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Tbis paper presents a new method for clutter rejection and

dim target track detection from infrared (IR) satellite data using

neural networks. A high order correiation method is developed

which recursively computes the spatio-temporal cross-correlations

between data of several consecutive scans. The implementation

of tbis scheme using a connectionist network is also presented.

Several important properties of the high order correlation

method are established which indicate that the resultant flltered

images capture all the target information. The simulation results

using tbis approach show at least 93% clutter rejection. Further

improvement in the clutter rejection rate is achieved by modifying

the high order correiation method to incorporate the target

motion dynamics. The implementation of tbis modified high

order correlation using a high order neural network architecture

is demonstrated. The simulation results indicate at least 97%

clutter rejection rate for this method. A comparison is also

made between the methods developed here and the conventional

frequency domain three-dimensional (3-D) mtering scheme, and

the simulation results are provided.
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I. INTRODUCTION

This paper is concerned with the problem of
detecting dim moving targets from infrared (IR) data
and identifying their tracks using artificial neural
networks. A number of automatic target detection
schemes have been developed over the past years
[1-7]. Among these schemes are spatio-temporal
filtering [2, 6], maximum likelihood (ML) estimation
[3] and recursive Kalman filtering [7]. However, in
practice, these methods have been only partially
successful and have been shown to produce high
false-alarm rate. Some contributing factors for this
are : extremely low signal-to-noise/clutter ratio,
nonrepeatability of the target signature, competing
clutter forming returns with the same shapes as those
of the actual targets, obscuration of targets in noise
and lack of a priori information about the initial
conditions and the signal statistics. In addition, the
conventional approaches lose their accuracy when
multiple targets are present in the scene, and the
targets move arbitrarily in any direction and form a
track with any shape.

Neural networks offer potentially powerful, robust
and adaptive means of detecting and recognizing
targets in high cluttered background. More recently,
two different neural network-based approaches have
been developed [8-10] to reject the background clutter
and identify the target tracks in IR, radar or sonar
data. In [9] the optimum post-detection target track
receiver was implemented using a Hopfield network.
The network is trained to identify straight line tracks in
the image without taking into account the temporal
behavior of the targets. The method in [10] uses a
Hopfield network as a pre-processor and a multilayer
Perceptron network as a detector for detecting target
signals in underwater acoustic field. However, the
application of these schemes are limited to certain
known shaped patterns and they lose their validity if
any arbitrary shape track is to be detected. In addition,
the Hopfield network has two major limitations when
used as a content addressable memory. First, the
number of patterns that can be stored and accurately
recalled is severely limited (15% of the total number
of input nodes). Second, an examplar pattern will
be "unstable" if it shares many bits in common with
another exemplar pattern. An exemplar is considered
to be unstable when it is applied at time zero and the
network converges to some other exemplar.

A novel clutter rejection scheme is developed here
which circumvents all the shortcomings of the previous
schemes. This method which is referred to as "high
order correlation" [11, 12] exploits the consecutive
temporal and spatial dependencies of the points
on a track to discriminate them from background
clutter. The implementation of this method using
a feedforward connectionist network architecture
is also presented. This method does not make any
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assumption on the shape and the direction of tracks

and it preserves the shape of the track in the resultant

filtered images. This algorithm is tested on numerous

target events and an average clutter rejection rate of

95% is achieved without losing any valid information

pertaining to the target tracks. This method is then

modified to improve the clutter rejection rate by

considering the high order correlations between

three consecutive scans. The improvement in the

discrimination capability of this method is achieved

by imposing a curvature constraint associated with real

target tracks into the process.
An alternative approach for the target detection

using 3-D spatio-temporal filtering [6] is also applied

for comparison. This approach is based on directional

filtering which uses a bank of filters for all the possible

target directions and performs the filtering in the

frequency domain. Simulation results for various events

are obtained and a comparison on effectiveness of all

the methods is also given.
The organization of this paper is as follows.

In Section II, the problem of multi-scan target

detection is described and a model for the process

is formulated. In Section III, a basic spatio-temporal

cross-correlation method is developed to examine the

data between consecutive scans. This cross-correlation

scheme is then further extended using high order

correlations to improve the clutter rejection rate.

The implementation of the high order correlation

scheme on a connectionist network is presented and

the process of generating the filtered images using this

architecture is discussed. Some interesting properties

of the high order correlation scheme are also derived.

A modification of high order correlation method for

achieving better clutter rejection rate is discussed in

Section IV. In Section V, target detection using the

3-D filtering scheme is presented. Simulation results on

several selected IR images provided by the IBM Corp.

are presented in Section VI and a discussion on the

effectiveness of the algorithms is also given. Finally,

Section VII deals with concluding remarks.

II. MULTISCAN TARGET DETECTION PROBLEM

AND MODELING

A. Detection Problem

A multi-scan image is actually obtained by stacking

several two-dimensional (2-D) images collected at

uniform time intervals by an IR sensor whose field

of view is fixed with respect to the background. This

yields a 3-D digital image in the discrete Cartisian

coordinates (x,y,tn) where (x,y) are the spatial

variables and t n represents the time or the scan

number. A moving target in the sensed scene forms

a track or a signature in this 3-D image.

The problem of target detection from a multi-scan

data is stated as follows. Given a 3-D image as

described above, detect and identify the target tracks

and remove the background clutter as much as

possible. The following assumptions are made in this

detection process.

1) The absolute range of target speeds is 4 pixels

per scan.
2) The maximum degree of curvature from one

scan to the next for a target track is 7r/3 rad/s.

3) The maximum number of missing target points

due to the sensors in 10 scans is two.

4) There can be more than one target in the scene.

Since the target tracks extend only over small

portions of the entire 3-D image, windowing during

the detection process was adopted. Other benefits of

windowing include suitability for parallel processing

and reduction in the computational complexity. The

determination of an appropriate window size is a

compromise. It should be as small as possible so that

less clutter is enclosed; on the other hand it should be

big enough to include all the target points in no scans

where no is the scan number at which the detection

must be made.

