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ABSTRACT OF DISSERTATION

INVESTIGATION OF A NONLINEAR CONTROLLER THAT COMBINES STEADY 

STATE PREDICTIONS WITH INTEGRAL ACTION

Cross-flow water-to-air heat exchangers are a common element in heating ventilating and 

air conditioning (HVAC) systems. In a typical conflguration the outlet air temperature is 

controlled by the flow rate of water through the coil. In this conflguration the heat exchanger 

exhibits non-linear dynamics. In particular the system has variable gain. Variable gain 

presents a challenge for the linear controllers that are typically used to control the outlet 

air temperature. To ensure stability over the entire operating range controllers need to be 

tuned at the highest gain state. This leads to sluggish response in lower gain states. Previous 

research has shown the use of steady state predictions of the flow rate needed to produce 

zero steady state error has improved the transient response of a heat exchanger.

In this project a nonlinear controller that provides smooth mixing between steady state 

predictions and integral control was introduced. Bounds for the steady state error introduced 

by the controller were theoretically derived and experimentally verified. The controller 

outperformed a properly tuned nominal PI controller for both input tracking and disturbance 

rejection.

David A. Hodgson
Department of Mechanical Engineering 
Colorado State University 
Fort Collins, Colorado 80523 
Spring 2010

in



ACKNOW LEDGM ENTS

This has been a long process and I have many people to thank. The list is too long to 

include everyone here, but some people deserve special recognition.

First of all I am indebted to my committee. Without their help and willingness to be 

flexible it would not have been possible for me to complete my dissertation. I would like to 

thank Dr. Young and Dr. Anderson for all of their input and for sticking with me through 

all of these years. I would like to thank Dr. Duff and Dr. Olsen for taking on their duties 

at such a late stage in the game. In a short time, both have made my work better. I would 

also like to thank Dr. Hittle who introduced me to this project and provided guidance for 

many years.

I finished my research while running the experiment remotely. This would not have been 

possible if it had not been for many friends that were willing to go to the lab at all hours 

of the day (and in all types of weather) to trouble shoot and in some cases make needed 

repairs. In no particular order I need to thank: John Taggart, Matt Taggart, Dann Frazier, 

Tim Milburn, Matt Davis, and Brook Yockey.

I need to thank my family that has been there since the beginning. As the years of 

graduate school turned into more than a decade, their support was unwavering (as far as I 

know). I appreciate their patience during this process.

Lastly, and most imjjortantly, I need to thank my wife, Alexis, and my daughter, Talia. 

They have both made many sacrifices that enabled me to focus on my work. I look forward 

to giving them the time and attention they deserve.

IV



DEDICATION

For My Dad



TABLE OF CONTENTS

1 Introduction  1

1.1 Problem S ta tem en t....................................................................................................  1

1.2 Goals of Research.......................................................................................................  2

1.3 Overview of D issertation........................................................................................... 2

2 The E xperim ental R E P E A T  H V A C  System  4

2.1 Introduction................................................................................................................  4

2.2 Air S id e ....................................................................................................................... g

2.2.1 Sensors ..........................................................................................................  8

2.2.2 A c tu a to rs .......................................................................................................  8

2.2.2.1 F a n .................................................................................................  8

2.2.2.2 D a m p e rs ........................................................................................ 8

2.3 Water Side ................................................................................................................  10

2.3.1 Sensors ..........................................................................................................  10

2.3.2 A c tu a to rs .......................................................................................................  10

2.4 System Configuration ..............................................................................................  13

2.5 Conclusion.................................................................................................................... 13

3 R eview  o f the D ynam ic M odeling and C ontrol o f Heat Exchangers 20

3.1 Introduction................................................................................................................... 20

VI



3.2 D3aiamic Modeling of Cross Flow Heat Exchangers..................................................20

3.2.1 Introduction........................................................................................................20

3.2.2 First Principle M o d els ..................................................................................... 20

3.2.3 Data Driven M o d e ls ........................................................................................ 24

3.3 Control of Heat Exchangers........................................................................................ 27

3.3.1 Introduction........................................................................................................27

3.3.2 Linear Controllers .......................................................................................  27

3.3.3 Neural Model Predictive C o n tro l ...................................................................28

3.3.4 Neural Internal Model Control ......................................................................29

3.3.5 Other Neural Control Techniques.................................................................. 29

3.3.6 Conclusion ....................................................................................................  30

3.4 Augmented PI C on tro l..................................................................................................30

3.4.1 Introduction....................................................................................................  30

3.4.2 The ‘Stuffing’ Procedure.................................................................................. 31

3.4.3 ‘Stuffing’ Applied to fiFPE'AT L fF A C ......................................................... 32

3.5 Conclusion....................................................................................................................... 32

4 A N onlinear First Order C ontroller 33

4.1 Motivation and Requirements For The Project .................................................... 33

4.2 Controller Development ...............................................................................................34

4.2.1 Introduction........................................................................................................34

4.2.2 ‘Stuffing’ in Continuous T im e .........................................................................35

4.2.3 Partial S tuffing ..................................................................................................36

4.2.4 Error Modulated Partial S tu ffin g ...................................................................37

4.3 Error Modulated Partial Stuffing Applied to a Simple Non-Linear System . . 39

4.3.1 Plant M odel........................................................................................................ 39

4.3.2 PI Control........................................................................................................... 39

4.3.3 Error Modulated Partial Stuffing Control ...................................................40

4.4 Steady State Errors with Error Modulated Partial Stuffing C o n tro l ................... 43

Vll



4.5 Stability of Error Modulated Partial Stuffing Control of a Linear First Order

System ............................................................................................................................. 46

4.6 Conclusion....................................................................................................................... 52

5 Prelim inary E xperim ental Investigation  and D ynam ic M odel D evelop -

m ent o f the R E P E A T HVAC  System  53

5.1 Introduction................................................................................................................  53

5.2 Preliminary Investigation ........................................................................................... 53

5.2.1 Experimental Determination of The Reachable Space................................ 55

5.2.2 Experimental Determination The System G a i n ..........................................55

5.2.3 Experimental Design of a Nominal PI C o n tro lle r ...................................... 55

5.2.4 Formulation of a Steady State Predictive M odel..........................................59

5.3 Dynamic M odel.............................................................................................................. 59

5.3.1 Model C reation ..................................................................................................59

5.3.2 Model Validation In Open lo o p ...................................................................... 63

5.3.3 Model Validation In Closed L o o p ................................................................... 63

5.4 Conclusion...................................................................................................................  68

6 Error M odulated  Partial Stuffing C ontrol A pplied  to  the R E P E A T  H V A C

System  70

6.1 Introduction................................................................................................................  7O

6.2 Behavior of Error Modulated Partial Stuffing on the REPEAT HVAC System 70

6.2.1 Performance........................................................................................................ 70

6.2.2 Steady State Errors ........................................................................................... 73

6.3 Comparison of PI control to Error Modulated Partial Stuffing in Simulation . 75

6.4 Conclusion.................................................................................................................... 76

7 C oncluding R em arks 77

7.1 Introduction................................................................................................................. 77

7.2 Remote Control of REPEAT H V A C ......................................................................... 77

7.3 Model Development ..................................................................................................... 77

viii



7.4 Controller Development .............................................................................................. 77

7.5 Learning.......................................................................................................................... 78

A C hanges to  R E P E A T H V A C  System  80

A.l Repairs ..........................................................................................................................80

A. 1.1 Heat Exchanger................................................................................................. 80

A.1.2 B o i le r .................................................................................................................80

A. 1.3 Air Compressor................................................................................................. 81

A. 1.4 Wire Failure........................................................................................................81

A.1.5 Electrical Control b o a r d ..................................................................................81

A. 1.6 Pneumatic Hose .............................................................................................. 81

A.2 Remote Communication With Control C o m p u te r.................................................. 82

A.2.1 Wireless R epea ters ........................................................................................... 82

A.2.2 Installation of TightVNC and an FTP s e r v e r ............................................. 82

A.2.3 Memory U pgrade.............................................................................................. 82

A.3 New Mechanical Ecpiipment For Remote O peration ................................................ 82

A.3.1 Pneumatic operation of W indows.................................................................. 83

A.3.2 Control Box/Time Delay Relays for e q u ip m e n t...........................................83

A.3.3 Water Pressure regulator .................................................................... 83

B E xperim ental D ata 84

R E FE R E N C E S 88

IX



Chapter 1

Introduction

1.1 P rob lem  S ta tem en t

Many components of heating ventilation and air conditioning (HVi.\C) systems exhibit non-

linear dynamics with variable gain. In addition, it is common practice to control H\'AC 

systems with linear control architectures. In order to ensure stability for all operating con-

ditions linear controllers need to be tuned while the system is in a high gain state. This 

results in sluggish response when the system encounters a lower gain state [14].

Water-to-air cross-flow heat exchangers are common in HVAC systems. In a typical 

application the outlet air temperature is controlled by the flow rate of water through the 

valve. In this configuration a heat exchanger has non-linear dynamics with variable gain [30]. 

When the air flow and water flow are relatively low, a small change in water flow rate will 

produce a relatively large change in the outlet air temperature when compared to the case 

when the air flow and water flow are relatively high and the same change in water flow rate 

is experienced.

Proportional plus integral (PI) controllers are easy to implement and conceptualize. For 

that reason they are the most common form of controller used with HVAC equipment [6]. 

Delnero et al. [8,10,16], developed a controller which augmented a PI controller with steady 

state predictions. Under limited testing the controller performed better than a nominal PI 

controller in both signal tracking and disturbance rejection.

The goal of the research presented in this dissertation was to expand upon the methods 

of Delnero et al. Section 1.2 elaborates on the goals of the research. Section 1.3 provides an



outline for the rest of this document.

1.2 G oals o f R esearch

The purpose of this project was to investigate methods for improving the transient response 

of a system with variable gain. The main focus was to explore the possibility of expanding 

and improving upon the the methods of Delnero et al.

Specifically the goals were to:

1. Make the necessary repairs and upgrades to the experimental setup in REPEAT so it 

could be operated remotely.

2. Develop a dynamic model of the REPEAT HVAC system.

3. Expand the procedure of Delnero et al. to allow for a smooth mixing of control between 

the steady state prediction and the integral controller, rather than a discrete choice 

between the two.

4. Create a control architecture which allows for on-line learning to control the mixing 

between the steady state prediction and the integral control.

(a) Test the control architecture in simulation using the dynamic model developed 

during the project.

(b) Test the control architecture on the REPEAT HVAC system.

1.3 O verview  o f D isserta tion

A description of the experimental REPEAT HVAC system is given in chapter 2. Chapter

3 presents a review of the literature in the areas of heat exchanger modeling and control.

The development of a new nonlinear controller is presented in chapter 4. The results of a

preliminary investigation of the REPEAT HVAC system is given in chapter 5. In addition,

chapter 5 contains the derivation of dynamic models for the system. The controller of chapter

4 is applied to the REPEAT HVAC system in chapter 6. The performance of the controller



is compared to nominal PI control in simulation and on the physical system. Chapter 7 

concludes the dissertation.



Chapter 2

The Experim ental R E PE A T H V AC  
System

2.1 Introduction

The experimental test bed for this project, REPEAT HVAC, is located in the REPEAT 

laboratory at the foothills campus of Colorado State University. This chapter gives a brief 

overview of the equipment and it’s operation. Much of the initial set-up and calibration of 

the system was conducted primarily by Michael Anderson and Christopher Delnero [10], [4], 

and [22].

A picture of the system is shown in figure 2.1. A schematic of of the system is shown in 

figure 2.2. The main components of the system are: a water to air heat exchanger (heating 

coil)^ an electric water boiler^, an air blower driven by a three phase motor  ̂ which is 

powered by a variable frequency drive^, an air flow meter^, a coriolis water flow meter®.

21 row, four pass, 24 inch x 24 inch cross section, 1/2 copper coils, 0.010 inch-thick aluminum fins. 

.̂A.RGO Industries, model 24-240.

^Dayton model 4C770A 

UMlen-Bradley 160S-.4A04XSF1P1 

®Brandt model DSK9211-l-l-l-12xl2.

®VIicro Motion model DS065S239SU sensor paired with an RFT97121PNU transducer.



two air flow control dampers^, an equal percentage three way water flow control valve*, and 

seven resistance temperature detectors (RTD)^. The system is controlled by a computer^*^ 

through the use of MATLAB’s real time target |1|. Table 2.1 summarizes the command 

signals generated by the control computer during experimentation. Table 2.2 summarizes 

the measurement that were recorded by the control computer during experimentation.

Table 2.1: Summary of Command Signals Generated by the Control Computer.
Symbol Description Minimum Value Alaximtim Value
C b s Commanded Blower (fan) Speed 30% 70%
^ h w p Commanded Power To Boiler 0% 100%
C v p Commanded Valve Position 5% 95%
C d r Commander Return Damper Position 0% 100%

Table 2.2: Summary of Signals Recorded by the Control Computer.

Symbol Description
Primary Control 
Signal

Minimum
Value

Maximum
Value

T ae Outdoor Air Temperature Monitored -12°C 9°C
T ar Indoor (Return) Air Temperature Monitored 12°C 24° C
T̂ at Coil Inlet Air Temperature ^ d r 8°C 12°C
Tu,i Coil Inlet Water Temperature C d w p 47°C 52°C

f a

Flow Rate of Air 
Across The Coil C b s 0.17 m*/s 0.71 */s

f w

Flow Rate of Water 
Through The Coil C v p 0.058 L/s 0.57 L/s

Tao Coil Outlet Air Temperature C v p 21°C 39°C

Section 2.2 gives a brief description of the air side sensors and actuators. Section 2.3 

gives a brief description of the water side sensors and actuators. Section 2.4 describes the 

configuration of the system for this project. Section 2.5 concludes the chapter.

Positioned with Landis and Staefa, No. 4 Damper Actuators. 

Landis and Staefa, No. 698-3120 

®Landis and Staefa 1000 ohm.

8

“Dell Optiplex GXlp, 500 MHz Pentium with 512 MB RAM



Figure 2.1: The REPEAT HVAC system located at the foothills campus of Colorado State 
University.



Figure 2.2: A Schematic of the REPEAT HVAC system. The main components of the 
system are shown as well as the location of temperature measurements.



2.2 Air Side

Outdoor air was drawn into the system where it was mixed with return air from inside the 

building. The fraction of outdoor and return air was regulated by pneumatically actuated 

dampers. The mixed stream was heated by a water to air heat exchanger. The air velocity 

was measured by an air flow meter downstream of the heat exchanger. The variable speed 

fan discharged the air. The majority of the air was discharged outside the building, but a 

fraction was discharged into the building.

2.2.1 Sensors

Air temperature was measured in four locations; where the outdoor air enters the system 

Tae, where the return air enters the system Tar, just upstream of the heating coil and 

just downstream of the heating coil 2\„. The flow rate of the air was measured in one 

location downstream of the heating coil /«.

2 .2 .2  A ctuators

The air flow was controlled by three actuators: the fan, the return air damper, and the 

outdoor air damper.

2.2.2.1 Fan

The fan was located down stream of tlie heat exchanger and pulled air through the system 

before discharging most of the air out of the building. The fan was controlled by a variable 

frequency motor controller. The commanded speed of the fan (blower) supplied by the 

control computer is referred to as C^s-

2.2.2.2 D am pers

Theie were air flow conti’ol dampers, the outdoor air damper and the return air damper. 

