PREDICTION OF BEGINNING AND DURA TION OF ICE COVER
by
J. C. Ward ${ }^{1}$; A.M. ASCE

SYNOPSIS

Ice cover is related to the capacity of streams to assimilate wastes because it cuts off air contact, and winter conditions may, in certain circumstances, produce worse oxygen deficits than summer conditions, in spite of the slower rates of deoxygenation and the higher oxygen saturation values of cold waters. The annual variation of stream water temperature can be well represented by a sine curve for most streams ${ }^{2}$. However, streams in cold regions may be frozen over for as much as six months per year. In order to represent the annual variation of stream water temperature for these streams, a modification of the sine curve is necessary. The validity of the modified curve for streams that are frozen over for a portion of a year is indicated in that

[^0]${ }^{2}$ Ward, J. C., "Annual Variation of Stream Water Temperature, " Journal of the Sanitary Engineering Division, ASCE, Volume 89, No. SA6, Proc. Paper 3710, December, 1963, pages 1-16. Closure, Volume 91, No. SA1, Proc. Paper 4213, February 1965, pages 69-74. Digest, Transactions, ASCE, Volume 130, 1965, pages 258-260.
the duration and beginning date of ice cover is reasonably well predicted, and the stream water temperatures for the rest of the year are also predicted with a fair amount of accuracy.

The effects of thermal pollution on the sine curve are reviewed, and the possible effect on ice cover is indicated.

The possible applization of the sine curve to lakes and reservoirs is illustrated.

Notation: The symbols adopted for use in this paper are defined where they first appear and are arranged alphabetically in the Appendix.

INTRODUCTION

It has been shown ${ }^{2}$ that the following equation closely fits the annual variation of temperature at a given point on a stream:
$T_{c}=a[\sin (b x+c)]+\bar{T}_{c}$
where $\left.\mathrm{T}_{\mathrm{c}}=\underset{\text { Fahrenheit }}{ }{ }^{\circ}{ }^{\circ} \mathrm{F}\right)$ alculated temperature of the stream water, degrees
$\mathrm{a}=$ amplitude, ${ }^{\mathrm{J}} \mathrm{F}$
$b=0.987$ degrees per day (or 0.0172 radians per day)
$\mathrm{x}=$ number of days since October $1(\mathrm{x}=1$ for October 1), days
c = phase coefficient, degrees
$\overline{\mathrm{T}}_{\mathrm{c}}=$ arithmetic mean or average value of T_{c} (if all values of T are distributed at uniform intervals ${ }^{c}$ of time throughout the year), ${ }^{0} \mathrm{~F}$.

Equation 1 may also be stated as follows:

$$
\begin{equation*}
T_{c}=p \sin b x+q \cos b x+\bar{T}_{c} \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
c=\tan ^{-1}\left|\frac{q}{p}\right| \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
a=\sqrt{p^{2}+q^{2}} \tag{4}
\end{equation*}
$$

where p and $\mathrm{q}=$ parameters, ${ }^{0} \mathrm{~F}$.
The standard error of estimate for a since curve is:
$S_{T}=\sqrt{\frac{\Sigma\left(T-T_{c}\right)^{2}}{n-5}}$
where $\mathrm{S}_{\mathrm{T}}=$ standard error of estimate, ${ }^{0} \mathrm{~F}$
$\mathrm{T}=$ observed water temperature, ${ }^{0} \mathrm{~F}$
$\mathrm{n}=$ number of pairs of observed values of T and x , dimensionless.

The index of correlation is

$$
\begin{equation*}
\rho=\sqrt{1-\left(\frac{n-1}{n-5}\right)\left[\frac{\Sigma\left(T-T_{c}\right)^{2}}{\Sigma\left(T-\bar{T}^{2}\right)}\right]} \tag{6}
\end{equation*}
$$