B. Modeling of The Process

A scanning or a mosaic sensor on board a satellite

provides a set of returns that contains target signal

as well background clutter and additive sensor noise.

Owing to the fact that the intensity of target is

unknown and can vary substantially from one scan

to the other, the detection of dim targets in clutter

and noise using intensity-based schemes becomes

totally impractical. Thus, methods such as thresholding

naturally lead to a low detection rate or high false

alarm rate. As a result, we consider the sensor returns

as a binary image. If the sensor gives an intensity to a

particular location, then the corresponding pixel is set

to 1, otherwise is O. Thus, the image model of one scan

can be expressed as

F(x,y,tn) = S(x,y,tn) + [1- S(x,y,tn)]N(x,y,tn)

(1)

where x, yare the locations on a discrete 2-D plane,

t« is the time unit or scan number, and F is the

image consisting of the target S and clutter N. Note

that F, S, and N are all binary arrays. Thus, F = 1

corresponds to either target or clutter.

III. DEVELOPMENT OF SPATIO-TEMPORAL HIGH

ORDER CORRELATION METHOD

A. Basic Cross-Correlation Method

Let us for now consider only the target alone

scenario, i.e., no background clutter. Since the
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where v is the maximum target speed range, and
Y, which represents how the points of F at time t;

Now, by applying g(.) to R, a decision rule can be
generated to check the consistencies in the correlations
and determine whether or not a window contains a
possible target track. This is given by

(5)

(6)
no-l

U = L g(Rt.tn+l)
n=l

{
I,

g(x) =
0,

n E [1,no- 1] rather than using the actual correlation
values. This can be achieved by using a hard limiter
threshold function g(.) defined by

if x>O;

if X s O.

B. High Order Correlation Method

The approach described in the previous section
computes the spatio-temporal correlations between
windows of two consecutive scans. Consequently, it
only provides information on window correlations
between two consecutive scans. However, these
correlations may be caused by points located anywhere
inside the 30 x 30 window which may not necessarily
form a track for more than three consecutive scans.

The problem can be remedied by developing a
method referred to as "high order correlations" which
computes the correlations recursively. This method
provides information on the correlations of several
consecutive scans instead of just two scans as in the
previous case. Equation (4) is modified to take into
account the behavior of each individual point within a
window from scan n to n + 1. This yields the following
equation after the thresholding function g(-) is applied.

Y(x,y,tn)

[

Ivl Ivl ]
= g L L F(x,y,tn)F(x + i,y + j,tn+1 )

i=-Ivli=-Ivl

(7)

Ideally for a window which covers all the target
track points for no scans, U should be equal to no- 1.
Nevertheless, it is possible that the target points may
be missed by the sensor. In this case, we can choose
a threshold less than but close to no- 1 to take into
account for the missing target points. If U is greater
than this threshold then the window is a possible
candidate, otherwise it is a nontarget window and
hence its content can be removed.

By applying this method, the experimental results
showed that about 80% of the nontarget windows
can be removed. In what follows a new method is
developed which yields significantly better clutter
rejection rate.

target moves along a certain direction and builds a
time-dependent track, there exists correlations between
different scans. Although the velocity of target is
unknown, a reasonable assumption for the range of
its variations can be made.

Let us assume that the target moves with maximum
velocity of v pixels in both x and y directions at one
time-unit, i.e., between two consecutive scans t; and
tn +1> then the correlation between the target points
can be determined by checking

lvl Ivl

Rt.t.+I (v) = L L S(xn,Yn,tn)
i=-Ivl j=-Ivl

x S(x n + i.y; + j,tn+l) = 1 (2)

where (xn,Yn) is the target location at time t.;
However, since the target location (xn,Yn) is not

known, we need to examine all the points within a
window. Windows of size 30 x 30 are used which would
be big enough to cover all the track points from scan
1 to scan 10. Then the spatio-temporal correlation can
be evaluated using

xL+29YL+29 [ lvl Ivl
Rt• t. +1(v) = L ~ .L .L S(x,y,tn)

X=XL Y-YL I=-Ivl J=-Ivl

x S(x + i,y + j,tn+1)] (3)

where XL, YL correspond to lower left coordinates
of the window. If a target is present in a window
and within two consecutive scans then Rt• t. +1(v) = 1,
otherwise Rt.t.+I (v) = O.

'Io consider the effects of clutter in the
formulations, (3) can be rewritten for the received
image F as

XL +29YL +29 [IV1 Ivl

Rt.t.+I(v) = X~L fL i~Vlj~VIF(x,y,tn)

x F(x + i,y + j,tn+1)] (4)

Note that Rt•tn+1 (v) in this case may be greater
than 1 because clutter may also be correlated. To
determine whether a window contains a possible
target track Rtntn+l (v) should be greater than zero
for all n E [1,no], if there is no missing target point
In this case when n varies from 1 to no- 1 there is
consistent correlations at all times. Obviously, these
correlations may be caused by either target points
or clutter which makes a time-dependent false track.
Since no a priori knowledge about the existence of
the target is available, the correlation values may not
convey any valid information to distinguish between
target and clutter windows. Instead, the decision on
the detection and clutter rejection may be made by
examining the consistency in the correlations for all
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ExAMPLE 1 In order to illustrate this process let us

consider a simple 1-D example. Shown below are 5

scans of data associated with a target and nontarget

windows. It is assumed that the maximum target

movement is 2 pixels/scan.

Target Window Nontarget Window

x 12345 x 12345

y(O)(X,tl) 10001 y(O)(x.tt) 01000

y(O) (x,tz) 01000 y(O)(x,tz) 10001

y(O)(X,t3) 00100 y(O)(X,t3) 00010

y(O)(X,t4) 10010 y(O)(X,t4) 10001

y(O)(x,ts) 00001 y(O)(x,ts) 00100

are correlated to their neighboring points at tn+l. is

evaluated in a window of size 30 x 30. Equation (7)

performs a point oriented correlation which generates

an array of values of Y with size 30 x 30. To determine

the correlation in more than two consecutive scans we

continue this process and compute the correlations

of Y. This then yields a recursive procedure with the

general form of

Using the 1-D version of (8) and setting v = 2, the

correlations of the above sequences are given by

y(l)(X,tn) = g [it2y(O)(x, tn)y(O) (x + i,tn+1)] ,

n E [1,4] (9)

where 0 < x + i :::; 5. This yields the correlation

sequences given below.

