algorithm. This experiment revealed that

integrating the consistency constraints during run-time yields better accuracy. Although

the knowledge about the consistency constraints is not available during the training, the

consistency constraints can still be included at run-time.

The performance improvement of including the consistency constraints during training

was evaluated by training the Consistent HMM using the extended Baum-Welch algorithm.

The performance improvement of integrating the consistency constraints during training

was not as high as integrating them during run-time. One primary reason for this is that

the factorial models’ expressive power is far less compared to that of the cartesian models.

79



Moreover, the optimization step of integrating the consistency constraints was performed at

the beginning of training phase, and the models are then trained as factorial HMM. So, the

optimization step resulted in a better starting state for the training, from which the local

search was performed without any consistency constraints.

There is obviously performance gain of integrating the consistency constraints both dur-

ing training and run-time. But, most of the actual performance gain is from the extended

Viterbi algorithm. The performance of integrating the consistency constraints both during

training and run-time can be visualized as the sum of the performance gain of integrating

the consistency constraints during training and run-time individually.

When the consistency constraints are applied only during run-time, there are cases where

the performance of individual chains fell below the factorial HMMs. However, when the

performance of the three chains were looked in tandem, it was always better than that of the

factorial HMM. The proposed algorithm maximizes the accuracy of all the chains together,

not individual ones. So, it sacrifies the performance of individual chains in order to increase

the combined accuracy.

The performance of consistent HMMs is compared to other models, namely factorial

HMM (FHMM), fully coupled HMM (FCHMM), and Brand’s version of coupled HMM

(BCHMM). On the synthetic data, consistent HMMs performed better than all other models

followed by FHMM, FCHMM and BCHMM. Although FCHMM is an ideal model for the

data depicted in the synthetic data, it did not perform as well as consistent HMM or FHMM

due to a small number of training samples. BCHMM trains in fully coupled state space

and tries to capture the knowledge in a state space that is less than the FCHMM but more

than the FHMM. It captures binary dependencies in addition to the parameters learned by

80



FHMM. However, the dependencies in the synthetic data are ternary and BCHMM fails in

capturing these dependencies as binary dependencies.

As can be seen from the experiments, although a FCHMM is an ideal model, it requires

enormous amounts of training data. A FHMM can’t model dependencies and a BCHMM

can only model binary dependencies. Modeling real world involves a large number of labels

and dependent processes. None of the FCHMM, FHMM and BCHMM are the ideal models

to use in real world due to their inherent disadvantages as already discussed. Consistent

HMM is an ideal HMM to model the processes in real world, as it can model dependencies

without exploding the state space. All it requires is the binary knowledge of the consistent

state combinations.

5.2. Future Work

The experiments in this thesis were performed on synthetic data. Although the consistent

HMM performed better than the other models on the synthetic data, the performance should

be evaluated on the real data. Real data has more states and interesting dependencies that

are hard to integrate in synthetic data. It is interesting to see how consistent HMM fares

with other models on real data. VIRAT video dataset [26] is being considered to compare the

performance of consistent HMM with other models. Compared to existing action recognition

datasets, VIRAT video dataset is more natural, diverse and challenging.

The algorithms proposed in this thesis requires knowledge of what states are consis-

tent and what states are not. We assumed that this knowledge is already available. This

knowledge can also be built manually based on the human knowledge of the consistent and

inconsistent states. However, this knowledge is available in various natural language onto-

logical databases discussed in section 2.5. But the knowledge in this databases is not in

81



the binary form as required by the proposed algorithms. So, the method to extract the

knowledge from these ontological databases in the binary form must be investigated.

The proposed extended Baum-Welch algorithm and extended Viterbi algorithms integrate

the consistency constraints through an optimization step. However, this optimization step

is performed once the models are initiated in Baum-Welch algorithm, and after each step

in Viterbi algorithm. The optimization step is not integrated right in the heart of these

algorithms. The way to integrate the optimization step into the Baum-Welch and Viterbi

algorithms is another interesting thing to explore.

The consistent HMM projects a point in cartesian state space, where no chains are

independent, to factorial state space, where all chains are independent. In addition to

projecting a point to a fully independent factorial state space, some strong dependencies

between chains can be captured as done in Semi-Bayes classifier. Designing a semi-consistent

HMM in lieu with semi-Bayes classifier is another area to explore.

The consistent HMM integrates the consistency constraints in the cartesian states and

makes a projection into the factorial state space by minimizing the information loss. However,

it is not possible to integrate the information in the cartesian state space into the small

factorial state space. So, it is noteworthy to see if there exists a model between these two

extremes that can capture the information in the cartesian state space, while not making

the training step untenable.

The optimization step used in the proposed algorithms minimizes the L2 norm between

a point in factorial state space and the projection of a point in cartesian state space with

consistency constraints. However, Juang and Rabiner proposed that the entropy difference

between two probabilistic models is an effective distance measure than L2 norm [22]. So, the

82



optimization step can be improved by minimizing the Kullback-Liebler divergence between

two probabilistic models rather than minimizing the L2 norm.

83



Bibliography

[1] Collin F Baker, Charles J Fillmore, and John B Lowe. The berkeley framenet project. In

Proceedings of the 36th Annual Meeting of the Association for Computational Linguistics

and 17th International Conference on Computational Linguistics-Volume 1, pages 86–

90. Association for Computational Linguistics, 1998. 5, 28

[2] Andrei Barbu, Aaron Michaux, Siddharth Narayanaswamy, and Jeffrey Mark Siskind.

Simultaneous object detection, tracking, and event recognition. Advances in Cognitive

Systems, 2:203–220, 2012. 29

[3] Leonard E Baum. An equality and associated maximization technique in statistical

estimation for probabilistic functions of markov processes. Inequalities, 3:1–8, 1972. 13

[4] Leonard E Baum and JA Eagon. An inequality with applications to statistical estimation

for probabilistic functions of markov processes and to a model for ecology. Bull. Amer.

Math. Soc, 73(3):360–363, 1967. 12, 13

[5] Leonard E. Baum and George R. Sell. Growth transformations for functions on

manifolds. Pacific Journal of Mathematics, 27(2):211–227, 1968. URL http://

projecteuclid.org/euclid.pjm/1102983899. 15

[6] Leonard E Baum and George R Sell. Growth transformations for functions on manifolds.

Pacific J. Math, 27(2):211–227, 1968. 12, 13

[7] Leonard E Baum, Ted Petrie, George Soules, and Norman Weiss. A maximization

technique occurring in the statistical analysis of probabilistic functions of markov chains.

The annals of mathematical statistics, pages 164–171, 1970. 15

[8] David S Bolme, J Ross Beveridge, Bruce A Draper, and Yui Man Lui. Visual object

tracking using adaptive correlation filters. In Computer Vision and Pattern Recognition

(CVPR), 2010 IEEE Conference on, pages 2544–2550. IEEE, 2010. 2

84

http://projecteuclid.org/euclid.pjm/1102983899
http://projecteuclid.org/euclid.pjm/1102983899


[9] Matthew Brand. Coupled hidden markov models for modeling interacting processes,

1997. 7, 22, 25

[10] Matthew Brand, Nuria Oliver, and Alex Pentland. Coupled hidden markov models

for complex action recognition. In Computer Vision and Pattern Recognition, 1997.