Figure 2.3 shows a picture of the return air damper in a partially open position. The position 

of each damper was controlled Iry a pneumatic valve. The position of each damper controls 

the mixing of outdoor and return air. The commanded position of the return damper 

supplied by the control computer is referred to as Cdr- The commanded jjosition of the



Figure 2.3: The return air damper in a partially open position. The return air RTD (tem-
perature sensor) is also visible.



outdoor air dampers is referred to as Cde. In this project the return air damper and outdoor 

air damper were electronically ganged by the control computer so that opening the return 

air damper resulted in closing the outdoor air damper. Only the position of the return air 

damper is discussed in the rest of this document.

2.3 W ater Side

Water was continuously pumped through the system by a centrifugal pump, see figure 2.4. 

Water flowed through the boiler where it was heated. The heating elements were controlled 

with PWM via a solid state switch ̂ 0 After leaving the i)oiler the water was split into two 

streams. One stream passed through the heat exchanger where it was cooled by the air. 

The flow rate of the water going through the heat exchanger was measured by the coriolis 

flow meter. The other water stream by-passed the heat exchanger. The two water streams 

recombined downstream of the heat exchanger where a pneumatically controlled valve was 

used to control the flow rate of water that flowed through the heat exchanger.

2.3.1 Sensors

For this project water temperatures were measured in two locations: just ui)stream of the 

heating coil T^j, and just downstream of the heating coil T̂ vo- The flow rate of the water 

through the heat exchanger was measured just downstream by a coriolis flow meter. The 

measured flow rate of water is referred to as /„,. Figure 2.5 shows a picture of the water 

flow meter.

2.3 .2  A ctu ators

The water flow rate through the heat exchanger was controlled by a pneumatic valve. The 

commanded position of the valve supplied by the control computer is refereed to as Cyp. 

Figure 2.6 shows a picture of the water flow control valve. The temperature of the water 

leaving the boiler was controlled by the electric elements in the heater. The commanded

"Chromalox 7750-2-090-1-01
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Figure 2.4: The centrifugal pump continuously circulated water through the system.
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Figure 2.5: The water flow meter measured the flow rate of water through the heat exchanger.

12



power of the heating elements supplied by the control comjiuter is referred to as Cpu,h- 

Figure 2.7 shows a i)icture of the water heater.

2.4 S ystem  C onfiguration

For this project there were eight measurements (r„e, Jar, Tau Tao, T^i, fa, and U )  and 

four control signals (C^r, Cip, Cbs, and Cĥ up) available. Figure 2.8 shows a rough diagram 

of the system and indicates how the signals affect each other. This is a simplified diagram 

and all dependencies are not shown. For example the position of the return air damper has 

a minor affect of the flow rate of air. Depending on how the signals are used several different 

control architectures are possible.

For this project the inlet water temperature and inlet air temperature were controlled by 

individual proportional plus integral controllers as shown in figure 2.9. The dynamic model 

presented in chapter 5 was developed using this system configuration. The desired inlet 

water temperature is referred to as dTyji and the desired inlet air temperature is referred to 

as dl di.

In this project multi-input-single-output (MISO) control of the water to air heat ex-

changer was investigated. A basic schematic of the control architecture is shown in figure 

2.10. The controllers were tasked with generating a control signal, such that the out-

put air temperature of the heat exchanger (Tao) tracked the desired outlet air temperature 

(dTao) in the presence of measured and unmeasured disturbance inputs. For this project 

the flow rate of air was the measured disturbance signal. Fluctuations in the water inlet 

temperature and air inlet temperature are considered unmeasured disturbance inputs since 

the controller does not have access to them.

2.5 C onclusion

This chapter has described the physical system that was used during the project. The system 

had some important characterizes:

1. The plant was open loop stable. Any set of steady inputs (Tai,Ta,i,U,fa) resulted in a 

steady output (Tao)- The value of the steady output was only a function of the steady

13



Figure 2.6: The water flow control valve. The position of the valve determines the flow rate 
of water through the heat exchanger. Valve was positioned by a pneumatic actuator.
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Figure 2.7: The water flowing through the system was maintained at a near constant tem-
perature by the boiler.
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inputs.

2. The plant was insensitive to initial conditions. For a given input sequence, the output 

converged to a single trajectory independent of the initial state of the heat exchanger.

3. There was variable gain between the control input (/„,) and the output {Tao)-

a. The gain was always positive and decreased nionotonically (for fixed and /„)

as the control input increased.

b. The gain between the control input and the output increased as fa decreased.

c. The gain between the control input and the output increased as Ty,i increased.

d. The gain between the control input and the output increased as Tat decreased.

4. The plant was overdamped. Step changes in any input ( T „ * , p r o d u c e d  an OTitput

{Tao) that did not oscillate. The steady state gain from any input to the output was larger 

than the gain for any frecjnency of an oscillating input.

5. For a constant desired outlet temperature {dTao) an integral controller was capable of 

producing zero steady state error.

The current research project required a significant amount of data to be generated by the 

REPEAT HVAC system. To facilitate the data generation, modifications and upgrades were 

made to the ecjuipment to allow for it to be controlled remotely. In addition, the system has 

required several repairs during the course of the project. The details of the modifications 

and repairs can be found in appendix A.

16



Cdr

Tae

Tar

Chwp

Cbs

Cvp

Figure 2.8: A block diagram of the REPEAT HVAC system which shows how the system 
components and signals interact.
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dTai

Tae

Tar

dTwi

Cbs

Cvp

Figure 2.9: A block diagram of the REPEAT HVAC system. During this project the air 
and water inlet temperatures were controlled by independent ]>roportional plus integral 
controllers.
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dTai

Tae

Tar

dTwi

Cbs

dTao

Figure 2.10: A block diagram of the REPEAT HVAC system. The controllers investigated 
in this project commanded the valve in order to control the outlet air temperature. In 
addition to the tracking error, the controllers had access to the flow rate of air across the 
coil.
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Chapter 3

Review of the Dynamic M odeling and 
Control of H eat Exchangers

3.1 In troduction

This chapter provides a review of the research on modeling and control of heat exchangers. 

Section 3.2 reviews techniques for creating dynamic models of cross flow heat exchangers. 

Both first principle and data driven models are considered. Section 3.3 reviews the research 

into the control of heat exchangers. Section 3.4 is devoted to reviewing the work of Delnero 

et al. since that work provides a staring point for the research presented in this document.

3.2 D ynam ic M od eling  o f C ross F low  H eat E xchangers

3.2.1 In trod u ction

The main component of the REPEAT HVAC system that will be investigated in this project 

is the water to air multi-pass crossflow plate-fin heat exchanger. The flow to the heat ex-

changer is directed such that it is in a countercurrent configuration. This section reviews the 

work of other researches in the study of the dynamics and control of similar heat exchangers. 

Section 3.2.2 reviews the work on the development of first principle models for cross-flow 

heat exchangers. Section 3.2.3 reviews data driven models of heat exchangers.

3.2 .2  F irst P rin cip le  M odels

The governing ecjuatioiis of a cross-flow plate-fin liquid-to-gas heat exchanger are comprised 

of the continuity, momentum, and energy equations for each fluid stream as well as the 

Fovirier conduction equation for the core. The initial conditions are the three dimensional

20



temperature, pressure, and flow fields In each fluid and the three dimensional temperature 

field in the core.^ The boundary conditions are the pressure, temperature, and velocity of 

tlie fluids at the fluid ports, as well as tlie temperature of the shroud whicli separates the 

heat exchanger from it’s surroundings. Typically many assumptions about the fluid flow 

and heat transfer in a heat exchanger are made:

1. Botli fluids can be considered incompressible.

2. Viscous dissipation is negligible.

3. Conduction along the flow direction of eacli fluid is negligible.

4. Both fluid flows are predominantly one dimensional.

5. The liquid can be modeled as plug-flow so there is only temperature variation in the 

direction of flow.

6. The tlierinal mass of the gas in the heat exchanger can be neglected.

7. The transverse (in tlie fluid to fluid direction) thermal resistance of the core is negli-

gible.

8. The conductance of the core in the direction of fluid flow is negligible.

9. The heat transfer to or from the environment surrounding the heat exchanger can be 

neglected.

W ith these assumption only three governing equations are required. The equations consist 

of simplified forms of the energy equation for each fluid and a simplified conduction equation 

for the core. The initial conditions become the one dimensional temperature distribution 

in liquid, and in the core. The boundary conditions become the fluid inlet flow rates and 

temperatures. Adultipass heat exchanges, such as the one studied in this project, have

Tf there is a change of phase in one or both of the fluids, the enthalpy of the fluid is needed instead of 
the temperature

21



increased complexity and typically they are modeled by treating each pass separately and 

propagating the solution to subsequent passes.

The assumptions given in this section have been the starting point for many researchers 

that have studied the dynamics of cross flow heat exchangers. No general solution is available 

and researchers have been forced to make additional assumptions and only study a limited 

set of boundary and initial conditions.

Gartner and Harrison developed frequency response methods for for either variations in 

inlet temperature [13], or variations in lic|uid flow rate [12]. The models were experimentally 

validated. The models developed are only valid around di.screte operating j)oints and are 

not appropriate for modeling step changes in any input variables.

Pearson et ah, [28] studied the transient response of a single row tube and fin licpiid 

to gas cross flow heat exchangers to step changes in the licphd flow rate. In the analysis 

the governing equations were combined to a single mixed partial differential equation. The 

response of the outlet gas temperature to a step change in liquid flow rate was approximated 

by the superposition of two first order responses. The gain and time constants can be 

calculated from the results of steady state tests.

Kabelac [18] incorporated variations of heat transfer coefficient with flow rates into a 

linear model and studied the freciuency response of a multi-pass cross flow licjuid to gas 

heat exchanger by breaking the coil into many individual lumped models. The equations 

develoj)ed allow for variations in flow and temperature, but the results presented only show 

the frequency response to variations in liquid flow rate.

Spiga and Spiga [34| used the Laplace methods to study the response of a single pass cross 

flow heat exchanger to step changes in inlet temperature given that the initial (temperature) 

conditions are all uniform. The model provides the entire two dimensional temperature 

profile of the heat exchanger.

Chen and Chen [7] improved the computational time of Laplace transform method of 

Spiga [34]. The model developed is only aj^plicable to variations in inlet temperatures.

Romie F. E. [31] investigated the accuracy of ignoring the thermal mass of the core of 

a cross flow heat exchanger. Variations in inlet temperature were considered. Neglecting

22



the core capacitance greatly increased the speed of calculations and in some cases provided 

accurate results.

Xuan [38] used Laplace techniques to study the effe'cts of flow maldistributions on the 

transient response of multipass crossflow heat exchangers. Inlet temperatures were varied 

and through numerical inversion of the Laplace transforms of the solutions the temperature 

fields in the heat exchanger were calculated. It was concluded that maldistribution of flow 

can greatly reduce the performance of the heat exchanger.

As part of a guide to HVAC equipment the American Society of Heating, Refrigerating, 

and Air-Conditioning Engineers (ASHRAE) |6] reviewed the existing literature on dynamic 

models of coils (in 1998). The review found that all models fit two basic classes: linearized 

transfer function models and simplified lumped models. Furthermore, it was concluded that 

neither of the modeling methods was appropriate for closed loop control evaluations.

In the book |30] Roetzel and Xuan review and summarize the work in the area of heat 

exchanger dynamics (in 1999). They found that typically simulations of cross flow heat ex-

changers are achieved by either Laplace transformation or finite-difference methods. Further 

they found that most of the research had been focused on step changes in inlet temperature. 

They point out that the transient behavior of crossflow heat exchangers is more mathemat-

ically complex than other heat exchangers and thus is less often studied.

Husaunndee et ah, used a lumped first order model of a heat exchanger as part of the SIM- 

BAD |32| toolbox that they developed to simulate building energy systems in SIAIULINK [Ij. 

The coil model allows for both wet and dry conditions, which is important for cooling ap-

plications. The model was compared to experimental data for step changes in fluid flow 

rate.

Alishra et ah, [20] developed a model of a cross flow heat exchanger in which neither 

stream is mixed. Finite difference methods were used to analyze how longitudinal conduction 

in the core and maldistribution of flow affects the transient response of the system. Step, 

ramp, and exponential variations in inlet temperature were studied. In a separate study [21] 

the same researchers studied the response of a cross flow heat exchanger with neither stream 

mixed to step and ramp changes in flow rates and step, ramp, and exponential changes in
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temperature. Both fluid streams were assumed to be fully developed and turbulent. No 

experimental comparisons were made.

Delnero, et ah, [9, 10] presented a solution to the mixed partial differential equation 

given in [28] for the case of a step change in flow rate of liquid from an initial zero flow 

condition. The solution developed and the approximations suggested in [28] were compared 

to experimental data generated from the REPEAT HVAC system.

Syed and Idem [35] used a finite difference method to study the transient response of 

a cross flow heat exchanger to step changes in temperature. Optimum grid size and time 

steps were investigated over a range of dimensionless parameters.

3.2 .3  D a ta  D riven  M odels

Because of the difficulties in formulating a first i)rinciple dynamic model of a crossflow heat 

exchanger many researchers have developed data driven models. These models typically 

include feedforward or recurrent neural networks and the use of non-linear system identifi-

cation techniques.

Wright et ah, [37] generated data from a physical two phase shell tube heat exchanger. 

The flow rate of each stream was randomly changed between two values, 40% and 60% of 

full scale. Two sets of data were generated. In the first set of data the two flow rates were 

uncorrelated, in the second set of data the flow rates were correlated. Box and Jenkins tech-

niques (combined autoregressive and moving averages) were used to create best fit transfer 

functions. The resulting system models are only good around the operating point.

Bittanti and Piroddi [5] created a nominal model of a saturated vapor to liquid heat 

exchanger. The liquid flow rate was taken as the system model and the system output 

was the liquid outlet temperature. The vapor temperature and the liquid inlet temperature 

were modeled as disturbances. The dynamics of the input actuator and output sensor wê re 

incorporated into the system model. The system was sampled at one second intervals. A 

non-linear ARX model was used,

Toui{n) =  /  {Tout{n -  1 ) , . . .  ,7out(« -  4), m(n -  1) , . . .  ,m(n  -  10)) (3.1)

A two hidden layer feedforward neural network was used for /(•) in ociuation (3.1). Through
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trial and error a network with 14 neurons in the first hidden layer and seven neurons in the 

second hidden layer was used. The authors took care to ensure the training data spanned 

the input and output space of the system. Standard backpropagation was used to train the 

network. The accuracy of the predictor model was analyzed with three methods. First the 

one step look ahead output of the predictor was compared to the output of the nominal 

system model. Next the steady state outlet temperature was determined for several flow 

rates. Lastly the settling time of the neural network predictor and the nominal model to 

step changes in flow rate were comj^ared. The neural model achieved best results when flow 

rates were near or above the nominal value. The authors note that the strvicture of (3.1) was 

chosen to be consistent with previous work and the amount of delay time needed depends 

on the operating point of the nominal model, specifically the licjuid flow rate. At low flow 

rates the system responds slower. A longer time history is needed to produce an accurate 

model when the flow rate is low.