12345
00000
00001
00010

x
y(Z)(X,tl)

y(Z)(x,tz)
y(Z)(X,t3)

Nontarget Wmdow

12345
10000
01000
00100

Target Window

x
y(Z)(X,tl)

y(Z)(x,tz)
y(Z)(X,t3)

or

y(Z)(x,tn )

= g [y(O)(X,tn ) ~y(O)(X + i,tn+1)]

g [~>.)(X + i. t•-i) [~?(O)(X+ i + j.t• .,)]]

(11)

which clearly indicates the correlations between three

consecutive scans t., tn+l. and tn+2.

The first term on the right side of (11) represents

the correlations of y(O)(x,tn) in scan tn with its

neighboring points in y(O)(x,tn+l) in scan tn+l'

The second term represents the correlations of the

neighboring points of y(O)(x,tn) in scan tn+l to all

their neighboring points y(O)(X,tn+2) in scan tn+2' As

a result, y(2)(x,tn) carries the correlational information

between {y(O)(x,tn) and y(O)(X,tn+l)}, {y(O)(x,tn+l)

and y(O)(X,tn+2)}, and also {y(O)(x,tn), y(O)(x,tn+l)

and y(O)(X,tn+2)}. As far as the nontarget window is

concerned, y(2)(X,tl) = 0, V x implies that y(O)(x,tn)

Note that y(2) can be related to yeO) by

Y(~(x,t.) ~ g [Y(l)(X, t.) ~>(l)(X+ i,t'+l)] ,
n E [1,3]

It is clearly observed that y(l)(x,tn) represents how

y(O)(x,tn) are correlated to their neighboring points

in y(O)(X,tn+l). Interestingly enough if the method

in Section UI.A was used, the target and nontarget

windows would generate the same RYn =L:x y(1)(x,tn)

values which indicate consistent correlations in every

two consecutive scans. As a result, this method would

not be capable of differentiating between the two

cases since all RYn are equal to 1. However, using

the high order correlation method a sequence of new

correlations between y(l)(x,tn) and y(l)(X,tn+l) can

be generated which provides better discrimination

capability. This sequence is generated using

y(2)(x,tn) = g [t2y(l)(X, tn)y(l) (x + i,tn+l)] ,

n E [1,3] (10)

where 0 < x + i :::; 5. This operation yields the

sequences shown below.

12345
01000
00001
00010
10001

x
y(l)(X,tl)

y(l)(x,tz)
y(1)(X,t3)

y(l)(X,t4)

Nontarget Window

12345
10000
01000
00100
00010

x
y(l)(X,tl)
y(l)(x,tZ)

y(1)(X,t3)
y(1)(X,t4)

'Iarget Window

[

lvl lvl

y(k)(X,y,tn) =g i~vli~vIY(k-l)(X,y,tn)

X y(k-l)(X +i,y + j,tn+1)] (8)

where n varies from 1 to nmax, and k is the order

of the recursion. When the order k increases nmax

should decrease such that k + nmax = no for computing

the correlations among no scans. Note that at k = 0,

y(O)(x,y,tn) = F(x,y,tn). It will be shown that if

y(k)(xn,Yn,tn) = 1, then there is a possible track

extending from location (xn,Yn) at scan tn to a point

at scan tn+k' This track can have arbitrary shape and

consistently gives correlations between two adjacent

scans.
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Decision

Fig. 1. Connectionist network for high order correlation.

sequence for n = 1, 2, and 3 does not form a possible
track for all x; whereas y(Z)(5,tz) = 1 may indicate that
{y(O)(5,tz) y(O)(4,t3) y(O)(5,t4)} is a part of a possible
track in three consecutive scans. Also, y(Z)(4,t3) = 1
may imply that {y(O)(4,t3) y(O)(5,t4) y(O)(3,ts)} is a
part of a possible track in three consecutive scans. For
the target window, however, y(Z)(l,tl) = y(Z)(2,tz) =
y(Z)(3,t3) = 1 which shows consistent correlations in
every three consecutive scans. Consequently, y(Z)(x,tn)
sequence can provide information on the existence
of any possible track in three consecutive scans n,
n + 1 and n + 2. To qualify as a complete track RYn =
I:x y(Z)(x,tn), for every n = 1,2,3, should be greater
or equal to unity. This condition is obviously satisfied
for the target window but not for the nontarget
window. The target window distinguishes itself from
the nontarget window because of its spatio-temporal
consistency inherent in high order correlations. The
correlations of order higher than 2 may be used to
determine consistency in correlations in more than
three consecutive scans.

C. Connectionist High Order Correlation Network

This section presents the neural network
implementation of the high order correlation method
developed in Section III.B. It is noted that (8) is
indeed analogous in the form to the equation used
for computing the outputs of a feedforward neural
network. In (8), the term y(k)(x,y,tn) can be regarded
as the neuron output, y(k-l)(x + i,y + j,tn+l)'S as the
inputs, y(k-l) (x,y,tn)'s as the connection weights and
gO as the neuron activation function. Based upon
this analogy one can design a connectionist network
structure for implementing the high order correlation
scheme. Fig. 1 shows a sequential feedforward network
which has 5 planar layers (excluding the inputs) to

compute the correlations up to the 5th order. All
the planar layers have the same number of neurons
and all these neurons perform hard limiter threshold
function. The outputs of the nth planar layer represent
the results of the nth-order correlation. The process is
a pipeline operation in which the data is sequentially
evolved through the network while the processors are
operating simultaneously.

