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ABSTRACT

Multivariate analysis was used to make a selection of some of the
more meaningful physical parameters dealing with the response of a small
watershed to flood producing rainfall. Factor Analysis, Principal
Component Analysis and a Correlation Coefficient Matrix was utilized.
The 1ist of 24 parameters was reduced to a list of 8 parameters. This
reduction results in a very material economy in the encoding of relevant

geomorphological data in flood analysis.



AN APPLICATION OF MULTIVARIATE
ANALYSIS IN HYDROLOGY

Introduction

The watershed physiography leave an unmistakable influence on the
size and timing of the flood response.

It was proposed to apply the principles of multivariate analysis
to the task of selection or ordering of the various physical parameters
being assembled and used in the CSU small watershed data file. The
purpose of collecting high quality rainfall-runoff events was to obtain
research data for use in research work in small watershed response to
flood producing rainfall. At the present time 24 different measurements
are made from a topographic or other maps of the watershed. These
result in the computation of 40 different physiographic parameters.
Many of these are redundant and the cost to quantify the hydrologic
data file could be reduced if only the most meaningful parameters are
selected for retention in the future.

Many of the physiographic parameters have been proposed by
researchers in geology and geomorphology. As a better understanding
of the basic hydrological laws evolved, some of the parameters pro-
posed in the earlier research work were supplanted by newer more
efficient or more efficient parameters. Thus, some of the parameters
currently being evaluated in the small watershed flood program are
remnants of an earlier obsolete concepts.

Examination of any one of the general schematic diagrams depicting
the Hydrologic Cycle illustrates the complexity and interrelated nature
of the elements of the hydrologic system. Figure 1 is a pictorial

representation of the hydrologic cycle from Wilson (1969).
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Figure 1. Hydrologic Cycle.

Moore and Claborn in a paper in Yevjevich (1971) show an organi-
zational diagram of the hydrologic cycle which was prepared to outline
the computer program for the University of Texas Watershed Model which

is shown as Figure 2.
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The interrelationship among the variables shown in Figure 2 shows
that the relationship between watershed characteristics and the hydro-
logic response is complicated and almost impossible to attack the
problem of evaluating the parameters in a strictly physical or
deterministic framework. It has been popular to attempt to use the
technique of multiple regression to study these relationships. In
this investigation, it has been decided to use the technique of multi-
variate analysis. Dyhr-Nielsen (1971) applied the principles of
multivariate analysis to the study of selection of the most meaningful
physical parameters. The complexity of the hydrologic system makes
it impossible to reduce the problem analysis to a completely deter-
ministic form. However, Dyhr-Nielsen attempted to use known
physical relationships about the watershed runoff process to guide
the multivariate analysis. A second objective was to try to reduce
the intercorrelation of the parameters or at least select those which

were only weakly correlated.

Multivariate Methods Used

Various types of multivariate methods are well adapted to the
problem of the interdependence of variables and the analysis of data
obtained from interdependent data. These methods of multivariate
analysis were applied to this problem:

1) Factor Analysis

2) Principal Component Analysis,

3) Correlation Coefficient Matrix

A linear additive model was assumed to represent the system. Some
cases on non-linear response can be accommodated by employing a

transformation and applying the linear theory to the transformed



variable. This technique will produce a linear transformed function of
a power function. Many of the variables in hydrology seem to follow

power functions.

Correlation Coefficient Matrix - While the correlation coefficient

is a statistical parameter, it is often used to find the coefficients
relating two deterministic variables. This is possible because the
correlation coefficient is a measure of the linear dependence among
two populations of variables. The correlation coefficient is defined
as the dimensionless product moment or the ratio of the covariance of

the two variables to the square root of the product of the two variances:

. ) cov_(x,y)
(x,y) var(x) . var(y)

The variables x and y are linearly uncorrelated if p = 0. When
o=1 or p=-1, the variables x and y are perfectly correlated
through a linear relationship and the variables are presumed to be
deterministically related. A given value of x determines exactly
the value of y. If the correlation coefficient, o , has values between
0 and 1, the correlation coefficient is a measure of the linear
dependency because o2 is the part of the total variance of a variable
which can be explained through a linear relation to the other variable.
In general, o 1is not known exactly, but is estimated from the

sample in which case the equation is rewritten:
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Sy and sy are the sample values of the standard deviation.

It is of interest to determine when o = 0 and when o =1 or -1.
Since the sampling error presents an exact computation of the population
correlation coefficient, all sample values within the tolerance limits
around p = 0 are considered not significantly different from zero.
Numerous tests for p = 0 have been developed. In this investigation

the statistic

t = has been employed.

Testing the linear dependence of two variables requires knowledge
about the error introduced in measuring the dependent variable. Any
measuring error is superimposed over the true relationships and obscures
the ability to discern the true relationship. An exact evaluation of
this error is not possible, but if the effect of measufement and sampling
error is estimated some general areas of determination can be defined.
For example, if the measurement errors produce uncertainty of the true
value of the variable to the extent, the ratio of the unexplained
variance to the total variance is 20%, sample correlation coefficients
greater than 0.90 can be considered not significantly different from 1.