Renotte et ah, [29] created a nominal model of a two tank add cooling system. The 

outlet of the system was the temperature of the acid leaving the second tank. The inlet of 

the system was the temperature of the cooling water. The temperature of the acid entering 

the first tank was considered a disturbance input. Equations [3.2,3.3] show the discrete time 

neural state s])ace model that was trained to predict the the output of the nominal model.

x{n) =  Wa b  tanh [VAx{n -  1) + VBu(n -  1) +  0a b ] 

y{n) = WcD tanh [Vcx{n) +  Vou{n) +  Bcd ]

(3.2)

(3.3)

This model incorporates two single hidden layer feedforward neural networks, one for the 

states and one for the output. For training a model was created with two states, five hidden 

nodes in the state neural network, and two hidden nodes in the output neural network. 

The parameters of the model were trained with a simultaneous perturbation stochastic 

approximation (SPSA) procedure with adaptive gain sequences, step rejection, and gradient 

smoothing. The trained model was tested on a series of step changes to the inlet temperature. 

The authors report good model agreement.

Jalili-Kharaajoo et ah, |17] developed a model of a counterflow water to water plate heat
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exchanger. The inlet temperatures of both streams and the flow rate of the cold stream 

were controlled to remain constant. The flow rate of the hot stream was used as the system 

input, and the temperature of the cold stream was the system output. A NARMAX model 

with a one second sampling time was develo])ed. The inputs to the model were the three 

most recent hot water flow rates and the two most recent predictions of the cold stream 

outlet temperature,

foMtin) =  /  (^m(n -  l ),7h(n -  2) ,m(n -  3),fout{n -  l),7;,ut(n -  1)) (3.4)

A feedforward multilayer neural network was used for the function /(•) in equation (3.4). 

Though a feedforward neural network was used, the inputs used by the estimator include 

previous outputs of the estimator so the model is a recurrent neural network. The method 

of network training was not indicated by Jalili-Kharaajoo et ah, but a properly trained 

network was reported to predict the outlet temperature within one Celsius degree for the 

test data that was used.

Tse et ah, [36] constructed a phj^sical air handling unit which contained as the central 

component a water to air heat exchanger. A neural network was used to create a one step 

predictive model of the system. The sample time used was one minute. As shown in equation 

(3.5) the inputs were the current inlet and outlet temperatures of the air and water, and 

the current and most recent flow rates of the air and water. The output of the network was 

the predicted outlet air and water temperatures.

[Tao{n+ l),T^,o(n+ 1)] =  f  [Tai{n),Taoin),Twi{n),Tu,o{n),ma{n), rha{n -  1),

m^{n),ihra{n -  2)] (3.5)

The network had a single hidden layer of 20 nodes. The network was trained with backprop- 

agation and a variable learning rate. The network was trained offline with data generated 

by varying the flow rate of water. Once trained the predictions were compared with the 

actual output of the system for a period of 90 minutes. The error in outlet air temperature 

prediction was typically under 5% for the test data presented.
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3.3 C ontrol o f H eat Exchangers

3.3.1 In trod u ction

This section reviews the control procedures implemented by other researchers. Most, if not 

all, industrial applications of HVAC systems are controlled by single-input-single-output 

(SISO) proportional plus integral (PI) or proportional plus integral plus derivative (PID) 

controllers. Section 3.3.2 reviews the research into the use of PI, PID, and other linear 

controllers applied to heat exchangers. Researchers have begun to investigate the perfor-

mance of more advanced control architectures applied to heat exchangers. The use of neural 

control techniques is of importance to this project. Section 3.3.3 reviews the use of neural 

model predictive control applied to heat exchanges. Section 3.3.4 reviews the use of neural 

internal model control applied to heat exchangers. Section 3.3.5 reviews other research on 

the advanced control of heat exchangers.

3.3 .2  Linear C ontrollers

Hamilton et ah, [15] investigated the PI control of a heating coil for different types of water 

flow control valves. The use of an equal percentage valve reduced the oscillations of the 

system at part load when comj)ared to a system that used a linear control valve.

Anderson et ah, [4,23] developed an linear model of the Repeat HVAC system about a 

single operating point. A robust multi-input-niulti-output (MIMO) controller for the system 

was developed that had better performance than a collection of SISO control loops that is 

typical of HVAC systems.

Alotaib et ah, [2] created a finite difference model of a single pass water to air crossflow 

heat exchanger. A PI controller was designed to control the outlet air temperature by 

adjusting the water flow rate. The ability of the controller to reject disturbances was tested 

at several operating points. The system was very sensitive to disturbances at low air flow 

and low water flow oj^erating points.

Haines and Hittle [14] provide guidelines for tuning PI controllers for HVAC equipment. 

The suggested procedure is to place the system in it’s highest gain state and tune the 

controller to provide a critically damped response to step changes in commanded output.
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The authors suggest that self tuning and/or adaptive controllers will likely by part of the 

next generation of HVAC control systems.

3.3.3 N eural M odel P red ic tiv e  C ontrol

In model predictive control a model of the system is created and then used as a dynamic 

predictor for the system. The output of the controller is found by optimizing the output 

of the model with respect to a cost function. This section reviews the use of neural model 

predictive control procedures applied to heat exchangers

him and Ling [19] investigated the use of generalized predictive control on a shell and 

tube heat exchanger. Sampling times from three to fifteen seconds and prediction horizons 

of one to three minutes were used. In each case a third order plant model was assumed. 

Good control required both a small sami)ling interval and a large prediction horizon. This 

results in a large number of samples and a computationally complex optimization problem.

Bittanti and Piroddi, [5] investigated several neural controllers based on minimum vari-

ance and generalized minimum variance inverting controller methods. Steady state off-set 

errors occurred for both classes of controllers. To overcome this a variable gain integrator 

was placed in parallel to the neural controller. The gain on the integrator decreased as the 

magnitude of the error increased. For large errors (which would be present just after step 

disturbances) the integrator had a minimal affect on the control signal.

Renotte et ah, |29| used a neural state space model (see section 3.2.3) as a process 

simulator for a model predictive controller. The model predictive optimization procedure 

was used to train a neural controller in an actor-critic architecture. The controller was 

evaluated on a simulated liquid to liquid heat exchanger.

Jalili-Kharaajoo et ah, [17] compared generalized predictive control of a heat exchanger 

to a neural network based predictive controller. The neural network based control provided 

somewhat better control than the standard generalize predictive controller for the limited 

sinmlation results presented.

Pappa et ah, [26] compared the performance of a standard PID controller and a neural 

model j)redictive controller in the realtime control of a counter flow heat exchanger. The
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input to the neural controller consisted of the ten previous control signals and the ten pre-

vious outlet temperatures. The sampling time was one second. The neural model predictive 

controller produced quicker response with less overshoot than the PID controller.

3.3 .4  N eu ral Internal M odel C ontrol

Internal model control relies on the development of an model of the inverse dynamics of 

the system. If a perfect inverse model is available then only feedforward control is needed. 

In practice a feedback controller is used in parallel with the inverse model to correct for 

modeling errors. The section reviews the use of neural internal model control procedures 

applied to heat exchangers.

Diaz et ah, [11] trained a multilayer neural network to invert the dynamics of a cross 

flow heat exchanger. The neural network was used to augment the output of PI and PID 

controllers. The PI and PID controllers were tuned for states with medium gain. For high 

gain states the PI and PID controllers resulted in large oscillations in the output signal. The 

augmented controller was able to reduce the amplitude of the oscillations.

3.3.5 O ther N eural C ontrol T echniques

This section reviews neural control techniques applied to heat exchangers that do not ht the 

model predictive control nor the internal model control architecture.

Pappa and Shanmugam [27] created a neural model of a heat exchanger. The model 

was used make predictions of the one step ahead outlet temperature. The actual error 

and the predicted error were used as inputs to two identical PID controllers whose outputs 

were combined to provide the control signal to the plant. The use of the predicted outlet 

temperature increased the controllers ability to reject disturbances.

Hepworth and Dexter [33[ tested the performance of PI control on different operation 

points of a industrial heating coil. The controller was tuned at a high gain state and 

performed sluggishly in low gain states. To improve the performance a feedforward radial 

basis function (RBF) network was trained as a predictor of the OTitput that would produce 

zero steady state errror. and then used to augment the control action of the PI controller. 

The RBF augmented controller was able to provide quicker response in low gain states, but
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some undesirable overshoot was encountered.

Anderson et ah, [3| building on [33] compared PI control to two neural control systems 

on a numerical model of a heat exchanger. In the first system investigated a neural network 

was trained to predict the steady state response of a PI controller over the range of possible 

set point and disturbance inputs. The network was then used to augment a proportional 

controller. This method produced better performance than a standard PI controller. In the 

second investigation an actor critic reinforcement learning agent was trained on the numerical 

model. The reinforcement learning agent produced significantly better performance than a 

standard PI controller.

Dehiero et ah, [8, 10, 16] building on ]3] augmented a PI controller with steady state 

predictions. The augmented controller had better performance for both step changes in the 

desired output and step changes in disturbance inputs. These methods are the starting point 

for the current project and are described in detail in section 3.4.

3.3 .6  C onclusion

This section has review the research on the control of heat exchangers. The next section 

gives full details of the control method developed by Dehiero et al. [8,10,16].

3.4 A ugm en ted  P I C ontrol

3.4.1 In trod u ction

This section provides details of the augmented PI controller presented by Dehiero et al. 

[8,10,16]. The control procedure combined a PI controller with a feedforward neural network. 

The output of the neural network was not simply added to the output of the PI controller to 

create the control signal. Instead, the neural network was used to adjust the integral term 

of the PI controller. Section 3.4.2 provides details of the controllers operation and some of 

the motivation for its development. Section 3.4.3 provides an overview of how the procedure 

was applied to the REPEAT HVAC system and presents a summary of the performance of 

the procedure.
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3.4 .2  T he ‘Stuffing’ P roced ure

Proportional plus integral (PI) controllers are easy to implement and are commonly used 

in many control a]:>plications. The output of a PI controller consists of two terms, one term 

that is proportional to the current error and one term term that is proportional to the time 

integral of the error. Equation 3.6 is a discrete time imjdementation of a PI controller, where 

0{7i) is the output of the controller for time step n, e(n) is the error for time step n, Kp  

and A'/ are constants and At is the sampling time of the controller.

t
0{n)  =  Kpe{n) +  K ,  Y .

3=0

(3.6)

When a PI controller is used on a variable gain system the controller must be tuned (the 

values Kp  and 7\'/ are chosen) while the system is in the highest gain state it encounters. 

Tuning at the highest gain ensures stability over the entire operating range, but leads to 

slow response when the system is in a low gain region of it’s state sj^ace. In low gain regions 

errors decay slowly while the integral term builds up.

In [8, 10, 16] Delnero et al. expanded on the work of |33] and [3j. The goal of the 

procedure presented by Delnero et al. was to improve the transient response of systems that 

have variable gain. Instead of waiting for the integral term of the controller to build up, the 

neural network made a prediction of what the steady-state value of the integral term would 

be and replaced the current value ol the integral term with the predicted steady state value 

of the integral term. Replacing the current integral term with the predicted steady state 

value was referred to as ‘stuffing’.

Equations 3.7 and 3.8 show the output of the controller when the integral is stuffed at 

time step u q . net (no) is the predicted steady state value of the integral for the conditions 

experienced at tiQ.

O(no)  =  Kpe(no) + net{rio)
n

O(n>no)  =  Kpe(n) + K]  E e(j )At  + net (no)
j = n o + l

(3.7)

(3.8)

31



If the integrator is ‘stuffed’ again at time step nj the output is given by equation 3.9.

n

0{n  > U]) =  Kpe{n) + Kj  ^  e{j)At + net{ri]) (3.9)
j = n i + l

3.4 .3  ‘Stuffing’ A pp lied  to  R E P E A T  H V A C

Delnero implemented the ‘stuffing’ procedure on the REPEAT H \’AC system. The hot 

water valve position was the control variable. The desired air discharge temperature was 

the commanded input. The measured air discharge temperature was the output. The inlet 

air temperature, the outdoor air temperature, the inlet water temperature, and the flow rate 

of the air where considered disturbance inputs.

To obtain data for training the system was controlled with a PI controller. The PI con-

troller was tuned at the high gain state of the system (low air flow and low water flow). The 

system was allowed to reach steady state for 100 combinations of command and disturbance 

inputs. This data was used to train a neural network to predict the steady state output of 

the integral term of the controller.

A trained network was used to ‘stuff’ the integral term whenever the predicted steady 

state value changed by more than 3% of the value previously used to ‘stuff’.

The response to stej) set point changes and step changes in the disturbance inputs was 

measured for both the ‘stuffing’ procedure and a PI controller. In both cases the ‘stuffing’ 

procedure produced better transient response than the conventional PI controller.

3.5 C onclusion

This chapter has provided a review of other researchers work in the area of dynamic modeling 

and control of heat exchangers. The work of Delnero et al. is highlighted since it is the 

staring point for the research presented in this dissertation.
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Chapter 4

A Nonlinear F irst O rder Controller

4.1 M otivation  and R equirem ents For T he P roject

As stated in section 1.2 the goal of this project was to expand the methods of Delnero 

et al. [8,10,16]. In this section potential areas of improvement are identified and design 

requirements are formulated.

.\s stated in section 3.4 the ‘stuffing’ procedure achieved better performance than a 

standard PI controller when the REPEAT HVAC system was subject to step changes in 

set point or step changes in disturbance injiut. However, there were some aspects of the 

procedure that can lead to undesirable performance:

1. There is no way to overcome a poorly trained steady state i)redictor. If there is a 

region of the input space that produces poor steady state predictions, the integral 

will be ‘stuffed’ with an inaccurate value every time that region of the input space is 

encountered. This will lead to poor performance.

2. The decision about when to stuff is made solely on the output of the steady state 

predictor. Obviously when a poorly trained network is used this can lead to problems, 

but undesirable behavior can occur even when the steady state predictor is reasonably 

accurate. W hen the inputs to the steady state predictor vary continuously (rather than 

in steps), the output will also vary continuously. If the disturbances to the system are 

slowly varying, the nominal PI controller can keep the system error small even as the 

value of the steady state predictor moves away from the value that was last ‘stuffed’. 

When the change in the steady state predictor value reaches the 3% threshold, the
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new value is stuffed. Since the steady state prediction will never be j^erfect, ‘stuffing’ 

when there is low system error will likely cause a change in the control signal and lead 

to an increased system error.

3. The output of the steady state predictor is only used at discrete instants in time. If 

the value of the steady state predictor changes continuously on it’s way to a value 5% 

from the last value ‘stuffed’, the integrator will be ‘stuffed’ once the value has changed 

by 3% even though the value that is a full 5% change would be more appropriate.

These potential areas of improvement lead directly to the design requirements for this 

project:

1. Include some form of on-line learning to overcome (or at least ignore) a poorly trained 

steady state predictor. (The learning problem must be formulated so that learning 

can be accomplished in a reasonable amount of time.)

2. Incorporate state and/or output feedback into the ‘stuffing’ decision process.

3. Allow for continuous input from the the steady state predictor.

4.2 C ontroller D evelopm ent

4.2.1 In trod u ction

This section presents the development of a hrst order non-linear controller. The controller 

presented is a modification of the augmented PI controller developed by Delnero et ah, 

[8,10,16]. Section 4.2.2 presents a continuous time formulation of the ‘stuffing’ procedure. 