The data within a specific window at each scan
is presented to the network inputs sequentially. At
scan 1, the original data y(O)(xPO,YPO,tl) is directly
used to set the connection weights between the planes
POand Pl, i.e., W(XPIoYPl)(XPO,Ypo) = y(O)(xPO,YPO,tl),
where (xPo,ypo) and (XPhYPl) are the row and column
numbers at planes PO and Pl, respectively. At scan
2, the network computes the output of plane Pl, i.e.,
y(l)(XPhYPhtl), using

y(I)(XPhYPh'l) ~ gIt,it,w('n"n)('",,,,l

x y(O)(XPl + i.ye: + j,tZ)]

~ gIt,it,Y(~(XPhYPh")
x y(O)(XPl + i,YPl + j,tZ)]

'V xPo,YPO,XPloYPl E [1,30]. (12)

It should be noted that since we are only concerned
with the correlations within the assumed maximum
target movements, full connections between all the
nodes of two layers are not needed. The number of
weights connected to an individual output are fixed.

After the outputs of plane Pl are generated,
W(XP1,YP1)(XPO,Ypo) is reset so that w(XPl,YP1)(XPO,YPo) =
y(O)(XPloYPlotZ) and the weights connecting planes P2
and Pl, w(xn,yn)(XPIoYP1)' are set to w(xn,YPZ)(XPIoYP1) =
y(l)(xPZ,YPZ,tl). At scan 3, y(l)(XPloYPl.tz) are
obtained at the output of plane Pl as shown in (12)
with one time-unit increment, and at the same time the
outputs of plane P2 can be computed using

[

V v

y(Z)(xPZ,YPZ,tl) = g i~Vj~V w(xpz,yn)(XPl,YPl)

X y(l)(xpz + i,ypz + j,tZ)]

[

V v

= g i~V j~V y(l)(Xpz,YPZ,tl)

x y(l)(xpz + i.vr: + j,tZ)]

'V xm.ym E [1,30] (13)
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(14)

where (xn,Yn) are the row and column numbers
at plane P2. This process is repeated for all the
planes and all the future scans until at scan 6 the
high order correlation (5th order) results become
available at the output of plane P5. The results of high
order correlation which are obtained sequentially are
then stored for the next no- 6 scans in the tapped
delay line (fDL) in order to check the consistencies
in the correlations. The decision is made after the
TDL is full, i.e., after all no scans are processed.
The processing element for this decision layer also
performs the hard limiter function. To determine
whether or not a window contains a possible target
track, the results (lor 0) from the TDL are added for
the entire time sequence and then compared with a
chosen threshold. The threshold can be adjusted to
accommodate the inconsistent correlations caused
by missing target points. This should be a negative
value so that when the sum of the TDL outputs is
greater than the absolute value of the threshold then
the output of the decision node is one indicating
that this is a possible target window, otherwise it is a
nontarget window and its content (clutter) can be
removed.

The decision output in the architecture of Fig. 1
is primarily used to reject the noise and clutter as
much as possible. However, any false track forming
from clutter and/or noise which satisfies the high
order correlation criterion is retained as a possible
track.

In the previous discussion "clutter rejection"
meant discarding all the windows which do not contain
a possible track, while clutter inside a possible
target window was remained unchanged. The
results of high order correlations can be used as a
mean to reduce clutter inside a possible target
window.

From (8) it is clear that the value of the high
order correlation is zero if the original data points do
not lie on a possible track. The result of high order
correlation in (8) which is still an array of size 30 x 30
can, therefore, be considered as a filtered image. This
image which is referred to as "high order correlation
image" provides more refined results as only the
points that form possible tracks will remain in the
image. Those data points y(O)(x,y,tn ) for which the
high order correlations y(k)(x,y,tn ) are zero will,
therefore, be removed. This image is directly
available at the planar outputs of the high order
correlation network in Fig. 1, i.e., the nth planar
outputs generate the nth order correlation
image.

In general, if one has a fixed number of scans, say
no, for detection, for the case of kth order correlation
one would lose k filtered images in this process. For
instance, suppose we have 10 scans of data from tl to
tlO, when k =4 the high order correlation results will

only contain six images, i.e.,

[

Ivl lvl
y(4)(X,y,tn ) = g .L .L y(3)(x,y,tn )

'=-Ivl J=-Ivl

x y(3)(x + i,y + j,tn +1 )]

where n E [1,6]. Clearly if the data after scan no are
available one can continue generating the high order
correlation images after no- k + 1 scan. However, if
this is not possible then one can continue calculating
the high order correlations based upon the old data in
reverse order until no high order correlation images
are generated to complete the filtering process. This
can be accomplished using the backward process,

[

Ivl lvl

y(k)(X,y,tn ) = g j~VI j~VI y(k-l)(x,y,tn )

x y(k-l)(X + i,y + j,tn - 1)]

in which the subscripts of t has been changed.
The choice of the order k in this method presents

a tradeoff between the clutter rejection capability
and the sensitivity to missing target points. More
specifically, if large order k is used more clutter can be
removed in a target window, but the process becomes
less robust to missing target points. For example, for
a target point at (x,y,tn ) , if its next point at scan tn+l

was misdetected by the sensor, then (x,y,tn ) may be
considered as clutter and removed according to the
correlation criterion. If low order correlations are
used, this may not create a problem at the decision
making stage provided that an appropriate threshold is
chosen. However, for large order case, the correlations
at the outputs of TDL are no longer consistent.
This may lead to misdetection if the threshold is not
adjusted accordingly. Even if the target is detected
the high order correlation images may contain less
valid target information for further processing. In this
case, the likelihood of misdetection depends on the
robustness of the particular postprocessing scheme.
The problem of missing target points is demonstrated
in the following example.

ExAMPLE 2 Shown below is a target sequence
y(O)(n,tn ) , where n E [1,5], with a missing point at
y(O)(2.t2) together with the results of the Ist-order
and 2nd-order correlations. As can be seen, y(I)(x,tn )

sequence contains more target information than
y(2)(x,tn ) sequence, even though the clutter rejection
capability of the 2nd order process is definitely
superior. In both cases, the original target information
in scan 1, i.e., y(O)(I,tl), was not retained. The
performance of the 1st and 2nd order correlation
processes in retaining most of the original target
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information depends of course on where the missing
points are occurred. It should be noted that if the
sequences y(l)(x,tS), y(Z)(X,t4) and y(Z)(x,ts) are
generated using (14), both y(l)(x,tn) and y(Z)(x,tn)
would possess same target information.