In this investigation a major objective was to reduce the number
of variables being stored and investigated by a selection of the most
statistically influential and physically logical variables. Any

variable that can be functionally related to another variable is



considered superfluous and should be eliminated from the data set and
replaced by its function. In the case of the Correlation Coefficient
Matrix, the strategy will be to seek out those variables having
correlation coefficients greater than 0.90.

In a situation where two variables are only highly correlated with
each other, the selection is somewhat subjective. Other criteria for
selection could be based on economy of data acquisition, measurement
accuracy and reliability, physical relevance or hydrologic principles.
In this type of situation, the correlation coefficient itself contains
no information about which variable should be eliminated.

A different case exists when a set of more than two parameters
are highly correlated. The parameter, which has the largest sum of
squared correlation coefficients, is the one that explains the maximum
amount of variance of the other parameters through functional relation-
ships and should be retained.

In this investigation, several highly correlated parameters exist.

The later criterion was used to select the superfluous variable.

Prineipal Components - The principal component technique has been

developed to provide a simpler description of the variation of the
variables. The description is framed in terms of linear combinations

of the observed variables. The variables are mutually independent and
obtained under the condition that the first component explains the
greatest possible amount of the variance and covariance in the
correlation matrix. The second component explains the maximum possible
amount of the remaining variance and so on. The variance is concentrated
upon the first component. This results in the reduction of the number

of variables necessary to explain the variation of the complete set of



observations with a relatively modest loss of explained variance. The
method was first developed by Hotelling (1933) and has been thoroughly
discussed by Kendall (1957), Harman (1960) and Morrison (1967).

The first principal component is found by forming a Tinear combina-

tion of the observations:

where

R is the correlation coefficient matrix.

The variance, SY12 , s optimized under the constraint that the

vectors are normalized so that

By introducing the constraint as a Lagrange multiplier, Ay s and
differentiating with respect to a3

i 2 ( )
{SY,“ + 1 -a4 .aq)} =
ag. 1 1 13

—1



The optimum is achieved when the derivative is zero. Then the first

principal component is the solution to the vector equation:

R-nl 270

The solution to this equation is the eigenvalue where M is the
eigenvalue and a, is the corresponding eigenvector. To determine
which of the eigenvalues should be selected, premultiply the equation

above by aj. Since a; a, = 1, it follows that;

To maximize the variance, SY]Z, the value of M must be selected
as the largest eigenvalue of R and its corresponding eigenvector is
the first principal component._-At the same time the explained
variance of the component is found to be equa1.to Ay

The second principal component is found by maximizing the

variance of:

V=2, x
subject to the constraints that:

3, 3, = 1 and

a4 a2 =0

This turns out to be the eigenvector corresponding to the second

greatest eigenvalue of the correlation matrix where the eigenvalue
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equals the explained variance. The remaining principal components
are found in their turn from the other characteristic vectors.

A major problem in the use of principal component analysis is to
determine which component to retain. Two criteria can be used for
selecting the principal component:

1) Sum of the explained variance of all the retained components

or,

2) Relative amount of the total variance the retained component

explains.

The first criterion also has an additional benefit in reduced
rank regression studies, where a trade off is made between the
reduction in the number of variables and the corresponding decrease
in explained variance.

The importance of a single component is of interest in any search
for new significant parameters. The elimination of a variable should
occur when the explained variance is less than a given (or assumed)
critical value. In the case of standardized variables, the criterion
is set at unity corresponding to the variance of one of the observed
variables. Another criterion would be to eliminate all other variables
after a significant decrease (say 50%) in the explained variance of
the component occurs. This will give a group of the most important
components, but it can only be applied when a significant change occurs
when adding an additional variable. If the eigenvalues are decreasing
without jumps, it will not provide any assistance in the selection of
signficant variables.

The sample distributions for the eigenvalues have been developed

for principal components drawn from normal multivariate variables
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(Bartlett, 1950). Asymptotic expressions for the tolerance limits
around the population eigenvalues have been found and tests of the
equality of a subset of eigenvalues are present. These particular tests
are not of much value in the present study.

The advantages of the principal components technique is that it
develops a new set of mutually independent parameters that can be
determined on the basis of the observed parameters. The number of
principal components can be made smaller than the number of original
parameters with a 1imited Toss of accuracy. It has a sound mathematical
background as it is developed as an optimization with constraints.

In order to apply the method of Prinecipal Components, it is
necessary that measurements of all of the variables be used. The
method, therefore, is applicable only to measurements already
available. Furthermore, it is difficult to attach any interpretation
to the components. When the components are used in a regression
analysis, the equations are transformed to the terms of the original
variables. Snyder, (1962), has said that the regression equations
based on principal components gives more meaningful results. However,

this conclusion is entirely empirical.

Factor Analysis - In a factor analysis, the original variable is

replaced by a new variable called the factor. It is assumed that the
observations are linear functions of the common factors and that each
variable is represented by a function of a number of unobservable common
factor variates. The common factors generate the covariances among the
observations, while the specific term contributes only to the variance

of their particular responses.
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A model employing factors can be presented as:

X = 'X+.§_ s

[ >

where
x is the variable,
y is the common factor,
e 1is the specific factor variate,
A is a coefficient matrix.

