
DISSERTATION

EXPLOITING GEOMETRY, TOPOLOGY, AND OPTIMIZATION FOR KNOWLEDGE

DISCOVERY IN BIG DATA

Submitted by

Lori Beth Ziegelmeier

Department of Mathematics

In partial fulfullment of the requirements

For the Degree of Doctor of Philosophy

Colorado State University

Fort Collins, Colorado

Summer 2013

Doctoral Committee:

Advisor: Michael Kirby
Co-Advisor: Chris Peterson

Jiangguo (James) Liu
Bruce Draper

Copyright by Lori Beth Ziegelmeier 2013

All Rights Reserved

ABSTRACT

EXPLOITING GEOMETRY, TOPOLOGY, AND OPTIMIZATION FOR KNOWLEDGE

DISCOVERY IN BIG DATA

In this dissertation, we consider several topics that are united by the theme of topological

and geometric data analysis. First, we consider an application in landscape ecology using a

well-known vector quantization algorithm to characterize and segment the color content of

natural imagery. Color information in an image may be viewed naturally as clusters of pix-

els with similar attributes. The inherent structure and distribution of these clusters serves

to quantize the information in the image and provides a basis for classification. A friendly

graphical user interface called Biological Landscape Organizer and Semi-supervised Segment-

ing Machine (BLOSSM) was developed to aid in this classification. We consider four different

choices for color space and five different metrics in which to analyze our data, and results are

compared. Second, we present a novel topologically driven clustering algorithm that blends

Locally Linear Embedding (LLE) and vector quantization by mapping color information to

a lower dimensional space, identifying distinct color regions, and classifying pixels together

based on both a proximity measure and color content. It is observed that these techniques

permit a significant reduction in color resolution while maintaining the visually important

features of images. Third, we develop a novel algorithm which we call Sparse LLE that leads

to sparse representations in local reconstructions by using a data weighted `1 norm regular-

ization term in the objective function of an optimization problem. It is observed that this

new formulation has proven effective at automatically determining an appropriate number of

ii

nearest neighbors for each data point. We explore various optimization techniques, namely

Primal Dual Interior Point algorithms, to solve this problem, comparing the computational

complexity for each. Fourth, we present a novel algorithm that can be used to determine

the boundary of a data set, or the vertices of a convex hull encasing a point cloud of data, in

any dimension by solving a quadratic optimization problem. In this problem, each point is

written as a linear combination of its nearest neighbors where the coefficients of this linear

combination are penalized if they do not construct a convex combination, revealing those

points that cannot be represented in this way, the vertices of the convex hull containing the

data. Finally, we exploit the relatively new tool from topological data analysis, persistent

homology, and consider the use of vector bundles to re-embed data in order to improve the

topological signal of a data set by embedding points sampled from a projective variety into

successive Grassmannians.

iii

ACKNOWLEDGEMENTS

This dissertation would never have come to fruition without the support and encourage-

ment of several individuals. It is with genuine gratitude that I would like to acknowledge

them.

First, I would like to thank my advisors, Drs. Michael Kirby and Chris Peterson, for

their invaluable guidance and mentorship. Dr. Kirby continually introduces new concepts

and a plethora of interesting data sets to consider, and Dr. Peterson’s insightful ideas and

way with words have been instrumental. Their dual perspectives have led to a very unique

and interesting research path. In addition, I truly appreciate the opportunities to travel to

a variety of conferences as well as co-teach a mini-course in Costa Rica.

I am also indebted to my outside committee member Dr. Bruce Draper who participated

in several research meetings and introduced new color spaces and algorithms to me.

I cannot forget to include my Pattern Analysis Laboratory (PAL) colleagues, especially

Justin Marks and Sofya Chepushtanova, who have been travel companions, idea generators,

helpful resources, and indeed pals.

I would also like to thank the front office staff who encouraged me to pursue a graduate

degree as well as the many wonderful instructors and mentors that I have had along the way,

particularly, Drs. Dan Bates, Patrick Shipman, and James Liu.

Finally, I cannot forget to acknowledge my dear family and friends, many of whom do

not quite understand how it is possible to ‘research’ mathematics but have supported me

regardless. To my parents, Carl and Pat Ziegelmeier, who have been there for me from day

one and have always encouraged me to challenge myself and strive for excellence. Last, but

iv

certainly not least, I must thank my wonderful husband, Mike Neuberg, whose patience,

love, and concern has been a great support to me for all of these years.

v

TABLE OF CONTENTS

Abstract . iii

Acknowledgements . v

LIST OF TABLES . ix

LIST OF FIGURES. x

Chapter 1. Introduction . 1

Chapter 2. Background Algorithms . 5

2.1. Introduction to Linde-Buzo-Gray. 5

2.2. Introduction to Locally Linear Embedding . 10

2.3. Metrics . 31

Chapter 3. Biological Landscape Organizer and Semi-supervised Segmenting Machine

(BLOSSM). 35

3.1. Introduction . 35

3.2. Motivation: An Ecology Application . 35

3.3. Overview . 37

3.4. Color Spaces . 39

3.5. Biological Landscape Organizer and Semi-supervised Segmenting Machine 43

3.6. Analysis . 46

3.7. Ecology Application . 58

3.8. Conclusion . 63

vi

Chapter 4. Locally Linear Embedding Clustering Algorithm. 65

4.1. Introduction . 65

4.2. Connecting Components in Locally Linear Embedding . 68

4.3. Locally Linear Embedding Clustering . 70

4.4. Implementation . 78

4.5. Conclusion . 84

Chapter 5. Sparse Locally Linear Embedding . 86

5.1. Introduction . 86

5.2. Sparse Locally Linear Embedding . 89

5.3. Convex Optimization Problems . 96

5.4. Solving Sparse LLE . 99

5.5. The Algorithm. 102

5.6. Sparsity Example . 103

5.7. Swiss Roll Example . 108

5.8. Fabry-Perot Data Set . 110

5.9. Gene Expression Influenza Data. 123

5.10. Conclusion. 126

Chapter 6. Primal Dual Interior Point Method . 129

6.1. Introduction . 129

6.2. Central Path . 129

6.3. Lagrange Multipliers . 131

6.4. The Dual . 132

6.5. Primal Dual Interior Point Method. 134

vii

6.6. Reducing the KKT System. 138

6.7. Vanderbei PDIP Formulation . 141

6.8. Complexity Analysis . 147

6.9. Computational Complexity of Sparse LLE. 150

Chapter 7. Detecting the Vertices of a Convex Hull Encasing a Point Cloud of Data . . 155

7.1. Introduction . 155

7.2. Thought Experiment . 156

7.3. Optimization Problem . 158

7.4. Implementation . 167

7.5. Conclusion . 174

Chapter 8. Strengthening of Topological Signals in Persistent Homology through

Vector Bundle Based Maps . 176

8.1. Introduction . 176

8.2. Background . 177

8.3. Main Idea . 183

8.4. Conclusion . 189

Chapter 9. Conclusion . 191

Bibliography . 195

Appendix A. Further Analysis of Images Using BLOSSM . 205

viii

LIST OF TABLES

3.1 Table of characteristics regarding all clusters of pixels. 63

3.2 Table of characteristics regarding clusters of pixels with all green clusters combined

into a single group. 63

5.1 Number of ‘zero’ weights as defined by those values less than the tolerance

designated. 119

8.1 Persistent homology data . 179

ix

LIST OF FIGURES

2.1 Voronoi sets of 100 randomly distributed points (green) with 10 randomly

identified centers (blue). 7

2.2 Sample points from the data set of 400 points in R400 created by traversing and

wrapping a 10× 10 black square in a 20× 20 random square. 31

2.3 A plot of the embedding vectors obtained by LLE of 400 points in R400 reduced

down to R3. 31

2.4 Illustration of metric choices with the circle representing Euclidean, the

diamond representing Taxicab, the square representing Chebyshev, and the

ellipse representing Mahalanobis. 34

3.1 Sample image of landscape data set. 38

3.2 Illustration of the red, green, and blue sheets associated to pixels of an image. . 40

3.3 Illustration of creating a data matrix from RGB data. 41

3.4 BLOSSM implemented on an image with 8 centers manually selected by the

user to reflect distinct colors within image. 47

3.5 Reconstructions using the LBG algorithm with fixed color space RGB and

varying the metric used for still life image. 49

3.6 Distortion errors using the LBG algorithm with fixed color space RGB and

varying the metric used for still life image. 50

3.7 Reconstructions using the LBG algorithm with fixed color space Quantized

RGB and varying the metric used for still life image. 51

x

3.8 Distortion errors using the LBG algorithm with fixed color space Quantized

RGB and varying the metric used for still life image. 52

3.9 Reconstructions using the LBG algorithm with fixed color space Named Color

and varying the metric used for still life image. 54

3.10 Distortion errors using the LBG algorithm with fixed color space Named Color

and varying the metric used for still life image. 55

3.11 Reconstructions using the LBG algorithm with fixed color space CIELab and

varying the metric used for still life image. 56

3.12 Distortion errors using the LBG algorithm with fixed color space CIELab and

varying the metric used for still life image. 57

3.13 Characteristic GUI, displaying the reconstruction image and final centers found

after clustering. 59

3.14 Distribution of clusters. 59

3.15 Individual clusters. 60

3.16 Characteristics regarding the yellow cluster of pixels. 62

4.1 Images generated by Pattern Analysis Laboratory at Colorado State University

where an individual remains motionless and the illumination of the surrounding

area varies. 72

4.2 Plots of 3D data points generated by extracting the RGB values of a single

pixel for each of 200 images and their corresponding embedding vectors as

reconstructed by the LLE algorithm using k=8 nearest neighbors, and k=4

nearest neighbors with ‘connected’ data points. 73

4.3 Illustration of subspace segmentation algorithm. 76

xi

4.4 Subspace segmentation of 2D reconstruction data using LLEC with accuracy

tolerances of approximately 0.4 by initializing y∗ as the point whose bth nearest

neighbor has the smallest distance. 77

4.5 Reconstruction images of LLEC with variances tolerances. 81

4.6 Reconstruction images after quantizing the color space of original image with

LBG using indicated method to determine the centers. Note that the respective

distortion errors of each implementation with 15 iterations are: 140.0250,

342.6351, 219.0756, and 146.7013. 83

4.7 Quantizing the color space of the original image with LBG using indicated

method to determine the centers. Note that the respective distortion errors of

these two implementations with 15 iterations are: (1st Original) 210.3490 and

210.6900, (2nd Original) 140.0250 and 146.7013, (3rd Original) 172.5580 and

170.7743. 85

5.1 If K is too large, points in oval A could potentially be represented by nearest

neighbors in oval B. 87

5.2 Original data in R3 . 88

5.3 LLE reconstruction plots in R2 using various choices for the number of nearest

neighbors K . 88

5.4 Considering weights associated to the central (black) pixel. Using K = 20.

Nearest neighbor pixels associated to nonzero weights are colored gray and

those associated to zero weights are colored white. 105

5.5 Plot of weights associated to central pixel, allowing K = 20 nearest neighbors

and varying λ. 106

xii

5.6 Plot of the number of nonzero weights associated to nearest neighbors of the

central pixel versus λ. 106

5.7 Plot of the reconstruction error versus λ. 107

5.8 Plot of the sparsity term, the ‘risk’,
∑
j∈Ni

|wj|f(d(xi,xj)) versus the reconstruction

error, the ‘reward’, ‖xi −
∑
j∈Ni

wjxj‖2
2. Note that blue corresponds to smaller λ

values while red corresponds to larger λ values. 107

5.9 2000 randomly generated points along the swiss roll in R3. 108

5.10 Points in R3 sampled from the swiss roll embedded into R2 using indicated

algorithms and parameters, where Full indicates using the full K × p matrix W

and Zeroed indicates zeroing those entries less than 10−4 in W 110

5.11 Histograms of the number of nonzero weights associated to each point where

the Sparse LLE weight matrix W had entries less than 10−4 zeroed out. 111

5.12 Number of nonzero weights associated to nearest neighbors as both λ and K

are varied. 112

5.13 One sheet of a sample data cube. 113

5.14 Illustration of considering a single pixel in R20 through time. 114

5.15 All 20 sheets of a pre-processed sample data cube.. 115

5.16 Frame 70 of GAA clustered using LBG. 116

5.17 Reducing the 20-dimensional Fabry-Perot data down to R2 using standard LLE

with varying K values. 117

5.18 Reducing the 20-dimensional Fabry-Perot data down to R2 using Sparse LLE

with fixed K values and varying λ. 118

xiii

5.19 Reducing the 20-dimensional Fabry-Perot data down to R2 using Sparse LLE

with varying K values and a fixed λ = 0.05. 119

5.20 Reducing the 20-dimensional Fabry-Perot data down to R2 using Sparse LLE

with varying K values and a fixed λ = 0.1. 120

5.21 Reducing the 20-dimensional Fabry-Perot data down to R2 using standard LLE

and Sparse LLE with fixed K = 40 and λ = 0.1, but varying the cut off of zero,

i.e. any wij < tol will be zeroed out. 121

5.22 Number of nonzero weights associated to nearest neighbors as both λ and K

are varied. 122

5.23 Reducing the 12023-dimensional data down to R2 using LLE while varying K. . 125

5.24 Reducing the 12023-dimensional data down to R3 using LLE with K = 6.

By visual inspection, this choice of K appears to provide the best separation

between sick and healthy individuals. 126

5.25 Reducing the 12023-dimensional data down to R2 using Sparse LLE while

varying K and λ values.. 127

5.26 Number of nonzero weights associated to nearest neighbors as both λ and K

are varied. 128

6.1 Average number of iterations for 100 trials, varying the size of system solves to

be m× 2m, with derivations as described in Section 6.6. 149

6.2 Average CPU time for 100 trials, varying the size of system solved to be

m× 2m, with derivations as described in Section 6.6.. 150

6.3 Average number of iterations for 100 trials, varying the size of system solved to

be m× 2m, with derivations as described in Section 6.7. 151

xiv

6.4 Average CPU time for 100 trials, varying the size of system solved to be

m× 2m, with derivations as described in Section 6.7.. 152

6.5 Average number of iterations and CPU time for 100 trials, varying the size of

system solved to be m × 2m. Comparing all derivations discussed in Sections

6.6 and 6.7. 153

7.1 Illustration of reconstructing an interior point versus a vertex by a set of nearest

neighbors. 158

7.2 The data set consists of an initial 50 random points augmented by an additional

10 boundary points (magenta). The vertices (red) are determined by the

Quickhull algorithm. 168

7.3 Implementation of the algorithm with various parameter choices. Cyan points

have a negative weight for the given parameter choices. 169

7.4 Data points colored according to magnitude of the two norm where blue

corresponds to the smallest values and red corresponds to the largest values. . . 171

7.5 Plot of 2000 points randomly selected points with the 8 additional vertices of

the cube added. Cyan points indicate negative weight, varying parameter λ. . . . 172

7.6 Plot of Euclidean norm of weights associated to each point with parameters

γ = 10−5 and λ = 0.025. 172

7.7 Plot of distance to the boundary of the cube versus the Euclidean norm of

weights associated to each point with parameters γ = 10−5 and λ = 0.025. 173

7.8 Plot of each point in the cube colored according to magnitude of the

corresponding weight vector with 0 ≤ ||w||22 ≤ 0.25 orange, 0.25 ≤ ||w||22 ≤ 0.5

xv

yellow, 0.5 ≤ ||w||22 ≤ 0.75 green, 0.75 ≤ ||w||22 ≤ 1 cyan, 1 ≤ ||w||22 ≤ 1.25 light

blue, 1.25 ≤ ||w||22 ≤ 1.5. 173

7.9 Implementation of algorithm with various parameter choices on convex

combination created using chemical signatures. Points represented in cyan have

a negative weight. 175

8.1 A sequence of Vietoris-Rips simplicial complexes shown geometrically and

abstractly along with their maximal faces. 180

8.2 Barcodes corresponding to Figure 8.1 . 181

8.3 Betti-1 barcodes for each of the four specified embeddings. 188

8.4 Average ratio of the sum of the longest two barcode lengths to the sum of the

lengths of all barcodes for k = 1, . . . , 10. 189

8.5 Average ratio of the second longest barcode to the third longest barcode for

k = 1, . . . , 10. 189

A.1 BLOSSM implemented on an image with 9 centers manually selected by the

user to reflect distinct colors within image. 206

A.2 BLOSSM implemented on an image with 14 centers manually selected by the

user to reflect distinct colors within image. 206

A.3 Reconstructions using the LBG algorithm with fixed color space RGB and

varying the metric used for car image. 208

A.4 Distortion errors using the LBG algorithm with fixed color space RGB and

varying the metric used for car image. 209

A.5 Reconstructions using the LBG algorithm with fixed color space Quantized

RGB and varying the metric used for car image. 210

xvi

A.6 Distortion errors using the LBG algorithm with fixed color space Quantized

RGB and varying the metric used for car image. 211

A.7 Reconstructions using the LBG algorithm with fixed color space Named Color

and varying the metric used for car image. 212

A.8 Distortion errors using the LBG algorithm with fixed color space Named Color

and varying the metric used for car image. 213

A.9 Reconstructions using the LBG algorithm with fixed color space CIELab and

varying the metric used for car image. 215

A.10Distortion errors using the LBG algorithm with fixed color space CIELab and

varying the metric used for car image. 216

A.11Reconstructions using the LBG algorithm with fixed color space RGB and

varying the metric used for still life image. 217

A.12Distortion errors using the LBG algorithm with fixed color space RGB and

varying the metric used for still life image. 218

A.13Reconstructions using the LBG algorithm with fixed color space Quantized

RGB and varying the metric used for still life image. 220

A.14Distortion errors using the LBG algorithm with fixed color space Quantized

RGB and varying the metric used for still life image. 221

A.15Reconstructions using the LBG algorithm with fixed color space Named Color

and varying the metric used for still life image. 222

A.16Distortion errors using the LBG algorithm with fixed color space Named Color

and varying the metric used for still life image. 223

xvii

A.17Reconstructions using the LBG algorithm with fixed color space CIELab and

varying the metric used for still life image. 224

A.18Distortion errors using the LBG algorithm with fixed color space CIELab and

varying the metric used for still life image. 225

xviii

CHAPTER 1

Introduction

Geometric and topological structure has been widely observed in the context of massive

data sets, giving rise to the need for mathematically-based algorithms. Knowledge discovery

of these large data sets is an area of mathematics at the intersection of linear algebra,

geometry, topology, computing, data mining, statistics, optimization, and signal processing.

With computational power now available, knowledge discovery of large data sets may be

uncovered using mathematical techniques such as manifold learning. Manifold learning is a

data analysis approach that assumes that the observations, taken as a whole, possess some

geometric structure.

One problem in manifold learning is characterizing the color content of natural imagery.

As natural images are not random, there exists correlation between pixels that gives rise

to structure. It has been said that correlation is the footprint of low dimensionality, and

thus, exploiting this correlation reveals structure within a data set. The color content of

images may be viewed naturally as clusters of pixels in color space that are correlated,

and the inherent structure and distribution of these clusters affords a quantization of the

information in the image.

In this thesis, we discuss two algorithms for color content quantization, one a well-known

algorithm applied to a new area and the other a way to combine existing algorithms into

a novel technique. We also discuss a new derivation of a manifold learning algorithm that

better reflects the topological structure of a data set and a method to determine the convex

1

hull from a point cloud of data of any dimension. Finally, we discuss a multiscale algorithm

that looks for structure in data sets at different scales to observe which features persist in

each scale and a way to improve the topological signal in each of these scales.

In Chapter 3, we discuss an application of a well-known clustering algorithm to land-

scape ecology. A common problem in landscape ecology is to ascertain the flower cover of

a particular type of flower within a region and understand spatial relationships of foliage

and flowers within the region. Using the well-studied Linde-Buzo-Gray vector quantization

algorithm [54], we have developed a friendly graphical user interface dubbed BLOSSM (Bio-

logical Landscape Organizer and Semi-Supervised Segmenting Machine) that quantizes the

pixels of an image and thus, the color space. We consider this algorithm’s performance using

four choices of color space (RGB, Quantized RGB, Named Color, and CIELab) and five

similarity measures (`1, `2, `∞, Mahalanobis distance, and spectral angle). Analysis on a

sample landscape image, comparing the choice of color space and metric on the clustering.

Important features pertaining to a cluster associated to a single color such as number of pix-

els, the percent of the total area, the number of contiguous regions, and the average number

of pixels in each contiguous region can be determined. The entropy of a given reconstruction

is also uncovered. Analysis of two additional images can be found in Appendix A.

As the transition of the color values of neighboring pixels in pixel space of a given hue is

typically smooth, we can associate these smooth variations of pixel colors of a given hue to

be lying on a manifold, at least approximately. Blending the topologically-driven manifold

learning Locally Linear Embedding algorithm [71], Principal Component Analysis [50], and

the Linde-Buzo-Gray algorithm [54], we have developed a novel clustering algorithm that

reveals the geometric structure associated with smooth variations in the pixel distribution of

2

images and identifies underlying submanifolds which allow for segmentation and quantization

of the color space of images. This technique permits a significant reduction in color resolution

while maintaining the visually important features of images. This new algorithm, called

Locally Linear Embedding Clustering is discussed in Chapter 4.

In Chapter 5, we discuss a new modified version of the LLE algorithm. In the standard

LLE algorithm, the error of the squared Euclidean distance between a data point and its

reconstruction is minimized. We consider a reformulation of this problem by considering

this error with an `1 regularization term added to the objective function in the second step

to determine the weights, in order to penalize weights of nearest neighbors that are not

actually very similar. The sparsity property induced by the `1 norm is exploited in this

regularization. LLE has the artifact that if K nearest neighbors are allowed, then all of the

weights associated to these nearest neighbors will be nonzero. In our reformulation, many

weights are driven to zero, allowing points to automatically be constructed by an appropriate

number of nearest neighbors. We call this modified problem Sparse LLE.

We discuss in Chapter 6 a method to solve Sparse LLE known as the Primal Dual Interior

Point algorithm. A variety of formulations is presented and the computational complexity

of each formulation is explored.

A new algorithm to determine boundaries of a data set is discussed in Chapter 7. This

algorithm arose from reconstructing data points by a choice of nearest neighbors and prefer-

ring those that fall within a convex hull of its neighbors. Those points that are not able to

fall within a convex hull of its neighbors (i.e. cannot be represented as a convex combination)

are deemed to be points lying on the boundary, or vertices of the convex hull containing all

data points.

3

Finally, Chapter 8 discusses the relatively new tool from topological data analysis, per-

sistent homology. For many, the way data sets (and the information contained in those sets)

are viewed have been changed by persistent homology. It is derived directly from techniques

in computational homology but has the added feature that it is able to capture structure

at multiple scales. One way that this multi-scale information can be presented is through a

barcode. A barcode consists of a collection of line segments each representing the range of

parameter values over which a generator of a homology group persists. A segment’s length

relative to the length of other segments is an indication of the strength of a corresponding

topological signal. In this paper, we consider how vector bundles may be used to re-embed

data as a means to improve the topological signal. As an illustrative example, we construct

maps of tori to a sequence of Grassmannians of increasing dimension. We equip the Grass-

mannian with the geodesic metric and observe an improvement in barcode signal strength

as the dimension of the Grassmannians increase.

First though, in Chapter 2, we will present a couple of background algorithms that will

be used in a variety of places throughout this dissertation.

4

CHAPTER 2

Background Algorithms

In this chapter, we will discuss some background algorithms and concepts that will be

used throughout this disseratation. This material is included to make this a self-contained

document but is not part of the original contribution. We will first describe the well-known

vector quantization algorithm known as the Linde-Buzo-Gray algorithm which is similar to

K-means. Next, we will discuss in detail the Locally Linear Embedding algorithm, including

the derivation, proofs of invariance relationships, methods for determining parameter values,

and an example of nonlinear dimensionality reduction. Finally, we describe a few metrics

that will be used throughout this dissertation.

2.1. Introduction to Linde-Buzo-Gray

The Linde-Buzo-Gray (LBG) algorithm [54] is a vector quantization, competitive learning

algorithm. The idea of competitive learning is that a set of classification vectors “compete”

for the privilege to react to a subset of the input data in an effort to distribute vectors in

a way that reflects the probability distribution of the input signals. The LBG algorithm

in its standard form is unsupervised, meaning that it can identify major characteristics or

patterns without any information from the user such as data labels.

In essence, the algorithm determines all points that fall within a region of a classification

vector which we call a center and label ci, calculates the mean of all points falling within this

5

region, and then updates the center of this set to be equal to the mean. The entire process

is then iterated until all data points are quantized to an appropriate degree of accuracy.

To make this idea more precise, we need to introduce the idea of a Voronoi set. Voronoi

sets are determined by identifying a set of vectors called centers in which to cluster the

data. Then, each point within the data set is compared to each of the centers by computing

the distance according to some metric between each point and each center. Each point is

identified with the center it is closest to, i.e. the center with the smallest distance.

Definition 1. A Voronoi set Si is the subset of points of a data set X for which center ci

is the winner, meaning

Si = {x ∈ X | ‖x− ci‖ ≤ ‖x− cj‖ ∀ j 6= i}

Here, we define ‖x− ci‖ to be the standard Euclidean distance i.e. if x = (x1, x2, x3, . . . , xn)

and ci = (ci1, c
i
2, c

i
3, . . . , c

i
n) , then

‖x− ci‖ =
√

(x1 − ci1)2 + (x2 − ci2)2 + (x3 − ci3)2 + . . .+ (xn − cin)2.

Therefore, the Voronoi set S1 is the set of all points satisfying ‖x − c1‖ ≤ ‖x − cj‖ for all

j 6= 1 , S2 is the set of all points satisfying ‖x−c2‖ ≤ ‖x−cj‖ for all j 6= 2, etc. Furthermore,

the Voronoi set S1 can be thought of the set of all points closer to center c1 than to all other

centers, the Voronoi set S2 can be thought of the set of all points closer to center c2 than to

all other centers, etc. Do note that any distance metric could be used as well.

6

The partitioning of data points within an input space is known as a Voronoi tessellation.

Refer to Figure 2.1 to observe 100 randomly distributed points (green) partitioned into 10

Voronoi sets associated to each of the randomly generated centers (blue).

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Voronoi Diagram

Figure 2.1. Voronoi sets of 100 randomly distributed points (green) with 10
randomly identified centers (blue).

The importance of defining a Voronoi set is that we have a discrete subset of points that

we can work with. We calculate the mean of each Voronoi set as

µi =
1

|Si|
∑
x∈Si

x

where |Si| is the number of data points within the Voronoi set Si. This mean will be used

to identify new center vectors for the next iteration of the algorithm.

7

The desired result of the LBG algorithm is that all of the input data will be partitioned

into Voronoi sets, or clusters, in such a way that points within a cluster are similar, and

thus, can be identified with the prototype of the cluster, the center. Now we are ready to

outline the LBG algorithm as follows:

LBG Algorithm

(1) Identify a set of center vectors.

(2) Determine the Voronoi sets Si for each center ci.

(a) Present a vector xj to the network.

(b) Calculate the distance of xj to each center ci,

(c) Determine the index, k, of the center vector with the minimum distance

to xj. That is, k = argmini∈I‖xj−ci‖ where I is the set of center indices.

(d) Identify the winning center c∗ = ck.

(e) The vector xj is then an element of the Voronoi set Sk associated to

center ck.

(3) Repeat steps (a) through (e) until each vector in the input data set has been

considered.

(4) Update each of the center vectors by calculating the mean of all points within

each Voronoi set and equating the new center vector with the mean

ci =
1

|Si|
∑
x∈Si

x.

8

(5) Repeat steps 2. through 4. Until some convergence criterion is achieved.

The algorithm may be repeated for a finite set of iterations, until assignment of each data

point does not change from one iteration to the next, or until some tolerance has been met.

One such stopping criterion could be if the error of the reconstruction is small enough, then

the algorithm may terminate. The distortion error is one measurement of reconstruction

error.

Definition 2. The distortion error of a data set X consisting of p points with regard to

a set of centers labeled by indices J is

E(X, J) =
1

p

∑
j∈J

∑
x∈Sj

‖x− cj‖2

Note that if we let X∗ indicate the matrix of points each identified with their winning

centers, then the distortion error could also be calculated as 1
p
‖X −X∗‖2

F where

‖A‖F =

√√√√ m∑
i=1

n∑
j=1

|aij|2

is the Frobenius norm.

Note that we have not discussed how to initialize the original center vectors around which

the data is clustered. Proper initialization is a crucial issue for any iterative algorithm and

can greatly affect the outcome. Therefore, initializing the center vectors must be done with

care. One could define the centers as points on a lattice or grid, define centers with certain

properties for a particular data set, choose random data points within the data set, or use

9

random vectors that may or may not be a subset of the original data set. Depending on

the distribution of the original data set and the distribution of the centers, some Voronoi

sets may have a large number of points within them and some may be empty. Note that

[7] indicates that in a supervised or semi-supervised problem assignment constraints can be

used to avoid empty or unnecessary clusters. Another important parameter is the choice

of the number of centers around which to partition the data. If an inappropriate choice is

made, poor results may occur. As one might guess, the increase in the number of centers

often allows for a decrease in the distortion error of the data.

2.2. Introduction to Locally Linear Embedding

The Locally Linear Embedding (LLE) algorithm [71] is an unsupervised dimensionality

reduction algorithm that determines a mapping of data, lying in a higher dimensional vector

space, to a lower dimensional vector space while optimizing the maintenance of local spatial

relationships within the data. Through this map, the LLE algorithm uncovers a lower dimen-

sional representation of the data with the goal of preserving the topology and neighborhood

structure of the original higher dimensional data.

Given a data set, X, consisting of p points of dimension D as input vectors, the LLE

algorithm determines p embedding vectors of dimension d, where d < D, that reflect the

structure of the original data. The first step in implementing the LLE algorithm is to

determine the neighbors associated to each of the high dimensional data points. Typically,

this is done by determining a fixed number of nearest neighbors K by considering those

data points with the smallest distance determined by the metric being used, often Euclidean

distance.

10

The second step of the algorithm is to associate to each neighbor a weight. This weight is

calculated by solving a least squares problem that minimizes a certain reconstruction error

ε(W). More precisely, if xi denotes the ith data point from a set of p points, and Ni denotes

the indices of its set of nearest neighbors, one determines the values of wij that minimize

the expression

ε(W) =

p∑
i=1

‖xi −
∑
j∈Ni

wijxj‖2

where W denotes the p × p matrix containing the weights wij (padded out with zeros cor-

responding to points not identified as nearest neighbors). Note that the expression ε(W) is

minimized subject to the constraint that for each i,
∑
j∈Ni

wij = 1. This constraint ensures

that the weights are invariant to translations and the form of the error ensures the weights

are also invariant to rescalings and rotations.

The final step of the algorithm is to determine a set of lower dimensional vectors, yi,

that minimize the function

φ(Y) =

p∑
i=1

‖yi −
∑
j∈Ni

wijyj‖2

using only the local geometry obtained by the weights. This function in minimized subject

to the constraint that the data is sphered or whitened, 1
p

p∑
i=1

yiy
T
i = I, and it is centered

around the origin

p∑
i=1

yi = 0. It can be shown that this optimization problem corresponds to

the eigenvector problem MY T = Y TΛ where M = I−W−W T +W TW = (I −W)T (I −W)

and Λ is the diagonal matrix of Lagrange multipliers. The minimal solution is the bottom

d eigenvectors (i.e. those corresponding to the smallest nonzero eigenvalues of M). The ith

row of Y T corresponds to yi.

11

If our data set corresponds to a sampling of a manifold and if this sampling is sufficiently

dense, then a fundamental assumption of the algorithm is that each data point and its

nearest neighbors can be characterized by a locally linear patch of the manifold, hence the

name Locally Linear Embedding. Therefore, in the second step of the algorithm, each xi is

approximated by a linear combination of its neighbors. Data points that were close together

in the original higher dimensional space should still be close together after mapped to lie

in the lower dimensional space thus preserving the topology of the original data set. In the

following subsections, we derive the algorithm in more detail.

2.2.1. Nearest Neighbors. The first step in implementing the LLE algorithm is to

determine the neighbors associated to each of the high dimensional data points. Determining

the nearest neighbors of a specific data point involves finding those data points that are the

most similar. One way to measure similarity is to use a Euclidean distance metric (however,

other metrics may also be used). The most straightforward way to perform this task is to

determine a fixed number of nearest neighbors by considering those data points with the

smallest distance determined by the metric being used. Alternatively, nearest neighbors can

be identified by classifying as neighbors all data points that fall within a ball of fixed radius

about each point. Therefore, the number of nearest neighbors could differ for each data

point. However, if the radius of each ball is chosen to be too small, some points may be

isolated. In this paper, the nearest neighbors of each point was found by determining a fixed

number, K, data points with the smallest non-zero Euclidean distance from the original

point.

12

Determining the fixed number of neighbors, K, is the only free parameter in the LLE

algorithm. There is some art in choosing an appropriate value for K. If the manifold is well-

sampled, then each data point and its nearest neighbors lie approximately on a locally linear

piece of the manifold. However, if the number of nearest neighbors, K, is chosen to be too

large, the region may no longer be linear and might include points which are geodesically far

away. However, choosing K to be too small may be problematic as the eigenvector problem

to determine the embedding vectors becomes singular. ALso, the span of a set of K points

is a linear space of dimension at most K − 1. Therefore, the dimension of the target vector

space, d, should be chosen to be strictly less than the number of nearest neighbors. Note

that [71] did not give guidance on how to choose an appropriate number of nearest neighbors.

However, [57] gives an hierarchical approach to automatically select an optimal parameter

value which has been shown to be quite precise, although computationally intensive. This

will be discussed further in 2.2.4.2

Another issue arises when the dimension of the original high dimensional data, D, is

larger than K. Section 2.2.4.3 will discuss this complication as well as a way to determine an

appropriate value for K. Finally, it is important to realize that the embedding reconstruction

greatly depends on the number of neighbors being used.

2.2.2. Least Squares Problem to Find Weights. The second step of the LLE

algorithm is to determine the weights used to associate each point with its nearest neighbors.