Original Image

x 12345
y(O)(X,tl) 1 0 0 0 1
y(O)(x,tz) 0 0 0 0 0
y(O)(X,t3) 1 0 1 00
y(O)(X,t4) 1 0 0 1 0
y(O)(x,ts) 0 0 0 0 1

1st Order

x 12345
y(l)(X,tl) 0 0 0 0 0
y(l)(x,tz) 0 0 0 0 0
y(1)(X,t3) 1 0 1 00
y(l)(X,t4) 0 0 0 1 0

2nd Order

x 12345
y(Z)(X,tl) 0 0 0 0 0
y(Z)(x,tz) 0 0 0 0 0
y(Z)(X,t3) 0 0 1 00

In the above expression since the movement is
unknown, (i,j)s are varied within the velocity window
to find the location of the target in the next scan.
Since there may exist more than one point within the
velocity window, the limiting function g(.) is used.
With the above statement in mind, we can arrive at
the following property.

Paoeosrnox 2 In relation to Proposition 1, it is
also possible to express all the kth order correlations
y(k)(Xn,Yn,tn) in terms of XltYl variables with various
shifts in the spatial coordinates, i.e.,

D. Properties of High Order Correlation Method

In this section some interesting properties of the
high order correlation method are established.

Paososrnox 1 Assuming that at scan 1, a target
return is occurred at location (XltY11 i.e., F(XltYlttl) =
1, then all the future targetpositions F(xn,Yn,tn) can
be expressed in terms of variables (Xl,Yl) with various
shifts in the spatial coordinates.

PROOF. Assuming the maximum velocity v for the
target, we can write

F(X2,yz,tZ)

= gLt-.i.t-. y(·'(x._, + i._. ,y.-. + j .-h I.) } .

(15)

PROOF. The method of induction is used to prove
this property. That is, we assume that (15) is valid
for order k - 1, then we prove that it will also be
valid for order k. Now since it was valid for k = 0
(see Proposition 1) it will be valid for V k. Using the
definition of high order correlations and substituting
for the relevant terms we have

y(k)(Xn,Yn,tn)

~ s{y{'-" (x.,y.,I.),t./t.y'-"(x. + i.,y. + i.,I•••)}

Y (k- l )( . . + . . )}X Xn-l + In-l + In,Yn-l In-l + In,tn+l

o

o

This equation is a general form of the equation
in Proposition 1. Now, we can use the result of this
proposition to arrive at yet another important feature
of the high order correlation scheme.

THEOREM 1 After computing the high order
correlations recursively, if the n - Ith-order correlation
y(n-l)(XltYlttl) is equal to one, then

y(n-l)(XltYlttl) =F(XltYlttl)F(xz,Yz,tz)

x .. .F(xn,Yn,tn) =1 (16)
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i.e., there exists a track (or part of a track)

which consists of n points extending from

scan t1 to scan tn' These points are denoted by

F(Xt,yt,t1),F(xz,yz,tz),··· ,F(xn,Yn,tn) with values 1

at the specific locations and scan numbers.

PROOF. For the first-order correlations, using the

results in Propositions 1 and 2, we have

y(1)(X1,Y1,tl)

~ Y(~(x"Y"t,)g Lt"At"Y(~(xI + i"y. + it,t,) }

=F(Xt,Yt,t1)F(xz,Yz,tz).

IV. MODIFIED HIGH ORDER CORRELATION

METHOD

The high order correlation method developed in

Section III does not make any assumption pertaining

to the target motion information, which includes

direction of motion, velocity variations, and the target

initial location. Although this is advantageous from

one hand, on the other hand, no constraint such as

the target curvature, velocity variations, etc., can be

imposed. As a result, perfect clutter rejection rate

may not be achieved as clutter with returns similar in

shape to a jagged track would satisfy the high order

spatio-temporal correlation criterion as well

A. Development of Modified High Order Correlation

Method

Therefore, when y(1)(Xt,Yl,t1) = 1, the product of

the two points, F(X1,Yt,tt) and F(xz,yz,tz) in two

consecutive scans t1 and tz, is one which implies a

two-point track. The distance between these two points

in each direction is less than or equal to v pixels. If

any of the two points is zero, then y(1)(X1,Yl,tl) = 0,

which means that the two-point sequence does not

exist. Intuitively, since the second-order correlations

can be viewed as the product of two points of the

first-order correlations, it contains information about

three consecutive points in a track, i.e.,

y(Z)(Xt,yt,tl)

= y(I)(X"y"t,)g Lt"ht"y(1)(xI + i',YI + h,t,)}

= y(1)(Xt. Yt. t1)y(1) (xz, yz,(z)

= F(Xt,Yt.t1)F(Xz,yz,tz)F(xz,Yz,tz)F(X3,Y3,t3)

One way to remedy this problem is to apply

directional constraints on the target movements. Since

no a priori information on the target moving direction

is available, it is not possible to accomplish this when

correlations are computed between two consecutive

scans. However, if we consider correlations between

three consecutive scans, then each possible movement

from the first to the second scan within the velocity

window, can be used to determine the range of

possible movements from the second to the third scan

for a predetermined curvature constraint This can be

portrayed by using the following equation

yCk)(X,y,tn)

[YCk_l)( )"",,,",yCk-l)( . . )
=g . x,y,tn~~ x+zl,Y+ll,tn+l

'I J1

X L:~yCk-l)(X + il + iz,Y + h + iz,tn+z)].

'2 J2

(17)

Now, if the maximum moving curvature is 6 then the

turning angle from scan tn+1 to scan tn+z should be

within a bounded region, i.e.,

(19)

(18)

(J - 6:::; tan- l il:- :::; (J + 6.
lZ

In (17), to compute the correlations between scans

t; and tn+l, we consider all the possible movements

and use the entire velocity window, i.e., il,it E

[-lvi,Ivl]' Given a curvature constraint, for each pair

of i1 and it there is a set of possible ia and h values

that can be used to determine the size and the shape

of the velocity window between tn+1 and tn+z. For a

given maximum moving curvature constraint this set of

iz and h values can be obtained from a look-up table.