The coefficient matrix A determines the linear relationship between
the variable, x, and t;é common factor y. The coefficients in the
coefficient matrix, A are called factor loadings. It can be

shown that the ]oadin;; are the covariance between a factor and the
particular variable. Hence high loadings are an indication of high
correlation between a factor and a variable. Suppose that the common
factors, y, are normally distributed, standardized, independent
variables and that ¢ is equal to zero. Under these conditions, the
covariance matrix © of the observations can be generated by the

loading matrix A through the relation:

o= ALA,

where A' is the transpose of A. This is a fundamental property of
the loading matrix. The solution of this equation is not unique
because if the loading matrix, A is multiplied with an orthogonal

matrix T :

and
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L=A.A=AT(AT)

By choosing different orthogonal transformations, an infinite number
of loading matrices are obtained all having the same covariance matrix.
The sum of the variances of the squared square loadings within

each column of the factor matrix was proposed by Kaiser (1958) as a
methcd of developing an evaluation criterion. By maximizing this
criterion through orthogonal rotations of an initial factor matrix, a

simple structured matrix can be found. Kaiser's criterion is stated

mathematically:
1 M 2
v=o 7 [p E alt - ( 5 a;:)°] ,
R ES IR E I E A
where 335 = the loadings
p = a weighting factor.

Kaiser, 1958, called the criterion, v, the varimax criterion which is
optimized during the selection procedure.

The initial values of the factor matrix used in the vector rotation
are obtained from the coefficient matrix for the principal components.
The coefficients, a5 s in the jth component are scaled with the
square root of the corresponding eigenvalue (which is the explained
variance), vx. , to form a new vector, a. VA, , and a new matrix,

J N
L . From this it follows that:

£ = LU

This technique of employing the principal component provides a

"factorization" of the correlation matrix, £ . The use of the
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principal components provides a useful and convenient start for the
varimax rotation. Otherwise, the Factor Analysis and Principal
Component techniques are different.

The use of Factor Analysis in hydrology has been subject to
considerable discussion and according to Yevjevich (1972), the use of
the procedure has been the subject of some criticism. Several studies
(Rice, 1967; Eiselstein, 1967; Lewis, 1968) have interpreted the loading
matrix as coefficients on the observed variables and the factors as
linear combinations of these. This concept appears to be more empirical
than statistically rigorous. Wallis (1965a,b) has been one of the
leading advocates of the application of factor analysis in hydrology.
Matalas and Reiher (1967) subjected the application of factor analysis
to hydrological problems to a critical review. In 1968, Wallis
changed the name of the procedure to "Anti Factor Analysis".

In essence, the procedure is a stepwise rejection technique. A
varimax rotated factor matrix is computed and for each factor only
the variables that correspond to the two highest loadings greater than
0.90 are retained. On the basis of the remaining variables, a new
varimax is computed. The low loaded variables are again removed. This
continues until all variables are connected with high loadings.

The technique evidently functions because high loadings express
a close correlation between factor and variable and therefore the
variable can be used as a descriptor of the factor. This conclusion
is based only on empirical results.

One of the objectives of this investigation is the study of various
geomorphic parameters on the basin flood response to rainfall. The

existing geomorphological parameters are highly interrelated. Hopefully
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the antifactor technique of Wallis will aid selecting the most

significant variables for retention.

Watershed Parameters

The data used in this investigation were collected in the Small
Watershed Data Assembly Program at Colorado State University. The
geomorphological parameters were obtained from a series of measure-
ments from 7 1/2 minute quadrangle sheets of the U. S. Geological
Survey or from similar scale detailed topographic maps of the
Agricultural Research Service or U. S. Forest Service. The logic
for the selection of the parameters computed from the topographic
measurements and the procedure followed in obtaining the data were
described in a report by Laurenson, Schulz and Yevjevich (1963) and
latter revised by Yevjevich and Holland (1967).

The data used in this investigation were obtained from 188 small
watersheds located over the entire United States and therefore
represent a sample drawn from a very large range in climatic and
geological conditions. A brief 1isting of the geomorphological
parameters follows. The reader is referred to Yevjevich and Holland,

(1967) for a more detailed description.

Area and Length Parameters

1. Watershed Area, A (square miles),

2. MWatershed Perimeter, P (miles),

3. Main Stream Length, L (miles,

4. Total Length of Extended Streams, L_ (miles),

5. Channel Length to Center of Area, L. (miles),
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Stream Slope Parameters

6. Total Fall in Main Stream, H (feet),
7. Stream Siope, S1 = H/L (feet/mile),
8. Stream Slope, S, (feet/mile),

9. Stream Slope, Sj (feet/mile),
10. Stream Slope, S4 (feet/mile),

Overland Flow Length

11. Overland Slope, R, = SZECOM (feat/mite),
1° 7R

12. Overland Slope, R, (feet/mile),
13. Overland Slope, R3 (feet/mile),

14. Overland Slope, R, (feet/mile),

4

15. Overland Stope, R, (feet/mile),

5 (
16. Relief Ratio, R6 (feet/feet),

Basin Shape Parameters

17. Longest Dimension of Watershed, L (miles),
18. Average Width of Watershed, W = A/L| (miles),
19. Form Factor, F = A/LE,