Proceedings., 1997 IEEE Computer Society Conference on, pages 994–999. IEEE, 1997.

22, 24

[11] Thomas Brox and Jitendra Malik. Object segmentation by long term analysis of point

trajectories. In Computer Vision–ECCV 2010, pages 282–295. Springer, 2010. 1

[12] Olivier Cappé, Eric Moulines, and Tobias Rydén. Inference in hidden Markov models,

volume 6. Springer, 2005. 8

[13] Henning Christiansen, Christian Theil Have, Ole Torp Lassen, and Matthieu Petit. A

constraint model for constrained hidden markov models: a first biological application.

In Proceedings of WCB09: Workshop on Constraint Based Methods for Bioinformatics,

2009. 26

[14] Henning Christiansen, Christian Theil Have, Ole Torp Lassen, and Matthieu Petit.

Inference with constrained hidden markov models in prism. TPLP, 10(4-6):449–464,

2010. 26

[15] Arthur P Dempster, Nan M Laird, Donald B Rubin, et al. Maximum likelihood from

incomplete data via the em algorithm. Journal of the Royal statistical Society, 39(1):

1–38, 1977. 13

[16] Ralf Dragon and Luc Van Gool. Ground plane estimation using a hidden markov model.

In Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conference on. IEEE,

2014. 31

[17] Christiane Fellbaum. WordNet. Wiley Online Library, 1999. 5, 27

85



[18] G David Forney Jr. The viterbi algorithm. Proceedings of the IEEE, 61(3):268–278,

1973. 15

[19] Zoubin Ghahramani. An introduction to hidden markov models and bayesian networks.

International Journal of Pattern Recognition and Artificial Intelligence, 15(01):9–42,

2001. 7, 8

[20] Zoubin Ghahramani and Michael I Jordan. Factorial hidden markov models. Machine

learning, 29(2-3):245–273, 1997. 20

[21] Michael I Jordany, Zoubin Ghahramaniz, and Lawrence K Sauly. Hidden markov de-

cision trees. Advances in neural information processing systems, pages 501–507, 1997.

21

[22] B-H Juang and Lawrence R Rabiner. A probabilistic distance measure for hidden markov

models. AT&T technical journal, 64(2):391–408, 1985. 82

[23] David JC MacKay. Ensemble learning for hidden markov models. Technical report,

Cavendish Laboratory, University of Cambridge, 1997. 13

[24] Quanyi Mo and Bruce A Draper. Semi-nonnegative matrix factorization for motion

segmentation with missing data. In Computer Vision–ECCV 2012, pages 402–415.

Springer, 2012. 1

[25] Kevin P Murphy. Dynamic bayesian networks. Probabilistic Graphical Models, M.

Jordan, 2002. 7

[26] Sangmin Oh, Anthony Hoogs, Amitha Perera, Naresh Cuntoor, Chia-Chih Chen,

Jong Taek Lee, Saurajit Mukherjee, JK Aggarwal, Hyungtae Lee, Larry Davis, et al. A

large-scale benchmark dataset for event recognition in surveillance video. In Computer

Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on, pages 3153–3160.

IEEE, 2011. 81

86



[27] Stephen O’Hara and Bruce A Draper. Scalable action recognition with a subspace forest.

In Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on, pages

1210–1217. IEEE, 2012. 4

[28] Nuria M Oliver, Barbara Rosario, and Alex P Pentland. A bayesian computer vision

system for modeling human interactions. Pattern Analysis and Machine Intelligence,

IEEE Transactions on, 22(8):831–843, 2000. 25

[29] Bo Peng and Gang Qian. Online gesture spotting from visual hull data. Pattern Analysis

and Machine Intelligence, IEEE Transactions on, 33(6):1175–1188, 2011. 31

[30] Bo Peng, Gang Qian, and Stjepan Rajko. View-invariant full-body gesture recognition

from video. In Pattern Recognition, 2008. ICPR 2008. 19th International Conference

on, pages 1–5. IEEE, 2008. 31

[31] Harry Plantinga and Charles R Dyer. Visibility, occlusion, and the aspect graph. In-

ternational Journal of Computer Vision, 5(2):137–160, 1990. 3

[32] Ariadna Quattoni, Sybor Wang, Louis-Phillipe Morency, Michael Collins, Trevor Dar-

rell, and Mit Csail. Hidden-state conditional random fields. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 29(10):1848–1852, 2007. 32

[33] Lawrence Rabiner. A tutorial on hidden markov models and selected applications in

speech recognition. Proceedings of the IEEE, 77(2):257–286, 1989. 7

[34] Stjepan Rajko and Gang Qian. Hmm parameter reduction for practical gesture recogni-

tion. In Automatic Face & Gesture Recognition, 2008. FG’08. 8th IEEE International

Conference on, pages 1–6. IEEE, 2008. 31

[35] Iead Rezek, Peter Sykacek, and Stephen J Roberts. Learning interaction dynamics with

coupled hidden markov models. IEE Proceedings-Science, Measurement and Technology,

147(6):345–350, 2000. 22, 24

87



[36] Iead Rezek, Michael Gibbs, and Stephen J Roberts. Maximum a posteriori estimation

of coupled hidden markov models. Journal of VLSI signal processing systems for signal,

image and video technology, 32(1-2):55–66, 2002. 22, 24

[37] Sam T Roweis. Constrained hidden markov models. In NIPS, pages 782–788, 1999. 26

[38] Josef Ruppenhofer, Michael Ellsworth, Miriam RL Petruck, Christopher R Johnson,

and Jan Scheffczyk. Framenet ii: Extended theory and practice, 2006. 28

[39] Lawrence K Saul and Michael I Jordan. Boltzmann chains and hidden markov models.

Advances in neural information processing systems, pages 435–442, 1995. 21

[40] Karin Kipper Schuler. Verbnet: A broad-coverage, comprehensive verb lexicon. 2005.

5, 28

[41] N Siddharth, Andrei Barbu, and Jeffrey Mark Siskind. Seeing what you’re told:

Sentence-guided activity recognition in video. In Computer Vision and Pattern Recog-

nition (CVPR), 2014 IEEE Conference on. IEEE, 2014. 29

[42] Chris Stauffer and W Eric L Grimson. Adaptive background mixture models for real-

time tracking. In Computer Vision and Pattern Recognition, 1999. IEEE Computer

Society Conference on., volume 2. IEEE, 1999. 1

[43] Kevin Tang, Li Fei-Fei, and Daphne Koller. Learning latent temporal structure for

complex event detection. In Computer Vision and Pattern Recognition (CVPR), 2012

IEEE Conference on, pages 1250–1257. IEEE, 2012. 32

[44] Andrew J Viterbi. Error bounds for convolutional codes and an asymptotically optimum

decoding algorithm. Information Theory, IEEE Transactions on, 13(2):260–269, 1967.

15

[45] Maggie Wigness, Bruce A Draper, and J Ross Beveridge. Selectively guiding visual

concept discovery. 2014. 3

88



[46] Shi Zhong and Joydeep Ghosh. A new formulation of coupled hidden markov models.

