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ABSTRACT

Multivariate analysis was used to make a selection of some of the

more meaningful physical parameters dealing with the response of a small

watershed to flood producing rainfall. Factor Analysis t Principal

Component Analysis and a Correlation Coefficient Matrix was utilized.

The list of 24 parameters was reduced to a list of 8 parameters. This

reduction results in a very material economy in the encoding of relevant

geomorphological data in flood analysis.



AN APPLICATION OF MULTIVARIATE
ANALYSIS IN HYDROLOGY

Introduction

The watershed physiography leave an unmistakable influence on the

size and timing of the flood response.

It was proposed to apply the principles of multivariate analysis

to the task of selection or ordering of the various physical parameters

being assembled and used in the CSU small watershed data file. The

purpose of collecting high quality rainfall-runoff events was to obtain

research data for use in research work in small watershed response to

flood producing rainfall. At the present time 24 different measurements

are made from a topographic or other maps of the watershed. These

result in the computation of 40 different physiographic parameters.

Many of these are redundant and the cost to quantify the hydrologic

data file could be reduced if only the most meaningful parameters are

selected for retention in the future.

Many of the physiographic parameters have been proposed by

researchers in geology and geomorphology. As a better understanding

of the basic hydrological laws evolved, some of the parameters pro­

posed in the earlier research work were supplanted by newer more

efficient or more efficient parameters. Thus, some of the parameters

currently being evaluated in the small watershed flood program are

remnants of an earlier obsolete concepts.

Examination of anyone of the general schematic diagrams depicting

the Hydrologic Cycle illustrates the complexity and interrelated nature

of the elements of the hydrologic system. Figure 1 is a pictorial

representation of the hydrologic cycle from Wilson (1969).
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Figure 1. Hydrologic Cycle.

Moore and Claborn in a paper in Yevjevich (1971) show an organi­

zational diagram of the hydrologic cycle which was prepared to outline

the computer program for the University of Texas Watershed Model which

is shown as Figure 2.
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Figure 2. Schematic Diagram of University of Texas Watershed Model.
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The interrelationship among the variables shown in Figure 2 shows

that the relationship between watershed characteristics and the hydro­

logic response is complicated and almost impossible to attack the

problem of evaluating the parameters in a strictly physical or

deterministic framework. It has been popular to attempt to use the

technique of multiple regression to study these relationships. In

this investigation, it has been decided to use the technique of multi­

variate analysis. Dyhr-Nielsen (1971) applied the principles of

multivariate analysis to the study of selection of the most meaningful

physical parameters. The complexity of the hydrologic system makes

it impossible to reduce the problem analysis to a completely deter­

ministic form. However, Dyhr-Nielsen attempted to use known

physical relationships about the watershed runoff process to guide

the multivariate analysis. A second objective was to try to reduce

the intercorrelation of the parameters or at least select those which

were only weakly correlated.

Multivariate Methods Used

Various types of multivariate methods are well adapted to the

problem of the interdependence of variables and the analysis of data

obtained from interdependent data. These methods of multivariate

analysis were applied to this problem:

1) Factor Analysis

2) Principal Component Analysis,

3) Correlation Coefficient Matrix

A linear additive model was assumed to represent the system. Some

cases on non-linear response can be accommodated by employing a

transformation and applying the linear theory'to the transformed
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variable. This technique will produce a linear transformed function of

a power function. Many of the variables in hydrology seem to follow

power functions.

Correlation Coefficient Matrix - While the correlation coefficient

is a statistical parameter, it is often used to find the coefficients

relating two deterministic variables. This is possible because the

correlation coefficient is a measure of the linear dependence among

two populations of variables. The correlation coefficient is defined

as the dimensionless product moment or the ratio of the covariance of

the two variables to the square root of the product of the two variances:

cov (x,y)
p (x ,y) = -/v-a-r";;;"'(x;;'-:)--a.;.~v:.M-a.l-r(-y-'

The variables x and yare linearly uncorre1ated if p = o. When

p = or p = - 1, the variables x and yare perfectly correlated

through a linear relationship and the variables are presumed to be

deterministically related. A given value of x determines exactly

the value of y. If the correlation coefficient, p , has values between

o and 1, the correlation coefficient is a measure of the linear

dependency because p2 is the part of the total variance of a variable

which can be explained through a linear relation to the other variable.

In general, p is not known exactly, but is estimated from the

sample in which case the equation is rewritten:

, where
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Sx and Sy are the sample values of the standard deviation.

It is of interest to determine when p = 0 and when p = 1 or -1.

Since the sampling error presents an exact computation of the population

correlation coefficient, all sample values within the tolerance limits

around p = 0 are considered not significantly different from zero.

Numerous tests for p = 0 have been developed. In this investigation

the statistic

t = rlN=2
~

has been employed.

