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ABSTRACT OF THESIS 

DYNAMIC MODEL OF A SPHERICAL ROBOT FROM FIRST PRINCIPLES 

 

A prototype of a pendulum driven spherical robot has been developed during 

previous research and shown to exhibit unique dynamic behavior.  Starting from first 

principles, a mathematical model for this spherical robot rolling on flat ground was 

developed in order to determine if this unique behavior was inherent to spherical robots 

in general or simply peculiar to this prototype.  The complete equations of motion were 

found using Lagrangian methods, and numerically integrated using computer tools.  A 3D 

simulation program was written to animate the results of integrating the equations.  The 

dynamics apparent in the simulations were found to closely match the observed dynamics 

of the physical prototype. 

Gregory C. Schroll 
Department of Mechanical Engineering 
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Fort Collins, CO 80523 

Summer 2010 
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Chapter 1  

Introduction 

The term spherical robot is used to describe two very different types of robots. 

Commonly, a spherical robot is a robot arm that forms a spherical coordinate system with 

two rotary joints and one prismatic joint.  The term spherical robot is also used to 

describe mobile, “ball-like” robots that move along the ground by rolling about their 

outer spherical shell.  This second definition is the focus of this study and any reference 

to the term spherical robot refers to the mobile, “ball-like” variety.

Spherical robots are generally comprised of an outer spherical shell and an 

internal propulsion mechanism.  The shell may be made of multiple parts but they all 

move and rotate together as a single body as the robot rolls.  While the mechanical design 

of the internal propulsion mechanism can vary greatly, the primary means of locomotion 

is by shifting the center of mass of the sphere.  The acceleration due to gravity acting on 

the center of mass generates a torque on the sphere causing it to roll.  By actively shifting 

the center of mass inside, a spherical robot can be directed to travel in a controlled 

manner. 

The spherical shape of this class of mobile robot offers several advantages over 

other forms of surface-based locomotion like wheels, tracks, or legs.  The sphere is a 
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strong shape offering rigidity at all points on its surface.  It can provide a very high level 

of robustness with no major points of weakness, whereas wheels, tracks, or legs can be 

damaged, potentially disabling a robot’s ability to move.  The shell can also be resilient 

and serve as a protective barrier between the outside environment and the equipment 

inside.  This protection can be in the form of robustness to impacts or as a physical 

barrier to hazardous chemicals and environmental conditions.  The spherical shell can be 

sealed for either floating or submersion in liquid and also prevent dust from damaging 

mechanical components inside. 

A spherical robot is by nature non-invertible further limiting the risk of becoming 

disabled.  Most other vehicle designs are vulnerable to tipping over or becoming stuck on 

terrain where their means of locomotion loses contact with the ground.  Also, the large 

diameter of the rolling surface of a spherical robot compared to its footprint allows it to 

travel over rough surfaces with greater rolling efficiency than vehicles with several 

smaller wheels. 

These advantages indicate that a spherical robot would be appropriate for many 

different mobile robotics applications such as surveillance, reconnaissance, hazardous 

environment assessment, search and rescue, as well as planetary exploration.  While 

research in the field of spherical robots has explored a large number of different concepts, 

few have been very successful in practice.  The failure of spherical robots to perform 

effectively is due to a few significant disadvantages. 

An issue presented by spherical robots as a mobile sensor platform is the 

difficulty of sensor integration when the entire outer shell of the robot rotates.  Some 

sensors such as ambient environment sensors or omnidirectional microphones are not 
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greatly hindered, but directional sensors such as radar or cameras require sophisticated 

mounting or active stabilization.  One solution includes using a transparent shell through 

which a camera can “see.”  Another solution requires mounting sensors on gimbaled 

platforms on either end of the normal axis of rotation of the sphere.  Both of these 

concepts, however, introduce further problems and complexity. 

While sensor integration difficulties can be addressed through detailed 

engineering, spherical robots have a much more significant performance limitation, that 

until recently has been largely unaddressed.  The center-of-mass shifting principle by 

which virtually all spherical robots operate is severely limited by the maximum drive 

torque that can be generated.  This torque limitation translates into a limit on the 

maximum inclination and highest obstacle that can be traversed, and is independent of 

available motor torque. Without the ability to effectively navigate rough terrain, spherical 

robots have not played a significant role in mobile robot applications despite having some 

marked advantages. 

To address the limited mobility of previous spherical robot designs, a new 

mechanism has been invented using control moment gyroscopes for storing angular 

momentum effectively providing a spherical robot with a controllable torque “boost.”  

The paper, “Design of a Spherical Vehicle with Flywheel Momentum Storage for High 

Torque Capabilities”, documents the development of the invention including basic theory 

describing the planar motion of a spherical robot and the successful demonstration of a 

working prototype [1].  As a continuation of this prior work, this paper presents a more 

thorough compilation of the prior art, a thorough description of my earlier work, detailed 

theory of planar motion of a spherical robot with and without control moment 
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gyroscopes, derivation of a general 3-dimensional model of a spherical robot on flat 

ground, verification and simulation results of said model, as well as a discussion of future 

work.   
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Chapter 2  

Prior Art 

Self-propelled spheres have been in development for over 100 years. A thorough 

overview of the history of spherical vehicles is presented in Chapter 11 of the book, 

“Climbing & Walking Robots, Towards New Applications,” [2].  The earliest spheres 

were spring driven toys in the late 1800s, followed by larger man carrying vehicles.  

More sophisticated mechanisms enabling steering and later electric power were 

developed.  The current state of the art builds upon much of the prior century of work in 

mobile spheres.  Modern spherical robots in development today generally incorporate 

sensors, actuators, and computer control, but propel themselves using a variety of 

different principles.  These principles of locomotion tend to fall into the following four 

categories:

• Hamster Ball 

• Pendulum Drive 

• Multiple-Mass-Shifting 

• Deformable Body 
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While wind-driven spheres are another significant class of spherical robot, they 

are propelled externally by wind rather than by an internal propulsion mechanism; 

Therefore, they are not of interest in this discussion. 

2.1 Hamster Ball 

A hamster ball style sphere is one with an inside driving unit (IDU) which 

transfers power directly to the inside surface of a hollow spherical shell.  The IDU 

mechanism can take the form of an internal car or sprung central member as shown in 

Figure 2-1. 

 
Internal Car Sprung Central Member 

Figure 2-1:  Hamster Ball Concept. 

The internal car design most closely resembles a hamster inside a hamster ball.  

When the car starts to drive up the inside surface, the sphere will begin to roll forward.  

The car can have 4 wheels like a passenger vehicle, or 3 wheels with the added benefit of 

being perfectly constrained.  Instead of wheels, the car can have treads like a tank.  Since 

directional control of the sphere is maintained by driving the internal car in the desired 

direction, a variety of well known steering mechanisms can be used, such as front-wheel 

steering, 4-wheel steering, or differential steering. 

(a) (b) 



 7 

The sprung central member design consists of a single driven wheel at the bottom, 

a tensioning element, and an idler wheel at the top.  The tensioning element maintains 

contact between the driving wheel and the inside surface of the sphere.  To steer, the 

driven wheel is rotated about its contact point with the sphere by applying a torque 

between the wheel and the inertia of the rest of the assembly. 

The hamster ball concept has several advantages.  Both the internal car and the 

sprung central member designs locate the majority of their mass close to the surface of 

the spherical shell, which helps maximize performance (see Section 2.5).  They are 

relatively simple in design, and their drive mechanisms are straightforward to control.  

Because the final drive output is to small wheels compared to the diameter of the sphere, 

the required output torque is significantly less than with other designs discussed below. 

When using a sprung central member or an internal car with differential steering, 

the sphere is quasi-omnidirectional. The sphere can move in any direction starting from a 

standstill, but not instantaneously.  The IDU must first be oriented to the desired direction 

before the sphere can move in that direction.  It is also possible to build a fully 

omnidirectional hamster ball design using an internal car with omnidirectional wheels 

(see Section 2.1.2).  In this case, the sphere can instantly begin moving in any direction 

since the internal car is omnidirectional. 

One of the major disadvantages of the hamster ball concept is that the internal 

surface of the spherical shell is critical.  The surface needs to be uniform in order for the 

drive wheels to operate properly.  Since the IDU relies on friction between its wheels and 

the sphere, the wheels must maintain constant contact with the shell at all times.  Impacts 

with obstacles can cause an internal car to lose contact and even flip over inside.  A 
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sprung central member may require sophisticated suspension in order to maintain proper 

traction.   The reliance on friction inside may also make it difficult to precisely monitor 

sphere rotation due to the risk of slippage between the IDU and the sphere. 

2.1.1 Rollo Versions 1 and 2, Aalto University 

The Rollo robot was developed at Aalto University (formerly Helsinki University 

of Technology) in Finland to explore the use of spherical robots as a mobile assistant [3].  

The first Rollo prototype used the sprung central member design shown in Figure 2-1b.  

The second Rollo prototype used a unique design that was a combination of the internal 

car and sprung central member mechanisms (see Figure 2-2).  These designs were 

rejected for the third prototype of Rollo, which utilized a pendulum mechanism (see 

section 2.2.4).  A reason given for abandoning these hamster ball designs was the 

requirement for the spherical shell to be very rigid and uniform.  

 
2nd Prototype 1st Prototype 

Figure 2-2:  Early Rollo Prototypes [3]. 

2.1.2 Spherical Autonomic Robot 

An Israeli spherical robot called the Spherical Autonomic Robot (SAR) has been 

developed using an internal car with 3 holonomic wheels (see Figure 2-3) [4].  The 

(a) (b) 
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triangular configuration of the holonomic wheels allows the internal car, as well as the 

sphere, to be fully omnidirectional.  No additional information about the project could be 

found. 

 
Figure 2-3:  SAR with One Hemisphere Removed [4]. 

2.2 Pendulum Drive 

A sphere with a pendulum drive mechanism typically has a main drive shaft fixed 

to the spherical shell and an offset mass (the pendulum) hanging from the drive shaft.  A 

torque is applied between the pendulum and the drive shaft to propel the sphere forward. 

 
Side view with pendulum rotated 

up for driving forward. 
Front view with pendulum tilted 
to the side to steer. Drive shaft is 

tilted as a result. 

Figure 2-4:  Pendulum Drive Concept.  

(a) (b) 
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Figure 2-4a shows a side view of the pendulum drive with the pendulum tilted up 

in front to propel the sphere forward.  Figure 2-4b shows a front view of the same 

mechanism.  The pendulum can similarly tilt to the side, causing the main drive shaft to 

form an angle with the ground.  When the pendulum is driven forward in this 

configuration, the sphere will travel in an arc.  In order to locate the center of mass of the 

sphere as close to the outside surface as possible, the pendulum is usually not a separate 

weighted part, but in fact is comprised of the majority of the internal components of the 

sphere such as motors, batteries, and drive electronics. 

The control scheme of the pendulum mechanism is relatively straightforward and 

is analogous to a 4-wheeled vehicle with front wheel steering.  Since the internal drive 

mechanism only interfaces with the spherical shell at two fixed points, the majority of the 

shell is dimensionally non-critical.  Therefore, the shell can be flexible and act as a shock 

absorber.  Unlike the friction connection inherent in the design of the hamster ball 

concept, the pendulum drive can have positive mechanical engagement allowing for 

accurate and precise measurement of the relative motion of the spherical shell and the 

pendulum. 

A disadvantage of the pendulum design with respect to the other concepts is that 

the mechanical design tends to be challenging.  The entirety of the internal structure 

hangs from a single shaft attached to the sphere in only two points, necessitating that 

these elements be quite strong in order to withstand impacts.  The torque required at the 

main drive shaft inside is significantly higher than the torque required in the hamster ball 

designs.  Another disadvantage is that the two points on the sphere where the main shaft 

attaches are very rigid and impacts at these points have the potential to be very jarring to 
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the mechanism inside.  Also, the pendulum drive mechanism is not omnidirectional.  

Once stopped, a sphere with a pendulum drive must begin traveling in the same 

instantaneous trajectory before traveling in an arc to change direction. 

2.2.1 Cyclops, Carnegie Mellon University 

Cyclops, developed at Carnegie Mellon University, is a 5.5-inch diameter, 4.5-

pound spherical robot intended for reconnaissance and surveillance in urban 

environments (see Figure 2-5a) [5].  It utilizes a pendulum mechanism for 

forward/backward movement, but has a unique inertial steering mechanism.  The conical 

rotor shown in Figure 2-5b is a reaction wheel and is located at the lowest point on the 

pendulum.  A torque motor reacts against the inertia of the reaction wheel to rotate the 

entire sphere in place about a nominally vertical axis. 

       
Performing reconnaissance on location Reaction wheel for inertial steering 

Figure 2-5:  Cyclops robot [5]. 

2.2.2 Rotundus Groundbot 

A Swedish company, Rotundus, has developed a product called Groundbot, which 

is the most deployment-ready spherical robot currently available [6]. Originally 

developed for space exploration, the Groundbot is now commercially available as a 

(a) (b) 
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sentry robot for patrolling and monitoring industrial locations.  The robot utilizes a 

pendulum drive for both forward/backward motion as well as steering. 

The unit is equipped with cameras mounted in clear domes on the sides of the 

robot and can be operated from a sophisticated telepresence command station.  

Groundbot can be controlled manually or programmed to patrol a route autonomously 

using GPS. 

 
Figure 2-6:  Rotundus Groundbot [6]. 

2.2.3 Roball, University of Sherbrook 

Roball is a hamster-ball sized spherical robot developed at the University of 

Sherbrook, Canada [7].  Roball was designed to be a mobile, interactive toy for toddlers.  

The first prototype shown in Figure 2-7a demonstrated that the motion of the ball was 

inviting and engaging for children who played with it.  A second, more advanced 

prototype (see Figure 2-7b) added lights and sounds which enhanced its interactivity. 
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1st prototype built inside a 

hamster ball. 
2nd prototype with 

additional interactive 
features 

Internal CAD view showing 
ring gear 

Figure 2-7:  Roball [7]. 

All of the Roball prototypes made use of the pendulum mechanism for propulsion 

and steering.  The CAD rendering shown in Figure 2-7c shows the use of a ring gear for 

driving the pendulum forward and backward.  This mechanism is in some ways similar to 

the hamster ball method but has positive mechanical engagement instead of a friction 

interface.  The ring gear design significantly lowers the output torque requirements of the 

internal mechanism, but also requires that the spherical outer shell be rigid. 

2.2.4 Rollo Prototype 3 and GIMBall, Aalto University 

While the 1st and 2nd prototypes of Rollo (see Section 2.1.1) made use of a 

hamster ball propulsion mechanism, prototype 3 implemented a unique pendulum 

mechanism.  The pendulum provides the forward/backward motion of the sphere while a 

ring gear circumscribing the inside of the spherical shell provides the steering motion 

(see Figure 2-8a).  When the ring gear face is parallel to the ground, the internal 

mechanism can reorient itself about the vertical axis making the sphere quasi-

omnidirectional. 

(a) (b) (c) 
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Rollo prototype 3 Gimball 

Figure 2-8:  Aalto University prototypes [3],[8]. 

While the ring gear steering mechanism worked for the slow, methodical motion 

of the Rollo prototype, its use may be limited and disadvantageous for higher 

performance spherical robots.  In order to steer in place, the mechanism requires there to 

be sufficient friction between the spherical shell and the ground such that the sphere 

remains stationary while the internal mechanism rotates.  Also, the axis of the ring gear is 

always perpendicular to the rotating axis of the pendulum, such that when the sphere 

rolls, the direction of the ring gear axis constantly changes.  Therefore, steering while 

rolling is very difficult if not impossible.  The sphere must come to a stop with the ring 

gear face parallel to the ground before attempting to change direction. 

GIMBall, shown in Figure 2-8b, is a more recent spherical robot also from Aalto 

University [8].  It was built to analyze and attempt to attenuate oscillatory motion 

inherent in spherical robot locomotion.  The propulsion mechanism for GIMBall is a 

pendulum drive for both forward/backward motion and steering. 

(a) (b) 
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2.3 Multiple-Mass-Shifting 

The multiple-mass-shifting concept incorporates 3 or 4 masses that can be moved 

independently along linear guides inside the sphere.  By coordinating the motion of the 

masses, the location of the center of mass of the sphere can be controlled thereby 

enabling the sphere to move in a desired direction. Two configurations of the multiple-

mass-shifting concept are shown in Figure 2-9. 

 
Radial Design with retractable legs and 

camera. 
Perpendicular non-intersecting 

design. 

Figure 2-9:  Multiple-Mass-Shifting [9],[11]. 

In the radial configuration of Figure 2-9a, 4 masses (36) move along radial spokes 

(30) [9]. The spokes are connected to a central hub (28) and their opposite ends are fixed 

to the spherical shell in an arrangement that forms a regular tetrahedron.  Figure 2-9b 

shows a more optimized configuration where there are only 3 masses which move along 

non-intersecting rails [11].  The 3 rails are a set of perpendicular, non-intersecting edges 

of a cube as shown in Figure 2-10. 