20. Compactness Coefficient, C = .28 P/A ,

Stream Network Shape Parameters

21. Average Travel Distance, Lt (miles)
22. Dimensionless Mean Travel Distance,
Lm = Lt//ﬂ
23. Standard Deviation of Travel Distance,
Sd = St/%N

24. Drainage Density, Dd =L /A (mile/sq. mi).
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The mean values of these 24 watershed parameters for the 188

watersheds together with their standard deviation are given in the

next table:
Table I
Mean Values and Standard Deviation
Watershed Parameters
Parameter Mean Standard Parameter Mean Standard
Deviation Deviation
A 6.07 9.02 H 12.27 22.14
P 9.65 8.00 $q 312 376
L 3.98 3.37 Sy 236 318
Ls 13.87 18.24 S3 274 685
LC 2.02 1.77 Sy 266 361
R1 1086 1009 Dd 4.32 4.69
R2 1039 997 W 1.02 .819
R3 1070 986 F .334 .231
R4 924 850 C 1.37 .310
R5 833 812 Lt 2.20 1.86
R6 .063 .079 Lm 1.09 .325
Sq .48 .18
st .98 .83

Results of Multivariate Analysis

The analysis of the interdependence between the watershed parameters

was based on two mathematical models - a) Simple Linear Additive Model

and b) Multiplicative Model based on a logarithmic transformation of the

linear variables.

Correlation Coefficients - A correlation coefficient matrix,

has been computed both for the linear and for the log-transformed

39

ij
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parameters. Those correlation coefficients which were found to be
signficantly different from zero are shown in Table II and III.

The test of significance was based on the statistic:

where t follows the Student distribution with N-2 degrees of

i+

freedom. At a 5% level t0.05 =+ 1.96,

i+

and '0.05 = .142

Comparison of the correlation coefficients for similar positions
in the matrix in Tables II and III shows that in general the multi-
plicative model yields higher correlation than the linear model. To
gain a better insight into the parameters, they were divided into

groups defined as: Length Parameters, Stream Slope Parameters and

Overland Flow Slope Parameters.

Length Parameters - The watershed area, A, and the length

parameters, L, Ls Lc’ P, W, were highly correlated. The explained
variance, r2, between the area, A, and the length, LC » 1s lowest
among all of the Tength parameters and L has the highest explained
variance. The length of the main stream, L , is the length variable
retained.

A strong inverse correlation was expected between the main stream
length, L, and the stream slope parameters. This was not found to
be the case. Evidently this expected relationship was obscured by
the wide difference in geologic conditions present in the sample
used herein. If a sample is obtained from a more homogeneous physio-
graphic region, it is expected that the L and stream slopes would be

more highly correlated.
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Stream Slopes - For the linear model, only the stream slopes, S

1°
32 and 54 were found highly correlated to each other. In contrast,
the log transformed stream slope parameters, all have correlation coef-
ficients greater than 0.96 which means any slope parameter would explain
more than 92% of variance of any other slope parameter. A criterion
based upon the maximum sum of the coefficient of determination, = r%

is used as a basis of selection

Slope

Parameter X r2
S1 3.832
52 3.872 Maximum value
53 3.815
54 3.867

The stream slope parameter, 52 has the maximum value of the selection
criterion, = r2 ; however, the parameter S4 has only a slightly
smaller value. Because of ease in determination it was decided to
select the parameter 54. A1l the other slope parameters could be

estimated from regression equations from 54.

Overland Slopes - The overland slope parameters - R1, R2, R3, R4,

R5, R6 - form a group of highly correlated parameters. The relief
ratio, R6’ exhibits quite different correlation coefficients from
the others and therefore will be retained. The selection criterion

for the other parameters are,
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Overland Slope % r2 z r2
Parameter Linear Form Log Transformed
R] 4.739* 4.792*
R2 4.669 4.749
R3 4.735 4.786
R4 4.580 4.727
R5 4,594 4.675

* Selected for retention

Watershed Shape Parameters - The watershed shape parameters - F,

C, Lm and Sq - are linearly independent or very weakly correlated
with the stream and overland slope parameters and a selection can not

be made.

Principal Components - The principal components of the correlation

matrices shown in Tables II and III have been determined for both the
original and the log transformed parameters. Only loadings greater
than 0.700 are shown in the results.

The data in Table IV are the Toadings of the components for each
of the 24 watershed parameters. Also shown are the explained variances
for each of the components. The first 12 components explain 98% of the
variance. Dyhr-Nielson (1971) limited the interpretation to the
first 4 components having contributed variance of a single component
greater than 1.0. The first three principal components are associated
with stream slope, overland slope, stream length and watershed
slope characteristics.