Testing the linear dependence of two variables requires knowledge

about the error introduced in measuring the dependent variable. Any

measuring error is superimposed over the true relationships and obscures

the ability to discern the true relationship. An exact evaluation of

this error is not possible, but if the effect of measurement and sampling

error is estimated some general areas of determination can be defined.

For example, if the measurement errors produce uncertainty of the true

value of the variable to the extent, the ratio of the unexplained

variance to the total variance is 20%, sample correlation coefficients

greater than 0.90 can be considered not significantly different from 1.

In this investigation a major objective was to reduce the number

of variables being stored and investigated by a selection of the most

statistically influential and physically logical variables. Any

variable that can be functionally related to another variable is



7

considered superfluous and should be eliminated from the data set and

replaced by its function. In the case of the Correlation Coefficient

Matrix, the strategy will be to seek out those variables having

correlation coefficients greater than 0.90.

In a situation where two variables are only highly correlated with

each other, the selection is somewhat subjective. Other criteria for

selection could be based on economy of data acquisition, measurement

accuracy and reliability, physical relevance or hydrologic principles.

In this type of situation, the correlation coefficient itself contains

no information about which variable should be eliminated~

A different case exists when a set of more than two parameters

are highly correlated. The parameter, which has the largest sum of

squared correlation coefficients, is the one that explains the maximum

amount of variance of the other parameters through functional relation­

ships and should be retained.

In this investigation, several highly correlated parameters exist.

The later criterion was used to select the superfluous variable.

Principal Components - The principal component technique has been

developed to provide a simpler description of the variation of the

variables. The description is framed in terms of linear combinations

of the observed variables. The variables are mutually independent and

obtained under the ~ondition that the first component explains the

greatest possible amount of the variance and covariance in the

correlation matrix. The second component explains the maximum possible

amount of the remaining variance and so on. The variance is concentrated

upon the first component. This results in the reduction of the number

of variables necessary to explain the variation of the complete set of
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observations with a relatively modest loss of explained variance. The

method was first developed by Hote11ing (1933) and has been thoroughly

discussed by Kendall (1957), Harman (1960) and Morrison (1967).

The first principal component is found by forming a linear combina­

tion of the observations:

Y1 = ~i x

with a variance

SY 2 = a l R a1 -1 1

where

R is the correlation coefficient matrix.

The variance, SY 2
1 is optimized under the constraint that the

vectors are normalized so that

By introducing the constraint as a Lagrange multiplier, Al ' and

differentiating with respect to ~1 ;

a
{Sy

1
2 + (1 - ai . al )} =

aa. 1
-1

2 {~ - 1 1 } ~1
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The optimum is achieved when the derivative is zero. Then the first

principal component is the solution to the vector equation:

R - A I a. = 0- 1 - -1

The solution to this equation is the eigenvalue where Al is the

eigenvalue and~l is the corresponding eigenvector. To detennine

which of the eigenvalues should be selected, premultiply the equation

above by ai . Since ai al = 1, it follows that;

_ 2A = a l R al - SYl1 -1

To maximize the variance, Sy1
2, the value of Al must be selected

as the largest eigenvalue of R and its corresponding eigenvector is

the first principal component. At the same time the explained

variance of the component is found to be equal to Al .

The second principal component is found by maximizing the

variance of:

Y = a l x2 ~ -

subject to the constraints that:

a l a = and2 2

This turns out to be the eigenvector corresponding to the second

greatest eigenvalue of the correlation matrix where the eigenvalue
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equals the explained variance. The remaining principal components

are found in their turn from the other characteristic vectors.

A major problem in the use of principal component analysis is to

determine which component to retain. Two criteria can be used for

selecting the principal component:

1) Sum of the explained variance of all the retained components

or,

2) Relative amount of the total variance the retained component

explains.

The first criterion also has an additional benefit in reduced

rank regression studies, where a trade off is made between the

reduction in the number of variables and the corresponding decrease

in explained variance.

The importance of a single component is of interest in any search

for new significant parameters. The elimination of a variable should

occur when the explained variance is less than a given (or assumed)

critical value. In the case of standardized variables, the criterion

is set at unity corresponding to the variance of one of the observed

variables. Another criterion would be to eliminate all other variables

after a significant decrease (say 50%) in the explained variance of

the component occurs. This will give a group of the most important

components, but it can only be applied when a significant change occurs

when adding an additional variable. If the eigenvalues ~re decreasing

without jumps, it will not provide any assistance in the selection of

signficant variables.

The sample distributions for the eigenvalues have been developed

for principal components drawn from normal multivariate variables
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(Bartlett, 1950). Asymptotic expressions for the tolerance limits

around the population eigenvalues have been found and tests of the

equality of a subset of eigenvalues are present. These particular tests

are not of much value in the present study.

The advantages of the principal components technique is that it

develops a new set of mutually independent parameters that can be

determined on the basis of the observed parameters. The number of

principal components can be made smaller than the number of original

parameters with a limited loss of accuracy. It has a sound mathematical

background as it is developed as an optimization with constraints.