where $\rho=$ index of correlation, dimensionless
$\overline{\mathrm{T}}=$ arithmetic mean or average value of $\mathrm{T},{ }^{0} \mathrm{~F}$
The least squares normal equations for equation 2 are:
$\mathrm{p} \Sigma \sin ^{2} \mathrm{bx}+\mathrm{q} \Sigma \sin \mathrm{bx} \cos \mathrm{bx}+\overline{\mathrm{T}}_{\mathrm{c}} \Sigma \sin \mathrm{bx}=\Sigma \mathrm{T} \sin \mathrm{bx}$
$\mathrm{p} \Sigma \sin \mathrm{bx} \cos \mathrm{bx}+\mathrm{q} \Sigma \cos ^{2} \mathrm{bx}+\overline{\mathrm{T}}_{\mathrm{c}} \Sigma \cos \mathrm{bx}=\Sigma \mathrm{T} \cos \mathrm{bx}$
$\mathrm{p} \Sigma \sin \mathrm{bx}+\mathrm{q} \Sigma \cos \mathrm{bx}+\overline{\mathrm{T}}_{\mathrm{c}} \mathrm{n}=\Sigma \mathrm{T}$
which can be written as follows:

$$
\begin{align*}
& \mathrm{pa}_{11}+\mathrm{qa}_{12}+\overline{\mathrm{T}}_{\mathrm{c}} \mathrm{a}_{13}=\mathrm{a}_{14} \tag{10}\\
& \mathrm{pa}_{21}+\mathrm{qa}{ }_{22}+\overline{\mathrm{T}}_{\mathrm{c}} \mathrm{a}_{23}=\mathrm{a}_{24} \tag{11}\\
& \mathrm{pa} \tag{12}\\
& 31
\end{align*}+\mathrm{qa}{ }_{32}+\overline{\mathrm{T}}_{\mathrm{c}} \mathrm{a}_{33}=\mathrm{a}_{34} .
$$

where

$$
\begin{align*}
& a_{11}=\Sigma \sin ^{2} b x \tag{13}\\
& a_{12}=\Sigma \sin b x \cos b x=a_{21} \tag{14}\\
& a_{13}=\Sigma \sin b x=a_{31} \tag{15}\\
& a_{14}=\Sigma T \sin b x \tag{16}\\
& a_{22}=\Sigma \cos ^{2} b x \tag{17}\\
& a_{23}=\Sigma \cos b x=a_{32} \tag{18}\\
& a_{24}=\Sigma T \cos b x \tag{19}\\
& a_{33}=n \tag{20}
\end{align*}
$$

and

$$
\begin{equation*}
a_{34}=\Sigma T \tag{21}
\end{equation*}
$$

If γ is defined as follows,

$$
\begin{align*}
& \gamma \equiv\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right| \\
& =a_{11}\left(a_{22} a_{33}-a_{32} a_{23}\right)-a_{12}\left(a_{21} a_{33}-a_{31} a_{23}\right)+ \\
& +a_{13}\left(a_{21} a_{32}-a_{31} a_{22}\right) \tag{22}
\end{align*}
$$

then

$$
\begin{align*}
& p=\left|\begin{array}{lll}
a_{14} & a_{12} & a_{13} \\
a_{24} & a_{22} & a_{23} \\
a_{34} & a_{32} & a_{33}
\end{array}\right| \tag{23}\\
& \gamma \tag{24}\\
& q=\left|\begin{array}{lll}
a_{11} & a_{14} & a_{13} \\
a_{21} & a_{24} & a_{23} \\
a_{31} & a_{34} & a_{33}
\end{array}\right| \\
& \gamma
\end{align*}
$$

and

$$
\bar{T}_{c}=\left|\begin{array}{lll}
a_{11} & a_{12} & a_{14} \tag{25}\\
a_{21} & a_{22} & a_{24} \\
a_{31} & a_{32} & a_{34}
\end{array}\right|
$$

ILLUSTRATIVE EXAMPLE

The optimum method of solution of the above equations is by means of a computer using all values of $\mathrm{T}>32^{\circ} \mathrm{F}$. However, a computer is not always available. In this case, an approximate method for solution of the above equations may be used. This method is illustrated in the following example.

The Geological Survey records temperature to the nearest ${ }^{0} \mathrm{~F}$ and the thermometers used for determining water temperature are accurate to $\pm 0.5^{\circ} \mathrm{F}$. Therefore, the error in temperature measurements will be a maximum of $\pm 1^{0} \mathrm{~F}$. When only one temperature observation is made each day, water temperatures are taken at about the
same time each day, if practicable, so that the data will be relatively unaffected by diurnal variations in temperature. At stations where thermographs are located, the recordsconsist of maximum and minimum temperatures for each day. If a stream is frozen over, a temperature of $32^{\circ} \mathrm{F}$ is assumed although the temperature of the ice may be much lower.