(b) (a) 
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Figure 2-10:  3 perpendicular, non-intersecting edges of a cube. 

The most significant feature of the multiple-mass-shifting concept is that it is fully 

omnidirectional.  A sphere with this propulsion mechanism can instantaneously begin 

moving in any direction from a standstill.  It can also offer very precise control of the 

center of mass of the sphere.  There are several drawbacks to the design, however.  The 

mechanical design tends to be very complex, and the controls necessary to coordinate the 

masses are complicated as well.  To roll quickly in a straight line, the masses must 

rapidly reciprocate along their axes which may require high power actuators, and is very 

inefficient.  Similar to the pendulum design, the locations on the sphere where the 

internal axle(s) mount are very rigid and impacts with obstacles may be undesirable at 

these points. Unlike the pendulum design which it is very unlikely to roll over these 

locations, the multiple mass design has these rigid areas spaced over the surface of the 

sphere where an impact with an obstacle it is very likely to occur.  These multiple rigid 

locations necessitate having an overall rigid outer shell.  

The radial configuration of masses has the additional drawback of requiring a 

central hub, which limits the performance of the mechanism.  While the objective of the 

design is to offset the center of mass as far as possible, the central hub always prevent at 
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least one mass from moving past the center.  The non-intersecting design avoids this 

issue while relying on the spherical shell as a structural exoskeleton. 

2.3.1 Spherobot, Michigan State University 

Omnidirectional spherical robots have seen significant development at Michigan 

State University, under the direction of Ranjan Mukherjee [10]. Spherobot (shown in 

Figure 2-9a), was the first to realize the multiple-mass-shifting propulsion mechanism 

with a radial configuration, and the design was patented (U.S. Patent 6,289,263) [9].  In 

additional to the radial masses, the design also featured retractable legs and a periscope-

like camera.  Since the legs and camera were fixed within the sphere, the goal of the 

project was to develop the trajectory planning and control theory to ensure the legs and 

camera were always oriented properly when the sphere reached its destination. 

A newer design for Spherobot was later introduced using 3 perpendicular, non-

intersecting masses as shown in Figure 2-9b [11].  This design was less complicated, 

requiring 1 fewer actuated mass, and had higher performance due to its ability to offset 

the center of mass more than the radial design. 

2.3.2 August, Azad University of Qazvin and University of Tehran 

August is another omnidirectional sphere based on the radial masses design (see 

Figure 2-11) developed at the Azad University of Qazvin in conjunction with the 

University of Tehran, Iran [12].  The design is such that the center of mass of the robot is 

located at the geometric center of the sphere when the masses are in equidistant from the 

center.  This symmetry about the center of mass greatly simplifies the modeling and 
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control of the robot.  A prototype has been built and successfully controlled to travel 

along curved trajectories. 

 
Figure 2-11:  August Design [12]. 

2.4 Deformable Body 

 This class of spherical robot actively deforms its nominally spherical shape in 

order to propel itself. By continuously altering its shape, a deformable sphere can control 

the position of its center of mass relative to where the sphere contacts the ground such 

that the sphere rolls.  Deformable spherical robots are a relatively new area of research 

and only a few prototypes have been demonstrated to date. 

2.4.1 Koharo, Ritsumeikan University 

The largest effort in this category comes from Ritsumeikan University in Japan.  

They have developed both a wheel and a sphere (called Koharo) with flexible outer 

structures and shape memory alloy (SMA) actuators [13].  By contracting and expanding 

the SMA wires in coordination, the outer structure of the wheel or sphere can be 

deformed to cause it to roll.  As shown in Figure 2-12, the wheel is a flexible ring with 
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radial, SMA spokes.  The sphere shown in Figure 2-13 is composed of several flexible 

rings also with radial SMA spokes. 

 
Figure 2-12:  Deformable wheel rolling.  Video snapshots of the wheel rolling over a 

period of 6 seconds [13]. 

 
Figure 2-13:  Deformable sphere rolling up an incline. Video snapshots of a the 

sphere rolling up an incline over a period of 18 seconds [13]. 

The SMA wires are contracted by passing an electric current through them to 

generate resistive heat.  The temperature-induced change in crystalline structure causes 

the SMA wire to contract with significant force.  Once cooled, the wire expands back to 

its original length. Unfortunately, since the cycle rate of the SMA actuators is very slow, 
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the motion of the wheel and sphere is also very slow as indicated by the time stamps on 

the image sequences in Figure 2-12 and Figure 2-13. 

While rolling motion is prohibitively slow in the current prototypes, an effective 

jumping mechanic is also being developed.  By deforming enough to form a concavity on 

the underside of the sphere, a significant amount of potential energy can be stored in the 

flexible outer structure.  When released, the outer structure effectively “pops” back out, 

propelling the sphere into the air. 

2.4.2 Chembot, iRobot 

A different type of deformable sphere is under development by iRobot in 

conjunction with the University of Chicago.  Funded by the DARPA Chembots program, 

the iRobot Chembot is a soft, inflatable, silicone sphere that uses the principle of 

jamming to selectively control the rigidity of individual sectors of the sphere [14].  The 

hollow sphere is formed from triangular sections that are actually pouches of a fine 

powder [15].  Normally, the sections are soft and flexible, but when a vacuum is drawn 

on the powder inside a section, the powder “jams” and the section hardens in its current 

shape. 

To deform the sphere asymmetrically, all of the sections are rigidized except for 

one or two.  When the internal space of the sphere is pressurized, the unjammed sections 

expand, deforming the sphere as shown in Figure 2-14.  Repeating this process in a 

coordinated fashion enables rolling. 
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Chembot in its inflated, spherical 

form. 
Left side of robot skin is jammed 

while right side expands. 

Figure 2-14:  iRobot Chembot [15]. 

At this stage in development, the speed at which the sections can be actuated is 

prohibitively slow.  Also the power source is external and the prototype has to be tethered 

during operation.  The main goal of the project is not necessarily to build a deformable 

spherical robot, but to build a deformable robot that can squeeze through small openings. 

2.5 Unifying Principle of Locomotion 

The hamster ball, pendulum drive, multiple-mass-shifting, and deformable body 

concepts use very different mechanisms to propel a spherical robot, but in fact all operate 

by the same underlying principle. Ultimately, gravity causes the sphere to roll. 

The acceleration due to gravity acting on the entire sphere can be simplified to a 

force, F, pulling down on the center of mass, CM, of the sphere.  As shown in Figure 

2-15a, when this force vector passes through the contact point between the sphere and the 

ground, the net torque on the sphere is zero.  When the center of mass is displaced a 

horizontal distance, x, from the contact point as shown in Figure 2-15b, the force due to 

gravity creates a moment on the sphere, causing it to roll. While there are other inertial 

(a) (b) 
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properties that can affect the sphere’s motion, this moment is the primary effect that 

sustains continuous motion.  

 
Center of mass directly above contact 

point. 
Center of mass offset a horizontal 

distance, x, from contact point.  

Figure 2-15:  Effect of Gravity on Sphere. 

If the sphere and its center of mass were fixed in the configuration shown in 

Figure 2-15b and released from rest, the sphere would rock back and forth until coming 

to a stop (due to friction) in the configuration shown in Figure 2-15a.  To enable 

continuous rolling motion, the mechanisms described in Sections 2.1-2.4 continuously 

displace the center of mass of the sphere relative to the contact point between the sphere 

and the ground. The moment generated by gravity is equal to the force, F, multiplied by 

the horizontal distance, x between the center of mass of the sphere and the contact point.  

Assuming the mass of the sphere cannot change, the distance, x, must be maximized in 

order to generate the largest moment. 

(a) 

CM 

F 
(b) 

x 
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2.6 Torque Limitation 

Unfortunately, there is a practical limit to how far the center of mass can be 

displaced as well as significant tradeoffs between center of mass displacement, 

propulsion power, and system robustness.  Consider the illustration in Figure 2-16. 

 
Figure 2-16:  Illustration of design tradeoff. In each sphere, the center of mass is 

located at the geometric center of the spherical section indicated in gray. The ratio 
of the CM Displacement to Radius for each section: (a) 0, (b) 1/3, (c) 1/2, (d) 2/3. 

 For purposes of the illustration, the spherical shell is assumed to be massless, and 

the mass of the internal components is evenly distributed over the gray area in (a)-(d).  In  

Figure 2-16a, the entire internal volume of the sphere can be used since the center of 

mass is located at the geometric center of the sphere.  To displace the center of mass R/3 

(1/3 the radius of the sphere, R), the majority of the internal mass must be located in the 

bottom 56% of the internal volume.  Similarly for a displacement of R/2, only the bottom 

(a) (b) 

(c) (d) 
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34% of volume can be used, and for a displacement of 2R/3, only the bottom 16% of the 

volume can be used [16].  This trend indicates the tradeoff between maximizing the 

displacement of the center of mass and having enough room inside to fit the components 

necessary to displace said mass.  Adding high-density ballast close to the outer shell to 

displace the mass further requires higher power and larger actuators inside to move said 

ballast. 

Also, the assumption of a massless shell is unrealistic.  Since the center of mass of 

the shell is located at the center of the sphere, it hinders the ability of the internal 

propulsion mechanism from displacing the overall center of mass as far as in the case of a 

massless shell.  Therefore, it is desirable to minimize the mass of the outer spherical 

shell, but with the tradeoff of reduced robustness and strength of the shell.  In practice, 

the maximum displacement of the center of mass of the sphere is close to 2R/3, with 

significant sacrifices in propulsion power [2].  A higher performance design might have a 

limit of closer to R/2. 

The practical limit of displacement of the center of mass translates into a limit on 

the maximum continuous incline and tallest obstacle that can be traversed.  The 

maximum incline is given by, 

 θ = sin−1 x
R

 (2.1) 

   
where θ is the inclination angle, x is the maximum displacement of the center of mass of 

the sphere from the center of the sphere, and R is the radius of the sphere.  For a sphere 

with a displacement limit of x = R/2, the maximum continuous incline that can be 

traversed is 30°.  This limit is reached when the center of mass of the sphere is directly 
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above the contact point between the sphere and the ground as shown in Figure 2-17a.  

The tallest step obstacle that can be climbed from rest is given by,  

 h = R − R2 − x2  (2.2) 
   

where h is the step height. For a sphere with a displacement limit of x = R/2, the 

maximum step that can be climbed from rest is h = 0.14 x R.  This limit is shown in 

Figure 2-17b.  This small step height limit is obviously very constraining. 

 
Maximum Inclination. Maximum Step. 

Figure 2-17:  Mobility limits for a sphere with a max CM displacement of x = R/2. 

The plot in Figure 2-18 shows both the maximum incline and maximum step as a 

function of the CM displacement capability of a spherical robot.  The data points 

corresponding to x = R/2 are noted.  The trend of both functions shows better mobility is 

achievable only at very high center of mass displacement, beyond practical limits. 

θ  

x 

θ  
R 
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Figure 2-18:  Plot of Mobility Limitations vs. Maximum CM Displacement. 

As shown above, the most optimal design for a spherical robot that relies on 

shifting its center of mass in order to move is significantly limited in mobility regardless 

of the structure of the propulsion mechanism inside.  In particular, being unable to 

overcome an obstacle taller than 1/10 the diameter of the sphere severely handicaps its 

utility in most applications.  A solution to this problem must be found before spherical 

robots will see much use in the field.
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Chapter 3  

Preliminary Work 

The mobility limitations discussed in Section 2.6 were the primary motivation for 

perusing research in the field of spherical robots, and a workable method to address these 

limitations was sought.  The following is a description of the preliminary work that was 

done as well as the novel mechanism that was developed and tested to help overcome the 

inherent mobility limitations of previous spherical robot designs [1].

3.1 Angular Momentum Storage 

A means of storing and dispensing angular momentum inside a spherical robot 

was investigated as a means to temporarily increase the maximum drive torque that can 

be generated.  While temporary, an increase in drive torque would allow a spherical robot 

to ascend far steeper (yet finite) inclines, and climb over taller obstacles.  The three 

primary mechanisms to store and dispense angular moment are as follows: 

• Reaction Wheel 

• Momentum-wheel 

• Control Moment Gyroscope 
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3.1.1 Reaction Wheel 

A reaction wheel is a nominally stationary flywheel with a large moment of 

inertia. When a torque is applied to rotate the flywheel, an equal and opposite reaction 

torque is applied to the structure on which it is mounted, due to the law of conservation of 

angular momentum.  For use inside a spherical robot, a reaction wheel could be mounted 

such that its spin axis is parallel to the rolling axis of the sphere (see Figure 3-1).  By 

applying a torque to the reaction wheel in the direction opposite the desired rolling 

direction, a reaction torque will be applied to the sphere in the desired direction.  In other 

words, when the angular momentum of the reaction wheel is changed, the angular 

momentum of the rest of the sphere must change equally but in the opposite direction in 

order for momentum to be conserved. 

 
Figure 3-1:  Reaction Wheel. 

In Figure 3-1, L is the angular momentum of the flywheel when spinning, τs is the 

torque on the flywheel due to turning the sphere (by some other means), and τp is the 

precession torque induced. 

L 

τ s 

τp 
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While a reaction wheel has the potential to store a large amount of angular 

momentum, a prohibitively large and powerful motor would be required to transfer 

momentum to and from the wheel at a rate useful for propelling a spherical robot.  Also, 

once spinning, the flywheel would exhibit undesirable gyroscopic precession any time the 

sphere changed direction when rolling. In Figure 3-1, when a torque, τ s, is applied to the 

flywheel due to the sphere changing direction, a precession torque, τp, is induced which 

would cause the sphere to roll to the side.  In order to avoid this problem, the reaction 

wheel must be slowly stopped after each use before the sphere attempts a direction 

change. 

3.1.2 Momentum-wheel 

A momentum-wheel is very similar to a reaction wheel except that it is nominally 

spinning at high velocity, and spun down to exchange momentum (see Figure 3-2a).  The 

benefit to a momentum-wheel is that a much smaller motor can be used to initially spin 

up the flywheel over time. A brake can then be applied to dissipate its energy quickly and 

transfer angular momentum to the sphere.   

The momentum-wheel mechanism experiences the same undesirable gyroscopic 

precession problem as the reaction wheel, but compounded by the fact that the flywheel 

must be kept spinning.  To address the issue of undesirable gyroscopic effects, two 

counter-rotating flywheels of equal but opposite momentum can be used as shown in 

Figure 3-2b.  When spinning, the net angular momentum of the system is zero. Therefore, 

tilting the spin axis of the dual flywheel assembly, as is required when steering the 

sphere, induces no gyroscopic precession effect on the overall assembly. 
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Figure 3-2:  Single and dual momentum-wheel configurations. 

In the single momentum-wheel configuration shown in Figure 3-2a, L is the 

angular momentum of the flywheel in the direction necessary for supplementing forward 

motion, τs is the torque on the flywheel due to turning the sphere (by some other means), 

and τp is the precession torque induced. Figure 3-2b shows a dual momentum-wheel 

configuration. When added together, the opposite angular momentums La and Lb equal a 

net angular momentum of zero for the two flywheels. As a unit, they behave as if no mass 

is spinning, and therefore do not produce precession effects on the sphere itself. 

Inside the dual flywheel assembly, precession is experienced, but the precession 

torques generated by the flywheels are equal and opposite and cancel out. Besides 

addressing the issue of precession, however, the second flywheel in this configuration 

does not contribute to the forward motion performance of the sphere itself, since it is 

spinning in the opposite direction. When the momentum from the other flywheel is 

dispensed to help the sphere overcome obstacles, the two flywheels no longer cancel each 
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other out and the counter-rotating benefit is compromised until they can be equalized 

again. 

In the dual momentum-wheel configuration described above, the momentum from 

the spinning flywheel is transferred to the spherical shell via torque along the spin axis of 

the flywheel. During this process, the kinetic energy of the flywheel is either transferred 

to the sphere or dissipated. To equalize the two flywheels and prepare them for use again, 

the lost energy must be replenished.  A motor with sufficient power to spin up the 

flywheel quickly would again be prohibitively large. 

3.1.3 Control Moment Gyroscope 

With a different configuration, it is possible to utilize the angular momentum of 

the flywheels without disturbing their kinetic energy. By taking advantage of the 

gyroscopic precession deemed unfavorable in the reaction and momentum-wheel 

concepts above, the precession torque can be generated along the desired axis for forward 

motion of the sphere by changing the direction of the angular momentum while leaving 

its magnitude unaffected. When manipulated in this fashion, the flywheels are called 

control moment gyroscopes (CMGs). CMGs are a desirable alternative to reaction and 

momentum-wheels because they require far less power to generate the desired output 

torque. 