In order to apply the method of Principal Components, it is

necessary that measurements of all of the variables be used. The

method, therefore, is applicable only to measurements already

available. Furthennore, it is difficult to attach any interpretation

to the components. When the components are used in a regression

analysis, the equations are transformed to the terms of the original

variables. Snyder. (1962), has said that the regression equations

based on principal components gives more meaningful results. However,

this conclusion is entirely empirical.

Factop Analysis - In a factor analysis, the original variable is

replaced by a new variable called the factor. It is assumed that the

observations are linear functions of the common factors and that each

variable is represented by a function of a number of unobservable common

factor variates. The common factors generate the covariances among the

observations, while the specific term contributes only to the variance

of their particular responses.
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A model employing factors can be presented as:

x=A.y+£.

where

x is the variable,

Y is thecorrmon factor,

£ is the specific factor variate,

A is a coefficient matrix.

The coefficient matrix A determines the linear relationship between

the variable, ~, and the common factor y. The coefficients in the

coefficient matrix, A are called factor loadings. It can be

shown that the loadings are the covariance between a factor and the

particular variable. Hence high loadings are an indication of high

correlation between a factor and a variable. Suppose that the common

factors, y, are normally distributed, standardized, independent

variables and that E is equal to zero. Under these conditions, the

covariance matrix ~ of the observations can be generated by the

loading matrix A through the relation:

where AI is the transpose of A. This is a fundamental property of

the loading matrix. The solution of this equation is not unique

because if the loading matrix, A is multiplied with an orthogonal

matrix T :

A 1 (~ I) I = Il I I I AI = A . AI

and
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L: = A • ~ = ~ I (~ I) ,

By choosing different orthogonal transformations, an infinite number

of loading matrices are obtained all having the same covariance matrix.

The sum of the variances of the squared square loadings within

each column of the factor matrix was proposed by Kaiser (1958) as a

method of developing an evaluation criterion. By maximizing this

criterion through orthogonal rotations of an initial factor matrix, a

simple structured matrix can be found. Kaiser's criterion is stated

mathemati cally:

1 m I (r 2v = - L [p a ! ~ a .. ) ]
P j=l i=l lJ i=l lJ

where a .. = the loadings
lJ

p = a weighting factor.

Kaiser, 1958, called the criterion, v, the varimax criterion which is

optimized during the selection procedure.

The initial values of the factor matrix used in the vector rotation

are obtained from the coefficient matrix for the principal components.

The coefficients, a., in the jth component are scaled with the
-J

square root of the corresponding eigenvalue (which is the explained

variance), I\j, to form a new vector,

L. From this it follows that:

L: = L L '

and a new matrix,

This technique of employing the principal component provides a

"factorization" of the correlation matrix, L:. The use of the
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principal components provides a useful and convenient start for the

varimax rotation. Otherwise, the Factor Analysis and Principal

Component techniques are different.

The use of Factor Analysis in hydrology has been subject to

considerable discussion and according to Yevjevich (1972), the use of

the procedure has been the subject of some criticism. Several studies

(Rice, 1967; Eiselstein, 1967; Lewis, 1968) have interpreted the loading

matrix as coefficients on the observed variables and the factors as

linear combinations of these. This concept appears to be more empirical

than statistically rigorous. Wallis (1965a,b) has been one of the

leading advocates of the application of factor analysis in hydrology.

Mata1as and Reiher (1967) subjected the application of factor analysis

to hydrological problems to a critical review. In 1968, Wallis

changed the name of the procedure to llAnti Factor Ana1ysis".

In essence, the procedure is a stepwise rejection technique. A

varimax rotated factor matrix is computed and for each factor only

the variables that correspond to the two highest loadings greater than

0.90 are retained. On the basis of the remaining variables, a new

varimax is computed. The low loaded variables are again removed. This

continues until all variables are connected with high loadings.

The technique evidently functions because high loadings express

a close correlation between factor and variable and therefore the

variable can be used as a descriptor of the factor. This conclusion

is based only on empirical results.

One of the objectives of this investigation is the study of various

geomorphic parameters on the basin flood response to rainfall. The

existing geomorphological parameters are highly interrelated. Hopefully
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the antifactor technique of Wallis will aid selecting the most

significant variables for retention.

Watershed Parameters

The data used in this investigation were collected in the Small

Watershed Data Assembly Program at Colorado State University. The

geomorphological parameters were obtained from a series of measure­

ments from 7 1/2 minute quadrangle sheets of the U. S. Geological

Surveyor from similar scale detailed topographic maps of the

Agricultural Research Service or U. S. Forest Service. The logic

for the selection of the parameters computed from the topographic

measurements and the procedure followed in obtaining the data were

described in a report by Laurenson, Schulz and Yevjevich (1963) and

latter revised by Yevjevich and Holland (1967).