Technical report, Tech. Report, Dept. of Electronic and Computer Engineering, U. of

Texas at Austin, USA, 2001. 22, 25

89



APPENDIX A

Extended Viterbi Algorithm

Algorithm A.1 Viterbi Algorithm Initialization

Input: Decoupled states: S;
Cartesian states: S⊗;
Vector of Prior Probabilities π̄;

Output: An array that projects a vector from cartesian state space to decoupled state
space: ρ;
An array to maintain the max probability path score to end at very state: SEQSCORE;
An array to recover the path of most likely state sequence: BACKPTR;

1: Initialize a ρ array of size |S| × |S⊗|
2: for i = 1 to S do
3: for j = 1 to |S⊗| do
4: if Si ∈ S⊗j then
5: ρ[i][j] = 1
6: else
7: ρ[i][j] = 0
8: end if
9: end for
10: end for
11: Initialize a SEQSCORE array of size |S| × T
12: Initialize another BACKPTR array of size |S| × T
13: for c = 1 to C do
14: for i = 1 to |S(c)| do
15: j = decoupledStateIndex(S

(c)
i )

16: SEQSCORE[j, 1] = π
(c)
i

17: BACKPTR[j, 1] = 0
18: end for
19: end for
20: return ρ, SEQSCORE,BACKPTR

90



Algorithm A.2 Viterbi Step

Input: SEQSCORE; BACKPTR; λκ
Output: SEQSCORE,BACKPTR
1: for c = 1 to C do
2: for i = 1 to |S(c)| do
3: m = decoupledStateIndex(S

(c)
i )

4: SEQSCORE[m, t] = 0
5: for j = 1 to |S(c)| do
6: k = decoupledStateIndex(S

(c)
j )

7: l = observationIndex(O
(c)
t )

8: score = SEQSCORE[k, t− 1] ∗ A(c)[j, i] ∗B(c)[i, l]
9: if SEQSCORE[m,t]≤score then
10: SEQSCORE[m,t] = score
11: BACKPTR[m,t] = i
12: end if
13: end for
14: end for
15: end for
16: return SEQSCORE,BACKPTR

Algorithm A.3 Backtracking Step

Input: SEQSCORE; BACKPTR; C; S
Output: An array with most likely state sequence indices for each chain Q.
1: Initialize Q array of length C × T , to hold the most likely sequence.
2: for c = 1 to C do
3: Q[c,T] = 0
4: maxScore = 0
5: for i = 1 to |S(c)| do
6: j = decoupledStateIndex(S

(c)
i )

7: if SEQSCORE[j,T] > maxscore then
8: Q[c,T] = i
9: maxScore = SEQSCORE[j,T]
10: end if
11: end for
12: for t = T − 1 to 1 do
13: k = decoupledStateIndex[S

(c)
Q[t+1]]

14: Q[c,t] = BACKPTR[k,t+1]
15: end for
16: end for
17: return Q

91



APPENDIX B

Extended Baum-Welch Algorithm

Algorithm B.1 Baum-Welch

Input: Model λ
ObservationSequenceList

Output: TrainedModel λ̄
1: while Model λ not converged do
2: Initialize Ξ[i][j][t], a matrix of length |S| × |S| × T to hold transition probabilities of

all observation sequences
3: Initialize Γ[i][t], a matrix of length |S| × T to hold probabilities of starting at a state

of all observation sequences
4: for ObservationSequence O in ObservationSequenceList do
5: α = ForwardProbability(λ,O)
6: β = BackwardProbability(λ,O)

7: P (O|λ) =
∑|S|

i=1 α[i][T ]
8: Initialize ξ[i][j][t], a matrix of length |S| × |S| × T to hold transition probabilities

for each time step
9: for i = 1 to |S| do
10: for j = 1 to |S| do
11: for t = 1 to T do

12: ξ[i][j][t] =
α[i][t] ∗ A[i][j] ∗B[j][Ot+1] ∗ β[j][t+ 1]

P (O|λ)
13: end for
14: end for
15: end for
16: Initialize γ[i][t], a matrix of length |S|×T to hold probabilities of starting at a state

for each time step
17: for i = 1 to |S| do
18: for t = 1 to T do
19: γ[i][t] =

∑|S|
j=1 ξ[i][j][t]

20: end for
21: end for
22: Ξ = Ξ + ξ
23: Γ = Γ + γ
24: end for
25: π̄ = Γ[:][1]

26: Ā =

∑T−1
t=1 Ξ∑T−1
t=1 Γ

27: B̄ =

∑T
t=1

s.t.Ot=vk

Γ
∑T

t=1 Γ
28: end while
29: return λ̄

92



Algorithm B.2 Forward Probability

Input: Model λ
ObservationSequence O

Output: ForwardProbabilityMatrix α
1: Initialize α array of length |S|×T , to hold the forward probability of each state at every

time step.
2: α[:, 1] = π �B[:, O1]
3: for t = 2 to T do
4: for i = 1 to |S| do
5: α[i][t] =

[∑|S|
j=1 α[j][t− 1] ∗ A[i][j]

]
∗B[i][Ot]

6: end for
7: end for
8: return α

Algorithm B.3 Backward Probability

Input: Model λ
ObservationSequence O

Output: BackwardProbabilityMatrix β
1: Initialize β array of length |S| × T , to hold the backward probability of each state at

every time step.
2: β[:, T ] = 1
3: for t = T − 1 to 1 do
4: for i = 1 to |S| do
5: β[i][t] =

∑|S|
j=1 β[j][t+ 1] ∗ A[i][j] ∗B[j][Ot+1]

6: end for
7: end for
8: return β

93



APPENDIX C

Experiment 1: Additional Plots of Performance of

Integrating the Consistency Constraints only

during Run-Time

20 40 60 80
Percent of Observation Error

0

20

40

60

80

100

A
cc

u
ra

cy

Appearance

Factorial HMM
Consistent HMM

20 40 60 80
Percent of Observation Error

0

20

40

60

80

100

A
cc

u
ra

cy

Action

Factorial HMM
Consistent HMM

20 40 60 80
Percent of Observation Error

0

20

40

60

80

100

A
cc

u
ra

cy

Trajectory

Factorial HMM
Consistent HMM

20 40 60 80
Percent of Observation Error

0

20

40

60

80

100

A
cc

u
ra

cy

Triplet

Factorial HMM
Consistent HMM

Experiment 1 - Individual Channel and Collective Performance - Constant Percent of Inconsistent States: 0%

Figure C.1. Plots of Observation error percentage vs accuracy for appear-
ance, action, trajectory, and triplet for an inconsistent states of 0%

94



20 40 60 80
Percent of Observation Error

0

20

40

60

80

100

A
cc

u
ra

cy

Appearance

Factorial HMM
Consistent HMM

20 40 60 80
Percent of Observation Error

0

20

40

60

80

100

A
cc

u
ra

cy

Action

Factorial HMM
Consistent HMM

20 40 60 80
Percent of Observation Error

0

20

40

60

80

100

A
cc

u
ra

cy

Trajectory

Factorial HMM
Consistent HMM

20 40 60 80
Percent of Observation Error

0

20

40

60

80

100

A
cc

u
ra

cy

Triplet

Factorial HMM
Consistent HMM

Experiment 1 - Individual Channel and Collective Performance - Constant Percent of Inconsistent States: 20%