Because pure water can exist as both a solid and liquid at $32^{\circ} \mathrm{F}$, it is not clear from temperature records when a stream actually has an ice cover. In addition, temperatures of less than $32^{\circ} \mathrm{F}$ are almost never reported (very rarely $31^{\circ} \mathrm{F}$), yet one would expect the temperature of the ice cover to be $<32^{\circ} \mathrm{F}$.

Another interesting phenomena observed on some streams in cold climates is several ice covers. In other words, when one penetrates the top ice cover, there is a space between it and the next one underneath, etc., and there exists several layers of ice.

In order to illustrate the application of the above equations, the maximum daily temperatu-es for the 1962 water year for Henry's Fork near Rexburg, Idaho, given in Table 1, will be used ${ }^{3}$. Because 365 values of x and T involve far too many calculations, unless a computer

[^1]TABLE 1. -MAXIMUM DAILY TEMPERATURES

$\left\lvert\, \begin{aligned} & x, \\ & \text { days } \end{aligned}\right.$	$\begin{aligned} & \mathrm{T}, \\ & { }^{\mathbf{0}} \mathbf{F} \end{aligned}$	$\underset{\text { days }}{\mathbf{x},}$	$\begin{aligned} & \mathrm{T}, \\ & { }_{\mathrm{o}}^{\mathrm{F}} \end{aligned}$	$\begin{aligned} & \mathbf{x}, \\ & \text { days } \end{aligned}$	$\begin{gathered} \mathrm{T}, \\ { }_{\mathrm{a}}^{\mathrm{F}} \end{gathered}$	$\begin{gathered} \mathbf{x}, \\ \text { days } \end{gathered}$	$\begin{aligned} & \mathrm{T}, \\ & { }^{{ }^{\circ} \mathrm{F}} \end{aligned}$	$\begin{gathered} x, \\ \text { days } \end{gathered}$	$\begin{gathered} \mathrm{T}, \\ { }^{\mathbf{0}} \mathbf{F} \end{gathered}$	$\begin{aligned} & \mathrm{x}, \\ & \text { days } \end{aligned}$	$\begin{aligned} & \mathrm{T}, \\ & { }^{\circ} \mathrm{F} \end{aligned}$	$\begin{aligned} & \mathrm{x}, \\ & \text { days } \end{aligned}$	$\begin{aligned} & \mathrm{T}, \\ & { }_{\mathrm{o}}^{\mathrm{F}} \end{aligned}$	$\begin{aligned} & \mathrm{x}, \\ & \text { days } \end{aligned}$	$\begin{aligned} & \mathrm{T}, \\ & { }_{\mathrm{o}}^{\mathrm{F}} \end{aligned}$	$\begin{aligned} & \mathrm{X}, \\ & \text { days } \end{aligned}$	$\begin{aligned} & \mathrm{T}, \\ & { }_{\mathrm{o}}^{\mathrm{F}} \end{aligned}$	$\begin{gathered} \mathrm{X}, \\ \text { days } \end{gathered}$	$\begin{aligned} & \mathrm{T}, \\ & \mathrm{o}_{\mathrm{F}} \end{aligned}$	$\begin{gathered} \mathrm{x}, \\ \text { days } \end{gathered}$	$\begin{aligned} & \mathrm{T}, \\ & { }_{\mathrm{o}}^{\mathrm{F}} \end{aligned}$	$\begin{gathered} \mathrm{x}, \\ \text { days } \end{gathered}$	$\begin{gathered} \mathrm{T}, \\ \mathrm{o} \\ \mathrm{~F} \end{gathered}$
Oct.		Nov.		Dec.		Jan.		Feb.		Mar.		Apr.		May		June		July		Aug.		Sept.	
001	49	032	40	062	35	093	32	124	32	152	32	183	46	213	48	244	54	274	66	305	66	336	60
002	50	033	39	063	35	094	32	125	32	153	32	184	46	214	48	245	55	275	66	306	67	337	61
003	50	034	37	064	35	095	32	126	32	154	32	185	46	215	50	246	55	276	64	307	67	338	61
004	50	035	37	065	35	096	32	127	32	155	32	186	47	216	52	247	49	277	62	308	67	339	61
005	52	036	37	066	34	097	32	128	32	156	32	187	47	217	52	248	46	278	64	309	67	340	62
006	52	037	36	067	34	098	32	129	32	157	32	188	45	218	52	249	46	279	67	310	65	341	62