With a single CMG, shown in Figure 3-3a, the applied flywheel tilting torque, τt, 

is perpendicular to the flywheel spin axis and to the desired output axis, along which the 

output precession torque helps drive the sphere forward. Unbalanced, this tilting torque 

causes the sphere to roll or tilt in an undesirable way. Two counter- rotating CMGs, 

however, tilted in opposite directions, will precess in the same direction and the resulting 
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torque will be the sum of the precession torques from the two flywheels along the desired 

axis for propelling the sphere (see Figure 3-3b). Essentially, when two CMGs are 

spinning but not being utilized, their net angular momentum is zero and the sphere can 

maneuver normally. When the CMGs are tilted to utilize their momentum, they maintain 

speed (in the absence of friction) since none of their kinetic energy is transferred to the 

outer shell. Therefore, tilting the flywheels requires little power and the motor(s) can be 

of manageable size. 

   
Figure 3-3:  Single and Dual CMG configurations. 

In the single CMG configuration shown in Figure 3-3a, L is the angular 

momentum of the flywheel, τt is the applied tilting torque on the flywheel, and τp is the 

precession torque produced in the direction necessary for supplementing forward motion. 

Figure 3-3b shows a dual CMG configurations. When added together, the angular 

momentums La and Lb equal a net angular momentum of zero for the two flywheels. The 

tilting torques τta and τtb are applied to the flywheels in opposite directions resulting in no 
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net torque on the whole assembly. The precession torques τpa and τpb that are produced, 

however, add together in the direction necessary for supplementing forward motion. 

3.1.4 Basic CMG Theory 

The principle behind the control moment gyro is gyroscopic precession which can 

be explained in terms of torque and angular momentum starting with the following 

equations, 

 τ =
dL
dt

 (3.1) 

   
 L = IΩ  (3.2) 
   

 E =
1
2

IΩ2  (3.3) 

   
where τ is torque, L is angular momentum, I is moment of inertia, Ω  is angular velocity, 

and E is kinetic energy. In Equation (3.1), torque produces a change in angular 

momentum. The angular momentum of a flywheel is a vector (magnitude and direction) 

and is a function of the moment of inertia of the flywheel and its angular velocity as 

shown in Equation (3.2). In Equation (3.3), the kinetic energy of the flywheel is a scalar 

and while also a function of moment of inertia and angular velocity, the direction of the 

angular velocity becomes irrelevant when it is squared. This fact leads to the usefulness 

of the control moment gyro, where a torque can be applied to change the direction of the 

angular momentum of a flywheel, while not changing the rotational kinetic energy. 

For a physical explanation of how a control moment gyroscope works, consider 

the following description.  In Figure 3-3a, the torque, τt, is attempting to tilt the flywheel 

about the Y-axis, which would try to point the momentum vector L more towards the 



 34 

positive X-axis, increasing the angular momentum in the positive X-direction. However, 

in order for there to be this increase along the X-axis, there must be a torque in that 

direction per Equation (3.1). The gyroscope reacts in this case by producing a precession 

torque, τp, in the negative X-direction, thereby canceling out the increase. Essentially, if 

the only torque that is applied to the flywheel is in the positive Y-direction, then the 

angular momentum can only change in the Y-direction; thus, the momentum vector tilts 

about the X-axis, towards the positive Y-axis. It is this behavior that is referred to as 

gyroscopic precession.  This behavior can be more rigorously described mathematically. 

Consider the diagram of a flywheel shown in Figure 3-4.  Reference frame F is 

fixed to the flywheel with its origin located at the center of mass of the flywheel and its 

xyz-axes aligned with the principle axes of the flywheel.  The origin of frame G is also 

located at the center of mass of the flywheel and its Z-axis coincides with the z-axis of 

frame F.  The flywheel and frame F rotate with an angular velocity Ω z with respect to 

frame G about the Z-axis of frame G. 

                    
Figure 3-4:  Diagram of Flywheel. 

The 3D rotational equations of motion of the flywheel are [17], 
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  M X = Ixx
Ωx + IzzΩzωY − IyyΩyωZ  (3.4) 

   
  MY = Iyy

Ωy + IxxΩxωZ − IzzΩzω X  (3.5) 
   
  M Z = Izz

Ωz + IyyΩyω X − IxxΩxωY  (3.6) 
   

where MX, MY, and MZ are the net moments about the X-, Y-, and Z-axes respectively, 

Ixx, Iyy, and Izz are the principle moments of inertia of the flywheel about the x-, y-, and z-

axes respectively, Ωx, Ωy, and Ω z are the angular velocity components of frame F with 

respect to frame G about the x-, y-, and z-axes respectively, and ωX, ωY, and ωZ are the 

angular velocity components of frame G with respect to a global, inertial frame about the 

X-, Y-, and Z-axes respectively. 

When frame G is stationary and the flywheel is spinning with constant angular 

velocity Ω z as shown in Figure 3-4, Equations (3.4), (3.5), and (3.6) are equal to zero, 

since the remaining angular velocity and acceleration terms are zero.   

When an external tilting torque τ t is applied to the flywheel about the Y-axis, 

Equation (3.5) becomes, 

 MY = τ t = −IzzΩzω X  (3.7) 
   
Equation (3.7) indicates that the flywheel responds to this tilting torque τ t by 

rotating with angular velocity ωX about the positive X-axis, 

 ω X = −
τ t

IzzΩz

 (3.8) 

   
If the angular velocity ωX about the X-axis is resisted by an opposing external 

torque τp about the negative X-axis, Equation (3.4) becomes, 

 M X = −τ p = IzzΩzωY  (3.9) 
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Equation (3.9) indicates that the flywheel ultimately responds by rotating with 

angular velocity ωY about the Y-axis, 

 ωY = −
τ p

IzzΩz

 (3.10) 

   
When the external torque τp is applied to the flywheel about the negative X-axis, 

it is opposed by an equal and opposite reaction torque τp about the positive X-axis.  This 

reaction torque is the gyroscopic precession torque discussed earlier and is considered to 

be the output torque of the CMG. 

Since MZ remains zero, the magnitude of the flywheel angular velocity Ω z 

remains unchanged and as a result the rotational kinetic energy E and the magnitude of 

the angular momentum L are unaffected. Therefore, the input power, Pin, to the CMG via 

the tilting torque is equal to the output power, Pout, of the CMG via the precession torque, 

 Pin = τ tωY = −
τ tτ p

IzzΩz

= τ pω X = Pout  (3.11) 

   
The CMG effectively converts a torque in one direction to a torque in a 

perpendicular direction. It is critical to note, however, that as the gyroscope tilts, the 

direction of the output torque constantly changes as well. 

When two CMGs are configured as in Figure 3-3b, the equal and opposite torques 

applied to tilt the flywheels result in no net torque on the sphere’s internal assembly. 

Because the angular momenta of the two flywheels are in opposite directions, the tilting 

torques cause the CMGs to output precession torque in the same direction at the instant 

shown in the figure. As the flywheels tilt in opposite directions about their common Y-

axis, their angular momenta are no longer in parallel directions, but now have 



 37 

components along the X- and Z-axes. The components along the Z-axis remain equal and 

opposite and therefore cancel out. Importantly, the component of the output precession 

torque about the global X-axis (the direction useful for supplementing forward motion of 

the sphere) goes with the cosine of the flywheel tilt angle as shown in the equation, 

 τ px = 2τ p cosθtilt  (3.12) 
   

where τpx is the component of the precession torque about the global X-axis and θtilt is the 

angle of tilt about the Y-axis where the configuration shown in Figure 3-3b is θtilt = 0, and 

 
θtilt = ωY . Therefore, the CMGs are able to produce the most useful torque when aligned 

as shown in Figure 3-3b at zero tilt angle, and decrease with the cosine to zero useful 

output at 90° tilt angle. 

The relationship between the output torque and the tilt rate is important since the 

CMGs need to produce a significant amount of torque for a useful duration of time to 

perform the intended maneuvers. The output torque and tilting rate are related by the 

angular momenta of the flywheels by substituting Equation (3.9) into Equation (3.12), 

 τ px = 2IzzΩzωY cosθtilt = 2LωY cosθtilt  (3.13) 
   
Equation (3.13) indicates that the greater the angular momentum, the slower the 

flywheels will tilt for a given output torque, which ultimately allows them to be utilized 

for a longer period of time. 

3.2 Prototype 

While the configuration using dual, counter-rotating CMGs is the most 

mechanically complex, it has clear advantages over the other methods of storing and 

dispensing angular momentum discussed in Section 3.1.  It is critical to note, however, 
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that the CMG mechanism does not eliminate the need for a propulsion mechanism based 

on shifting the center of mass of the sphere.  The CMGs provide a supplementary yet 

temporary torque boost to the primary propulsion mechanism.  Because the dual CMG 

mechanism can only generate output torque about a single axis, it is simplest to 

incorporate it into a spherical robot that has a primary rolling axis, such as one with a 

pendulum drive.  An omnidirectional sphere propelled using the multiple-mass-shifting 

technique does not have a primary rolling axis, and would likely require a significantly 

more complex arrangement of CMGs to provide a full 3-axis torque output. 

3.2.1 Design 

A prototype was built incorporating a pendulum drive mechanism for 

forward/backward motion and steering, as well as a dual CMG mechanism for additional 

torque (see Figure 3-5).  The project was a proof of concept with the primary focus on 

demonstrating the efficacy of the supplemental CMG mechanism.  The prototype did not 

incorporate sensors or computer control, but instead it was deemed sufficient to rely 

solely on remote control to actuate the various systems. 
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Internal pendulum assembly. Fully assembled prototype. 

Figure 3-5:  Prototype with dual CMGs. 

The prototype sphere was 0.46 m diameter and had a mass of 15 kg.  The design 

was not fully optimized but was able to achieve a maximum displacement of the center of 

mass of x = R/3 = 0.08 m.  The addition of the large flywheels in the design made it 

difficult to lower the center of mass of the system.  Each flywheel had a mass of 2.2 kg 

and a moment of inertia of 10 g*m2.  When spun at a rate of 10000 rpm, the flywheels 

had a combined kinetic energy of 5000 J and angular momentum of 10 N*m*s.  

Complete detail concerning the design of the prototype can be found in the paper, 

“Design of a Spherical Vehicle with Flywheel Momentum Storage for High Torque 

Capabilities,” [1]. 

3.2.2 Qualitative Results 

Based on the specifications of the design, with a maximum CM displacement of   

x = R/3, the maximum incline that could be ascended using the pendulum alone was 20°. 
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Similarly, the tallest obstacle that could be tackled was 0.06*R = 1.4 cm (see Figure 2-18 

for reference). 

The pendulum drive prototype enhanced with dual CMGs was able to overcome 

obstacles of much greater height.  One of the tests used a wooden apparatus to simulate a 

hole that was 10 cm deep (7 times taller obstacle than would be surmountable using the 

pendulum alone).  Figure 3-6 shows the sphere climbing out of this hole with ease in 

about 0.5 seconds. 

 
Figure 3-6:  Prototype climbing out of a deep hole using CMGs. Hole is 10 cm deep. 

Video snapshots span a duration of 1.0 second. 

Figure 3-7 shows the sphere prototype climbing up a 13 cm high step, starting 

from rest (9 times taller obstacle than would be surmountable using the pendulum alone).  

Higher obstacles were attempted and while it was clear there was sufficient torque to 

overcome them, the rubber tread on the spherical outer shell had inadequate traction to 

grip these higher obstacles. It is believed that with better traction, future prototype will be 

able to climb full height steps (nominally 18 cm, 13 times taller than would be 

surmountable using the pendulum alone). These two successful tests validated the 

0.0 sec 0.2 sec 0.4 sec 

1.0 sec 0.8 sec 0.6 sec 
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significant mobility enhancement afforded by the addition of CMGs inside a spherical 

robot. 

 
Figure 3-7:  Prototype climbing up a step using CMGs. Step is 13 cm high. Video 

snapshots span a duration of 1.0 second. 

3.3 Critical Observations 

Aside from the successful CMG tests, other significant observations were made 

regarding the motion of the sphere when rolling using only the pendulum for propulsion 

(flywheels not spinning). 

3.3.1 Wobble 

The most apparent behavior that the spherical robot prototype displayed was a 

tendency to wobble or rock back and forth with little damping.  For example, when the 

sphere was at rest with the pendulum fixed inside, bumping the sphere would cause it to 

oscillate back and forth about a spot on the ground.  The sphere also wobbled if a 

constant pendulum drive torque was suddenly applied to the sphere starting from rest.  In 

this case, it would accelerate forward while the angle between the pendulum and the 

0.0 sec 0.2 sec 0.4 sec 

1.0 sec 0.8 sec 0.6 sec 
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ground would oscillate.  Since the pendulum was oscillating, the forward linear velocity 

of the sphere also appeared to oscillate as it accelerated.  When traveling forward and 

then tilting the pendulum a fixed angle to the side to steer, the radius of the turn would 

oscillate as well.  This oscillatory behavior was generally expected and has also been 

discussed in the research of others [3],[7],[8]. 

3.3.2 Shaft Nutation and Instability 

Another behavior that was observed but not found to be discussed in the literature 

was the tendency of the primary drive axis to nutate when the sphere was traveling at a 

reasonable forward velocity.  Specifically, the primary drive axis (the axis of the main 

drive shaft attached to the spherical shell) would incur some angular misalignment from 

the axis about which the sphere was actually rolling.  When traveling slowly (estimated 

to be less than 0.5 m/s) this nutating shaft behavior, which could be initiated by a bump 

on the ground, would damp out quickly.  When traveling at a moderate speed, the 

nutation would persist causing the direction of the sphere to oscillate back and forth. 

When attempting to travel at high speed (estimated to be above 3 m/s) the angular 

misalignment between the axes would go unstable until the primary drive axis was 

flipping end over end.  Even during a carefully controlled test on a level, smooth surface, 

starting with the drive axis level and the pendulum hanging straight down, an attempt at 

high-speed, straight-forward travel would still ultimately result in the primary drive axis 

flipping end over end. 
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3.4 Preliminary Conclusions and Future Work 

The preliminary work was successful in demonstrating the use of control moment 

gyroscopes to effectively overcome significant mobility limitations inherent in past 

spherical robot designs.  The mechanism that was created and reduced to practice was 

determined to be in fact novel, and is currently patent pending.  During the rapid design, 

construction, and development of the prototype, many design elements and optimizations 

were not fully pursued and could see a significant amount of focus in future prototypes.  

Topics to be studied include improving the efficiency of the CMG designs, optimizing 

the tradeoff between CMG torque performance and pendulum performance, improving 

the robustness of the structural components, and studying how the performance of the 

CMG and pendulum system scales with varying sphere diameters. 

During testing of the prototype under manual remote control, it was clear that 

instrumentation and computer control would be mandatory for a spherical robot to be 

effective in any application.  The most interesting result from the project was the 

observation of varying oscillatory behavior of the prototype.  The wobbling effects, shaft 

nutation, and in particular the high-speed instability that was observed indicated that 

sophisticated feedback control would be necessary in order to stabilize the motion of a 

spherical robot.  The question that remained was whether all of the observed behaviors 

were inherent in the dynamics of a pendulum-driven spherical robot, or did some simply 

result from peculiarities in the prototype? 
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Chapter 4  

Derivation of 3D Equations of Motion 

The results of the preliminary work indicated a clear direction forward for the 

next research focus on spherical robots.  The oscillatory and potentially unstable 

dynamics of the system need to be brought under control in order for a spherical robot to 

propel itself with high performance and agility while negotiating unknown terrain.  To 

develop the necessary control algorithms and to understand what level of performance is 

actually achievable requires first understanding the underlying dynamics and behavior of 

the system.  Starting from first principles, a general, 3-dimensional, mathematical model 

of a spherical robot rolling on flat ground was developed. The ultimate goal of this 

research was to see whether the observed behavior of the earlier prototype would reveal 

itself in simulation of the dynamic model of the sphere.

4.1 Model Description 

The complex system of a spherical robot with a pendulum drive boils down to 

essentially two rigid bodies: the pendulum and the spherical shell (from here on referred 

to as simply the sphere).  The center of mass of the sphere is located at its center.  
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Pivoting about the center of the sphere, the pendulum has its center of mass some 

distance offset from the center (see Figure 4-1).  

 
Figure 4-1:  System components: spherical shell and pendulum. 

The position and orientation of the sphere and pendulum can be represented using 

three reference frames: a global inertial frame (O), a sphere frame (S) fixed at the center 

(also the center of mass) of the sphere, and a pendulum frame (P) fixed to the pendulum 

at its center of mass (see Figure 4-2). 

  
Figure 4-2:  Reference frames: global, sphere, and pendulum. 
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Since this model is only considering motion on flat ground, the position of the 

sphere is represented by a displacement x along the X-axis of the global O frame and a 

displacement y along the Y-axis of the global O frame.  To define the arbitrary rotation of 

the sphere (S frame) relative to the O frame an appropriate set of Euler angles was used. 