This can be done by minimizing the distance between a point and a linear combination of all

of its nearest neighbors where the coefficients of this linear combination are defined by the

weights. Let Ni be the set of neighbors associated to a single point xi, let p be the number

of data points being considered, and let D denote the dimension of the ambient space of

13

the data. Our goal then is to determine the weights, wij, associated to each point, xi, and

each of its nearest neighbors, xj ∈ Ni. Note that the weight, wij, between two points that

are not nearest neighbors is defined to be 0. Thus, a data point can only be reconstructed

from points determined to be its nearest neighbors. Now, the weights are determined by

minimizing differences between each point and a linear combination of the nearest neighbors

to the point. Let W denote the matrix of weights with entries wij. The cost function of the

reconstruction error is then given by

ε(W) =

p∑
i=1

‖xi −
∑
j∈Ni

wijxj‖2.(2.1)

For each i, a constraint,
∑
j∈Ni

wij = 1, is implemented to ensure that these weights are

invariant to translations. Note that the form of the errors ensures the weights are also

invariant to rescalings and rotations. Proofs of these transformation invariance relations can

be found in Section 2.2.4.1. Using the sum-to-one constraint, the constraint that wij = 0 if

xj is not in the set Ni, and a little linear algebra, we see that

ε(W) =

p∑
i=1

‖xi −
∑
j∈Ni

wijxj‖2

=

p∑
i=1

‖
∑
j∈Ni

wij(xi − xj)‖2

=

p∑
i=1

(∑
j∈Ni

wij(xi − xj)

)T (∑
j∈Ni

wij(xi − xj)

)

=

p∑
i=1

(∑
j,k∈Ni

wijwikc
i
jk

)

14

where

cijk = (xi − xj)
T (xi − xk).(2.2)

This notation represents a K ×K covariance matrix Ci defined for each point xi with j, k

entry cijk.

Now, we want to minimize these errors using the constraint
∑
j∈Ni

wij = 1. This can be

done using Lagrange Multipliers. Thus, our optimization problem

minimize
w

p∑
i=1

(∑
j,k∈Ni

wijwikc
i
jk

)

subject to
∑
j∈Ni

wj = 1

becomes

minimize
w

p∑
i=1

(∑
j,k∈Ni

wijwikc
i
jk

)
−

p∑
i=1

λi

(∑
j∈Ni

wij − 1

)

where λi are the Lagrange multipliers for each contraint. Fix i in order to determine the

weights associated to the neighbors of a single point, xi, with associated Lagrange multiplier

λ.

min
∑
j,k∈Ni

wjwkcjk − λ

(∑
j∈Ni

wj − 1

)

15

This optimization problem can be solved by finding the critical values of this cost function.

Thus if we differentiate with respect to each weight, we have:

∂

∂wm

(∑
j,k∈Ni

wjwkcjk − λ

(∑
j∈Ni

wj − 1

))

=
∑
j,k∈Ni

(
∂wj
∂wm

wkcjk + wj
∂wk
∂wm

cjk

)
− λ

∑
j∈Ni

∂wj
∂wm

=
∑
j,k∈Ni

δjmwkcjk +
∑
j,k∈Ni

wjδkmcjk − λ
∑
j∈Ni

δjm

=
∑
k∈Ni

wkcmk +
∑
j∈Ni

wjcjm − λ

where δij corresponds to the Kroeneker delta in which δij = 1 if i = j and 0 otherwise.

Setting this equation to 0 and solving we have

∑
k∈Ni

wkcmk +
∑
j∈Ni

wjcjm − λ = 0

which implies

2
∑
k∈Ni

wkcmk = λ.

Finally, we have ∑
k∈Ni

wkcmk =
λ

2
.

Now, differentiating our original equation with respect to λ we have

∂

∂λ

(∑
j,k∈Ni

wjwkcjk − λ

(∑
j∈Ni

wj − 1

))
=
∑
j∈Ni

wj − 1.

Setting this equal to 0, yields ∑
j∈Ni

wj = 1.

16

Since we know that weights are invariant under rescalings we can scale them such that

w̃k =
2

λ
wk.

Putting both of these derivatives together we can solve the system of equations



∑
k∈Ni

w̃kcmk = 1

∑
k∈Ni

w̃k = 1

which yields

Ciw̃ = e(2.3)

where Ci corresponds to the covariance matrix determined by cijk = (xi − xj)
T (xi − xk), w̃

is the column vector of weights associated to a single point, and e is the vector of all ones.

Thus in order to find the reconstruction weights, it is only necessary to solve

w̃ = C−1
i e

for each i where the weights are rescaled so that they sum to one. Thus, we have derived

the least squares problem to determine the weights that reconstruct the high dimensional

data points of dimension D to the lower dimension embedding data points of dimension d.

We can form a weight matrix, W , where each row, i, corresponds to the weights between

the point xi and every other point. Note that W is extremely sparse as the weight between

any two points that are not nearest neighbors is defined to be zero.

17

2.2.3. Eigenvector Problem. The third and final step of the LLE algorithm is to

determine the low dimensional embedding vectors, yi, of dimension d by using the recon-

struction weights, wij, of the high dimensional data vectors, xi. The only information used

in this portion of the algorithm is the geometry obtained by the weights. Here, it is neces-

sary to minimize a cost function for the errors between the reconstruction weights and the

outputs, yi as follows:

φ(Y) =

p∑
i=1

‖yi −
p∑
j=1

wijyj‖2.

Y denotes the d× p matrix where the columns are the embedding vectors. In order to find

these reconstruction vectors, yi, the following optimization problem must be solved for fixed

weights, wij.

Using linear algebra, we can manipulate our cost function as follows:

φ(Y) =

p∑
i=1

‖yi −
p∑
j=1

wijyj‖2

=

p∑
i=1

〈
yi −

p∑
j=1

wijyj ,yi −
p∑
j=1

wijyj

〉

=

p∑
i=1

〈yi,yi〉 −
p∑
i=1

〈
yi,

p∑
j=1

wijyj

〉
−

p∑
i=1

〈
p∑
j=1

wijyj ,yi

〉
+

p∑
i=1

〈
p∑
j=1

wijyj ,

p∑
j=1

wijyj

〉

=

p∑
i=1

〈yi,yi〉 − 2

p∑
j=1

wij
〈
yi,yj

〉
+

p∑
j,k=1

wijwik
〈
yj ,yk

〉
=

p∑
i,j=1

〈
yi,yj

〉(
δij − 2wij +

p∑
k=1

wijwik

)

where < ·, · > is the standard inner product. Note that

p∑
i,j=1

〈
yi,yj

〉
wij =

p∑
i,j=1

〈
yj,yi

〉
wji

by basic properties of inner products. Thus,

18

φ(Y) =

p∑
i,j=1

〈
yi,yj

〉(
δij − 2wij +

p∑
k=1

wijwik

)

=

p∑
i,j=1

Mij

〈
yi,yj

〉

where Mij = δij − wij − wji +

p∑
k=1

wijwik where all of the wij come from the weight matrix

W . Thus,

M = I −W −W T +W TW = (I −W)T (I −W) .

We see that M is symmetric even though wij is not necessarily equal to wji. This fact will

become important shortly. Also, M is extremely sparse as W is, and it is also semi-positive

definite.

Now we want to show that φ(Y) =

p∑
i,j=1

Mij

〈
yi,yj

〉
= tr(YMY T). Using the fact that

the trace function is commutative, we see that

tr(YMY T) = tr(MY Y T)

= tr




m11 · · · m1p

...
. . .

...

mp1 · · · mpp




‖y1‖2 yT1 y2 · · · yT1 yp

...
. . .

...

yTp y1 yTp y2 · · · ‖yp‖2





= tr




m11‖y1‖2 + · · ·+m1py

T
p y1 · · · m11y

T
1 yp + · · ·+ ‖yp‖2

...
. . .

...

mp1‖y1‖2 + · · ·+mp1y
T
p y1 · · · mp1y

T
1 yp + · · ·+mpp‖yp‖2




= m11‖y1‖2 + · · ·+m1py

T
p y1 +m12y

T
1 y2 + · · ·+mp2y

T
p y2 + · · ·

19

· · ·+mp1y
T
1 yp + · · ·+mpp‖yp‖2

Recall now that M is symmetric, so mij = mji. This then yields

tr(YMY T) =

p∑
i,j=1

Mij

〈
yi,yj

〉

as desired.

Our problem then becomes

min
Y
tr(YMY T)

subject to Y Y T = I

where the constraint is equivalent to saying that the embedding vectors are sphered or

whitened. Thus, they are uncorrelated, and their variances equal unity. Note that Y is

orthogonal in the row space but the embedding vectors are not required to be orthogonal.

This constraint does not change the problem due to the invariance under rotations and

rescalings as discussed previously. Otherwise, letting yi = 0 for each i would be the optimal

solution. We also use the fact that translations do not affect the cost function, so we require

the outputs to be centered at the origin, adding the constraint:

p∑
i=1

yi = 0

We will again use Lagrange multipliers to solve this problem. Our Lagrangian becomes

L(Y, µ) = tr(YMY T)−
d∑

i,j=1

µij(Y Y
T − I)ij

20

where each µij is the Lagrange multiplier for each constraint. Taking the derivative of this

Lagrangian with respect to the matrix Y and equating to zero will yield our desired solution.

The derivative of tr(YMY T) with respect to Y is a well-known identity:

∂

∂Y

(
tr(YMY T)

)
= Y

(
M +MT

)

The derivative of the scalars α =
∑d

i,j=1 µij(Y Y
T − I)ij with respect to the matrix Y can be

computed as follows:

∂α

∂Y
=

d∑
i,j=1

µij


∂(Y Y T−I)ij

∂y11
· · · ∂(Y Y T−I)ij

∂y1p

...
. . .

...

∂(Y Y T−I)ij
∂yd1

· · · ∂(Y Y T−I)ij
∂ydp



=


∑d

h=1(µih + µhi)yh1 · · ·
∑d

h=1(µih + µhi)yhp

...
. . .

...∑d
h=1(µdh + µhd)yh1 · · ·

∑d
h=1(µdh + µhd)yhp


Setting these two derivatives equal to each other, we see that

(2YM)ij = 2

p∑
k=1

yikmkj =
d∑

h=1

(µih + µhi)yhj = (
∂α

Y
)ij.

Then equating coefficients on both sides, we see that the d × d diagonal matrix N of the

form

Nij =


0 if i 6= j

µij + µij if i = j

21

satisfies this equation. Thus, if we let 2Λ = N , we see

2YM = 2ΛY

=⇒ (YM)T = (ΛY)T

=⇒ MY T = Y TΛ.

Thus, Y T is the matrix of eigenvectors of M , and Λ is the corresponding diagonal matrix

of eigenvalues. The optimal embedding up to rotations, translations, and rescalings of the

embedding space can then be found by solving this eigenvector problem. The Rayleigh-

Ritz theorem as described in [47] gives an indication of which eigenvectors actually solve

the problem. Using this, we need to obtain the bottom d + 1 eigenvectors of the matrix,

M , (those eigenvectors corresponding to the smallest eigenvalues in increasing order). We

will see shortly that the eigenvector corresponding to the smallest eigenvalue is the unit

vector with all equal components corresponding to the mean of the data. We discard this

eigenvector, leaving the second through the d+ 1 eigenvectors. Thus, the embedding vectors

that solve the LLE algorithm are these d remaining eigenvectors. When discarding the

bottom eigenvector, it forces each of the other eigenvectors to sum to zero by orthogonality

enforcing the constraint

p∑
i=1

yi = 0

which requires that the embedding vectors to be centered around the origin.

To see that there exists a unit eigenvector with all equal components as described above,

we need to verify that this in fact is a solution. Assume that u = αe where e is the vector

22

of all ones and α is a scalar. If u is an eigenvector, then

Mu = λu

=⇒ Mαe = λαe

=⇒ Me = λe

which implies that
p∑
j=1

Mij = λ

for each row i. This indicates that in order for there to exist a unit eigenvector with all equal

components, each row of the M matrix must sum to a scalar, λ. In fact, we can show that

each row has zero sum. Given

Mij = δij − wij − wji +

p∑
k=1

wkiwkj

we can see

p∑
j=1

Mij =

p∑
j=1

δij −
p∑
j=1

wij −
p∑
j=1

wji +

p∑
j=1

p∑
k=1

wkiwkj

= 1− 1−
p∑
j=1

wji +

p∑
j=1

p∑
k=1

wkiwkj

= 0−
p∑
j=1

wji +

p∑
k=1

wki since

p∑
j=1

wkj = 1

= 0

Thus, there does exist a unit eigenvector of all equal components corresponding to the

eigenvalue zero which we may discard as described above.

23

The third step of the LLE algorithm involves solving this eigenvector problem to deter-

mine the unique solution Y . The solutions to the problem are the d-dimensional columns of

the Y matrix where each column, j, of Y corresponds to column, j, of X, and each row of Y

is an eigenvector of the matrix M . Note that although each weight was determined locally

by reconstructing a data point by its nearest neighbors, the optimal embedding Y was de-

termined by a p×p eigensolver which is a global undertaking that uses the information from

all points. Therefore, through the LLE algorithm we were able to obtain low-dimensional

embedding vectors that preserve the local topology of a high-dimensional data set by deter-

mining a global coordinate system.

2.2.4. Other Considerations. In this section, we will describe and prove, in more

detail, particular considerations drawn from the derivation of LLE. We will prove the in-

variance relations of the weights, give an approach to choosing an appropriate number of

nearest neighbors, discuss the regularization necessary when the number of neighbors K is

greater than D the dimension of the original data set, and discuss discovering and enforcing

the inherent dimensionality d of the underlying manifold.

2.2.4.1. Invariance. In this section, we will discuss some invariance relations of the

weights. The weights that minimize the reconstruction errors are invariant to the isome-

tries of rotations, rescalings, and translations of the data points. The proofs of these results

follow.

24

Rescalings: The general form of the errors ensures that the weights are invariant to

rescalings. Let α ∈ R represent a scaling factor. Then

ε(W) =

p∑
i=1

‖αxi −
∑
j∈Ni

wij(αxj)‖2

=

p∑
i=1

‖αxi − α
∑
j∈Ni

wijxj‖2

=

p∑
i=1

α‖xi −
∑
j∈Ni

wijxj‖2

= α

p∑
i=1

‖xi −
∑
j∈Ni

wijxj‖2

Thus, the weights that minimize the above cost function will clearly minimize the weights

in the original cost function for the reconstruction errors

ε(W) =

p∑
i=1

‖xi −
∑
j∈Ni

wijxj‖2

Rotations: Recall that if Q is an orthonormal matrix, then its transpose is equal to its

inverse. If Q is orthonomal then an immediate consequence is that for any x

‖Qx‖ = ‖x‖.

This can be seen by noting

‖Qx‖2 = (Qx)T (Qx) = xTQTQx = xT Ix = xTx = ‖x‖2

25

Now, using the fact that rotation matrices are orthogonal, we see that

ε(W) =

p∑
i=1

‖Qxi −
∑
j∈Ni

wijQxj‖2

=

p∑
i=1

‖Q(xi −
∑
j∈Ni

wijxj)‖2

=

p∑
i=1

‖xi −
∑
j∈Ni

wijxj‖2

as desired.

Translations: Using the constraint,
∑
j∈N

wij = 1, we ensure that these weights are invari-

ant to translations. Let αek represent a translation vector where α is a scalar and ek is the

elementary column vector with one in the kth position and zeros everywhere else. Then, we

can see that the weights are invariant to translations as follows

ε(W) =

p∑
i=1

‖(xi + αek)−
∑
j∈Ni

wij(xj + αek)‖2

=

p∑
i=1

‖xi + αek −
∑
j∈Ni

wijxj +
∑
j∈Ni

wijαek‖2

=

p∑
i=1

‖xi + αek −
∑
j∈Ni

wijxj − αek‖2

=

p∑
i=1

‖xi −
∑
j∈Ni

wijxj‖2

2.2.4.2. Choosing an Appropriate Value for K. Note that [71] did not give guidance on

how to choose an appropriate number of nearest neighbors. It is suggested in [57] that

it is possible to check every possible value of K nearest neighbors up to some maximum

value in every step of the algorithm and determine the optimal value by finding the K whose

26

associated embedding space best reconstructs the high-dimensional structure. This “quality”

measure is determined by the residual variance, defined as 1− ρ2
DxDy

.

Here, ρ is the linear correlation coefficient taken over the p × p matrices of Euclidean

distances, Dx and Dy, between pairs of points in X, a D × p dimensional matrix of the

high dimensional data, and Y , a d×p dimensional matrix of the low dimensional embedding

vectors where p indicates the number of data points. A linear correlation coefficient measures

the strength and direction of a linear relationship between two variables. It lies between -1

and 1 with values of ρ close to 0 indicating a weak linear correlation between the data points

and values of ρ close to 1 in magnitude indicating a strong linear correlation. Here a positive

ρ value indicates a direct relationship between X and Y and a negative ρ value indicates an

indirect relationship [46].

Methodically choosing each value of K and running the full LLE algorithm in order to

determine the optimal K is straightforward but computationally intensive. Thus, a hierar-

chical approach is proposed in [57]. This method suggests instead of running the full LLE

algorithm, the first step to determine K nearest neighbors and then the second step to deter-

mine the weights associated to these nearest neighbors should be computed for K ∈ [1, Kmax]

where Kmax has been designated. The reconstruction error between the original high dimen-

sional data and the linear combination of its nearest neighbors, ε(W) (Equation 2.1), should

be calculated for each value of K. Then for every value of K that minimizes this error,

the third step to determine the embedding vectors is performed in order to calculate the

residual variance. The optimal K is selected as the one that minimizes the residual variance

1− ρ2
DxDy

.

27

This hierarchical method is computationally less expensive than the straightforward

method discussed as the eigenvector problem–which is the most expensive computation of

the algorithm–is only performed for a small number of K values. Experiments done by [57]

indicate that the hierarchical method for finding this optimal value of K are quite precise.

However, [3] indicates that the residual variance is not a good measure of the local geometric

structure of the data.

A similar global approach as [57], is proposed in [3]. However, instead of using the mini-

mum residual variance to determine the optimal K value, a new measure called Preservation

Neighborhood Error–which incorporates both the global manifold behavior and the local

geometry of the data–is used. Also in this paper, [3] indicates a method to select a Ki for

each point xi locally based on graph theory.

Other work by [52] indicates that an optimal K need not be selected as often a range of

K values produce stable reconstructions. This claim is dependent on sampling density and

manifold geometry. We have not seen this to be the case for many of the data sets considered

in our work, however.

In Chapter 5, we will explore a new method to automatically determine an appropriate

choice of nearest neighbors for each data point by using sparsity of numerical results in a

modified optimization problem to determine the weights. We call this method Sparse Locally

Linear Embedding.

2.2.4.3. Regularization. In the situation where the original dimension of the data, D, is

fairly low, it is often necessary to choose the number of neighbors, K, to be greater than

this dimension to avoid the eigenvector problem becoming singular. If K > D, then the

set of nearest neighbors, Ni, of data point xi is no longer linearly independent, and thus,

28

there is not a unique solution for determining the reconstruction weights. In this case, the

covariance matrix Ci defined above in Equation 2.2 becomes singular or nearly singular. A

regularization must be implemented in order to suspend this breaking down of the algorithm.

One such regularization would be to add a small multiple of the identity to the covariance

matrix which, in turn, corrects the sum of the squares of the weights so that the weights

favor a uniform distribution. The optimization problem then finds the set of weights that

come closest to the point representing uniform distribution of magnitude for each of the

weights [71]. In this paper, the regularization that is used is

Ci ← Ci + I ∗ tol ∗ tr(Ci)

where tol is a tolerance that is sufficiently small, usually 0.001, and tr(Ci) denotes the trace

of Ci. This regularizer is sufficient to make the covariance matrix well-conditioned allowing

one to determine a unique solution to the optimization problem to determine the weights.

Other regularization methods are proposed in [53] and [28], but we will not focus on these

here.

2.2.4.4. Discussion of the Lower Dimensionality d. It is common to choose the dimension

of the embedding vectors, d, to be 2 or 3 due to the fact that such an embedding space is

the easiest to visualize. However, it is desirable to obtain information about the instrinsic

dimensionality, d, of the high dimensional manifold. There have been approaches proposed

to do this by [66]. However, it is indicated by [71] that traditional methods to estimate the

inherent dimensionality d of the data set such as Principal Component Analysis (PCA) or box

counting can be used to estimate this number as well. If information about the manifold’s

intrinsic dimensionality is known a priori or if it is desired to embed the manifold in a

29

particular dimension, then some modifications in the second step of LLE can be implemented

to force the dimensionality d. In [71], it is indicated that this modification may be done by

projecting each data point of the higher dimensional data and its nearest neighbors into

its inherent d-dimensional subspace before implementing the least squares reconstruction.

The global lower dimensional coordinate system is determined by computing the d bottom

eigenvectors of the covariance matrix C. The projection decreases the rank of the matrix C,

and the weights are computed as described above.

2.2.5. An Example. This section consists of an example illustrating the LLE algo-

rithm’s topology preserving capabilities. The data set consists of images of a black square

translated over a background of random noise. The black square is allowed to split and

“wrap” around each boundary edge of the background. To construct the data set, we start

with a 20× 20 matrix consisting of random entries between 0 and 1. Within this matrix, a

10× 10 zero matrix is superimposed. The data set is generated by considering all positions

of the 10 × 10 matrix inside the 20 × 20 matrix of random noise (allowing both horizontal

and vertical wrapping). This generates 400 points of dimension 400. Sample images are

displayed in Figure 2.2. Thus from a topological point of view, the data set corresponds to a

noisy sampling of a torus in R400. We defined the nearest neighbors, of each element in the

data set, to be the 4 nearest data points in R400. The LLE algorithm was then used to map

the data to R3. The resulting embedded data in R3 is displayed in Figure 2.3 and reflects the

original topological structure quite clearly. Note that colors of the 400 dimensional images

correspond to points in the reduced space.

In general, results from experiments suggest that LLE can indeed be successful in its goal

of nonlinear dimensionality reduction that captures inherent topological properties through

30

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20

Figure 2.2. Sample points from the data set of 400 points in R400 created by
traversing and wrapping a 10× 10 black square in a 20× 20 random square.

Figure 2.3. A plot of the embedding vectors obtained by LLE of 400 points
in R400 reduced down to R3.

a single, linear algebra derived, map. Note that linear methods such as PCA would not

uncover this nonlinear structure of the data.

2.3. Metrics

Distance can be thought of as a scalar measure of similarity for two signals. The way

in which the distance between two objects is computed can produce completely different

31

results. Recall in the LBG algorithm discussed in Section 2.1, many distance computations

are performed, i.e. the distance between each point and the centers, with assignment given

to the center with the smallest distance. As we discussed there, typically Euclidean distance

is used. However, varying the choice of metric will vary the Voronoi sets after each iteration,

and thus, the final clustering will also vary. In this section, we briefly discuss 5 different

choices of distance measure.

The first metric to be considered is the standard Euclidean distance (or 2-norm) defined

as

||x− y||2 =
√

(x1 − y1)2 + (x2 − y2)2 + . . .+ (xn − yn)2

where x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn). This is the most intuitive distance

measure, i.e. the distance between two points in n-dimensional space as if measured by a

ruler.

Next, we will consider the taxicab metric (or 1-norm) metric defined as

||x− y||1 =
n∑
i=1

|xi − yi|.

This distance metric is called the taxicab metric as it measures the distance between two

points as a car would drive through a city of square blocks from one point to the other.

A third metric of consideration is the Chebyshev distance (or ∞-norm) defined as

||x− y||∞ = max
i
|xi − yi|,

the largest coordinate difference in any dimension between two points. These first three

metrics are referred to as `p norms.

32

Now, we consider the Mahalanobis distance, related to the Euclidean distance but distinct

in that it incorporates correlations between the data. The definition is as follows

d(x,y) =
√

(x− y)TC−1(x− y)

where C is the covariance matrix. We define our data matrix X as the n× p matrix with p

objects of size n, X as the n × p matrix with columns all equal to the mean of X, and Xc

as the mean centered data matrix Xc = (X −X). Then, the covariance matrix is defined as

C =
1

p− 1
Xc ·XT

c .

Note when the covariance matrix is the identity (i.e. the data is uncorrelated and has unit

variance), the Mahalanobis distance is analogous to the Euclidean distance.

In Figure 2.4, we see an illustration of the unit discs of the four metric choices described

above with the circle representing Euclidean, the diamond representing Taxicab, the square

representing Chebyshev, and the ellipse representing Mahalanobis.

Finally, we consider the spectral angle distance defined as the smallest angle between two

vectors,

θ(x,y) = arccos
< x,y >

||x||||y||

where < ·, · > is the standard inner product and || · || is the magnitude measured using the

2-norm and 0 ≤ θ ≤ π
2
. Note that this distance measure is invariant to scalar multiplication,

33

Figure 2.4. Illustration of metric choices with the circle representing Eu-
clidean, the diamond representing Taxicab, the square representing Cheby-
shev, and the ellipse representing Mahalanobis.

e.g. for scalars a, b,

θ(ax, by) = arccos
(< ax, by >)

||ax||||by||

= arccos
ab(< x,y >)

||x||||y||

= θ(x,y)

Note, however, that this is not true of the other metrics defined above. Therefore, spectral

angle is less sensitive to illumination conditions. The spectral angle distance is a pseudo-

metric as the distance between two distinct points can equal zero.

In Chapter 3, we will use each of these choices of metrics to analyze a variety of images

and compare the results. We will also consider adding `1 and `2 regularization terms to

objective functions of optimization problems to induce sparsity, positivity, and uniformity

in decision variables in Chapters 5 and 7.

34

CHAPTER 3

Biological Landscape Organizer and

Semi-supervised Segmenting Machine (BLOSSM)

3.1. Introduction

In this chapter, we discuss an application of the well-known Linde-Buzo-Gray clustering

algorithm discussed in Section 2.1 to landscape ecology. We introduce a friendly graphical

user interface dubbed BLOSSM (Biological Landscape Organizer and Semi-Supervised Seg-

menting Machine) that we have developed. BLOSSM quantizes the pixels of an image and

thus, can reveal the structure of the color space of an image. We consider this algorithm’s

performance using four choices of color space (RGB, Quantized RGB, Named Color, and

CIELab) and five similarity measures (`1, `2, `∞, Mahalanobis distance, and spectral angle).

We analyze a sample image and reveal important features pertaining to the clustering.

3.2. Motivation: An Ecology Application

A longer growing season is one of the most well-documented biological consequences

of Earth’s warming climate. Earlier dates for leaf-opening and flowering for many plants,

including garden plants, native trees and wildflowers, have been observed around the world

during the past 30 years. In contrast, a new evaluation of recent research indicates that

many plant species are shortening their annual growth cycle in response to climate warming.

Plants that are greening and flowering earlier are also ending growth earlier in the year. A

35

shortened period of growth may be a result of current environmental conditions, such as a

mid-season drought in a warm summer, or could be the result of years of conditioning to

past environmental conditions. Many species cannot extend the period over which they grow

and flower beyond a limited number of days [21, 38, 58, 67, 68].

Surprisingly, these observations of the annual growth cycle of individual species are not

inconsistent with a longer growing season observed, for example, in satellite images of Earth’s

green season. Earlier springs may occur because early-season species are greening and flow-

ering earlier due to warmer spring air temperatures. Later falls may result from a delay in

the growth of other, late-season species in order to avoid extreme mid-season temperatures

and summer droughts. The longer growing season can be the result of opposing responses

by individual species within a common locale or community.

Consider a meadow with two plants, which in the past grew and flowered over the same

period of time. As these plants shift the timing of when they grow and flower in different

ways, the period of time in which they are both flowering will decrease, and eventually there

may be a gap between when they flower. The rate of decrease will be much more rapid and

lead to gaps sooner if the plants are also shortening their annual growth cycles as has been

observed in recent climate change experiments. Indeed, the co-flowering patterns of some

subalpine plant species pairs has been decreasing, potentially as a result of earlier snowmelt

and earlier flowering by some species.

As time gaps open up when different species are growing and flowering, there will be

visible changes to natural landscapes. For example, a Rocky Mountain meadow that at peak

season is filled with diverse colors of flowers may instead flower in waves of reduced color

variation. The period of peak flowering may decrease, potentially affecting the economy of

36

regions dependent on ecotourism. Other consequences may be changes in plant-pollinator

interactions and the establishment of invasive species that can take advantage of the new

niche created by the temporal gaps in native plant flowering patterns.

New approaches to quantify changes in flowering patterns will be essential to determine

plant community responses to global environmental changes, especially climate change. Here,

we present a mathematical approach for quantifying color space in images of Rocky Mountain

subalpine meadows to determine the timing and duration of flowering events, including

patterns of co-flowering. This approach considers each pixel in an image represented by its

RGB color and divides the set of all pixels into groups according to similarity in the color

space. All pixels in each group are then represented by a prototype of that group, allowing

for a much coarser representation and a quantization of the information in the image.

Investigating natural imagery can provide a quantitative measure of changes in flowering

patterns. In a high resolution digital image, pixels can be used to identify and characterize

various types of flowers. For instance, in an image of a landscape such as Figure 3.1, we

can quantify each type of flower by identifying the number of pixels that are yellow, blue, or

white. This can be used to ascertain the flower cover of a particular type of flower within

a region by identifying the number of pixels colored yellow, for instance, and determining

its percentage of the entire area–the total number of pixels–within an image. Once a set

of images is quantified to show the spatial relationships and patterns over a period of time,

response to global environmental changes can be understood.

3.3. Overview

If the color information of a landscape image can be classified in some way, then the

ground cover can be quantified. One approach to do this is using color quantization. Color

37

Original Image

50 100 150 200 250 300 350

50

100

150

200

250

Figure 3.1. Sample image of landscape data set.

quantization reduces the number of colors used in an image. Much work has been done

to quantize the color space of natural imagery. The wide variety of approaches include

statistical-based, graph theoretical, clustering, gradient descent, among many other tech-

niques [23, 24, 30, 44, 48, 59, 60, 61, 62, 65, 80].

We will focus on clustering. Clustering is an effective tool used in data mining, the

process of deducing patterns from data, in which groups of objects, or clusters, are formed

such that objects within a cluster are similar, and objects in different clusters are quite

distinct. Thus, the within class variance of a cluster is small, and the between class variance

is large [43]. Using clustering, the color content of an image can be quantized at a much

coarser level (while maintaining most of the visual information) by allowing each pixel’s color

to be identified with a prototype as determined by a quantization algorithm.

38

Many algorithms have been developed with the end goal of clustering data. See [49] for a

nice review of clustering algorithms. Here, we will focus on the well-studied Linde-Buzo-Gray

(LBG) algorithm discussed in Section 2.1 [54].

Each pixel in an image is assigned a numeric value representing a distinct color. Do note

however, if the resolution of the image is not fine enough, these pixel values may actually

combine subpixel colors representing multiple colors from the natural landscape. The color

space of an image has a dimension of at most A·B if the resolution of the image is A×B. The

LBG algorithm used to quantize the color space of an image greatly reduces this dimension.

The number of centers that the data is clustered around determines the maximum dimension

of the reduced color space. It is important to note that for a particular image and a particular

set of centers some centers could potentially be unused, and thus, the number of centers is

an upper bound for the dimension of the reconstruction color space.

As we will see in Section 3.6, the way in which data is represented and how similarity

is measured between two objects can drastically change the outcome of the LBG clustering

algorithm. We will consider a variety of color spaces in which to analyze our data as well

as a variety of metrics with which to measure similarity. In Section 2.3, we discussed five

different choices of distance measures that will be used throughout this chapter. The next

section briefly describes each of the choices of color space.

3.4. Color Spaces

The choice of how to represent data can often affect algorithm performance on the data.

We will be exploring the effect of representing image (i.e. color) data in 4 different color

spaces: RGB, Quantized RGB, Named Color, and CIELab. We present a brief overview of

each color space in the following subsections as well as the typical set-up of the data.

39

3.4.1. Red, Green, Blue. An object under a fixed illumination condition, as perceived

by the human eye, is often represented by considering a particular map to R3 obtained by

integrating, at each small region of an object, the product of the spectral reflectance curve

against three particular frequency response curves. We refer to these three functionals as

maps to red, green, and blue (RGB) space [83]. As a result of this map, a digital photograph

typically represents a given object/illumination pair as an A× B × 3 data array where the

first two coordinates record the location in the image and the last coordinate records the

values of the red, green, and blue functionals on the associated spectral reflectance curve.

By combining the three A×B color sheets, one can well approximate the human perception

of the object/illumination pair, see Figure 3.2.

Figure 3.2. Illustration of the red, green, and blue sheets associated to pixels
of an image.

Reflecting this structure, the input data we will be considering consists of A × B × 3

arrays corresponding to digital pictures of natural imagery. The entries in the three A× B

sheets correspond to the energy near the red, green, or blue frequencies at each pixel. We

have chosen to process our images using MATLAB. Each color component of a pixel is an

integral value between 0 and 255 (corresponding to an eight bit representation). Each pixel

is associated to a point in R3 representing the (RGB) color of the pixel. As there are three

40

Figure 3.3. Illustration of creating a data matrix from RGB data.

components of each color with 256 possible choices each, there are 2563 = 16, 777, 216 distinct

colors that can be represented.

In our analysis, each sheet pertaining to the RGB components of an image was converted

from a matrix of dimension equal to the resolution of each image to a long column vector

of dimension 1 × p where p is the number of pixels in the image. A new matrix, X, of

dimension 3× p was created to contain all of the data entries of these long row vectors. By

organizing the data in this way, we see that each column of the matrix corresponds to the

RGB components of an individual pixel within an image, see Figure 3.3 for an illustration.

3.4.2. Quantized RGB. The choice of representing color information in 8 bits quantizes

the continuous functionals of the red, green, and blue maps to 256 possibilities for each color

sheet. We further quantize this representation to an even coarser level, representing color

information in only 5 bits with 25 = 32 possibilities and thus, only 323 = 32768 distinct

colors. The 32 values are in increments of 8 starting with 3.5 and ending with 251.5 for each

sheet of color information. This defines what we call the quantized RGB space. The reason

for this further quantization will become apparent in the next subsection.

3.4.3. Named Color. At a very young age, humans are taught to distinguish between

colors. Through the psychophysical experiments of Berlin and Kay [12], 11 universal color

categories have been designated: white, black, red, green, yellow, blue, brown, purple, pink,

41

orange, and gray. The Named Color model introduced in [10] and [78] is a fairly new, fuzzy,

parametric model based on these 11 universal categories. In this model, any color stimulus is

assigned a value between 0 and 1 for each universal color category or ‘named color’, indicating

the percentage of ‘named color’ present in the stimulus, with a total sum equal to 1. This

model directly reflects how color is named by humans. For instance, a sample with values

of 0.5 orange and 0.5 red might be called red-orange while a sample with values 0.7 orange

and 0.3 red might be called reddish orange.

The Named Color model can be accessed by the look-up table which can be used to easily

convert from RGB data to Named Color data [78]. The look-up table provides 3 columns

corresponding to the Quantized RGB color space described in the previous subsection, and

the 11 remaining columns correspond to the associated Named Color data in R11. Thus,

given an RGB stimulus, the closest Quantized RGB point will reveal the associated Named

Color data point.