007	48	038	37	068	32	099	32	130	32	158	32	189	46	219	53	250	51	280	68	311	67	342	62
008	46	039	37	069	32	100	32	131	32	159	32	190	46	220	53	251	56	281	68	312	67	$3 \leqslant 3$	60
009	46	040	37	070	32	101	32	132	32	160	32	191	44	221	53	252	57	282	69	313	67	$3 \leqslant 4$	58
010	45	041	37	071	32	102	32	133	32	161	33	192	45	222	52	253	59	283	70	314	67	345	56
011	45	042	38	072	32	103	32	134	32	162	34	193	46	223	51	254	59	284	71	315	67	346	56
012	46	043	38	073	32	104	32	135	32	163	35	194	48	224	51	255	59	285	70	316	68	347	56
013	50	044	37	074	32	105	32	136	32	164	34	195	50	225	49	256	59	286	67	317	68	348	56
014	52	045	37	075	32	106	32	137	32	165	34	196	52	226	48	257	60	287	63	318	68	349	59
015	52	046	37	076	32	107	32	138	32	166	35	197	52	227	45	258	60	288	63	319	69	350	60
016	52	047	36	077	32	108	32	139	32	167	36	198	52	228	48	259	56	289	64	320	69	351	60
017	52	048	34	078	32	109	32	140	32	168	37	199	52	229	51	260	58	290	65	321	67	352	60
018	52	049	34	079	32	110	32	141	32	169	38	200	52	230	51	261	60	291	66	322	67	353	60
019	49	050	35	080	32	111	32	142	32	170	38	201	53	231	53	262	62	292	66	323	67	354	61
020	50	051	34	081	32	112	32	143	32	171	38	202	53	232	53	263	64	293	68	324	67	355	61
021	50	052	35	082	32	113	32	144	32	172	38	203	49	233	50	264	64	294	70	325	67	356	59
022	45	053	34	083	32	114	32	145	32	173	38	204	49	234	50	265	63	295	71	326	66	357	59
023	41	054	36	084	32	115	32	146	32	174	41	205	51	235	52	266	63	296	71	327	65	358	60
024	41	055	36	085	32	116	32	147	32	175	41	206	51	236	52	267	66	297	70	328	64	359	60
025	41	056	37	086	32	117	32	148	32	176	41	207	51	237	51	268	66	298	69	329	64	360	60
026	41	057	37	087	32	118	32	149	32	177	42	208	50	238	53	269	66	299	69	330	64	361	60
027	41	058	37	088	32	119	32	150	32	178	42	209	50	239	53	270	66	300	67	331	64	362	59
028	41	059	37	089	32	120	32	151	\$2	179	42	210	46	240	49	271	65	301	66	332	62	363	58
029	40	060	37	090	32	121	32			180	41	211	44	241	49	272	64	302	66	333	59	364	57
030	40	061	38	091	32	122	32			181	43	212	45	242	50	273	65	303	66	334	59	365	57
031	40			092	32	123	32			182	45			243	54			304	66	335	59		
Average values of x and T																							
16	47	46	37	77		108		137		167		198	48	228	51	258	59	289	67	320	66	350	59
Hypothetical average values of x																							
15		46		76		106		137		167		198		228		258		289		319		350	

is used, it is desirable to obtain fewer values of x and T that will be representative of several days each.

One approximation is to use the average monthly temperatures even though the temperature variation during a month is not arithmetically linear. However, for this approximation, no monthly averages that include any daily temperatures of $32^{\circ} \mathrm{F}$ can be used. A nother source of error is due to the fact that each monthly average does not contain the same number of days. However, the middle day of each month is reasonably close to the value of x obtained if the year were divided into 12 equal parts as is shown in Table 1. For plotting purposes, the middle day of each month (average value of x) should be used for observed data, and the hypothetical average values of x should be used for calculated temperatures.