To transform from the O frame to the S frame, the following sequence of three rotations 

is performed as shown in Figure 4-3a [17]: 

1. A positive rotation ψ  about the Z-axis, resulting in the primed system. 
2. A positive rotation θ  about the y′-axis, resulting in the double-primed system. 
3. A positive rotation φ  about the x″-axis, resulting in the final unprimed system. 

 
Illustration of the sequence of 3 

rotations [17]. 
Angles associated with the orientation of 

the sphere and pendulum. 

Figure 4-3:  Euler Angles. 

In Figure 4-3b, the Euler angles, ψ , θ , and φ , are indicated as they apply to the S 

frame of the sphere. An additional set of two angles, α  and β , is used to define the 

relative rotation of the pendulum P frame relative to the S frame.  Only two angles are 

needed, because the pendulum can only rotate in two directions relative to the sphere.  

The pendulum can rotate forward and backward an angle α  and then tilt side to side an 

ψ  

φ  
θ  

α  
β  
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angle β .  After rotating to change from the orientation of the S frame to the orientation of 

the P frame, the location of the P frame is a distance d along the negative zP-axis. These 

rotations and displacements are represented mathematically with the following 

transformation matrices, 

 Dxy x, y( ) =

1 0 0 x
0 1 0 y
0 0 1 0
0 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 (4.1) 

   

 RzS
ψ( ) =

cos(ψ ) − sin(ψ ) 0 0
sin(ψ ) cos(ψ ) 0 0

0 0 1 0
0 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 (4.2) 

   

 RyS
θ( ) =

cos(θ) 0 sin(θ) 0
0 1 0 0

− sin(θ) 0 cos(θ) 0
0 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 (4.3) 

   

 RxS
φ( ) =

1 0 0 0
0 cos(φ) − sin(φ) 0
0 sin(φ) cos(φ) 0
0 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 (4.4) 

   

 RyP
α( ) =

cos(α ) 0 sin(α ) 0
0 1 0 0

− sin(α ) 0 cos(α ) 0
0 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 (4.5) 

   

 RxP
β( ) =

1 0 0 0
0 cos(β) − sin(β) 0
0 sin(β) cos(β) 0
0 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 (4.6) 
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 PPP =

0
0
−d
1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 (4.7) 

   
where Dxy is the translation transformation matrix from origin of the O frame to the origin 

of the S frame, Rzs is the rotation due to ψ  about the zS-axis, Rys is the rotation due to θ  

about the yS-axis, Rxs is the rotation due to φ  about the xS-axis, Ryp is the rotation due to α  

about the yP-axis, Rxp is the rotation due to β  about the xP-axis, and PPP is the vector from 

the S frame origin to the P frame origin (the pendulum CM) relative to the P frame.  

These transformations are important to compute the position center of mass of the 

pendulum relative to the global frame O as follows, 

 OPP = Dxy x, y( )RzS
ψ( )RyS

θ( )RxS
φ( )RyP

α( )RxP
β( ) PPP =

O
xP

yP

zP

1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 (4.8) 

   
where OPP is the vector from the O frame origin to the P frame origin relative to the O 

frame.  MATLAB and the Symbolic Toolbox were used to symbolically compute the OPP 

vector as well as most of the subsequent symbolic calculations.  The symbolic results of 

most of these calculations are exceedingly long and do not simplify much; therefore, 

most will not be printed here. 

 The velocity components of the center of mass of the sphere in the O frame are 

simply the time derivatives of the x and y components of its position,  x  and  y .  The 

velocity components of the center of mass of the pendulum relative to the O frame are the 

time derivatives of the position components given by the OPP vector.  A script was 
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written in the AppleScript programming language to perform this time differentiation.  

The script is discussed in more detail in Section 4.2.3. 

 The angular velocity of the sphere relative to the S frame, SωS , can be expressed 

as the sum of sphere Euler angle angular velocity vectors as follows [17], 

  
SωS = ψ + θ + φ  (4.9) 

   
where SωS ,  ψ ,  θ , and  φ are vector quantities.  The components of the angular velocity of 

the sphere along the xS-, yS-, and zS-axes of the S frame, Sω xS
, Sω yS

, and Sω zS
 

respectively, are [17], 

 

 

Sω xS

Sω yS

Sω zS

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

φ − ψ sinθ
θ cosφ + ψ cosθ sinφ
ψ cosθ cosφ − θ sinφ

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 (4.10) 

   
The angular velocity of the pendulum relative to the sphere relative to the P 

frame, PωP
rel , can be expressed as the sum of the pendulum angle angular velocity vectors 

as follows [17], 

  
PωP

rel = β + α  (4.11) 
   

where PωP
rel ,  
β , and  α are vector quantities.  Because the two relative pendulum angles 

were chosen using the same convention as the sphere Euler angles, the components of 

PωP
rel  can be found by substituting θ = α , φ = β , and ψ = 0 into (4.10).  The components 

of the relative angular velocity of the pendulum along the xP-, yP-, and zP-axes of the P 

frame, Pω xP

rel , Pω yP

rel , and Pω zP

rel  respectively, are, 
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Pω xP

rel

Pω yP

rel

Pω zP

rel

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

β
α cosβ
− α sinβ

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 (4.12) 

   
 

In order to find the absolute angular velocity of the pendulum relative to the 

sphere frame, SωP , the relative angular velocity of the pendulum relative to the P frame 

is transformed to the S frame and added to the angular velocity of the sphere relative to 

the S frame, 

 SωP = RyP
α( )RxP

β( ) PωP
rel + SωS  (4.13) 

   

4.2 Lagrange Equations of Motion 

The Lagrangian approach was chosen to formulate the equations of motion of the 

sphere and pendulum system, because it relies on the kinetic and potential energies of the 

system which are relatively straightforward to compute given the position and velocity 

information derived in Section 4.1.  To use the Lagrangian approach, an appropriate set 

of generalized coordinates, qi, were chosen which fully specify the system, 

 

q1 =ψ
q2 = θ
q3 = φ
q4 = x
q5 = y
q6 = α
q7 = β

 (4.14) 

   
The general form of Lagrange’s equation is as follows [17], 
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d
dt

∂L
∂ qi

⎛
⎝⎜

⎞
⎠⎟
−
∂L
∂qi

= λia ji
j=1

m

∑ + ′Qi  (4.15) 

   
where L is the Lagrangian function, m is the number of constraint equations, λ j are the 

Lagrange multipliers, aji are the coefficients in front of  qi  in the constraint equations, and 

Qi′  are the generalized non-conservative forces and moments.  As shown in Equation 

(4.14), there are n = 7 generalized coordinates. As such, there will be 7 Lagrange 

equations. 

To formulate the Lagrange equations several parameters of the design are also 

needed: the mass of the sphere, MS, the mass of the pendulum, MP, the principle 

moments of inertia of the sphere, IxxS, IyyS, and IzzS, which align with the principle xS-, 

yS-, and zS-axes, and the principle moments of inertia of the pendulum, IxxP, IyyP, and 

IzzP, which align with the principle xP-, yP-, and zP-axes. 

4.2.1 Formulation of the Lagrangian 

The Lagrangian function, L, is defined as, 

 L = T −V  (4.16) 
   

where T is the total kinetic energy of the system, and V is the total potential energy of the 

system.  The translational and rotational kinetic energies of the sphere and pendulum 

were computed separately and then summed as follows, 

 
 
TS

trans =
1
2

MS x
2 + y2( )  (4.17) 

   

 
 
TP

trans =
1
2

M P
O PxP

2 + O PyP

2 + O PzP

2( )  (4.18) 

   

 TS
rot =

1
2

IxxS
Sω xS

2 + IyyS
Sω yS

2 + IzzS
Sω zS

2( )  (4.19) 
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 TP
rot =

1
2

IxxP
Sω xP

2 + IyyP
Sω yP

2 + IzzP
Sω zP

2( )  (4.20) 

   
 T = TS

trans + TP
trans + TS

rot + TP
rot  (4.21) 

   
where TS

trans  is the translational kinetic energy of the sphere, TP
trans  is the translational 

kinetic energy of the pendulum, TS
rot  is the rotational kinetic energy of the sphere, TP

rot  is 

the rotational kinetic energy of the pendulum, and  
O PxP

,  
O PyP

, and  
O PzP

 are the 

components of the velocity of the center of mass of the pendulum along the X-, Y-, and 

Z-axes respectively.  Since the model is only concerned with motion on flat ground, the 

sphere does not contribute to the potential energy of the system.  The total potential 

energy is the gravitational potential energy of the pendulum as follows, 

 V = M PgOPzP
 (4.22) 

   
where g is the acceleration due to gravity, and OPzP

 is the vertical component of the 

position of the center of mass of the pendulum relative to the O frame. 

4.2.2 No-Slip Rolling Constraint 

For the mathematical model, it is assumed that the sphere rolls on the ground 

without slipping.  This constraint couples the angular velocity of the sphere with the 

linear velocity of the sphere.   x  and  y  are the components of the linear velocity of the 

sphere along the X- and Y-axes of the O frame.  In order to relate  x  and  y  to the angular 

velocity of the sphere, SωS  must be transformed into the O frame as follows, 

 OωS = RzS
ψ( )RyS

θ( )RxS
φ( ) SωS  (4.23) 
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where OωS  is the angular velocity of the sphere relative to the O frame.  The component 

of angular velocity of the sphere about the X-axis, Oω XS
, is coupled to  y , and the 

component of angular velocity of the sphere about the Y-axis, OωYS
, is coupled to  x as 

follows, 

 
 

K1 = x − r OωYS
= 0

K2 = y + r Oω XS
= 0

 (4.24) 

   
where Kj are the constraint equations labels, and r is the radius of the sphere.  Because the 

Kj equations contain derivatives of the generalized coordinates and cannot be integrated 

to relate the generalized coordinates directly, they are considered nonholonomic 

constraints.  The Kj equations expanded and written in terms of the generalized 

coordinates are, 

 
 

K1 = x − r cosψ( ) θ − r cosθ sinψ( ) φ
K2 = y − r sinψ( ) θ + r cosθ cosψ( ) φ

 (4.25) 

   
The aji coefficients in front of the  qi  terms in the Kj equations are, 

 

a11 = 0
a12 = −r cosψ
a13 = −r cosθ sinψ
a14 = 1
a15 = 0
a16 = 0
a17 = 0

              

a21 = 0
a22 = −r sinψ
a23 = r cosθ cosψ
a24 = 0
a25 = 1
a26 = 0
a27 = 0

 (4.26) 

   

4.2.3 Differentiation of the Lagrangian 

As shown in the general form of Lagrange’s equation, Equation (4.15), the partial 

derivatives of the Lagrangian function with respect to qi  and the  qi  are required.  These 
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partial derivatives were computed symbolically in MATLAB using diff.  Unfortunately 

no MATLAB function was found to compute time derivatives, which are part of the 

Lagrange equation as well. 

A custom script named Differentiator was written in the AppleScript 

programming language to compute the time derivatives.  The results of the partial 

derivatives of the Lagrangian function with respect to  qi  were fully expanded and fed 

into the script as a string.  Computing the time derivative of these particular expressions 

was relatively straightforward since the terms consist of combinations of a limited set of 

elements. The script parses the string by first splitting up the additive terms.  Each of 

these terms is parsed into separate product terms.  The chain rule is then carried out over 

the finite set of possible elements.  The results are then added back together to form the 

complete time derivative.  This string was then fed back into MATLAB. 

Automating the differentiation was necessary due to the excessive length the 

Lagrangian function and its derivatives.  The Lagrangian function was found to have over 

300 terms with combinations of the 14 qi  and  qi .  When computing the time derivative, 

the chain rule tended to cause the number of terms to balloon rapidly.  After 

simplification, the longest time derivative was found to be 551 terms long.  Working with 

equations of lengths of this magnitude is only feasible using computer tools.  The 

Differentiator script can be found in Appendix E. 

4.2.4 Generalized Non-Conservative Torques and Forces 

The effect of gravity acting on the pendulum is a conservative body force and is 

already taken into account in the potential energy of the system in Section 4.2.1.  Non-

conservative torques and forces affect the system and need to be taken into account as 
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well.  The pendulum drive torque and the pendulum tilt (steering) torque are non-

conservative.  Friction was also incorporated to more accurately represent the physical 

system.  In reality, a complex combination of coulombic and velocity dependent damping 

affect the system.  Since coulombic friction is discontinuous and difficult to model, it was 

left out of the model.  Damping was implemented in the model to simulate viscous 

friction in the drive train between the pendulum and the sphere.  It was also added to 

simulate viscous friction between the sphere and the ground when rolling as well as 

between the sphere and the ground when the sphere is spinning about the Z-axis. 

To incorporate these non-conservative torques and forces into the general form of 

the Lagrange equation, they were put in the generalized form as follows, 

 ′Qi = Fk
∂xk

∂qik
∑ + M k

∂θk

∂qik
∑  (4.27) 

   
where k increments through all of the non-conservative forces and moments, Fk is a non-

conservative force, xk is a linear displacement in the direction of Fk, Mk is a non-

conservative moment, and θk is an angular displacement about the Mk axis.  The ′Qi terms 

for each Lagrange equation are, 

 

 

′Q1 = − f4
OωZS

′Q2 = 0
′Q3 = 0
′Q4 = − f3 x
′Q5 = − f3 y
′Q6 = M1 − f1 α

′Q7 = M 2 − f2
β

 (4.28) 

   
where f1 is the damping coefficient on the relative angular velocity,  α , between the 

pendulum and sphere, f2 is the damping coefficient on the relative angular velocity,  
β , 
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between the pendulum and sphere, f3 is the damping coefficient on the velocity 

components,  x and  y , of the sphere, f4 is the damping coefficient on the angular velocity, 

OωZS
, of the sphere about the Z-axis, M1 is the drive torque between the pendulum and 

the sphere, and M2 is the tilt (steering) torque between pendulum and the sphere. 

4.2.5 Formulation of the Equations of Motion in the General Form 

With all of the parts now computed, the equations of motion in the general form 

of the Lagrange equation can be formulated.  For easier manipulation in MATLAB, the 

terms in these equations were all pulled to one side and set to zero as follows, 

 

 

G1 :      d
dt

∂L
∂ q1

⎛
⎝⎜

⎞
⎠⎟
−
∂L
∂q1

− λ1a11 − λ2a21 − ′Q1 = 0

G2 :      d
dt

∂L
∂ q2

⎛
⎝⎜

⎞
⎠⎟
−
∂L
∂q2

− λ1a12 − λ2a22 − ′Q2 = 0

G3 :      d
dt

∂L
∂ q3

⎛
⎝⎜

⎞
⎠⎟
−
∂L
∂q3

− λ1a13 − λ2a23 − ′Q3 = 0

G4 :      d
dt

∂L
∂ q4

⎛
⎝⎜

⎞
⎠⎟
−

∂L
∂q4

− λ1a14 − λ2a24 − ′Q4 = 0

G5 :      d
dt

∂L
∂ q5

⎛
⎝⎜

⎞
⎠⎟
−
∂L
∂q5

− λ1a15 − λ2a25 − ′Q5 = 0

G6 :      d
dt

∂L
∂ q6

⎛
⎝⎜

⎞
⎠⎟
−
∂L
∂q6

− λ1a16 − λ2a26 − ′Q6 = 0

G7 :      d
dt

∂L
∂ q7

⎛
⎝⎜

⎞
⎠⎟
−
∂L
∂q7

− λ1a17 − λ2a27 − ′Q7 = 0

 (4.29) 

   
where λ1 is the Lagrange multiplier associated with the first constraint equation, and λ2 is 

the Lagrange multiplier associated with the second constraint equation.  The Lagrange 

multipliers are usually related to or equal to the constraint force associated with each 

constraint.  The entirely of equation G1 is shown in Appendix A to demonstrate the 
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complexity of these equations. In addition to these 7 equations, there are the 2 constraint 

equations, (4.25), which are reproduced below in a different form, 

 
 

G8 :      a11 q1 + a12 q2 + a13 q3 + a14 q4 + a15 q5 + a16 q6 + a17 q7 = 0
G9 :      a21 q1 + a22 q2 + a23 q3 + a24 q4 + a25 q5 + a26 q6 + a27 q7 = 0

 (4.30) 

   
Since the Lagrange multipliers are additional unknowns, there are now 9 

equations in 9 unknowns.  The complete formulation of these equations can be found in 

Appendix B. 