Section 4.2.3 expands the procedure to allow for mixing between the steady state prediction 

and integral action. Section 4.2.4 introduces the error modulated partial stuffing control 

architecture in which the magnitude of the system error controls the mixing between the 

steady state prediction and integral action. Section 4.3 presents a preliminary investigation 

of the control architecture developed in section 4.2.4 through the control of a simple non-

linear system. Section 4.4 contains an investigation of the steady state properies of the 

controller developed in the chapter. Section 4.6 concludes the chapter.
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4.2 .2  ‘Stuffing’ in C ontinuous T im e

This section presents a continuous time formulation of ‘stuffing’ procedure used by Delnero 

et al. Equation (4.1) is the governing equation for a classic proportional plus integral (PI) 

controller, where u(t) is the control signal generated by the controller, e{t) is the error signal 

that is used as the input to the controller, Kp is the projjortional gain constant, and is 

the integral gain constant.

u{t) = Kpe{t) + Ki e{T)dT (4.1)

Taken together, equation (4.2) and equation (4.3) are a state-space realization of a PI 

controller. In this case the state, 9, is equal to the integral of the error signal multiplied by 

the integral gain constant.

(10 {t)
(it =  K M t)

u(t) =  9{t) Kpe{t)

(4.2)

(4.3)

Delnero et al. created a control strategy that used a steady state prediction to augment 

a PI controller. Equation (4.4) is a continuous time version of this controller. At discrete 

instants in time the state of the controller {0) is replaced by an estimate (0ĝ ,) of the steady 

state value that the state will have, fgtuff denotes the most recent time that the steady state 

prediction of the controller state was used.^ The estimate is based on the measurements of 

disturbance inputs (including the desired system output) at fgtuff-

u{t) = Kpe{t) -h K, I  e{T)(h -f 0̂ s (tstuff) (4.4)

Examination of the terms in equation (4.4) allows for a different interpretation of the ‘stuff-

ing’ procedure. The second term can be thought of as the state of the controller, 0, and the 

third term can be thought of as an additional input to the controller. At fgtuff the state of 

the controller is set to zero and the value of the input, ^ss, is changed.

'E quation  (4.4) is only valid for t >  t stu ff- Initially =  0.
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4.2 .3  P artia l Stuffing

In the original ‘stuffing’ procedure the value of the integrator is instantly replaced by the 

steady state prediction when the signal to stuff is received. This section presents the de-

velopment of ‘partial stuffing’ procedure. Instead of having a binary ‘stuff’/ ‘do not stuff’ 

signal, a continuous ‘stuffing signal’ is used. The ‘stuffing signal’, 7 (t), controls how quickly 

the state of the controller moves toward the steady state prediction.

To begin the development consider equation (4.5) which is a slight modification of equa-

tion (4.4),

u{t) = Kpe{t) + R'i f  e{T)(lT + 4s {t) (4.5)

In equation (4.5) the current output of the steady state predictor, 4s (^), is used rather than 

the value at the last ‘stuffing’ instant. The control law of equation (4.5) is continuously 

‘stuffing’, but resets the integrator at discrete times, thus the most current value of the 

steady state predictor is always used. Equation (4.5) satisfies reciuirement 3 of section 4.1.

To implement partial stuffing the binary decision to ‘stuff’ needs to be replaced with a 

‘stuffing signal’, 7(<), whicT controls how (giickly the state of the controller moves toward 

the steady state prediction. Equations (4.6) and (4.7) are a state space realization of the 

control law.

u{t) = 9{t) + Kpe{t) (4.6)

dO{t)
dt = /Vje(f)-h 7 (t) 0ss{t)~0{t) (4.7)

The state of the controller is determined by the combined effect of integrating the error 

and ‘decaying’ towards the steady state })rediction. 7 (f), is the inverse of the instantaneous 

time constant of the decay. When 7 (t) is zero the state tracks the integral of the error, as 

7 (t) apjjroaches infinity the state tracks the value of the steady state predictor. Equations 

(4.8) and (4.9) show the standard matrix form of the state space representation of the control 

law.

de{t)
dt

u{t)

[-7  it)] [(9(t)] + [ Ki 7 {t)

[1] [40] + [ A-p 0 ]

e{t)
4s (0

e{t)
[ L i t )

(4.8)

(4.9)
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Figure 4.1 shows the block diagram of a partial stuffing controller.

I f ') is assumed to be a constant, a transfer function representation of the control law can 

be formulated. The transfer function from the system error to the control signal and from 

the steady state prediction to the control signal are shown in equations (4.10) and (4.11), 

respectively.

U { s )

E{s)
U{s)

— A„ + : _  EpS + (Aj + y Ap)
6' +  7 s + 7

s + 7

(4.10)

(4.11)

Because of the time variation in 7, the control law is not LTI and the transfer functions 

can not be used to model the system, however some insight into the behavior of the control 

law can be made by examining the transfer functions. Eciuation (4.11) acts like first order 

low pass filter with unity steady state gain between the steady state predictor and the the 

control signal. The second term (in the middle expression) of equation (4.10) is also a filter. 

Since it’s steady state gain depends on it’s time constant, it behaves as a leaky integrator.

4 .2 .4  Error M od u lated  P artia l Stuffing

Figure 4.2 shows a block diagram of a control architecture in which the ‘stuffing signal’ 

is created by multiplying the magnitude of the system error by a gain, Kg. ’With this 

controller the steady state predictions have more influence when the system error is large 

and less influence when the system error is small. Eciuations (4.12) and (4.13) show a state 

space representation of this controller.

d0
=  KiC + Kg\e\{0 — 9)dt

ti =  ApC -p 0

(4.12)

(4.13)

The architecture of figure 4.2 and equations (4.12) and (4.13) is referred to as error 

modulated partial stuffing throughout the rest of this dissertation.
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Figure 4.1: The block diagram of a ‘partial stuffing’ controller, e is the system error, u 
is the output of the controller. 9 is the state of the controller. 9̂  ̂ is the pr<'dicted value 
of the state of the controller that will produce zero error at steady state, y is the ‘stTiffing 
signal’ which controls the degree to which the output of the controller follows the steady 
state predictions.

0SS

->» u

Figure 4.2; The block diagram of a error modulated ‘])artial stuffing’ controller, e is the 
system error, u is the output of the controller. 9 is the state of the controller. 9gs is the 
predicted value of the state of the controller that will ju-oduce zero error at steady state. 
The magnitude of the system error and the gain A'e control the degree to which the output 
of the controller follows the steady state predictions.
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4.3 Error M od u la ted  P artia l Stuffing A pp lied  to  a S im ple  
N on-L inear S ystem

4.3.1 P lan t M odel

In this section the tracking performance of an error modulated partial stuffing controller 

applied to a simple nonlinear second order plant is investigated. Equations (4.14) and (4.15) 

describe the nonlinear second order system that is used as the plant in this investigation.^ 

f{t)  is the system input and x{t) is the system output.

f{t) = x + 2x + -k{x)x

k{x) — X for X > 0.1

(4.14)

(4.15)0.1 for < 0.1

For this investigation the plant operates such that typically 0.1 < x < 1.2. Around a steady 

state operating point the system behaves as a linear second order system. The value of the 

output, X, at the operating point determines the local dynamics. Table 4.1 shows the second 

order characteristics of the system at the extremes of the typical operating range. ATs is the 

steady state gain, is the natural frequency, and is the damping ratio. For most of the 

operating range the system behaves locally as an overdarnped system.

Table 4.1: Parameters o

4.3 .2  P I C ontrol

•u(t) =  Apg(t) + A'j /  e (r)d r (4.16)
Jo

As a baseline a PI controller, equation (4.16), was designed to control the non-linear plant. 

Selecting appropriate values of the controller gains Kp and A; involved tradeoffs in per-

formance around different operating points. Reasonable performance was achieved for the

^Physically the plant could represent a mass-damper-spring system with a hardening spring.
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entire range of operating points for Kp = 1 and Ki = 0.25. Figure 4.3 shows the normalized 

step response of the plant model linearized around the operating points a: =  0.1 and x — 1.2.

Simulink [1] was used to test the performance of the nominal PI controller. The system 

was required to track a series of step changes in desired ontinit. Each step change had 

a duration of 100 seconds and there were a total of 100 step changes in the simulation. 

The value of each step was uniformly chosen from [0.1,1.2]. The RMS error for the entire 

simulation was 0.064 when the system was controlled by the nominal PI controller.

4.3 .3  Error M od u lated  P artia l Stuffing C ontrol

The error modulated partial stuffing controller of section 4.2.4 was used to control the system 

for values of Kg ranging from one to ten. For each value of Ke  the system was presented the 

same sequence of step changes used to test the nominal PI controller. Since the plant model 

is known, it was possible to calculate the control signal recpiired to produce zero steady 

state error. At each time step the actual steady state control signal plus an error chosen 

uniformly from ±20% was presented to the controller as the steady state prediction signal. 

For each value of Kg the exact same sequence of step inputs and the exact same sequence 

of steady state predictions were used.

Figure 4.4 shows the trajectory of the system for two consecutive steps of the simulations 

for Kg =  1 and Kg =  10. For the first step shown there happened to be a significant amount 

of error in the steady state prediction. For Kg =  10 there was a balance between the affect 

of the steady state prediction and integral action which resulted in a large steady state error. 

When Kg = 1 the system was less affected by the steady state prediction and the controller 

brought the system to zero steady state error. For the second step shown in figure 4.4 the 

steady state prediction was more accurate and a Kg =  10 resulted in a fast response with 

zero steady state error. Kg =  1 also resulted in zero steady state error, but the response 

was slower.

Figure 4.5 shows the calculated RMS error for each value of Kg used. A value of Kg = 3 

produced the best results over the entire simulation. For this value of Kg there was a balance 

between speed of resjjonse and steady state error over the entire input sequence. The best
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Figure 4.3: Normalized step response of the linearized system model under nominal PI 
control for two operating points. Around x =  0.1 the plant gain is high, the overshoot is 
just over 20%, and the settling time is about 13 seconds. Around x = 1.2 the ])lant gain 
is low, there is no overshoot, and the settling time is just over 25 seconds. Increasing the 
controller gains would increase the overshoot for the high gain case, decreasing the gains 
would increase the settling times for both the high gain and low gain cases.
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Figure 4.4: Response of the system for two different values of Kg. For the first step there 
was a large error in the steady state prediction and the smaller value of Kg produced less 
error. For the second step there was less error in the steady state prediction and the larger 
value of Kg produced less erro
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value of A'e depends on the system and on the input sequence. If the input sequence had 

consisted of longer duration steps then steady state errors would have contributed more to 

the average error experience during each step. Smaller values of A'g which produce little or 

no steady state error would have performed better.

4.4 S teady S ta te  Errors w ith  Error M od u la ted  P artia l Stuffing  
C ontrol

One of the main reasons integral control has such widespread appeal is because it ensures 

zero steady state error for a wide class of linear and non-linear systems. The experiment of 

section 4.3.3 has shown that error modulated partial stuffing control can introduce steady 

state errors. In this section the magnitude of the steady state error is analyzed.

(le
dt = KiC + Kg\e\{0 — 0) (4.17)

u = KpC 4- 9 (4.18)

y = f(u) (4.19)

Equation (4.17), (4.18), and (4.19) are the governing equations of a an error modulated 

partial stuffing controller connected to system, / .  y is the outi)ut of the system and let r 

be the reference tracking input. Then the system error becomes e = r — y. If for a steady 

input r = the combined system is at steady state then all the signals have steady state 

values and the derivative of the state of the controller is zero. The steady state equations 

become:

0 -f- Agle^^^K  ̂ ^ss)

V ss  —

(4.20)

(4.21)

(4.22)

Where A;„ is the steady state gain of the controlled system / .  In equation (4.22) y*., can 

be replaced by r — egg and equation (4.20) can be used to replace Ugg, resulting in:

ŜS dss I’̂ Ssil'^pSgg -f (̂ gg) (4.23)
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Figure 4.5: RMS error of the entire simulation for different fixed values of the gain K^. A 
value of A'e =  3 minimized the error over the entire simulation.
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Solving for 0g!

= ŝs Css -^ss-^pCss

Substituting equation (4.24) into equation (4.20) and rearranging terms,

1 4“0 IS-fCss 4“ I Css I 0
K s s

4“ |Cg5 jc^^

(4.24)

(4.25)

For zero steady state error ŷ s =  Tss so the term =  îss|e,,.,=o is the control

signal that will produce zero steady state error. Since there is no proj)ortional term when 

there is zero error,
r.
A's

= 0* (4.26)

W here 0* is the value of the state of the controller that produces zero steady state error for

the steady input r^g. The magnitude 0 - 0 * is the accuracy of the steady state prediction.

Substituting 0* and Rewriting (4.25),

0 A j Cgg 4“ A e I Cg (̂ 0 — 0*^ + Ae|egs|egg 1 4- AggAp
Ah (4.27)

Equation (4.27) is satisfied if Cgg =  0. There are two additional solutions. One for Cgg > 0, 

and one for Cgg < 0. For the case of positive steady state error equation (4.27) can be 

rewritten by remo\4ng the common factor of Cgg from each term.

0 =  K, + A'e (̂ 0 -  0*) +  AeCg,, 1 +  AggAp

Solving for Cg

--
0 - 0 * )  - K,

(4.28)

(4.29)

Noting that Cgg is assumed to be positive in equation (4.29), the equation is inconsistent if 

This means that if the steady state prediction is accurate enough or the 

gain Ag is small enough compared to A',- there will not be positive steady state error. 

Analogous algebra for the case of Cgg-g < 0 gives,

^ss —
l h  + Kp

(4.30)

Again the ecjuation is potentially inconsistent. If — 0*^ ^  there will not be negative 

steady state error if the steady state prediction is accurate enough or if the gain Kg is small
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enough when compared to lU. By taking magnitudes in equations (4.29) and (4.30), the 

equations can be combined. Together they put a bound on the steady state error based on 

the accuracy of the steady state prediction and the gains of the controller.

e .J  =  ----^
+ Kf7?----r Jip Ap

AS

In addition, as stated in (4.32) if the magnitude prediction error is small enough there will 

not be positive or negative steady state error.

(4.31)

6 - d ^ <
a ;

Positive and negative steady state error not possible. (4.32)

It is important to note that care was taken when analyzing the system error. Though 

bounds were developed for the magnitude of the steady state error the analysis required an 

assumption that steady state was reached. This assumption may not be valid for all systems 

and all choices of gains. For a given system it is quite possible that the combination of the 

controller and the system is unstable, or exhibits cyclical or aperiodic behavior.

4.5 S tab ility  o f Error M od u la ted  P artia l Stuffing C ontrol o f  a 
Linear F irst Order S ystem

In this section the stability of a first order linear system controlled by an error modulated 

partial stuffing controller is analyzed. Equations (4.33) and (4.34) are the state space rep-

resentation of a first order plant, y is the output of the plant, the control signal u is the 

input to the plant, x is the state of the plant, K  is the steady state gain of the plant, and 

T is the time constant of the plant.

dx 1

y =  K x

(4.33)

(4.34)

Since the output is proportional to the state it is convenient to combine equations (4.33) 

and (4.34) into a single equation as shown in equation (4.35).

dy 1 _ .  .
(4.35)
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The governing equations of the error modulated partial stuffing controller, (4.12) and 

(4.13), and the linear plant, (4.35), can be combined to form the coupled differential equa-

tions that describe the composite system of the controller and the plant.