Table 2 illustrates the method of application. It should be noted that in columns 3 through 9 it was assumed that the year was divided into 12 equal parts which is another approximation. The reason for this approximation is to simplify the calculations when $n=12$, because when $\mathrm{n}=12$, the sums of columns 3,4 and 5 are all zero, and the sums of columns 6 and 7 are both 6, so that equations 23,24 and 25 reduce to

$$
\begin{array}{ll}
\mathrm{p}=\frac{\Sigma T \sin \mathrm{bx}}{6} & (\text { if } \mathrm{n}=12) \\
\mathrm{q}=\frac{\Sigma \mathrm{T} \cos \mathrm{bx}}{6} & (\text { if } \mathrm{n}=12) \tag{27}
\end{array}
$$

TABLE 2. EXAMPLE CALCULATIONS FOR MONTHLY AVERAGES

Month (1)	$\mathrm{T},{ }^{\circ} \mathrm{F}$ (2)	$\sin b x$ (3)	$\cos \mathrm{bx}$ (4)	$\sin b x$ times $\cos \mathrm{bx}$ (5)	$\sin ^{2} b x$	$\cos ^{2} b x$ (7)	${ }_{{ }^{\circ} \mathrm{F}} \mathrm{~s} \sin \mathrm{bx},$ (8)	$T{ }_{{ }_{0}^{0} F}^{\cos b x},$ (9)	$\begin{gather*} \mathrm{T}^{-\overline{\mathrm{T}}}, \tag{15}\\ { }^{0} \mathrm{~F} \tag{6}\\ (10) \end{gather*}$	$(\mathrm{T}-\overline{\mathrm{T}})^{2},$ (11)	$\sin _{{ }^{0} \mathrm{~F}} \mathrm{bx},$ (12)	$q \cos _{{ }^{0} F} \mathrm{bx}$ (13)	$\begin{aligned} & \mathrm{T}_{\mathrm{c}}, \\ & { }^{0} \mathrm{~F} \\ & (14) \\ & \hline \end{aligned}$	$\underset{{ }^{0_{F}}-T_{\mathrm{C}}}{ }$	$\begin{gathered} (\mathrm{T}-\mathrm{T} \mathrm{~T},)^{2} \\ { }^{0} \mathrm{~F}^{2} \\ (16) \end{gathered}$
Oct.	47	0. 259	0.966	0. 250	0.067	0.933	12.2	45.4	-7	49	-4. 6	6. 84	48.5	-1	1
Nov.	37	0. 707	0.707	0.500	0.500	0.500	26. 2	26.2	-17	289	-12. 6	5. 00	38.7	2	4
Dec.		0. 966	0.259	0. 250	0.933	0. 067					-17. 2	1. 83	30.9		
Jan.		0.966	-0.259	-0. 250	0.933	0. 067					-17. 2	-1. 83	27. 3		
Feb.		0.707	-0.707	-0.500	0.500	0.500					-12. 6	-5. 00	28.7		
Mar.		0.259	-0.966	-0. 250	0.067	0.933					-4. 6	-6. 84	34.8		
Apr.	48	-0. 259	-0.966	0.250	0.067	0.933	-12. 4	-46. 4	-6	36	4.6	-6. 84	44.1	4	16
May	51	-0.707	-0.707	0.500	0.500	0.500	-36.0	-36.0	-3	9	12. 6	-5. 00	53. 9	-3	9
June	59	-0.966	-0. 259	0. 250	0.933	0. 067	-57. 0	-15.3	5	25	17.2	-1. 83	61.7	-3	9
July	67	-0.966	0.259	-0. 250	0.933	0. 067	-64. 7	17.4	13	169	17. 2	1.83	65.3	2	4
Aug.	66	-0.707	0.707	-0. 500	0.500	0.500	-46. 6	46.6	12	144	12.6	5. 00	63.9	2	4
Sept.	59	-0. 259	0.966	-0. 250	0.067	0. 933	-15. 3	57.0	5	25	4.6	6. 84	57.8	1	1
Σ or a_{ij}	434	-2. 898	1.673	0. 750	3.567	4.433	-193. 6	94.9	2	746	0. 0	0. 00	555.6	0	48
$\mathrm{a}_{\mathrm{i} j}$	a_{34}	$\mathrm{a}_{13}=\mathrm{a}_{31}$	$\mathrm{a}_{23}=a_{32}$	$\mathrm{a}_{12}=\mathrm{a}_{21}$	${ }^{\text {a }} 11$	${ }^{\text {a }} 2$	${ }^{1}{ }_{14}$	${ }^{\text {a }} 24$							