The data used in this investigation were obtained from 188 small

watersheds located over the entire United States and therefore

represent a sample drawn from a very large range in climatic and

geological conditions. A brief listing of the geomorphological

parameters follows. The reader is referred to Yevjevich and Holland,

(1967) for a more detailed description.

Area and Length Parameters

1. Watershed Area, A (square miles),

2. Watershed Perimeter, P (miles),

3. Main Stream Length, L (miles,

4. Total Length of Extended Streams, Ls (miles),

5. Channel Length to Center of Area, Lc (miles),
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Stream Slope Parameters

6. Total Fall in Main Stream, H (feet),

7. Stream Slope, Sl = H/L (feet/mile),

8. Stream Slope, S2 (feet/mi 1e) ,

9. Stream Slope, 53 (feet/mi 1e) ,

10. Stream Slope, S4 (feet/mile),

Overland Flow Length

11 . Overland Slope, R
1

= ~L:kcon (feet/mile),

12. Overland Slope, R2 (feet/mi 1e) ,

13. Overland Slope, R3 (feet/mile),

14. Overland Slope, R4 (feet/mile),

15. Overland Slope, R5 (feet/mile),

16. Relief Ratio, R6 (feet/feet),

Basin Shape Parameters

17. Longest Dimension of Watershed, LL (miles),

18. Average Width of Watershed, W= A/L L (miles),

19. Form Factor, F = A/Li,

20. Compactness Coefficient, C = .28 p/.A ,

Stream Network Shape Parameters

21. Average Travel Distance, L
t

(miles)

22. Dimensionless Mean Travel Distance"

Lm = Lt/ /.A

23. Standard Deviation of Travel Distance,

Sd = St/$

24. Drainage Density, Dd = Ls/A (mile/sq. mi).
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The mean values of these 24 watershed parameters for the 188

watersheds together with their standard deviation are given in the

next table:

Table I

Mean Values and Standard Deviation
Watershed Parameters

Parameter Mean

A 6.07
P 9.65
L .3.98
Ls 13.87
Lc 2.02
R1 1086
R2 1039
R3 1070
R4 924
R5 833

R6 .063

Standard Parameter Mean Standard
Deviation Deviation

9.02 H 12.27 22. 14
8.00 sl 312 376
3.37 s2 236 318

18.24 s3 274 685
1.77 s4 266 361

1009 Dd 4.32 4.69
997 W 1.02 .819
986 F .334 .231
850 C 1.37 .310
812 Lt 2.20 1.86

.079 Lm 1.09 .325

sd .48 .18

St .98 .83

Results of Multivariate Analysis

The analysis of the interdependence between the watershed parameters

was based on two mathematical models - a) Simple Linear Additive Model

and b) Multiplicative Model based on a logarithmic transformation of the

linear variables.

Correlation Coefficients - A correlation coefficient matrix,

has been computed both for the linear and for the log-transformed

r .. ,
lJ
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parameters. Those correlation coefficients which were found to be

signficantly different from zero are shown in Table II and III.

The test of significance was based on the statistic:

where t follows the Student distribution with N-2 degrees of

freedom. At a S% level to.OS = ± 1.96,

and r o.OS = ± .142

Comparison of the correlation coefficients for similar positions

in the matrix in Tables II and III shows that in general the multi­

plicative model yields higher correlation than the linear model. To

gain a better insight into the parameters, they were divided into

groups defined as: Length Parameters~ Stream Slope Parameters and

Overland Flow Slope Parameters.

Length Parameters - The watershed area, A, and the length

parameters, L, Ls Lc ' P, W, were highly correlated.

variance, r2, between the area, A, and the length,

The explained

L ,i s lowes tc

among all of the length parameters and L has the highest explained

variance. The length of the main stream, L, is the length variable

retained.

A strong inverse correlation was expected between the main stream

length, L, and the stream slope parameters. This was not found to

be the case. Evidently this expected relationship was obscured by

the wide difference in geologic conditions present in the sample

used herein. If a sample is obtained from a more homogeneous physio­

graphic region, it is expected that the L and stream slopes would be

more highly correlated.
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Stream Slopes - For the linear model, only the stream slopes, Sl'

S2 and S4 were found highly correlated to each other. In contrast,

the log transformed stream slope parameters, all have correlation coef-

ficients greater than 0.96 which means any slope parameter would explain

more than 92% of variance of any other slope parameter .. A criterion

based upon the maximum sum of the coefficient of determination, L ri

is used as a basis of selection

Slope
Parameter

Sl
S2
53
54

L r 2

3.832
3.872 Maximum value
3.815
3.867

The stream slope parameter, 52 has the maximum value of the selection

criterion, L r2 however, the parameter 54 has only a slightly

smaller value. Because of ease in determination it was decided to

select the parameter 54' All the other slope parameters could be

estimated from regression equations from $4.