Figure C.2. Plots of Observation error percentage vs accuracy for appear-
ance, action, trajectory, and triplet for an inconsistent states of 20%

95



20 40 60 80
Percent of Observation Error

0

20

40

60

80

100

A
cc

u
ra

cy

Appearance

Factorial HMM
Consistent HMM

20 40 60 80
Percent of Observation Error

0

20

40

60

80

100

A
cc

u
ra

cy

Action

Factorial HMM
Consistent HMM

20 40 60 80
Percent of Observation Error

0

20

40

60

80

100

A
cc

u
ra

cy

Trajectory

Factorial HMM
Consistent HMM

20 40 60 80
Percent of Observation Error

0

20

40

60

80

100

A
cc

u
ra

cy

Triplet

Factorial HMM
Consistent HMM

Experiment 1 - Individual Channel and Collective Performance - Constant Percent of Inconsistent States: 40%

Figure C.3. Plots of Observation error percentage vs accuracy for appear-
ance, action, trajectory, and triplet for an inconsistent states of 40%

96



20 40 60 80
Percent of Observation Error

0

20

40

60

80

100

A
cc

u
ra

cy

Appearance

Factorial HMM
Consistent HMM

20 40 60 80
Percent of Observation Error

0

20

40

60

80

100

A
cc

u
ra

cy

Action

Factorial HMM
Consistent HMM

20 40 60 80
Percent of Observation Error

0

20

40

60

80

100

A
cc

u
ra

cy

Trajectory

Factorial HMM
Consistent HMM

20 40 60 80
Percent of Observation Error

0

20

40

60

80

100

A
cc

u
ra

cy

Triplet

Factorial HMM
Consistent HMM

Experiment 1 - Individual Channel and Collective Performance - Constant Percent of Inconsistent States: 60%

Figure C.4. Plots of Observation error percentage vs accuracy for appear-
ance, action, trajectory, and triplet for an inconsistent states of 60%

97



20 40 60 80
Percent of Observation Error

0

20

40

60

80

100

A
cc

u
ra

cy

Appearance

Factorial HMM
Consistent HMM

20 40 60 80
Percent of Observation Error

0

20

40

60

80

100

A
cc

u
ra

cy

Action

Factorial HMM
Consistent HMM

20 40 60 80
Percent of Observation Error

0

20

40

60

80

100

A
cc

u
ra

cy

Trajectory

Factorial HMM
Consistent HMM

20 40 60 80
Percent of Observation Error

0

20

40

60

80

100

A
cc

u
ra

cy

Triplet

Factorial HMM
Consistent HMM

Experiment 1 - Individual Channel and Collective Performance - Constant Percent of Inconsistent States: 80%

Figure C.5. Plots of Observation error percentage vs accuracy for appear-
ance, action, trajectory, and triplet for an inconsistent states of 80%

98



0 20 40 60 80
Percent of Inconsistent States

0

20

40

60

80

100

A
cc

u
ra

cy

Appearance

Factorial HMM
Consistent HMM

0 20 40 60 80
Percent of Inconsistent States

0

20

40

60

80

100

A
cc

u
ra

cy

Action

Factorial HMM
Consistent HMM

0 20 40 60 80
Percent of Inconsistent States

0

20

40

60

80

100

A
cc

u
ra

cy

Trajectory

Factorial HMM
Consistent HMM

0 20 40 60 80
Percent of Inconsistent States

0

20

40

60

80

100

A
cc

u
ra

cy

Triplet

Factorial HMM
Consistent HMM

Experiment 1 - Individual Channel and Collective Performance - Constant Percent of Observation Error : 40%

Figure C.6. Plots of Inconsistent states percentage vs accuracy for appear-
ance, action, trajectory, and triplet for an observation error of 40%

99



0 20 40 60 80
Percent of Inconsistent States

0

20

40

60

80

100

A
cc

u
ra

cy

Appearance

Factorial HMM
Consistent HMM

0 20 40 60 80
Percent of Inconsistent States

0

20

40

60

80

100

A
cc

u
ra

cy

Action

Factorial HMM
Consistent HMM

0 20 40 60 80
Percent of Inconsistent States

0

20

40

60

80

100

A
cc

u
ra

cy

Trajectory

Factorial HMM
Consistent HMM

0 20 40 60 80
Percent of Inconsistent States

0

20

40

60

80

100

A
cc

u
ra

cy

Triplet

Factorial HMM
Consistent HMM

Experiment 1 - Individual Channel and Collective Performance - Constant Percent of Observation Error : 60%

Figure C.7. Plots of Inconsistent states percentage vs accuracy for appear-
ance, action, trajectory, and triplet for an observation error of 60%

100



APPENDIX D

Experiment 2: Additional Plots of Performance of

Integrating Consistency Constraints only during

Training

20 40 60 80
Percent of Observation Error

0

20

40

60

80

100

A
cc

u
ra

cy

Appearance

Factorial HMM
Consistent HMM

20 40 60 80
Percent of Observation Error

0

20

40

60

80

100

A
cc

u
ra

cy

Action

Factorial HMM
Consistent HMM

20 40 60 80
Percent of Observation Error

0

20

40

60

80

100

A
cc

u
ra

cy

Trajectory

Factorial HMM
Consistent HMM

20 40 60 80
Percent of Observation Error

0

20

40

60

80

100

A
cc

u
ra

cy

Triplet

Factorial HMM
Consistent HMM

Experiment 2 - Individual Channel and Collective Performance - Constant Percent of Inconsistent States : 0%

Figure D.1. Plots of Observation error percentage vs accuracy for appear-
ance, action, trajectory, and triplet for an inconsistent states of 0%

101



20 40 60 80
Percent of Observation Error

0

20

40

60

80

100

A
cc

u
ra

cy

Appearance

Factorial HMM
Consistent HMM

20 40 60 80
Percent of Observation Error

0

20

40

60

80

100

A
cc

u
ra

cy

Action

Factorial HMM
Consistent HMM

20 40 60 80
Percent of Observation Error

0

20

40

60

80

100

A
cc

u
ra

cy

Trajectory

Factorial HMM
Consistent HMM

20 40 60 80
Percent of Observation Error

0

20

40

60

80

100

A
cc

u
ra

cy

Triplet

Factorial HMM
Consistent HMM

Experiment 2 - Individual Channel and Collective Performance - Constant Percent of Inconsistent States : 20%

Figure D.2. Plots of Observation error percentage vs accuracy for appear-
ance, action, trajectory, and triplet for an inconsistent states of 20%

102



20 40 60 80
Percent of Observation Error

0

20

40

60

80

100

A
cc

u
ra

cy

Appearance

Factorial HMM
Consistent HMM

20 40 60 80
Percent of Observation Error

0

20

40

60

80

100

A
cc

u
ra

cy

Action

Factorial HMM
Consistent HMM

20 40 60 80
Percent of Observation Error

0

20

40

60

80

100

A
cc

u
ra

cy

Trajectory

Factorial HMM
Consistent HMM

20 40 60 80
Percent of Observation Error

0

20

40

60

80

100

A
cc

u
ra

cy

Triplet

Factorial HMM
Consistent HMM

Experiment 2 - Individual Channel and Collective Performance - Constant Percent of Inconsistent States : 40%