4.3 Numerical Solution to Equations of Motion 

The nine differential G equations above fully describe the dynamics of the 

mathematical model of the sphere and pendulum system rolling on flat ground.  Due to 

their complexity and non-linearity, no explicit analytical solution to this system of 

equations is even remotely possible.  Using computer aided tools, approximate numerical 

solutions can be calculated by simultaneous numerical integration of the differential 

equations.  In order to perform the numerical integration, the equations had to be 

manipulated into a different form.  The 9 G equations are in fact a system of differential 

algebraic equations (DAEs), since they are formed from a combination of implicitly 

formulated algebraic and differential equations [18].  These DAEs need to be converted 

to a system of explicit ordinary different equations (ODEs) in order to solve them 

numerically. 

First, the Lagrange multipliers, λ1 and λ2, were eliminated since their values were 

not of importance.  Equations G4 and G5 were solved for λ1 and λ2 respectively, and then 

substituted into the remaining equations.  These 7 new equations are now referred to as 

G1′ , G2′ , G3′ , G6′ , G7′ , G8′ , and G9′  respectively.   
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4.3.1 Reduction to a System of 1st Order Equations 

The numerical integration tools in MATLAB only work with systems of 1st order 

differential equations.  The seven 2nd order G′  equations were reduced to a set of 14, 1st 

order equations by choosing and substituting in a new set of coordinates while adding 7 

simple, new equations as shown in (4.31).  The new set of 14 equations is now referred to 

as equations H1 through H14. 

 

 

m1 :  = q1

m2 :  = q2

m3 :  = q3

m4 :  = q4

m5 :  = q5

m6 :  = q6

m7 :  = q7

m8 :  = q1

m9 :  = q2

m10 :  = q3

m11 :  = q4

m12 :  = q5

m13 :  = q6

m14 :  = q7

                     

 

m1 :  = q1

m2 :  = q2

m3 :  = q3

m4 :  = q4

m5 :  = q5

m6 :  = q6

m7 :  = q7

m8 :  = q1

m9 :  = q2

m10 :  = q3

m11 :  = q4

m12 :  = q5

m13 :  = q6

m14 :  = q7

                     

 

H1 :      ′G1

H2 :      ′G2

H 3 :      ′G3

H 4 :      ′G6

H5 :      ′G7

H6 :      ′G8

H 7 :      ′G9

H8 :      m1 = m8

H9 :      m2 = m9

H10 :      m3 = m10

H11 :      m4 = m11

H12 :      m5 = m12

H13 :      m6 = m13

H14 :      m7 = m14

 (4.31) 

   

4.3.2 Equation Sorting 

The 14 differential equations need to be “horizontally sorted” such that each 

equation solves for one of the 14 first order derivates,  mi .  They also need to be 

“vertically sorted” such that each subsequent equation only involves known variables or 

variables that have been solved for in antecedent equations.  This procedure is also 

referred to as making the equations causal [18].  Arranged in this way, the value of each 

of the 14 velocity (slope) terms,  mi , can be computed given a set of initial position terms, 
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mi .  The iterative numerical integration routine uses the slope terms to extrapolate the 

next position terms over a particular time step.  

With 14 equations in 14 unknowns, it is useful to visualize the structure of the 

system graphically.  Figure 4-4 shows which knowns and unknowns are present in each 

of the equations, and is a variation of what is called a structure incidence matrix [18]. 

 
Figure 4-4:  Structure Incidence Matrix 1. 

In the figure, each row corresponds to one of the 14 H equations and each column 

corresponds to a known or unknown variable.  The middle columns have doubled up 

variables since they are equivalent as shown in (4.31).  A shaded square indicates that a 

particular variable is present in a particular equation.  The right hand # column is used to 

assign a new sort order. 

A straightforward procedure called the Tarjan algorithm can be applied to this 

system to simultaneously sort the equations horizontally and vertically.  The Tarjan 

algorithm was originally developed based on graph theory using a structure digraph, but 

can easily be applied to a structure incidence matrix as well.  For the present system, the 
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structure incidence matrix in Figure 4-4 was used because it was found to be easier to 

visualize than a structure digraph.  As stated above, the mi  variables are considered to be 

initial conditions and are therefore known.  Known variables in the structure incidence 

matrix are indicated by an O, as shown in Figure 4-5. 

 
Figure 4-5:  Structure Incidence Matrix 2. Known variables indicated by O. 

The Tarjan algorithm can now be applied. The rules for the algorithm as applied 

to the present system are as follows [18]:  

1. If an equation contains only 1 unknown, that unknown must be solved for using 

that equation.  The variable is marked with an S in that equation, and marked with 

an O in every other equation in which it is appears.  Renumber the equation in the 

right column with increasing numbers starting with 1. 

2. If a particular unknown is only present in a single equation, that equation must be 

used to solve for that unknown.  The variable is marked with an S in that 

equation, and all other variables in that equation are marked with an O.  
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Renumber the equation in the right column with decreasing numbers starting with 

the total number of equations, in this case 14. 

After applying the algorithm once, we arrive at the structural incidence matrix 

shown in Figure 4-6. 

 
Figure 4-6:  Structure Incidence Matrix 3. The result after applying the Tarjan 

algorithm once. 

Normally the Tarjan algorithm would be applied recursively until all variables 

have been solved for.  Unfortunately in the present system, the algorithm is now stuck, 

because of structural singularities and algebraic loops. 

The variables in equations H6 and H7 in Figure 4-6 are now all known, but none 

are solved for in those equations.  These equations are thus called constraint equations, 

and if traced back to the original formulation of the equations of motion, they are the 

equations defining the no-slip rolling constraint.  Another algorithm called the Pantelides 

algorithm can be applied to eliminate the structural similarities as follows [18]:  

1. If a constraint equation is found, it must be differentiated. 
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2. This new differentiated constraint equation is added to the existing set of 

equations. 

3. The system now has more equations than unknowns.  To equalize the number of 

equations and unknowns, one of the other equations that solves for a variable that 

is present in the constraint equation is eliminated. 

When the Pantelides algorithm is applied to the present system, equations H6 and 

H7 are differentiated to form the additional equations H15 and H16.  To equalize the 

number of equations and unknowns, equations H11 and H12 were chosen to be eliminated 

as they had the least impact on the other equations.  The variables that were solved for in 

equations H11 and H12 are now solved for by the constraint equations H6 and H7. 

Equations H6 and H7 now take on the sorting numbers that were originally assigned to 

equations H11 and H12, and the variables in equations H15 and H16 are marked as 

appropriate by the Tarjan algorithm.  The result of these steps is shown in Figure 4-7. 
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Figure 4-7:  Structure Incidence Matrix 4. The result after applying the Pantelides 

algorithm. 

The Tarjan algorithm would normally be applied again at this point.  

Unfortunately the algorithm is still stuck due to a large algebraic loop.  Each of the 

remaining 7 equations contains more than 1 unknown; therefore, none of the equations 

can be chosen to solve for a particular unknown without violating causality. 

4.3.3 Reduction to system of linear algebraic equations 

The remaining 7 unknowns are the variables  m8  through  m14  which are 

independent and not differentially related.  Therefore the remaining set of 7 equations is 

simply a set of algebraic equations.  By inspection of the equations, they were also 

determined to be linear in the 7 variables.  The simultaneous solution to a set of linear 

algebraic equations is well known and can be found by a variety of different methods. 
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Because the finite precision inherent to numerical computation tends to cause the 

solution to lose accuracy or become numerically unstable when the system is ill-

conditioned, minimizing the number of computations required is preferable in an effort to 

minimize error propagation.  In that vein, Gaussian elimination was used to compute 

solutions to this system, because it does not require the intermediate computation of a 

matrix inverse.  The Gaussian elimination was performed in MATLAB using the / 

operator (mldivide) and was found to run faster than when computing solutions using 

the matrix inverse.  However, the numerical accuracy of the two methods was not 

rigorously investigated, and numerical instability was found to be unavoidable when the 

model was very ill-conditioned. 

4.3.4 Numerical integration 

The final order for solving the equations is as follows,
 

1. Solve equation H8 for  m1 . 
2. Solve equation H9 for  m2 . 
3. Solve equation H10 for  m3 . 
4. Solve equation H6 for  m4 . 
5. Solve equation H7 for  m5 . 
6. Solve equation H13 for  m6 . 
7. Solve equation H14 for  m7 . 
8. Simultaneously solve equations H1, H2, H3, H4, H5, H15, and H16 for  m8  through 

 m14 . 

MATLAB has built in functions for numerically integrating systems of 1st order 

ordinary differential equations over a period of time.  The function, ode45, was chosen 

which uses a variable time step and higher order approximations.  A function called 

numerical_integration was written to call the ODE solver on the system of 14 equations.  

The function can be found in Appendix C. 
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Chapter 5  

Simulation 

The system of equations describing the motion of the sphere and pendulum can 

now be numerically integrated, given a set of initial conditions, to produce a time series 

of the position and velocity for each of the 7 generalized coordinates.  2D plots can be 

generated to visualize the output, but it was found to be extremely difficult to interpret 

the results when the motion was any more complex than the most simple of cases.  To 

effectively visualize the motion of the sphere and pendulum a 3D animation is the by far 

the best tool.

Several tools exist for animating 3D objects using the data output by the ODE 

solver, including add-on toolboxes for MATLAB.  These tools were unavailable at the 

time of this research, so a program was written using built in MATLAB plotting tools 

instead.  The source code of this program, named Simulation, can be found in Appendix 

D. 

5.1 Simulation Program 

The simulation program utilizes MATLAB’s built in 3D plotting tools to generate 

a plot of a sphere and a pendulum, and re-plot the position of both components at each 
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time step.  The built in commands, sphere and cylinder, produce sets of data points 

that define their surfaces.  The transformation matrices defined in Section 4.1 are used to 

transform these surfaces to the position defined by the generalized coordinates at a 

particular time step (see Figure 5-1). 

 
Figure 5-1:  3D plot of sphere and pendulum. 

The simulation takes the time and position data output from the ODE solver, as 

well as a chosen frame rate.  The motion data is first reprocessed using cubic spline 

interpolation to produce position data for every frame specified by the frame rate and 

total simulation duration.  Each frame is sequentially plotted and saved to memory. After 

every frame has been produced, a video file is generated and saved to disk. 

5.2 Model Parameters and Initial Conditions 

When solving the equations and running the simulation, several parameters can be 

specified:  The initial position and velocity of every degree of freedom of the system, the 

masses of the sphere and pendulum, the principle moments of inertia of both the sphere 

and pendulum, the value for the acceleration due to gravity, the drive and steering motor 

torques (only constants are allowed), the distance from the center of mass of the 
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pendulum to the center of mass of the sphere, the radius of the sphere, the four damping 

coefficients included in the model in Section 4.2.4, and the duration of the simulation. 

The flexibility in defining the initial conditions and design parameters allows for 

easy experimentation with different designs and scenarios.  Because the motion of the 

prototype is of utmost interest, the simulations in this research are for a model of that 

particular design. 

5.3 Specific Cases 

The original prototype lacked the instrumentation necessary to effectively 

compare its dynamics to the results of the computer model, and the effort and cost to 

design and construct a fully instrumented model to validate the results of the above 

analysis was clearly beyond the scope of this master’s thesis.  As an alternative, some 

simulation tests were carried out that could be verified mathematically or qualitatively. 

5.3.1 Pendulum Period 

The first test that was performed was a simple pendulum test.  The initial 

conditions were to set the sphere and pendulum stationary with the pendulum rotated up 

10° in front.  The mass of the sphere was set to a very large number to simulate it being 

held fixed.  The motor torques and damping coefficients were all set to zero.  When the 

simulation was run, the pendulum oscillated back and forth as expected. A plot of the 

pendulum angle vs. time is shown in Figure 5-2. 
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Figure 5-2:  Pendulum oscillation period test. Period is 2.41 seconds. 

The plot of the pendulum angle shows a period of about 2.41 seconds.  The 

equation for the period of the physical pendulum is as follows, 

 T = 2π Icm + mr2

mgr
 (5.1) 

   
where T is the oscillation period, Icm is the moment of inertia of the pendulum about its 

center of mass, m is the mass of the pendulum, r is the distance from the center of mass 

of the pendulum to the rotation axis, and g is the acceleration due to gravity. The 

pendulum design used in the simulation had the following specifications: Icm = 0.15 

kg*m2, m = 15 kg, r = 0.1 m, and g = 9.81 m/s2. Using these same parameters in Equation 

(3.11), T was calculated to be 2.40 seconds, putting it in close agreement with the 

numerical simulation.  

5.3.2 Energy Conservation 

The law of conservation of energy was tested with the model.  For this test the 

non-conservative forces and moments were again set to zero, but the mass of the sphere 
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was set to the same mass as the spherical shell from the prototype.  The initial conditions 

for the simulation were set such that they would produce complex motion.  Figure 5-3 is 

a snapshot from the simulation showing the trajectory of the sphere. 

 
Figure 5-3:  Complex motion with no damping or motor torques. 

The total system energy was computed at every time step of the simulation using 

the equations for kinetic and potential energy shown in Section 4.2.1.  A plot of the total 

system energy vs. time is shown in Figure 5-4.  As shown, the energy remained fairly 

constant during the simulation.  The slight variation from what was expected to be a 

horizontal line is attributed to error propagation in the numerical integration of the 

equations.  During the computation, the model occasionally approaches configurations 

that are somewhat poorly conditioned, which also tends to increase the error in the 

integration. 
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Figure 5-4:  Total system energy during the simulation. 

5.3.3 Reproduction of oscillatory and unstable behaviors 

The tests shown above, while not completely rigorous, do demonstrate that the 

model behaves as expected.  The topic of most interest however, was whether the 

oscillatory and sometimes unstable behaviors that were observed in the prototype as 

discussed in Section 3.3, would become apparent in the computer simulation. 

The tendency for the sphere to wobble was very much expected and even 

indicated by the pendulum test in Section 5.3.1. To verify this behavior, the system was 

modeled by first fixing the pendulum within the sphere and perturbing the sphere from 

rest. A small initial rolling velocity simulated the sphere being perturbed.  Snapshots of 

the simulation showing the sphere rocking back and forth about a spot on the ground are 

shown in Figure 5-5.  The model behaved as expected. 
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Figure 5-5:  Sphere wobbling back and forth when perturbed. 

When attempting to steer with the prototype it was found to wobble into and out 

of its curved trajectory as it traveled.  A simulation was set up to test this scenario as 

well.  By initially tilting the pendulum sideways a small amount and applying drive 

torque, the simulation behaved in very much the same way as the prototype (see Figure 

5-6). 

 
Figure 5-6:  Sphere wobbling in and out of a turn. 

Perhaps the most critical behavior displayed by the prototype was its shaft 

nutation and instability causing it to lose control.  While Figure 5-6 showed wobbling 

while turning, upon closer inspection it also indicated that the drive shaft nutates some as 

0.0 sec 0.5 sec 1.0 sec 

2.5 sec 2.0 sec 1.5 sec 
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well.  It appears that even though a drive torque is being applied about the primary drive 

axis, the sphere is rolling about an axis displaced some angle away from the primary 

drive axis. 

When testing the sphere prototype, this nutation behavior would go unstable when 

the sphere was driven at a high speed (above approximately 3 m/s).  Another simulation 

was set up to test this scenario.  The initial conditions were set to have the sphere begin at 

rest but tilted to the side by a very small angle (1 degree).  A significant drive torque was 

then applied to accelerate the sphere forward.  As shown in Figure 5-7, the sphere travels 

forward for about 1 second before beginning to display the nutation behavior.  Between 

1.0 and 2.5 seconds its motion becomes unstable and the primary drive axis flips end over 

end.  The results of these tests and simulations successfully confirm that the model 

accurately characterizes the dynamics of the physical prototype. 
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Figure 5-7:  Nutation instability. 
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Chapter 6  

Future Work 

The dynamic model developed during this research only dealt with motion on flat 

ground.  The clear next step is to expand this model to the more general case of motion 

over irregular terrain.  Now that the mathematical machinery has been worked out, the 

novel CMG mechanism developed previously needs to be added to the model as well.  

The enhanced torque capabilities afforded by the CMGs will allow for far more agile 

maneuvers than was possible with previous spherical robot designs. Once the dynamics 

of the complete system are modeled, controls need to be developed that can effectively 

damp out the undesirable oscillatory and sometimes unstable behavior inherent in these 

types of mobile robots.  The equations of motion of this simplified model were found to 

be very complex and non-linear, which will make the controls development exceedingly 

challenging.