3.4.4. CIELab. The final color model we will discuss is the CIELab model developed

in 1976 in order to be more perceptually uniform [84]. Perceptual uniformity means that a

change in color (numeric) value should produce a change of similar visual importance, i.e.

there should be high correlation between the Euclidean distance between two points and the

perceived visual color difference between the color stimuli. The three coordinates (L, a, b)

form a Cartesian coordinate space where L represents the achromatic signal of lightness

(with 0 indicating black and 100 indicating white), a represents the chromatic channel of

red-greenness (negative values indicate green while positive indicate red), and b represents

chromatic channel of yellow-blueness (negative values indicate blue while positive indicate

yellow). This model, that approximates human vision, exceeds the RGB color space, and

42

conversion from one model to the next is not straightforward. However, there are built-in

MATLAB functions in the Image toolbox to perform this conversion.

3.5. Biological Landscape Organizer and Semi-supervised Segmenting

Machine

To aid in analyzing images in a variety of color spaces with a choice of several metrics,

we have created an interactive, friendly graphical user interface which we call Biological

Landscape Organizer and Semi-Supervised Segmenting Machine (BLOSSM). As the name

indicates, BLOSSM is a semi-supervised method primarily designed to analyze landscape

images but is applicable to any other type of image as well.

As mentioned in Section 2.1, proper initialization of any iterative algorithm is critical.

One key feature of BLOSSM is that it can easily aid in this initialization. BLOSSM allows

supervision from the user in identifying starting centers by manually selecting pixels that

reflect each of the easily visualized distinct colors within an image as the starting centers.

The option to select centers randomly or select the standard 8 RGB colors with entries

either 0 or 255 is implemented as well. Identification of centers by the user alleviates many

difficulties in initializing the center vectors. A palette of centers can be selected from multiple

images and then saved for future use. For instance, see Figure 3.4, for an example of the

GUI and starting centers chosen to initialize the algorithm for a sample landscape image.

A choice of color space and choice of metric can be designated in which clustering will

be performed. BLOSSM then executes the LBG algorithm using a number of iterations

specified by the user (e.g. 15 iterations were performed in the analyses presented in this

paper, as the distortion error appeared to level off at this point for an appropriate number

and choice of center vectors).

43

The GUI displays a reconstruction of the original image using the quantization deter-

mined by the algorithm. Instead of observing an image with potentially p, distinct colors,

the reconstruction displays an image using only the distinct number of (used) centers as col-

ors. This affords an extremely coarse quantization as typically the number of pixels is very

large in a high resolution image and the number of centers can be chosen to be small. This

algorithm allows for an automatic determination of the predominate colors present within

an image and identifies each pixel with its appropriate color.

The user may then learn certain characteristics of the analysis. Visual characteristics

are presented: a pie chart displaying the distribution of pixels identified with each color

in the reduced color space, swatches of the final centers, images associated to each of the

individual clusters created by displaying those pixels identified with a final center. The user

of BLOSSM is also able to determine various characteristics pertaining to a particular color

such as number of pixels associated with that color, the percent of the total area, the number

of contiguous regions greater than a certain number of pixels (to avoid counting noise), and

the average number of pixels in each contiguous region. In the case of the landscape images

presented in this paper, the contiguous regions can analogously be thought of as flowers or

foliage of a certain color. Note that misclassified pixels will be isolated while pixels classified

correctly will be adjacent and fall within a contiguous region.

Another feature of the GUI is the ability to combine colors. For instance, there may

be a few ending centers that all represent shades of a certain color. These centers (and the

pixels identified with each of these centers) can be combined in order to analyze all shades

at once. This numeric information is displayed in a table for all colors, including those that

have been combined.

44

The number of contiguous regions of a particular color may be determined by the following

recursive algorithm implemented in the GUI. The premise of the algorithm is to first classify

all pixels identified together as a certain color, e.g. yellow, by looking at the spectra of the

pixels, i.e. the numeric components of the pixel, using the LBG algorithm described above.

Then, within each cluster of points identified together, we want to determine how many

patches or contiguous regions exist. This can be accomplished by considering the spatial

location of pixels within the image via their indices, and determining if pixels are adjacent

to one another by index values. The algorithm is as follows:

Determining Contiguous Regions within a Voronoi Set Si:

(1) Randomly pick a pixel x, at location (i, j) within an image, that is an element

of the given Voronoi set, Si.

(2) Remove x from the Voronoi set.

(3) Consider another pixel, y, remaining in the Voronoi set.

(4) Determine if y is adjacent to pixel x, i.e. if y is in one of the following 8 locations

(i− 1, j − 1), (i− 1, j), (i− 1, j + 1), (i, j − 1), (i, j + 1), (i+ 1, j − 1), (i+ 1, j),

or (i+ 1, j + 1).

(a) If so, remove y from the Voronoi set, repeat step 4. recursively until

there are no more pixels that are adjacent to y.

(b) If not, consider another pixel remaining in the Vornoi set.

(5) Repeat step 4. until there is no point remaining in the Voronoi set that is

adjacent to point x.

45

(6) Repeat steps 1-5. until the Voronoi set is empty.

Finally, the entropy–sometimes referred to as the Shannon index–may be computed [45].

This measurement is defined as

H ′ = −
N∑
i=1

pi ln pi

where pi is the proportion of individuals belonging to the ith class in the dataset of interest

and N is the number of classes. Therefore,

pi =
|Si|
p

where p is the number of pixels within an image and |Si| is the number of elements in Voronoi

set Si. The natural log that we have choose to implement will yield entropy in the unit of

natural digits or nats. When the proportions of all clusters are relatively equal, the Shannon

entropy will be roughly equal to ln(N). If the proportions of the clusters are quite different,

for example one cluster contains most of the data, then the entropy approaches zero. Note

that in BLOSSM, entropy may be computed for all of the original Voronoi sets, or colors

may first be combined and then entropy may be computed using combined colors as long as

all pixels are represented in some cluster. The entropy decreases as clusters are combined

since the diversity decreases.

3.6. Analysis

In our analysis, we have chosen a sample landscape image to consider. It is a 2592×3872

(10036224 pixels) natural image of a subalpine meadow near the Rocky Mountain Biological

Laboratory in Gothic, Colorado provided by Dr. David Inouye of the University of Maryland.

46

Figure 3.4. BLOSSM implemented on an image with 8 centers manually
selected by the user to reflect distinct colors within image.

We have rescaled this image to be of size 260 × 388 (100880 pixels) purely to speed up

computations. Do note that all of the techniques implemented in this chapter could be used

on the full-size image, though. This is a sample landscape image that an ecologist might

be interested in analyzing to determine the ground cover of a particular region, and thus,

precisely the type of image that BLOSSM was designed to analyze. Further analysis of this

image will be explored in Section 3.7.

The image itself as well as the GUI is displayed in Figure 3.4. We have initialized the

LBG algorithm by selecting 8 starting centers as pixels from the image that we feel best

identify the distinct colors within the image. These starting centers are displayed on the

right of the GUI.

We will now analyze the performance across all color spaces and all metrics for this image,

using the LBG clustering algorithm. The Figures 3.5-3.12 are grouped by color space and

47

the metrics are varied. We have chosen to compute the entropy, denoted as E, for each

reconstruction as well as the distortion error, displayed in individual figures.

In Figure 3.5, we consider the color space RGB and vary the metrics. Notice that

subtleties such as the yellow flowers do not appear as yellow using the `1 norm or spectral

angle. This is a major concern if the focus of this clustering is to determine the ground

cover of this landscape, with a particular emphasis on characterizing the flower cover. The

blue is present in each metric but is a bit subtle. We observe that the Mahalanobis distance

appears to denoise edges and has less variance in spatial regions, particularly in the foliage.

Notice, however that if the goal is to distinguish flowers, the Mahalanobis distance gives the

most contrast between the foliage and flowers. The spectral angle reconstruction appears

quite fuzzy and blurred and visually is the worst reconstruction of the original. The entropy

is the largest for the spectral angle, however. In comparing the distortion errors displayed

in Figure 3.6, we see that spectral angle is much higher than the other measures with the `1

and `2 norms producing the smallest error.

The Quantized RGB color space, as might be expected, reflects similar reconstructions

as RGB, Figure 3.7. The entropy is smaller for Quantized RGB than RGB in the `p spaces

but larger in the other measures. Also, the distortion errors are much larger, Figure 3.8.

Note the strange behavior in the Mahalanobis and spectral angle distortion error.

Reconstructing the landscape image in the Named Color space produces much different

results than in the other color spaces, Figure 3.9. Notice that there does not seem to be much

visual difference in the 4 shades of green (at least in every metric except spectral angle).

This indicates that even though visually there does not seem to be as much difference, there

is greater contrast in the 11-dimensional named color space with respect to the green shades.

48

Original Image

50 100 150 200 250 300 350

50

100

150

200

250

(a) Original

Reconstruction Using Metric L1 and Color Space RGB

50 100 150 200 250 300 350

50

100

150

200

250

(b) `1, E = 1.7091

Reconstruction Using Metric Euclidean and Color Space RGB

50 100 150 200 250 300 350

50

100

150

200

250

(c) `2, E = 1.6343

Reconstruction Using Metric LInf and Color Space RGB

50 100 150 200 250 300 350

50

100

150

200

250

(d) `∞, E = 1.6312

Reconstruction Using Metric Mahalanobis and Color Space RGB

50 100 150 200 250 300 350

50

100

150

200

250

(e) Mahalanobis, E = 1.668

Reconstruction Using Metric SpectralAngle and Color Space RGB

50 100 150 200 250 300 350

50

100

150

200

250

(f) Spectral Angle, E = 1.8395

Figure 3.5. Reconstructions using the LBG algorithm with fixed color space
RGB and varying the metric used for still life image.

49

0 5 10 15
7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

8

8.1

8.2
x 10

−3 Distortion Error using RGB and L1

(a) `1

0 5 10 15
8.05

8.1

8.15

8.2

8.25

8.3

8.35

8.4

8.45
x 10

−3 Distortion Error using RGB and L2

(b) `2

0 5 10 15
8.25

8.3

8.35

8.4

8.45

8.5

8.55

8.6

8.65

8.7

8.75
x 10

−3 Distortion Error using RGB and LInf

(c) `∞

0 5 10 15
0.0225

0.023

0.0235

0.024

0.0245

0.025
Distortion Error using RGB and Mahalanobis

(d) Mahalanobis

0 5 10 15

0.0674

0.0676

0.0678

0.068

0.0682

0.0684

0.0686

0.0688

0.069
Distortion Error using RGB and Spectral Angle

(e) Spectral Angle

0 5 10 15
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
Distortion Errors Using Color Space RGB

L2
SpectralAngle
Mahalanobis
L1
LInf

(f) All

Figure 3.6. Distortion errors using the LBG algorithm with fixed color space
RGB and varying the metric used for still life image.

50

Original Image

50 100 150 200 250 300 350

50

100

150

200

250

(a) Original

Reconstruction Using Metric L1 and Color Space Quantized RGB

50 100 150 200 250 300 350

50

100

150

200

250

(b) `1, E = 1.6596

Reconstruction Using Metric Euclidean and Color Space Quantized RGB

50 100 150 200 250 300 350

50

100

150

200

250

(c) `2, E = 1.6312

Reconstruction Using Metric LInf and Color Space Quantized RGB

50 100 150 200 250 300 350

50

100

150

200

250

(d) `∞, E = 1.5989

Reconstruction Using Metric Mahalanobis and Color Space Quantized RGB

50 100 150 200 250 300 350

50

100

150

200

250

(e) Mahalanobis, E = 1.6805

Reconstruction Using Metric SpectralAngle and Color Space Quantized RGB

50 100 150 200 250 300 350

50

100

150

200

250

(f) Spectral Angle, E = 1.8619

Figure 3.7. Reconstructions using the LBG algorithm with fixed color space
Quantized RGB and varying the metric used for still life image.

51

0 5 10 15
270

275

280

285

290

295

300

305

Number of Iterations

D
is

to
rt

io
n

E
rr

or

Distortion Errors using Quantized RGB and L1

(a) `1

0 5 10 15
8.35

8.4

8.45

8.5

8.55

8.6

8.65

8.7
x 10

−3

Number of Iterations

D
is

to
rt

io
n

E
rr

or

Distortion Errors using Quantized RGB and Euclidean

(b) `2

0 5 10 15
306

307

308

309

310

311

312

313

314

315

316

Number of Iterations

D
is

to
rt

io
n

E
rr

or

Distortion Errors using Quantized RGB and LInf

(c) `∞

0 5 10 15
800

805

810

815

820

825

830

835

840

845

850

Number of Iterations

D
is

to
rt

io
n

E
rr

or

Distortion Errors using Quantized RGB and Mahalanobis

(d) Mahalanobis

0 5 10 15
2400

2450

2500

2550

2600

2650

Number of Iterations

D
is

to
rt

io
n

E
rr

or

Distortion Errors using Quantized RGB and SpectralAngle

(e) Spectral Angle

0 5 10 15
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
Distortion Errors Using Color Space Quantized RGB

L2
SpectralAngle
Mahalanobis
L1
LInf

(f) All

Figure 3.8. Distortion errors using the LBG algorithm with fixed color space
Quantized RGB and varying the metric used for still life image.

52

Note, though, that the colors of the flowers do not appear to be very vivid. However, there is

sharp contrast between the flowers and the foliage using the Mahalanobis distance, making

it easier to ‘count’ the number of flowers. In this case, spectral angle seems to give the most

accurate visual reconstruction to the original in the shading of the foliage, yet the yellow

flowers are not visible. Note that the spectral angle yields the smallest distortion error while

Mahalanobis distance yields the largest, Figure 3.10. It is important to realize that these

distortion error computations were done in the 11-dimensional Named Color space not the

3-dimensional space that all other color spaces reside in.

We will finally consider this image in the CIELab color space varying all metrics, Figure

3.11. The CIELab color space is the only space in which the yellow flowers are visible in

the reconstructions for every metric (except for spectral angle). As we have seen in the

other analyses, all three of the `p norms appear to give a very nice reconstruction, the

Mahalanobis distance appears to smooth the objects, and the spectral angle gives a poor,

blurred reconstruction. The distortion errors seem comparable to the RGB color spaces in

that spectral angle has the most error while the `p norms have the smallest error, Figure

3.12. However, the error is much lower for CIELab. This is a fair comparison with the RGB

color spaces as they are both measured in R3.

This analysis reveals that changing the color space and the metric will affect the recon-

struction obtained after clustering with a vector quantization algorithm such as LBG. It

seems that spectral angle performs poorly in each color space considered, except for Named

Color. The `p norms generally perform well, but may miss some subtleties. The Mahalanobis

distance appears to smooth out regions, providing less shading, but this may enable easier

53

Original Image

50 100 150 200 250 300 350

50

100

150

200

250

(a) Original

Reconstruction Using Metric L1 and Color Space Named Color

50 100 150 200 250 300 350

50

100

150

200

250

(b) `1, E = 1.5647

Reconstruction Using Metric Euclidean and Color Space Named Color

50 100 150 200 250 300 350

50

100

150

200

250

(c) `2, E = 1.5761

Reconstruction Using Metric LInf and Color Space Named Color

50 100 150 200 250 300 350

50

100

150

200

250

(d) `∞, E = 1.6292

Reconstruction Using Metric Mahalanobis and Color Space Named Color

50 100 150 200 250 300 350

50

100

150

200

250

(e) Mahalanobis, E = 1.3951

Reconstruction Using Metric SpectralAngle and Color Space Named Color

50 100 150 200 250 300 350

50

100

150

200

250

(f) Spectral Angle, E = 1.4834

Figure 3.9. Reconstructions using the LBG algorithm with fixed color space
Named Color and varying the metric used for still life image.

54

0 5 10 15
4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9
x 10

−3

Number of Iterations

D
is

to
rt

io
n

E
rr

or

Distortion Errors using Named Color and L1

(a) `1

0 5 10 15
2

2.05

2.1

2.15

2.2

2.25
x 10

−5

Number of Iterations

D
is

to
rt

io
n

E
rr

or

Distortion Errors using Named Color and Euclidean

(b) `2

0 5 10 15
4.1

4.15

4.2

4.25

4.3

4.35

4.4

4.45

4.5

4.55
x 10

−3

Number of Iterations

D
is

to
rt

io
n

E
rr

or

Distortion Errors using Named Color and LInf

(c) `∞

0 5 10 15
0.01

0.0105

0.011

0.0115

0.012

0.0125

0.013

0.0135

Number of Iterations

D
is

to
rt

io
n

E
rr

or

Distortion Errors using Named Color and Mahalanobis

(d) Mahalanobis

0 5 10 15
3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5
x 10

−3

Number of Iterations

D
is

to
rt

io
n

E
rr

or

Distortion Errors using Named Color and SpectralAngle

(e) Spectral Angle

0 5 10 15
1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5
x 10

−5 Distortion Errors Using Color Space Named Color

L2
SpectralAngle
Mahalanobis
L1
LInf

(f) All

Figure 3.10. Distortion errors using the LBG algorithm with fixed color
space Named Color and varying the metric used for still life image.

55

Original Image

50 100 150 200 250 300 350

50

100

150

200

250

(a) Original

Reconstruction Using Metric L1 and Color Space CIELab

50 100 150 200 250 300 350

50

100

150

200

250

(b) `1, E = 1.6469

Reconstruction Using Metric Euclidean and Color Space CIELab

50 100 150 200 250 300 350

50

100

150

200

250

(c) `2, E = 1.6606

Reconstruction Using Metric LInf and Color Space CIELab

50 100 150 200 250 300 350

50

100

150

200

250

(d) `∞, E = 1.652

Reconstruction Using Metric Mahalanobis and Color Space CIELab

50 100 150 200 250 300 350

50

100

150

200

250

(e) Mahalanobis, E = 1.6521

Reconstruction Using Metric SpectralAngle and Color Space CIELab

50 100 150 200 250 300 350

50

100

150

200

250

(f) Spectral Angle, E = 1.7653

Figure 3.11. Reconstructions using the LBG algorithm with fixed color
space CIELab and varying the metric used for still life image.

56

0 5 10 15
3.6

3.65

3.7

3.75

3.8

3.85

3.9
x 10

−3 Distortion Error using CIELab and L1

(a) `1

0 5 10 15
3.45

3.5

3.55

3.6

3.65

3.7

3.75
x 10

−3 Distortion Error using CIELab and L2

(b) `2

0 5 10 15
3.6

3.65

3.7

3.75

3.8

3.85
x 10

−3 Distortion Error using CIELab and LInf

(c) `∞

0 5 10 15
6.65

6.7

6.75

6.8

6.85

6.9

6.95

7

7.05

7.1
x 10

−3 Distortion Error using CIELab and Mahalanobis

(d) Mahalanobis

0 5 10 15
0.0193

0.0194

0.0195

0.0196

0.0197

0.0198

0.0199

0.02

0.0201

0.0202

0.0203
Distortion Error using CIELab and Spectral Angle

(e) Spectral Angle

0 5 10 15
0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022
Distortion Errors Using Color Space CIELab

L2

SpectralAngle

Mahalanobis

L1

LInf

(f) All

Figure 3.12. Distortion errors using the LBG algorithm with fixed color
space CIELab and varying the metric used for still life image.

57

separation between objects and background. Depending on the application, an appropriate

choice may be selected.

To further understand the effect of changing the color space and metric on clustering an

image, we have chosen to analyze two additional images with different colorings and objects.

This analysis is presented in Appendix A.

3.7. Ecology Application

In this section, we will make precise how an ecologist may use BLOSSM to analyze

landscape images. Ecologists are often interested in determining the ground cover of a

landscape. This analysis is often done in the field by manually counting species falling along

the vertices of a grid within a certain plot. BLOSSM was designed to automatically perform

this analysis by considering images.

As mentioned previously in Section 3.5 visual depictions of the color information, as

determined by a set of starting centers and the LBG algorithm using a choice of color space

and choice of metric, are available. In Figure 3.13, we see the reconstruction image of our

landscape image clustered using the RGB color space with Euclidean distance (these choices

will be used throughout this section). The resulting final centers are displayed on the right.

A pie chart displaying the distribution of pixels identified with each color in the reduced

color space (i.e. the final centers) can be shown, see Figure 3.14. Also, images associated to

each of the individual clusters–created by displaying those pixels identified with each final

center–can be revealed, see Figure 3.15.

A number of ecological variables can be ascertained using the information produced by

BLOSSM:

58

Figure 3.13. Characteristic GUI, displaying the reconstruction image and
final centers found after clustering.

21%

< 1%< 1%

2%

18%

26%

26%

6%
Distribution of Pixels

Figure 3.14. Distribution of clusters.

59

Figure 3.15. Individual clusters.

60

• Color abundance, typically the number of (used) centers or possibly fewer if colors

are combined

• Number of flower clusters for each color

• Size of flower clusters for each color

• Abundance of ‘morphospecies’ as characterized by color and cluster size

• Richness, a count of the total number of morphospecies

• Species diversity, as measured by Shannon entropy defined as

H ′ = −
∑
i

pi log pi

where pi is the proportion of individuals belonging to the ith species in the dataset

of interest

• Evenness, how close each species in an environment are, defined as

J ′ =
H ′

H ′max

where H ′ is defined as above and H ′max = lnN with N the total number of species

For each cluster (color) to be analyzed, a visual depiction of some of this information is

displayed in an image such as Figure 3.16. We see the number of pixels classified as that

color, the proportion of the total number of pixels, the number of contiguous regions (flowers

in this case), and the average size of each of these contiguous regions are all displayed. Also,

we can see pixels that were considered to be noise are not included in the bottom image of

3.16 but can be seen in the middle image. This numerical data is displayed in a table for all

distinct clusters chosen to be analyzed, see Table 3.1.

61

Original Image

The area occupied by this cluster is 0.00070381 of the total area within the image

50 100 150 200 250 300 350

50

100

150

200

250

Individual Clusters of Original Image

There are 71 pixels classified as YEL

50 100 150 200 250 300 350

50

100

150

200

250

There are 4 clusters with an average size of 15 pixels in each cluster

50 100 150 200 250 300 350

50

100

150

200

250

Figure 3.16. Characteristics regarding the yellow cluster of pixels.

62

Table 3.1. Table of characteristics regarding all clusters of pixels.

Color Number of Pixels Percent of Area Number Regions Avg Size Regions
BLA 21398 0.2121 354 55.6751
YEL 71 7.0381e-04 4 15
BLU 997 0.0099 37 24.6486
WHI 2074 0.0206 51 37.8039
GRE 18145 0.1799 524 29.2366
DGR 26410 0.2618 641 36.9610
OLI 25863 0.2564 675 33.7941
YGR 5922 0.0587 306 12.8105

Table 3.2. Table of characteristics regarding clusters of pixels with all green
clusters combined into a single group.

Color Number of Pixels Percent of Area Number Regions Avg Size Regions
BLA 21398 0.2121 354 55.6751
YEL 71 7.0381e-04 4 15
BLU 997 0.0099 37 24.6486
WHI 2074 0.0206 51 37.8039
AGR 76340 0.7567 53 1.4355e+03

Note that in this analysis the entropy (or diversity measurement) was 1.6343, and thus,

the evenness is 0.8219 as there are 8 distinct colors. Now, let us consider how some of

these variables change as we combine colors, in this case the four shades of green. Table

3.2 displays the resulting output. The entropy for this computation was 0.67044, and the

evenness is 0.4166, if it is determined that there are 5 species present. This low number

indicates that this image does not have an evenness of species as evidenced by the relatively

small number of flowers and the abundance of foliage.

3.8. Conclusion

In this chapter, we have considered a well-known algorithm, the LBG clustering algo-

rithm, applied to analyzing landscape ecology images. We observed the impact of changing

the metric as well as the color space under which this analysis was performed. A graphical

user interface, BLOSSM, was developed to allow users to easily implement this algorithm

63

with a variety of input choices and output options. Finally, we described how an ecologist,

or any other scientist, with images to analyze may use BLOSSM.

64

CHAPTER 4

Locally Linear Embedding Clustering Algorithm

4.1. Introduction

Manifold learning in data analysis assumes that a set of observations, taken as a whole,

is locally well approximated by a topological (or even geometric) manifold. This assumption

implies that the data is locally well approximated by a linear space, i.e., it is locally flat. A

fundamental goal of manifold learning is to uncover the underlying structure of this approxi-

mating manifold and to find low dimensional representations that preserve the structure and

topology of the original data set optimally [82], [75], [71]. A frequent simplifying assump-

tion is that the local dimension is constant over the entire data set. Alternatively, one may

model a set of data as a collection of manifolds, allowing for intersections and for variations

in dimension. For instance, the union of the xy-plane and the z-axis is not a manifold but

decomposes naturally as a union of two manifolds of differing dimension. We have found this

multiple manifold assumption to be appropriate for natural imagery consisting of distinct

objects, e.g., a landscape image consisting of flowers, cacti, and ground vegetation.

Points in a data set can typically be thought of as lying close to a low dimensional

manifold if the points are parameterized by a relatively small number of continuous variables

[56], [82], [31]. For instance, a manifold structure could underlie a collection of images of

a single object undergoing a change of state (such as illumination, pose, scale, translation,

etc.). One way to uncover this structure is to map the collection to a high dimensional vector

65

space by considering each image as a point with dimensionality corresponding to the number

of pixels in the image and with coordinate values corresponding to the brightness of each pixel

[71], [48], [75]. Many algorithms have been implemented on such data sets in order to uncover

a low dimensional manifold that reflects the inherent structure of the high dimensional data.

Linear methods such as Principal Component Analysis [50] and Multidimensional Scaling

[27] have been around for many years while nonlinear methods such as ISOMAP [75], Locally

Linear Embedding [71], Hessian Eigenmaps [31], and Laplacian Eigenmaps [9] are more recent

and have proven capable of extracting highly nonlinear embeddings.

In this chapter, we focus on the Locally Linear Embedding (LLE) algorithm applied at

the pixel level. More precisely, our data sets do not consist of a set of images but rather the

pixels comprising a single image. Analysis of LLE applied to pixels has been implemented

previously in [70] and has been considered in the context of hyperspectral images by [4], [42],

[22]. These works confirm the existence of an underlying structure. The goal of this chapter

is to utilize LLE to represent the underlying structure of color data in an image as a union

of linear spaces and to quantize color space accordingly. While examples will be drawn from

the color space of digital images within the visible spectrum, it is important to note that

such images are a special case of hyperspectral imagery. Implementations in one setting can

typically be implemented in the more general setting with minor modifications.

In the LLE algorithm, a weighted graph is first constructed from a set of data as a

stand-in for the local manifold structure [71]. The algorithm next determines a set of d

embedding vectors by discarding the eigenvector corresponding to the smallest eigenvalue of

an associated graph Laplacian and keeping the 2nd through d+ 1st eigenvectors. Arranging

the d vectors as columns of a matrix, the rows of this matrix provide a map of the original

66

data to Rd. The graph Laplacian encodes the number of connected components of the

graph as the dimension of its null space. Interpreting results in the LLE algorithm becomes

problematic if the null space has dimension greater than one as eigenvectors in a null space

are unique only up to rotation. Thus, a canonical ordering of eigenvectors is ill defined. As

it is quite reasonable to expect the color space of natural images to be lying on multiple

manifolds, it is also natural to expect multiple connected components amongst the union

of the manifolds. In order to alleviate this problem, we perturb the graph Laplacian in the

direction of a circulant graph Laplacian to reduce the co-rank to one. From the d-dimensional

embedding, we apply a technique for proximity/color segmentation. This is done through an

unsupervised clustering algorithm that exploits the topology preserving properties of LLE.

Put another way, natural images are not random; they have structure in their color

space in that adjacent pixels tend to have similar color values. These piecewise continuous

variations lead to a piecewise manifold approximating the data. Through LLE, this piecewise

manifold is revealed as a piecewise linear manifold. The segmentation is accomplished by

uncovering the principal direction of an epsilon ball of points and segmenting the data such

that points determined to be close enough to this principal vector and similarly colored to

the center of the epsilon ball are classified together and removed from the data. This iterative

approach has proven robust in the presence of noise, with the input parameters reflecting

the accuracy of segmentation desired. Thus, the algorithm exploits the transformation of

local one-manifold structure to local linear structure in the mapped data.

In Section 4.2, we present an overview of the Locally Linear Embedding algorithm and

present the graph Laplacian perturbation to reduce to the case of co-rank one. Section 4.3

discusses the algorithm in conjunction with color quantization. We present an example to

67

observe that the geometric structure of a color image is revealed in a reconstruction image

by exploiting locally-linear variations in pixel space through subspace segmentation. Section

4.4 demonstrates the algorithm’s ability to reduce the color space of natural imagery and

uses this algorithm in conjunction with the classical Linde-Buzo-Gray vector quantization

algorithm [54], [60] in the context of a landscape ecology application. The contributions of

this chapter include a method for resolving LLE rank issue problems (without carrying out a

decomposition into connected components) in such a manner that the local topological struc-

ture of the data is preserved, a technique for subspace segmentation, and the development

of an associated clustering algorithm.

4.2. Connecting Components in Locally Linear Embedding

Recall in Section 2.2 that we discussed the LLE algorithm in detail. We now present a

couple of considerations when using this algorithm.

4.2.1. Special Considerations in Implementation of LLE on Natural Im-

agery. As natural images have the feature that many pixel colors are quite similar, it

would not be surprising to find pixels with identical colors. Thus, when we consider an

image as a collection of points in R3, we may observe distinct image pixels whose distance

apart is zero. In determining nearest neighbors for a point xi, we have opted to only include

points whose distance from xi is greater than zero.

We have observed that for many natural images, the K nearest neighbor’s graph has

corank larger than 1 indicating more than one connected component. For disconnected data,

LLE can be implemented on each of the graph’s connected components separately [71]. In

this paper we have chosen a different (and slightly unusual) path in that we artificially

connect components by perturbing in the direction of a cycle.

68

4.2.2. Connecting Disconnected Components. The Laplacian of a graph has 0 as

an eigenvalue with multiplicity equal to the number of connected components of the graph

[25]. In a similar manner, the matrix M , in the final step of the LLE algorithm, has co-rank

corresponding to the number of connected components within the data set where connec-

tions are made by linking each data point with its nearest neighbors. Choosing the number

of nearest neighbors to be small can lead to many disconnected components. As previously

stated, while [71] indicates that LLE be implemented on each of the graph’s connected com-

ponents separately, we have chosen to proceed down a different path by artificially connecting

previously disconnected components through a perturbation (much like the second step in

LLE that adds a regularization term to the covariance matrix C that would be singular in

the case when k > D). Here, we perturb M in the direction of a matrix T that has a similar

structure to M in that it is positive semidefinite with row sums equal to 0. We chose T to

be the Laplacian matrix of a cycle, i.e.

T =



1 −1 0 · · · 0

−1 2 −1 0 · · · 0

. . .

0 · · · 0 −1 2 −1

0 · · · 0 −1 1


Thus, in practice, we consider M ′ = M+λT where λ is a scalar. Matlab experiments suggest

that using λ = 10−9 produces a matrix M ′ that is artificially connected (i.e. has a corank

of 1). As T comes from a cycle, the eigenvectors of M ′ inherit this circular structure while

retaining much of the original topology of the pixel data.

69

4.3. Locally Linear Embedding Clustering

In this section, we consider a novel way to extend the LLE algorithm to a clustering

algorithm. In natural imagery, the variation in color hues of neighboring pixels is often slight.

Furthermore, pixels which are not spatially close may also exhibit very slight color variations.

We can associate these slight color changes with continuous variations of pixel colors in an

approximating manifold. Topological structure associated with these continuous variations

is revealed by uncovering multiple underlying manifolds. These manifolds are detected using

the Locally Linear Embedding algorithm. Segmenting based on these manifolds allows for

quantization of the color space, leading to a clustering algorithm.

4.3.1. Clustering. Data clustering is the name given to creating groups of objects, or

clusters, such that objects in one cluster have a shared set of features whereas objects in

different clusters have less similarity with respect to these features. Clustering is a funda-

mental approach to segmenting data. There are many ways to attach pairwise similarity

scores to a set of data points and it is important to realize that the clusters could have very

different properties and/or shapes depending on these scores. Clustering can be done in a

hierarchical manner where clusters are determined by using previously established clusters

or in a partitioning manner where the data is clustered simultaneously into disjoint sets. In

semi-supervised or constrained clustering algorithms, additional information such as data

labels, information about the clusters themselves, etc. is available and utilized [7], [54].

Unsupervised clustering algorithms, in which data is organized without any information like

data labels, however, can identify major characteristics or patterns without any supervi-

sion from the user. The algorithm of this paper, described in the following subsections, is

non-hierarchical and unsupervised.

70

4.3.2. Why Locally Linear Embedding? The Locally Linear Embedding algorithm,

as discussed in Section 4.2, is a dimensionality reduction algorithm that can help uncover the

inherent structure and topology of higher dimensional data by determining a map to a lower

dimensional space that optimizes for neighborhood relationships. While LLE was intended

for the purpose of revealing topological structure, the creators of this algorithm indicate in

[71] that some of the ideas presented in LLE, namely the first and third steps, are similar to

those of the Normalized Cut algorithm discussed in [72] and other clustering methods such

as the one discussed by [61].

Through experimentation, it was observed that if a natural image, considered as a set of

RGB color points, is embedded in R2 using nearest neighbor sets of size 4 and a perturbation

matrix T with λ = 10−9 (as discussed in Subsection 4.2.2), then the data lies on a relatively

small collection of lines. When the inherent color of each of the higher-dimensional input

vectors was superimposed on the corresponding reconstruction vectors, it was noticed that

similar colors fell along the same line. We observed simpler (but similar) behavior when con-

sidering a fixed pixel in a set of images of a fixed object under changing ambient illumination

conditions. In each of these two cases, the lines in the reduced space suggest a method for

quantization.

The following example uses a set of images from the Pattern Analysis Laboratory (PAL)

database at Colorado State University. In the data, an individual remained motionless as the

ambient illumination conditions were altered (with lights of fixed spectral characteristics).

Figure 4.1 shows three such images with different illumination conditions. A data set was

formed by considering the RGB values of a single, fixed pixel extracted from 200 such images.

71

Figure 4.1. Images generated by Pattern Analysis Laboratory at Colorado
State University where an individual remains motionless and the illumination
of the surrounding area varies.