Figure D.3. Plots of Observation error percentage vs accuracy for appear-
ance, action, trajectory, and triplet for an inconsistent states of 40%

103



20 40 60 80
Percent of Observation Error

0

20

40

60

80

100

A
cc

u
ra

cy

Appearance

Factorial HMM
Consistent HMM

20 40 60 80
Percent of Observation Error

0

20

40

60

80

100

A
cc

u
ra

cy

Action

Factorial HMM
Consistent HMM

20 40 60 80
Percent of Observation Error

0

20

40

60

80

100

A
cc

u
ra

cy

Trajectory

Factorial HMM
Consistent HMM

20 40 60 80
Percent of Observation Error

0

20

40

60

80

100

A
cc

u
ra

cy

Triplet

Factorial HMM
Consistent HMM

Experiment 2 - Individual Channel and Collective Performance - Constant Percent of Inconsistent States : 60%

Figure D.4. Plots of Observation error percentage vs accuracy for appear-
ance, action, trajectory, and triplet for an inconsistent states of 60%

104



20 40 60 80
Percent of Observation Error

0

20

40

60

80

100

A
cc

u
ra

cy

Appearance

Factorial HMM
Consistent HMM

20 40 60 80
Percent of Observation Error

0

20

40

60

80

100

A
cc

u
ra

cy

Action

Factorial HMM
Consistent HMM

20 40 60 80
Percent of Observation Error

0

20

40

60

80

100

A
cc

u
ra

cy

Trajectory

Factorial HMM
Consistent HMM

20 40 60 80
Percent of Observation Error

0

20

40

60

80

100

A
cc

u
ra

cy

Triplet

Factorial HMM
Consistent HMM

Experiment 2 - Individual Channel and Collective Performance - Constant Percent of Inconsistent States : 80%

Figure D.5. Plots of Observation error percentage vs accuracy for appear-
ance, action, trajectory, and triplet for an inconsistent states of 80%

105



0 20 40 60 80
Percent of Inconsistent States

0

20

40

60

80

100

A
cc

u
ra

cy

Appearance

Factorial HMM
Consistent HMM

0 20 40 60 80
Percent of Inconsistent States

0

20

40

60

80

100

A
cc

u
ra

cy

Action

Factorial HMM
Consistent HMM

0 20 40 60 80
Percent of Inconsistent States

0

20

40

60

80

100

A
cc

u
ra

cy

Trajectory

Factorial HMM
Consistent HMM

0 20 40 60 80
Percent of Inconsistent States

0

20

40

60

80

100

A
cc

u
ra

cy

Triplet

Factorial HMM
Consistent HMM

Experiment 2 - Individual Channel and Collective Performance - Constant Percent of Observation Error : 20%

Figure D.6. Plots of Inconsistent states percentage vs accuracy for appear-
ance, action, trajectory, and triplet for an observation error of 20%

106



0 20 40 60 80
Percent of Inconsistent States

0

20

40

60

80

100

A
cc

u
ra

cy

Appearance

Factorial HMM
Consistent HMM

0 20 40 60 80
Percent of Inconsistent States

0

20

40

60

80

100

A
cc

u
ra

cy

Action

Factorial HMM
Consistent HMM

0 20 40 60 80
Percent of Inconsistent States

0

20

40

60

80

100

A
cc

u
ra

cy

Trajectory

Factorial HMM
Consistent HMM

0 20 40 60 80
Percent of Inconsistent States

0

20

40

60

80

100

A
cc

u
ra

cy

Triplet

Factorial HMM
Consistent HMM

Experiment 2 - Individual Channel and Collective Performance - Constant Percent of Observation Error : 40%

Figure D.7. Plots of Inconsistent states percentage vs accuracy for appear-
ance, action, trajectory, and triplet for an observation error of 40%

107



0 20 40 60 80
Percent of Inconsistent States

0

20

40

60

80

100

A
cc

u
ra

cy

Appearance

Factorial HMM
Consistent HMM

0 20 40 60 80
Percent of Inconsistent States

0

20

40

60

80

100

A
cc

u
ra

cy

Action

Factorial HMM
Consistent HMM

0 20 40 60 80
Percent of Inconsistent States

0

20

40

60

80

100

A
cc

u
ra

cy

Trajectory

Factorial HMM
Consistent HMM

0 20 40 60 80
Percent of Inconsistent States

0

20

40

60

80

100

A
cc

u
ra

cy

Triplet

Factorial HMM
Consistent HMM

Experiment 2 - Individual Channel and Collective Performance - Constant Percent of Observation Error : 60%

Figure D.8. Plots of Inconsistent states percentage vs accuracy for appear-
ance, action, trajectory, and triplet for an observation error of 60%

108



0 20 40 60 80
Percent of Inconsistent States

0

20

40

60

80

100

A
cc

u
ra

cy

Appearance

Factorial HMM
Consistent HMM

0 20 40 60 80
Percent of Inconsistent States

0

20

40

60

80

100

A
cc

u
ra

cy

Action

Factorial HMM
Consistent HMM

0 20 40 60 80
Percent of Inconsistent States

0

20

40

60

80

100

A
cc

u
ra

cy

Trajectory

Factorial HMM
Consistent HMM

0 20 40 60 80
Percent of Inconsistent States

0

20

40

60

80

100

A
cc

u
ra

cy

Triplet

Factorial HMM
Consistent HMM

Experiment 2 - Individual Channel and Collective Performance - Constant Percent of Observation Error : 80%

Figure D.9. Plots of Inconsistent states percentage vs accuracy for appear-
ance, action, trajectory, and triplet for an observation error of 80%

109



APPENDIX E

Experiment 3 : Additional Plots of Performance of

Integrating Consistency Constraints both during

training and run-time

20 40 60 80
Percent of Observation Error

0

20

40

60

80

100

A
cc

u
ra

cy

Appearance

Ext. Viterbi
Ext. Baum-Welch
Ext. Baum-Welch & Viterbi
Factorial HMM

20 40 60 80
Percent of Observation Error

0

20

40

60

80

100

A
cc

u
ra

cy

Action

Ext. Viterbi
Ext. Baum-Welch
Ext. Baum-Welch & Viterbi
Factorial HMM

20 40 60 80
Percent of Observation Error

0

20

40

60

80

100

A
cc

u
ra

cy

Trajectory

Ext. Viterbi
Ext. Baum-Welch
Ext. Baum-Welch & Viterbi
Factorial HMM

20 40 60 80
Percent of Observation Error

0

20

40

60

80

100

A
cc

u
ra

cy

Triplet

Ext. Viterbi
Ext. Baum-Welch
Ext. Baum-Welch & Viterbi
Factorial HMM

Experiment 3 - Individual Channel and Collective Performance - Constant Percent of Inconsistent States : 0%

Figure E.1. Plots of Observation error percentage vs accuracy for appear-
ance, action, trajectory, and triplet for an inconsistent states of 0%