Overland 5lopes - The overland slope parameters - Rl , R2, R3, R4 ,

R5, R6 - form a group of highly correlated parameters. The relief

ratio, R6, exhibits quite different correlation coefficients from

the others and therefore will be retained. The selection criterion

for the other parameters are,



Overland Slope
Parameter

Rl
R2
R3
R4
R5

* Selected for retention

20

L r 2

Linear Form

4.739*
4.669
4.735
4.580
4.594

L r 2

Log Transformed

4.792*
4.749
4.786
4.727
4.675

Watershed Shape Parameters - The watershed shape parameters - F,

C, Lm and sd - are linearly independent or very weakly correlated

with the stream and overland slope parameters and a selection can not

be made.

Principal Components - The principal components of the correlation

matrices shown in Tables II and III have been determined for both the

original and the log transformed parameters. Only loadings greater

than 0.100 are shown in the results.

The data in Table IV are the loadings of the components for each

of the 24 watershed parameters. Also shown are the explained variances

for each of the components. The first 12 components explain 98% of the

variance. Dyhr-Nie1son (1971) limited the interpretation to the

first 4 components having contributed variance of a single component

greater than 1.0. The first three principal components are associated

with stream slope, overland slope, stream length and watershed

slope characteristics.

Because there were several parameters representinq each group of

physically based parameters, a reduced set of parameters was selected

on the basis of the parameter loadings within the components in Table

IV. Table V gives the principal components of the reduced set of
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......
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'..i 1.000 .438 .237
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C 1.000 .600
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' 1.000 .982 .936 .914 .668
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Table IV
Principal CO:'li,on:'i'Ls of \~a ;;r~r5tlc:d P"ran1etp.r:;

(Only first components are giv':l1. Only coeffic i('l\ts qreatcl' ttl"n 0.1[1 "re ~hC'.'m)
_________~__•._.___._.__._. __ ._. ____ .,_._.___._._•• h .... ,_, • ____",_,__• ______0. - -- ---_. __._.

CompDr)cnt 2 3 4 5 8 9 lr. 11 12
--_.,_.... _- --~.._._-_ .._._,._--_.._~.- .. -.._-_._--_._-_._---_ .._------

A .311 - .199 .149 .'114 - .198

l .377 -.178 -.166

ls .294 .170 .123 .?Ol .771 .191 - .172

lc .325 -.232 .1"14 .179 -.263 .117

It .338 - .166 - .160

St .335 - .159 .127 - .271 - .127

sd .189 .507 .134 -.228 .289 .214 -.5711 - .162

p' .332 - .148 -.124 - .196

H - .248 .:ns -.321 - .175 - .290 .531 .150 -.406

$, -.322 .238 .135 .1 J2

S2 -.310 - .137 .263 .280 - .193 .281

S -.220 .475 - .141 -.320 .1<19 -.713 .103 - .160
3

$4 -.314 .135 - .148 .273 .149 .. 10~ .170

Dd - .113 .293 .536 .712 .184 ... 163 .109

W .273 -.335 .246 - .175 .151 .26?

r - .116 -.454 .170 .411 - .182 .700 - .178

C .206 .26l .209 .52!i ., .135 ·.221 - .~40 '. ::nO -.221

L .229 .432 .102 - .196 .111 . {fjb .593 .399
III

R1
... 325 -.230

RZ '·.324 -.237

R3
-.326 -.226

R4
-.319 -.114 .116 - .19g -.139 -.121

R5 -.314 - .173 .11 G .151 -.200 - .203

R6 -.252 -.330 .202 .231 .57(, .199 -.522

-------------.-. ---_._- ----_.__ .._ .._.--_ .._-------_._---------_ ..._--_._---. -_._-
Varia~1C.t~ 8.Gl 8.26 1.96 1.15 .82 .72 .54 .49 .35 .27 .20 .16

Vdr. % 35.9 34.4 8.2 4.8 34 3.0 2.8 2.1 1.5 1.1 0.9 0.7

Cum. Var. 'X ::t5.9 70.3 78.5 83.3 8G.7 89.7 91.9 94.0 95.~ 96.6 97.4 98.1

---------_._--_._------_.__ .._--_.--..-.__._ .._.__ . __ ...--_._._-_... __._------_.- ... ----_.-..----_._-------_.