The target bearing angle from scan tn to scan tn+l

can be calculated using

(J - t -1 it- an -;-.
l1

y(n-l)(Xt,Yt,tl)

= F(Xt,Yt,t1)F(xz,yz,tz)··· F(xn,Yn,tn).

By performing the computation recursively, similar

equation can be obtained for the general form of high

order correlations, i.e.,

REMARK 1 An interesting by-product of this

Theorem is the fact that the high order correlation

filtered image preserves the shape of the track.

For an existing track, the target points from

F(Xt.Yt,t1) to F(xn,Yn,tn) should exist consistently.

If y(n-l)(xt,Yt,t1) = °then it means that at least one

point is missing and the points do not form a complete

track. 0
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(20)

'LWLE I
Curvatures and Movements

2.36 2.22 2.04 1.82 1.57 1.33 1.11 0.93 0.79

2.60 2.36 2.16 1.89 1.57 1.25 0.98 0.79 0.64

2.68 2.55 2.36 2.04 1.57 1.11 0.79 0.59 0.46

2.90 2.82 2.68 2.36 1.57 0.79 0.46 0.32 0.25

3.14 3.14 3.14 3.14 X o. o. o. o.
3.39 3.46 3.61 3.93 4.71 -0.79 -0.46 -0.32 -0.25

3.61 3.73 3.93 4.25 4.71 -1.11 -0.79 -0.59 -0.46

3.79 3.93 4.12 4.39 4.71 -1.25 -0.98 -0.79 -0.64

3.93 4.02 4.25 4.47 4.71 -1.33 -1.11 -0.93 -0.79

The range of possible values for i2 and h can be

determined using (19). It should be noted that this

variable size and shape window is not bigger than the

velocity window for i l and it. The size and shape of

the window is dependent on the parameters (J and 6.

Additionally, since maximum target speed is imposed,

only limited pairs of iz and h need to be considered.

Table I shows all the possible cases of moving angles

which can be used to obtain the range of (i2,h) once

(J and 6 are determined. The "X" in the center is the

location where the process is originated. The location

for each box represents the movement from one scan

to the next. The numbers in the boxes are the moving

angles corresponding to the next possible movement.

The unit is in rad/s.
We now elaborate on the implementation of

(17) using a neural network structure. For simplicity,

the 1-D case is considered first to demonstrate the

concept.

B. Connectionist Modified High Order Correlation

Network

The feed-forward network used in the original high

order correlation method uses first-order units that are

expressed as

z: =g ['tWijXj]
J=l

where {Wij} represents a set of weights connecting

inputs {x j} to the unit i and g is the neuron activation

function. The output of this unit is denoted by zi. In

[13] it was claimed that great enhancement in learning,

generalization, and knowledge representation can be

achieved by crafting the network to reflect the high

order correlational properties of the input environment

in which it is designed to operate. The output of these

high order units can be represented [13] by

Zi =g [WO'i + ~W1,ijXj + ~L:W2,ijmXjXm + ...]
J J m

= g[To(i)+ T1(i) + T2(i) + ...]. (21)

In contrast to the simple model in (20) which

performs the weighted sum operation, (21) is a model

of multiplicative connections in which two or more

inputs are weighted and multiplied together before

entering into the sum. Such a multiplicative connection

allows one input to gate the other. If one input of a

multiplicative set is equal to zero, the other members

of the set will have no effect. On the other hand, if one

member of the set is 1, the others are passed to the

receiving unit without change. These units are called

"sigma-pi units" [14].
The 1-D version of (17) can be rewritten as

y(k)Cx,tn) = g [~~Y(k-l)cx,tn)
'1 '2

X y(k-l)CX + it,tn+l)y(k-l)CX + i l + iz,tn+z)] .

(22)

Comparison of T2(i) in (21) with the terms in (22)

gives the following relations.

g[T2(i)] = y(k)(x,tn),

W2,ijk =y(k-1)(X,tn),

Xj = y(k-1)(x + il,tn+l)

Xm = y(k-1)(X + il + i2,tn+2),

with il =j, i2 = m.

From this analogy it is realized that high order

neural network architectures [13, 14] can be used

to implement the modified high order correlation

algorithm. The data at scan tn+2 are used to gate the

data at scan tn+l'
The neural network implementation of the

modified high order correlation method can be

obtained by rewriting (17) as

y(k)(X,y,tn)

= g [~~Y(k-l)(X + illY + it,tn+l)

II JI

x L:L:y(k-l)(x,y,tn)
i2 h

x y(k-l)(X + il + i2,y + it + h,tn+2)]

=g [~~Y(k-l)(X + illY + it,tn+l)U(ill M]
II JI

(23)

where

(24)
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(k)

Fig. 2 Connectionist network for one layer modified high order

correlation.

Equations (23) and (24) are analogous to those of a

feed-forward neural network structure. In equation

(23), U(ihh) can be considered as the connection

weights of a neural network with inputs y(k-l)(X +

iby + h,tn+l) and output y(k)(x,y,tn) which is

the result of the modified high order correlation.

Moreover, U(ibM which is obtained from (24) can

be generated using a similar network structure.

Fig. 2 shows the architecture of one layer of

the modified high order correlation network which

uses high order units. Depending on the order of

correlations several of these first-order layers should

be cascaded. Note that since this method computes the

correlations in three consecutive scans, for detection

from ten scans the maximum allowable order is 4 as

opposed to 9 in the original high order correlation

case. Consequently, the computational complexity of

the modified high order correlation is comparable to

its original version. The network is similar in structure

to that of the original high order correlation network

with the only difference that the output of the network

on the right hand side of Fig. 2 is modulated with the

connection weights of the network on the left side,

hence generating the high order terms needed for

computing the modified high order correlations.

V. THREE-DIMENSIONAL SPATia-TEMPORAL

FILTERING

This section describes a conventional approach [6]

using 3-D spatio-temporal filtering in the frequency

domain. To detect the presence of a target track,

3-D Fourier transform was first performed on the

multiframe images. The transformed data was then

passed through a set of directional filters to extract the

possible track features. A directional filter is a filter

designed specifically to give maximum enhancement

to images having certain shape features, especially

straight lines in a certain direction. A directional filter

is not of low pass, high pass, or bandpass type filter.