110



20 40 60 80
Percent of Observation Error

0

20

40

60

80

100

A
cc

u
ra

cy

Appearance

Ext. Viterbi
Ext. Baum-Welch
Ext. Baum-Welch & Viterbi
Factorial HMM

20 40 60 80
Percent of Observation Error

0

20

40

60

80

100

A
cc

u
ra

cy

Action

Ext. Viterbi
Ext. Baum-Welch
Ext. Baum-Welch & Viterbi
Factorial HMM

20 40 60 80
Percent of Observation Error

0

20

40

60

80

100

A
cc

u
ra

cy

Trajectory

Ext. Viterbi
Ext. Baum-Welch
Ext. Baum-Welch & Viterbi
Factorial HMM

20 40 60 80
Percent of Observation Error

0

20

40

60

80

100

A
cc

u
ra

cy

Triplet

Ext. Viterbi
Ext. Baum-Welch
Ext. Baum-Welch & Viterbi
Factorial HMM

Experiment 3 - Individual Channel and Collective Performance - Constant Percent of Inconsistent States : 20%

Figure E.2. Plots of Observation error percentage vs accuracy for appear-
ance, action, trajectory, and triplet for an inconsistent states of 20%

111



20 40 60 80
Percent of Observation Error

0

20

40

60

80

100

A
cc

u
ra

cy

Appearance

Ext. Viterbi
Ext. Baum-Welch
Ext. Baum-Welch & Viterbi
Factorial HMM

20 40 60 80
Percent of Observation Error

0

20

40

60

80

100

A
cc

u
ra

cy

Action

Ext. Viterbi
Ext. Baum-Welch
Ext. Baum-Welch & Viterbi
Factorial HMM

20 40 60 80
Percent of Observation Error

0

20

40

60

80

100

A
cc

u
ra

cy

Trajectory

Ext. Viterbi
Ext. Baum-Welch
Ext. Baum-Welch & Viterbi
Factorial HMM

20 40 60 80
Percent of Observation Error

0

20

40

60

80

100

A
cc

u
ra

cy

Triplet

Ext. Viterbi
Ext. Baum-Welch
Ext. Baum-Welch & Viterbi
Factorial HMM

Experiment 3 - Individual Channel and Collective Performance - Constant Percent of Inconsistent States : 40%

Figure E.3. Plots of Observation error percentage vs accuracy for appear-
ance, action, trajectory, and triplet for an inconsistent states of 40%

112



20 40 60 80
Percent of Observation Error

0

20

40

60

80

100

A
cc

u
ra

cy

Appearance

Ext. Viterbi
Ext. Baum-Welch
Ext. Baum-Welch & Viterbi
Factorial HMM

20 40 60 80
Percent of Observation Error

0

20

40

60

80

100

A
cc

u
ra

cy

Action

Ext. Viterbi
Ext. Baum-Welch
Ext. Baum-Welch & Viterbi
Factorial HMM

20 40 60 80
Percent of Observation Error

0

20

40

60

80

100

A
cc

u
ra

cy

Trajectory

Ext. Viterbi
Ext. Baum-Welch
Ext. Baum-Welch & Viterbi
Factorial HMM

20 40 60 80
Percent of Observation Error

0

20

40

60

80

100

A
cc

u
ra

cy

Triplet

Ext. Viterbi
Ext. Baum-Welch
Ext. Baum-Welch & Viterbi
Factorial HMM

Experiment 3 - Individual Channel and Collective Performance - Constant Percent of Inconsistent States : 60%

Figure E.4. Plots of Observation error percentage vs accuracy for appear-
ance, action, trajectory, and triplet for an inconsistent states of 60%

113



20 40 60 80
Percent of Observation Error

0

20

40

60

80

100

A
cc

u
ra

cy

Appearance

Ext. Viterbi
Ext. Baum-Welch
Ext. Baum-Welch & Viterbi
Factorial HMM

20 40 60 80
Percent of Observation Error

0

20

40

60

80

100

A
cc

u
ra

cy

Action

Ext. Viterbi
Ext. Baum-Welch
Ext. Baum-Welch & Viterbi
Factorial HMM

20 40 60 80
Percent of Observation Error

0

20

40

60

80

100

A
cc

u
ra

cy

Trajectory

Ext. Viterbi
Ext. Baum-Welch
Ext. Baum-Welch & Viterbi
Factorial HMM

20 40 60 80
Percent of Observation Error

0

20

40

60

80

100

A
cc

u
ra

cy

Triplet

Ext. Viterbi
Ext. Baum-Welch
Ext. Baum-Welch & Viterbi
Factorial HMM

Experiment 3 - Individual Channel and Collective Performance - Constant Percent of Inconsistent States : 80%

Figure E.5. Plots of Observation error percentage vs accuracy for appear-
ance, action, trajectory, and triplet for an inconsistent states of 80%

114



0 20 40 60 80
Percent of Inconsistent States

0

20

40

60

80

100

A
cc

u
ra

cy

Appearance

Ext. Viterbi
Ext. Baum-Welch
Ext. Baum-Welch & Viterbi
Factorial HMM

0 20 40 60 80
Percent of Inconsistent States

0

20

40

60

80

100

A
cc

u
ra

cy

Action

Ext. Viterbi
Ext. Baum-Welch
Ext. Baum-Welch & Viterbi
Factorial HMM

0 20 40 60 80
Percent of Inconsistent States

0

20

40

60

80

100

A
cc

u
ra

cy

Trajectory

Ext. Viterbi
Ext. Baum-Welch
Ext. Baum-Welch & Viterbi
Factorial HMM

0 20 40 60 80
Percent of Inconsistent States

0

20

40

60

80

100

A
cc

u
ra

cy

Triplet

Ext. Viterbi
Ext. Baum-Welch
Ext. Baum-Welch & Viterbi
Factorial HMM

Experiment 3 - Individual Channel and Collective Performance - Constant Percent of Observation Error : 20%

Figure E.6. Plots of Inconsistent states percentage vs accuracy for appear-
ance, action, trajectory, and triplet for an observation error of 20%

115



0 20 40 60 80
Percent of Inconsistent States

0

20

40

60

80

100

A
cc

u
ra

cy

Appearance

Ext. Viterbi
Ext. Baum-Welch
Ext. Baum-Welch & Viterbi
Factorial HMM

0 20 40 60 80
Percent of Inconsistent States

0

20

40

60

80

100

A
cc

u
ra

cy

Action

Ext. Viterbi
Ext. Baum-Welch
Ext. Baum-Welch & Viterbi
Factorial HMM

0 20 40 60 80
Percent of Inconsistent States

0

20

40

60

80

100

A
cc

u
ra

cy

Trajectory

Ext. Viterbi
Ext. Baum-Welch
Ext. Baum-Welch & Viterbi
Factorial HMM

0 20 40 60 80
Percent of Inconsistent States

0

20

40

60

80

100

A
cc

u
ra

cy

Triplet

Ext. Viterbi
Ext. Baum-Welch
Ext. Baum-Welch & Viterbi
Factorial HMM

Experiment 3 - Individual Channel and Collective Performance - Constant Percent of Observation Error : 40%

Figure E.7. Plots of Inconsistent states percentage vs accuracy for appear-
ance, action, trajectory, and triplet for an observation error of 40%