Because there were several parameters representing each group of
physically based parameters, a reduced set of parameters was selected
on the basis of the parameter loadings within the components in Table

IV. Table V gives the principal components of the reduced set of



" Correlation Coefficlents SBetween Gaomorphic Parameters
Only coefficients significantly different from 0 are shown

Table I1

A L S S T N Y | H S, S, % S 0 N F ¢ O L T N
A 1.000 .873 .82} 792 . .668 .831 .254 .935 JI15 <169 - 168 -.279 .887. 507 .388
L 1.000 .786 .956 .986 974 465 B ] a7 -163 -167 -.165  -.322 J30 320 454 .585
i 1.000 727 794 788 .362  .803 =370 -an 174 <350 .76 -.18) 483 473
Le 1.000 .869 540 484 .B86 .168 -.303 654 -.330 407 632 48 .148
L 1.060 SN 445 947 JI8 =051 <156 -.157  -.323 748 -.299 443 597
Se 1.000 582 2921 L1588 -.162  -.159 -.166 =-.316 202 0333 459 .605
Sq ' 1.000 L334 ) -.495 568  .809
¢ 1.000 =199 #2083 -.152 -,201 -,351 0853 -.209 525 469 )
% 1.000 - 662 670 .57 .636 -.163 W3 680 683 682 .67 .56 .272
Sy 1.000 .98 672 979 -an 83 830 .87 .88 .82 .3
5 1.000 .64  .563 . -.182 9386 392 M2 ¢ a6 Loy
A .00 N3 an S22 524 513 508 42 .295
Sy 1.000 -.186 193 780 735 785 157 .652
5y 1.000  -.392
" 1.000 438 237
2 1.000 -.264 -.489 -.190 <190 -.196 -.163 .16
¢ ' 1.000 .60
. 1.000 .63 153 163
) 1.000  .983 997 .51 .43 g7
R, "1.000  .982 931 .934  .ges
Ry 1000 .942 946 .60
Re 1.000 970 .58
Rs 1.000 J14
R 1.00C

L2



Table 111

Correlation Coefficients Between Log Transf. Geomorphic Parameters -
Cnly coefficients significantly different from 0 are shown.

-

x m w
[ Ragt e -)

A L L L L, sy sg P H 5 S, N Se 0, W F 4 L R, Ry Ry R, Rg Rg

A 1.000 .95 .877 .915  .968 .94  .330  .977  .387 -.236 -.280 -.294 -.270 -.619  .908 -.161  .322 414 .45

H 1.000 .870  .963  .989  .985  .500  .962  .435 - -.211  -.249 -.262 -.2¢4 -.533 789 ..382 .31 .54 .79 73

L, 1.000 .§1S  .872  .851  .362  .864  .361 -.223  -.269 -.27% ..263 -.259  .758 -.238  .341 - .453  .152 150 .

L 1.000 .61  .956  .518  .918  .443 170  -.208 -.228 ~.203 ..535 .748 -.387 .36  .605 .199  .160 - .19  .153

t, 1.000 .976  .468  .965 434 -.205 -.286 -.261 -.241 -.549  .818 -.331 .32 .575 .85 144 182 L146

s, 1.000 ° .559  .949  .428 -~.206 -.244 -.260 -.243 -,531 .774 -.386  .392 .580 .183 a5 14

s 1.000 .381 .27 : 186 -.503  .499 788  .150° 144

? 1.000 .379 -.251 -.295 -.302 -.287 -.579 .863 -.229  .402  .463 159
H 1.000 .763 J23 M3 .78 -.266 .288  -.260 .34S  .886  .B74 .88z .3 .81z .704
Sy 1.000 976 961 . 978 -.230 .853, .872. .853  .835 .83l  .85§
S, 1,000 .975  .986 -.269 J795 .82 .7s6 (774 774 874
54 1.000 970 -.292 J90 .85 791 772 (786 846
5 1,650 -.256 -.1448 .82 .85 .80z .78 781  .873
dd 1.000 ~-.644

b 1.000 230 212 % -.188
F 1.000 -.296 -.605 .178 <.163 -.188 ~-.158 -.152 -,153
¢ 1.000 .550

1.063 212 188 209 167 47
1.C00 .98% 997 .562 951 804
1.000 .983 855 .550 818
1.000 .961 .950 805
1.000 .983 7950
1.000 750

A
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Table 1V
Principal Compencuts of Watershed Parameters
(Only first components are given. Only coefficients greater then 0,10 are shown

Component 1 2 3 4 5 6 7 8 9 10 11 12
A L3110 -.199 149 g -19e
L .377 -.178 -.166
Le .294 170 129 201 1N Js8r -172
L. .325 -.232 14 179 -.263 117
Ly .338 - -.166 -.160
St .335 ~.159 127 =271 -az7
54 .189 .507 134 -.228 .289 214 =574 -.162
P .332 -.148 -.124 ~.196 R
H -.248 .33 -.321 - 175 -.290 531 A5G -.A06
$ -.322 .238 .135 72
S, -.310 -.137 .263 .280 -.152 .281
Sq -.220 475 -.147 -.320 149 -3 103 -.160
Sy -.314 135 -.148 .273 146 =103 170
Dy -.113 .293 536 72 184 ~.163 .109
W 273 -.335 .246 -175 .151 .262
- 116 -.454 1700 4 182 .700 -.178
c .206 .26 .209 L6285 1350 -.221 -.340 -.210 -.221
!_m .229 432 L1020 -.196 AN 256 .593 .359
Ry -.325 -.230
R2 -.324 -.237
R3 -.326 -.226
Ry -.3198 -. 14 16 -.198 -.139 -121
R -.314 -.173 116 51 -.200 -.203
Rg -.252 -.330 .202 .23 .57« L1869 -.s22
Variance 8.61 8.26 1.96 1.15 .82 .72 .54 .4¢ .35 .27 .20 .16
Var. % 35.9 34.4 8.2 4.8 34 3.0 2.8 2.1 1.5 1.1 c.9 0.7
Cum. Var., % 25.9 70.3 78.5 83.3 86.7 89.7 9N.9 949.0 9c.5 96.6 97.4 98.1