and

$$
\begin{equation*}
\overline{\mathrm{T}}_{\mathrm{c}}=\frac{\Sigma \mathrm{T}}{\mathrm{n}} \quad(\text { if } \mathrm{n}=12) \tag{28}
\end{equation*}
$$

respectively.
The sums of columns 3 through 7 in Table 2 do not include the values listed for December through March. $\overline{\mathrm{T}}$ is calculated from the following equation:

$$
\begin{equation*}
\overline{\mathrm{T}}=\frac{\Sigma \mathrm{T}}{\mathrm{n}} \tag{29}
\end{equation*}
$$

The equation obtained for the calculations shown in Table 2 is:

$$
\begin{equation*}
T_{\max }=-19.2 \sin (0.987 x-21.7)+46.3 \tag{30}
\end{equation*}
$$

Values of S_{T} and ρ obtained were $4.00^{\circ} \mathrm{F}$ and 0.922 , respectively. The equation obtained by analyzing the minimum daily temperatures in the same manner is

$$
\begin{equation*}
\mathrm{T}_{\min }=-18.0 \sin (0.987 \mathrm{x}-22.3)+45.1 \tag{31}
\end{equation*}
$$

The values of S_{T} and ρ obtained were $-3.78^{\circ} \mathrm{F}$ and 0.922 , respectively.

Equations 30 and 31 are plotted in Fig. 1 along with the observed average monthly maximum and minimum stream water temperatures. From a practical standpoint, it would appear that the average of the maximum and minimum daily temperatures might suffice. Approximately 68.2% of the daily maximum and minimum stream water temperatures

Figure 1. - 1962 Water year temperatures for Henry's Fork near Rexburg, Idaho
should fall between the two dashed curves, $\mathrm{T}_{\max }+4.00^{\circ} \mathrm{F}$ and $\mathrm{T}_{\text {min }}-3.78^{\circ} \mathrm{F}$ (the $\mathrm{T}_{\text {min }}-3.78{ }^{\circ} \mathrm{F}$ dashed curve is $32^{\circ} \mathrm{F}$ from $\mathrm{x}=70$ to $\mathrm{x}=158$).

There are 8 points on the sine curve that materially aid in plotting. The maximum and minimum values of T_{c} given by equation 1 $\left(\bar{T}_{c} \pm a\right)$ occur when

$$
\begin{equation*}
b x+c=\sin ^{-1}(1 \text { and }-1)=90^{\circ} \text { and } 270^{\circ} \tag{32}
\end{equation*}
$$

The two points of inflection occur when $T_{c}=\bar{T}_{c}$, or

$$
\begin{equation*}
b x+c=\sin ^{-1} 0=0^{\circ} \text { and } 180^{\circ} \tag{33}
\end{equation*}
$$

The values of x correspending to $\mathrm{T}_{\mathrm{c}}=32^{\circ} \mathrm{F}$ occur when

$$
\begin{equation*}
b x+c=\sin ^{-1}\left(\frac{32-\overline{\mathrm{T}}_{\mathrm{c}}}{\mathrm{a}}\right)=\alpha \text { and } 180^{\circ}-\alpha \tag{34}
\end{equation*}
$$

where $\alpha=$ acute angle, degrees.
Finally, the value of T_{c} given by equation 1 for $x=0$ and 365 days is

$$
\begin{equation*}
T_{c}=a \sin c+\bar{T}_{c} \tag{35}
\end{equation*}
$$

The calculated and observed values of these 8 points given by equations 32 through 35 are shown in Table 3.