116



0 20 40 60 80
Percent of Inconsistent States

0

20

40

60

80

100

A
cc

u
ra

cy

Appearance

Ext. Viterbi
Ext. Baum-Welch
Ext. Baum-Welch & Viterbi
Factorial HMM

0 20 40 60 80
Percent of Inconsistent States

0

20

40

60

80

100

A
cc

u
ra

cy

Action

Ext. Viterbi
Ext. Baum-Welch
Ext. Baum-Welch & Viterbi
Factorial HMM

0 20 40 60 80
Percent of Inconsistent States

0

20

40

60

80

100

A
cc

u
ra

cy

Trajectory

Ext. Viterbi
Ext. Baum-Welch
Ext. Baum-Welch & Viterbi
Factorial HMM

0 20 40 60 80
Percent of Inconsistent States

0

20

40

60

80

100

A
cc

u
ra

cy

Triplet

Ext. Viterbi
Ext. Baum-Welch
Ext. Baum-Welch & Viterbi
Factorial HMM

Experiment 3 - Individual Channel and Collective Performance - Constant Percent of Observation Error : 60%

Figure E.8. Plots of Inconsistent states percentage vs accuracy for appear-
ance, action, trajectory, and triplet for an observation error of 60%

117



0 20 40 60 80
Percent of Inconsistent States

0

20

40

60

80

100

A
cc

u
ra

cy

Appearance

Ext. Viterbi
Ext. Baum-Welch
Ext. Baum-Welch & Viterbi
Factorial HMM

0 20 40 60 80
Percent of Inconsistent States

0

20

40

60

80

100

A
cc

u
ra

cy

Action

Ext. Viterbi
Ext. Baum-Welch
Ext. Baum-Welch & Viterbi
Factorial HMM

0 20 40 60 80
Percent of Inconsistent States

0

20

40

60

80

100

A
cc

u
ra

cy

Trajectory

Ext. Viterbi
Ext. Baum-Welch
Ext. Baum-Welch & Viterbi
Factorial HMM

0 20 40 60 80
Percent of Inconsistent States

0

20

40

60

80

100

A
cc

u
ra

cy

Triplet

Ext. Viterbi
Ext. Baum-Welch
Ext. Baum-Welch & Viterbi
Factorial HMM

Experiment 3 - Individual Channel and Collective Performance - Constant Percent of Observation Error : 80%

Figure E.9. Plots of Inconsistent states percentage vs accuracy for appear-
ance, action, trajectory, and triplet for an observation error of 80%

118



APPENDIX F

Experiment 4: Additional Plots of Performance of

Consistent HMM with respect to FHMM, FCHMM

and BCHMM

20 40 60 80
Percent of Observation Error

0

20

40

60

80

100

A
cc

u
ra

cy

Appearance

Factorial HMM
Consistent HMM
Fully Coupled HMM
Brand CHMM

20 40 60 80
Percent of Observation Error

0

20

40

60

80

100

A
cc

u
ra

cy

Action

Factorial HMM
Consistent HMM
Fully Coupled HMM
Brand CHMM

20 40 60 80
Percent of Observation Error

0

20

40

60

80

100

A
cc

u
ra

cy

Trajectory

Factorial HMM
Consistent HMM
Fully Coupled HMM
Brand CHMM

20 40 60 80
Percent of Observation Error

0

20

40

60

80

100

A
cc

u
ra

cy

Triplet

Factorial HMM
Consistent HMM
Fully Coupled HMM
Brand CHMM

Experiment 4 - Individual Channel and Collective Performance - Constant Percent of Inconsistent States : 0%

Figure F.1. Plots of Observation error percentage vs accuracy for appear-
ance, action, trajectory, and triplet for an inconsistent states of 0%

119



20 40 60 80
Percent of Observation Error

0

20

40

60

80

100

A
cc

u
ra

cy

Appearance

Factorial HMM
Consistent HMM
Fully Coupled HMM
Brand CHMM

20 40 60 80
Percent of Observation Error

0

20

40

60

80

100

A
cc

u
ra

cy

Action

Factorial HMM
Consistent HMM
Fully Coupled HMM
Brand CHMM

20 40 60 80
Percent of Observation Error

0

20

40

60

80

100

A
cc

u
ra

cy

Trajectory

Factorial HMM
Consistent HMM
Fully Coupled HMM
Brand CHMM

20 40 60 80
Percent of Observation Error

0

20

40

60

80

100

A
cc

u
ra

cy

Triplet

Factorial HMM
Consistent HMM
Fully Coupled HMM
Brand CHMM

Experiment 4 - Individual Channel and Collective Performance - Constant Percent of Inconsistent States : 20%

Figure F.2. Plots of Observation error percentage vs accuracy for appear-
ance, action, trajectory, and triplet for an inconsistent states of 20%

120



20 40 60 80
Percent of Observation Error

0

20

40

60

80

100

A
cc

u
ra

cy

Appearance

Factorial HMM
Consistent HMM
Fully Coupled HMM
Brand CHMM

20 40 60 80
Percent of Observation Error

0

20

40

60

80

100

A
cc

u
ra

cy

Action

Factorial HMM
Consistent HMM
Fully Coupled HMM
Brand CHMM

20 40 60 80
Percent of Observation Error

0

20

40

60

80

100

A
cc

u
ra

cy

Trajectory

Factorial HMM
Consistent HMM
Fully Coupled HMM
Brand CHMM

20 40 60 80
Percent of Observation Error

0

20

40

60

80

100

A
cc

u
ra

cy

Triplet

Factorial HMM
Consistent HMM
Fully Coupled HMM
Brand CHMM

Experiment 4 - Individual Channel and Collective Performance - Constant Percent of Inconsistent States : 40%

Figure F.3. Plots of Observation error percentage vs accuracy for appear-
ance, action, trajectory, and triplet for an inconsistent states of 40%

121



20 40 60 80
Percent of Observation Error

0

20

40

60

80

100

A
cc

u
ra

cy

Appearance

Factorial HMM
Consistent HMM
Fully Coupled HMM
Brand CHMM

20 40 60 80
Percent of Observation Error

0

20

40

60

80

100

A
cc

u
ra

cy

Action

Factorial HMM
Consistent HMM
Fully Coupled HMM
Brand CHMM

20 40 60 80
Percent of Observation Error

0

20

40

60

80

100

A
cc

u
ra

cy

Trajectory

Factorial HMM
Consistent HMM
Fully Coupled HMM
Brand CHMM

20 40 60 80
Percent of Observation Error

0

20

40

60

80

100

A
cc

u
ra

cy

Triplet

Factorial HMM
Consistent HMM
Fully Coupled HMM
Brand CHMM

Experiment 4 - Individual Channel and Collective Performance - Constant Percent of Inconsistent States : 60%

Figure F.4. Plots of Observation error percentage vs accuracy for appear-
ance, action, trajectory, and triplet for an inconsistent states of 60%