Table V
Principal Components for a Reduced Set

of Parameters

Component
No. 1 2 3 4 5 6 7 8 9 10
A .406 -.278 -.160 .101 -.347
.423 -. 11 -.117 -.223 -.178 -.424
LS .396 -.169 .142 144 -.184 -.102 -.222 .160 .768
Sq .285 .120 .456 .279 -.328 .106
H .407 -.129 .295 -.467 -.177 -.678
S 37N -.104 420 -.401 .235 -.159 A7 .613
S -.112 .486 -.118 311 .323 .133
D -.133 .296 .634 .455 -.385 -.228 -.132 -.175
W .358 -.403 142
F -.164 -.167 -.426 .182 .281 .591 -.106 -.496 -.129
C .324 .195 .194 .262 .465 .600 -.274
Lm .33 .153 .372 .192 -.305 -.194
R1 .489 -.133 -.180 .334 .356
R6 .373 -.422 -.804
Variance: 4.64 3.09 1.86 1.04 .80 .66 .52 .43 .35 19
Var. % 33.1 22.1 13.3 7.4 5.7 4.7 3.7 3.1 2.5 1.4
Cum. Var. %: 33.1 55.3 68.6 76.1 81.7 86.5 90.2 93.3 95.8 97.2

The 4 last components are not shown
Only coefficients greater than 0.10 are shown.

174
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parameters. As in Table IV, only coefficients greater than 0.10 are
shown in Table V. The first 10 components accounted for 97% of the
explained variance.

The principal components for the log transformed variables are
shown in Table VI. The transformed variables had about 10% higher
explained variance in the first three components than in Table IV. The
first component is associated with slope of both stream and overland
flow. The second component is associated with stream length, slope and
watershed shape, while the third component is primarily associated
with drainage density and with watershed shape. The Toadings within the
first three components were used to aid in the selection of parameters
for the reduced set.

Table VII shows the principal components and the loadings for each
parameter for the selected reduced set of parameters. Interpretation of
the results is not conclusive. Intuitively, it might be said that the
physical model for the relationships is multiplicative rather than
additive. The Tog-transformed parameters explained more variance in

the first three components.

Factor Analysis - The factor analysis was carried out in two

parts - Factor Analysis and Anti-Factor Analysis. A varimax rotation of
a set of factors found on the basis of the principal component solution
was performed. The loadings for the original parameters are shown in
Table VIII. Only the first eight factors have correlation coefficients
with the parameters exceeding 0.70 (r2 = 0.49).

Most of the slope parameters are highly correlated with the first

common factor. It is obvious that the first common factor is most
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Table VI
Principal Components of Log Transformed Variables
Component 1 2 3 4 5 6 7 8 9 10 1N 12
A -.316 .169 -1 .07
L -.322 10 -.110
Ls -.288 .166 .394 148 -.283 100 .676 1000 -.354
l.c -.31 Jgd21 -120 -.516 .202  -.647
Lt -.322 -.192 -.127 . .106
St -.320 .209
4 =171 -.433 -.213 .538 .281 .A79 .181 118
P -.319 .07 -.103 -.134 .294
H .300 -.239  .160 -.295 .145
S.l .287 .136 -.15€
52 .274 149 -.142 -.284 .109
S3 .2n .152 -.102 -.298 -.185 -.145
Si 275 .148 -.139 -.270 -.109 -.1090
Dd : 174 -.336 .259 .669 .293 -.222 -.397 .158
W =271 .337 -.186 .213 -.167 .336
F 103 .448 -.476 .195 .490 -.169 -.166 -.166
c -.148 -.316 -.720 .263  -.446 -.215 .139
L -.191 -.440 -.115 -.139 .232 -.706 -.342 -.a23
R] .300 .134 .213 .389 122
R2 .33 .18 .186 .330 .106
Ry .313 .136 .210 .409
R4 .305 175 .329 ~-.411 -.139
R5 ‘ .301 .195 .366 -.482 -.206
Re 276 -.136 -.149 -.345 .811 .162
Variance 9.65 8.97 2.9 .78 .73 .45 .39 .20 .18 .08 .08 .05
Var. % 40.2 37.4 9.14 3.3 3.0 2.0 1.6 .8 .8 .3 .3 .2
Cum. Var. % 40.2 77.6 86.7 90.0 93.0 95.0 96.7 97.% 98.3 98.6 99.0 99.1

The last 12 components are not shown
Only coefficients greater than 0.10 are shown.