Additional prototypes need to be built that are accurately instrumented and have 

sufficient processing power to allow for controls of varying complexity to be 

implemented.  Recent advances in the smartphone industry show that tiny, energy 

efficient sensors and processors are in rapid development and many components are 

perfect for developing advanced robotics platforms. 
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Ultimately, all of these challenges must be overcome before spherical robots will 

be successful in the field. 
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Chapter 7  

Conclusions 

For more than 100 years, experimenters have been developing spherical vehicles 

and robots, but despite many beneficial features, limits in their mobility have prevented 

them from becoming much more than interesting research.  In order for spherical robots 

to perform in the field, their mobility needs to be improved and their undesirable 

dynamics need to be controlled.  The capability of manipulating angular momentum 

internally, has now been shown to significantly enhance the mobility of spherical robots, 

but adds complexity to the already challenging system.  Development of the full 

equations of motion of a pendulum driven sphere rolling on flat ground is a first step in 

understanding the dynamics of these machines. It is hoped that more research effort will 

be directed toward the development of spherical robots in order to overcome the difficult 

control issues associated with them so that their significant advantages can be fully 

realized in a wide range of practical applications. 
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Appendix A  

Example of Equation Complexity 

The following equation (set the expression = 0) is the first Lagrange equation 

associated with the generalized coordinate ψ .  It was symbolically simplified using the 

MATLAB simplify command.  To read the equation use the following substitution: 

s: ψ  
t: θ  
p: φ  
x: x 
y: y 
a: α  
b: β  
D*: first derivative 
D2*: second derivative 
 
I**s: I**s 
I**p: I**p 
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Ds*f4 + D2s*Ixxp + D2s*Ixxs - D2s*Ixxp*cos(t)^2 - D2s*Ixxs*cos(t)^2 + D2s*Iyyp*cos(t)^2 + 
D2s*Iyys*cos(t)^2 + D2s*Mp*d^2 - D2p*Ixxp*sin(t) - D2p*Ixxs*sin(t) - Dp*f4*sin(t) - 
Dp*Dt*Ixxp*cos(t) - Dp*Dt*Ixxs*cos(t) - Dp*Dt*Iyyp*cos(t) - Dp*Dt*Iyys*cos(t) + 
Dp*Dt*Izzp*cos(t) + Dp*Dt*Izzs*cos(t) - D2s*Iyyp*cos(p)^2*cos(t)^2 - 
D2s*Iyys*cos(p)^2*cos(t)^2 + D2s*Izzp*cos(p)^2*cos(t)^2 + D2s*Izzs*cos(p)^2*cos(t)^2 - 
D2b*Ixxp*cos(a)*sin(t) - D2p*Mp*d^2*sin(t) + D2a*Iyyp*cos(t)*sin(p) - D2s*Mp*d^2*cos(b)^2 
- D2s*Mp*d^2*cos(t)^2 + 2*D2s*Mp*d^2*cos(b)^2*cos(t)^2 + D2s*Mp*d^2*cos(p)^2*cos(t)^2 + 
2*Dp*Dt*Iyyp*cos(p)^2*cos(t) + 2*Dp*Dt*Iyys*cos(p)^2*cos(t) - 
2*Dp*Dt*Izzp*cos(p)^2*cos(t) - 2*Dp*Dt*Izzs*cos(p)^2*cos(t) - D2b*Mp*d^2*cos(a)*sin(t) - 
D2b*Izzp*cos(p)*sin(a)*cos(t) + D2t*Iyyp*cos(p)*cos(t)*sin(p) + 
D2t*Iyys*cos(p)*cos(t)*sin(p) - D2t*Izzp*cos(p)*cos(t)*sin(p) - 
D2t*Izzs*cos(p)*cos(t)*sin(p) + D2p*Mp*d^2*cos(b)^2*sin(t) - Db*Dt*Ixxp*cos(a)*cos(t) + 
Da*Dp*Iyyp*cos(p)*cos(t) - Dt^2*Iyyp*cos(p)*sin(p)*sin(t) - 
Dt^2*Iyys*cos(p)*sin(p)*sin(t) + Dt^2*Izzp*cos(p)*sin(p)*sin(t) + 
Dt^2*Izzs*cos(p)*sin(p)*sin(t) + Da*Db*Ixxp*sin(a)*sin(t) + 2*Ds*Dt*Ixxp*cos(t)*sin(t) + 
2*Ds*Dt*Ixxs*cos(t)*sin(t) - 2*Ds*Dt*Iyyp*cos(t)*sin(t) - 2*Ds*Dt*Iyys*cos(t)*sin(t) - 
Da*Dt*Iyyp*sin(p)*sin(t) + D2s*Mp*d^2*cos(a)^2*cos(b)^2 - 2*Dp*Dt*Mp*d^2*cos(p)^2*cos(t) 
+ 2*Dp*Ds*Iyyp*cos(p)*cos(t)^2*sin(p) + 2*Dp*Ds*Iyys*cos(p)*cos(t)^2*sin(p) - 
2*Dp*Ds*Izzp*cos(p)*cos(t)^2*sin(p) - 2*Dp*Ds*Izzs*cos(p)*cos(t)^2*sin(p) + 
2*Ds*Dt*Iyyp*cos(p)^2*cos(t)*sin(t) + 2*Ds*Dt*Iyys*cos(p)^2*cos(t)*sin(t) - 
2*Ds*Dt*Izzp*cos(p)^2*cos(t)*sin(t) - 2*Ds*Dt*Izzs*cos(p)^2*cos(t)*sin(t) - 
D2b*Mp*d^2*cos(p)*sin(a)*cos(t) - D2s*Mp*d^2*cos(a)^2*cos(b)^2*cos(t)^2 - 
D2t*Mp*d^2*cos(p)*cos(t)*sin(p) - D2s*Mp*d^2*cos(b)^2*cos(p)^2*cos(t)^2 + 
2*Db*Ds*Mp*d^2*cos(b)*sin(b) + D2a*Mp*d^2*cos(b)^2*cos(t)*sin(p) - 
Da*Db*Izzp*cos(a)*cos(p)*cos(t) + Dt^2*Mp*d^2*cos(p)*sin(p)*sin(t) + 
2*Da*Db*Mp*d^2*sin(a)*sin(t) + 2*Ds*Dt*Mp*d^2*cos(t)*sin(t) + 
Db*Dp*Izzp*sin(a)*cos(t)*sin(p) + Db*Dt*Izzp*cos(p)*sin(a)*sin(t) - 
D2x*Mp*d*cos(p)*sin(b)*cos(s) - D2y*Mp*d*cos(p)*sin(b)*sin(s) - 
D2p*Mp*d^2*cos(a)^2*cos(b)^2*sin(t) - D2a*Mp*d^2*cos(b)*sin(a)*sin(b)*sin(t) - 
2*Dp*Dt*Mp*d^2*cos(a)^2*cos(b)^2*cos(t) + 2*Dp*Dt*Mp*d^2*cos(b)^2*cos(p)^2*cos(t) - 
Da^2*Mp*d^2*cos(a)*cos(b)*sin(b)*sin(t) + Dt^2*Mp*d^2*cos(a)*cos(b)*sin(b)*sin(t) - 
D2s*Mp*d^2*cos(a)^2*cos(b)^2*cos(p)^2*cos(t)^2 + D2t*Mp*d^2*cos(b)^2*cos(p)*cos(t)*sin(p) 
- 2*Da*Db*Mp*d^2*cos(a)*cos(p)*cos(t) - 2*Db*Dp*Mp*d^2*cos(b)*sin(b)*sin(t) + 
2*Db*Dt*Mp*d^2*cos(p)*sin(a)*sin(t) - D2x*Mp*d*cos(a)*cos(b)*cos(s)*sin(p) - 
D2y*Mp*d*cos(b)*sin(a)*cos(s)*cos(t) - D2y*Mp*d*cos(a)*cos(b)*sin(p)*sin(s) + 
D2x*Mp*d*cos(b)*sin(a)*cos(t)*sin(s) - 2*Da*Ds*Mp*d^2*cos(a)*cos(b)^2*sin(a) - 
2*Db*Ds*Mp*d^2*cos(a)^2*cos(b)*sin(b) - 2*Db*Dt*Mp*d^2*cos(a)*cos(b)^2*cos(t) - 
2*Db*Dt*Mp*d^2*cos(a)*cos(p)^2*cos(t) + 2*Da*Dp*Mp*d^2*cos(b)^2*cos(p)*cos(t) - 
4*Db*Ds*Mp*d^2*cos(b)*sin(b)*cos(t)^2 + D2y*Mp*d*sin(b)*cos(s)*sin(p)*sin(t) - 
Dt^2*Mp*d^2*cos(b)^2*cos(p)*sin(p)*sin(t) - 2*Da*Db*Mp*d^2*cos(b)^2*sin(a)*sin(t) - 
D2x*Mp*d*sin(b)*sin(p)*sin(s)*sin(t) - 4*Ds*Dt*Mp*d^2*cos(b)^2*cos(t)*sin(t) - 
2*Dp*Ds*Mp*d^2*cos(p)*cos(t)^2*sin(p) - 2*Ds*Dt*Mp*d^2*cos(p)^2*cos(t)*sin(t) - 
D2t*Mp*d^2*cos(a)*cos(b)*sin(b)*cos(t) + 2*Ds*Dt*Mp*d^2*cos(a)^2*cos(b)^2*cos(t)*sin(t) + 
2*Dp*Ds*Mp*d^2*cos(b)^2*cos(p)*cos(t)^2*sin(p) - 
2*Da*Dt*Mp*d^2*cos(a)^2*cos(b)^2*sin(p)*sin(t) + 
2*Ds*Dt*Mp*d^2*cos(b)^2*cos(p)^2*cos(t)*sin(t) - 
D2p*Mp*d^2*cos(a)*cos(b)^2*cos(p)*sin(a)*cos(t) + 
2*D2t*Mp*d^2*cos(a)*cos(b)*cos(p)^2*sin(b)*cos(t) - 
Da^2*Mp*d^2*cos(b)*cos(p)*sin(a)*sin(b)*cos(t) + 
Dp^2*Mp*d^2*cos(b)*cos(p)*sin(a)*sin(b)*cos(t) - 
Dt^2*Mp*d^2*cos(b)*cos(p)*sin(a)*sin(b)*cos(t) - 
D2t*Mp*d^2*cos(a)*cos(b)^2*sin(a)*sin(p)*sin(t) + 
2*Ds*Dt*Mp*d^2*cos(b)*sin(a)*sin(b)*sin(p) + 
2*Dp*Dt*Mp*d^2*cos(a)^2*cos(b)^2*cos(p)^2*cos(t) - 
2*Da*Db*Mp*d^2*cos(b)*sin(b)*cos(t)*sin(p) + 2*Db*Ds*Mp*d^2*sin(a)*cos(t)*sin(p)*sin(t) - 
D2y*Mp*d*cos(a)*cos(b)*cos(p)*cos(s)*sin(t) + D2x*Mp*d*cos(a)*cos(b)*cos(p)*sin(s)*sin(t) 
- 2*Ds*Dt*Mp*d^2*cos(a)*cos(b)^2*cos(p)*sin(a) + 
D2t*Mp*d^2*cos(a)^2*cos(b)^2*cos(p)*cos(t)*sin(p) + 
Dp^2*Mp*d^2*cos(a)*cos(b)^2*sin(a)*cos(t)*sin(p) - 
Dt^2*Mp*d^2*cos(a)*cos(b)^2*sin(a)*cos(t)*sin(p) + 
2*Da*Db*Mp*d^2*cos(a)*cos(b)^2*cos(p)*cos(t) - 
2*Dt^2*Mp*d^2*cos(a)*cos(b)*cos(p)^2*sin(b)*sin(t) - 
2*Dp*Ds*Mp*d^2*cos(a)*cos(b)*sin(b)*cos(t)^2 + 
2*Da*Dp*Mp*d^2*cos(a)*cos(b)^2*sin(a)*sin(t) + 
2*Db*Dp*Mp*d^2*cos(a)^2*cos(b)*sin(b)*sin(t) - 
2*Db*Ds*Mp*d^2*cos(a)*cos(p)*cos(t)^2*sin(p) + 
2*Db*Dp*Mp*d^2*cos(b)^2*sin(a)*cos(t)*sin(p) - 
2*Db*Dt*Mp*d^2*cos(b)^2*cos(p)*sin(a)*sin(t) - 
2*Da*Ds*Mp*d^2*cos(b)^2*cos(p)*cos(t)*sin(t) + 
D2a*Mp*d^2*cos(a)*cos(b)*cos(p)*sin(b)*cos(t) + 
D2p*Mp*d^2*cos(b)*sin(a)*sin(b)*cos(t)*sin(p) - 
D2t*Mp*d^2*cos(b)*cos(p)*sin(a)*sin(b)*sin(t) - 
2*Da*Dp*Mp*d^2*cos(a)^2*cos(b)^2*cos(p)*cos(t) + 
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4*Db*Dt*Mp*d^2*cos(a)*cos(b)^2*cos(p)^2*cos(t) + 
2*Da*Ds*Mp*d^2*cos(a)*cos(b)^2*sin(a)*cos(t)^2 + 
2*Db*Ds*Mp*d^2*cos(a)^2*cos(b)*sin(b)*cos(t)^2 - 
Dt^2*Mp*d^2*cos(a)^2*cos(b)^2*cos(p)*sin(p)*sin(t) + 
2*Db*Ds*Mp*d^2*cos(b)*cos(p)^2*sin(b)*cos(t)^2 + 
2*D2s*Mp*d^2*cos(a)*cos(b)*cos(p)*sin(b)*cos(t)^2*sin(p) + 
2*D2s*Mp*d^2*cos(a)*cos(b)^2*cos(p)*sin(a)*cos(t)*sin(t) - 
2*Da*Dt*Mp*d^2*cos(a)*cos(b)*cos(p)*sin(b)*sin(t) + 
2*Da*Ds*Mp*d^2*cos(a)*cos(b)^2*cos(p)^2*sin(a)*cos(t)^2 + 
2*Db*Ds*Mp*d^2*cos(a)^2*cos(b)*cos(p)^2*sin(b)*cos(t)^2 - 
2*Db*Dt*Mp*d^2*cos(b)*cos(p)*sin(b)*cos(t)*sin(p) + 
2*Dp*Ds*Mp*d^2*cos(a)^2*cos(b)^2*cos(p)*cos(t)^2*sin(p) + 
2*Ds*Dt*Mp*d^2*cos(a)^2*cos(b)^2*cos(p)^2*cos(t)*sin(t) - 
2*Da*Dt*Mp*d^2*cos(b)*cos(p)^2*sin(a)*sin(b)*cos(t) - 
4*Ds*Dt*Mp*d^2*cos(b)*sin(a)*sin(b)*cos(t)^2*sin(p) - 
4*Db*Ds*Mp*d^2*cos(b)^2*sin(a)*cos(t)*sin(p)*sin(t) + 
4*Ds*Dt*Mp*d^2*cos(a)*cos(b)^2*cos(p)*sin(a)*cos(t)^2 + 
4*Dp*Ds*Mp*d^2*cos(a)*cos(b)*cos(p)^2*sin(b)*cos(t)^2 - 
2*D2s*Mp*d^2*cos(b)*sin(a)*sin(b)*cos(t)*sin(p)*sin(t) + 
4*Db*Ds*Mp*d^2*cos(a)*cos(b)^2*cos(p)*cos(t)^2*sin(p) + 
4*Da*Ds*Mp*d^2*cos(a)^2*cos(b)^2*cos(p)*cos(t)*sin(t) - 
2*Da*Dt*Mp*d^2*cos(a)*cos(b)^2*cos(p)*sin(a)*cos(t)*sin(p) - 
2*Db*Dt*Mp*d^2*cos(a)^2*cos(b)*cos(p)*sin(b)*cos(t)*sin(p) - 
2*Da*Ds*Mp*d^2*cos(b)*cos(p)*sin(a)*sin(b)*cos(t)^2*sin(p) - 
2*Dp*Ds*Mp*d^2*cos(a)*cos(b)^2*sin(a)*cos(t)*sin(p)*sin(t) + 
2*Db*Dp*Mp*d^2*cos(a)*cos(b)*cos(p)*sin(a)*sin(b)*cos(t) - 
4*Dp*Dt*Mp*d^2*cos(a)*cos(b)*cos(p)*sin(b)*cos(t)*sin(p) + 
2*Db*Dt*Mp*d^2*cos(a)*cos(b)*sin(a)*sin(b)*sin(p)*sin(t) - 
2*Da*Ds*Mp*d^2*cos(a)*cos(b)*sin(b)*cos(t)*sin(p)*sin(t) - 
2*Dp*Ds*Mp*d^2*cos(b)*cos(p)*sin(a)*sin(b)*cos(t)*sin(t) - 
4*Db*Ds*Mp*d^2*cos(a)*cos(b)*cos(p)*sin(a)*sin(b)*cos(t)*sin(t) - 
4*Ds*Dt*Mp*d^2*cos(a)*cos(b)*cos(p)*sin(b)*cos(t)*sin(p)*sin(t) 
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Appendix B  

MATLAB: equations_of_motion.m 

Note:  Many lines in this program exceed the width of the page and have been 

truncated to fit. 
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clear; 
% q1 = s: psi 
% q2 = t: theta 
% q3 = p: phi 
% q4 = x: global x position of sphere center 
% q5 = y: global y position of sphere center 
% q6 = a: alpha 
% q7 = b: beta 
 