Its function is to pass all the significant components

in the frequency domain that correspond to a straight

line in the spatio-temporal coordinates. Since there are

unlimited possible cases for an arbitrary curved track,

studies have been restricted to straight lines.

1b demonstrate the process of designing the

directional filters let us, for now, consider only the true

target points. Assuming that the velocities along x and

y directions are Vx and vy, respectively, then at time t

we have

S(X,y,t) =S(XI + vxt,Yl + vyt,t) (25)

where (XbYl) isthe location where the target

originated. Note that the changes in Vx and vy give

line tracks in different directions. S(x,Y,t) can also be

expressed using the Dirac delta function, i.e.,

S(X,y,t) = 6(x - Xl - vxt)6(y - Yl - vyt).

The 3-D Fourier transform of S(x,y,t) in the

continuous case is given as

1:1:1: 6(x - Xl - vxt)6(y - Yl - vyt) ~

x e: j(wxx+wyy+w,t) dx dy dt

=e: j(WXXI +WyYI)100

e: j(wxvx+WyVy+w,)t dt
-00

= 21re-j(WXXI+WYYI)6(wxvx +WyVy +Wt). (26)

Equation (26) indicates that the transformed function

is non-zero only on the inclined spectral plane defined

by
(27)

Thus, the Fourier transform components are

concentrated on a space passing through the origin

in the coordinate system (wx,wy,Wt). The magnitude

response is uniform and the phase response is linear.

If clutter and background noise are added to the

image, the 3-D Fourier transform does not show the

regularity of mass distribution as in (27). 1b perform

the filtering, those components with coordinates

(wx,wy,Wt) which do not satisfy (27) are set to zero,

and the rest of the components are passed without

change. An inverse 3-D transform on the filtered data

generates an image with straight lines, which would

satisfy (27) in the frequency domain.
Since the Fourier transform is shift invariant,

one only needs to design filters for lines in different

directions regardless of their locations. Each line with

different direction requires its own directional filter.

The filters were generated with lines rotated every

15° in all the four quadrants, hence giving 24 possible

filters. Each line consists of 10 points for detection in

10 scans.
Problem arrives when digital processing is

performed. 1b explain this, let us assume that the

image is of size N x N, and the time variable is

uniformly sampled, i.e., time units are tl, tz, and so

forth up to tno' where no is the number of scans used

1--
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for detection. Equation (27) is satisfied only when
images are in continuous case or in discrete case with
no = N and vx = VY = 1. If the data is discrete and
does not meet these conditions, then sidelobes are
created and the magnitude response is not uniform.

To design the directional filters in discrete space,
thresholding on the magnitude response of the
transformed discrete line is performed to generate
a set of binary data. This binary data represents
the response of the directional filters which passes
frequency components corresponding to line features
in the spatio-temporal domain. The choice of the
threshold depends on the number of missing points
allowed. That is, suppose we have a clean image
consisting of 10 scans within a window of size 30 x 30
and 4 target points are allowed to be misdetected
by the sensors, then the magnitude of the frequency
response at the origin is (10 - 4)/v'30 x 30 x 10 =
0.0632 with zero phase. Thus, the threshold should be
chosen less than this maximum component.

To detect the presence of a target track in a
cluttered environment in the discrete case, similar
processes as in the continuous case are performed. In
frequency domain, the transformed data is multiplied
by the frequency response of designed filters. An
inverse 3-D Fourier transform on the filtered data gives
an analog image, thus thresholding is used again to
obtain a binary image.

The important features of the 3-D filtering method
are shift invariant property, relative insensitivity
to missing target points, and independency of
computation on the size of windows. However, as
may be noted from (27) vx and vy are assumed to be
constants implying that the target moves with uniform
velocities which is not true in practical situations.
This is a serious drawback of 3-D filtering method.
Different number of zeros between two consecutive
target points represents different target speed. These
zeros are considered as missing target points by
the process which may be acceptable to a limited
amount. It would be much more complicated to design
directional filters to deal with variable speed and
arbitrary curvature cases. The other shortcomings of
this filtering scheme include the following.

1) Its detection capability is limited to the cases
that the filters were designed for.

2) It is computationally intensive to pass the data
through all the filters in the bank.

3) The procedure to design the filter bank is
computationally laborious.

4) Filters are not flexible to deal with variable
situations. For examples, if the size of the image or
the number of scans used for detection are changed,
the filters would not be able to deal with the new
environment. In such cases a new set of filters needs
to be designed.

5) The scan number at which the decision must be
made is not flexible. That is, if 10 scans were used to

design the filters, then the decision cannot be made
until all the data points for 10 scans are available, even
though the characteristics of the track may be apparent
before the 10th scan.

VI. RESULTS AND DISCUSSION

This section presents the results of applying the
high order correlation methods and the 3-D filtering
described in the previous sections to six data files
containing different target events. We first present
the results of the original and the modified high order
correlation methods.

The total number of scans used for detection is
no = 10. Several experiments were conducted which
indicated that the images digitized into matrices of
512 x 512 pixels captured all the target information.
The correlations were evaluated in windows of size
30 x 30 pixels. Windows were swept across the image
from bottom to top and left to right with IS-pixel
overlap between the adjacent windows. Windows which
lie in blank areas and contain no information were
skipped. In addition, if the first half of the bottom row
of the window was blank the window would be moved
up by 1 pixel. Using this process only a maximum of
656 windows were used as opposed to 1100 windows
which would have been needed if standard windowing
had been used. This obviously improves the speed
of operations significantly when implemented on a
serial computer. Once the windows were selected, the
spatio-temporal high order correlations were generated
using (8). In this process k (order of recursion) was
varied from 1 to 5 and thus nmax was changed from
9 to 5. It was assumed that the maximum velocity
is v = 4 pixels/scan. At each step of the process of
evaluating the high order correlations, a threshold
was used to determine a possible target window. If
the sum of high order correlations in a window was
higher than the chosen threshold then the high order
correlation image was generated recursively, otherwise
the window was considered to be a nontarget window
and its content can be removed as clutter. Usually
the nontarget windows can be distinguished before
the second order correlations are performed. The
threshold was chosen to be nmax - 2 for different values
of k which takes into account up to 2 missing points in
10 scans.