Table VII
Principal Components for a Reduced Set of Log-Transformed Parameters

Component
No. 1 2 3 4 5 6 7 8 9 10
A -.405 135 -.203 112 .222
L -.426 .094 .190 .297
LS -.377 112 .304 -.433 -.164 .123
Sd -.274 .401 -.196 .166 -.615 -.516 -.186
H -.255 -.41 -.128 -.163 .375 .346
54 -.517 -.115 -.104 .126 .502
Dd .228 372 .293 -.725 -.178 .389
W -.335 .167 -.364 -.101 -.130 -.177 .388
F J17 .107 -.465 -.480 -.31 -.466 .181
C -.228 .306 -.687 -.313 511 -.115
Lm -.308 .402 124 -.255 741 .314
R] -.155 -.470 -.109 -.147 -.136 .253 -.774 -.112
R6 -.503 .301 -.77 .130
Variance : 5.02 3.42 2.11 73 .65 .45 .19 17 .10 .05
: 38.69 65.02 81.32 86.93 91.96 95.49 96.96 98.26 99.09 99.55
Var. % : 38.69 26.33 16.30 5.61 5.03 3.53 1.47 1.30 .83 .46

The 3 last components are not shown
Only coefficients greater than 0.10 are shown.

L2



Table VIII

vVarimax Rotated Factors of 24 Watershed Parameters

Component 1 2 3 4 5 6 7 8 9 10 11 12
A .934
L .960
Lg .824 -.532
L, .916
L, .965
St .932
S4 .910
P .567
H .715
S] 884 -.141
Sy 2490 42G
Sq 836
Sa .842 278 155
) -.955
W .831 .15 .161
F -.936
C .852
Ly 732 .20} 437
91 B
R, 971
R, 936
Ry 566
R, .966
R 664

Tre 1ast 12 factors are not shown
in

Only

ki
load

gs greater than (.10 are shown.

8¢
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highly correlated with the overland slope. The watershed area and the
stream length parameters are highly correlated with the second common
factor.

The loadings for the log-transformed parameters are shown in Table
IX. Comparing the loadings in Tables VIII and IX demonstrates the more
favorable values for the log-transformed parameters. Not only are the
correlation coefficients higher, but the values are more logically
grouped by common factors.

The results of the factor analysis is that:

1) There are four watershed properties which are associated with the
underlying factors a) Slope b) Length of Streams c¢) Length of
Overland Flow (Drainage Density) and d) Watershed Shape,

2) These four properties appear to be independent,

3) These factors cannot be observed directly.

Anti-Factor Analysis - In Anti-Factor Analysis only those

parameters having the highest loadings are retained. The list of
24 parameters shown in Table IX was reduced to 14 parameters. The
varimax rotated factors for the reduced set of parameters is shown
in Table X. Factor 1 had four parameters. The two parameters having
- the highest loadings were retained, thereby eliminating both stream
length parameters - L, Ls' Table XI shows the retained 12 parameters
and their loadings.

Anti-Factor Analysis was also:completed on the log-transformed
parameters. A reduced set of parameters were selected from the

parameters and loadings shown in Table IX. The reduced 1ist is shown

in Table XII. As before the two parameters having the highest loadings



Varimax Rotated Factors of 24 Log-Transformed Parameters

Tebie 14

Component i 2 3 4 5 6 7 8 9 10 1 12
A .984
L .960 i
LS 915 -.28 -.303
LC .923 -.226
Lt .968
S¢ . .942
Sq .898
p .968
H .856
S] .954
52 .921
53 .61z
S4 .925 -.179
Dd -.842
W .884
F ~.936
C .92¢0
Lm .342 .266 E74 .547
R] L9672
R2 .95y
R3 902
R4 046 .261
R5 .40 .308
P.6 887 -.441

The Jaet 12 fectors are not shown

Onty loadings g-eater than G.10 are Shovn.

(0]
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were selected for Common Factor 1 and 2. This reduced the list of

parameters retained to 8. The loadings for the reduced Tog-transformed

parameters are shown in Table XIII.

Table X
Varimax Rotated Factors of Reduced Set of Parameters

Factor: 1 2 3 4 5 6 7 8 9
A .959 A
L .842 L
LS .857 LS
Sd .932 Sq
H .893 H
S3 -.913 S3
S4 .920 54
Dd .971 Dd
W .913 W
F -.942 F
C .841 C
Lm .840 Lm
R1 .943 R]
R6 -.915 R6

It is possible to form Principal Components of the 8 retained

log-transformed parameters. The principal components of the 8

retained parameters is shown in Table XIV. Only 5 of the components

would explain 93.1% of the variance. No interpretation of these

components was attempted.
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Table XI
Varimax Rotated Factors of 12 Parameters

Factor 1 2 3 4 5 6 7 8 9
A .941 A
H -.908 H
S3 .931 53
S4 .926 S4
Dd -.973 Dd
W .936 W
F -.943 F
C .844 C
Lm .864 Lm
R1 .938 R1
R6 -.953 R6
Only loadings greater than 0.50 are shown.
Table XII
Varimax Rotated Factors of Reduced Set of Log Transf. Variables
Factor 1 2 3 4 5 6 7
A .935 A
L .897 L
LS .945
Sq .930 Sq
H .884 H
S4 .938 S4
Dd -.917 Dd
W .881 W
F -.940 F
C .937 C
Lm .636  .550 Lm
R] .944 R1
Re .908 Re