(10
=  A',(r -  y) + Ke\r -  y\ (̂ 0 -  0^

^  =  i  {A' [Ap(r -  y) + 0] ~ y}

(4.36)

(4.37)

At equilibrium the state variables {0 and y) and the input r will have steady-state values 

(f ŝs, yss, and r^^), and the time derivatives of the state variables will be zero.

0 = K i (r,„ -  yss) + I<e\r.ss -  y s s \ [ S -  0ss

0 — ss — ijss) + f̂ ss] — ?yss}

(4.38)

(4.39)

There are three potential equilibrium conditions. If the steady state output, yss, is ecjual to 

the input, r,.,, then equation (4.38) is satisfied independent of 0 and equation (4.39) can be 

used to solve for 0ss- For this equilibrium condition the integral control has overcome the 

disturbance caused by the steady state prediction and driven the system error to zero. A 

second possibility is that contribution from the steady state predictor and the integral control 

are equal and opposite so the system reaches a steady state with a non-zero error. Because 

the absolute value of the error is used in equation (4.38), it is possible that equilibrium will 

exist for a positive error and/or a negative error.

For convenience, a change of variables is used so the new state variables have a value of 

0 at the equilibrium point.

0 = 0 -  0SS

y = y -  yss
j. d0
’ ' - K  = A  ( [ r

,  dy

(4.40)

(4.41)

(l/ +  yss)| (^ V ^ ss)]  (4.42)

- { y  + yss) j  (4.43)

Equations (4.42) and (4.43) represent the system dynamics in the new variables y and 0. The 

eigenvalues of the Jacobian of the system equations are used to determine the stability of the
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potential equilibrium points. The stability criteria of the equilibrium points for the three 

different cases of steady state error follow. For the first case the Jacobian is not continuous 

so stability is not strictly proven. The result shown is for illustrative purposes.^

Case 1: e =  0

Solving equations (4.38) and (4.39) for the case when j/ss =hss results in,

yss =  r 

^ss = yss
K K

(4.44)

(4.45)

Where 0* as defined in section 4.4 is the value of the control signal which will result in zero 

steady state error for the steady input rgg. Substituting equations (4.44) and (4.45) into 

equations (4.42) and (4.43) results in

h  = 

f2 =

dO
dt

dt

= - K i { y )  + Ke\ij 

1

0 -

K

Forming the terms in the Jacobian,

d0 
5 /i
O'oy

do
<9/2
dy

= 0

^  =  - K ,  + sign (y) K

0 + r ) (4.46)

*) -( .y  +  r)} (4.47)

(4.48)

e ( 0 - 0*) (4.49)

K
T

K. I\.n 1

(4.50)

(4.51)

^Typically the Jacobian is evaluated at the equilibrium point, but the use of the absolute value function 
in the governing equations introduces the possibility of a discontinuity at the equilibrium point so, where 
needed, the Jacobian is evaluated in the limit as the state variables approach the equilibrium point. Note 
that after the change of variable the equilibrium point is always the origin.
/  \  '

lirii' f
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Calculating the eigenvalues of the Jacobian,

A Ap +  10 =  (0 -A ) -  A - —Aj + sign (y) A'e (̂ 0 -  0*^
- 7 v '
- r

T  T

(4.52)

(4.53)Ki -  sign (y) (o -  9*^

Both eigenvalues are negative (and the eqnilibrium point is staWe) if the last term in equation 

(4.53) is positive.

0 < Ki — sign (y) AA \ 9 — 9*j (4.54)

sign (y) [9 -9*'^ < A (4.55)

sign (y) {9 - 9*'  ̂ < e - 9 *  < ~ (4.56)

Equation (4.56) represents the stability criteria for equilibrium with zero steady state error.

The quantity 9 - 9 * represents the error in the steady state prediction. There is a stable 

equilibrium point with zero steady state error provided that the prediction error is small 

enough or the gain Ag is small enough compared to AV 

Case 2: e > 0

Solving equations (4.38) and (4.39) for the case r — ygs > 0 results in,

9ss = 9 + ~Ap
K,K  [Apr +  9ss] Apr + 9 + p. 

.!/ss =  -----  —A A n + 1 A p + A

Substituting eqnations (4.57) and (4.58) into equations (4.42) and (4.43) results in.

. d9 ,
9 + K,

- y  +
^ ('^ +fe)
Ap + jr

r dy K
at T -y ( Ap + — ) +  0

Forming the terms of the Jacobian,

^  -

d9 '

dy 

89
d h
dy

AA 111hX
A p +

= 0 

_  K
T

A I\ p H- 1

(4.57)

(4.58)

(4.59)

(4.60)

(4.61)

(4.62)

(4.63)

(4.64)
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Determining the eigenvalues,

0 = — _A  1 ( J S ] 1 p± 1 _ x (4.65)

/C
0 =  Â  + 

K K,

0* - { e  + Ke)
I^p + T;

+
KK„  +  1

e* - { e  +
K, (4.66)

Both eigenvalues will be negative provided that the second and third term of equation (4.66) 

are positive. Since the second term can only be negative if the third term is negative, the 

third term can be used as a stability check.

0 (4.67)

Ki < 0* - 0 (4.68)

So there is stable equilibrium point with positive steady state error (output is lower than 

reference) if the steady state prediction is too small.

Case 3: e < 0

Solving equations (4.38) and (4.39) for the case r -  yss < 0 results in,

^ss =  ^ —
Kr

yss =
K  [Kpr +  0ss] '̂pr +  ^ -  f e

A Ap +  1 Ap +

(4.69)

(4.70)

Substituting equations (4.69) and (4.70) into equations (4.42) and (4.43) results in.

„ dO

dy K
T

- y  ( Ap +  — ) + 0

- y  +
]± LKe.

Kp + ^
(4.71)

(4.72)
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Forming the Jacobian,

df,
lim ---r- =  —

0, y^0 do

1. m = 0
e,g^o (jy
y df2 K

do ^
y df2hni =

0,ij^o oy

«• -  ( « -

Ap +  A

A A p + 1

(4.73)

(4.74)

(4.75)

(4.76)

Determining the eigenvalues,

' a ;
0 =

e* - i o -

Ap +  ^
- A l l  J 1 ]S p± 1 -  A (4.77)

0 =  Â  +

a ' a ;

[ ( ^ - f e ) - +
A A „ +  1

7v p +

^ ^  1 -  0*

Again the third term can be used as the stability criterion.

K ,

(4.78)

0 < ( ^ - ^ 1 - ^

/ c
< e - o *

(4.79)

(4.80)

So there is stable equilil)rium point with negative steady state error (output is more than 

reference) if the steady state prediction is too large.

Talde 4.2: Summery of Equilibrium Point Stability Criteria

Case Stability Re(}uirement

e =  0 AVRe >  -  e*\

e > 0 A'j/AT < 0 - 0 *

e < 0 K,/Ke <0* - 0

Table 4.2 summarizes the stability requirements for the three potential equilibrium 

points. The stability conditions are mutually exclusive and cover all possible parameter
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values and system inputs, except when

\d-0*\ = ^
I\.f> (4.81)

In practice equation (4.81) can not be exactly satisfied. Therefore, when an error modulated 

partial stuffing controller is apjdied to a linear first order system there is always a single 

stable equilibrium point. The existence of a single stable equilibrium jjoint does not guarantee 

the system is stable. It possible for the combined system to exhibit periodic, aperiodic, or 

unstable behavior.

4.6 C onclusion

The error modulated partial stuffing controller presented in this chapter allows for smooth 

mixing between the use of steady state predictions and integral action. In addition the 

controller incorporates state information, in the form of the error signal. The use of the 

signal error reduces the effect of the steady state predictions when the nominal PI control 

is able to keep the system error low. The controller satisfies project goal three from section 

1.2 and design requirements one and two from this chapter. Sections 4.4 and 4.5 provide a 

starting point for the stability analysis of error modulated partial stuffing control, but do 

not provide a proof of stability.
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Chapter 5

Prelim inary Experim ental 
Investigation and Dynamic Model 
Development of the R E P E A T H V A C
System

5.1 In troduction

The REPEAT HVAC system investigated in this projects consists of two major components: 

the hot water control valve and the water to air heat exchanger. This chapter describes the 

development of models for both components. Before models could be developed it was 

necessary to perform a preliminary experimental investigation of the system. Section 5.2 

presents the results of the preliminary investigation including the development of a steady 

state predictive model. Section 5.3 presents the development of the dynamic models that 

were used to simulate the system.

5.2 P relim inary In vestigation

Before the development of a dynamic model a preliminary investigation of the REPEAT  

HVAC system was carried out. The preliminary investigation aided the creation of the 

dynamic model presented in section 5.3 and the controllers presented in subsequent chapters. 

During the preliminary investigation the temperature of the inlet air was controlled such that 

Tai «  10°C, and the temperature of the inlet water was was controlled to be T^i k . 50°C.
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Figure 5.1: The reachable space of the REPEAT HVAC System. Each o represents steady 
state outlet temperature of the coil for different values of water and air flow. In all cases 
the inlet air and water temperatures were controlled to be approximately 10°C and 50°C, 
respectively.
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5.2.1 E xp erim en ta l D eterm in a tio n  o f T h e R each able Space

In order to evaluate controllers it is important that the input they are commanded to track 

is reachable. In order to determine the reachable space of the REPEAT HVAC system for 

the configuration of this project, the system was brought to steady state for 151 random 

values of commanded valve position and commanded blower speed (see tables B.l and B.2 

in appendix 6). Figure 5.1 shows the steady state outlet air temperature for each of the 

steady state test runs as a function of the commanded blower speed. The outline on the 

figure shows the rough piecewise linear approximation that was used to define the reachable 

space when the system was brought into closed loop control.

5.2.2 E xp erim en ta l D eterm in ation  T he S ystem  G ain

Figure 5.2 demonstrates the significance of the variable gain of the system. The open loop 

outlet air temperature was tracked during step changes of the commanded valve position. 

In the high gain case the commanded fan speed was set to 30% of full flow and the valve was 

stepped between 5% and 15% open. In the low gain case the fan speed was set to 70% of full 

flow and the valve was stepped between 85% and 95% open. The high gain was measured to 

be 0.24C° per one percent change in commanded valve position. The low gain was measured 

to be 0.028C° per one percent change in commanded valve position. The ratio of the high 

gain to low gain was approximately 8.7.

5.2.3 E xp erim en ta l D esign  o f a N om in a l P I C ontroller

The data generated during the gain testing was used to design a nominal PI controller. The 

Ziegler-Nichols method as presented in [25| was used for each step in the high gain test. 

Figure 5.3 shows the procedure for one step change. The tangent line to the inflection point 

is shown. The intersections of the tangent line with the x-axis and the level of the steady 

state output are used to determine the controller gains Kp and AT The method was applied 

to the ten high gain step changes shown in figure 5.2. Averages were taken over all step 

changes resulting in the controller gains shown in table 5.1
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Figure 5.2; The variation in outlet air temperature for step changes in valve position. The 
gain from the water control valve position to the outlet air temperature is variable. When 
the flow rate of water and air are relatively low the system has a high gain. When the flow 
rate of water and air are relatively high the system has a low gain.
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Figure 5.3: Application of the Ziegler-Nichols tuning method to a single step change in valve 
position. The tangent line to the inflection imint is shown.
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Figure o.4: Scatter plot of predicted and actual steady state valve position. Predictions 
were made by a third order two dimensional polynomial. In input to the predictor were the 
outlet air temperature and the flow rate of air across the coil.
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Table 5.1: Proportional and Integral Gains used to Control the Water to Air Heat Exchanger.

Gain Value
Kp 2.2
K, 0.075

5.2 .4  Form ulation  o f a S tead y S ta te  P red ic tiv e  M odel

The data generated during the reachable space experiment was used to make a predictive 

model for the system. The output of the predictor is the commanded valve position needed 

to produce the given outlet air temperature for the given flow rate of air. To produce the 

model the steady state values of the commanded valve position, the flow rate of air, and the 

outlet air temperature were normalized to the range of [-1,1] by using the maximum and 

minimum values in the data set. A two dimensional third order polynomial was fit to the 

data using the linear least squares method. Figure 5.4 shows the results of the fit. The root 

mean squared error for the fit was 4.2%. The model was used to provide the ‘stuffing signal’ 

for controllers developed during the project.

5.3 D ynam ic M odel

This section describes the development of dynamic models for both the water flow control 

valve and the heat exchanger. Both systems have nonlinear dynamics so linear system iden-

tification is not an option. Both systems were modeled with nonlinear finite input response 

models to avoid the potential numeric instability of other nonlinear modeling methods [24].

5.3.1 M od el C reation

To construct a dynamic model the valve was considered a single-input-single-output system 

with the commanded valve position [Cup] the input and the flow rate of the water through 

the valve {f^) the output. The heat exchanger is a multi-input-single output system. The 

inputs are the flow rate of the air ( /q ), the flow rate of the water (/„,), the temperature of 

the incoming air (Ta,:), and the temperature of the incoming water The output of

the heat exchanger is the temperature of the outlet air (Ta„). Both the valve and the heat 

exchanger are insensitive to initial conditions so only a finite history of the inputs is needed
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to make prediction of the output (for more precise predictions longer input sequences are 

needed). It was observed from the data generated dnring the steady state tests that the 

output of the valve responds within 5 seconds to changes input while the output of the heat 

exchanger can take up to twenty minuets to respond to changes in the input. Based on a 

sampling time of 0.1 seconds^ the output of the valve depends on the most recent 50 values 

of its input and the output of the heat exchanger depends on the most recent 12,000 values 

of each of its inputs.

fw{n) = f  [Cyp{n -  1), C^p{n -  1 ),... , C^,p{n -  50)]

Tao{n) =  f [ T a i { n - l ) , T y , ^ { n - l ) J a { n - l ) , l u , { n - l ) , . . .

. . . ,  Tai{n -  12000), -  12000), /„ (?7, -  12000), /„,(n -  12000)]

It may not be necessary to know the value of the injrut signal(s) at every time step to 

make accurate predictions. To simplify the input for the models, averages over time steps 

were formed. Table 5.3.1 shows how each signal was processed into inputs for the models. 

The size of the input space for the valve model was reduced to seven (approximately six 

seconds of data). The size of the input space for the heat exchanger model was reduced to 

60 (15 for each input signal, just under thirty minutes of data).

Training data for the models was generated in a similar fashion to that of the steady 

state models. The Repeat HVAC system was run with the water supply temperature and air 

inlet temperature regulated by separate PI controllers. Data was generated by varying the 

inputs in random steps. The duration of the steps was varied from two to thirty minutes. 

The desired hot water supply temperature was held constant at 50°C. The desired air inlet 

temperature was varied between 5°C and 15°C. The commanded blower speed was varied 

between 30% and 70% of the full speed value. The commanded valve position was varied 

between 10% and 90% percent of the fully open position. Training data was generated over 

several runs.

For the dynamic valve model the time series of commanded valve position {Cyp) was

^During the entire course of the project the HVAC REPEAT system sampled data at a rate of lOHz.
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Table 5.2: Processing of Signals Into Inputs for the Dynamic Models.