The $T_{\max }$ and $T_{\min }$ curves are roughly 0.6° or 0.6 days out of phase in that the maximum value of $T_{\max }$ occurs roughly 14 hours before the maximum value of $T_{\text {min }}$. However, if one assumes that the value of c is -22°, then the diurnal variation in temperature is

$$
\begin{equation*}
\mathrm{T}_{\max }-\mathrm{T}_{\min }=-1.2 \sin (0.987 x-22)+1.2 \tag{36}
\end{equation*}
$$

which indicates a probable maximum daily variation in temperature of $2 \cdot 4^{\circ} \mathrm{F}$ at $\mathrm{x}=296$ and a minimum variation of $0^{0} \mathrm{~F}$ at $\mathrm{x}=113$. The

TABLE 3. - EIGHT USEFUL PLOTTING POINTS

Point	Calculated				Observed			
	max		min		max		min	
	$\begin{aligned} & \mathrm{x}, \\ & \text { days } \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{c}}, \\ & { }^{\circ} \mathrm{F} \end{aligned}$	$\begin{gathered} \mathrm{x}, \\ \text { days } \end{gathered}$	$\begin{aligned} & \mathrm{T}_{\mathrm{c}}, \\ & { }^{0} \mathrm{~F} \end{aligned}$	$\begin{gathered} \mathrm{x}, \\ \text { days } \end{gathered}$	$\begin{aligned} & \mathrm{T}, \\ & { }^{0} \mathrm{~F} \end{aligned}$	$\begin{aligned} & \mathrm{x}, \\ & \text { days } \end{aligned}$	T, ${ }^{0} \mathrm{~F}$
Maximum Minimum	$\begin{aligned} & 296 \\ & 113 \end{aligned}$	${ }_{65.5}^{27.1} 6$		$\begin{aligned} & 63.1 \\ & 27.16 \end{aligned}$	$\begin{aligned} & 296^{4} \\ & 113 \end{aligned}$	$\begin{aligned} & 71 \\ & 32 \end{aligned}$	$\begin{aligned} & 316^{5} \\ & 114 \end{aligned}$	67 32
Points of inflection	$\begin{array}{r} 22 \\ 203 \end{array}$	$\begin{aligned} & 46.3 \\ & 46.3 \end{aligned}$	$\begin{array}{r} 23 \\ 205 \end{array}$	$\begin{aligned} & 45.1 \\ & 45.1 \end{aligned}$	$\begin{array}{r} 22 \\ 203 \end{array}$	$\begin{aligned} & 45 \\ & 49 \end{aligned}$	$\begin{array}{r} 23 \\ 205 \end{array}$	$\begin{aligned} & 40 \\ & 48 \end{aligned}$
Stream is frozen over from to	$\begin{array}{r} 71 \\ 156 \end{array}$	$\begin{aligned} & 32 \\ & 32 \end{aligned}$	$\begin{array}{r} 70 \\ 158 \end{array}$	$\begin{aligned} & 32 \\ & 32 \end{aligned}$	$\begin{array}{r} 68 \\ 160 \end{array}$	$\begin{aligned} & 32 \\ & 32 \end{aligned}$	$\begin{array}{r} 67 \\ 162 \end{array}$	$\begin{aligned} & 32 \\ & 32 \end{aligned}$
Beginning and End of sine curve	0 365	$\begin{aligned} & 53.4 \\ & 53.4 \end{aligned}$	0 365	$\begin{aligned} & 51.9 \\ & 51.9 \end{aligned}$	$\begin{array}{r} 1 \\ 365 \end{array}$	$\begin{aligned} & 49 \\ & 57 \end{aligned}$	$\begin{array}{r} 1 \\ 365 \end{array}$	46 54

actual differences between the average monthly maximum and minimum temperatures are given in Table 4 along with the calculated values taken from Fig. 1. It should be noted that the average monthly stream water temperature has no meaning when temperatures of $32^{\circ} \mathrm{F}$ and other temperatures occur in the same month.