Only loadings greater than 0.50 are shown.
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Table XIII
Varimax Rotated Factors of 8 Log Transformed Variables
Factor 1 2 3 4 5 6
A .855 A
LS .970 LS
Sq .914 Sq
S4 -.940 S4
Dd -.972 Dd
F -.956 F
.951 C
R] -.954 R]
Only loadings greater than 0.50 are shown.
Table XIV
Principal Components of 8 Log Transformed Variables
Component 1 2 3 4 5 6 7 8
A -.524 -.503 -.336 -.157 .756
LS -.145 -.392 -.440 .759 -.268 ~-.545
Sq -.336 -.145 .389 174 .255
S4 -.157 -.392 -.157 122 -.686 .129
Dd -.440 .568 -.331 -.610  .487 .322
F -.480 431 -.472 -.406
-.268 .313 .698  -.333
R1 .756 -.545 -.192 -.166 .672
Cum Var. %: 35.3 57.5 76.8 85.4 93.1 98.4 99.6 100.0

Only coefficients greater than 0.10 are shown.
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Physical Foundations

The response of a watershed to flood producing rainfall is con-
trolled by physical laws - of potential energy, of kinetic energy, of
frictional resistance, of surface storage, of infiltration, of evapora-
tion, of channel hydraulics. A complete analytical treatment based on
physical laws is a hopelessly complex problem.

In view of the complexity of the physical problem, a complete
analytical treatment seems improbable. Dyhr-Nielsen (1971) has
classified three different approaches in the analysis of flood response
of a natural watershed. The earliest analytical approach is sometimes
called the "black-box" technique including the unit hydrograph concept
of Sherman (1932), Snyder (1938), and Dooge (1959). These are conceptuali-
zations and although they have some qualitative meaning in the physical
world. These concepts are not basically derived from basic laws of
physics. Their relationships to catchment characteristics are developed
by statistical tools.

The second analytical approach is called the "grey-box" technique.
In the grey box technique elements of the hydrologic cycle are derived
from fundamental physical models, but many of the required input
variables or input parameters are not usually measured or measureable.
To make practical use of the valuable insight provided by the analysis,
it is necessary tb make use of "effective" parameters. Thus, there is
a sounder evaluation of the purely empirical methods typical in the
“Llack-box" technique. An example of this type of analysis is the
method of computing the runoff hydrograph using the kinematic wave
model described by Schaake (1971) where the runoff hydrograph is com-
puted from a basic physical model, but infiltration from the storm

rainfall is account for with rather arbitrary estimates.
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The "white hox" approach is based on rather complete mathematical
or physical model or representation of the natural watershed. Because
of the complex nature of the hydrologic cycle, elements or parts are
considered in the development of the physical models. An example of a
nohite box" technique is the application of the kinematic wave theory
to the computation of the surface runoff hydrograph beginning with
a physical model based on the equations of flow within the sheet of
surface detention.

Comparison between the parameters which we might expect from a
kinematic wave application to the watershed with those final selected
by the different types multivariate of multivariate analysis is given

in Table XV.

Conclusions

Although the parameters being evaluated in the CSU Small Watershed
Data File have evolved from geomorphology, they did not represent direct
measurements of parameters derived from basic physical laws.

There is a correlation between some of the parameters and basic
physical variables. Since the variables are interrelated some of the
methods of multivariate analysis proved useful in the selection of one
variable or parameter from a group of highly correlated parameters
representing the same physical watershed property.

Only when the response functions are developed on the basis of the
laws of physics can the relationships between watershed measurements and
the watershed flood response be found analytically. The response functions

have not been derived except for very simple homogeneous watersheds.
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The correlation coefficient matrix provided a means of grouping
parameters into groups. The correlation coefficients provided a
worthwhile starting point from which to continue the analysis.

The technique of principal components provided a means of a
reduction of 24 principal components to 12 principal components while
only accepting a 2% loss in explained variance. The three most
jmportant components could be recognized as 1) a combined stream and
overland slope parameter, 2) an area and stream length parameter and
3) a watershed shape parameter.

A factor analysis of the variables was based on a varimax rotation
generated loadings on common factors. This technique 1likewise grouped
the measured parameters together in grouping which could be jidentified
with physical watershed properties.

The varimax technique called antifactor analysis provides a
stepwise screening to reduce the original group of variables (or
parameters) to a minimum. For the power function model (multiplicative
model), this procedure reduced the number of variables from 24 to 8.

The remaining watershed parameters are:

1. A, watershed area, square miles,

2. L total length of extended streams, miles,

3. F, form factor, A/Lz,

4. C, compactness coefficient, .28P/VA

d’ drainage density, LS/A, miles per square mile,

6. Sd, dimensionless standard deviation of travel distance,
Sy/VR

7. 54, stream slope, feet per mile,

8. R1, overland slope, cil /A, feet per miles.

cont.
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The investigation has provided a basis for reducing the cost of
obtaining and encoding relevant flood and geomorphological data for

small watershed floods.
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