Input Average of Samples Approximate Time Window
1 (n-1) 0.1 Seconds
2 (n-2) 0.1 to 0.2 Seconds
3 (n-3) thru (n-4) 0.3 to 0.4 Seconds
4 (n-5) thru (n-8) 0.5 to 0.8 Seconds
5 (n-9) thru (n-16) 0.9 to 1.6 Seconds
6 (n-17) thru (n-32) 2 to 3 Seconds
7 (n-33) thru (n-64) 3 to 6 Seconds
8 (n-65) thru (n-128) 7 to 13 Seconds
9 (n-129) thru (n-256) 13 to 26 Seconds
10 (n-257) thru (n-512) 26 to 51 Seconds
11 (n-513) thru (n-1024) 1 to 2 Minutes
12 (n-1025) thru (n-2048) 2 to 3 Minutes
13 (ii-2049) thru (n-4096) 3 to 7 Minutes
14 (n-4097) thru (n-8192) 7 to 13 Minutes
15 (n-8193) thru (n-16384) 14 to 27 Minutes

processed to form a vector input of delayed averages for each time step. The form of the 

model to predict the flow rate of the water through the valve (/^ ) is shown in equation (5.1).

fwi'iT') — f  {Cvp{n 1), Cyp2{n — 1 ),... Cypj{n ~ 1)} (5.1)

Where,

1) — ^'vpij^ 2)

Cyp.^{n -  1) =  Average {Cyp{n -  3), Cyp{n -  4)}

C„p4('/i -  1) =  Average {Ct,p(n -  5 ) , . . . ,  Cyp(n -  8)}

C yp^{n- l )  = Average{Q,p(n -  9 ) ,... ,Ci,p(n -  16)}

Cypg{n- l)  = Average {Cyp{n -  n ) , . . .  ,Cyp{n -  32)}

Cyp.^{n-1) =  Average {Ci,p(n -  3 3 ) ,... ,  C„p(n -  64)1

For the dynamic heat exchanger model the time series of the water flow rate (fw), the air 

flow rate [fa), the temperature of the water entering the coil (r,^,,), and the temperature of 

the air entering the coil (Tai) were processed to form a vector input of delayed averages for 

each time step. The form of the model to predict the outlet air temperature (T„„) is shown
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in equation (5.2).

Tao{n) = / {fw{n — 1), fw2{f  ̂~  1): fwsin — 1),... , /,ui4(n — 1), fwi^{n — 1),

fa{f  ̂~ l)i /a2(^ “  1)) ~ l)i • • • i /al4(u — 1), fal^ip- ~  l)i

T w i (n  — 1), Ty ji2 {n  — 1), T ^ i - i in  — 1),. . . , Tyji\i^{n — 1), T y jn ^ {n  — 1),

T a i { n  — 1), T a i2 { n  — 1), ~  l)i • ■ • i T a i i 4 { n  — 1), T a i i ^ ( n  — 1)} (5.2)

Where,

fy,2{n -  1) 

fwi{n -  1) 

fw4(n -  1)

fwsin -  1)

fxuein-  1) 

fwrin -  1) 

fwsi'n ~ 1) 

/^g(n -  1) 

fw\o{l1 ~  1) 

fxvuin -  1) 

/wl2(^* “  1) 

fwri{n — 1) 

f w \ 4  (̂  ̂ 1)

fw45(n -  1)

fuj{n -  2)

Average {/„.,(n 

Average {fia(n 

Average { f^ (n  ■ 

Average {/^.(n ■ 

Average {fu,(n 

Average {/^„(n - 

Average {f,„(n ■ 

Average {fu,(n ■ 

Average {/^(/i - 

Average {/^,(?r - 

Average {/„,(n - 

Average {/t„(n - 

Average {/^„(n -

■ 3),/„,(n -  4)}

■ 5 ),...  ,/„,(n -  8)}

■ 9), • • • Jw{n  -  16)} 

■ 1 7 ) ,. . . , / , ,(n -3 2 )}

■ 33),... ,/u.(n -  64)1 

■ 65),...,/,„(71- 128)1 

■ 1 2 9 ),... ,/„ ,(n -  256)}

2 5 7 ) ,. . . , / ^ , ( n - 512)1 

5 1 3 ) ,. . . , / „ ( n -  1024)1 

1 0 2 5 ),...,/ ^ ( n -  2048)} 

2 0 4 9 ),...,/ , , ( n -  4096)} 

4 0 9 7 ),... ,/ „ , ( n - 8192)} 

8 1 9 3 ),... ,/^ ( r z -  16384)}

Input vectors for /„, 7)„j, and Tai were created of the same manner as those for /^ . Feed for-

ward networks were used as function approximations for tiie dynamic valve model, equation 

(5.1) and the dynamic heat exchanger model, eqTiation (5.2). The networks were trained 

with standard back propagation with validation and testing sets for early stopping [24]. Dif-

ferent model structures and learning parameters were tested. For each learning trial 20,000
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time steps^ were randomly selected for training with 5,000 used for validation and another 

5,000 used for testing. The final version of each model consisted of a single hidden layer of 

ten hyperbolic tangent activation functions.

5.3 .2  M od el V alidation  In O pen loop

The output of the dynamic valve and heat exchanger models were cascaded together to 

produce a complete system model. Figures 5.5 and 5.6 show a comparison between the model 

and the physical system. Data generated from the physical system was used as input to each 

model. For much of the input space the models were able to reproduce the output of the 

actual system with a reasonable degree of accuracy. In particular, high frequency variations 

matched quite well while there were some regions where the base outlet temperature of the 

model had noticeable error. To quantify the fit 5,000 samples were randomly selected from 

the validation run. The error of each sample was calculated. The root mean squared error 

for the sampled set was 0.42C°. Figure 5.7 shows the predicted outlet air temperature of 

the model as a function of the actual outlet air temperature of the system for each of the 

samples.

5.3.3 M odel V alidation  In C losed  Loop

To investigate the performance of the dynamic models in closed loop control both the model 

and the physical system were controlled with the PI controller presented in section 5.2.3. 

Measurements of fa, Tai, and T^i taken during the testing of the irhysical system were used 

as inputs to the model. Both the model and the physical system were asked to track the 

same step changes in desired outlet air temperature in the presence in the same disturbance 

inputs. The closed loop behavior of the combined valve and heat exchanger model was 

investigated and compared to the response of the physical system. Figure 5.8 shows the 

actual outlet air temperature of the system and the outlet temperature of the model while 

they are both subject to the same inputs. The similarity, especially at high frequency, is 

noticeable.

^There are more than 3 million samples in the full training set.
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Figure 5.5: Predicted and actual outlet air temperature. The predictions were made by 
cascading the dynamic valve and heat exchanger models. Input data was generated from 
the physical system.
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Figure 5.6: \  alidation of the valve and heat exchanger models with input data generated 
from the physical System. High frequency oscillations are trac-ked well while some steady 
state errors are present.
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Figure 5.7: Predicted and actual outlet temperatures for 5,000 samples taken from the 
validation run of figure 5.5. The root mean squared error for the validation run was 0.42°C.
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Figure 5.8: Closed Loop Validation of the Valve and Heat Exchanger with Input Data 
Generated from the Physical System. The response of the model and the physical system 
are similar.
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Figure 5.9 shows a comparison between the flow rate of water in the physical system and 

in the model. Although model and experiment produce very similar temperature trajectories 

there are noticeable differences in the flow rate of water.

5.4 C onclusion

This chapter has presented the development of steady state and dynamic models. The steady 

state model of section 5.2.4 was used as the steady state predictor used to generate the 

‘stuffing signal’ for controllers tested during this project. The dynamic models presented do 

not provide accurate results over the entire input space of the REPEAT HVAC system, but 

they do capture the important dynamics of the system. The dynamic models are accurate 

enough to be used in simulation as a starting point in the development of controllers for the 

real system.
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Figure 5.9: Close Loop Validation of the Valve and Heat Exchanger with Input Data Gener-
ated from the Physical System. Although the temperature trajectories are similar the flow 
rates diverge for part of the injmt space..
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Chapter 6

Error M odulated P artia l Stuffing 
Control Applied to the R E P E A T  
H VAC  System

6.1 In troduction

The error modulated partial stuffirig controller developed in chajjter 4 was applied to the 

REPEAT HVAC system and to the model of the REPEAT HVAC system presented in 

chapter 5. Section 6.2 describes the experimentation on the physical system and section 6.3 

describes the experimentation on the model. Section 6.4 concludes the chapter.

6.2 Behavior o f Error M od u la ted  P artia l Stuffing on th e  R E -

P E A T  H V A C  S ystem

Error modulated partial stuffing was implemented on the the REPAT HVAC system for two 

sets of experiments. In the first experiment the performance of the controller was investi-

gated. In the second experiment the steady state errors associated with error modulated 

partial stuffing were investigated.

6.2.1 Perform ance

An experiment was conducted to investigate the performance of error modulated partial 

stuffing control on the REPEAT HVAC system. During the experiment the system expe-

rienced random step changes in either the set point of the outlet air temperature or the 

flow rate of air. After each step change the inputs were held constant for ten minutes. For
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each step change a random value of was used. The value of Kg was limited to five 

discrete values: Kg =  {0, O.lA'j, 0.2A'j, 0-4A'i, 0.9/\j}. Figure 6.1 shows the desired outlet 

air temperuate, the actual outlet air temperature as well as the the value of Kg used for a 

portion of the experiment. The root mean squared error (between actual and desired outlet 

air temperature) was calculated for each ten minute step. Table B.3 of appendix B shows 

the RMS error and Kg used for each of 200 ten mimites steps in the experiment. Table 6.1 

summarizes the results of the experiment. Kg = 0 corresponds to the nominal PI controller.

Table 6.1: Results of Varying Kg on the Physical System

Kg/K,
Number 
of Trials

Average RMS 
Error (°C)

Standard Deviation 
of RMS Error (°C)

0 39 0.81 0.59
0.1 38 0.56 0.35
0.2 32 0.46 0.36
0.4 51 0.66 0.43
0.9 40 0.59 0.37

As can be seen in table 6.1 all values of Kg used resulted in lower mean RMS error 

than the nominal PI controller. To test the statistical significance of the results, single 

sided t-tests were performed to determine if the true mean of the error decreased when error 

modulated partial stuffing control was used. To conduct this test it was assumed that for 

each value of Kg the RMS error for each trial was normally distributed with unknown and 

unequal variance. Table 6.2 summarizes the results of the single sided t-tests.

Table 6.2: Rec uction in RMS error for different vâ

Ke/K,

Confidence that the 
true mean of the 

R.MS error was reduced

95% Confidence interval 
of the % reduction 

in RMS error
0.1 98.8% 4.3% to 58%
0.2 99.9% 15% to 71%
0.4 91.4% -8.5% to 46.2%
0.9 97.5% 0% to 54%

ues of Kg compared to nominal PI control.

As can be seen in table 6.2 for three of the four values of Kg used there was over 95% 

confidence that the true mean RMS error decreased. The best performance was found for 

Kg = 0:2Ki in which there was 95% confidence that the error was reduced bv at least 15%.
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Figure 6.1:
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6.2 .2  S tead y  S ta te  Errors

In section 4.4 a bound on the steady state error of a system under error modulated partial 

stuffing was derived. Equation 4.31 is rewritten here,

\ e - e *
<

Kj.Ke
( 6 . 1 )

An experiment was run on the REPEAT HVAC system to test this theoretical bound. 

During the experiment the system experienced 61 random step changes in either the set 

point of the outlet air temperature or the flow rate of air. After each step change the inputs 

were held constant for twenty minutes. During the first ten minutes of each trial the value 

of A'e was set to a random value from the discrete set {QAKi,0.2Ki,0AK\,0.9Ki}.  During 

the second ten minutes of each trial the value of Kg was set to zero so the system was 

controlled by the nominal PI controller. For each trial, the average steady state error while 

the system was under error modulated partial stuffing control was calculated by averaging 

the outlet temperature over the last five minutes of the first half of the trial. In addition 

the average nominal PI steady state error was calculated using the last five minutes of each 

trial. Figure 6.2 shows and example for a single trial. In this case the steady state error 

while the system was under error modulated partial stuffing control (left half of figure) was 

0.46°C. The steady state error for the nominal PI control (right half of figure) was 0.03°C.

For each trial in which the steady state error under error modulated partial stuffing was 

more than two times greater than the steady state error under nominal control the bound 

given in equation 6.1 was calculated and compared to the measured steady state error. 

Since the nominal PI controller should result in zero steady state error, the output of the 

PI controller was used as an approximation to the command signal that would produce zero 

steady state error {0*).

Table 6.3 summarizes the calculation of the bound for the trial shown in figure 6.2. As 

shown in the table the measured steady state error was within the Iround. For the 10 of the 

61 trials run the steady state error under error modulated partial stuffing was more than 

twice the steady state error of the nominal PI control. In each of the ten cases the measured 

steady state error was less than calculated bound.
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Figure 6.2: Steady state error introduced by a combination of large Ag and a large error in 
the steady state prediction.
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Table 6.3; Calculation of the error bound for the trial shown in figure 6.2.
Term Value

9* 84.6
9 77.0

\9-9*\ 7.54
K,> 2.2

0.075
Ke 0.0675

Kp 3.02°C
Steady State Error 0.46°C

6.3 C om parison o f P I control to  Error M od u la ted  P artia l 
Stuffing in S im ulation

The dynamic model developed in chapter 5 was used to test the relative performance of 

error modidated partial stuffing control and to nominal PI control. The use of the model 

allowed for testing over more trials than was feasible with the physical system.

The gains {Kp and Aj) of the nominal PI controller designed for the physical system 

were used. The nominal PI controller was compared to an error modulated partial stuffing 

controller with Kg — 0.2Aj. For each controller 1000 trials were simulated. Each trial lasted 

ten minutes. For each trial a new flow rate of air and desired outlet air temperature were 

chosen at random. Table 6.4 summarizes the results of the simulations. A single sided t-test

Table 6.4: Comparison of nominal PI control and error modulated partial stuffing control 
in simulation.

I<e/Ki
Number 
of Trials

Average RMS 
Error (°C)

Standard Deviation 
of RMS Error (°C)

0 1000 1.63 0.84
0.2 1000 1.28 0.76

was performed on the simulation data. The confidence level that the true RMS error of 

the error modulated partial control case is less than the true RMS error of the nominal PI 

control is greater than 99.99%.
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6.4 C onclusion

For experiments presented in this chapter error modulated partial stuffing outperformed 

nominal PI control. The steady state errors experienced during error modulated partial 

stuffing control were found to be within the bounds presented in chapter 4.
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Chapter 7

Concluding Rem arks

7.1 In troduction

This chapter give a brief overview of the project with respect to the goals stated in section 

1 .2 .

7.2 R em ote  C ontrol o f R E P E A T  H V A C

The REPEAT HVAC system is now fully remotely controlled. Without the work done to 

add hardware and software to the system the project would not have been feasible. The 

system stands ready for future work.

7.3 M od el D evelopm ent

The models developed during the project were quite accurate and were useful in the devel-

opment of controllers. Future controller development will be possible without the need to 

exclusively use the physical system. Though the model is accurate and much faster than 

the i)hysical system the need to filter so much input data means the models are still a little 

slow and require hours of simulation to generate a meaningful amount of data. It may be 

possible to optimize the filtering of the input data.

7.4 C ontroller D evelopm ent

The most significant contribution of this project is the error modulated partial stuffing 

controller. This controller was shown to improve the performance of the system in response
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to both set point changes and disturbances. The bounds on error presented are a first step 

in the investigation of the stability of the controller.