Table II summarizes the results on the chosen data
files using the original high order correlation method.
The second column in the table is the total number
of windows for the image of the relevant target event.
The third column is the number of windows that were
considered to be possible target windows after the
detection process. The target detection rates which
indicate the percentage of the target information
(windows) retained in the filtered results are shown in
the fourth column. The clutter rejection rates which
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TABLE II
High Order Correlation Results

Target Total Possible Target Clutter

event windows target windows detection rate rejection rate

10001 372 26 100% 93.26%

20001 656 2 100% 99.84%

30001 582 4 100% 99.45%

40003 507 24 100% 95.26%

50001 593 11 100% 98.31%

60001 530 6 100% 99.24%

TABLE III
Modified High Order Correlation Results

Target Total Possible Target Clutter

event windows target windows detection rate rejection rate

10001 372 8 100% 98.38%

20001 656 1 100% 100%

30001 582 1 100% 100%

40003 507 15 100% 97.23%

50001 593 4 100% 99.66%

60001 530 3 100% 99.81%

TABLE IV

3-D Filtering Results, Window Size =30 X 30

Target Total Possible Target Clutter

event windows target windows detection rate rejection rate

10001 360 90 100% 75.42%

20001 631 45 100% 93.16%

30001 565 79 100% 86.32%

40003 502 136 100% 73.20%

50001 586 122 0% 79.45%

60001 530 139 0% 74.05%

indicate the percentage of the nontarget windows

removed are given in the fifth column. Note that there

could be several windows that cover the same target

track. Thus, the overall clutter rejection rates could be

higher than those presented in this column.

The imperfect clutter rejection ratio in the results

can be attributed primarily to two main factors: 1)

clutter which has returns similar in shape to a jagged

track and satisfy the spatio-temporal correlation

criterion described before, and 2) clutter which

persistently occur at the same location every scan.

The results of using the modified high order

correlation method are shown in Table III. The

maximum moving curvature was assumed to be 7r/3
rad/s. The maximum order of correlation was 3 in

this case. The average central processing unit (CPU)

time was approximately 15 min on an IBM RS/6000

machine. The performance, as expected, has been

improved due to the incorporation of the target

motion dynamics into the process. Thus, the first

factor responsible for imperfect clutter rejection rate

has been alleviated. The improvement in the clutter

rejection rate for the modified high order correlation

method is even more evident when the density of

clutter is high.
For 3-D filtering, a bank of 24 directional filters

were designed which allowed a maximum of 4 missing

target points. The results are shown in Table IV: The

average CPU time required for 3-D filtering was about

30 min on the same computing environment.

The misdetection in 3-D filtering scheme was not

only caused by missing points when windows were

shifted, but also by the nonuniform target speeds. The

images used to design each directional filter contained

target movements in a specific direction with uniform

speeds 1, 2, and 3 pixels per scan. As a result, each

image had three target tracks along the same line but

with different lengths in order to consider limited cases

of varying target speed. Obviously, the filters which

allowed 4 maximum missing points were more adaptive

to varying target speeds but they also passed more

clutter. The algorithm would perform better when

the target moves at a uniform speed on a straight

line track. Event 10001 was an example of such

cases.
For some target events only part of the target

points remained in the filtered results and the original

curved shapes of the tracks were not retained. Those

target points remained typically form straight line

segments which pass the directional filters.

Experiments were also conducted using a different

window size, i.e., 60 x 60, the results of which are

given in Table V. As can be seen, increasing the size

of the window will not change the detection and clutter
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TABLE V
3-D Filtering Results, Window Size =60 x 60

Target Total Possible Target Clutter
event windows target windows retained rejection rate
10001 126 47 100% 63.71%
20001 183 25 100% 87.36%
30001 165 46 100% 73.01%
40003 143 67 100% 53.90%
50001 161 68 0% 58.49%
60001 144 62 0% 57.75%
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Fig. 3. (a) Original data event 10001 after 10 scans. (b) Processed data using high order correlations. (c) Processed data using modified
high order correlations. (d) Processed data using 3-D filtering.
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Fig. 4. (a) Original data event 40003 after 10 scans. (b) Processed data using high order correlations. (c) Processed data using modified

high order correlations. (d) Processed data using 3-D filtering.

rejection rates significantly. Thus, in contrast to the

high order correlation methods which compute the

total correlations inside a window, 3-D filtering finds

the desired features which exist in the image and

hence the window size does not have an impact on the

results.

The graphical representations of the original and

the processed images using the original, modified high

order correlation and 3-D filtering schemes for three

selected events are shown in Figs. 3--5. All the targets

are located in the center of the field. These images

clearly indicate the effectiveness of the proposed

schemes.
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Fig. 5. (a) Original data event 50001 after 10 scans. (b) Processed data using high order correlations. (c) Processed data using modified
high order correlations. (d) Processed data using 3-D filtering.

VII. CONCLUSIONS

In this paper a new method for dim moving target
detection and clutter rejection is developed which uses
high order spatio-temporal correlations to discriminate
actual target tracks from false positives. The original
high order correlation scheme provides an average
clutter rejection rate of 95% without disturbing the
target information. The important properties of this

method are also presented. This scheme can be
implemented on a multiplanar connectionist network
which generates the filtered images in parallel/pipeline
fashion. The high order correlation is then modified
to incorporate target motion dynamics. This modified
high order correlation method which computes the
correlations among three consecutive scans (rather
than two in the original version) offers an average
clutter rejection rate of 98%. The implementation of
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clutter rejection rate of 98%. The implementation of

this scheme using high order neural network paradigm

is also presented. An alternative conventional method

using 3-D filtering is also examined. Simulation results

on six target events are provided which indicate the

effectiveness of the proposed schemes in this paper.
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