122



20 40 60 80
Percent of Observation Error

0

20

40

60

80

100

A
cc

u
ra

cy

Appearance

Factorial HMM
Consistent HMM
Fully Coupled HMM
Brand CHMM

20 40 60 80
Percent of Observation Error

0

20

40

60

80

100

A
cc

u
ra

cy

Action

Factorial HMM
Consistent HMM
Fully Coupled HMM
Brand CHMM

20 40 60 80
Percent of Observation Error

0

20

40

60

80

100

A
cc

u
ra

cy

Trajectory

Factorial HMM
Consistent HMM
Fully Coupled HMM
Brand CHMM

20 40 60 80
Percent of Observation Error

0

20

40

60

80

100

A
cc

u
ra

cy

Triplet

Factorial HMM
Consistent HMM
Fully Coupled HMM
Brand CHMM

Experiment 4 - Individual Channel and Collective Performance - Constant Percent of Inconsistent States : 80%

Figure F.5. Plots of Observation error percentage vs accuracy for appear-
ance, action, trajectory, and triplet for an inconsistent states of 80%

123



0 20 40 60 80
Percent of Inconsistent States

0

20

40

60

80

100

A
cc

u
ra

cy

Appearance

Factorial HMM
Consistent HMM
Fully Coupled HMM
Brand CHMM

0 20 40 60 80
Percent of Inconsistent States

0

20

40

60

80

100

A
cc

u
ra

cy

Action

Factorial HMM
Consistent HMM
Fully Coupled HMM
Brand CHMM

0 20 40 60 80
Percent of Inconsistent States

0

20

40

60

80

100

A
cc

u
ra

cy

Trajectory

Factorial HMM
Consistent HMM
Fully Coupled HMM
Brand CHMM

0 20 40 60 80
Percent of Inconsistent States

0

20

40

60

80

100

A
cc

u
ra

cy

Triplet

Factorial HMM
Consistent HMM
Fully Coupled HMM
Brand CHMM

Experiment 4 - Individual Channel and Collective Performance - Constant Percent of Observation Error : 20%

Figure F.6. Plots of Inconsistent states percentage vs accuracy for appear-
ance, action, trajectory, and triplet for an observation error of 20%

124



0 20 40 60 80
Percent of Inconsistent States

0

20

40

60

80

100

A
cc

u
ra

cy

Appearance

Factorial HMM
Consistent HMM
Fully Coupled HMM
Brand CHMM

0 20 40 60 80
Percent of Inconsistent States

0

20

40

60

80

100

A
cc

u
ra

cy

Action

Factorial HMM
Consistent HMM
Fully Coupled HMM
Brand CHMM

0 20 40 60 80
Percent of Inconsistent States

0

20

40

60

80

100

A
cc

u
ra

cy

Trajectory

Factorial HMM
Consistent HMM
Fully Coupled HMM
Brand CHMM

0 20 40 60 80
Percent of Inconsistent States

0

20

40

60

80

100

A
cc

u
ra

cy

Triplet

Factorial HMM
Consistent HMM
Fully Coupled HMM
Brand CHMM

Experiment 4 - Individual Channel and Collective Performance - Constant Percent of Observation Error : 40%

Figure F.7. Plots of Inconsistent states percentage vs accuracy for appear-
ance, action, trajectory, and triplet for an observation error of 40%

125



0 20 40 60 80
Percent of Inconsistent States

0

20

40

60

80

100

A
cc

u
ra

cy

Appearance

Factorial HMM
Consistent HMM
Fully Coupled HMM
Brand CHMM

0 20 40 60 80
Percent of Inconsistent States

0

20

40

60

80

100

A
cc

u
ra

cy

Action

Factorial HMM
Consistent HMM
Fully Coupled HMM
Brand CHMM

0 20 40 60 80
Percent of Inconsistent States

0

20

40

60

80

100

A
cc

u
ra

cy

Trajectory

Factorial HMM
Consistent HMM
Fully Coupled HMM
Brand CHMM

0 20 40 60 80
Percent of Inconsistent States

0

20

40

60

80

100

A
cc

u
ra

cy

Triplet

Factorial HMM
Consistent HMM
Fully Coupled HMM
Brand CHMM

Experiment 4 - Individual Channel and Collective Performance - Constant Percent of Observation Error : 60%

Figure F.8. Plots of Inconsistent states percentage vs accuracy for appear-
ance, action, trajectory, and triplet for an observation error of 60%

126



0 20 40 60 80
Percent of Inconsistent States

0

20

40

60

80

100

A
cc

u
ra

cy

Appearance

Factorial HMM
Consistent HMM
Fully Coupled HMM
Brand CHMM

0 20 40 60 80
Percent of Inconsistent States

0

20

40

60

80

100

A
cc

u
ra

cy

Action

Factorial HMM
Consistent HMM
Fully Coupled HMM
Brand CHMM

0 20 40 60 80
Percent of Inconsistent States

0

20

40

60

80

100

A
cc

u
ra

cy

Trajectory

Factorial HMM
Consistent HMM
Fully Coupled HMM
Brand CHMM

0 20 40 60 80
Percent of Inconsistent States

0

20

40

60

80

100

A
cc

u
ra

cy

Triplet

Factorial HMM
Consistent HMM
Fully Coupled HMM
Brand CHMM

Experiment 4 - Individual Channel and Collective Performance - Constant Percent of Observation Error : 80%

Figure F.9. Plots of Inconsistent states percentage vs accuracy for appear-
ance, action, trajectory, and triplet for an observation error of 80%

127


	Abstract
	Acknowledgements
	List of Figures
	Chapter 1. Introduction
	1.1. Motivation
	1.2. Thesis Contributions
	1.3. Thesis Organization

	Chapter 2. Background
	2.1. Hidden Markov Models
	2.2. A Concrete Example
	2.3. Extensions to Hidden Markov Models
	2.4. Constrained HMM
	2.5. English language Ontological Databases
	2.6. HMMs in Computer Vision
	2.7. Summary

	Chapter 3. Consistent Hidden Markov Models
	3.1. Terminology related to Consistent HMM
	3.2. Extended Viterbi Algorithm with Consistency Constraints
	3.3. Extended Baum-Welch Algorithm with Consistency Constraints
	3.4. Summary

	Chapter 4. Experiments
	4.1. Synthetic Data
	4.2. Pilot Study
	4.3. Experiment 1: Performance of Extended Viterbi Algorithm without retraining
	4.4. Experiment 2: Performance of Extended Baum-Welch Algorithm
	4.5. Experiment 3: Performance of Consistent HMM trained using extended Baum-Welch algorithm and run by extended Viterbi algorithm
	4.6. Experiment 4: Performance of Consistent HMM with respect to FHMM, FCHMM and BHMM
	4.7. Summary

	Chapter 5. Conclusion and Future Work
	5.1. Conclusion
	5.2. Future Work

	Bibliography
	Appendix A. Extended Viterbi Algorithm
	Appendix B. Extended Baum-Welch Algorithm
	Appendix C. Experiment 1: Additional Plots of Performance of Integrating the Consistency Constraints only during Run-Time
	Appendix D. Experiment 2: Additional Plots of Performance of Integrating Consistency Constraints only during Training
	Appendix E. Experiment 3 : Additional Plots of Performance of Integrating Consistency Constraints both during training and run-time
	Appendix F. Experiment 4: Additional Plots of Performance of Consistent HMM with respect to FHMM, FCHMM and BCHMM