The use of error modulated partial stuffing control is suited to applications in which PI 

control provides stable control and steady state predictions are available. If the magnitude 

of the error in the steady state predictions is known, the steady state error bounds given in 

section 4.4 can be used to select the gain Kp.

In applications where the accuracy of the steady state predictions varies across the input 

space it may be possible to have Kp vary across the input space. For many systems it may 

be easy to determine the expected error in steady state predictions while it may be hard 

or impossible to improve the predictions due to unmeasured or uncontrollable disturbance 

inputs.

7.5 Learning

The one goal for the project that was not fully satisfied was the incorporation of online 

learning. This section is intended to provide a framework for adding learning to an error 

modulated partial stuffing controller. Consider example of section 4.3.3. In that section an 

optimal value of Kp was determined for the entire simulation. Figure 7.1 shows the value of 

Kp that produced the lowest error for each step. By changing the value of Kp to it’s optimal 

value for each step, the error for the entire simulation was reduced beyond the value of it’s 

constant Kp value as shown in figure 7.2. In this example the system was entirely repeatable 

so different cases could be directly compared. This is not true of a real system, but if enough 

data is generated it may be possible to map the input space to the best value of Kp. This 

mapping was attempted as part of this project, but due to the influence of disturbances and 

the long run times needed to reach steady state no mapping was developed.
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Figure 7.1: The value of Kg used for each step within the simulation is shown. By allowing 
Ke to change for each step the RMS error for the simulation was reduced to 0.0425. The 
best fixed Kg simulation resulted in an RMS error of 0.0446.

0.065

Figure 7.2: RMS error of the entire simulation for different fixed values of the gain Kg. The 
solid line indicates the RMS error achieved when A'g was changed for each step within the 
simulation
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Appendix A

Changes to R E PE A T H VAC  System

This appendix describes the changes that were made to the REPEAT HVAC system as 

part of this project. Section A.l describes the repairs that have been made to the system. 

Section A.2 describes what was done to establish remote communication with the control 

computer. Section A.3 describes the additional equipment that was installed to allow for 

remote operation of the system.

A .l  R epairs

During the course of the current project several repairs have been made to the system. This 

section describes the nature of the repairs for future reference.

A . 1.1 H eat E xchanger

The most significant repair has been the replacement of the water to air heat exchanger. 

The original heat exchanger was ruined during a freeze event. At the start of this project a 

new and physically different heat exchanger was installed.

A .1.2 B oiler

The freeze event that damaged the original heat exchanger also damaged the cast iron core 

of the boiler. The heating elements and control circuitry were moved onto an identical 

replacement core. When the replacement core was installed a flexible coupling was added 

between the pump and the boiler to allow for compliance and reduce vibration noise.
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A .1.3 A ir C om pressor

The original air compressor (used to provide compressed air to the pneumatic valves con-

trolling the air mixing dampers and the water control valve) had a small supply tank. This 

resulted in short cycling and the eventual failure of the compressor. A new compressor was 

installed. Since the working pressure of the new compressor (125 PSI) is higher than the 

maximum operating pressure of the pneumatic valves (25 PSI) a second lO-L tank with a 

regulated pressure of 20 PSI was added to the system. In addition the power supply for the 

compressor was wired through a relay that is actuated in parallel to the circulation pump. 

Now the compressor is only on when the experiment is running.

A . 1.4 W ire Failure

During operation the (stranded two gauge) wire connecting the solid state switch to the 

boiler overheated and eventually failed. After this failure the sizing of the wire was reviewed 

and compared to the electrical code. It was determined that the wire diameter should be 

increased in order to handle the maximum current draw of the heating elements in the boiler. 

The wire between the solid state switch and the boiler was replaced by stranded zero gauge 

wire.

A . 1.5 E lectrica l C ontrol board

During operation the solder holding a high power resistor in the electronic control for the 

solid state switch came loose. This caused the heating system to stop with no clear cause. 

Through what can only be attributed to divine intervention the loose resistor was found 

and re-soldered to the circuit board. The connections on the board are now periodically 

inspected.

A . 1.6 P n eu m a tic  H ose

The original transparent neoprene pneumatic hoses deteriorate with exposure to UV light. 

Because the experiment is in front of windows these hoses have periodically failed. They 

have all been replaced by opaque rubber hose. These hoses have a longer life, but ultimately 

it may be desirable to plumb the entire pneumatic system with either copper or brass tubing.
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A .2 R em ote C om m unication  W ith  C ontrol C om puter

To allow for remote control of the experimental system a communication link was established 

between the experiments control computer and a remote computer via the internet. This 

section provides details on the equipment and software used to create this link.

A .2.1 W ireless R ep eaters

Unfortunately there is no internet access in REPEAT. To overcome this difficulty a pair 

of wireless range extenders were set up in repeater mode. One was placed in a basement 

window of Solar House III and the other was placed in the upper floor window of REPEAT. 

A 100-ft CAT5 cable connects the control computer to the repeater.

A .2.2 In sta lla tion  o f T ig h tV N C  and an F T P  server

A TightVNC server was installed on the control computer. Tight VNC is software package 

that allows for password ])rotected remote control of the desktoj) of a comjiuter running 

windows. TightVNC requires that the host computer have a static IP address, which was 

thankfully supplied by The Atmospheric Science Department. The control com])uter can now 

be controlled remotely by any computer that has installed the TightVNC viewer. TightVNC 

has an integrated file transfer process but it is a little slow so a separate FTP server, 

WinFTP, was installed on the control computer.

A .2.3 M em ory U pgrade

To ensure that the control computer can handle the communication overhead the mem-

ory was expanded from 256MB to 512MB (which is the maximum that control computer 

motherboard can handle).

A .3 N ew  M echanical E quipm ent For R em o te  O peration

Once a remote communication link was established, eciuipment was added to the laboratory 

to allow for remote operation of the experimental HVAC system.
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A .3.1 P n eu m a tic  op eration  o f W indow s

Since freezing is a concern the windows that allow for airflow in and out of the the HVAC 

system need to be closed when the system is not in use. To allow for automatic control 

pneumatic cylinders were connected to the windows. The cylinders are eqnipi)ed with speed 

controllers so they do not slam open or closed.

Cantilevered weights have been installed on the windows to ensure that the windows 

close when the compressor pressure drops.

A .3.2 C ontrol B o x /T im e  D elay  R elays for equ ip m ent

Initially the valves that control the cylinders were connected in parallel to the compressor, 

but it was found that the valves did not work properly if the suj^ply air was not at pressure 

of at least approximately 15 PSI. For lower pressures the valves move to an intermediate 

position and continually leak air from the supply to the ambient. To give the compressor 

enough time to charge the supply tank to a reasonable pressure a solid state relay with a 

variable delay was installed to control the pneumatic valves. Now when the experiment is 

started the compressor runs for approximately five minutes before the windows are opened.

A .3.3 W ater P ressure regulator

The water loop of the experimental system contains pressure a pressure relief valve and an 

air separator, over time both of these devices and other minor leaks can cause the pressure 

in the water loop to drop. To ensure a constant water pressure the system was connected 

to the mains via a water pressure reducer. An electronic pressure transducer was added to 

the water loop and wired to the control computer so the water pressure can be monitored 

while the system is being run.
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Appendix B 

Experim ental D ata
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Table B.l: Steady state data from REPEAT HVAC system (Part 1).
Cf,» /„ C v p T a f - T a r ^ ’d r T a i T a r i T a n T -u .O

Trial (%) (m^/s ) (%) ( i/s ) (“ O ( ° C ) (%) ( ° C ) ( ° C ) ( ° C ) ( ° C )
1 64.9 0.64 17.0 0.07 3.1 21.4 42.0 9.7 49.2 21.5 30.9
2 37.8 0.29 17.0 0.07 3.2 22.0 45.4 10.0 49.2 27.1 34.6
3 43.3 0.36 17.0 0.07 2.6 21.8 47.2 9.8 49.2 25.4 33.5
4 53.2 0.48 17.0 0.07 2.5 21.3 48.2 9.8 49.2 23.3 32.1
5 53.2 0.48 14.6 0.06 2.6 21.2 48.4 10.0 49.2 23.1 31.2
6 57.3 0.54 14.8 0.06 2.5 21.0 50.2 9.9 49.2 22.3 30.7
7 57.2 0.53 73.7 0.40 2.4 21.9 42.5 9.8 49.2 30.3 43.5
8 42.5 0.34 73.7 0.40 2.1 22.1 48.3 9.9 49.2 33.8 44.6
9 42.5 0.34 62.1 0.29 2.6 22.1 47.3 10.1 49.3 32.8 43.2
10 37.7 0.29 62.0 0.29 2.7 22.0 47.7 10.1 49.3 34.2 43.7
11 37.8 0.29 29.7 0.12 2.0 21.6 52.1 9.9 49.2 29.0 38.4
12 68.0 0.68 29.7 0.12 2.1 21.1 50.9 10.1 49.2 23.0 35.2
13 64.5 0.63 29.7 0.12 2.4 21.0 49.6 10.1 49.2 23.3 35.5
14 38.1 0.30 29.7 0.12 2.6 21.3 49.1 9.9 49.2 28.6 38.3
15 38.1 0.30 36.8 0.15 2.1 21.4 50.0 9.7 49.2 30.2 39.8
16 38.1 0.29 33.2 0.13 1.1 21.3 58.6 9.8 49.2 29.5 39.1
17 48.1 0.41 33.2 0.13 1.2 21.2 55.5 9.6 49.2 26.6 37.8
18 48.1 0.41 33.8 0.13 1.5 20.9 55.3 9.9 49.2 26.7 37.9
19 58.7 0.55 34.0 0.13 0.2 20.8 59.9 9.7 49.2 24.7 36.8
20 58.7 0.54 86.8 0.51 1.8 21.4 51.3 10,1 49.1 30.9 44.4
21 58.7 0.55 58.7 0.25 1.4 21.2 54.2 10.3 49.2 28.7 41.0
22 58.7 0.55 78.8 0.43 1.9 21.3 48.8 9.9 49.2 30.4 43.8
23 57.7 0.53 78.8 0.43 0.5 21.3 58.1 10.0 49.3 30.8 43.9
24 49.2 0.42 78.8 0.43 0.8 21.4 58.0 9.9 49.3 32.5 44.4
25 49.2 0.42 86.7 0.50 0.5 21.5 57.0 9.7 49.1 32.8 45.0
26 49.2 0.43 28.4 0.11 0.9 20.8 58.9 9.9 49.2 25.7 36.5
27 55.2 0.51 28.4 0.11 1.5 20.5 56.1 10.3 49.2 24.7 35.9
28 50.1 0.44 28.4 0.11 0.2 20.4 60.7 10.0 49.2 25.3 36.1
29 68.4 0.69 28.5 0.11 0.2 20.1 61.8 10.0 49.2 22.7 34.6
30 68.4 0.68 84.5 0.50 0.8 20.8 57.5 10.1 49.1 29.5 43.9
31 55.5 0.50 84.5 0.49 0.1 20.9 60.0 10.0 49.2 31.5 44.4
32 62.6 0.60 84.5 0.50 0.8 20.9 57.9 9.9 49.1 30.3 44.1
33 62.6 0.60 85.3 0.50 0.9 20.8 56.9 9.8 49.2 30.3 44.1
34 41.4 0.33 85.3 0.50 0.1 20.7 61.4 9.7 48.9 34.5 45.3
35 62.0 0.59 85.3 0.50 0.6 20.7 58.9 10.0 49.1 30.5 44.2
36 53.4 0.47 85.3 0.50 1.5 20.9 56.8 10.3 49.1 31.9 44.6
37 65.5 0.64 85.2 0.50 0.7 20.6 58.1 10.0 49.0 29.9 44.0
38 65.5 0.65 28.6 0.11 1.1 19.9 58.9 9.9 49.2 23.0 34.9
39 65.4 0.64 54.3 0.23 0.4 20.2 60.6 10.1 49.2 27.1 39.9
40 47.6 0.41 54.3 0.23 1.1 20.4 59.1 10.1 49.2 30.3 41.4
41 50.0 0.44 54.3 0.23 1.3 20.3 59.4 10.2 49.2 29.9 41.2
42 37.2 0.27 54.3 0.23 -0.1 20.1 62.8 9.7 49.3 33.2 42.5
43 37.2 0.27 47.1 0.20 -0.1 20.0 63.4 10.0 49.2 32.5 41.8
44 48.4 0.41 47.1 0.20 0.3 20.1 62.5 10.1 49.2 29.4 40.4
45 67.3 0.67 47.1 0.20 1.1 19.9 59.6 10.2 49.2 26.1 38.8
46 67.3 0.67 44.2 0.19 -0.4 19.8 64.2 9.9 49.2 25.6 38.2
47 57.2 0.53 44.2 0.19 2.3 19.9 55.7 10.4 49.2 27.2 39.2
48 48.3 0.41 44.2 0.19 2.1 20.0 59.4 10.4 49.2 29.1 40.1
49 66.4 0.66 44.2 0.19 1.1 19.7 56.7 9.4 49.2 25.3 38.2
50 66.3 0.66 38.8 0.16 1.5 19.7 56.8 9.7 49.2 24.4 37.3
51 49.3 0.43 38.9 0.16 1.4 19.7 57.0 9.7 49.2 27.5 38.8
52 49.3 0.42 79.5 0.44 2.0 20.2 55.7 10.3 49.2 32.4 44.5
53 49.3 0.43 60.6 0.28 1.6 19.9 56.3 9.8 49.3 30.5 42.2
54 49.3 0.43 52.7 0.23 4.4 19.7 45.1 10.6 49.2 29.7 41.0
55 57.3 0.53 52.8 0.23 2.4 19.8 54.3 9.7 49.2 27.9 40.3
56 57.3 0.53 80.0 0.44 1.4 19.9 54.8 9.4 49.3 30.4 43.9
57 57.3 0.53 39.0 0.16 1.4 19.5 60.2 10.1 49.2 26.0 37.9
58 49.7 0.43 39.0 0.16 1.8 19.5 61.1 10.1 49.2 27.5 38.7
59 68.2 0.68 39.0 0.16 2.1 19.5 51.9 9.3 49.2 23.7 36.8
60 51.7 0.46 39.0 0.16 1.8 19.3 57.1 9.8 49.2 26.7 38.4
61 51.6 0.47 21.0 0.09 2.5 19.1 54.3 9.7 49.2 23.7 33.8
62 36.6 0.28 21.0 0.09 2.5 19.1 56.5 9.9 49.2 27.6 36.1
63 33.6 0.24 21.0 0.09 1.3 18.9 62.2 9.8 49.2 28.7 36.6
64 41.9 0.33 21.1 0.09 0.9 18.9 63.6 10.0 49.2 26.2 35.2
65 41.9 0.34 57.2 0.25 2.1 19.5 55.3 9.7 49.2 31.7 42.3
66 38.9 0.30 57.2 0.25 2.4 19.3 53.1 9.8 49.2 32.7 42.7
67 38.9 0.30 56,7 0.25 2.9 19.3 50.3 9.7 49.2 32.6 42.6
68 39.0 0.30 29.9 0.12 2.3 19.2 59.9 10.1 49.2 28.3 38.1
69 39.2 0.29 88.6 0.51 0.5 14.1 77.2 9.7 49.0 34.2 45.2
70 39.1 0.29 50.1 0.21 0.8 14.3 76.4 9.8 49.3 31.0 41.2
71 30.1 0.18 50.1 0.21 6.1 15.0 65.0 10.5 49.2 35.2 42.8
72 30.1 0.20 52.2 0.22 6.8 15.2 51.3 10.3 49.2 35.4 43.2
73 30.1 0.19 52.9 0.22 9.6 16.1 45.0 11.2 49.2 36.1 43.5
74 30.1 0.18 73.0 0.37 5.6 16.9 59.3 10.0 49.2 37.8 45.4
75 45.4 0.38 72.9 0.37 5.9 17.3 40.9 10.3 49.3 32.5 44.0
76 45.4 0.37 37.3 0.14 3.8 17.5 1 54.6 9.6 49.2 27.4 38.5
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Table B.2: Steady state data from REPEAT HVAC system (Part 2).
Trial { % ) (m V s ) w