% d: distance from center of sphere to cg of pendulum 
% *_dot: time derivative of variable 
% *_ddot: second time derivative of variable 
 
syms s t p x y a b d; 
 
Dxys=[1  0  0  x;... 
      0  1  0  y;... 
      0  0  1  0;... 
      0  0  0  1]; % translation transformation matrix from origin of inertial r 
 
Rzs=[cos(s) -sin(s) 0  0;... 
     sin(s)  cos(s) 0  0;... 
     0       0      1  0;... 
     0       0      0  1]; % rotation due to psi about z-axis of sphere frame 
  
Rys=[cos(t) 0  sin(t) 0;... 
     0      1  0      0;... 
    -sin(t) 0  cos(t) 0;... 
     0      0  0      1]; % rotation due to theta about y-axis of sphere frame 
 
Rxs=[1  0       0      0;... 
     0  cos(p) -sin(p) 0;... 
     0  sin(p)  cos(p) 0;... 
     0  0       0      1]; % rotation due to phi about x-axis of sphere frame 
 
Ryp=[cos(a)  0  sin(a)  0;... 
     0       1  0       0;... 
    -sin(a)  0  cos(a)  0;... 
     0       0  0       1]; % rotation due to alpha about y-axis of pendulum fra 
 
Rxp=[1  0       0       0;... 
     0  cos(b) -sin(b)  0;... 
     0  sin(b)  cos(b)  0;... 
     0  0       0       1]; % rotation due to beta about x-axis of pendulum fram 
  
Pp_p=[0;... 
      0;... 
      -d;... 
      1]; % vector from sphere frame origin to pendulum frame origin in pendulum 
 
% {globalframe} = Rzs*Rys*Rxs*{sphereframe} 
% {sphereframe} = Ryp*Rxp*{pendulumframe} 
% {globalframe} = Rzs*Rys*Rxs*Ryp*Rxp*{pendulumframe} 
 
syms Ds Dt Dp Dx Dy Da Db; 
 
Wp_rel_p=[Db;... 
          Da*cos(b);... 
         -Da*sin(b);... 
          1]; % angular velocity of pendulum frame relative to sphere frame (in  
       
Wp_rel_s=Ryp*Rxp*Wp_rel_p; % angular velocity of pendulum frame relative to sphe 
Wp_rel_s=Wp_rel_s(1:3); 
 
Pp_o=Dxys*Rzs*Rys*Rxs*Ryp*Rxp*Pp_p; % location of pendulum frame in global frame 
 
% Velocity of CG of pendulum in global frame (differentiation done by differenti 
PDx = Dx - Db*d*cos(b)*cos(p)*sin(s) - Ds*d*cos(p)*sin(b)*cos(s) + Dp*d*sin(b)*s 
PDy = Dy + Db*d*cos(b)*cos(p)*cos(s) - Dp*d*sin(b)*cos(s)*sin(p) - Ds*d*cos(p)*s 
PDz = Da*d*cos(a)*cos(b)*sin(t) + Dt*d*cos(b)*sin(a)*cos(t) + Db*d*cos(b)*cos(t) 
 
% Ms: mass of sphere 
% Mp: mass of pendulum 
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% I**s: principle moment of inertia of sphere 
% I**p: principle moment of inertia of pendulum 
% g: acceleration due to gravity (~9.81 m/s) 
 
syms Ms Mp Ixxs Iyys Izzs Ixxp Iyyp Izzp g r 
 
Ws_s = [Dp - Ds*sin(t);... 
        Dt*cos(p) + Ds*cos(t)*sin(p);... 
        Ds*cos(t)*cos(p) - Dt*sin(p)]; % absolute angular velocity of sphere in  
     
Wp_s = Ws_s + Wp_rel_s; % absolute angular velocity of pendulum in sphere frame 
Wp_s = simplify(Wp_s); 
 
Trot_s = 1/2*(Ixxs*Ws_s(1)^2 + Iyys*Ws_s(2)^2 + Izzs*Ws_s(3)^2); % rotational ki 
Ttrans_s = 1/2*Ms*(Dx^2 + Dy^2); % translational kinetic energy of sphere 
V_s = 0; % potential energy of sphere (constant for rolling on flat surface) 
 
Trot_p = 1/2*(Ixxp*Wp_s(1)^2 + Iyyp*Wp_s(2)^2 + Izzp*Wp_s(3)^2); % rotational ki 
Ttrans_p = 1/2*Mp*(PDx^2 + PDy^2 + PDz^2); % translational kinetic energy of pen 
V_p = Mp*g*Pp_o(3); % potential energy of pendulum due to gravity 
 
 
L = Trot_s + Ttrans_s + Trot_p + Ttrans_p - V_s - V_p; % Lagrangian 
 
 
 
% no slip constraint 
Ws_o = Rzs(1:3,1:3)*Rys(1:3,1:3)*Rxs(1:3,1:3)*Ws_s; 
Ws_o = simplify(Ws_o); 
 
% Dx*i + Dy*j = r(Ws_o(1)*i + Ws_o(2)*j + Ws_o(3)*k) (x) k 
% ijk are unit vectors, (x) is cross product 
K = [Dx; Dy; 0] - r*cross(Ws_o,[0; 0; 1]); % = [0; 0; 0] 
 
% Coefficients in front of each qi_dot 
a1(1) = diff(K(1),Ds); 
a1(2) = diff(K(1),Dt); 
a1(3) = diff(K(1),Dp); 
a1(4) = diff(K(1),Dx); 
a1(5) = diff(K(1),Dy); 
a1(6) = diff(K(1),Da); 
a1(7) = diff(K(1),Db); 
a2(1) = diff(K(2),Ds); 
a2(2) = diff(K(2),Dt); 
a2(3) = diff(K(2),Dp); 
a2(4) = diff(K(2),Dx); 
a2(5) = diff(K(2),Dy); 
a2(6) = diff(K(2),Da); 
a2(7) = diff(K(2),Db); 
 
 
% General Form of Lagrange Equations 
% d/dt(dL/dqi_dot) - dL/dqi = Sum{j=1 to m}(vj*aji) + Qi 
% L:   Lagrangian 
% qi:  generalized coordinates 
% m:   # constraint equations K (2 in this case) 
% vj:  lagrange multipliers 
% aji: coefficients in from of qi_dots in constraint eqns K 
% Qi:  Generalized nonconservative forces/moments 
 
dLdDs = diff(L,Ds); 
dLdDt = diff(L,Dt); 
dLdDp = diff(L,Dp); 
dLdDx = diff(L,Dx); 
dLdDy = diff(L,Dy); 
dLdDa = diff(L,Da); 
dLdDb = diff(L,Db); 
 
dLds = diff(L,s); 
dLdt = diff(L,t); 
dLdp = diff(L,p); 
dLdx = diff(L,x); 
dLdy = diff(L,y); 
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dLda = diff(L,a); 
dLdb = diff(L,b); 
 
syms D2s D2t D2p D2x D2y D2a D2b; 
 
dLdDs = expand(dLdDs); 
dLdDt = expand(dLdDt); 
dLdDp = expand(dLdDp); 
dLdDx = expand(dLdDx); 
dLdDy = expand(dLdDy); 
dLdDa = expand(dLdDa); 
dLdDb = expand(dLdDb); 
 
dLds = expand(dLds); 
dLdt = expand(dLdt); 
dLdp = expand(dLdp); 
dLdx = expand(dLdx); 
dLdy = expand(dLdy); 
dLda = expand(dLda); 
dLdb = expand(dLdb); 
 
% differentiation done by differentiator program 
ddtdLdDs = D2s*Ixxp*sin(t)^2 + D2s*Ixxs*sin(t)^2 - D2p*Ixxp*sin(t) - D2p*Ixxs*si 
ddtdLdDt = D2t*Iyyp*cos(p)^2 + D2t*Iyys*cos(p)^2 + D2t*Izzp*sin(p)^2 + D2t*Izzs* 
ddtdLdDp = D2p*Ixxp + D2p*Ixxs + D2b*Ixxp*cos(a) - D2s*Ixxp*sin(t) - D2s*Ixxs*si 
ddtdLdDx = D2x*Mp + D2x*Ms + Db^2*Mp*d*cos(p)*sin(b)*sin(s) + Dp^2*Mp*d*cos(p)*s 
ddtdLdDy = D2y*Mp + D2y*Ms - Db^2*Mp*d*cos(p)*sin(b)*cos(s) - Dp^2*Mp*d*cos(p)*s 
ddtdLdDa = D2a*Iyyp + D2t*Iyyp*cos(p) - Dp*Dt*Iyyp*sin(p) + D2s*Iyyp*cos(t)*sin( 
ddtdLdDb = D2b*Ixxp*cos(a)^2 + D2b*Izzp*sin(a)^2 + D2p*Ixxp*cos(a) - Da*Dp*Ixxp* 
 
 
% v1: lagrange multiplier 
% v2: lagrange multiplier 
% M1: drive motor torque 
% M2: tilt (steering) motor torque 
 
syms v1 v2 M1 M2 f1 f2 f3 f4 
 
Q1 = -f4*(Ws_o(3)); 
%Q1 = -f4*Ds; 
Q2 = 0; 
Q3 = 0; 
Q4 = -f3*Dx; 
Q5 = -f3*Dy; 
Q6 = M1 - f1*Da;    %drive motor torque and viscous damping 
Q7 = M2 - f2*Db;    %steering motor torque and viscous damping 
 
% equations of motion 
% ddtdLdDs - dLds = v1*a1(1) + v2*a2(1) + Q1; 
% ddtdLdDt - dLdt = v1*a1(2) + v2*a2(2) + Q2; 
% ddtdLdDp - dLdp = v1*a1(3) + v2*a2(3) + Q3; 
% ddtdLdDx - dLdx = v1*a1(4) + v2*a2(4) + Q4; 
% ddtdLdDy - dLdy = v1*a1(5) + v2*a2(5) + Q5; 
% ddtdLdDa - dLda = v1*a1(6) + v2*a2(6) + Q6; 
% ddtdLdDb - dLdb = v1*a1(7) + v2*a2(7) + Q7; 
 
% constraint equations 
% a11*Ds + a12*Dt + a13*Dp + a14*Dx + a15*Dy + a16*Da + a17*Db = 0; 
% a21*Ds + a22*Dt + a23*Dp + a24*Dx + a25*Dy + a26*Da + a27*Db = 0; 
 
eqn1 = ddtdLdDs - dLds - v1*a1(1) - v2*a2(1) - Q1; % =0 
eqn2 = ddtdLdDt - dLdt - v1*a1(2) - v2*a2(2) - Q2; % =0 
eqn3 = ddtdLdDp - dLdp - v1*a1(3) - v2*a2(3) - Q3; % =0 
eqn4 = ddtdLdDx - dLdx - v1*a1(4) - v2*a2(4) - Q4; % =0 
eqn5 = ddtdLdDy - dLdy - v1*a1(5) - v2*a2(5) - Q5; % =0 
eqn6 = ddtdLdDa - dLda - v1*a1(6) - v2*a2(6) - Q6; % =0 
eqn7 = ddtdLdDb - dLdb - v1*a1(7) - v2*a2(7) - Q7; % =0 
eqn8 = a1(1)*Ds + a1(2)*Dt + a1(3)*Dp + a1(4)*Dx + a1(5)*Dy + a1(6)*Da + a1(7)*D 
eqn9 = a2(1)*Ds + a2(2)*Dt + a2(3)*Dp + a2(4)*Dx + a2(5)*Dy + a2(6)*Da + a2(7)*D 
 
eqn10 = D2x - D2t*r*cos(s) + Ds*Dt*r*sin(s) - D2p*r*cos(t)*sin(s) - Dp*Ds*r*cos( 
eqn11 = D2y - D2t*r*sin(s) - Ds*Dt*r*cos(s) + D2p*r*cos(s)*cos(t) - Dp*Ds*r*cos( 
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v1_eqn = solve(eqn4,'v1'); 
v2_eqn = solve(eqn5,'v2'); 
 
eqn1_a = subs(eqn1,{'v1','v2'},{v1_eqn,v2_eqn}); 
eqn2_a = subs(eqn2,{'v1','v2'},{v1_eqn,v2_eqn}); 
eqn3_a = subs(eqn3,{'v1','v2'},{v1_eqn,v2_eqn}); 
eqn4_a = eqn6; 
eqn5_a = eqn7; 
eqn6_a = eqn8; 
eqn7_a = eqn9; 
eqn8_a = eqn10; 
eqn9_a = eqn11; 
 
Dx_eqn = solve(eqn6_a,'Dx'); 
Dy_eqn = solve(eqn7_a,'Dy'); 
 
funcs = [eqn1_a; eqn2_a; eqn3_a; eqn4_a; eqn5_a; eqn8_a; eqn9_a]; 
vecs = [D2s; D2t; D2p; D2x; D2y; D2a; D2b]; 
 
J = jacobian(funcs,vecs); 
J = simplify(J); 
 
consts = funcs - J*vecs; 
consts = simplify(consts); 
 
subs(J,{'s','t','p','x','y','a','b','Ds','Dt','Dp','Dx','Dy','Da','Db','D2s','D2 
subs(consts,{'s','t','p','x','y','a','b','Ds','Dt','Dp','Dx','Dy','Da','Db','D2s 
subs(Dx_eqn,{'s','t','p','x','y','a','b','Ds','Dt','Dp','Dx','Dy','Da','Db','D2s 
subs(Dy_eqn,{'s','t','p','x','y','a','b','Ds','Dt','Dp','Dx','Dy','Da','Db','D2s 
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Appendix C  

MATLAB: numerical_integration.m 

Note:  Many lines in this program exceed the width of the page and have been 

truncated to fit. 

 

 



 88 

function numerical_integration() 
    % Initial Values 
    m0(1)  = 0;% s(0) 
    m0(2)  = 0;% t(0) 
    m0(3)  = 0;% p(0) 
    m0(4)  = 0;% x(0) 
    m0(5)  = 0;% y(0) 
    m0(6)  = pi/4;% a(0) 
    m0(7)  = 0;% b(0) 
    m0(8)  = 0;% Ds(0) 
    m0(9)  = 0;% Dt(0) 
    m0(10) = 0;% Dp(0) 
    m0(11) = 0;% Dx(0) 
    m0(12) = 0;% Dy(0) 
    m0(13) = 0;% Da(0) 
    m0(14) = 0;% Db(0) 
     
    % Model Parameters 
    Ms   = 1;    % Mass of Sphere (kg) 
    Mp   = 15;   % Mass of Pendulum (kg) 
    Ixxs = 0.25;  % Principle Moment of Interia of Sphere About x-axis (kgm^2) 
    Iyys = 0.15;  % Principle Moment of Interia of Sphere About y-axis (kgm^2) 
    Izzs = 0.25;  % Principle Moment of Interia of Sphere About z-axis (kgm^2) 
    Ixxp = 2;    % Principle Moment of Interia of Pendulum About x-axis (kgm^2) 
    Iyyp = 2;    % Principle Moment of Interia of Pendulum About y-axis (kgm^2) 
    Izzp = 3;    % Principle Moment of Interia of Pendulum About z-axis (kgm^2) 
    g    = 9.81; % Acceleration due to Gravity (m/s^2) 
    M1   = 0;    % Drive Motor Torque (Nm) 
    M2   = 0;    % Steering Motor Torque (Nm) 
    d    = 0.1;  % Distance from Center of Sphere to CG of Pendulum (m) 
    r    = 0.25; % Radius of Sphere (m) 
    f1   = .1;    % Drive Motor damping (Nms) 
    f2   = .1;    % Steering Motor damping (Nms) 
    f3   = .2;   % Rolling damping (Ns) 
    f4   = 10;   % Spinning damping (Nms) 
 
    % Simulation Parameters 
    tspan = [0 10];   % Simulation Time Span (s) 
    fps = 24;        % Simulation Frame Rate 
    Animate = true; % True/False to Save Simulation as a Video 
    RecordVideo = false; % True/False to Save Simulation as a Video 
     
     
    params = [Ms Mp Ixxs Iyys Izzs Ixxp Iyyp Izzp g M1 M2 d r f1 f2 f3 f4]; 
    [tvals,eqnvals] = ode45(@sphere_model,tspan,m0,[],params); 
    if Animate, simulation(tvals, eqnvals, params, fps, tspan(2)-tspan(1),  
 
end 
 
% m(1): s 
% m(2): t 
% m(3): p 
% m(4): x 
% m(5): y 
% m(6): a 
% m(7): b 
% m(8): Ds 
% m(9): Dt 
% m(10): Dp 
% m(11): Dx 
% m(12): Dy 
% m(13): Da 
% m(14): Db 
 