The LLE algorithm was implemented on this data set and mapped into a 2-dimensional

space using k = 4 nearest neighbors. The null space of M turned out to be 4-dimensional

indicating 4 connected components. Thus, our choice of nearest neighbor has artificially

disconnected this data set that intuitively should be connected given that it is the smooth

variation of illumination at a fixed point. Therefore, either we need to increase the number

of nearest neighbors or perturb the data in such a way that the data is reconnected. Note

that the smallest value of K that yields a 1-dimensional null space for M is k = 8.

In Figure 4.2, we see the original plot of the RGB data points, a plot of the embedding

vectors using k = 8 nearest neighbors, and a plot of the embedding vectors using k = 4

nearest neighbors with the perturbation discussed in Section 4.2.2 that artificially reconnects

the data set. We observe that the original three dimensional data appears relatively linear.

Using k = 8 nearest neighbors, there is a degradation of this linear structure. However,

using k = 4 nearest neighbors, with M perturbed by T , preserves the linear structure at a

local level.

Therefore, we have observed two important properties of LLE. First, if a data set is

disconnected using a choice of K nearest neighbors, it can be artificially reconnected using

an appropriate perturbation. Provided the perturbation is not too extreme, this does not

72

(a) Data in R3 (b) Data in R2, k=8 (c) Data in R2, k=4

Figure 4.2. Plots of 3D data points generated by extracting the RGB values
of a single pixel for each of 200 images and their corresponding embedding
vectors as reconstructed by the LLE algorithm using k=8 nearest neighbors,
and k=4 nearest neighbors with ‘connected’ data points.

affect the local topology of the data as expressed by LLE, as the linear structure of similar

colors falling along one dimensional subspaces holds for each component. Second, the LLE

algorithm is able to uncover the gradation of hue or variance of illumination within an image

which corresponds to a linear structure in the plot of the reconstruction image of an RGB

color space. Using this linear structure, in which each data point of the reconstruction

image is colored according to its corresponding high-dimensional data point, a color space

clustering algorithm is obtained.

Essentially, the Locally Linear Embedding Clustering (LLEC) algorithm segments the

distinct linear manifolds that appear in the reconstruction plot of the LLE algorithm and

then identifies which data points lie close to which subspace. The RGB color information is

then overlaid onto the reconstruction data and further used to segment the data by clustering

similarly colored points together.

4.3.3. Subspace Segmentation. We propose a subspace segmentation technique in

the LLEC algorithm that involves selecting a point, y∗, in the reconstruction data and then

constructing an epsilon ball of appropriate size centered around this point. The point y∗ may

be chosen randomly or with a more deterministic criterion such as those discussed below.

73

If y∗ is selected randomly, then there is an element of randomness in the algorithm,

allowing for a variety of subspaces to be determined, depending on each y∗ selected. Here

we will discuss three non-random approaches that select points reflecting the data density.

One method is to select y∗ to be the point within the data set that has the most points

falling within an epsilon ball of the point. Another method is to select y∗ to be the point

whose bth nearest neighbor is closer to it than any other point within the data set. Here

b ∈ Z+, an arbitrary number. While the first idea is computationally intensive, the second

has the complication that points are being removed from the data set, so there may occur a

moment in the algorithm where the number of data points p < b. In this case, we adjust b

to be a number less than the number of data points. For instance, b = dp
2
e, where d∗e is the

ceiling function, works well in practice.

An alternate approach for selecting the point y∗ searches for the point that falls on

a subspace which most reflects a linear structure. This can be implemented as follows.

Determine an epsilon ball around each point. Compute the singular value decomposition

of a matrix formed by the points in each of these epsilon balls in order to find the singular

vectors and singular values. Choose y∗ to be the random point with the smallest ratio

of singular values σ2
σ1

as this reflects the subspace with the most linear structure. While

this approach chooses points falling along structures most easily identified as ‘linear’, one

downside is that it is computationally intensive. It typically produces reconstructions with

a smaller distortion error than all of the other methods described above, but it does so by

identifying more subspaces.

The various methods for identifying y∗ have features that make each of them attrac-

tive, depending on the user’s desired result. In this paper, we have chosen to follow the

74

method that chooses y∗ as a point in a dense region of the data by finding the bth nearest

neighbor with the smallest distance. This is the least computationally intensive and pro-

duces reconstructions with a relatively small distortion error using relatively few subspaces

to reconstruct. Here we have selected b = 50.

Once y∗ is selected, a data matrix, A, is formed by inserting each embedding vector

falling inside the epsilon ball centered at y∗ into the rows of the matrix. The singular value

decomposition, A = UΣV T , is computed to determine the right singular vector corresponding

to the largest singular value. This singular vector corresponds to the line that passes through

the mean and minimizes the sum of the square Euclidean distances between the points in the

epsilon ball and the line, indicating the principal direction of these data points [50]. This

unveils the 1-dimensional subspace that we are after. Note a method for K-dimensional

subspace segmentation is discussed below. In order to segment the data via its proximity to

each subspace, we then determine which points yi in the data set satisfy ||yi − Pyi|| < ε1

where ε1 is some tolerance to identify those points that are ‘close enough to’ the subspace in

consideration, and P is the projection onto the first right singular vector.

Now, as many lines overlap or intersect, simply using proximity to the subspace will not

yield an appropriate segmentation. Thus, the data is further segmented by identifying those

points, yi, whose RGB color values, xi, are most similar to the color of y∗, x∗, by computing

||xi−x∗|| < ε2 where ε2 is again some tolerance to identify which points are ‘similarly’ colored

to y∗. Points that are identified as being ‘close enough to’ the subspace generated by the

random point and ‘similarly’ colored to this point are identified together and removed from

the data set. The process is repeated until all points have been identified with a distinct

75

Figure 4.3. Illustration of subspace segmentation algorithm.

subspace using both proximity and color information. Thus, we obtain a clustering based

on both color and spatial proximity metrics (in the 2-D representation).

Figure 4.3 provides a step-by-step illustration of this subspace segmentation algorithm.

Also refer to Figure 4.4 to see an actual implementation of this algorithm. Observe that the

subimages represent the subspaces iteratively removed from the reconstruction data.

We have described the approach for 1-D subspace segmentation, but this method can be

used for multiple dimensions as well by considering pixels sufficiently correlated with the first

several principal components. Thus, if an m-dimensional subspace segmentation is desired,

the m right singular vectors corresponding to the m largest singular values form the principal

directions of the data and span the subspace we want to uncover. Once this subspace is

uncovered, the rest of the approach described above is analogous for a multidimensional

76

(a) Original (b) 2D Re-
construction

Figure 4.4. Subspace segmentation of 2D reconstruction data using LLEC
with accuracy tolerances of approximately 0.4 by initializing y∗ as the point
whose bth nearest neighbor has the smallest distance.

77

subspace segmentation. Note that this subspace segmentation technique has proven robust

in the case of noise whereas methods such as Generalized Principal Component Analysis

(GPCA) [81] have proven less effective in our experiments.

4.3.4. The Locally Linear Embedding Clustering Algorithm. The LLEC al-

gorithm for quantizing the color space of natural imagery is summarized in the steps below.

First, embed a data set X with points of dimension D = 3 into a lower dimension d = 2 using

k = 4 nearest neighbors by using LLE. Next, identify the distinct subspaces appearing in the

reconstruction data, Y , of the LLE algorithm by using the process described in the previous

section. Through this subspace segmentation, determine the Voronoi sets, Si, formed by

identifying those points that are ‘close enough to’ each subspace and ‘similarly’ colored to

the point y∗. Note that the number of distinct Voronoi sets is the number of distinct sub-

spaces. Let’s call this number S. Then, calculate the mean of the colors, µi = 1
|Si|
∑

y∈Si
y

of each set. Finally, identify all points y ∈ Si by the prototype µi. Note that each yi in the

reconstruction data corresponds to a unique xi in the original data space, so this determines

a clustering of the data set X.

4.4. Implementation

As indicated in [30] a major complication in color space quantization often relates to

varying shades of a given color due to illumination. We have observed that the LLEC

algorithm handles this illumination component by identifying various shades of a given hue

as a unique subspace and all pixels that are elements of this subspace can be identified

together.

At this time, the LLEC algorithm is not a fast algorithm as the procedure for performing

LLE and the search to determine those points that are ‘close enough to’ each subspace and

78

‘similarly’ colored to the random point being considered are computationally intensive. We

will see however that LLEC does an excellent job of quantizing the color space of natural

imagery. A benefit of LLEC is that the only free parameters in the algorithm are ε1 and

ε2, the tolerances which can be specified by the user to reflect the desired accuracy of the

quantization. The value of LLEC then is that it can be implemented on an image to de-

termine the natural subspaces of the color space. The knowledge obtained by segmenting

these subspaces can then be used in conjunction with other clustering algorithms such as the

Linde-Buzo-Gray (LBG) [60] vector quantization algorithm to identify the starting centers

as the subspaces unveiled in the LLEC algorithm. We will see this applied shortly.

4.4.1. LLEC used to Quantize Color Space. First, let’s consider the ability of the

LLEC algorithm to quantize the color space of a variety of images. In each of these examples,

the images were processed using MATLAB. Each sheet pertaining to the red, green, or blue

component of pixels within an image was converted from a matrix of dimension equal to

the resolution of each image to a long row vector of dimension 1× p where p is the number

of pixels in the image. A new matrix, X, of dimension 3 × p was created to contain all of

the data entries of these long row vectors. By organizing the data this way, we see that

each column of the matrix corresponds to the RGB components of an individual pixel which

is a data point to be analyzed. We have chosen to use the Euclidean metric to calculate

distance–a measure of proximity–between points.

Let’s first consider LLEC’s ability to segment the color space of a natural image and

then use this segmentation to quantize the color space. We highlight in Figure 4.4 LLEC’s

ability to segment the subspaces in the 2-dimensional plot using accuracy tolerances of

approximately 0.4 for a sample image. In Figure 4.5, we observe the color quantizations

79

obtained for this image as well as others using various accuracy tolerances. Note that in

Figure 4.5, each of the original images were of resolution 100 × 100 or less. We see that as

ε1 and ε2 decrease, the reconstructions become better representations of the original images.

4.4.2. LLEC Implemented with LBG. Let’s now see how LLEC can be implemented

in conjunction with another clustering algorithm on a class of large images. These images are

of a subalpine meadow near the Rocky Mountain Biological Laboratory in Gothic, Colorado

provided by Dr. David Inouye of the University of Maryland. Each image is of resolution

2592× 3872 which generates 10,036,244 pixels. We cannot implement the LLEC algorithm

directly on images from this landscape data set as its implementation requires constructing

a pixel by pixel matrix. We have chosen to implement LLEC in conjuction with the Linde-

Buzo-Gray algorithm [60], [54] on a set of these images. The simplicity of the LBG algorithm

makes it desirable, but other clustering algorithms such as those discussed in [43], [44], [54],

[7], etc. could be used alternatively. The LBG algorithm is an iterative competitive learning

algorithm that, in essence, determines all points that fall within a Voronoi region around

specified center vectors, calculates the mean of all points within this region, updates the

center of this set to be equal to the mean, and then iterates the process until a fixed number

of iterations has been met or some stopping criteria is achieved. Refer to Section 2.1 for more

details. Proper initialization is a crucial issue for any iterative algorithm and can greatly

affect the outcome. Therefore, we have chosen four different methods to initialize the center

vectors for comparison purposes, requiring little supervision (if any) from the user.

The first method chosen to determine the center vectors used in the iterative LBG algo-

rithm is LLEC. Here we use the LLEC algorithm to create a palette of colors for the data

to be clustered around by identifying the natural subspaces of subimages of images within

80

(a) Original (b) S = 13 (c) S = 24 (d) S = 92

(e) Original (f) S = 10 (g) S = 15 (h) S = 57

(i) Original (j) S = 5 (k) S = 8 (l) S = 21

(m) Original (n) S = 5 (o) S = 6 (p) S = 17

(q) Original (r) S = 4 (s) S = 6 (t) S = 22

Figure 4.5. Reconstruction images of LLEC with variances tolerances. Col-
umn two has tolerance ε1 = ε2 = 0.6. Column three has tolerance ε1 = ε2 =
0.4. Column four has tolerance ε1 = ε2 = 0.2. S denotes the number of dis-
tinct subspaces. The distortion errors from left to right, top to bottom are as
follows: (Image 1) DE = 4.2162 × 103, DE = 2.2738 × 103, DE = 764.723,
(Image 2) DE = 2.0091 × 103, DE = 1.4704 × 103, DE = 580.750, (Im-
age 3) DE = 2.74827 × 103, DE = 2.0479 × 103, DE = 650.323, (Im-
age 4)DE = 2.6723 × 103, DE = 1.6792 × 103, DE = 623.756, (Image
5)DE = 1.9229× 103, DE = 1.0782× 103, DE = 537.293.

the landscape data set, namely Figures 4.5i, 4.5m, and 4.5q. The benefit of this method is

that all subspaces are identified in an unsupervised manner.

81

The next method involves choosing the eight three dimensional data points with compo-

nents either 0 or 255 and 17 other data points sampled near the green, yellow, blue, white,

and black colors as centers. This requires supervision from the user to identify which colors

seem to predominantly appear in the data set of images.

The third method involves choosing 25 random centers. That is 25 data points, [r, g, b] are

chosen such that r, g, b ∈ [0, 255]. Choosing random centers in this way does not guarantee

that any of the colors identified to be centers will be similar to colors that appear in the

actual image, and thus, many of the centers could be potentially unused in the clustering.

The final method involves choosing 25 random centers from the data set. That is, choose

25 columns of the data matrixX randomly to be the centers that the data points are clustered

around. The benefit of this method is that this is the only approach that identifies actual

points within the data set as centers. However, not all natural subspaces may be represented

as we will observe shortly.

Figure 4.6 reveals the performance of each method on one sample image from the land-

scape data set. In several implementations on various images within the landscape data set,

we have observed similar results. It appears that all methods for determining the centers

result in fairly accurate reconstruction images. However, we have observed in practice that

the two methods of using the LLEC algorithm to determine centers and identifying random

centers within the data set tend to result in the lowest distortion errors as calculated by

D(X, J) =
1

p

∑
j∈J

∑
x∈Sj

‖x− cj‖2

where X is a data set consisting of p points with regard to a set of centers labeled by indices

J . Note that if we let X∗ indicate the matrix of points each identified with the centroid

82

Original Image

50 100 150 200 250 300 350

50

100

150

200

250

(a) Original

(b) LLEC (c) Identifying Centers

(d) Random Centers (e) Random Centers from Data

Figure 4.6. Reconstruction images after quantizing the color space of orig-
inal image with LBG using indicated method to determine the centers. Note
that the respective distortion errors of each implementation with 15 iterations
are: 140.0250, 342.6351, 219.0756, and 146.7013.

83

of the Voronoi region that each point is assigned to, then the distortion error could also be

calculated as ‖X −X∗‖2
F where ‖A‖F =

√∑m
i=1

∑n
j=1 |aij|2 is the Frobenius norm.

We notice in Figure 4.7 however that LLEC gives a better reconstruction visually. Ob-

serve that the reconstruction obtained by identifying centers as random points within the

data often does not capture all subspaces within the image. In particular, the yellow flowers

in the second example and the blue flowers in the third example do not appear in the recon-

struction. Thus, it appears that LLEC used in conjunction with LBG is able to reconstruct

the image with minimal error and the most accurate representation visually.

4.5. Conclusion

In this chapter, we have presented a novel algorithm, LLEC, to cluster and segment the

color space of natural imagery. Within this algorithm, is a method to reconnect artificially

disconnected components (resulting from a choice of K nearest neighbors) as well as a tech-

nique for one dimensional subspace segmentation that can be extended to multi-dimensional

segmentation which is robust in the presence of noise. We have seen that LLEC does an

excellent job of quantizing the color space of imagery with the only input parameters directly

related to the accuracy of the quantization. However, LLEC does have some limitations. As

already mentioned, LLEC is computationally intensive. Also, in the formulation of the LLE

algorithm, it is required to create matrices of size p×p, where p is the number of pixels in the

image. For large images, this may require a prohibitively large amount of memory. Thus,

LLE and LLEC, in turn, perform well on small sized images when being implemented in

this manner. However, if techniques such as the sampling methods discussed in [59], [29] or

the stitching method as discussed in [4] are implemented, this limitation may be alleviated.

84

(a) 1st Original (b) LLEC (c) Ran-
dom from
Data

(d) 2nd Original (e) LLEC (f) Random
from Data

(g) 3rd Original (h) LLEC (i) Random
from Data

Figure 4.7. Quantizing the color space of the original image with LBG using
indicated method to determine the centers. Note that the respective distortion
errors of these two implementations with 15 iterations are: (1st Original)
210.3490 and 210.6900, (2nd Original) 140.0250 and 146.7013, (3rd Original)
172.5580 and 170.7743.

Even with these limitations, we see that LLEC is useful in identifying the natural subspaces

within an image.

85

CHAPTER 5

Sparse Locally Linear Embedding

5.1. Introduction

Several algorithms have been introduced with the purpose of reducing the dimension

of a data set, as high dimensional data can often be represented appropriately in a lower

dimensional space due to correlations and redundancies in the data. Various dimensionality

reduction techniques include linear methods such as Principal Component Analysis [50] and

Multidimensional Scaling [27] while nonlinear methods such as ISOMAP [75], Locally Linear

Embedding (LLE) [71], Hessian Eigenmaps [31], and Laplacian Eigenmaps [9] have proven

capable of extracting the underlying structure of real data which is typically nonlinear.

In this chapter, we will focus on nonlinear techniques, particularly the LLE algorithm

discussed in detail in Chapter 2. The Locally Linear Embedding (LLE) algorithm [71] is an

unsupervised dimensionality reduction algorithm that determines a mapping of data, lying

in a higher dimensional vector space, to a lower dimensional vector space while optimizing

the maintenance of local spatial relationships within the data. Through this map, the LLE

algorithm uncovers a lower dimensional representation of the data with the goal of preserving

the topology and neighborhood structure of the original higher dimensional data.

The primary free parameter of the LLE algorithm is K, the choice of nearest neighbors.

This choice greatly affects the embedding results as it determines the local and global repre-

sentation of the high-dimensional data in a lower-dimensional space. As discussed in Sections

86

Figure 5.1. If K is too large, points in oval A could potentially be repre-
sented by nearest neighbors in oval B.

2.2.1 and 2.2.4.2, it is often difficult to appropriately choose K. If K is chosen too large, then

the neighborhoods could no longer be locally linear, or points that are actually far away fol-

lowing the curvature of the manifold could be identified as nearest neighbors, as an example,

see Figure 5.1. If K is chosen too small, then local patches are under-sampled and unable

to appropriately preserve the topological structure of the data set as a lower-dimensional

embedding. In the standard derivation of the algorithm, if K nearest neighbors are allowed,

then each data point xi will be represented by K nearest neighbors, i.e. typically all of the

weights wij associated from data point xi to each of its nearest neighbors xj is nonzero.

Consider the following example of 2304 points residing in R3, see Figure 5.2. We observe

that changing K has great influence on the embedding results, see Figure 5.3. Thus, finding

an appropriate choice of K is necessary to determine the optimal embedding. As discussed

in Section 2.2.4.2, a variety of methods have been proposed to optimally select K that are

computationally intensive.

However, representing each data point uniformly with a choice of nearest neighbors K

may not be appropriate for all data points (i.e. noise, isolated points, holes in the data, etc).

The density and intrinsic dimensionality likely differ for the neighborhoods of each point xi

87

Figure 5.2. Original data in R3

(a) K = 4 (b) K = 6

(c) K = 8 (d) K = 10

Figure 5.3. LLE reconstruction plots in R2 using various choices for the
number of nearest neighbors K

88

[3], and thus, it seems that an appropriate number of nearest neighbors should be selected

for each point instead of a single value of K chosen for all points.

In this chapter, we will consider allowing many more nearest neighbors than necessary

and driving weights of unnecessary nearest neighbors–that actually are not very close to

the data point being considered–to zero. Such a sparse representation of weights allows

for identification of the ‘true’ nearest neighbors of each data point and a more appropriate

local reconstruction. This method determines a neighborhood size Ki for each data point

automatically. We call this method Sparse Locally Linear Embedding.

5.2. Sparse Locally Linear Embedding

Regularization using the `1 norm is becoming more common and understood in the data

analysis community. It has been used in a variety of applications such as support vector

machines, compressed sensing, image analysis, error correction, and matrix completion, and

it is known to produce sparsity in decision variables of optimization problems when used as

a regularization term in the objective function [11], [16], [19], [17], [18], [32], [36], [40], [64],

[76].

Recall in standard LLE, the weights wij–associated from the point in consideration xi

to each of its nearest neighbors xj–are determined by solving the following optimization

problem

minimize
w

p∑
i=1

‖xi −
∑
j∈Ni

wijxj‖2
2

subject to
∑
j∈Ni

wj = 1

89

As indicated before, we would like to induce sparsity in the weights associated to nearest

neighbors. We do so by including an `1 regularization term in the objective function to

determine the weights.

minimize
w

λ

p∑
i=1

∑
j∈Ni

|wij|f(d(xi,xj)) +

p∑
i=1

‖xi −
∑
j∈Ni

wijxj‖2
2

subject to
∑
j∈Ni

wj = 1

(5.1)

We have included λ, a parameter to enforce the importance of driving weights of nearest

neighbors to zero, as well as a data-weighted scaling where f is some nonnegative function

of the distance between xi and xj as determined by some metric such as the p-norm,

||x||p =

(
n∑
k=1

|xk|p
) 1

p

where xi ∈ Rn.

We have observed that if f is omitted sparsity does not seem to be induced. At the end of

this section are suggestions for choosing this nonnegative function.

Recall that standard LLE actually solves a least squares problem for each point

Ciw̃ = e

as described in Section 2.2.2 where Ci corresponds to the covariance matrix determined by

cijk = (xi−xj)
T (xi−xk) (with j, k indices of nearest neighbors to xi, w̃ is the column vector

of weights associated to a single point, and e is the vector of all ones. Therefore, instead of

solving the potentially very large problem 5.1 once, we may think of this as a much smaller,

90

decoupled problem

minimize
w

λ
∑
j∈Ni

|wj|f(d(xi,xj)) + ‖xi −
∑
j∈Ni

wjxj‖2
2

subject to
∑
j∈Ni

wj = 1

(5.2)

to be solved for each data point xi. Solving all of these problems can be trivially parallelized.

The absolute value in optimization problem 5.2 provides a bit of difficulty. However,

as indicated in [13], we may reformulate our optimization problem in two manners. Let us

consider an optimization problem of the form

minimize
x

n∑
i=1

ci|xi|

subject to Ax = b

with nonnegative ci and x ∈ Rn. First, notice that |xi| satisfies xi ≤ zi and −xi ≤ zi for

some zi. Therefore, our problem can be reformulated as

minimize
x

n∑
i=1

cizi

subject to Ax = b

xi ≤ zi for i = 1, . . . , n

−xi ≤ zi for i = 1, . . . , n

91

As a second approach, we may introduce new variables x+
i and x−i , required to be nonnega-

tive, and rewrite our problem using xi = x+
i − x−i and |xi| = x+

i + x−i

minimize
x

n∑
i=1

ci(x
+
i − x−i)

subject to Ax+ − Ax− = b

x+ ≥ 0

x− ≥ 0

where x+ is the vector of x+
i entries and x− is the vector of x−i entries. The goal is to have

xi = x+
i or xi = −x−i , and thus, either x+

i or x−i equals 0. We see this by considering the

nonnegativity of ci. Suppose that ci > 0 for all i for simplicity, otherwise the problem is

degenerate. Assume that optimal solutions x+
i > 0 and x−i > 0. We reduce x+

i and x−i by

the same amount r,

Ai(x
+
i − r)− Ai(x−i − r) = bi

Aix
+
i − Air − Aix−i + Air = bi

Aix
+
i − Aix−i = bi

Thus, the problem still remains feasible. Note that Ai denotes the ith row of matrix A

and bi denotes the ith entry of vector b. Since ci > 0, reducing x+
i and x−i by r will in turn

reduce the cost of the objective function, contradicting optimality of x+
i and x−i . Thus, either

x+
i = 0 or x−i = 0. This is true for any ci > 0, i = 1, . . . , n. Notice that either reformulation

requires adding 2n constraints and n variables.

92

Now, let us return to our optimization problem 5.2. We will use the latter approach

described above to remove the absolute value from our objective function by introducing

nonnegative variables w+
j and w−j such that wj = w+

j − w−j and |wj| = w+
j + w−j

minimize
w

λ
∑
j∈Ni

(w+
j + w−j)f(d(xi,xj)) + ‖xi −

∑
j∈Ni

(w+
j − w−j)xj‖2

2

subject to
∑
j∈Ni

(w+
j − w−j) = 1

w+
j , w

−
j ≥ 0

(5.3)

We rewrite our objective function as

λ
∑
j∈Ni

(w+
j + w−j)f(d(xi,xj)) + ‖xi −

∑
j∈Ni

(w+
j − w−j)xj‖2

2

= λ
∑
j∈Ni

(w+
j + w−j)f(d(xi,xj))+ < xi −

∑
j∈Ni

(w+
j − w−j)xj,xi −

∑
j∈Ni

(w+
j − w−j)xj >

= λ
∑
j∈Ni

(w+
j + w−j)f(d(xi,xj)) + xTi xi − 2

∑
j∈Ni

(w+
j − w−j)xTi xj+

∑
j,k∈Ni

(w+
j − w−j)(w+

k − w
−
k)xTj xk

=
∑
j,k∈Ni

(w+
j w

+
k − w

+
j w
−
k − w

−
j w

+
k + w−j w

−
k)xTj xk − 2

∑
j∈Ni

(w+
j − w−j)xTi xj+

λ
∑
j∈Ni

(w+
j + w−j)f(d(xi,xj)) + xTi xi

=
∑
j,k∈Ni

xTj xk(w
+
j w

+
k − w

+
j w
−
k − w

−
j w

+
k + w−j w

−
k) (Quadratic)

+
∑
j∈Ni

(
−2xTi xj + λf(d(xi,xj))

)
(w+

j − w−j) (Linear)

+ xTi xi (Constant)

93

This optimization problem can be rewritten as a quadratic program of the form

minimize
w

1

2
wTQw + cTw

subject to Aw = b

w ≥ 0

(5.4)

Note, removing the constant term will not affect the optimal solution to this problem. The

optimization problem 5.4 is in n = 2K variables with equality constraint, Aw = b, an m×n

system where m = 1. More explicity,

w =

w+

w−

 =



w
(1)+
i

w
(2)+
i

. . .

w
(K)+
i

w
(1)−
i

w
(2)−
i

. . .

w
(K)−
i


where we use the notation w

(`)
i to denote the weight associated from point xi to its `th nearest

neighbor for ` = 1, . . . , K. Then, Q = Qi for each i with

Qi =

 Q̃i −Q̃i

−Q̃i Q̃i



94

where

Q̃i =


x

(1)T
i x

(1)
i x

(1)T
i x

(2)
i . . . x

(1)T
i x

(K)
i

...
. . .

...

x
(K)T
i x

(1)
i x

(K)T
i x

(2)
i . . . x

(K)T
i x

(K)
i



A =

[
1 . . . 1 −1 . . . −1

]
b = 1

c =



−2xTi x
(1)
i + λf(d(xi,xj))

−2xTi x
(2)
i + λf(d(xi,xj))

...

−2xTi x
(K)
i + λf(d(xi,xj))

2xTi x
(1)
i + λf(d(xi,xj))

...

2xTi x
(K)
i + λf(d(xi,xj))


We have not explicitly defined the nonnegative function f(d(xi,xj)) which is a coefficient

on the linear weight terms. This allows more flexibility for the user and allows tuning of the

algorithm depending on data sets. Possible obvious functions to consider could include

f(d(xi,xj)) = ||xi − xj||22

f(d(xi,xj)) = ||xi − xj||2

f(d(xi,xj)) = ||xi − xj||1

f(d(xi,xj)) =
1

||xi − xj||22

95

Note the first three functions favor the closest nearest neighbors while the final function

penalizes these nearest neighbors. In practice, we have typically used the first or second

function. Another possibility could be a unimodal function that favors the closest nearest

neighbors and those that are farthest away, but penalizes nearest neighbors with mid-range

distances. This would enforce sparsity but capture more global information. Various choices

for this function will yield different, and possibly more appropriate results depending on the

application.

In the next section, we will explore when this problem (or any quadratic program for

that matter) has a solution.

5.3. Convex Optimization Problems

First, we need a few definitions and results regarding convexity in order to determine

when a quadratic program has a solution. Let us observe the definitions of a convex set and

function.

Definition 3. A set C is a convex set if the line segment between any two points in C lies

in C, i.e., if for any x1, x2 ∈ C and any θ with 0 ≤ θ ≤ 1, we have

θx1 + (1− θ)x2 ∈ C.

Definition 4. A function f : Rn → R is a convex function if the domain of f is a convex

set and if for any two points x and y in the domain of f , and any θ with 0 ≤ θ ≤ 1, we have

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y).

Next, we need the definition of a positive semi-definite matrix.

96

Definition 5. A symmetric matrix H is positive semi-definite if xTHx ≥ 0 for all x 6= 0.

We write this as H � 0.

Now, when is a quadratic function convex? We will use the second-order condition

described in [15]. The second-order condition is as follows:

Theorem 1 (Second Order Condition). Suppose f is twice differentiable. Then f is convex

if and only if the domain of f is convex and its Hessian is positive semi-definite, i.e.

∇2f(x) � 0.

We must consider the Hessian of a quadratic function f(x) = 1
2
xTQx+cTx. The gradient

is

∇f(x) = Qx+ c

and the Hessian is

∇2f(x) = Q.

Therefore, a quadratic function is convex if and only if Q is positive semi-definite (and

concave if and only if Q is negative semi-definite). Now, we need to consider the definition

of a convex optimization problem

Definition 6. A convex optimization problem is one of the form

minimize f0(x)

subject to fi(x) ≤ 0 for i = 1, . . . ,m

aTj x = bj for j = 1, . . . , p

(5.5)

97

where the f0, . . . , fm are convex functions.

Note that the equality constraints are required to be affine. Therefore, a quadratic program

like 5.4 is convex if and only if Q is positive semi-definite. One of the key features of a convex

optimization problem is that any local optimum is also a global optimum [15].

Let us now return to our problem described in the previous section with Q = Qi for each

i defined as

Qi =

 Q̃i −Q̃i

−Q̃i Q̃i


where

Q̃i =


x

(1)T
i x

(1)
i x

(1)T
i x

(2)
i . . . x

(1)T
i x

(K)
i

...
. . .

...

x
(K)T
i x

(1)
i x

(K)T
i x

(2)
i . . . x

(K)T
i x

(K)
i

 .

for each i. Notice that Qi can be written as an outer product

Qi = aia
T
i

98

where

ai =



− (x
(1)
i)T −

− (x
(2)
i)T −
...

− (x
(K)
i)T −

− −(x
(1)
i)T −

− −(x
(2)
i)T −
...

− −(x
(K)
i)t −



.

Finally, notice that any matrix written as an outer product is positive semi-definite as

xTQx = xTaaTx = ||aTx||22 ≥ 0

for all x 6= 0. Therefore, the problem in consideration is a convex optimization problem.

5.4. Solving Sparse LLE

As mentioned previously, determining the global optimal solutions can be achieved by

finding local solutions. Thus, by forming the Lagrangian of our optimization problem, com-

puting the gradiant and equating to zero (the first order optimality conditions), and solving

for the roots using some approach such as Newton’s Method, we may find not only the

local optimum(s) of this program but also the global optimum(s). Note if Q is positive

definite (and thus full rank) the solution is unique [15]. We will see in Chapter 6 one possi-

ble method to solve our convex quadratic optimization problem known as the Primal Dual

Interior Point (PDIP) algorithm. Another method, which we will briefly introduce here, is

the Split Bregman Algorithm as discussed in [64], [69], [40].

99

The Split Bregman Algorithm can solve problems of the form

minimize
u

E(u)

subject to H(u) = 0

(5.6)

where u ∈ Rn, E and H are both convex, and H is differentiable. As E is not required to

be differentiable, this algorithm can solve `1-regularized problems directly. We convert this

problem to one that is unconstrained by

minimize
u

E(u) + λH(u)(5.7)

Typically, this algorithm solves problems of the form

E(u,d) = ||d||1 + F (u) and

H(u,d) = ||d− Φ(u)||22, i.e. d = Φ(u)

for a differentiable function Φ. [40] suggests solving this problem iteratively for u and d by

splitting the differentiable and the non-differentiable portions.

In order for us to use the Split Bregman formula, we need to modify our problem 5.1

slightly. Note, that since the Split Bregman algorithm can handle `1 regularization terms

directly, we do not need to use optimization techniques as discussed above to remove this

non-differentiable term from our objective function. For each data point xi, form

• F , the diagonal matrix with entries given by a nonnegative function f of distances

between xi and each of its K nearest neighbors, i.e. f(d(xi,x
(`)
i) for ` = 1, . . . , K

100

• Ni the D × K matrix of nearest neighbors to point xi with the points written as

columns

Then, our decoupled problem can be reformulated as

minimize
w

λ1||Fw||1 +
λ2

2
||xi −Niw||22 +

λ3

2
(eTw− 1)2

where we are solving for the weights associated to the single point xi. Written in the Split

Bregman formulation, we have

minimize
w,d,b

λ1||d||1 +
λ2

2
||xi −Niw||22 +

λ3

2
(eTw− 1)2 +

λ4

2
||d− Fw||22

which can be simplified by using the suggestions given in [40] as

(wk+1,dk+1) = argmin
w,d

λ1||d||1 +
λ2

2
||xi −Niw||22 +

λ3

2
(eTw− 1)2 +

λ4

2
||d− Fw− bk||22.

We iteratively solve for wk+1, dk+1, and bk+1 by using the following formulas

wk+1 = argmin
w

λ2

2
||xi −Niw||22 +

λ3

2
(eTw− 1)2 +

λ4

2
||dk − Fw− bk||22

dk+1 = argmin
d

λ1||d||1 +
λ4

2
||d− Fw− bk||22

bk+1 = bk + Fwk+1 − dk+1

Notice that there are 4 parameters in this derivation, λ1 is associated with the `1 regu-

larization, λ2 is associated with the reconstruction error, λ3 is attached to the sum to one

criteria for the weights, and λ4 is associated with the Bregman restriction. At optimality,

the last two terms should be zero, the reconstruction error should be zero in the case when

101

K > D and as small as possible otherwise, and thus, varying these last three parameters does

not affect the solution greatly. However, varying the parameter λ1 affecting the emphasis

placed on inducing sparsity, much like varying λ in Equation 5.2, does change the optimal

solution. We will see the affect of varying λ (in Equation 5.2) in the implementation sections.