Table V

Principal Components for a Reduced Set of Parameters

Component
No. 1 2 3 4 5 6 7 8 9 10

A .406 -.278 - .160 .101 -.347
L .423 - .111 - .117 -.223 - .178 -.424
Ls .396 - .169 .142 .144 - .184 -.102 -.222 .160 .768

sd .285 .120 .456 .279 -.328 .106
H .407 - .129 .295 -.467 - .177 -.678

53 .371 -.104 .420 - .401 .235 - .159 .171 .613

54 - .112 .486 - .118 .311 .323 .. 133

Dd - .133 .296 .634 .455 -.385 -.228 - .132 -.175 N
~

W .358 -.403 .142

F -.164 - .167 -.426 .182 .281 .591 - .106 -.496 - .129

C .324 .195 .194 .262 .465 .600 -.274

Lm .331 .153 .372 .192 -.305 - .194

R1 .489 - .133 - .180 .334 .356

R6 .373 -.422 -.804

Variance: 4.64 3.09 1.86 1.04 .80 .66 .52 .43 .35 .19

Var. % 33.1 22.1 13.3 7.4 5.7 4.7 3.7 3.1 2.5 1.4

Cum. Var. %: 33.1 55.3 68.6 76.1 81.7 86.5 90.2 93.3 95.8 97.2

The 4 last components are not shown
Only coefficients greater than 0.10 are shown.
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parameters. As in Table IV, only coefficients greater than 0.10 are

shown in Table V. The first 10 components accounted for 97% of the

explained variance.

The principal components for the log transformed variables are

shown in Table VI. The transformed variables had about 10% higher

explained variance in the first three components than in Table IV. The

first component is associated with slope of both stream and overland

flow. The second component is associated with stream length, slope and

watershed shape, while the third component is primarily associated

with drainage density and with watershed shape. The loadings within the

first three components were used to aid in the selection of parameters

for the reduced set.

Table VII shows the principal components and the loadings for each

parameter for the selected reduced set of parameters. Interpretation of

the results is not conclusive. Intuitively, it might be said that the

physical model for the relationships is multiplicative rather than

additive. The log-transfonned parameters explained more variance in

the first three components.

Factor AnaZysis - The factor analysis was carried out in two

parts - Factor Analysis and Anti-Factor Analysis. A varimax rotation of

a set of factors found on the basis of the principal component solution

was performed. The loadings for the original parameters are shown in

Table VIII. Only the first eight factors have correlation coefficients

with the parameters exceeding 0.70 (r2 = 0.49).

Most of the slope parameters are highly correlated with the first

common factor. It;s obvious that the first common factor is most
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Table VI
Principal Components of Log Transforn~d Variables

Component 2 3 4 5 6 8 9 10 11 12

A -.316 .169 - .111 .107

L -.322 .110 - .110
Ls -.288 .166 .394 .148 -.283 .100 .676 .100 -.354

lot -.311 .121 -.120 -.516 .202 -.647

It -.322 - .192 -.127 . .106

St -.320 .209

sd - .171 - .433 -.213 .538 .281 .479 .181 .118
P - .319 .107 -.103 - .134 .294

H .300 -.239 .160 -.295 .145

Sl .Z87 .136 - .156

Sz .274 .149 - .142 -.284 .109

S3 .271 .152 -.102 -.298 - .185 -.145
S' .275 .148 -.139 -.270 - .109 - .100
4

Dd .174 -.336 .259 .669 .293 -.222 -.397 .158

W -.271 .337 - .186 .213 - .167 .336

F .103 .448 -.476 .195 .490 -.169 - .166 - .166

C -.148 - .316 -.720 .263 -.446 -.215 .139

lm - .191 -.440 - .115 - .139 .232 -.706 -.342 - .12i

R1 .300 .134 .213 .389 .122

RZ .313 .118 .186 .330 .105

R3 .313 .136 .210 .0109

R4 .305 .175 .329 - .411 - .139

RS .301 .195 .366 -.4e2 -.206

R6 ·.276 -.136 -.149 -.345 .811 .162

Variance 9.65 8.97 2.19 .78 .73 .45 .39 .20 .18 .08 .08 .05

Var. % 40.2 37.4 9.14 3.3 3.0 2.0 1.6 .8 .8 .3 .3 .2

Cum. Var. % 40.2 77.6 86.7 90.0 93.0 95.0 96.7 97.5 98.3 98.6 99.0 99.1

The last 12 components are not shown
Only coefficients greater than 0.10 are shown.



Table VII
Principal Components for a Reduced Set of Log-Transformed Parameters

Component
No. 1 2 3 4 5 6 7 8 9 10

A -.405 .135 -.203 .112 .222
L -.426 .094 .190 .297
Ls -.377 .112 .304 -.433 - .164 .123

Sd -.274 .401 - .196 .166 -.615 -.516 - .186
H -.255 -.411 - .128 - .163 .375 .346

54 -.517 - .115 -.104 .126 .502

Dd .228 .372 .293 -.725 - .178 .389
N

W -.335 .167 -.364 -.101 - .130 - .177 .388 """'-J

F .117 .107 -.465 -.480 -.311 -.466 . 181
C -.228 .306 -.687 -.313 .511 -. 115
Lm -.308 .402 .124 -.255 .741 .314
Rl - .155 -.470 - .109 - .147 - .136 .253 -.774 - .112
R6 -.503 .301 -.771 .130

Variance 5.02 3.42 2.11 .73 .65 .45 .19 .17 .10 .05

38.69 65.02 81 .32 86.93 91.96 95.49 96.96 98.26 99.09 99.55

Var. % 38.69 26.33 16.30 5.61 5.03 3.53 1.47 1.30 .83 .46

The 3 last components are not shown
Only coefficients greater than 0.10 are shown.