% Dm(1): Ds 
% Dm(2): Dt 
% Dm(3): Dp 
% Dm(4): Dx 
% Dm(5): Dy 
% Dm(6): Da 
% Dm(7): Db 
% Dm(8): D2s 
% Dm(9): D2t 



 89 

% Dm(10): D2p 
% Dm(11): D2x 
% Dm(12): D2y 
% Dm(13): D2a 
% Dm(14): D2b 
 
function Dm_return = sphere_model(t,m,params) 
    Ms = params(1); 
    Mp = params(2); 
    Ixxs = params(3); 
    Iyys = params(4); 
    Izzs = params(5); 
    Ixxp = params(6); 
    Iyyp = params(7); 
    Izzp = params(8); 
    g = params(9); 
    M1 = params(10); 
    M2 = params(11); 
    d = params(12); 
    r = params(13); 
    f1 = params(14); 
    f2 = params(15); 
    f3 = params(16); 
    f4 = params(17); 
 
     
    Dm = zeros(14,1); 
 
    Dm(1) = m(8); 
    Dm(2) = m(9); 
    Dm(3) = m(10); 
    Dm(4) = r*Dm(2)*cos(m(1)) + r*Dm(3)*cos(m(2))*sin(m(1)); 
    Dm(5) = r*Dm(2)*sin(m(1)) - r*Dm(3)*cos(m(1))*cos(m(2)); 
    Dm(6) = m(13); 
    Dm(7) = 0;%m(14); 
     
    J = [Ixxp + Ixxs + Mp*d^2 - Ixxp*cos(m(2))^2 - Ixxs*cos(m(2))^2 + Iyyp*cos(m 
         Iyyp*cos(m(2))*cos(m(3))*sin(m(3)) + Iyys*cos(m(2))*cos(m(3))*sin(m(3)) 
         Mp*d^2*cos(m(7))^2*sin(m(2)) - Ixxs*sin(m(2)) - Mp*d^2*sin(m(2)) - Ixxp 
         Iyyp*cos(m(2))*sin(m(3)) + Mp*d^2*cos(m(2))*cos(m(7))^2*sin(m(3)) - Mp* 
        -Ixxp*cos(m(6))*sin(m(2)) - Mp*d^2*cos(m(6))*sin(m(2)) - Izzp*cos(m(2))* 
         0, -r*cos(m(1)), -r*cos(m(2))*sin(m(1)), 1, 0,0,0;... 
         0, -r*sin(m(1)),r*cos(m(1))*cos(m(2)), 0, 1,0,0]; 
 
    consts = [f4*Dm(1) - f4*Dm(3)*sin(m(2)) - Ixxp*Dm(2)*Dm(3)*cos(m(2)) - Ixxs* 
              Ixxp*Dm(1)*Dm(3)*cos(m(2)) + Ixxs*Dm(1)*Dm(3)*cos(m(2)) - Iyyp*Dm( 
              Iyyp*Dm(1)*Dm(2)*cos(m(2)) - Ixxs*Dm(1)*Dm(2)*cos(m(2)) - Ixxp*Dm( 
              f1*Dm(6) - M1 + Ixxp*Dm(3)*Dm(7)*sin(m(6)) - Iyyp*Dm(2)*Dm(3)*sin( 
              f2*Dm(7) - M2 - Ixxp*Dm(3)*Dm(6)*sin(m(6)) - Mp*d^2*Dm(1)^2*cos(m( 
              r*(Dm(1)*Dm(2)*sin(m(1)) - Dm(1)*Dm(3)*cos(m(1))*cos(m(2)) + Dm(2) 
             -r*(Dm(1)*Dm(2)*cos(m(1)) + Dm(1)*Dm(3)*cos(m(2))*sin(m(1)) + Dm(2) 
           
  
    D2qis = -J\consts; 
     
    Dm(8) = D2qis(1); 
    Dm(9) = D2qis(2); 
    Dm(10) = D2qis(3); 
    Dm(11) = D2qis(4); 
    Dm(12) = D2qis(5); 
    Dm(13) = D2qis(6); 
    Dm(14) = D2qis(7); 
 
    [t cond(J)] 
    Dm_return = Dm; 
end 
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Appendix D  

MATLAB: simulation.m 

Note:  Many lines in this program exceed the width of the page and have been 

truncated to fit. 
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function simulation(tvals, eqnvals, params, fps, sim_time, record_video) 
     
    global r; 
    Mp = params(2); 
    g = params(9); 
    d = params(12); 
    r = params(13); 
 
    time_int = linspace(0,sim_time,sim_time*fps); 
    s_int = spline(tvals,eqnvals(:,1),time_int); 
    t_int = spline(tvals,eqnvals(:,2),time_int); 
    p_int = spline(tvals,eqnvals(:,3),time_int); 
    x_int = spline(tvals,eqnvals(:,4),time_int); 
    y_int = spline(tvals,eqnvals(:,5),time_int); 
    a_int = spline(tvals,eqnvals(:,6),time_int); 
    b_int = spline(tvals,eqnvals(:,7),time_int); 
     
    V_p = Mp*g*(d*cos(b_int).*sin(a_int).*sin(t_int) + d*sin(b_int).*cos(t_int). 
    %plot(t_int,V_p); 
     
     
    fig = figure('Position',[0 -50 1280 720]); 
    set(fig,'Renderer','OpenGL'); 
     
    [x_s,y_s,z_s] = sphere(16); 
    x_s = x_s .*r; 
    y_s = y_s .*r; 
    z_s = z_s .*r + r; 
     
    [x_p,y_p,z_p] = cylinder(1,12); 
    x_p = x_p .*(r/10); 
    y_p = y_p .*(r/10); 
    z_p = z_p .*(4*r/5) + r/5; 
     
    [x_g,y_g] = meshgrid(-max(abs([x_int,y_int]))-r:r:max(abs([x_int,y_int]))+r, 
    z_g = x_g .*0; 
     
    ball = surf(x_s,y_s,z_s, z_s.*0); 
    rotate(ball,[1 0 0],90,[0 0 r]); 
    hold on; 
     
    pendulum = surf(x_p,y_p,z_p, z_p.*0); 
    set(ball,'FaceAlpha',0.2) 
     
    ground = mesh(x_g,y_g,z_g); 
 
    hidden off; 
    %shading interp; 
    lighting flat;  
    camlight infinite;  
    axis tight equal;  
    axis off; 
    plot(x_int,y_int); 
     
    txt1 = text(0,0,max(abs([x_int,y_int]))+r,'Elapsed Time(s)'); 
    txt2 = text(0,0,max(abs([x_int,y_int]))+r-.1,'0.000'); 
    set(txt1,'HorizontalAlignment','center','FontSize',13); 
    set(txt2,'HorizontalAlignment','center','FontSize',16); 
     
    global ball_xdata_init; 
    global ball_ydata_init; 
    global ball_zdata_init; 
    global ball_xdata; 
    global ball_ydata; 
    global ball_zdata; 
    ball_xdata_init = get(ball, 'XData'); 
    ball_ydata_init = get(ball, 'YData'); 
    ball_zdata_init = get(ball, 'ZData') - r; 
    ball_xdata = ball_xdata_init; 
    ball_ydata = ball_ydata_init; 
    ball_zdata = ball_zdata_init; 
    set(ball,'XDataSource','ball_xdata','YDataSource','ball_ydata','ZDataSource' 
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    global pendulum_xdata_init; 
    global pendulum_ydata_init; 
    global pendulum_zdata_init; 
    global pendulum_xdata; 
    global pendulum_ydata; 
    global pendulum_zdata; 
    pendulum_xdata_init = get(pendulum, 'XData'); 
    pendulum_ydata_init = get(pendulum, 'YData'); 
    pendulum_zdata_init = get(pendulum, 'ZData') - r; 
    pendulum_xdata = pendulum_xdata_init; 
    pendulum_ydata = pendulum_ydata_init; 
    pendulum_zdata = pendulum_zdata_init; 
    set(pendulum,'XDataSource','pendulum_xdata','YDataSource','pendulum_ydata',' 
     
     
    move_sphere(s_int(1),t_int(1),p_int(1),x_int(1),y_int(1)); 
    move_pendulum(s_int(1),t_int(1),p_int(1),a_int(1),b_int(1),x_int(1),y_int(1) 
    refreshdata(ball, 'caller') 
    refreshdata(pendulum, 'caller') 
 
    pause(5) 
 
    for i=1:length(time_int) 
        move_sphere(s_int(i),t_int(i),p_int(i),x_int(i),y_int(i)); 
        move_pendulum(s_int(i),t_int(i),p_int(i),a_int(i),b_int(i),x_int(i),y_in 
        refreshdata(ball, 'caller') 
        refreshdata(pendulum, 'caller') 
        set(txt2,'string',num2str(time_int(i),'%6.3f')); 
        drawnow; 
        if record_video, MOV(i)=getframe(gcf); end; 
    end 
    if record_video 
        movie2avi(MOV,'../../Downloads/video.avi','fps',fps,'videoname','') 
        movefile('../../Downloads/video.avi','../../Downloads/Video/video.avi') 
    end; 
end 
 
function move_sphere(psi,theta,phi,x_pos,y_pos) 
    global ball_xdata_init; 
    global ball_ydata_init; 
    global ball_zdata_init; 
    global ball_xdata; 
    global ball_ydata; 
    global ball_zdata; 
    global r; 
     
    rot_s = [cos(psi) -sin(psi) 0;sin(psi) cos(psi) 0;0 0 1]; 
    rot_t = [cos(theta) 0 sin(theta);0 1 0;-sin(theta) 0 cos(theta)]; 
    rot_p = [1 0 0;0 cos(phi) -sin(phi);0 sin(phi) cos(phi)]; 
    rot = (rot_s*rot_t*rot_p)'; 
     
    x = ball_xdata_init; 
    y = ball_ydata_init; 
    z = ball_zdata_init; 
     
    [m,n] = size(x); 
    newxyz = [x(:), y(:), z(:)]; 
    newxyz = newxyz*rot; 
    ball_xdata = reshape(newxyz(:,1),m,n) + x_pos; 
    ball_ydata = reshape(newxyz(:,2),m,n) + y_pos; 
    ball_zdata = reshape(newxyz(:,3),m,n) + r; 
end 
function move_pendulum(psi,theta,phi,alpha,beta,x_pos,y_pos) 
    global pendulum_xdata_init; 
    global pendulum_ydata_init; 
    global pendulum_zdata_init; 
    global pendulum_xdata; 
    global pendulum_ydata; 
    global pendulum_zdata; 
    global r; 
     
    rot_s = [cos(psi) -sin(psi) 0;sin(psi) cos(psi) 0;0 0 1]; 
    rot_t = [cos(theta) 0 sin(theta);0 1 0;-sin(theta) 0 cos(theta)]; 
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    rot_p = [1 0 0;0 cos(phi) -sin(phi);0 sin(phi) cos(phi)]; 
    rot_a = [cos(alpha) 0 sin(alpha);0 1 0;-sin(alpha) 0 cos(alpha)]; 
    rot_b = [1 0 0;0 cos(beta) -sin(beta);0 sin(beta) cos(beta)]; 
    rot = (rot_s*rot_t*rot_p*rot_a*rot_b)'; 
     
    x = pendulum_xdata_init; 
    y = pendulum_ydata_init; 
    z = pendulum_zdata_init; 
     
    [m,n] = size(x); 
    newxyz = [x(:), y(:), z(:)]; 
    newxyz = newxyz*rot; 
    pendulum_xdata = reshape(newxyz(:,1),m,n) + x_pos; 
    pendulum_ydata = reshape(newxyz(:,2),m,n) + y_pos; 
    pendulum_zdata = reshape(newxyz(:,3),m,n) + r; 
end 
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Appendix E  

AppleScript: Differentiator.scpt 
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--input must be fully expanded 
set input to "Dy - Dt*r*sin(s) + Dp*r*cos(s)*cos(t)" 
 
set terms to {"sin(s)", "sin(t)", "sin(p)", "sin(a)", "sin(b)", "cos(s)", "cos(t)", "cos(p)", "cos(a)", "cos(b)", 
"sin(s)^2", "sin(t)^2", "sin(p)^2", "sin(a)^2", "sin(b)^2", "cos(s)^2", "cos(t)^2", "cos(p)^2", 
"cos(a)^2", "cos(b)^2", "sin(s)^3", "sin(t)^3", "sin(p)^3", "sin(a)^3", "sin(b)^3", "cos(s)^3", 
"cos(t)^3", "cos(p)^3", "cos(a)^3", "cos(b)^3", "sin(s)^4", "sin(t)^4", "sin(p)^4", "sin(a)^4", 
"sin(b)^4", "cos(s)^4", "cos(t)^4", "cos(p)^4", "cos(a)^4", "cos(b)^4", "Ds", "Dt", "Dp", "Dx", "Dy", 
"Da", "Db", "x", "y"} 
 
set diffterms to {"Ds*cos(s)", "Dt*cos(t)", "Dp*cos(p)", "Da*cos(a)", "Db*cos(b)", "-Ds*sin(s)", "-
Dt*sin(t)", "-Dp*sin(p)", "-Da*sin(a)", "-Db*sin(b)", "2*sin(s)*cos(s)*Ds", "2*sin(t)*cos(t)*Dt", 
"2*sin(p)*cos(p)*Dp", "2*sin(a)*cos(a)*Da", "2*sin(b)*cos(b)*Db", "-2*sin(s)*cos(s)*Ds", "-
2*sin(t)*cos(t)*Dt", "-2*sin(p)*cos(p)*Dp", "-2*sin(a)*cos(a)*Da", "-2*sin(b)*cos(b)*Db", 
"3*sin(s)^2*cos(s)*Ds", "3*sin(t)^2*cos(t)*Dt", "3*sin(p)^2*cos(p)*Dp", "3*sin(a)^2*cos(a)*Da", 
"3*sin(b)^2*cos(b)*Db", "-3*sin(s)*cos(s)^2*Ds", "-3*sin(t)*cos(t)^2*Dt", "-3*sin(p)*cos(p)^2*Dp", "-
3*sin(a)*cos(a)^2*Da", "-3*sin(b)*cos(b)^2*Db", "4*sin(s)^3*cos(s)*Ds", "4*sin(t)^3*cos(t)*Dt", 
"4*sin(p)^3*cos(p)*Dp", "4*sin(a)^3*cos(a)*Da", "4*sin(b)^3*cos(b)*Db", "-4*sin(s)*cos(s)^3*Ds", "-
4*sin(t)*cos(t)^3*Dt", "-4*sin(p)*cos(p)^3*Dp", "-4*sin(a)*cos(a)^3*Da", "-4*sin(b)*cos(b)^3*Db", 
"D2s", "D2t", "D2p", "D2x", "D2y", "D2a", "D2b", "Dx", "Dy"} 
 
set tdlrs to AppleScript's text item delimiters 
set AppleScript's text item delimiters to {" "} 
set parsedinput to every text item of input 
set AppleScript's text item delimiters to tdlrs 
 
 
set dLdqi to {} 
set tempstring to "" 
 
repeat with tempitem in parsedinput 
 if tempitem as text = "+" then 
  --do nothing 
 else if tempitem as text = "-" then 
  set tempstring to "-1*" 
 else 
  set tempstring to tempstring & tempitem 
  copy tempstring to end of dLdqi 
  set tempstring to "" 
 end if 
end repeat 
 
set totaldiff to {} 
 
repeat with k from 1 to count of items in dLdqi 
 set test to item k in dLdqi 
 set tdlrs to AppleScript's text item delimiters 
 set AppleScript's text item delimiters to {"*"} 
 set termsList to every text item of test 
 set AppleScript's text item delimiters to tdlrs 
 set difftest to {} 
  
 repeat with i from 1 to count of items in termsList 
  set currentterm to item i of termsList 
  set idx to 0 
  if terms contains {currentterm} then 
   set idx to 1 
   repeat until (item idx of terms is currentterm) 
    set idx to idx + 1 
   end repeat 
  else 
   set idx to 0 
  end if 
  if idx > 0 then 
   set tempstring to "" 
   repeat with j from 1 to count of items in termsList 
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    if j = i then 
     set tempstring to tempstring & item idx of diffterms 
    else 
     set tempstring to tempstring & item j of termsList 
    end if 
    if j < (count of items in termsList) then set tempstring to tempstring & "*" 
   end repeat 
   copy tempstring to the end of difftest 
   --display dialog difftest as text 
  end if 
 end repeat 
 set tdlrs to AppleScript's text item delimiters 
 set AppleScript's text item delimiters to {" + "} 
 set difftest to difftest as text 
 set AppleScript's text item delimiters to tdlrs 
 copy difftest to the end of totaldiff 
end repeat 
set tdlrs to AppleScript's text item delimiters 
set AppleScript's text item delimiters to {" + "} 
set totaldiff to totaldiff as text 
set AppleScript's text item delimiters to tdlrs 
 
totaldiff 

 