As the Split Bregman algorithm is not our focus, we will not spend more time discussing

precisely how to solve each step. We choose to use the PDIP algorithm to solve our opti-

mization problem. Do note though that the computational complexity to solve problem 5.2

for all points xi, i = 1, . . . , p, using Split Bregman is O(pK3)+O(ph(K3 +KD2 +K+2K3))

where p is the number of data points, K is the number of nearest neighbors allowed, D is the

dimension of our input data, and h is the average number of iterations to achieve a desired

tolerance. The first term comes from an inverse computation while the second is matrix

multiplication and addition.

5.5. The Algorithm

We summarize Sparse Locally Linear Embedding in the following Algorithm:

Sparse LLE Algorithm

(1) Determine a maximum value of K nearest neighbors to be allowed. Find the

K nearest neighbors to each point xi as ascertained by some metric, usually

Euclidean distance.

102

(2) Find the sparse weights used to write each point as a linear combination of its

nearest neighbors xj by solving

minimize
w

λ
∑
j∈Ni

|wj|f(d(xi,xj)) + ‖xi −
∑
j∈Ni

wjxj‖2
2

subject to
∑
j∈Ni

wj = 1

for a given λ, typically very small, and each point xi.

(3) Zero out any weight value wij < tol, where tol is some tolerance such as 10−4 or

possibly smaller. The number of nonzero weights determines, Ki, the number

of nearest neighbors used to reconstruct point xi.

(4) Determine lower dimensional embedding vectors by minimizing

φ(Y) =

p∑
i=1

‖yi −
∑
j∈Ni

wijyj‖2
2

subject to Y Y T = I and

p∑
i=1

yi = 0 as a sparse eigensolver.

In the remainder of this chapter we will apply Sparse LLE to a variety of data sets,

observing its ability to automatically select an appropriate number of nearest neighbors for

each data point and its ability to preserve the topological structure from the high dimensional

space.

5.6. Sparsity Example

Let us consider the 3-dimensional RGB data from a square 41 × 41 color image, Figure

5.4a. For this example, we are primarily concerned with the sparsity induced on the weights

103

using Sparse LLE. This sparsity automatically selects an appropriate number of nearest

neighbors Ki for each data point xi. We will focus on the central pixel within the image.

Allowing K = 20 nearest neighbors–which is certainly more than necessary to represent this

data in R3–we use a function of f(d(xi,xj)) = ||xi − xj||2 and vary our parameter λ that

enforces the importance of the sparsity term. Using a choice of λ = 0, our optimization

problem is the same as the standard LLE problem to determine weights, and thus, all

weights associated to the central pixel are nonzero. As we increase λ, sparsity is induced in

the weights. Refer to Figure 5.4. Note in Figure 5.4b we see all pixels selected to be nearest

neighbors to the central pixel, indicated as gray pixels. We use gray to denote those pixels

associated to nonzero weights and white to denote zero weights, generated by increasing λ,

Figures 5.4c and 5.4d. It is important to realize that these nearest neighbors are near in the

spectral sense not the spatial sense.

To observe the numerical values of the 20 weights associated to the central pixel for these

three choices of parameter λ, see Figure 5.5. We see that as we increase λ, the number of

nonzero weights dramatically decreases, Figure 5.6. As this data is in R3, it makes sense that

3 or 4 nearest neighbors would be necessary to reconstruct each data point, remembering

that the weights associated to these nearest neighbors must sum to 1.

Our objective function in 5.2 involves two terms–the first we call the sparsity term, and

the second is the reconstruction error. As more emphasis is placed on the first term, there

is a deemphasis on minimizing the second term. Thus, there is a balancing act between

the two terms. We notice as λ is increased (and the importance of the sparsity term is

increased) the reconstruction error increases, as expected. See Figure 5.7. Finally, we see

this balancing act explicitly in the pareto optimal curve that compares the value of which we

104

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

(a) Original Image

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

(b) λ = 0

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

(c) λ = 0.02

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

(d) λ = 0.1

Figure 5.4. Considering weights associated to the central (black) pixel. Us-
ing K = 20. Nearest neighbor pixels associated to nonzero weights are colored
gray and those associated to zero weights are colored white.

will call the sparsity term the risk,
∑
j∈Ni

|wj|f(d(xi,xj)), and we will call the reconstruction

error the reward ‖xi −
∑
j∈Ni

wjxj‖2
2, Figure 5.8. From all of these figures we can determine

that increasing λ by a small amount will induce sparsity in the weights associated to nearest

neighbors. However, we do not want to increase λ so much that the reconstruction error

is large, and thus, each point is poorly reconstructed as a linear combination of its nearest

neighbors.

105

0 2 4 6 8 10 12 14 16 18 20
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
Plot of Weights Associated to Central Pixel

Standard LLE
Sparse LLE l=0.2
Sparse LLE l=.1

Figure 5.5. Plot of weights associated to central pixel, allowing K = 20
nearest neighbors and varying λ.

Figure 5.6. Plot of the number of nonzero weights associated to nearest
neighbors of the central pixel versus λ.

106

Figure 5.7. Plot of the reconstruction error versus λ.

Figure 5.8. Plot of the sparsity term, the ‘risk’,
∑
j∈Ni

|wj|f(d(xi,xj)) ver-

sus the reconstruction error, the ‘reward’, ‖xi −
∑
j∈Ni

wjxj‖2
2. Note that blue

corresponds to smaller λ values while red corresponds to larger λ values.

107

(a) Swiss Roll (b) Sampled Swiss Roll

Figure 5.9. 2000 randomly generated points along the swiss roll in R3.

5.7. Swiss Roll Example

We will now consider the canonical swiss roll example found in many nonlinear dimen-

sionality reduction texts [71], [3], [9]. The topological structure of this data set will not

be captured with a linear dimensionality reduction technique such as PCA or MDS as it is

highly nonlinear, but as we will see, it is able to be captured using the nonlinear technique

of Sparse LLE. This data set consists of 2000 randomly generated points along the swiss roll

in R3, Figure 5.9.

As this data is 3-dimensional it might be supposed that K = 4 would be an appropriate

choice of nearest neighbors. However, using standard LLE with a choice of K = 4 nearest

neighbors, the lower dimensional embedding in R2 is quite poor and does not reflect the

topological structure in the slightest, Figure 5.10a. In fact, this choice of nearest neighbors

disconnects the data, as evidenced by the eigenvalues of the Laplacian matrix M defined

in Section 2.2.3 and further discussed in 4.2.2. From the source code on the Locally Linear

Embedding homepage to generate the swiss roll, K = 12 nearest neighbors were selected

[1]. We see that this choice of K yields a much better embedding, Figure 5.10b. Now, we

108

illustrate how Sparse LLE automatically determines an appropriate choice of Ki for each

point xi without needing to ‘tune’. Let us use the Sparse LLE algorithm with K = 20

nearest neighbors allowed (although as we will see in the next example this is an arbitrary

choice that does not affect the embedding if λ is in an appropriate range) with λ = 0.01,

Figure 5.10. Note that Figure 5.10c was constructed using the full K × p matrix W in

the eigenvector problem to determine the embedding vectors while 5.10d was generated by

zeroing out those entries less than 10−4 in W and using the remaining ‘nonzero’ entries

in W in the eigenvector problem. Recall that the weight problem is invariant to rotations,

rescalings, and translations. Now, we consider a histogram for the number of nonzero weights

associated to each point using both standard LLE and Sparse LLE, Figure 5.11. Note in both

cases we consider weights wij ≥ 10−4 to be nonzero. Notice that nearly all of the weights in

standard LLE are nonzero as K = 12 was selected, while only 2-6 weights are nonzero for

each data point in Sparse LLE even though K = 20 nearest neighbors were allowed.

Finally, let us consider the average number of nonzero weights associated to nearest

neighbors of data points sampled from the swiss roll as we vary λ, the parameter that affects

sparsity in Sparse LLE, as well as K, see Figure 5.12a. Figure 5.12b is the standard deviation

of this computation. Again, as the swiss roll data is in R3 a much smaller number of nearest

neighbors is needed to reconstruct each data point that the K = 20 allowed in our Sparse

LLE computations and the K = 12 selected in standard LLE.

Therefore, through this experiment we see that Sparse LLE is able to not only preserve

the topological structure of this highly nonlinear data set, but also automatically choose an

appropriate number of nearest neighbors for each point, that agrees with intuition.

109

LLE

(a) LLE K = 4

LLE

(b) LLE K = 12

Sparse LLE

(c) Sparse LLE K = 20 λ = 0.01 Full

Sparse LLE

(d) Sparse LLE K = 20 λ = 0.01 Zeroed

Figure 5.10. Points in R3 sampled from the swiss roll embedded into R2

using indicated algorithms and parameters, where Full indicates using the full
K × p matrix W and Zeroed indicates zeroing those entries less than 10−4 in
W .

5.8. Fabry-Perot Data Set

Field data collected by PSIs Range Test Validation System [26] was used as a sample

data set to better understand Sparse LLE. This data set, which we will call the Fabry-Perot

data set, was collected by an interferometer that measures the size of the elctromagnetic

spectral radiance at certain wavelengths, namely those in the 8-11 micron range. It collects 20

images from 20 different wavelengths selected to maximize detection sensitivity of a particular

110

11 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9 12
0

200

400

600

800

1000

1200

1400

1600

1800

2000
Hist of Num Nonzero Weights Using K=12 and 0<10−4

(a) LLE K = 12

2 2.5 3 3.5 4 4.5 5 5.5 6
0

500

1000

1500
Hist of Num Nonzero Weights Using K=20lambda=0.01and 0<10−4

(b) Sparse LLE K = 20 λ = 0.01

Figure 5.11. Histograms of the number of nonzero weights associated to
each point where the Sparse LLE weight matrix W had entries less than 10−4

zeroed out.

simulant. Each of these 20 images is of 256× 256, and the 20 individual wavelength images–

which we call sheets–form a single 256×256×20 dimensional data cube representing a single

moment in time. A predetermined quantity of a chemical simulant is released into the air

111

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
2

3

4

5

6

7

8

9

10

11

12

Lambda

A
ve

ra
ge

 N
um

be
r

of
 N

on
ze

ro
 W

ei
gh

ts

Average Number of Nonzero Weights

K=15
K=20
K=25
K=30

(a) Average

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Lambda

S
ta

nd
ar

d
D

ev
ia

tio
n

of
 N

um
be

r
of

 N
on

ze
ro

 W
ei

gh
ts

Standard Deviation of Number of Nonzero Weights

K=15
K=20
K=25
K=30

(b) Standard Deviation

Figure 5.12. Number of nonzero weights associated to nearest neighbors as
both λ and K are varied.

to generate a cloud for detection against natural background. Data cubes are collected to

record the event from ‘pre-burst’ to ‘burst’ to ‘post-burst’. Three chemical simulants were

112

Figure 5.13. One sheet of a sample data cube.

released, and a series of data cubes were collected for the entirety of the event for each

simulant. The three simulants are Glacial Acetic Acid (GAA), Methyl Salicylate (MeS), and

Triethyl Phosphate (TEP). In this paper, we will focus on data cubes from the GAA data

set.

5.8.1. Preprocessing. Each data cube is preprocessed by resizing, replacing missing

data, and removing background. The data cubes are resized to to 26× 250× 20 to focus on

the area of interest, simply to speed up computations. As is evidenced by Figure 5.13, there

is missing data that is replaced with the average pixel value. Finally, it should be noted that

the chemical plume is not visible to the human eye, and thus, we remove the background of

each data using the following process, see Figure 5.14:

(1) Consider a single 20-dimensional pixel through time Pi for frames known to be

‘pre-burst’, about n = 50 frames, i = 1, . . . , n.

(2) Compute the mean of this pixel through time,

< P >=
1

n

n∑
i=1

Pi

113

time

20

P
1

n

(i,j) P
2

P

Figure 5.14. Illustration of considering a single pixel in R20 through time.

(3) Mean subtract this pixel at each time and arrange mean subtracted pixel at the

columns of the matrix P̂ ,

P̂ =
[
P̂1|P̂2| . . . |P̂n

]
= [P1− < P > |P2− < P > | . . . |Pn− < P >]

(4) Compute the singular value decomposition

P̂ = UΣV T

(5) Form the projection matrix onto the background basis

Pk =
k∑
i=1

uiu
T
i

(6) Project each pixel onto the null space, away from the projection basis

P̂R
i = (I − Pk)P̂i

This is done beyond the ‘pre-burst’ data cubes to include all frames within the data

set.

(7) Repeat all steps for each pixel.

114

Figure 5.15. All 20 sheets of a pre-processed sample data cube.

This method results in the background being removed from all data cubes throughout the

entirety of the event. See Figure 5.15 for a sample image of a preprocessed data cube. We

now observe that the plume is visible.

As a final preprocessing step–that is used purely for visualization–we perform LBG clus-

tering, as discussed in Chapter 2.1, on each of these pre-processed data cubes. We have

selected three starting centers, one from the upper left, one from the lower right, and one

from the plume. Observe a sample clustered data cube, GAA frame 70, 5.16. Each color

represents an individual cluster with yellow representing chemical. This coloring will be used

throughout the rest of this section.

5.8.2. Varying Parameters. We will now consider varying the parameters in both

standard LLE and Sparse LLE, and then we will compare the reconstruction outputs. First,

we reduce the dimension of GAA Frame 70 from R20 to R2 using both standard LLE and

115

Figure 5.16. Frame 70 of GAA clustered using LBG.

Sparse LLE. In all experiments, we used f(d(xi,xj)) = ||xi− xj||22. We implement standard

LEE on this data set of size 20× 6500 using a variety of choices of K. A few of these choices

are displayed in Figure 5.17. We see that each of these choices of nearest neighbors yield

drastically different results, except possibly K = 6, 8, keeping in mind that the problem is

invariant to rotations, rescalings, and translations. There are some measures, such as the

residual variance discussed in [57], that could be used to measure the reconstruction quality.

However, by visual inspection, it seems that there is more separation between the chemical

pixels and the background pixels when K is fairly small.

We will now focus on Sparse LLE. First, we fix K = 30 and vary λ, Figure 5.18. Notice

that changing the parameter value λ appears to affect the reconstruction error. Now, we

fix λ = 0.05 and vary K, see Figure 5.19. Notice that in this case, varying K also affects

the output but there appears to be a bit more stability, especially when K is smaller. As

we will shortly see, this is because not enough sparsity was induced in the weights. Finally,

we again vary K, but fix λ = 0.1 which in turn will induce more sparsity, see Figure 5.20.

Notice, that varying K in this case does not appear to affect the reconstruction output. This

116

(a) LLE K = 4 (b) LLE K = 6 (c) LLE K = 8

(d) LLE K = 10 (e) LLE K = 12 (f) LLE K = 14

(g) LLE K = 16 (h) LLE K = 18 (i) LLE K = 20

(j) LLE K = 22 (k) LLE K = 24 (l) LLE K = 26

Figure 5.17. Reducing the 20-dimensional Fabry-Perot data down to R2

using standard LLE with varying K values.

117

(a) SLLE K = 30
λ = 0.001

(b) SLLE K = 30
λ = 0.005

(c) SLLE K = 30
λ = 0.01

(d) SLLE K = 30
λ = 0.05

(e) SLLE K = 30
λ = 0.1

Figure 5.18. Reducing the 20-dimensional Fabry-Perot data down to R2

using Sparse LLE with fixed K values and varying λ.

is because we have induced enough sparsity in the problem that our results are consistent

across different choices of nearest neighbors.

We should also note that all of these sets of images (including those for standard LLE)

were created by zeroing out those weight values wij < 10−4. In Figure 5.21, we fix the choice

of nearest neighbors at K = 30, fix λ = 0.1 for Sparse LLE, but vary this tolerance to

define zero values. Notice that in both cases the reconstructions appear to be very similar.

However, this is for very different reasons. The weights in LLE are typically all larger than

10−4 while the unnecessary weights in Sparse LLE are often much less than this tolerance.

We observe this in Table 5.1. Remember that there are p ·K = 6500 · 30 = 195000 possible

weights, so Sparse LLE is inducing sparsity in close to 60 percent of them, while standard

LLE has virtually no zero weights.

118

(a) SLLE K = 14 (b) SLLE K = 16 (c) SLLE K = 18

(d) SLLE K = 20 (e) SLLE K = 22 (f) SLLE K = 24

(g) SLLE K = 26 (h) SLLE K = 28 (i) SLLE K = 30

Figure 5.19. Reducing the 20-dimensional Fabry-Perot data down to R2

using Sparse LLE with varying K values and a fixed λ = 0.05.

Table 5.1. Number of ‘zero’ weights as defined by those values less than the
tolerance designated.

Tolerance 10−7 10−6 10−5 10−4

LLE 0 1 9 136
Sparse LLE 116430 119259 119492 119645

Similar to the experiment run for the swiss roll, let us now consider the average number

of nonzero weights for all of the data points as we vary both λ and K. Notice that as λ

increases, the average number of nonzero weights appears to level off between 8-10. Also,

119

(a) SLLE K = 14 (b) SLLE K = 16 (c) SLLE K = 18

(d) SLLE K = 20 (e) SLLE K = 22 (f) SLLE K = 24

(g) SLLE K = 26 (h) SLLE K = 28 (i) SLLE K = 30

Figure 5.20. Reducing the 20-dimensional Fabry-Perot data down to R2

using Sparse LLE with varying K values and a fixed λ = 0.1.

notice that K = 9 in LLE produces similar results to Sparse LLE with λ = 0.1. Thus, Sparse

LLE is able to automatically choose an appropriate number of nearest neighbors for this data

set, which seems to be in the correct range that not only agrees with LLE reconstructions

but more importantly reflects the likely topological structure of the data as all chemical

points appear to be isolated from the background.

5.8.3. Analyzing Sequence of Data Cubes. In this experiment, we consider a se-

quence of successive data cubes from the GAA event. We look at the 50 frames, frame

120

(a) LLE Full W (b) Sparse LLE Full W

(c) LLE tol = 10−6 (d) Sparse LLE
tol = 10−6

(e) LLE tol = 10−5 (f) Sparse LLE
tol = 10−5

(g) LLE tol = 10−4 (h) Sparse LLE
tol = 10−4

Figure 5.21. Reducing the 20-dimensional Fabry-Perot data down to R2

using standard LLE and Sparse LLE with fixed K = 40 and λ = 0.1, but
varying the cut off of zero, i.e. any wij < tol will be zeroed out.

121

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
6

8

10

12

14

16

18

20

22

Lambda

A
ve

ra
ge

 N
um

be
r

of
 N

on
ze

ro
 W

ei
gh

ts

Average Number of Nonzero Weights

K=15
K=20
K=25
K=30

(a) Average

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Lambda

S
ta

nd
ar

d
D

ev
ia

tio
n

of
 N

um
be

r
of

 N
on

ze
ro

 W
ei

gh
ts

Standard Deviation of Number of Nonzero Weights

K=15
K=20
K=25
K=30

(b) Standard Deviation

Figure 5.22. Number of nonzero weights associated to nearest neighbors as
both λ and K are varied.

numbers 70 through 119, which all occurred while the ‘burst’ was present in the scene.

We have preprocessed each data cube as described above, including performing the clus-

tering for visualization. Each of these frames can be viewed in the movie GAAmovie.avi.

122

Then, we implement Sparse LLE–with parameters K = 20 and λ = 0.1–on each of the

data cubes individually. The 2-dimensional reconstructions can be viewed in the movie

GAA 75Frames70to119SparseLLE.avi. Notice that as time progresses, it seems that the

background pixels gradually start mixing with the chemical (yellow) pixels, which we would

expect to happen as the chemical disperses into the atmosphere and becomes less pure.

5.9. Gene Expression Influenza Data

The final data set that we will consider is gene expression data from the Duke Influenza

Study [85]. In this study, 17 volunteers were exposed to the H1N1 virus, and 19 volunteers

were exposed to the H3N2 virus. Over a 24 hour period, 3 different measurements were

collected from each volunteer. The measurements were gene expression data of dimension

D = 12023. Therefore, our data set is 108 × 12023 dimensional. About half of all subjects

produced symptoms while others remained healthy. Genes related to the immune system

express themselves when an individual is ill. Therefore, individuals who contracted influenza

during this 24 hour period will have larger values for genes relating to the immune system,

indicating a more active gene. We have labels indicating those individuals who contracted

influenza during these measurements and those who did not. These labels will be used later

for visualization but were not used in analysis.

Now, it might be supposed that points in 12023-dimensional space representing those

who were ill would tend to group together in this high dimensional space, while those who

were not grouped together. Since we cannot visualize this data set in this space, we will

reduce the dimension of this data set down to R3 and R2 using LLE and Sparse LLE. In this

case, unlike in our other analysis, any choice of nearest neighbors will be much less than the

dimension of our ambient space, i.e. K < D, and thus, our data points will be unable to be

123

perfectly reconstructed by their nearest neighbors. However, we will see that Sparse LLE

is still able to remain invariant across the choice of nearest neighbors for an appropriately

large λ.

Consider the following. We vary the number of nearest neighbors K using standard LLE,

and see that once again our reconstructions appear to differ depending on this choice, Figure

5.23. In visual inspection, it appears that K = 6 produces the most separation between sick

and healthy individuals with only one misclassified point, Figure 5.24. However, without

running through all choices of K, this particularly choice would not be apparent.

Instead, consider using Sparse LLE. We see that there appears to be a range of λ values

for which varying K does not affect the output reconstructions, Figure 5.25. Notice, while

there is not as much separation between the ill and healthy patients as in Figure 5.24, there

is still fairly good separation, especially if the 3-dimension reconstructions are considered.

A technician could analyze a new individual by running Sparse LLE again, which is very

fast since the number of samples p = 108 to determine whether or not the patient is ill or

healthy with fairly accurate results.

Finally, let us consider varying both K and λ and computing the average number of

nonzero weights, Figure 5.26a, and the standard deviation, Figure 5.26b. We see that for

K varying between 15 and 30 and λ > 1 the number of nonzero weights appears to level

off in the range of 15 to 10. It should be noted that since K < D, larger choices of λ must

be selected for a more consistent number of nonzero weights and there is more variability in

this number.

124

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−5

−4

−3

−2

−1

0

1

2

3D Plot of Points K=10

H3N2 Healthy
H3N2 Sick
H1N1 Healthy
H1N1 Sick

(a) LLE K = 10

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

3D Plot of Points K=15

H3N2 Healthy
H3N2 Sick
H1N1 Healthy
H1N1 Sick

(b) LLE K = 15

−3 −2 −1 0 1 2 3 4
−3

−2

−1

0

1

2

3

3D Plot of Points K=20

H3N2 Healthy
H3N2 Sick
H1N1 Healthy
H1N1 Sick

(c) LLE K = 20

−3 −2 −1 0 1 2 3 4
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3D Plot of Points K=25

H3N2 Healthy
H3N2 Sick
H1N1 Healthy
H1N1 Sick

(d) LLE K = 25

−4 −3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

4

3D Plot of Points K=30

H3N2 Healthy
H3N2 Sick
H1N1 Healthy
H1N1 Sick

(e) LLE K = 30

−4 −3 −2 −1 0 1 2 3 4
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

3D Plot of Points K=35

H3N2 Healthy
H3N2 Sick
H1N1 Healthy
H1N1 Sick

(f) LLE K = 35

Figure 5.23. Reducing the 12023-dimensional data down to R2 using LLE
while varying K.

125

−2 −1.5 −1 −0.5 0 0.5 1 1.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

−2

0

2

4

3D Plot of Points K=6

H3N2 Healthy
H3N2 Sick
H1N1 Healthy
H1N1 Sick

Figure 5.24. Reducing the 12023-dimensional data down to R3 using LLE
with K = 6. By visual inspection, this choice of K appears to provide the
best separation between sick and healthy individuals.

5.10. Conclusion

In this chapter, we have proposed a new algorithm, Sparse Locally Linear Embedding,

that automatically determines an appropriate number of nearest neighbors Ki for each point

xi. We see that this algorithm is robust to the choice of maximumK allowed if an appropriate

parameter λ is selected. A variety of data sets have been analyzed including data where the

number of nearest neighbors K > D the ambient dimension of the data and vice versa.

126

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1

0

1

2

3

4

5

3D Plot of Points Using Sparse LLE K=20 and lambda=5

H3N2 Healthy
H3N2 Sick
H1N1 Healthy
H1N1 Sick

(a) SLLE K = 20 λ = 5

−2 −1 0 1 2 3 4
−5

−4

−3

−2

−1

0

1

2

3D Plot of Points Using Sparse LLE K=20 and lambda=10

H3N2 Healthy
H3N2 Sick
H1N1 Healthy
H1N1 Sick

(b) SLLE K = 20 λ = 10

−4 −3 −2 −1 0 1 2
−3

−2

−1

0

1

2

3

4

5

3D Plot of Points Using Sparse LLE K=25 and lambda=5

H3N2 Healthy
H3N2 Sick
H1N1 Healthy
H1N1 Sick

(c) SLLE K = 25

−2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

3D Plot of Points Using Sparse LLE K=25 and lambda=10

H3N2 Healthy
H3N2 Sick
H1N1 Healthy
H1N1 Sick

(d) SLLE K = 25 λ = 10

−2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

3D Plot of Points Using Sparse LLE K=30 and lambda=5

H3N2 Healthy

H3N2 Sick

H1N1 Healthy

H1N1 Sick

(e) SLLE K = 30

−2 −1 0 1 2 3 4
−3

−2

−1

0

1

2

3

4

3D Plot of Points Using Sparse LLE K=30 and lambda=10

H3N2 Healthy
H3N2 Sick
H1N1 Healthy
H1N1 Sick

(f) SLLE K = 30 λ = 10

Figure 5.25. Reducing the 12023-dimensional data down to R2 using Sparse
LLE while varying K and λ values.

127

0 1 2 3 4 5 6 7 8 9 10
5

10

15

20

25

30

Lambda

A
ve

ra
ge

 N
um

be
r

of
 N

on
ze

ro
 W

ei
gh

ts

Average Number of Nonzero Weights

K=15
K=20
K=25
K=30

(a) Average

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

Lambda

S
ta

nd
ar

d
D

ev
ia

tio
n

of
 N

um
be

r
of

 N
on

ze
ro

 W
ei

gh
ts

Standard Deviation of Number of Nonzero Weights

K=15
K=20
K=25
K=30

(b) Standard Deviation

Figure 5.26. Number of nonzero weights associated to nearest neighbors as
both λ and K are varied.

128

CHAPTER 6

Primal Dual Interior Point Method

6.1. Introduction

In this chapter, we will consider interior-point methods to solve convex optimization

problems as discussed in [13], [15], [79]. We focus on quadratic programming problems with

equality constraints where the decision variables are required to be nonnegative, namely

minimize
x

1

2
xTQx + cTx

subject to Ax = b

x ≥ 0.

(6.1)

Here, x ∈ RN , Q is a symmetric positive semidefinite N×N matrix, c ∈ RN , A is an M×N

matrix representing M equality constraints, and b ∈ RM . This is precisely the set-up of the

Sparse LLE objective function 5.3 discussed in Section 5.2.

6.2. Central Path

We will solve problem 6.1 by reducing it to a sequence of linear, equality constrained

problems and then applying Newton’s method. Thus, we must rewrite our problem as an

equality constrained problem by replacing the inequality constraints with a new term in

the objective function that models the same behavior. Consider replacing each inequality

constraint xi ≥ 0 by a term that is infinity when xi is negative and zero otherwise such as

129

below:

minimize
x

1

2
xTQx + cTx +

n∑
i

I(xi)

subject to Ax = b

(6.2)

where I : R→ R is the indicator function

I(xi) =


∞ : xi ≤ 0

0 : xi > 0

Keeping in mind that the goal is to find the optimal solution(s), it would be convenient to

differentiate, set equal to zero, and use Newton’s method to determine the roots, the optimal

solutions. This new objective function is not differentiable as there is a sharp discontinuity.

Instead, consider replacing this indicator function with a continuous function that is infinity

when xi < 0, finite for xi > 0, and approaches infinity as xi approaches zero. One such

function is the logarithmic barrier function, −µ
n∑
i=1

log xi for a parameter µ > 0, whose

domain is the set of points satisfying strict inequalities, xi > 0. Thus, adding this term to

our objective function,

minimize
x

1

2
xTQx + cTx− µ

n∑
i=1

log xi

subject to Ax = b

(6.3)

we see that this new program approximates 6.1. Upon inspection, it seems that as µ tends

to 0, the quality of this new formulation improves.

130

Notice that the parameter µ indexes a family of barrier problems,

minimize
x

Bµ(x)

subject to Ax = b

(6.4)

where Bµ = 1
2
xTQx+cTx−µ

n∑
i=1

log xi. Each barrier problem has a unique optimal solution,

x∗(µ), for each µ [15]. We call the set of these optimal solutions the central path. As µ gets

sufficiently close to 0, the solution to the barrier problem is arbitrarily close to the solution

of the original quadratic program 6.1 [79].

6.3. Lagrange Multipliers

In order to solve each of these nonlinear barrier problems indexed by µ, we implement

the method of Lagrange multipliers on our equality-constrained optimization problem. The

Lagrangian for this problem is

L(x,y) =
1

2
xTQx + cTx− µ

∑
i

log xi + yT (Ax− b)

where the yj for j = 1, . . . ,M are our Lagrange multipliers.

Differentiating our Lagrangian with respect to each of our variables, x and y, we obtain

the first-order optimality conditions:

∂L

∂x
= Qx + c− µX−1e + ATy

∂L

∂y
= Ax− b

131

Here, e denotes the vector of all ones, and X is the diagonal matrix of the vector x (this

notation will be used throughout this chapter). If we let z = µX−1e, then we obtain the

following Karush-Kuhn-Tucker (KKT) conditions:

Qx + c− z + ATy = 0(6.5)

Ax = b(6.6)

Xz = µe(6.7)

Notice that since µ > 0 and all entries of X are nonnegative, then z is also required to be

nonnegative. This condition (Equation 6.7) is referred to as the complementary slackness

condition. As µ tends to 0, then Xz tends to 0, a condition that must be satisfied at

optimality. We see there is no restriction on y, and thus, it is unconstrained.

6.4. The Dual

Let us now determine the dual function by considering the KKT system of equations. We

see that the second equation, 6.6, is the primal equality constraint. As mentioned previously,

from Equation 6.7, we see that there is a vector zN×1 that is complementary to the vector

of primal variables xN×1. Thus, z is constrained to be nonnegative in the dual problem as

x ≥ 0 and µ > 0. The first equation 6.5 is also a dual constraint.

To determine the dual objective function, we recall the weak duality theorem.

Theorem 2 (Weak Duality Theorem). If f is the primal objective function, u is feasible for

the primal problem, g is the dual objective function, and v is feasible for the dual, then

g(v) ≤ f(u)

132

Therefore, the dual function gives us a lower bound on the optimal solution of our primal

problem 6.1. Now, using equations 6.5 and 6.6, consider

yT (Ax− b) =0

⇒yTAx =yTb

⇒(ATy)Tx =(−c + z−Qx)Tx

=− cTx + zTx− xTQx

⇒yTb =− cTx + zTx− xTQx

Now, since z,x ≥ 0, we know zTx ≥ 0. Thus,

0 ≤ zTx

= cTx + xTQx + bTy

= cTx +
1

2
xTQx− (−bTy− 1

2
xTQx)

Then, −bTy− 1
2
xTQx ≤ cTx + 1

2
xTQx, and thus, our dual problem must be

maximize
x

−bTy− 1

2
xTQx

subject to −Qx + z− ATy = c

z ≥ 0

As mentioned in [79], the N×1 vector x appears in the dual problem. This vector should

have no connection to the variable x in the primal problem, except at optimality, they will

be equal.

133

6.5. Primal Dual Interior Point Method

Let us now recall Newton’s Method [79], used to find a root of a system of equations, i.e.

u∗ ∈ Rn for which a system of n equations F (u∗) = 0. This is an iterative method where

step directions ∆u are computed such that F (u + ∆u) = 0. We do this by approximating

F , which is potentially nonlinear, by the ∆u linear terms of its Taylor’s series expansion

F (u + ∆u) ≈ F (u) + F ′(u)∆u.

Therefore, we solve

F ′(u)∆u = −F (u).

Given a starting solution u, Newton’s method updates by replacing u with u+∆u, iterating

until F (u) ≈ 0 as designated by some tolerance.

We will use Newton’s method to solve the KKT system of equations that was derived

above

Qx + c− z + ATy = 0(6.8)

Ax = b(6.9)

Xz = µe(6.10)

We may start with an arbitrary choice of values for all primal and dual variables, requiring

x, z > 0, but not necessarily requiring these choices to be feasible. These variables are

iteratively updated by taking a single Newton’s step followed by a reduction in the value of

the barrier parameter µ. Thus, we must determine the step directions (∆x,∆y,∆z) pointing

134

approximately at the point (xµ,yµ, zµ) on the central path. The new point (x + ∆x,y +

∆y, z + ∆z) will then lie approximately on the primal-dual central path.

We must determine these step directions by replacing (x,y, z) with (x + ∆x,y + ∆y, z +

∆z). The system of equations 6.8 to 6.10 becomes

Q(x + ∆x) + c− (z + ∆z) + AT (y + ∆y) = 0

A(x + ∆x) = b

(X + ∆X)(z + ∆z) = µe

We drop the nonlinear terms to obtain a linear system and solve for the unknowns, (∆x,∆y,∆z).

Q∆x−∆z + AT∆y = −c−Qx + z− ATy

A∆x = b− Ax

Z∆x +X∆z = µe−Xz

Rewriting this system of equations in matrix form, we obtain


Q AT −I

A 0 0

Z 0 X




∆x

∆y

∆z

 = −


c +Qx− z + ATy

−b + Ax

−µe +Xz

(6.11)

and solve for (∆x,∆y,∆z) using, for example, Gaussian Elimination.

Note that it is important to choose µ so that it is not too large or too small. We would

like to reflect the current values of our variables in our choice of µ. As Xz = µe, then µ

135

could be the average

µ =
xTz

N
.

This would assume that our variables lie exactly on the central path. However, this is most

likely not the case. We reduce each value of µ by a factor in order to produce a new solution

that is closer to the optimal solution on the central path, i.e.

µ = δ
xTz

N
.

In implementation, we have used δ = 1
10

as recommended by [79].

We now must compute a step length parameter θ in order to update our solution along

the step direction (∆x,∆y,∆z) i.e.

x̂ = x + θ∆x

ŷ = y + θ∆y

ẑ = z + θ∆z

If θ was chosen arbitrarily, updating the solutions may lead to a new solution where x and z

do not remain positive. It is therefore necessary to determine a step length parameter that

will not violate these conditions, i.e.

xi + θ∆xi > 0 for i = 1, . . . , n.