Table VIII

Varimax Rotated Factors of 24 Watershed Parameters

Component 1 2 3 4 5 6 7 8 9 10 11 12

A .934
L .960
Ls .824 -.532

Lc .916

It .965

St .932

sd .910

P .967

H .715

$, .884 - .141

<: .240 .429
"?' N

53 .836 Q)

S{~ .842 .278 .155

OJ -.955

~! .831 .195 .161

F -.936

C .852

Lm
.732 .201 .437

[J •:)3rJ"1
R2 .971

R.., .986
.;,

R4 .966

Rr. .966
n

-.664I'.r
_2

The 1ast 12 factors are not shown
Only loadings greater than G.10 are shewn.
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highly correlated with the overland slope. The watershed area and the

stream length parameters are highly correlated with the second common

factor.

The loadings for the log-transformed parameters are shown in Table

IX. Comparing the loadings in Tables VIII and IX demonstrates the more

favorable values for the log-transformed parameters. Not only are the

correlation coefficients higher s but the values are more logically

grouped by common factors.

The results of the factor analysis is that:

1) There are four watershed properties which are associated with the

underlying factors a) Slope b) Length of Stpeams c) Length of

Ovepland Flow (Drainage Density) and d) Watepshed Shapes

2) These four properties appear to be independent,

3) These factors cannot be observed directly.

Anti-Factop Analysis - In Anti-Factor Analysis only those

parameters having the highest loadings are retained. The list of

24 parameters shown in Table IX was reduced to 14 parameters. The

varimax rotated factors for the reduced set of parameters is shown

in Table X. Factor 1 had four parameters. The two parameters having

the highest loadings were retained, thereby eliminating both stream

length parameters - L, Ls ' Table XI shows the retained 12 parameters

and their loadings.

Anti-Factor Analysis was a1so:completed on the log-transformed

parameters. A reduced set of parameters were selected from the

parameters and loadings shown in Table IX. The reduced list is shown

in Table XII. As before the two parameters having the highest loadings



Table iX
Varimax Rotat~d Factors of 24 Log-Transformed Parameters

--_._...._---_.._-_._--------------------~------------

w
o

12

-.226

- .179

11

-.303

109876

.893

5

-.842

-.241

-.936

2 3 4
-

.984

.960

.915

.923

.968

.942

.968

.884

A

L

ls
Lc
Lt
St .

sd
p

H .866

$1 .954
S . .9212
S.... .912

.J

S .9254

°d
W

F

C .929
Lm .342 .266 .574 .547

n" .9G(

R
2

•96~1

R
3

.9G2

R
4

.946 .261

H
S

.9~O .308

R
6

.881 -.441
_._. .•. _.6 . ••.•.. ... •__ . ._. -._._--. --'--'- --.- - •.-------.----.-

The: lar.·t 12 rc,r::t'J\'S L~re not shOl'l:1
On'!'y 101diIlS" -:veCl.ter than 0.18 dre sho',:n.

CompOl"!pnt
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were selected for Common Factor 1 and 2. This reduced the list of

parameters retained to 8. The loadings for the reduced log-transformed

parameters are shown in Table XIII.

Table X
Varimax Rotated Factors of Reduced 5et of Parameters

Factor: 1 2 3 4 5 6 7 8 9

A .959 A

L .842 L
Ls .857 Ls
sd .932 sd
H .893 H

53 -.913 53
54 .920 54
Dd .971 Dd
W .913 W

F -.942 F

C .841 C

Lm .840 Lm
Rl .943 R,
R6 -.915 R6

It is possible to form Principal Components of the 8 retained

log-transformed parameters. The principal components of the 8

retained parameters is shown in Table XIV. Only 5 of the components

would explain 93.1% of the variance. No interpretation of these

components was attempted.
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Table XI
Var;max Rotated Factors of 12 Parameters

Factor 2 3 4 5 6 7 8 9

A .941 A

sd .933 sd
H -.908 H

S3 .931 S3
S4 .926 S4
Dd -.973 Dd
W .936 W

F -.943 F
C .844 C

Lm .864 Lm
R1 .938 Rl
R6 - .953 R6

Only loadings greater than 0.50 are shown.

Table XII
Varimax Rotated Factors of Reduced Set of Log Transf. Variables

Factor 1 2 3 4 5 6 7

A .935 A

L .897 L

Ls .945

sd .930 sd
H .884 H

S4 .938 S4
Dd -.917 Dd
W .881 W

F -.940 F

C .937 C

Lm .636 .550 Lm
R, .944 Rl
R6 .908 R6

Only loadings greater than 0.50 are shown.
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Table XIII

Varimax Rotated Factors of 8 Log Transformed Variables

Factor 1 2 3 4 5 6

A .855 A

Ls .970 Ls

sd
.914 sd

54 -.940 54

Dd
-.972 Dd

F -.956 F

C .951 C

R1
-.954 Rl

Only loadings greater than 0.50 are shown.