} rt>

(1/s )
T a e

( ° C )
Tar
( ° C )

C ,i ,-

(%)
T a i
( ° C )

T,„7
( ° C )

Tao
( ° C )

T(/i o
( ° C )

77 45.4 0.37 73.7 0.39 5.4 19.0 45.9 9.6 49.3 32.5 44.1
78 47.4 0.40 73.7 0.39 3.7 19.0 51.4 9.7 49.3 32.1 44.0
79 66.1 0.61 73.7 0.39 5.6 20.0 29.8 9.9 49.3 28.9 42.9
80 53.4 0.47 73.7 0.39 3.6 18.1 40.7 8.9 49.3 30.6 43.5
81 65.7 0.63 73.7 0.39 4.2 18.0 43.8 9.6 49.2 28.4 42.6
82 63.4 0.59 73.7 0.39 8.2 17.9 47.1 11.6 49.3 29.9 43.2
83 63.4 0.60 56.3 0.24 3.5 18.2 55.1 9.9 49.2 27.3 40.3
84 66.1 0.64 56.3 0.24 5.9 17.7 48.5 10.6 49.3 27.0 40.2
85 67.4 0.66 56.3 0.24 2.5 17.2 59.9 9.9 49.2 26.6 39.9
86 65.6 0.63 56.3 0.24 2.2 16.9 61.2 9.8 49.2 26.7 39.9
87 47.5 0.40 56.3 0.24 1.5 16.6 64.8 9.9 49.3 30.1 41.4
88 38.5 0.29 56.3 0.24 1.1 16.2 67.8 9.6 49.3 32.4 42.4
89 41.9 0.33 56.1 0.24 3.7 16.4 62.8 10.5 49.2 31.8 42.2
90 41.9 0.34 19.4 0.08 5.4 15.9 60.6 10.3 49.2 25.6 34.5
91 41.9 0.33 42.0 0.18 1.9 16.1 67.5 9.6 49.2 29.4 40.0
92 41.9 0.33 19.8 0.08 3.5 15.8 65.7 10.3 49.2 25.6 34.5
93 41.9 0.33 64.9 0.32 5.6 16.1 58.1 10.9 49.2 32.8 43.5
94 41.9 0.33 33.0 0.13 3.1 15.7 66.9 9.7 49.2 27.2 37.8
95 42.0 0.33 71.8 0.37 4.0 16.1 62.7 10.0 49.2 33.3 44.2
96 31.6 0.21 63.7 0.29 5.5 21.2 29.0 10.2 49.3 37.0 44.7
97 31.6 0.22 61.3 0.28 4.7 21.0 17.8 9.1 49.3 36.4 44.1
98 31.7 0.21 65.7 0.32 2.0 21.1 48.5 9.3 49.3 37.1 44.9
99 69.9 0.68 65.7 0.32 1.0 21.0 50.3 9.5 49.3 28.0 41.8
100 57.6 0.52 65.8 0.32 2.8 21.2 44.6 10.4 49.3 30.3 42.7
101 57.6 0.52 70.2 0.36 1.5 21.1 52.1 10.1 49.3 30.7 43.3
102 57.6 0.52 48.3 0.21 1.2 20.7 52.6 9.8 49.3 28.2 40.1
103 48.0 0.40 48.3 0.21 2.1 21.0 45.0 9.5 49.3 29.9 40.9
104 70.0 0.69 48.4 0.21 1.4 20.6 49.2 9.5 49.3 25.9 39.0
105 69.9 0.69 66.4 0.33 0.7 20.6 53.9 9.8 49.3 28.1 41.9
106 48.2 0.40 66.4 0.33 1.2 20.6 52.0 10.0 49.3 32.2 43.4
107 48.2 0.40 78.4 0.43 0.8 20.7 52.3 10.1 49.3 33.1 44.7
108 48.2 0.41 15.3 0.07 1.1 19.6 56.5 10.1 49.2 24.5 32.7
109 52.8 0.47 15.3 0.07 0.3 19.4 59.1 9.9 49.2 23.7 32.1
110 59.1 0.55 15.4 0.07 5.4 19.3 51.6 11.2 49.2 23.3 31.8
111 59.1 0.55 43.2 0.18 1.1 19.8 55.9 9.9 49.3 27.1 39.1
112 59.2 0.54 67.8 0.34 1.9 20.3 46.2 10.3 49.3 29.9 42.7
113 61.6 0.57 67.8 0.34 1.8 20.3 51.1 10.1 49.3 29.5 42.6
114 30.6 0.20 67.9 0.33 2.0 19.1 57.0 9.9 49.3 37.7 45.3
115 30.6 0.19 87.1 0.50 3.3 19.3 50.9 10.0 49.1 38.9 46.7
116 30.6 0.20 24.2 0.10 2.5 19.5 47.4 10.0 49.2 31.6 39.0
117 43.4 0.35 24.4 0.10 1.4 19.4 52.9 9.7 49.2 26.8 36.6
118 43.4 0.35 68.6 0.34 1.5 19.8 47.1 9.4 49.3 33.1 43.9
119 43.4 0.35 68.6 0.34 0.6 19.7 54.2 9.8 49.3 33.3 44.0
120 43.4 0.35 50.7 0.22 1.0 19.5 52.7 10.2 49.3 31.6 41.8
121 43.4 0.35 40.4 0.17 1.6 19.5 54.6 10.2 49.3 30.3 40.4
122 52.5 0.46 20.3 0.08 3.7 18.3 37.3 8.9 49.2 23.0 32.9
123 52.5 0.46 68.3 0.35 1.6 19.2 59.5 9.8 49.3 31.0 43.2
124 52.5 0.46 76.3 0.42 4.3 19.4 45.9 10.3 49.3 31.7 44.1
125 43.9 0.36 76.3 0.42 4.1 19.4 47.5 10.0 49.3 33.6 44.7
126 50.5 0.44 76.3 0.42 2.5 19.4 55.8 9.9 49.3 32.1 44.3
127 50.5 0.44 68.9 0.35 3.4 19.3 51.9 9.9 49.3 31.4 43.4
128 50.5 0.43 30.2 0.12 7.7 18.9 22.2 10.4 49.2 25.5 36.6
129 60.6 0.51 30.3 0.12 6.9 18.5 1.5 9.7 49.2 23.1 35.1
130 60.6 0.52 69.4 0.35 6.7 19.0 8.3 10.0 49.3 29.4 42.5
131 52.0 0.45 68.1 0.34 6.3 19.0 19.6 9.5 49.3 30.4 42.8
132 32.5 0.23 68.1 0.34 6.7 18.7 27.3 10.1 49.3 36.4 44.8
133 69.5 0.64 68.1 0.34 8.2 19.1 6.4 10.8 49.3 28.1 41.9
134 33.2 0.25 68.1 0.34 6.1 18.7 12.1 9.7 49.3 36.0 44.6
135 31.2 0.23 68.1 0.34 9.2 18.7 0.3 10.4 49.3 37.8 45.2
136 40.6 0.32 68.0 0.34 7.1 19.0 26.3 9.9 49.3 33.5 44.0
137 40.6 0.32 46.0 0.20 4.7 18.6 44.8 9.8 49.3 30.9 41.1
138 33.8 0.24 46.0 0.20 5.6 18.1 50.5 10.6 49.3 33.6 42.1
139 33.9 0.25 28.1 0.11 3.0 17.9 53.6 9.4 49.2 29.5 38.5
140 69.1 0.69 28.1 0.11 4.7 18.0 48.4 10.3 49.2 22.3 34.6
141 57.2 0.53 28.1 0.11 3.2 17.6 59.0 10.1 49.2 23.8 35.5
142 57.2 0.53 34.0 0.13 3.3 17.7 56.8 9.9 49.2 24.5 36.8
143 57.2 0.53 87.4 0.52 3.9 18.3 49.9 10.0 49.0 30.8 44.4
144 44.8 0.37 87.2 0.51 3.6 18.3 50.2 9.7 49.0 33.2 45.0
145 44.9 0.38 31.7 0.12 4.5 17.8 49.3 10.3 49.2 26.7 37.5
146 68.0 0.68 31.7 0.12 4.5 17.6 47.9 10.2 49.2 22.5 35.2
147 68.0 0.68 27.7 0.11 2.8 17.4 56.7 9.7 49.2 22.0 34.2
148 48.3 0.42 27.7 0.11 3.4 17.4 58.8 9.8 49.2 25.2 36.1
149 60.6 0.58 27.7 0.11 2.7 17.2 57.8 9.9 49.2 22.9 34.8
150 47.1 0.40 27.7 0.11 5.9 17.3 52.6 10.3 49.2 25.6 36.5
151 47.1 0.41 38.0 0.15 5.0 17.4 39.7 9.6 49.2 27.1 38.6

86



Table B.3: Results of testing Error Modulated Partial Stuffing on REPEAT HVAC for 
different values of AE. Each step lasted ten minutes.

Step K e

RMS
Error
(°C) Step K e

RMS
Error
(°C) Step K e

RMS
Error
(“C) Step K e

RMS
Error
r c )

1 0.0300 0.69 51 0.0675 0.15 101 0.0300 0.87 151 0.0150 0.50
2 0.0300 0.85 52 0.0675 0.36 102 0.0300 0.35 152 0.0300 0.38
3 0.0675 0.54 53 0.0150 1.12 103 0.0150 0.45 153 0.0675 0.61
4 0.0000 0.85 54 0.0675 0.32 104 0.0300 0.35 154 0.0000 2.14
5 0.0075 0.73 55 0.0075 1.10 105 0.0675 0.44 155 0.0075 0.80
6 0.0675 1.52 56 0.0075 1.15 106 0.0000 2.19 156 0.0300 0.44
7 0.0150 0.33 57 0.0000 0.16 107 0.0075 0.80 157 0.0075 0.36
8 0.0150 0.18 58 0.0675 0.72 108 0.0300 0.39 158 0.0000 1.13
9 0.0075 0.05 59 0.0075 0.20 109 0.0075 0.38 159 0.0000 0.22
10 0.0300 0.15 60 0.0000 1.64 no 0.0000 1.09 160 0.0000 0.67
11 0.0150 0.21 61 0.0150 0.74 111 0.0000 0.16 161 0.0150 0.44
12 0.0000 1.01 62 0.0675 0.55 112 0.0000 0.72 162 0.0075 0.93
13 0.0150 0.35 63 0.0150 0.21 113 0.0300 0.82 163 0.0675 0.36
14 0.0075 0.11 64 0.0075 0.53 114 0.0300 0.94 164 0.0675 0.42
15 0.0300 0.63 65 0.0300 0.57 115 0.0675 0.68 165 0.0150 1.09
16 0.0075 0.58 66 0.0300 0.66 116 0.0000 0.85 166 0.0675 0.41
17 0.0675 0.54 67 0.0675 0.09 117 0.0075 0.77 167 0.0075 1.11
18 0.0675 0.45 68 0.0000 0.63 118 0.0675 1.69 168 0.0075 1.15
19 0.0075 0.65 69 0.0075 0.75 119 0.0150 0.19 169 0.0000 0.08
20 0.0150 0.17 70 0.0675 1.56 120 0.0150 0.15 170 0.0675 0.64
21 0.0300 0.49 71 0.0150 0.24 121 0.0075 0.07 171 0.0075 0.20
22 0.0075 0.13 72 0.0150 0.12 122 0.0300 0.34 172 0.0000 1.63
23 0.0300 0.64 73 0.0075 0.06 123 0.0150 0.21 173 0.0150 0.74
24 0.0675 0.25 74 0.0300 0.20 124 0.0000 1.02 174 0.0675 0.30
25 0.0300 0.13 75 0.0150 0.09 125 0.0150 0.36 175 0.0150 0.29
26 0.0000 0.48 76 0.0000 1.00 126 0.0075 0.14 176 0.0075 0.53
27 0.0150 1.13 77 0.0150 0.36 127 0.0300 0.74 177 0.0000 0.12
28 0.0300 1.53 78 0.0075 0.17 128 0.0075 0.64 178 0.0000 1.08
29 0.0000 1.04 79 0.0300 0.61 129 0.0675 0.67 179 0.0675 0.90
30 0.0300 0.44 80 0.0075 0.54 130 0.0675 0.47 180 0.0075 0.36
31 0.0300 1.68 81 0.0675 0.47 131 0.0075 0.73 181 0.0075 0.78
32 0.0675 0.92 82 0.0675 0.44 132 0.0150 0.10 182 0.0675 0.13
33 0.0000 0.28 83 0.0075 0.62 133 0.0300 0.61 183 0.0150 0.91
34 0.0000 0.35 84 0.0150 0.12 134 0.0075 0.09 184 0.0300 0.34
35 0.0675 0.75 85 0.0300 0.45 135 0.0300 0.68 185 0.0300 0.52
36 0.0300 1.11 86 0.0075 0.11 136 0.0675 0.40 186 0.0675 0.83
37 0.0300 0.91 87 0.0300 0.64 137 0.0300 0.12 187 0.0150 0.54
38 0.0300 0.44 88 0.0675 0.24 138 0.0000 0.45 188 0.0150 0.29
39 0.0150 0.45 89 0.0300 0.15 139 0.0150 1.28 189 0.0300 0.41
40 0.0300 0.40 90 0.0000 0.46 140 0.0300 1.50 190 0.0675 0.30
41 0.0675 0.48 91 0.0150 1.09 141 0.0000 1.06 191 0.0300 0.29
42 0.0000 2.26 92 0.0300 1.53 142 0.0300 0.46 192 0.0300 0.49
43 0.0075 0.78 93 0.0000 1.03 143 0.0300 1.66 193 0.0300 0.15
44 0.0300 0.41 94 0.0300 0.45 144 0.0675 1.06 194 0.0675 0.34
45 0.0075 0.35 95 0.0300 1.73 145 0.0000 0.41 195 0.0675 0.29
46 0.0000 1.16 96 0.0675 0.89 146 0.0000 0.36 196 0.0000 0.12
47 0.0000 0.14 97 0.0000 0.23 147 0.0675 0.77 197 0.0000 0.98
48 0.0000 0.71 98 0.0000 0.44 148 0.0300 1.04 198 0.0000 1.38
49 0.0150 0.32 99 0.0675 0.75 149 0.0300 0.90 199 0.0075 0.80
50 0.0075 0.76 100 0.0300 1.05 150 0.0300 0.35 200 0.0075 1.22
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