136

We assume θ to be positive and the primal constraint requires, xi > 0, so

1

θ
= −∆xi

xi
for i = 1, . . . , n.

We do the same for the dual variables z, and see

1

θ
= maxi

{
−∆xi

xi
,−∆zi

zi

}

To guarantee that our inequality holds, we multiply by a factor, α close to but less than

one

θ = α
1

maxi

{
−∆xi

xi
,−∆zi

zi

} .
In implementation, we have chosen λ = 0.9. Typically, we choose θ to be the minimum of

either this computed value or 1.

It should be noted that although we require positivity of x and z throughout the algo-

rithm, optimal solutions may occur at 0. This can be achieved “in the limit” as described

by [79]. For convergence analysis, please refer to this text as well.

We summarize the Primal-Dual Interior Point (PDIP) Method in the following Algorithm:

PDIP Algorithm

(1) Initialize values for all primal and dual variables u = (x,y, z) with x, z > 0.

(2) Estimate a value for µ (i.e. smaller than the ‘current’ value) using, for example,

µ = δ
xTz

N
.

137

(3) Compute step direction (∆x,∆y,∆z) pointing in direction of central path by

solving


Q AT −I

A 0 0

Z 0 X




∆x

∆y

∆z

 = −


c +Qx− z + ATy

−b + Ax

−µe +Xz

 .

(4) Update variables u + θ∆u where θ is an appropriate step length such as

θ = min

α 1

maxi

{
−∆xi

xi
,−∆zi

zi

} , 1
 .

(5) Repeat 2-4 until optimality, F (u) ≈ 0.

6.6. Reducing the KKT System

The KKT equations 6.11 are a (2N + M) × (2N + M) linear system in (2N + M)

unknowns. Solving this system of equations is the most computationally intensive step

of the PDIP Algorithm. Using basic linear algebra, we may eliminate variables from this

system, resulting in a smaller linear system to solve.

Recall our system of equations,

Q∆x + AT∆y−∆z = −ATy + z− c−Qx(6.12)

A∆x = b− Ax(6.13)

Z∆x +X∆z = µe−Xz(6.14)

138

As ∆z is isolated in 6.12, it is natural to solve for this variable first.

Q∆x + AT∆y−∆z = −ATy + z− c−Qx(6.15)

∆z = Q∆x + AT∆y + ATy− z + c +Qx(6.16)

Now, we substitute this formula into 6.14

Z∆x +X∆z = µe−Xz(6.17)

Z∆x +X(Q∆x + AT∆y + ATy− z + c +Qx) = µe−Xz(6.18)

(Z +XQ)∆x +XAT∆y = µe−XATy−Xc−XQx(6.19)

Putting this together with 6.13, we have a reduced (N + M) × (N + M) linear system in

(N +M) unknowns

Z +XQ XAT

A 0


∆x

∆y

 =

µe−XATy−Xc−XQx

b− Ax

 .(6.20)

This system is often referred to as the reduced system.

We may further reduce our system down to only one variable by solving for ∆x in 6.19

(Z +XQ)∆x +XAT∆y = µe−XATy−Xc−XQx(6.21)

∆x = (Z +XQ)−1(µe−XATy−Xc−XQx−XAT∆y)

139

Now, substitute into 6.13

A∆x = b− Ax

A(Z +XQ)−1(µe−XATy−Xc−XQx−XAT∆y)) = b− Ax

to obtain

−A(Z +XQ)−1XAT∆y = b−Ax−A(Z +XQ)−1(µe−XATy−Xc−XQx)

A(Z +XQ)−1XAT∆y = −A((Z +XQ)−1(−µe +XATy +Xc +XQx)− x)− b.(6.22)

This system is often referred to as the normal system.

Equation 6.22 is now an M ×M linear system in M variables, but in order to formulate

this linear system the inverse of (Z + XQ) must be computed. Let us now consider an

alternative to solving for this inverse which may be numerically unstable and may require

more computational time. Instead, let

W = A(Z +XQ)−1.

Now, A is likely not a square matrix, so take the transpose

W T = (A(Z +XQ)−1))T = ((Z +XQ)−1)TAT = ((Z +XQ)T)−1AT .

Therefore,

(Z +XQ)TW T = AT .

140

We solve this system of equations and substitute W in equation 6.22

WXAT∆y = −W (−µe +XATy +Xc +XQx)− x)− b.(6.23)

We call this the normal without inverses system of equations.

On a final note, [79] formulates the KKT conditions in a slightly different manner and

also computes inverses in each of the reduction steps. We discuss this formulation in the

next section.

6.7. Vanderbei PDIP Formulation

As mentioned in Section 6.6, [79] formulates the KKT system and in turn, the reduced

systems slightly differently. We will explore this formulation in this section. Consider the

quadratic program defined with equality constraints and nonnegativity constraints on the

decision variables. Note [79] actually formulates using both equality constraints and inequal-

ity constraints, but we have taken the approach that all inequality constraints can be written

as equality constraints with slack variables added to the problem.

minimize
w

1

2
xTQx + cTx

subject to Ax = b

x ≥ 0

Now, let’s form the Lagrangian

L(x,y) =
1

2
xTQx + cTx− µ

∑
i

log xi + yT (b− Ax)

141

Differentiating our Lagrangian with respect to each of our variables, x and y, we obtain

the first-order optimality conditions:

∂L

∂x
= Qx + c− µX−1e− ATy(6.24)

∂L

∂y
= b− Ax(6.25)

We let z = µX−1e, then then we obtain the following KKT conditions:

Qx + c− z− ATy = 0

Ax = b

Xz = µe

We will use Newton’s method to solve this system of equations by replacing (x,y, z) with

(x + ∆x,y + ∆y, z + ∆z). Then, our system becomes

Q(x + ∆x) + c− (z + ∆z)− AT (y + ∆y) = 0

A(x + ∆x) = b

(X + ∆X)(z + ∆z) = µe

142

We drop the nonlinear terms to obtain a linear system, and solve for the unknowns, (∆x,∆y,∆z).

Q∆x−∆z)− AT∆y = −c−Qx + z + A′y(6.26)

A∆x = b− Ax(6.27)

Z∆x +X∆z = µe−Xz(6.28)

Rewriting this linear system of equations in matrix form, we obtain


−Q AT I

A 0 0

Z 0 X




∆x

∆y

∆z

 = −


c +Qx− z + ATy

−b + Ax

−µe +Xz

(6.29)

Let us now consider the dual of this problem

yT (Ax− b) =0

⇒yTAx =yTb

⇒(ATy)Tx =(c− z +Qx)Tx

=cTx− zTx + xTQx

⇒yTb =cTx− zTx + xTQx

143

Now, since z,x ≥ 0, we know zTx ≥ 0. Thus,

0 ≤ zTx

= cTx + xTQx− bTy

= cTx +
1

2
xTQx− (bTy− 1

2
xTQx)

Then, bTy− 1
2
xTQx ≤ cTx + 1

2
xTQx, and thus, our dual problem must be

maximize
x

bTy− 1

2
xTQx

subject to −Qx + z− ATy = c

z ≥ 0

Notice that this is the same as the original formulation, except the first term is not negated

agreeing with the formulation presented in [79]. Therefore, the solutions of the Lagrange

multipliers y will have opposite signs in each of the formulations.

Now, we will consider eliminating variables from this system of equations in order to

solve a smaller linear system. Solve for ∆z in Equation 6.28

Z∆x +X∆x = µe− xz

∆z = X−1(µe−Xz− Z∆x = µX−1e− z−X−1Z∆x

144

We substitute this formula into Equation 6.26

−Q∆x + AT∆y + ∆z = c +Qx− ATy− z

−Q∆x + AT∆y + µX−1e− z−X−1Z∆x = c +Qx− ATy− z

−(Q+X−1Z)∆x + AT∆y = c +Qx− ATy− µX−1e(6.30)

Putting this together with Equation 6.27, we have a reduced (N + M) × (N + M) linear

system in (N +M) unknowns.

−(Q+X−1Z) AT

A 0


∆x

∆y

 =

c +Qx− ATy− µX−1e

b− Ax

(6.31)

This system of equations is referred to as the reduced system.

We may further reduce our system down to only one variable by solving for ∆x in

Equation 6.30.

− (Q+X−1Z)∆x + AT∆y = c +Qx− ATy− µX−1e

∆x = −(Q+X−1Z)−1(c +Qx− ATy− µX−1e− AT∆y

Now we substitute into our final equation

A∆x = b− Ax

A(−(Q+X−1Z)−1(c +Qx− ATy− µX−1e− AT∆y) = b− Ax

145

to obtain

A((Q+X−1Z)−1AT∆y) = b−Ax +A(Q+X−1Z)−1(c +Qx−ATy− µX−1e.(6.32)

This system of equations is referred to as the normal system.

Equation 6.32 is now an M ×M linear system in M variables, but in order to formulate

this linear system the inverse of (Q + X−1Z) must be computed. Let us now consider an

alternative to solving for this inverse which may be numerically unstable and may require

more computational time. Instead, let

V = A(Q+X−1Z)−1.

Now, A is likely not a square matrix, so take the transpose

V T = (A(Q+X−1Z)−1)T = ((Q+X−1Z)−1)TAT = ((Q+X−1Z)−1AT .

Therefore,

(Q+X−1Z)TV T = AT .

We solve this system of equations for V T and substitute V into Equation 6.32

V AT∆y = b− Ax + V (c +Qx− ATy− µX−1e.(6.33)

We will call this system the normal without inverses system of equations.

We will compare all 8 formulations (the original discussed in Section 6.5 and the three

reduced systems discussed in 6.6 as well as all four derivations in this section) of the Primal-

Dual Interior Point algorithm in terms of complexity in the next section.

146

6.8. Complexity Analysis

In the formulations of the PDIP described above, solving a system of equations must

be performed. The most straightforward way to do this is with Gaussian elimination which

takes 2
3
n3 + O(n2) floating point operations (flops) if the system is of size n × n [77]. Let

us recall the dimensions of our problem: AM×N ,bM×1, cN×1, QN×N , primal variable xN×1,

dual slack variable zN×1, dual variable yM×1.

Now, solving the full (2M+N)×(2M+N) systems of equations 6.11 and 6.29 will require

2
3
(2M + N)3 flops. The PDIP algorithm will be dominated by this computation, and thus,

to fully solve a quadratic program using the PDIP requires O((2M +N)3h) flops where h is

the average number of iterations. We will see shortly, how the number of iterations typically

grows with the size of the problem.

To solve the reduced (M +N)× (M +N) systems of equations 6.20 and 6.31 will require

2
3
(M + N)3 flops. Again, the computations will be dominated by solving this system, so to

fully solve a quadratic program using these reduced systems requires O((M + N)3h) flops.

Do note that solving 6.31 does involve computing the inverse of the diagonal matrix X which

can be performed by taking

X−1 =



1
x1

0 0 . . . 0

0 1
x2

0 . . . 0

...
. . .

...

0 . . . 0 1
xN


.

However, more matrix multiplcation is required to solve 6.20.

147

Finally, we consider the case where we have reduced the system down to only the one

variable ∆y, which solves an M ×M linear system. In this case, the size of M and N play

a large part in the computational complexity. Note that M < N . Now, fully solving the

quadratic program will likely not be dominated by solving the linear systems 6.22 and ?? (and

analogously 6.23 and 6.33). Therefore, we must also consider solving for the inverses (or other

linear systems) in the problem as well as matrix multiplication. Thus, the computational

complexity to fully solve this system is O((N3 +M3 +M2N +N2M)h)

To test these computational complexity arguments, an experiment for varying size sys-

tems was considered. We construct a quadratic program where

A =

[
Rm×m | Im×m

]

(with R an m × m random matrix), bm×1 with random entries, c2m×1 where the first m

entries are chosen randomly and the remaining are 0,

Q̂m×m =

R′m×m 0m×m

0m×m 0m×m


and Q = Q̂T Q̂, a symmetric positive semi-definite matrix. We have constructed this ex-

periment in this manner in order to pad random inequality constraints with slack variables,

making the constraints all equality constrained. We vary m from 2 to 100, and run 100

trials for each choice of m. For each trial and each PDIP derivation, we record the num-

ber of iterations required to solve and the CPU time in order to determine the averages.

See Figures 6.1, 6.2, 6.3, and 6.4 to compare the average number of iterations and CPU

time. We see that across all methods the number of iterations is comparable, Figure 6.5a,

148

(a) PDIP (b) Reduced

(c) Normal (d) Normal without Inverses

Figure 6.1. Average number of iterations for 100 trials, varying the size of
system solves to be m× 2m, with derivations as described in Section 6.6.

while the reduced and normal cases have the fastest time. Notice that the normal version

avoiding inverses discussed in Section 6.7 seems to be slightly faster than all other methods,

Figure 6.5b. It should be noted, of course, that the most stable method is the full cases,

and while there may be speed-up from using the reduced and particularly the normal cases,

some instability may arise.

149

(a) PDIP (b) Reduced

(c) Normal (d) Normal without Inverses

Figure 6.2. Average CPU time for 100 trials, varying the size of system
solved to be m× 2m, with derivations as described in Section 6.6.

6.9. Computational Complexity of Sparse LLE

We will now return to our consideration of Sparse LLE, but first, we consider the computa-

tional complexity of standard LLE as discussed in [71]. In standard LLE, the computational

complexity to determine the nearest neighbors scales in the worst case as O(Dp2) where D is

the ambient dimension of our input data and p is the number of data points. The complexity

to solve the least squares problems to determine the weights requires O(DpK3) number of

operations required to solve the K × K set of linear equations for all points. The most

150

(a) PDIP (b) Reduced

(c) Normal (d) Normal without Inverses

Figure 6.3. Average number of iterations for 100 trials, varying the size of
system solved to be m× 2m, with derivations as described in Section 6.7.

computationally expensive step in LLE is to solve the eigenvector problem which scales as

O(dp2) where d is the dimension of the embedding data. Methods to solve sparse symmetric

eigenproblems, however, reduce complexity to subquadratic in p.

In terms of the computational complexity of Sparse LLE, the first step remains the same

and the third step also remains the same, simply a fewer number of nonzero weights are

involved in the eigensolver. Thus, using sparse eigensolvers, Sparse LLE will have a smaller

computational cost than standard LLE for the final step. Our focus, is on the second step to

151

(a) PDIP (b) Reduced

(c) Normal (d) Normal without Inverses

Figure 6.4. Average CPU time for 100 trials, varying the size of system
solved to be m× 2m, with derivations as described in Section 6.7.

determine the weights. In sparse LLE, the number of decision variables to solve the quadratic

program for each i is N = 2K and the number of equality constraints is M = 1, the sum

to one constraint. Therefore, the full system of equations formed in LLE is (2M + N) ×

(2M +N) = (4K + 1)× (4K + 1). Therefore, the number of operations required to solve for

all of the weights is O(Dp(4K + 1)3h), where h is the average number of iterations required

to solve each problem. Although this is more computationally complex than standard LLE,

152

0 20 40 60 80 100
8

9

10

11

12

13

14

15

16

17

18
Avg Num of Iterations for 100 Trials

m

A
ve

ra
ge

 N
um

be
r

of
 It

er
at

io
ns

PDIPAQuad
PDIPAQuadReduced
PDIPAQuadReducedNu
PDIPAQuadReducedNuInv
QPIPEqual
QPIPredEqual
QPIPredyEqual
QPIPredyEqualinv

(a) Iterations

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Avg CPU Time for 100 Trials

m

C
P

U
 T

im
e

PDIPAQuad
PDIPAQuadReduced
PDIPAQuadReducedNu
PDIPAQuadReducedNuInv
QPIPEqual
QPIPredEqual
QPIPredyEqual
QPIPredyEqualinv

(b) CPU

Figure 6.5. Average number of iterations and CPU time for 100 trials, vary-
ing the size of system solved to be m×2m. Comparing all derivations discussed
in Sections 6.6 and 6.7.

153

Sparse LLE has the benefit that nearest neighbors are chosen appropriately for each nearest

neighbor.

154

CHAPTER 7

Detecting the Vertices of a Convex Hull Encasing

a Point Cloud of Data

7.1. Introduction

The convex hull of a set of points in Euclidean space is defined as the smallest convex set

(or polytope) containing the points. Finding efficient algorithms to compute the convex hull

is one of the fundamental problems in computational geometry. Its influential role is due to

its wide range of uses in both pure and applied mathematics. This includes applications in

areas as diverse as algebraic geometry, number theory, combinatorics, pattern recognition,

end member detection, data visualization, path planning, and geographical information sys-

tems [63]. While computing the set of vertices in a convex hull can be carried out fairly

efficiently, describing the full collection of facets in a convex hull becomes impractical for

high dimensional data sets due to their rapid growth. In many applications, extremal and

nearly extremal data points are the most fundamental and provide clues as to the nature of

the data. For instance, the vertices of a convex hull are useful in the sense that any point

in the data set can be written as their convex combination. In addition, the vertices are the

extrema of linear functionals on the data and potentially capture novel observations in the

data. However, under the presence of noise, the true vertex set may be difficult to determine

and one should expand the list of extremal candidates to points lying near the boundary of

the convex hull.

155

The problem of determining the vertices of the convex hull of a finite set of points has a

long history in computational geometry. The planar case is well-studied and includes meth-

ods developed since 1970 such as Gift Wrapping, Quickhull, Graham’s Algorithm, Divide

and Conquer, and the Incremental Algorithm to name a few [63]. Several of these algorithms

may be extended to the 3-dimensional case as well as to higher dimensions. The Quickhull

algorithm described in [5] can be used to determine convex hulls in n-dimensions. The

problem becomes much more difficult as the dimension increases because the hull itself may

have a very large size [55]. The worst case complexity estimate for the Quickhull algorithm

grows exponentially with the number of dimensions, largely due to the number of facets

contained in the convex hull [5]. In practice, we observe this algorithm failing to finish, e.g.,

on 100 points in 14 dimensions. Thus, in this chapter, we present an optimization problem

and algorithm for stratifying high dimensional point cloud data based on proximity to the

boundary of the data’s convex hull.

7.2. Thought Experiment

We will first develop a geometric intuition regarding a convex hull. The formal definition

is as follows:

Definition 7. The convex hull of a set C is the set of all convex combinations of points in

C:

H(C) = {θ1x1 + · · ·+ θkxk|xi ∈ C, θi ≥ 0, i = 1, . . . , k, θ1 + · · ·+ θk = 1}

where k is the cardinality of the set C.

Another interpretation of a convex combination is a weighted average of the points with θi

representing the proportion of xi present [15]. The convex hull, H(C), is the smallest convex

156

set that contains C. Geometrically, a set is convex if for any two points in the set, the line

segment joining them is also in the set. In 2-dimensions, the convex hull of a point cloud of

data will be a convex polygon whose vertices are some points in the data set. Analogously

in 3-dimensions, it is a convex polyhedron, and in general, the convex hull of a finite set of

data points is a convex polytope.

In what follows it will be useful to work with extreme points of a convex hull of a point

cloud of data. The set of extreme points of a polyhedron is equivalent to the set of vertices

[13].

Definition 8. A vector x ∈ H(C) is an extreme point if we cannot find two vectors y, z ∈

H(C), both different from x, and a scalar λ ∈ [0, 1], such that x = λy + (1− λ)z.

To illustrate this further, observe a point cloud of data such as in Figure 7.1a. We

will consider perfectly rewriting each data point as a linear combination of its K nearest

neighbors. This is possible if K is chosen such that K ≥ D, where D is the dimension of

the data set and there are D linearly independent neighbors. If we arbitrarily choose K = 7

and consider a point, x, in the interior of this point cloud of data, then we see that this

point falls within the convex hull of its nearest neighbors, see Figure 7.1b. Therefore, we

can perfectly reconstruct point x as a convex combination of its nearest neighbors, i.e. all

coefficients (or weights) associated to the nearest neighbors are positive. However, if we

choose to reconstruct the vertex point y, we observe that it does not fall within the convex

hull of its nearest neighbors, see Figure 7.1c. Therefore, in order to perfectly reconstruct a

vertex point by its nearest neighbors at least one of the coefficients of the linear combination

will need to be negative. This results in the corollary following from the above definition

157

x

y

Figure 7.1. Illustration of reconstructing an interior point versus a vertex
by a set of nearest neighbors.

Corollary 1. A point is a vertex of a convex hull if and only if perfectly rewriting this point

as a linear combination of its K = p − 1 nearest neighbors requires at least one negative

coefficient where p is the number of points in the data set.

Using this result, an algorithm to determine the vertices of a convex hull is presented in

the next section.

7.3. Optimization Problem

In this section, we discuss an algorithm to determine the vertices of a convex hull from

a point cloud of data. To do this, we propose to solve the optimization problem

minimize
wi

γ‖wi‖2
2 + λ‖wi‖1 + ‖xi −

∑
j∈Ni

wijxj‖2
2

subject to
∑
j∈Ni

wij = 1

(7.1)

for each point xi. The solution consists of a representation of each point as a K-dimensional

weight vector wi. Ni is the index set associated to the K nearest neighbors of point xi where,

158

if possible, K ≥ D. We will describe how this optimization problem generates vertices of

the convex hull of the data by analyzing the role of each term in the objective function.

7.3.1. Data Representation. To begin consider the related optimization problem

minimize
w

‖x−
∑
j∈N

wjxj‖2
2

subject to
∑
j∈N

wj = 1

(7.2)

where, for simplicity, we have surpressed the notation expressing dependence on data point

i.

The effect of this optimization problem is to write each point as the sum of other points

in the convex hull. In particular, we want to express each data point as a linear combination

of its nearest neighbors. At optimality, the residual (objective function of Equation 7.2) will

be as small as possible. If K ≥ D, then we may perfectly reconstruct any x ∈ C, but this

solution is not unique, i.e., there is an infinite family of weights that all produce zero error.

From this family of solutions that minimize the residual, we add further terms to the

objective function to uncover solutions with desriable properties.

159

7.3.2. Positivity. Consider the optimization problem

minimize
w

‖w‖1

subject to
∑
j∈Ni

wj = 1

(7.3)

which requires that a set of weights that sum to one must have a minimum `1 norm.

A necessary condition for a vector w to satisfy this optimzation problem is for it to be

non-negative. Below, it will be seen that this term serves to restrict the representation of

x by its neighbors to be a convex combination of points in C. In other words, positivity

induces convexity.

To see why the `1 norm favors positivity we use a standard trick in optimization to

remove the absolute value from our objective function by introducing nonnegative variables

w+
j ≥ 0 and w−j ≥ such that wj = w+

j − w−j and |wj| = w+
j + w−j . Then the optimization

problem can be rewritten as

minimize
w

∑
j∈N

w+
j + w−j

subject to
∑
j∈N

w+
j − w−j = 1

and w+
j ≥ 0, w−j ≥ 0

160

Rewriting the equality constraint as

∑
j∈N

w+
j = 1 +

∑
j∈N

w−j

the objective function may be rewritten as

minimize
w

1 + 2
∑
j∈N

w−j .

Then, we see that the optimal solution to this problem has the property that w−j = 0 for all

j ∈ N , and hence, the solution wj = w+
j ≥ 0.

Notice in optimization problem 7.1, a parameter λ is included in this `1 regularization

term. For any point that can be written as a convex combination, only the constant λ is

added to the objective function as the 1-norm of positive weights summing to one will of

course be one. Hence, for the case K > D the solution remains non-unique.

In the context of compressed sensing, adding an `1 term to the reconstruction objective

function is sparsity inducing because it serves as a proxy for the `0 norm [19]. Also, we have

seen that one can also induce sparsity for this local representation problem if a data-weighted

scaling is included, see Chapter 5.

7.3.3. Uniformity. Now consider the optimization problem

minimize
w

‖w‖2
2

subject to
∑
j∈N

wj = 1

(7.4)

161

Using Lagrange multipliers, we will show that the solutions to this optimization problem

satisfy weights with a uniform distribution. We form the Lagrangian

L(w, λ) = w2
1 + w2

2 + . . .+ w2
K − λ(w1 + w2 + . . .+ wK − 1)

where λ > 0. Then differentiating with respect to each variable and equating to zero we

obtain

∂L

∂wi
= 2wi − λ = 0 for i = 1, . . . , K(7.5)

∂L

∂λ
= w1 + w2 + . . .+ wK − 1 = 0(7.6)

Thus, each wi = λ
2

and substituting into Equation 7.6, we obtain

K(λ/2)− 1 = 0.

Therefore, we see that the vector that minimizes the square Euclidean norm is the one with

entries all 1/K. Thus,

wj = κ

where κ is fixed for all j, and hence we say that the weights are uniform in size.

The addition of this `2 norm term further provides the important result that the solution

is unique.

7.3.4. Putting it all together. We now perform a balancing act with the optimiza-

tion problem. We seek to represent a point by its nearest neighbors but such that all the

weights are positive, if possible, and favor solutions with a uniform distribution of weights.

162

We suggest using parameters γ << λ << 1. With these parameter choices, the most

emphasis is placed on reconstructing each data point as best as possible (right term), then

finding weights reflecting a convex combination if possible (middle term), and finally from all

possible solutions that perform the first two steps use the left term to regularize. Therefore,

each term in our objective function enforces weights favoring (from left to right) uniformity,

convexity, and proximity, see Equation 7.7.

minimize
w

Uniformity︷ ︸︸ ︷
γ‖w‖2

2 +

Convexity︷ ︸︸ ︷
λ‖w‖1 +

Proximity︷ ︸︸ ︷
‖x−

∑
j∈N

wjxj‖2
2

subject to
∑
j∈N

wj = 1︸ ︷︷ ︸
Convex Combination

(7.7)

Therefore, for an appropriate choice of parameters, any point that has a negative weight

cannot be represented in any other manner, and thus, a point with at least one negative

weight must be a vertex of the convex hull.

To solve this objective function, we rewrite using the technique described in Section 5.2 to

remove the absolute value from our objective function by introducing nonnegative variables

w+
j and w−j such that wj = w+

j − w−j and |wj| = w+
j + w−j .

163

γ‖w|22 + λ‖w‖1 + ‖xi −
∑
j∈Ni

wjxj‖2
2

= γwTw + λ
∑
j∈Ni

||wj|+ < xi −
∑
j∈Ni

wj,xi −
∑
k∈Ni

w
(i)
k >

= γ < w+ −w−,w+ −w− > +λ
∑
j∈Ni

(w+
j + w−j) + ‖xi −

∑
j∈Ni

(w+
j − w−j)xj‖2

2

= γ(< w+,w+ > − < w+,w− > − < w−,w+ > + < w−,w− >) + λ
∑
j∈Ni

(w+
j + w−j)+

< xi −
∑
j∈Ni

(w+
j − w−j)xj,xi −

∑
j∈Ni

(w+
j − w−j)xj >

= γ

(∑
j∈Ni

(w+
j)2 − 2

∑
j∈Ni

w+
j w
−
j +

∑
j∈Ni

(w−j)2

)
+ λ

∑
j∈Ni

(w+
j + w−j) + xTi xi−

2
∑
j∈Ni

(w+
j − w−j)xTi xj +

∑
j,k∈Ni

(w+
j − w−j)(w+

k − w
−
k)xTj xk

= γ

(∑
j∈Ni

(w+
j)2 − 2

∑
j∈Ni

w+
j w
−
j +

∑
j∈Ni

(w−j)2

)
+
∑
j,k∈Ni

xTj xk(w
+
j w

+
k − w

+
j w
−
k − w

−
j w

+
k + w−j w

−
k)

+
∑
j∈Ni

(
−2xTi xj + λ)

)
(w+

j − w−j)

+ xTi xi

Therefore, we see this objective function is a quadratic function, and thus, we can rewrite

7.1 as a quadratic program of the form

minimize
w

1

2
wTQw + cTw

subject to Aw = b

w ≥ 0

(7.8)

164

where the constant term is dropped. The optimization problem 7.8 is in n = 2K variables

with equality constraint, Aw = b, an m× n system where m = 1. More explicity,

w =

w+

w−

 =



w
(1)+
i

w
(2)+
i

. . .

w
(K)+
i

w
(1)−
i

w
(2)−
i

. . .

w
(K)−
i


where we use the notation w

(`)
i to denote the weight associated from point xi to its `th

nearest neighbor for ` = 1, . . . , K. Then, Q = Qi for each i with

Qi =

 Q̃i −Q̃i

−Q̃i Q̃i

+ E

where

Q̃i =


x

(1)T
i x

(1)
i x

(1)T
i x

(2)
i . . . x

(1)T
i x

(K)
i

...
. . .

...

x
(K)T
i x

(1)
i x

(K)T
i x

(2)
i . . . x

(K)T
i x

(K)
i


end

E = γ

 IK×K −IK×K

−IK×K IK×K

 .

165

Finally,

A =

[
1 . . . 1 −1 . . . −1

]
b = 1

c =



−2xTi x
(1)
i + λ

−2xTi x
(2)
i + λ

...

−2xTi x
(K)
i + λ

2xTi x
(1)
i + λ

...

2xTi x
(K)
i + λ


We choose to solve this problem by using the Primal Dual Interior Point method as

describe in Chapter 6 and [13, 15, 79].

This algorithm is summarized below.

Algorithm to Detect Vertices of a Convex Hull

(1) Select a point xi.

(2) Determine K nearest neighbors. If possible choose K > D.

(3) For an appropriate choice of parameters γ << λ << 1, solve

minimize
w

γ‖w‖2
2 + λ‖w‖1 + ‖xi −

∑
j∈Ni

wjxj‖2
2

subject to
∑
j∈Ni

wj = 1

(7.9)

(4) Points with at least one negative weight are vertices of the convex hull.

166

(5) Apply this to each point in C either sequentially or in parallel.

The computational complexity of this algorithm is as follows. Determining the nearest

neighbors scales in the worst case as O(Dp2) where D is the ambient dimension of our

input data and p is the number of data points. To formulate the quadratic program as a

linear system of equalities is on the order of O(K2Dp). Solving the full (2M +N)× (2M +

N) = (4K + 1) × (4K + 1) system of equations requires a computational complexity of

O(p(4K+ 1)3h), where h is the average number of iterations required to solve each problem.

Thus, this step is on the order of O(Dp(4K + 1)3h).

We observe that the computational complexity of this algorithm is linear in the number

of data points and the ambient dimension of the data. Further note, that as optimization

problem 7.1 is solved for each point xi, this step can be trivially parallelized.

7.4. Implementation

In this section, we implement the algorithm on several point cloud data sets to illustrate

the features of the optimization problem described above.

7.4.1. Toy Example. In the first experiment, 50 random points are generated inside

the unit square. Using MATLAB’s convex hull function, we determine the vertices of the

convex hull containing this data set. An additional 10 points were then placed along the

boundary of the convex hull of the original 50 points in order to make the data potentially

more complicated to analyze; see Figure 7.2. Typically, a larger choice for the number of

nearest neighbors, K, is better, particularly if the sample is not dense, in order to eliminate

the possibility of interior points forming a clique and becoming isolated or causing confusion

167

Figure 7.2. The data set consists of an initial 50 random points augmented
by an additional 10 boundary points (magenta). The vertices (red) are deter-
mined by the Quickhull algorithm.

with the actual boundary of the data. A choice of K = 20 nearest neighbors was found

to work well for this data set. We will see, in this example, that both λ and γ need to be

quite small and that λ does in fact need to be larger than γ in order to greater penalize

negative weights. Depending on application (i.e. desire to determine boundary of a data set

or vertices of a convex hull), different choices for these parameters will be needed.

In Figure 7.3, we observe the effect of varying both γ and λ. We have chosen to denote

those points with a negative weight as cyan and those points with only positive weights as

black. For the relatively small choices of λ = 10−5 and γ = 10−6, we see in Figure 7.3a

that all of the boundary points have negative weights, and thus, our algorithm was able to

determine the boundary of the data set. Note that if a thicker boundary is desired, then a

choice of γ and λ as seen in Figure7.3b would be appropriate. As more emphasis was placed

on uniformity in the weights than on convexity, more weights are negative. Note that in

Figure 7.3c, only the vertices of the convex hull were represented using negative weights,

corresponding precisely with those vertices determined by MATLAB. Finally, note that if

λ is chosen to be too large, then too much emphasis will be placed on avoiding negative

168

(a) λ = 10−5, γ = 10−6 (b) λ = 10−5, γ = 10−3

(c) λ = 10−3, γ = 10−6 (d) λ = 10−2, γ = 10−6

Figure 7.3. Implementation of the algorithm with various parameter choices.
Cyan points have a negative weight for the given parameter choices.

weights, and some of those points who should be represented in this manner will not be, see

Figure 7.3d.

7.4.2. Weights encode geometric information. The structure of the optimization

problem results in a very useful property that allows us to infer a considerable amount

of information about the relative location of the data points based on the norm of their

associated weight vectors. As described above, we have observed above that negative weights

are a signature for a vertex. This arises from the `1-norm constraint in the optimization

problem. But there is also additional geometric structure imposed by the `2-norm given

its propensity to drive the components of a weight vector to have a uniform distribution.

169

The `2-norm of a weight vector is a measure of the distance of the associated point from the

boundary. Hence, we find that the less uniform the weights are, the closer the point is to the

boundary. Similarly, the more uniform the weights are, the farther from any boundary the

point is.

As previously mentioned, if λ >> γ, then more emphasis is placed on rewriting each

data point as a convex combination of its nearest neighbors, whenever possible, and then

choosing weights with a uniform distribution. In summary, vertex points having negative

weights associated to their nearest neighbors will not yeild uniformly distributed weights and

thus, will have a larger 2-norm magnitude in the weights. Similarly, reconstructing points

that fall along boundaries by their nearest neighbors will not be represented by uniform

weights. Yet, points centered nicely within the convex hull of its nearest neighbors can be

reconstructed with uniform weights. This yields a heuristic to determine those points that

are vertices of the convex hull as well as the boundaries of the data set.

In Figure 7.4, we observe a plot of each point in our data set colored according to the

magnitude of the two norm where blue corresponds to the smallest values and red corresponds

to the largest values. Thus, we see that the vertices have the largest Euclidean norm, followed

by points along the boundary of the convex hull, and then finally interior points. Note that

in practice the Euclidean norms of the weights are robust with respect to the optimization

parameters.