Table XIV

Principal Components of 8 Log Transformed Variables

Component 1 2 3 4 5 6 7 8

A -.524 -.503 -.336 - .157 .756

Ls
- .145 -.392 -.440 .759 -.268 -.545

sd -.336 - .145 .389 .174 .255

54 - .157 -.392 - .157 .122 -.686 .129

Dd
-.440 .568 - .331 -.610 .487 .322

F -.480 .431 -.472 -.406

C -.268 .313 .698 -.333

R1
.756 -.545 - .192 - .166 .672

Cum Val". %: 35.3 57.5 76.8 85.4 93. 1 98.4 99.6 100.0

Only coefficients greater than 0.10 are shown.



34

Physical Foundations

The response of a watershed to flood producing rainfall is con­

trolled by physical laws - of potential energy, of kinetic energy, of

frictional resistance, of surface storage, of infiltration, of evapora­

tion, of channel hydraulics. A complete analytical treatment based on

physical laws is a hopelessly complex problem.

In view of the complexity of the physical problem, a complete

analytical treatment seems improbable. Dyhr-Nielsen {197l) has

classified three different approaches in the analysis nf flood response

of a natural watershed. The earliest analytical approach is sometimes

called the "bZack-box" technique including the unit hydrograph concept

of Sherman (1932), Snyder (1938), and Dooge (1959). These are conceptuali­

zations and although they have some qualitative meaning in the physical

world. These concepts are not basically derived from basic laws of

physics. Their relationships to catchment characteristics are developed

by statistical tools.

The second analytical approach is called the "grey-box ll technique.

In the grey box technique elements of the hydrologic cycle are derived

from fundamental physical models, but many of the required input

variables or input parameters are not usually measured or measureable.

To make practical use of the valuable insight provided by the analysis,

it is necessary to make use of lI effective ll parameters. Thus, there is

a sounder evaluation of the purely empirical methods typical in the

"bZack-box" technique. An example of this type of analysis is the

method of computing the runoff hydrograph using the kinematic wave

model described by Schaake (1971) where the runoff hydrograph is com­

puted from a basic physical model, but infiltration from the storm

rainfall is account for with rather arbitrary estimates.
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The "lj,h7~fJ' Jl O;r." approach is based on rather complete mathematical

or physical model or representation of the natural watershed. Because

of the complex nature of the hydrologic cycle, elements or parts are

considered in the development of the physical models. An example of a

"white box" technique is the application of the kinematic wave theory

to the computation of the surface runoff hydrograph beginning with

a physical model based on the equations of flow within the sheet of

surface detention.

Comparison between the parameters which we might expect from a

kinematic wave application to the watershed with those final selected

by the different types multivariate of multivariate analysis is given

in Table XV.

Conclusions

Although the parameters being evaluated in the CSU Small Watershed

Data File have evolved from geomorphology, they did not represent direct

measurements of parameters derived from basic physical laws.

There is a correlation between some of the parameters and basic

physical variables. Since the variables are interrelated some of the

methods of multivariate analysis proved useful in the selection of one

variable or parameter from a group, of highly correlated parameters

representing the same physical watershed property.

Only when the response functions are developed on the basis of the

laws of physics can the relationships between watershed measurements and

the watershed flood response be found analytically. The response functions

have not been derived except for very simple homogeneous watersheds.
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The correlation coefficient matrix provided a means of grouping

parameters into groups. The correlation coefficients provided a

worthwhile starting point from which to continue the analysis.

The technique of principal components provided a means of a

reduction of 24 principal components to 12 principal components while

only accepting a 2% loss in explained variance. The three most

important components could be recognized as 1) a combined stream and

overland slope parameter, 2) an area and stream length parameter and

3) a watershed shape parameter.

A factor analysis of the variables was based on a varimax rotation

generated loadings on common factors. This technique likewise grouped

the measured parameters together in grouping which could be identified

with physical watershed properties.

The varimax technique called antifactor analysis provides a

stepwise screening to reduce the original group of variables (or

parameters) to a minimum. For the power function model (multiplicative

model), this procedure reduced the number of variables from 24 to 8.

The remaining watershed parameters are:

1. A, watershed area, square miles,

2. Ls ' total length of extended streams, miles,

3. F, fonn factor, AIL 2,

4. C, compactness coefficient, .28P/lA ,

5. Dd, drainage density, Ls/A, miles per square mi le,

6. Sd' dimensionless standard deviation of travel distance,

St/ IA ,

7. S4' stream slope, feet per mile,

8. R1' overland slope, CL:Lcont./A, feet per miles.
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The investigation has provided a basis for reducing the cost of

obtaining and encoding relevant flood and geomorphological data for

small watershed floods.
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