7.4.3. Convex Hull Detection of Hypercubes. The next data set we consider is

2000 randomly selected points inside the unit cube and the 8 additional vertices of the cube

added to the data set as well. We have chosen K = 200 nearest neighbors to represent each

point, fixed γ = 10−5, and explore the effect of varying λ. Cyan indicates those points with

170

Figure 7.4. Data points colored according to magnitude of the two norm
where blue corresponds to the smallest values and red corresponds to the
largest values.

negative weights, see Figure 7.5. Note for λ = 0.001, there are 40 points with at least one

negative weight, and these fall closest to the vertices, edges, and faces of the cube. As λ is

increased the number of points with negative weights decreased, i.e. λ = 0.005 yields 18,

λ = 0.1 yields 12, and λ = 0.25 yields 8, the number of vertices of the convex hull of this

data set. Similar experiments have been implemented on hypercubes in higher dimensions,

and for appropriate parameter choices, the correct number of vertices were determined.

Now, we consider a plot of the Euclidean norms of the weights associated to each point,

Figure 7.6. Note that the first points in the data set are the vertices of the cube which

correspond to the largest Euclidean norms. Other large norms correspond to points close to

the edges and faces of the cube. This is apparent in Figure 7.7 which plots the distance to

the boundary against the value of the Euclidean norm of the associated weight vector. We

observe that for this data set the 8 vertices, indicated in cyan, have the largest magnitudes.

To see this data another way we have plotted each data point in the cube split into 6 color

171

(a) λ = 0.001 (b) λ = 0.005

(c) λ = 0.01 (d) λ = 0.025

Figure 7.5. Plot of 2000 points randomly selected points with the 8 ad-
ditional vertices of the cube added. Cyan points indicate negative weight,
varying parameter λ.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
Plot of 2−Norms with K=200 gamma=1e−05 lambda=0.025 on 2000 Points

Index

2−
N

or
m

Figure 7.6. Plot of Euclidean norm of weights associated to each point with
parameters γ = 10−5 and λ = 0.025.

172

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.5

1

1.5

Distance to Boundary of Cube

M
ag

ni
tu

de
 o

f W
ei

gh
t V

ec
to

r

Vertices
Interior Points

Figure 7.7. Plot of distance to the boundary of the cube versus the Euclidean
norm of weights associated to each point with parameters γ = 10−5 and λ =
0.025.

Figure 7.8. Plot of each point in the cube colored according to magnitude of
the corresponding weight vector with 0 ≤ ||w||22 ≤ 0.25 orange, 0.25 ≤ ||w||22 ≤
0.5 yellow, 0.5 ≤ ||w||22 ≤ 0.75 green, 0.75 ≤ ||w||22 ≤ 1 cyan, 1 ≤ ||w||22 ≤ 1.25
light blue, 1.25 ≤ ||w||22 ≤ 1.5.

chunks corresponding to the magnitude of the weight vector: 0 ≤ ||w||22 ≤ 0.25 orange,

0.25 ≤ ||w||22 ≤ 0.5 yellow, 0.5 ≤ ||w||22 ≤ 0.75 green, 0.75 ≤ ||w||22 ≤ 1 cyan, 1 ≤ ||w||22 ≤

1.25 light blue, 1.25 ≤ ||w||22 ≤ 1.55 blue. See Figure 7.8.

173

7.4.4. Convex Combination of Chemical Signatures. The final data set we con-

sider in this study contains the three 20-dimensional signatures of three chemical simulants,

Glacial Acetic Acid (GAA), Methyl Salicylate (MeS), and Triethyl Phosphate (TEP). A

data set of 1003 points was created by randomly sampling 1000 points inside the convex

hull of these three data points (i.e. forming a convex combination) and including the three

points themselves. The data set then consists of a triangle in 20-dimensional space. We im-

plement our algorithm designed to find the boundaries and vertices of the convex hull, and

observe that even in this higher-dimensional space, for appropriate parameter choices, our

algorithm is able to uncover this information. We have selected K = 50 nearest neighbors

and γ = 10−10 and again vary λ.

See Figure 7.9. Using PCA, we project the data set down into R2 for visualization

purposes. Again cyan points indicate those with negative weights. We see those points with

negative weights indicate for a choice of λ = 10−10 a thick boundary of the data set, λ = 10−9

a thinner boundary of the data set, λ = 10−8 a small sampling of points along the boundary

of the data set, and λ = 10−7 precisely the vertices of the convex hull. Thus, even in this

higher dimension, our algorithm is able to uncover both the boundaries of a data set and

the vertices of a convex hull correctly.

7.5. Conclusion

We have proposed an optimization problem that can be used to identify vertices of the

convex hull of a data set in high dimensions. The optimization problem consists of three

components. The first term concerns representing a point by its neighbors. The other two

components, `1 and `2 penalty terms, are used to encode geometric structure into the weight

174

(a) λ = 10−10 (b) λ = 10−9

(c) λ = 10−8 (d) λ = 10−7

Figure 7.9. Implementation of algorithm with various parameter choices on
convex combination created using chemical signatures. Points represented in
cyan have a negative weight.

vector w associated with a data point x. We observe that the `2-norm of a weight vector is

a measure of the distance of the associated point from the boundary.

In the extreme, a point cannot be a vertex unless it has a negative weight. By adusting

the parameters, we can reduce the set of weights with negative components until only the

vertices remain. The computational complexity of the algorithm grows only linearly with

dimension and number of data points.

175

CHAPTER 8

Strengthening of Topological Signals in Persistent

Homology through Vector Bundle Based Maps

8.1. Introduction

The need to efficiently extract critical information from large data sets has been growing

for decades and is central to a variety of scientific, engineering and mathematical challenges.

In many settings, underlying constraints on the data allow it to be considered as a sampling

of a topological space. It is a fundamental problem in topological data analysis to develop

theory and tools for recovering a topological space from a noisy, discrete sampling. The

tools that one might choose to use on a given problem depend on the density, quality, and

quantity of the data, on the ambient space from where the sampling is drawn, and on the

complexity of the topological space as a sub-object of an ambient space. In this paper, we

will focus on data consisting of points sampled from an algebraic variety (the zero locus of a

system of polynomials). The data points are obtained using the tools of numerical algebraic

geometry. Derived from techniques in homotopy continuation, numerical algebraic geometry

allows one to use numerical methods to cheaply sample a large collection of low-noise points

from an algebraic set. Persistent homology (PH) allows one to use such a sample to gain

insight into the topological structure of the algebraic variety. Implementations of persistent

homology are readily available and have been used in a variety of applications, ranging

from the analysis of experimental data to analyzing the topology of an algebraic variety.

176

However, as with any algorithm, there are computational limitations. Generally, the time

and space required for the persistence computation grows rapidly with the size of the input

sample, so the maximum size of a sample is limited. Often, applications of PH start with

noisy, real-world data, which may also be limited in size [59]. However, our consideration

begins with effectively unlimited, arbitrarily accurate data. Experience shows that as one

increases the sample size of a fixed space, the quality of the topological signals produced

by PH improves. Since the computational complexity of persistent homology limits the size

of a sample, methods of preprocessing data that improve the topological signal, without

increasing the sample size, are desirable.

In this paper, we consider how topological re-embeddings affect the topological signal

obtained from persistent homology. First, a construction of PH and the inherent challenges

of interpreting its output is briefly introduced. Then, we will provide details about the

setting in which we have applied this embedding technique, using computational topology

to analyze projective algebraic varieties. Lastly, results for a specific example are displayed

and interpreted.

8.2. Background

8.2.1. Persistent Homology. Beginning with a finite set of data points, which are

viewed as a noisy sampling of a topological space, assume one has a way of building the

matrix of pairwise distances between points in the data set. From this distance matrix, one

constructs a nested sequence of simplicial complexes indexed by a parameter t. Fixing a field

K, for each simplicial complex, one builds an associated chain complex of vector spaces over

K. The ith homology of the chain complex is a vector space and its dimension corresponds

to the ith Betti number, βi(K), of the corresponding topological space. For each pair t1 < t2,

177

there is a pair of simplicial complexes, St1 and St2 , and an inclusion map j : St1 ↪→ St2 . This

inclusion map induces a chain map between the associated chain complexes which further

induces a linear map between the corresponding ith homology vector spaces. For each i,

the totality of the collection of ith homology vector spaces and induced linear maps can

be encoded as a graded K[t]-module known as the persistence module. The ith bar code

is a way of presenting the invariant factors of the persistence module. As the invariant

factors of the persistence module directly relate to the Betti numbers, from the bar code

one can visualize the Betti numbers as a function of the scale, t, and can visualize the

number of independent homology classes that persist across a given time interval [ti, tj]. For

foundational material and overviews of computational homology in the setting of persistence,

see [20, 33, 34, 39, 51, 86, 87].

One commonly used method for building a nested sequence of simplicial complexes from

a distance matrix is through a Vietoris-Rips complex [39]. This is done by first building

the 1-skeleton of the simplicial complex then determining the higher dimensional faces as

the clique complex of the 1-skeleton. More precisely, fix t > 0, a collection of points X, and

a metric, d(xi, xj) for xi, xj ∈ X. The 1-skeleton of the Vietoris-Rips complex, Ct(X), is

defined by including the edge xixj ∈ Ct(X) if d(xi, xj) ≤ t. A higher dimensional face is

included in Ct(X) if all of its lower dimensional sub-faces are in Ct(X). In other words, the

abstract k-simplices of Ct(X) are given by unordered (k + 1)-tuples of sample points whose

pairwise distances do not exceed the parameter t.

Given a collection of data points, the resulting Vietoris-Rips complex, and its homology,

is highly dependent on the choice of parameter t. To reconcile this ambiguity, persistence

exploits that if t1 < t2 then Ct1 is a sub simplicial complex of Ct2 . In other words, as t grows

178

so do the Vietoris-Rips complexes, giving an inclusion from earlier complexes to those which

appear later. The idea then is to not only consider the homology for a single specified choice

of parameter, but rather track topological features through a range of parameters [39]. Those

which persist over a large range of values are considered signals of underlying topology, while

the short lived features are taken to be noise inherent in approximating a topological space

with a finite sample [35].

For clarity, consider 4 points in the plane with distance matrix

0 t2 t5 t3

t2 0 t1 t6

t5 t1 0 t4

t3 t6 t4 0


.

We label the points a, b, c and d and build the sequence of Vietoris-Rips simplicial complexes

up to Ct5 . Table 8.1 shows the Betti information (where βi is the dimension of the ith

homology vector space) for the example illustrated in Figure 8.1 over the range of parameter

values t ≥ 0.1

Table 8.1. Persistent homology data

Filtration Times (t) β0 β1

0 ≤ t < t1 4 0
t1 ≤ t < t2 3 0
t2 ≤ t < t3 2 0
t3 ≤ t < t4 1 0
t4 ≤ t < t5 1 1
t5 ≤ t 1 0

Even in this simple example, the amount of information created by the persistent ho-

mology computation is non-trivial. Furthermore, an effective rendering of the complexes in

1For finite data there will only be finitely many parameter values where the simplicial complex changes.

179

a

db

c

C = { a,b,c,d}0

db

c

C = { bc,a,d}t1

db

c

C = { bc,ab,d}t2

db

c

C = { bc,ab,da}t3

db

c

C = { bc,ab,da,cd}t4

db

c

C = { abc,cad}t5

t2
= d(a,b)

t1
= d(b,c)

t3
= d(a,d)

a

a a

a

t4
= d(c,d)

a

t5
= d(a,c)

Figure 8.1. A sequence of Vietoris-Rips simplicial complexes shown geomet-
rically and abstractly along with their maximal faces.

Figure 8.1 is only possible because there are very few points in the example. In the 4-point

example, at time t6 the simplicial complex Ct6 becomes three-dimensional. As the vertex

set or the dimension of the ambient space grows, visualizing the sequence of complexes is

not practical.

The barcode is a visual method for presenting some of the homological information in a

sequence of chain maps. In particular, it displays the structure of the invariant factors of

180

the ith persistence module. Figure 8.2 is the barcode corresponding to the example of the

four points in the plane described in Figure 8.1.

Figure 8.2. Barcodes corresponding to Figure 8.1

The computational requirements of the persistence computation is related to the sample

size. It is often the case that computing the persistent homology using the Rips filtration is

impractical. There is an alternative construction, introduced by Carlsson and de Silva, called

the witness complex [29, 41]. Starting with a large sample set X, one picks a distinguished

subset L ⊂ X of landmark points. The witness complex is a family of simplicial complexes

built on L using information from the entire set X.

To build the witness complex, first use the landmark set to assign to each point x ∈ X

the numbers mk(x) corresponding to the distance from x to its (k + 1)-th nearest landmark

point. For each integer k (0 < k < |X|) and vertices {lji |0 ≤ i ≤ k} ⊂ L, include the

k-simplex [lj0lj1 ...ljk] in the complex (at time t) if there exists a point x ∈ X such that

max{d(lji , x)|0 ≤ i ≤ k} ≤ t+mk(x), and if all of its faces are in the complex [2].

The output of the witness filtration is sensitive to the choice of landmark set. One

technique for choosing a landmark set, called sequential maxmin, is implemented in the

freely distributed persistent homology software package JPlex [?]. The procedure for using

sequential maxmin is to first pick a point l0 ∈ X then inductively choose the i-th landmark

181

point from X by choosing the point furthest from the set of (i − 1) points already chosen.

In practice, this seems to produce a stronger topological signal than choosing L randomly,

so it is the method we will utilize.

8.2.2. Algebraic Varieties and Numerical Algebraic Geometry. A motivat-

ing problem for this paper is the computation of the Betti numbers of a complex projective

algebraic variety from numerically obtained sample points. The method we use to obtain

sample points derive from several algorithms in numerical algebraic geometry.

The term numerical algebraic geometry is often used to describe a wide ranging set of

numerical methods to extract algebraic and geometric information from polynomial systems.

The field includes a diverse collection of algorithms (both numeric and numeric-symbolic).

The class of numerical algorithms that we use are rooted in homotopy continuation. The

idea of homotopy continuation is to link a pair of polynomial systems through a deformation

and to relate features of the two systems through this deformation. For example, one can

track known, isolated, complex solutions of one polynomial system to unknown, complex

solutions of a second polynomial system through a deformation of system parameters.

Let Z be the complex algebraic variety associated to an ideal in C[z1, . . . , zN]. With nu-

merical homotopy continuation methods combined with monodromy breakup, it is practical

to produce sets of numerical data points which numerically lie on each of the irreducible

components of Z [73, 74].

There are several important features of the methods of numerical algebraic geometry that

are worth highlighting. The first feature is the ability to refine sample points to arbitrarily

high precision via Newton’s method. A second feature is the ability to produce an arbitrary

number of sample points on any given component. A third feature is the parallelizability of

182

these numerical methods. For instance, 10,000 processors could be used in parallel to track

10,000 paths and could be used in parallel to refine the accuracy of each sample point to

arbitrarily high precision. The basic algorithms of numerical algebraic geometry (including

monodromy breakup) are implemented in the freely available software package, Bertini [8].

It is important to note that sampling is computationally inexpensive, so obtaining large

sample sets does not pose a significant challenge. However, it is not clear that this sampling

technique will provide points that are well distributed for the purpose of persistent homology

computations.

8.3. Main Idea

8.3.1. Theory. By its very nature, persistent homology characterizes intrinsic topolog-

ical features which should be relatively insensitive to the metric used to build a pairwise

distance matrix. However, experiments show that the signal strength is impacted by the

choice of metric. In our experience, even if the topological features remain the same, the

ability to correctly interpret information from a barcode depends on the strength of the

signal. We will consider the barcode signal strength of mappings of an algebraic variety into

various Grassmannians.

The Grassmannian Gr(n, k) is a manifold parametrizing all k dimensional subspaces of

a fixed n dimensional vector space. The Grassmann manifold Gr(n+ 1, 1) is the projective

space Pn, and from this vantage point, Grassmannians can be viewed as generalizations

of projective spaces. These manifolds can be given a topological structure, a differential

structure and even the structure of a projective variety (e.g. via the Plucker embedding).

Points in an n-dimensional projective space correspond to 1-dimensional subspaces of a

fixed (n+ 1)-dimensional vector space. A natural notion of distance is given by the smallest

183

angle between the subspaces. We would like to define the distance between points on other

Grassmannians by extending this definition. As a starting point, it can be shown that any

unitarily invariant metric on a Grassmannian can be written in terms of the principal angles

between the corresponding subspaces. The principal angles between a pair of subspaces A,B

in Cn can be determined as follows. First, determine matrices M and N whose columns

form orthonormal bases for A and B. Next, determine the singular value decomposition

M∗N = UΣV ∗. The singular values of M∗N are the diagonal entries of Σ. These singular

values are the cosines of the principal angles between A and B (see [14]). If A and B

are k-dimensional, then there will be principal angles Θ(A,B) = (θ1, θ2, . . . , θk) with 0 ≤

θ1 ≤ θ2 ≤ · · · ≤ θk ≤ π/2. There are many common metrics computed as functions of the

principal angles [6]. For instance, the Fubini-Study metric induced by the Plucker embedding

is dFS(A,B) = cos−1
(∏k

i=1 cos θi

)
. We have found that the Fubini-Study metric does not, in

general, yield a strong signal, and instead, we restrict our attention to the geodesic distance

d(A,B) =
√
θ2

1 + . . .+ θ2
k.

Since we wish to compare the effect of considering a sample in various Grassmannian

embeddings, it remains to define what we mean by relative topological signal strength.

Imagine we know that our sample was taken from a topological space whose ith Betti number

is bi. Assuming that the bi longest segments in the barcode represent these topological

features, we will measure signal strength as the ratio of the sum of the lengths of the bi

longest segments to the sum of the total length of all the segments in the ith Betti barcode,

including noise. Note that noise consisting of many segments of total length m and noise

consisting of a single segment of length m cannot be distinguished by this statistic. To cope

184

with this limitation we also consider the ratio of the length of the bthi longest segment to the

(bi + 1)th longest segment in the barcode.

8.3.2. Embeddings into the Grassmannian. Consider a complex projective curve,

C ⊂ P2, defined by the zero locus of a homogenous polynomial F (x, y, z). When we think

of the zero set as a projective variety, then each point, [x : y : z] on C, corresponds to

a 1-dimensional subspace of C3 (note that the homogeneity of the equation leads to the

conclusion that if (x, y, z) is a solution then so is (cx, cy, cz) for any c ∈ C). Thus, points on

a projective variety correspond to one-dimensional subspaces of C3 constrained to lie on the

vanishing locus of a homogeneous polynomial. From this point of view, C is a sub-object

of P2 = Gr(3, 1). We can sample random points on C with several different methods. If

we wish to build a distance matrix from these points, then we should consider the distance

between a pair of points as the principal angle between the one dimensional spaces to which

they correspond.

Consider the matrix

E(x, y, z) :=


0 z −y

−z 0 x

y −x 0

 ,

and observe that for any point (x, y, z) 6= (0, 0, 0), the rank of E(x, y, z) is 2. This can be

seen by observing that the determinant of E(x, y, z) is identically zero and that the locus of

conditions such that all 2 × 2 minors of E(x, y, z) are zero force x = y = z = 0. For each

185

value of (x, y, z), we consider the row space of E(x, y, z). Note also that


0 z −y

−z 0 x

y −x 0




x

y

z

 =


0

0

0

 .

As a consequence, the row space of E(x, y, z) is the same as the row space of E(cx, cy, cz), and

E(x, y, z) can be viewed as a rule for attaching a smoothly varying 2 dimensional subspace

to each point of P2. In other words, E(x, y, z) determines a rank two vector bundle on P2.

For each one dimensional subspace of C3, we can determine a 2-dimensional subspace of C3

by mapping it to the row space of E([x : y : z]). If Φ0 : P2 → Gr(3, 2) denotes the image of

this map, then by restriction this gives a map φ0 : C → Gr(3, 2).

For each integer k > 0, consider the set of monomials in x, y, z of degree k. We construct

new matrices, Ek(x, y, z), by concatenating matrices of the form mi ·E(x, y, z) for each degree

k monomial mi. For example, E1(x, y, z) is the matrix


0 xz −xy 0 yz −y2 0 z2 −zy

−xz 0 x2 −yz 0 yx −z2 0 zx

xy −x2 0 y2 −yx 0 zy −zx 0

.

For each k, Ek(x, y, z) has constant rank 2 on P2 and can be used to define a map

φk : C → Gr(Nk, 2) (where Nk is the number of columns of Ek(x, y, z)). Geometrically, the

columns of Ek(x, y, z) corresponds to a “spanning set for the space of sections of the twisted

tangent bundle, TP2(k− 1)”. In this way, we can consider images of C, in increasingly large

Grassmannians via the maps φ0, φ1, φ2, It can be shown that for each k, Φk embeds P2

into Gr(Nk, 2) and that φk embeds C into Gr(Nk, 2).

186

8.3.3. Example. Consider the complex projective elliptic curve, C ⊂ P2 defined by the

equation

(8.1) x2y + y2z + z2x = 0.

Topologically, C is a torus whose Betti numbers are β0 = 1, β1 = 2, β2 = 1.

Using Bertini, we sampled 10,000 points satisfying Equation 8.1. We mapped each point

to Gr(Nk, 2) using φk, for k = 1, . . . , 10. From these 10,000 points we fixed 100 landmark

sets, Li (of size 200) using the sequential maxmin algorithm with random initial points l0,i

for i = 1, . . . , 100. For each embedding φk(C) and for each of the fixed landmark sets, we

compute the persistent homology barcodes for the zeroth and first Betti numbers using the

witness complex construction.

Using the geodesic distance to measure distances between points, Figure 8.3 shows pro-

totypical Betti-1 barcodes for the images of the 10,000 points in Gr(Nk, 2). In the figure,

each segment in the barcode is plotted as a point in the (x, y)-plane with the x-coordinate

corresponding to the starting parameter and the y-coordinate corresponding to the ending

parameter. Short segments (i.e. topological noise) appear near the y = x line. Notice that

as we move the elliptic curve to Grassmannians of higher degree, the two longest segments

in the barcode grow in length while the number and lengths of the other segments decrease.

In Figure 8.4, we plot the relative signal strength of the Betti-1 barcodes, as measured

by the ratio of the sum of the length of the two longest segments to the total sum of lengths

of all segments, averaged over all landmark sets for each embedding. We observe an increase

from approximately 10% to 55% of the total length of the barcodes being accounted for

187

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(a) k = 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(b) k = 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(c) k = 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(d) k = 4

Figure 8.3. Betti-1 barcodes for each of the four specified embeddings.

in the longest two segments. We also observe that the improvement of the relative signal

strength levels-off after k = 5.

Figure 8.5 compares the second longest segment in the Betti-1 barcode (corresponding to

a topological circle) to the third longest segment (representing topological noise). We notice

a sharp increase in this measure of signal strength followed by a similarly steep decrease.

Together with the content of Figure 8.4 this indicates that after k = 5, the relative length of

the longest Betti-1 segment remains somewhat unchanged while the disparity in the lengths

of the second and third longest segments is diminished.

It is worth noting that there is a diminished signal strength from the projective variety

to the embeddings in the Grassmannian. Our aim, however, is to compare topological signal

strength improvement across successive Grassmannian embeddings.

188

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Figure 8.4. Average ratio of the sum of the longest two barcode lengths to
the sum of the lengths of all barcodes for k = 1, . . . , 10.

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10
1

1.5

2

2.5

3

3.5

4

Figure 8.5. Average ratio of the second longest barcode to the third longest
barcode for k = 1, . . . , 10.

8.4. Conclusion

Using the techniques of numerical algebraic geometry, we can sample arbitrarily many

points, to an arbitrary degree of accuracy, on any prescribed component of an algebraic

set. Using twists of the tangent bundle to projective space, we can map these points to a

sequence of Grassmann manifolds of increasing dimension. With techniques of computational

189

homology, we can build the persistence module and decompose the module into its invariant

factors. A visual plot of the starting and ending points of the invariant factors aids in the

understanding of the underlying variety as a topological space. Higher embeddings of the

data seem to strengthen the topological signal.

For further research, we intend to develop improved sampling techniques for algebraic

varieties. We will also conduct experiments to determine if alternate vector bundles or

alternate metrics on the Grassmannian can be used to strengthen topological signals.

190

CHAPTER 9

Conclusion

In this dissertation, we have discussed several geometric, topological, and optimization

techniques to analyze a variety of large data sets from the color data of an image to gene

expression data.

After some background algorithms and metrics were discussed in Chapter 2, we discussed

an application to landscape ecology in Chapter 3. A friendly graphical user interface called

BLOSSM was developed and presented in this chapter. The function of BLOSSM is to aid

ecologists (or any other scientists with images to analyze) in determining the ground cover

of a landscape using the well-known clustering algorithm LBG. This GUI allows the user to

determine various ecological variables from this analysis including: color abundance, number

of flower clusters for each color, average size of flower clusters for each color, abundance of

‘morphospecies’ as characterized by color and cluster size, richness, and species diversity as

measured by Shannon entropy. It was shown that the choice of color space and choice of

metric can have a large impact on the reconstructions. We analyzed four different choices

of color space RGB, Quantized RGB, Named Color, and CIELab as well as five different

metrics `1, `2, `∞, Mahalanobis distance, and spectral angle. Depending on the application

an appropriate choice of color space and metric may be determined to analyze an image.

In Chapter 4, we discussed a novel clustering algorithm, Locally Linear Embedding Clus-

tering. The ability to characterize the color content of natural imagery is an important ap-

plication of image processing. The pixel by pixel coloring of images may be viewed naturally

191

as points in color space, and the inherent structure and distribution of these points affords

a quantization, through clustering, of the color information in the image. We presented a

novel topologically driven clustering algorithm that permits segmentation of the color fea-

tures in a digital image. The algorithm blends Locally Linear Embedding (LLE) and vector

quantization by mapping color information to a lower dimensional space, identifying distinct

color regions, and classifying pixels together based on both a proximity measure and color

content. It is observed that these techniques permit a significant reduction in color resolution

while maintaining the visually important features of images.

The LLE algorithm has proven to be a useful technique for revealing geometric structures

in high dimensional data. The basic algorithm reconstructs each data point by a weighted

average of its nearest neighbors, and the geometry obtained by these weights captures the

lower-dimensional embedding. We observe that the embedding reconstruction is highly de-

pendent on the parameter choice of the number of nearest neighbors, i.e., the geometric

structure is not robust to parameter selection. In Chapter 5, we discussed modifications

to the LLE optimization problem that address this shortcoming of standard LLE. This is

accomplished by altering the objective function by introducing a data-weighted `1 regular-

ization term. We observed that this new formulation has proven effective at automatically

determining nearest neighbors using sparsity of numerical results. In Chapter 6, we discussed

one algorithm, the Primal Dual Interior Point Algorithm, to solve this modified quadratic

program. A variety of formulations were presented and complexity analysis was discussed.

The convex hull of a set of points in Euclidean space can help elucidate overall properties

of the data and can help identify specific data points of high interest. In Chapter 7, we

proposed a quadratic programming (QP) problem for the purpose of stratifying points in

192

a high dimensional data cloud based on proximity to the convex hull. A QP problem is

solved for each data point to determine an associated weight vector. We showed that the

weight vector of a given data point encodes geometric information concerning the point’s

relationship to the faces of the convex hull. For instance, we observe that the `2-norm of

the weight vector is a measure of the distance of the associated point from the boundary.

A necessary (but not sufficient) condition for a point to be a vertex is that it have weight

components with negative values. However, by adjusting parameters in the QP, we can

reduce the set of data points with negative weight components until only the vertices of the

convex hull remain. It is noted that the weight vector computation can be carried out in

parallel and that the overall computational complexity of the algorithm grows linearly with

dimension. As a consequence, meaningful computations can be completed on reasonably

large, high dimensional data sets.

Finally, in Chapter 8, we discussed the relatively new tool from computational topology,

persistent homology (PH). PH is a multiscale algorithm that looks for structure in data sets

at different scales to observe which features persist in each scale. In many settings noisy,

discrete sets of points are realized as a sample of a topological space. Gaining insight into the

topological structure of such a sampling is a fundamental consideration of topological data

analysis. As the size of the sample grows, the quality of the topological signals produced by

PH improves. However, the computational complexity of PH grows dramatically. Thus, we

consider an embedding technique to improve topological signal strength of points sampled

from a projective algebraic variety without increasing the sample size. By embedding into

successive Grassmanians, we observe that the topological signal strength improves in PH

computations.

193

All of the algorithms, results, and techniques in this dissertation have a main focus of

understanding the structure of data. By quantizing, reducing the dimensionality, embedding

into a new space, or determining extremal points that carry the most information, we can

gain knowledge as to the nature of the data.

194

BIBLIOGRAPHY

[1] Locally linear embedding, swiss roll source code. http://www.cs.nyu.edu/~roweis/

lle/code/swissroll.m. Accessed: 2013-04-24.

[2] Henry Adams. Jplex with matlab tutorial, 2011.

[3] Andrés Álvarez-Meza, Juliana Valencia-Aguirre, Genaro Daza-Santacoloma, and

Germán Castellanos-Domı́nguez. Global and local choice of the number of nearest neigh-

bors in locally linear embedding. Pattern Recognition Letters, 32(16):2171–2177, 2011.

[4] C.M. Bachmann, T.L. Ainsworth, and R.A. Fusina. Exploiting manifold geometry in hy-

perspectral imagery. Geoscience and Remote Sensing, IEEE Transactions on, 43(3):441

– 454, march 2005.

[5] C. Bradford Barber, David P. Dobkin, and Hannu Huhdanpaa. The quickhull algo-

rithm for convex hulls. ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE,

22(4):469–483, 1996.

[6] Alexander Barg and Dmitry Yu. Nogin. Bounds on packings of spheres in the grassmann

manifold. IEEE TRANS. INFO. THEORY, 48:2450–2454, 2002.

[7] Sugato Basu, Ian Davidson, and Kiri Wagstaff. Constrained Clustering: Advances in

Algorithms, Theory, and Applications. Chapman & Hall/CRC, 1 edition, 2008.

[8] Daniel J. Bates, Jonathan D. Hauenstein, Andrew J. Sommese, and Charles W. Wampler

II. Bertini: Software for numberical algebraic geometry.

[9] Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps for dimensionality reduction

and data representation. Neural Computation, 15:1373–1396, 2003.

195

http://www.cs.nyu.edu/~roweis/lle/code/swissroll.m
http://www.cs.nyu.edu/~roweis/lle/code/swissroll.m

[10] Robert Benavente, Maria Vanrell, and Ramon Baldrich. Parametric fuzzy sets for au-

tomatic color naming. Journal of the Optical Society of America A, 25(10):2582–2593,

2008.

[11] Radu Berinde and Piotr Indyk. Sparse recovery using sparse random matrices. preprint,

2008.

[12] Brent Berlin and Paul Kay. Basic color terms: Their universality and evolution. Univ

of California Press, 1991.

[13] Dimitris Bertsimas and John Tsitsiklis. Introduction to Linear Optimization. Athena

Scientific, 1st edition, 1997.

[14] Ȧke Björck and Gene H. Golub. Numerical methods for computing angles between linear

subspaces. Math. Comp., 27:579–594, 1973.

[15] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University

Press, New York, NY, USA, 2004.

[16] Paul S Bradley and Olvi L Mangasarian. Feature selection via concave minimization and

support vector machines. In Machine Learning Proceedings of the Fifteenth International

Conference (ICML98), pages 82–90, 1998.

[17] Emmanuel J Candès and Benjamin Recht. Exact matrix completion via convex opti-

mization. Foundations of Computational mathematics, 9(6):717–772, 2009.

[18] Emmanuel J Candès, Justin Romberg, and Terence Tao. Robust uncertainty principles:

Exact signal reconstruction from highly incomplete frequency information. Information

Theory, IEEE Transactions on, 52(2):489–509, 2006.

[19] Emmanuel J Candes and Terence Tao. Decoding by linear programming. Information

Theory, IEEE Transactions on, 51(12):4203–4215, 2005.

196

[20] Gunnar Carlsson. Topology and data. Bull. Amer. Math. Soc. (N.S.), 46(2):255–308,

2009.

[21] Jin Chen, Miaogen Shen, Xiaolin Zhu, and Yanhong Tang. Indicator of flower status

derived from¡ i¿ in situ¡/i¿ hyperspectral measurement in an alpine meadow on the

tibetan plateau. Ecological Indicators, 9(4):818–823, 2009.

[22] Yangchi Chen, M.M. Crawford, and J. Ghosh. Applying nonlinear manifold learning

to hyperspectral data for land cover classification. In Geoscience and Remote Sensing

Symposium, 2005. IGARSS ’05. Proceedings. 2005 IEEE International, volume 6, pages

4311 – 4314, july 2005.

[23] H. D. Cheng, X. H. Jiang, Y. Sun, and Jing Li Wang. Color image segmentation:

Advances and prospects. Pattern Recognition, 34:2259–2281, 2001.

[24] Shyi-Chyi Cheng and Chen kuei Yang B. A fast and novel technique for color quanti-

zation using reduction of color space dimensionality, 2001.

[25] Fan R. K. Chung. Spectral graph theory, volume 92 of CBMS Regional Conference Series

in Mathematics. Published for the Conference Board of the Mathematical Sciences,

Washington, DC, 1997.

[26] Bogdan R Cosofret, Daisei Konno, Aram Faghfouri, Harry S Kindle, Christopher M

Gittins, Michael L Finson, Tracy E Janov, Mark J Levreault, Rex K Miyashiro, and

William J Marinelli. Imaging sensor constellation for tomographic chemical cloud map-

ping. Applied optics, 48(10):1837–1852, 2009.

[27] Trevor F. Cox and Michael A. A. Cox. Multidimensional scaling, volume 59 of Mono-

graphs on Statistics and Applied Probability. Chapman & Hall, London, 1994. With 1

IBM-PC floppy disk (3.5 inch, HD).

197

[28] Genaro Daza-Santacoloma, Carlos D Acosta-Medina, and Germán Castellanos-

Domı́nguez. Regularization parameter choice in locally linear embedding. Neurocom-

puting, 73(10):1595–1605, 2010.

[29] V. de Silva and G. Carlsson. Topological estimation using witness complexes. IEEE

Symposium on Point-based Graphic, pages 157–166, 2004.

[30] Y. Deng and B.S. Manjunath. Unsupervised segmentation of color-texture regions in

images and video. Pattern Analysis and Machine Intelligence, IEEE Transactions on,

23(8):800 –810, aug 2001.

[31] David L. Donoho and Carrie Grimes. Hessian eigenmaps: New locally linear embedding

techniques for high-dimensional data, 2003.

[32] David Leigh Donoho. Compressed sensing. Information Theory, IEEE Transactions on,

52(4):1289–1306, 2006.

[33] Herbert Edelsbrunner and John Harer. Persistent homology—a survey. In Surveys on

discrete and computational geometry, volume 453 of Contemp. Math., pages 257–282.

Amer. Math. Soc., Providence, RI, 2008.

[34] Herbert Edelsbrunner and John L. Harer. Computational topology. American Mathe-

matical Society, Providence, RI, 2010. An introduction.

[35] Herbert Edelsbrunner, David Letscher, and Afra Zomorodian. Topological persistence

and simplification. Discrete Comput. Geom., 28(4):511–533, 2002. Discrete and compu-

tational geometry and graph drawing (Columbia, SC, 2001).

[36] Anders Eriksson and Anton Van Den Hengel. Efficient computation of robust low-rank

matrix approximations in the presence of missing data using the l¡ inf¿ 1¡/inf¿ norm. In

Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on, pages

198

771–778. IEEE, 2010.

[37] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The

pascal visual object classes (voc) challenge. International Journal of Computer Vision,

88(2):303–338, June 2010.

[38] Jessica Forrest, David W Inouye, and James D Thomson. Flowering phenology in

subalpine meadows: does climate variation influence community co-flowering patterns?

Ecology, 91(2):431–440, 2010.

[39] Robert Ghrist. Barcodes: The persistent topology of data. Bulletin of the American

Mathematical Society, 45:61–75, 2008.

[40] Tom Goldstein and Stanley Osher. The split bregman method for l1-regularized prob-

lems. SIAM Journal on Imaging Sciences, 2(2):323–343, 2009.

[41] Leonidas J. Guibas and Steve Y. Oudot. Reconstruction using witness complexes. In

Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms,

pages 1076–1085, New York, 2007. ACM.

[42] Tian Han and D.G. Goodenough. Nonlinear feature extraction of hyperspectral data

based on locally linear embedding (lle). In Geoscience and Remote Sensing Symposium,

2005. IGARSS ’05. Proceedings. 2005 IEEE International, volume 2, pages 1237 – 1240,

july 2005.

[43] John A. Hartigan. Clustering algorithms. John Wiley & Sons, New York-London-Sydney,

1975. Wiley Series in Probability and Mathematical Statistics.

[44] Paul S. Heckbert and Paul S. Heckbert. Color image quantization for frame buffer

display. Computer Graphics, 16:297–307, 1982.

199

[45] M. O. Hill. Diversity and evenness: A unifying notation and its consequences. Ecology,

54(2):pp. 427–432, 1973.

[46] Robert V. Hogg and Elliot A. Tanis. Probability and Statistical Inference. Prentice Hall,

Upper Saddle Rive, NJ, fifth edition, 1999.

[47] Roger A. Horn and Charles R. Johnson. Matrix analysis. Cambridge University Press,

Cambridge, 1990. Corrected reprint of the 1985 original.

[48] Jinggang Huang and David Mumford. Statistics of natural images and models. pages

541–547.

[49] Anil K Jain, M Narasimha Murty, and Patrick J Flynn. Data clustering: a review. ACM

computing surveys (CSUR), 31(3):264–323, 1999.

[50] I. T. Jolliffe. Principal component analysis. Springer Series in Statistics. Springer-Verlag,

New York, second edition, 2002.

[51] Tomasz Kaczynski, Konstantin Mischaikow, and Marian Mrozek. Computational homol-

ogy, volume 157 of Applied Mathematical Sciences. Springer-Verlag, New York, 2004.

[52] Rasa Karbauskait, Olga Kurasova, and Gintautas Dzemyda. Selection of the number of

neighbours of each data point for the locally linear embedding algorithm. ITC.

[53] Rasa Karbauskaitė, Gintautas Dzemyda, and Virginijus Marcinkevičius. Dependence of

locally linear embedding on the regularization parameter. Top, 18(2):354–376, 2010.

[54] Michael Kirby. Geometric data analysis. Wiley-Interscience [John Wiley & Sons], New

York, 2001. An empirical approach to dimensionality reduction and the study of pat-

terns.

[55] Victor Klee. On the complexity of d-dimensional voronoi diagrams. Archiv der Mathe-

matik, 34(1):75–80, 1980.

200

[56] Teuvo Kohonen. Self-organizing maps, volume 30 of Springer Series in Information

Sciences. Springer-Verlag, Berlin, second edition, 1997.

[57] Olga Kouropteva, Oleg Okun, and Matti Pietikinen. Selection of the optimal parameter

value for the locally linear embedding algorithm. In 1 st International Conference on

Fuzzy Systems and, pages 359–363, 2002.

[58] Sandra Lavorel, Karl Grigulis, Sue McIntyre, Nick SG Williams, Denys Garden, Josh

Dorrough, Sandra Berman, Fabien Quétier, Aurélie Thébault, and Anne Bonis. As-

sessing functional diversity in the field–methodology matters! Functional Ecology,

22(1):134–147, 2008.

[59] Ann B. Lee, Kim Steenstrup Pedersen, and David Mumford. The nonlinear statistics

of high-contrast patches in natural images. International Journal of Computer Vision,

54(1-3):83–103, 2003.

[60] Y. Linde, A. Buzo, and R. Gray. An algorithm for vector quantizer design. Communi-

cations, IEEE Transactions on, 28(1):84 – 95, jan 1980.

[61] Andrew Y. Ng, Michael I. Jordan, and Yair Weiss. On spectral clustering: Analy-

sis and an algorithm. In ADVANCES IN NEURAL INFORMATION PROCESSING

SYSTEMS, pages 849–856. MIT Press, 2001.

[62] M.T. Orchard and C.A. Bouman. Color quantization of images. Signal Processing,

IEEE Transactions on, 39(12):2677 –2690, dec 1991.

[63] Joseph O’Rourke. Computational Geometry in C. Cambridge University Press, New

York, NY, USA, 2nd edition, 1998.

[64] Stanley Osher, Martin Burger, Donald Goldfarb, Jinjun Xu, and Wotao Yin. An it-

erative regularization method for total variation-based image restoration. Multiscale

201

Modeling & Simulation, 4(2):460–489, 2005.

[65] N. Papamarkos, A.E. Atsalakis, and C.P. Strouthopoulos. Adaptive color reduction.

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 32(1):44

–56, feb 2002.

[66] Marzia Polito and Pietro Perona. Grouping and dimensionality reduction by locally

linear embedding. In Advances in Neural Information Processing Systems 14, pages

1255–1262. MIT Press, 2001.

[67] Andrew D Richardson, Bobby H Braswell, David Y Hollinger, Julian P Jenkins, and

Scott V Ollinger. Near-surface remote sensing of spatial and temporal variation in

canopy phenology. Ecological Applications, 19(6):1417–1428, 2009.

[68] Andrew D Richardson, Julian P Jenkins, Bobby H Braswell, David Y Hollinger, Scott V

Ollinger, and Marie-Louise Smith. Use of digital webcam images to track spring green-up

in a deciduous broadleaf forest. Oecologia, 152(2):323–334, 2007.

[69] Nicholas Rohrbacker. Sparse multivariate analyses via l-1-regularized optimization prob-

lems solved with bregman iterative techniques. Documentation for general BibTeX users,

October 2012.

[70] Nicolas Le Roux, Pascal Lamblin, Yoshua Bengio, Marc Joliveau, and Balzs Kgl. Learn-

ing the 2-d topology of images, 2008.

[71] Lawrence K. Saul, Sam T. Roweis, and Yoram Singer. Think globally, fit locally: Unsu-

pervised learning of low dimensional manifolds. Journal of Machine Learning Research,

4:119–155, 2003.

[72] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, 22:888–905, 1997.

202

[73] Andrew J. Sommese, Jan Verschelde, and Charles W. Wampler. Numerical decompo-

sition of the solution sets of polynomial systems into irreducible components. SIAM J.

Numer. Anal., 38(6):2022–2046, 2001.

[74] Andrew J. Sommese and Charles W. Wampler, II. The numerical solution of systems of

polynomials. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2005. Arising

in engineering and science.

[75] J. B. Tenenbaum, V. Silva, and J. C. Langford. A Global Geometric Framework for

Nonlinear Dimensionality Reduction. Science, 290(5500):2319–2323, 2000.

[76] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the

Royal Statistical Society. Series B (Methodological), pages 267–288, 1996.

[77] Lloyd N. Trefethen and David Bau. Numerical Linear Algebra. SIAM: Society for

Industrial and Applied Mathematics, 1997.

[78] Joost van de Weijer, Cordelia Schmid, Jakob Verbeek, and Diane Larlus. Learning color

names for real-world applications. Trans. Img. Proc., 18(7):1512–1523, July 2009.

[79] Robert J. Vanderbei. Linear programming: Foundations and extensions, 1996.

[80] Luiz Velho, Jonas Gomes, Marcos Vinicius, and Rayol Sobreiro. Color image quantiza-

tion by pairwise clustering. In in Proc. Tenth Brazilian Symp. Comput. Graph. Image

Process, pages 203–210. IEEE Computer Society, 1997.

[81] R. Vidal, Yi Ma, and S. Sastry. Generalized principal component analysis (gpca).

Pattern Analysis and Machine Intelligence, IEEE Transactions on, 27(12):1945 –1959,

dec. 2005.

[82] K.Q. Weinberger and L.K. Saul. Unsupervised learning of image manifolds by semidef-

inite programming. In Computer Vision and Pattern Recognition, 2004. CVPR 2004.

203

Proceedings of the 2004 IEEE Computer Society Conference on, volume 2, pages II–988

– II–995 Vol.2, june-2 july 2004.

[83] S. Westland and C. Ripamonti. Computational colour science using MATLAB. J. Wiley,

2004.

[84] S. Westland, C. Ripamonti, and V. Cheung. Computational colour science using MAT-

LAB, second edition. J. Wiley, 2012.

[85] Aimee K Zaas, Minhua Chen, Jay Varkey, Timothy Veldman, Alfred O Hero III, Joseph

Lucas, Yongsheng Huang, Ronald Turner, Anthony Gilbert, Robert Lambkin-Williams,

et al. Gene expression signatures diagnose influenza and other symptomatic respiratory

viral infections in humans. Cell host & microbe, 6(3):207–217, 2009.

[86] Afra Zomorodian and Gunnar Carlsson. Computing persistent homology. Discrete

Comput. Geom, 33:249–274.

[87] Afra J. Zomorodian, M. J. Ablowitz, S. H. Davis, E. J. Hinch, A. Iserles, J. Ockendon,

and P. J. Olver. Topology for Computing (Cambridge Monographs on Applied and Com-

putational Mathematics). Cambridge University Press, New York, NY, USA, 2005.

204

APPENDIX A

Further Analysis of Images Using BLOSSM

In Section 3.6, we analyzed a sample landscape image using the friendly GUI BLOSSM

varying the choice of metric as well as the choice of color space used in the LBG clustering

algorithm. Here, we consider an additional two images with properties distinct from the

landscape image, such as coloring and objects present in the image. The first is a 166 ×

250 dimensional natural image of 41500 pixels from the freely available PASCAL Object

Recognition Database [37]. This image was included as the colors are much different than in

the others selected. The second is a 166× 200 dimensional (33200 pixels) image of a still-life

canvas painted by the author. It was included both for its variety of colors and objects and

that it is of an artificial scene.

Both of these images are displayed in Figures A.1 and A.2, respectively. We have ini-

tialized the LBG algorithm by selecting starting centers as pixels from the images that we

feel best identify the distinct colors within the image. These starting centers are displayed

on the right of each GUI. Nine starting centers were selected for the car image and fourteen

were selected for the still life image.

We will now analyze the performance across all color spaces and all metrics for both

images, using the LBG clustering algorithm. The Figures A.3-A.18 are grouped by color

space and the metrics are varied. We have chosen to compute the entropy, denoted as E, for

each reconstruction as well as the distortion error, displayed in individual figures.

205

Figure A.1. BLOSSM implemented on an image with 9 centers manually
selected by the user to reflect distinct colors within image.

Figure A.2. BLOSSM implemented on an image with 14 centers manually
selected by the user to reflect distinct colors within image.

206

Let us first consider Figure A.3. In this image, we focus on the RGB color space and vary

all metrics. Notice that each of the `p norms do a nice job visually. The Mahalanobis distance

reconstruction appears to have sharper contrast between objects and separates objects by

regions. The spectral angle reconstruction appears quite fuzzy and blurred and visually is

the worst reconstruction. Notice, however that the entropy is highest for the spectral angle.

In comparing the distortion errors displayed in Figure A.4, we see that spectral angle is much

higher than the other measures with the `1 and `2 norms producing the smallest error.

Notice that, as might be expected, the reconstructions for each metric choice using the

RGB color space are comparable to the reconstructions using the Quantized RGB color

space, Figure A.5. The entropy decreases from the RGB color space in most cases (except

for Mahalanobis) as compared to the Quantized RGB space, and the distortion errors appear

to be slightly larger, Figure A.6.

Now, we will consider reconstruction images using the Named Color space and varying

metrics, Figure A.7. Visually, there appears to be much higher contrast in the background

of the image using this color space and the RGB-related spaces. Also, the fence is hardly

noticeable in the `p norm reconstructions. However, the color is quite distorted using Ma-

halanobis distance. Spectral angle in this color space seems able to reconstruct better than

in the RGB spaces. Notice that the entropy is higher in this space than in the RGB spaces.

The distortion error is much smaller in this color space, though, Figure A.8. This compu-

tation was done in the 11-dimensional Named Color space not the 3-dimensional space that

all other color spaces reside in. The distortion error is the largest for Mahalanobis, and at

the final number of iterations, it is the smallest using spectral angle.

207

Original Image

50 100 150 200 250

20

40

60

80

100

120

140

160

(a) Original

Reconstruction Using Metric L1 and Color Space RGB

50 100 150 200 250

20

40

60

80

100

120

140

160

(b) `1, E = 1.9632

Reconstruction Using Metric Euclidean and Color Space RGB

50 100 150 200 250

20

40

60

80

100

120

140

160

(c) `2, E = 1.9616

Reconstruction Using Metric LInf and Color Space RGB

50 100 150 200 250

20

40

60

80

100

120

140

160

(d) `∞, E = 1.9106

Reconstruction Using Metric Mahalanobis and Color Space RGB

50 100 150 200 250

20

40

60

80

100

120

140

160

(e) Mahalanobis, E = 1.8132

Reconstruction Using Metric SpectralAngle and Color Space RGB

50 100 150 200 250

20

40

60

80

100

120

140

160

(f) Spectral Angle, E = 2.099

Figure A.3. Reconstructions using the LBG algorithm with fixed color space
RGB and varying the metric used for car image.

208

0 5 10 15
0.009

0.0095

0.01

0.0105

0.011

0.0115

0.012

0.0125
Distortion Error using RGB and L1

(a) `1

0 5 10 15
0.009

0.0095

0.01

0.0105

0.011

0.0115

0.012

0.0125
Distortion Error using RGB and L2

(b) `2

0 5 10 15
0.0095

0.01

0.0105

0.011

0.0115

0.012

0.0125

0.013

0.0135

0.014
Distortion Error using RGB and LInf

(c) `∞

0 5 10 15
0.016

0.0165

0.017

0.0175

0.018

0.0185

0.019

0.0195

0.02

0.0205
Distortion Error using RGB and Mahalanobis

(d) Mahalanobis

0 5 10 15
0.212

0.214

0.216

0.218

0.22

0.222

0.224

0.226

0.228

0.23

0.232
Distortion Error using RGB and Spectral Angle

(e) Spectral Angle

0 5 10 15
0

0.05

0.1

0.15

0.2

0.25
Distortion Errors Using Color Space RGB

L2

SpectralAngle

Mahalanobis

L1

LInf

(f) All

Figure A.4. Distortion errors using the LBG algorithm with fixed color space
RGB and varying the metric used for car image.

209

Original Image

50 100 150 200 250

20

40

60

80

100

120

140

160

(a) Original

Reconstruction Using Metric L1 and Color Space Quantized RGB

50 100 150 200 250

20

40

60

80

100

120

140

160

(b) `1, E = 1.9056

Reconstruction Using Metric Euclidean and Color Space Quantized RGB

50 100 150 200 250

20

40

60

80

100

120

140

160

(c) `2, E = 1.9129

Reconstruction Using Metric LInf and Color Space Quantized RGB

50 100 150 200 250

20

40

60

80

100

120

140

160

(d) `∞, E = 1.9106

Reconstruction Using Metric Mahalanobis and Color Space Quantized RGB

50 100 150 200 250

20

40

60

80

100

120

140

160

(e) Mahalanobis, E = 1.8017

Reconstruction Using Metric SpectralAngle and Color Space Quantized RGB

50 100 150 200 250

20

40

60

80

100

120

140

160

(f) Spectral Angle, E = 2.0456

Figure A.5. Reconstructions using the LBG algorithm with fixed color space
Quantized RGB and varying the metric used for car image.

210

0 5 10 15
0.0095

0.01

0.0105

0.011

0.0115

0.012

0.0125

0.013
Distortion Error using Quantized RGB and L1

(a) `1

0 5 10 15
0.0095

0.01

0.0105

0.011

0.0115

0.012

0.0125

0.013
Distortion Error using Quantized RGB and L2

(b) `2

0 5 10 15
0.01

0.0105

0.011

0.0115

0.012

0.0125

0.013

0.0135
Distortion Error using Quantized RGB and LInf

(c) `∞

0 5 10 15
0.016

0.017

0.018

0.019

0.02

0.021

0.022
Distortion Error using Quantized RGB and Mahalanobis

(d) Mahalanobis

0 5 10 15
0.21

0.212

0.214

0.216

0.218

0.22

0.222

0.224

0.226

0.228

0.23
Distortion Error using Quantized RGB and Spectral Angle

(e) Spectral Angle

0 5 10 15
0

0.05

0.1

0.15

0.2

0.25
Distortion Errors Using Color Space Quantized RGB

L2

SpectralAngle

Mahalanobis

L1

LInf

(f) All

Figure A.6. Distortion errors using the LBG algorithm with fixed color space
Quantized RGB and varying the metric used for car image.

211

Original Image

50 100 150 200 250

20

40

60

80

100

120

140

160

(a) Original

Reconstruction Using Metric L1 and Color Space Named Color

50 100 150 200 250

20

40

60

80

100

120

140

160

(b) `1, E = 2.0509

Reconstruction Using Metric Euclidean and Color Space Named Color

50 100 150 200 250

20

40

60

80

100

120

140

160

(c) `2, E = 2.0313

Reconstruction Using Metric LInf and Color Space Named Color

50 100 150 200 250

20

40

60

80

100

120

140

160

(d) `∞, E = 2.0339

Reconstruction Using Metric Mahalanobis and Color Space Named Color

50 100 150 200 250

20

40

60

80

100

120

140

160

(e) Mahalanobis, E = 1.9353

Reconstruction Using Metric SpectralAngle and Color Space Named Color

50 100 150 200 250

20

40

60

80

100

120

140

160

(f) Spectral Angle, E = 2.0529

Figure A.7. Reconstructions using the LBG algorithm with fixed color space
Named Color and varying the metric used for car image.

212

0 5 10 15
1.55

1.6

1.65

1.7

1.75

1.8

1.85

1.9

1.95
x 10

−4 Distortion Error using Named Color and L1

(a) `1

0 5 10 15
1.5

1.55

1.6

1.65

1.7

1.75

1.8

1.85

1.9
x 10

−4 Distortion Error using Named Color and L2

(b) `2

0 5 10 15
1.56

1.58

1.6

1.62

1.64

1.66

1.68

1.7

1.72

1.74

1.76
x 10

−4 Distortion Error using Named Color and LInf

(c) `∞

0 5 10 15
7.5

7.6

7.7

7.8

7.9

8

8.1

8.2
x 10

−4 Distortion Error using Named Color and Mahalanobis

(d) Mahalanobis

0 5 10 15
1.5

1.55

1.6

1.65

1.7

1.75

1.8

1.85

1.9
x 10

−4 Distortion Error using Named Color and Spectral Angle

(e) Spectral Angle

0 5 10 15
1

2

3

4

5

6

7

8

9

10
x 10

−4 Distortion Errors Using Color Space Named Color

L2
SpectralAngle
Mahalanobis
L1
LInf

(f) All

Figure A.8. Distortion errors using the LBG algorithm with fixed color space
Named Color and varying the metric used for car image.

213

We will finally consider this image in the CIELab color space varying all metrics, Figure

A.9. Recall that CIELab was designed to be more perceptually uniform as measured with the

Euclidean distance. Visually it seems that the `2 norm does produce the best reconstruction.

However, all of the cars appear to be flattened (except spectral angle) as compared to the

other color spaces. Again, spectral angle produced an image that appears to be smudged

and has more of a greenish appearance than is present in the original image. The distortion

errors seem comparable to the RGB color spaces in that spectral angle has the most error

while the `p norms have the smallest error, Figure A.8. However, the error is much lower for

CIELab. This is a fair comparison with the RGB color spaces as they are both measured in

R3.

It seems that across all color spaces the `p norms give the best visual reconstructions for

this image.

Now, let us consider the still life image, Figure A.11. We will first focus on the RGB color

space across metrics. Again, the `p norms seem to visually give the best reconstructions.

There is a bit more pixellation using the `∞ norm, the shading on the bread seems more

gradated in the `2 norm, but the red is a bit more vivid in the `1 norm. The Mahalanobis

distance seems to smooth out the colors for each object with far less shading. However,

the individual colors are more vivid and distinct. The spectral angle seems to blur objects

together and gives the worst visual reconstruction. There appears to be some yellow pixels

in the bread using this metric, which is not the case for the others. Notice, that the entropy

is much higher for this image than the car image. This is due to the fact that there are more

centers representing the data, and the image has a more uniform coloring. Finally, notice

214

Original Image

50 100 150 200 250

20

40

60

80

100

120

140

160

(a) Original

Reconstruction Using Metric L1 and Color Space CIELab

50 100 150 200 250

20

40

60

80

100

120

140

160

(b) `1, E = 1.9381

Reconstruction Using Metric Euclidean and Color Space CIELab

50 100 150 200 250

20

40

60

80

100

120

140

160

(c) `2, E = 1.9399

Reconstruction Using Metric LInf and Color Space CIELab

50 100 150 200 250

20

40

60

80

100

120

140

160

(d) `∞, E = 1.944

Reconstruction Using Metric Mahalanobis and Color Space CIELab

50 100 150 200 250

20

40

60

80

100

120

140

160

(e) Mahalanobis, E = 1.8737

Reconstruction Using Metric SpectralAngle and Color Space CIELab

50 100 150 200 250

20

40

60

80

100

120

140

160

(f) Spectral Angle, E = 2.0725

Figure A.9. Reconstructions using the LBG algorithm with fixed color space
CIELab and varying the metric used for car image.

215

0 5 10 15
4.5

4.6

4.7

4.8

4.9

5

5.1

5.2

5.3

5.4
x 10

−3 Distortion Error using CIELab and L1

(a) `1

0 5 10 15
4.5

4.6

4.7

4.8

4.9

5

5.1

5.2

5.3

5.4
x 10

−3 Distortion Error using CIELab and L2

(b) `2

0 5 10 15
4.6

4.7

4.8

4.9

5

5.1

5.2

5.3

5.4

5.5
x 10

−3 Distortion Error using CIELab and LInf

(c) `∞

0 5 10 15
6.5

7

7.5

8

8.5

9

9.5
x 10

−3 Distortion Error using CIELab and Mahalanobis

(d) Mahalanobis

0 5 10 15
0.074

0.075

0.076

0.077

0.078

0.079

0.08

0.081

0.082
Distortion Error using CIELab and Spectral Angle

(e) Spectral Angle

0 5 10 15
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09
Distortion Errors Using Color Space CIELab

L2

SpectralAngle

Mahalanobis

L1

LInf

(f) All

Figure A.10. Distortion errors using the LBG algorithm with fixed color
space CIELab and varying the metric used for car image.

216

Original Image

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

(a) Original

Reconstruction Using Metric L1 and Color Space RGB

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

(b) `1, E = 2.589

Reconstruction Using Metric Euclidean and Color Space RGB

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

(c) `2, E = 2.5993

Reconstruction Using Metric LInf and Color Space RGB

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

(d) `∞, E = 2.5728

Reconstruction Using Metric Mahalanobis and Color Space RGB

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

(e) Mahalanobis, E = 2.5384

Reconstruction Using Metric SpectralAngle and Color Space RGB

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

(f) Spectral Angle, E = 2.5647

Figure A.11. Reconstructions using the LBG algorithm with fixed color
space RGB and varying the metric used for still life image.

that, as might be expected, the distortion error for the Mahalanobis distance and spectral

angle is greater than for the `p norms, Figure A.12.

217

0 5 10 15
0.009

0.0095

0.01

0.0105

0.011

0.0115

0.012
Distortion Error using RGB and L1

(a) `1

0 5 10 15
0.0092

0.0094

0.0096

0.0098

0.01

0.0102

0.0104

0.0106

0.0108

0.011

0.0112
Distortion Error using RGB and L2

(b) `2

0 5 10 15
0.0095

0.01

0.0105

0.011

0.0115

0.012

0.0125

0.013
Distortion Error using RGB and LInf

(c) `∞

0 5 10 15
0.0215

0.022

0.0225

0.023

0.0235

0.024

0.0245

0.025

0.0255
Distortion Error using RGB and Mahalanobis

(d) Mahalanobis

0 5 10 15
0.077

0.078

0.079

0.08

0.081

0.082

0.083
Distortion Error using RGB and Spectral Angle

(e) Spectral Angle

0 5 10 15
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09
Distortion Errors Using Color Space RGB

L2
SpectralAngle
Mahalanobis
L1
LInf

(f) All

Figure A.12. Distortion errors using the LBG algorithm with fixed color
space RGB and varying the metric used for still life image.

218

In looking at the still life image in the Quantized RGB space across all metrics, we see

very similar reconstructions as with RGB, Figure A.13. Notice, that the entropy is higher

in this space (except for spectral angle and `2) than in the RGB space. Also notice that

the distortion error is higher in the Quantized RGB space than the RGB space across all

metrics, Figure A.14.

The Named Color space appears to remove most of the shading in the objects in the

still life image as well as add more pixellation to the reconstructions, Figure A.15. Notice

all highlights from the tomatoes and strawberries have been removed and there is often

bleeding of colors such as the brown and yellow in the sunflower. The entropy is lower than

in the RGB color spaces. Visually, it seems that the `∞ norm gives the worst reconstruction.

However, the distortion error is largest using the Mahalanobis distance, Figure A.16.

The CIELab color model seems to give fairly uniform reconstructions across all metrics,

except spectral angle which appears to be blurred, Figure A.17. These images are not as

sharp as using the RGB color models, and there does not appear to be as much shading.

However, the distortion errors are much less than as measured in the RGB spaces, Figure

A.18.

Again, across all color spaces the `p, norms appear to give the best visual reconstructions.

As noted in Section 3.6, we observe that varying the color space and metric greatly affects

the clustering reconstruction. Therefore, depending on the application, an appropriate choice

may be selected based upon the desired output of the clustering and the type of image to

be analyzed.

219

Original Image

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

(a) Original

Reconstruction Using Metric L1 and Color Space Quantized RGB

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

(b) `1, E = 2.5921

Reconstruction Using Metric Euclidean and Color Space Quantized RGB

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

(c) `2, E = 2.5912

Reconstruction Using Metric LInf and Color Space Quantized RGB

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

(d) `∞, E = 2.5783

Reconstruction Using Metric Mahalanobis and Color Space Quantized RGB

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

(e) Mahalanobis, E = 2.5412

Reconstruction Using Metric SpectralAngle and Color Space Quantized RGB

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

(f) Spectral Angle, E = 2.5576

Figure A.13. Reconstructions using the LBG algorithm with fixed color
space Quantized RGB and varying the metric used for still life image.

220

0 5 10 15
0.0096

0.0098

0.01

0.0102

0.0104

0.0106

0.0108

0.011

0.0112

0.0114

0.0116
Distortion Error using Quantized RGB and L1

(a) `1

0 5 10 15
0.0096

0.0098

0.01

0.0102

0.0104

0.0106

0.0108

0.011

0.0112

0.0114
Distortion Error using Quantized RGB and L2

(b) `2

0 5 10 15
0.01

0.0105

0.011

0.0115

0.012

0.0125

0.013
Distortion Error using Quantized RGB and LInf

(c) `∞

0 5 10 15
0.023

0.0235

0.024

0.0245

0.025

0.0255

0.026

0.0265

0.027

0.0275
Distortion Error using Quantized RGB and Mahalanobis

(d) Mahalanobis

0 5 10 15
0.08

0.081

0.082

0.083

0.084

0.085

0.086

0.087

0.088

0.089
Distortion Error using Quantized RGB and Spectral Angle

(e) Spectral Angle

0 5 10 15
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09
Distortion Errors Using Color Space Quantized RGB

L2
SpectralAngle
Mahalanobis
L1
LInf

(f) All

Figure A.14. Distortion errors using the LBG algorithm with fixed color
space Quantized RGB and varying the metric used for still life image.

221

Original Image

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

(a) Original

Reconstruction Using Metric L1 and Color Space Named Color

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

(b) `1, E = 2.555

Reconstruction Using Metric Euclidean and Color Space Named Color

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

(c) `2, E = 2.5436

Reconstruction Using Metric LInf and Color Space Named Color

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

(d) v∞, E = 2.5157

Reconstruction Using Metric Mahalanobis and Color Space Named Color

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

(e) Mahalanobis, E = 2.4582

Reconstruction Using Metric SpectralAngle and Color Space Named Color

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

(f) Spectral Angle, E = 2.5286

Figure A.15. Reconstructions using the LBG algorithm with fixed color
space Named Color and varying the metric used for still life image.

222

0 5 10 15
2

2.05

2.1

2.15

2.2

2.25

2.3

2.35

2.4
x 10

−4 Distortion Error using Named Color and L1

(a) `1

0 5 10 15
1.95

2

2.05

2.1

2.15

2.2

2.25
x 10

−4 Distortion Error using Named Color and L2

(b) `2

0 5 10 15
2

2.05

2.1

2.15

2.2

2.25

2.3

2.35

2.4
x 10

−4 Distortion Error using Named Color and LInf

(c) `∞

0 5 10 15
2.7

2.8

2.9

3

3.1

3.2

3.3

3.4

3.5

3.6

3.7
x 10

−4 Distortion Error using Named Color and Mahalanobis

(d) Mahalanobis

0 5 10 15
2

2.05

2.1

2.15

2.2

2.25

2.3

2.35
x 10

−4 Distortion Error using Named Color and Spectral Angle

(e) Spectral Angle

0 5 10 15
1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8
x 10

−4 Distortion Errors Using Color Space Named Color

L2
SpectralAngle
Mahalanobis
L1
LInf

(f) All

Figure A.16. Distortion errors using the LBG algorithm with fixed color
space Named Color and varying the metric used for still life image.

223

Original Image

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

(a) Original

Reconstruction Using Metric L1 and Color Space CIELab

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

(b) `1, E = 2.5657

Reconstruction Using Metric Euclidean and Color Space CIELab

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

(c) `2, E = 2.541

Reconstruction Using Metric LInf and Color Space CIELab

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

(d) `∞, E = 2.5397

Reconstruction Using Metric Mahalanobis and Color Space CIELab

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

(e) Mahalanobis, E = 2.5506

Reconstruction Using Metric SpectralAngle and Color Space CIELab

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

(f) Spectral Angle, E = 2.5373

Figure A.17. Reconstructions using the LBG algorithm with fixed color
space CIELab and varying the metric used for still life image.

224

0 5 10 15
6

6.2

6.4

6.6

6.8

7

7.2
x 10

−3 Distortion Error using CIELab and L1

(a) `1

0 5 10 15
5.8

6

6.2

6.4

6.6

6.8

7

7.2
x 10

−3 Distortion Error using CIELab and L2

(b) `2

0 5 10 15
6

6.2

6.4

6.6

6.8

7

7.2
x 10

−3 Distortion Error using CIELab and LInf

(c) `∞

0 5 10 15
7.2

7.4

7.6

7.8

8

8.2

8.4

8.6
x 10

−3 Distortion Error using CIELab and Mahalanobis

(d) Mahalanobis

0 5 10 15
0.0156

0.0158

0.016

0.0162

0.0164

0.0166

0.0168

0.017

0.0172
Distortion Error using CIELab and Spectral Angle

(e) Spectral Angle

0 5 10 15
0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02
Distortion Errors Using Color Space CIELab

L2
SpectralAngle
Mahalanobis
L1
LInf

(f) All

Figure A.18. Distortion errors using the LBG algorithm with fixed color
space CIELab and varying the metric used for still life image.

225

	Abstract
	Acknowledgements
	List of Tables
	List of Figures
	Chapter 1. Introduction
	Chapter 2. Background Algorithms
	2.1. Introduction to Linde-Buzo-Gray
	2.2. Introduction to Locally Linear Embedding
	2.3. Metrics

	Chapter 3. Biological Landscape Organizer and Semi-supervised Segmenting Machine (BLOSSM)
	3.1. Introduction
	3.2. Motivation: An Ecology Application
	3.3. Overview
	3.4. Color Spaces
	3.5. Biological Landscape Organizer and Semi-supervised Segmenting Machine
	3.6. Analysis
	3.7. Ecology Application
	3.8. Conclusion

	Chapter 4. Locally Linear Embedding Clustering Algorithm
	4.1. Introduction
	4.2. Connecting Components in Locally Linear Embedding
	4.3. Locally Linear Embedding Clustering
	4.4. Implementation
	4.5. Conclusion

	Chapter 5. Sparse Locally Linear Embedding
	5.1. Introduction
	5.2. Sparse Locally Linear Embedding
	5.3. Convex Optimization Problems
	5.4. Solving Sparse LLE
	5.5. The Algorithm
	5.6. Sparsity Example
	5.7. Swiss Roll Example
	5.8. Fabry-Perot Data Set
	5.9. Gene Expression Influenza Data
	5.10. Conclusion

	Chapter 6. Primal Dual Interior Point Method
	6.1. Introduction
	6.2. Central Path
	6.3. Lagrange Multipliers
	6.4. The Dual
	6.5. Primal Dual Interior Point Method
	6.6. Reducing the KKT System
	6.7. Vanderbei PDIP Formulation
	6.8. Complexity Analysis
	6.9. Computational Complexity of Sparse LLE

	Chapter 7. Detecting the Vertices of a Convex Hull Encasing a Point Cloud of Data
	7.1. Introduction
	7.2. Thought Experiment
	7.3. Optimization Problem
	7.4. Implementation
	7.5. Conclusion

	Chapter 8. Strengthening of Topological Signals in Persistent Homology through Vector Bundle Based Maps
	8.1. Introduction
	8.2. Background
	8.3. Main Idea
	8.4. Conclusion

	Chapter 9. Conclusion
	Bibliography
	Appendix A. Further Analysis of Images Using BLOSSM