[^2]TABLE 4. $-\mathrm{T}_{\text {max }}$ MINUS $^{\min }$

		$\mathrm{T}_{\text {max }}-\mathrm{T}_{\text {min }}$	
Month	Observed	Calculated	
October	2	1.3	
November	1	0.7	
January	0	0	
February	0	0	
April	2	1.1	
May	2	1.7	
June	3	2.2	
July	4	2.4	
August	2	2.3	
September	1	1.9	

YEA RLY VARIATIONS

In general, yearly variations in the values of a, c, \bar{T}_{c}, S_{T} and ρ will depend on the size of the stream, among other things, but are usually not very great unless the stream has been affected by other than natural phenomena. Still, it is extremely desirable to use all values of $\mathrm{T}>32^{\circ} \mathrm{F}$ for all years of record if a computer is available. An exception to this would be the case when it is suspected that the stream's temperature has been affected by some man-made activity such as thermal pollution.

If a computer is not available, it still would be preferable to work with values of T that represent all years of record, such as the average value of the average monthly temperatures. However, it is
important to be sure that no temperatures of $32^{\circ} \mathrm{F}$ are included in any averages.

As on extreme example of yearly variations, the maximum daily temperatures for the 1959 water year for Henry's Fork near Rexburg, Idaho ${ }^{7}$, (this is the same stream station that was previously discussed in connection with the 1962 water year), were analyzed. During the 1959 water year, temperatures of $32^{\circ} \mathrm{F}$ were recorded on only three successive days, $x=104$ through 106 (temperatures of $33^{\circ} \mathrm{F}$ were observed for every day for $91 \leqq \mathrm{x}<104$ and $106<\mathrm{x} \leqq 138$). However, the index of correlation between equation $30\left(\mathrm{~T}_{\max }\right.$ for the 1962 water year) and the maximum temperature data for the 1959 water year was 0.917 with a value of S_{T} of $\pm 5.14^{0} \mathrm{~F}$. While ρ is about the same, S_{T} is roughly 20% greater. The equation obtained for the maximum temperature data of the 1959 water year is:

$$
\begin{equation*}
\mathrm{T}_{\max }=-18.2[\sin (0.987 \mathrm{x}-18.0)]+49.7 \tag{37}
\end{equation*}
$$

Values of S_{T} and P obtained were $\pm 1.96^{\circ} \mathrm{F}$ and 0.988 , respectively. Equations 30 and 37 are both plotted in Fig. 2 along with the observed average monthly maximum stream water temperatures for the 1959 water year.

[^3]

Figure 2.- 1959 Water year maximum temperatures for Henry's Fork near Rexburg, Idaho

Equations 30 and 37 are only 3.7^{0} or roughly 1% out of phase. Assuming that the value $c f c$ is -19.9°, equation 37 minus equation 30 gives

$$
\begin{equation*}
\Delta \mathrm{T}_{\max }=1.0[\sin (0.987 \mathrm{x}-19.9)]+3.4 \tag{38}
\end{equation*}
$$

where $\Delta \mathrm{T}_{\text {max }}=\begin{aligned} & \text { difference between maximum daily temperatures of } \\ & \text { the stream water for two different water years, }{ }^{\circ} \mathrm{F} .\end{aligned}$ According to Fig. 2, $0^{0} \mathrm{~F} \leqq \Delta \mathrm{~T}_{\text {max }} \leqq 5^{0} \mathrm{~F}$, and the difference of $5^{0} \mathrm{~F}$ occurs when $\mathrm{x}=156$.

NUMBER OF OBSERVA TIONS REQUIRED

Theoretically, only 3 observations are necessary to evaluate a, c and $\overline{\mathrm{T}}_{\mathrm{c}}$ in equation 1 , whereas at least 6 observations are required if values are to be obtained for S_{T} and ρ (equations 5 and 6, respectively). From a practical standpoint, these 6 observations should be as well spaced as possible and representative of as much data as feasible.

In order to illustrate the results obtained when only 6 representative observations are used, the daily temperature data for the Colorado River at Hot Sulphur Springs, Colorado ${ }^{8}$ was analyzed. During the 1962 water year, daily temperatures of $32^{\circ} \mathrm{F}$ were recorded for all but two days in November, all of December through February, for 21 days in March and for the first day of April. Therefore, only

[^4]the average monthly data for October and May through September could be used, giving the minimum of 6 representative observations. The equation obtained is:
\[

$$
\begin{equation*}
T_{c}=-22.0[\sin (0.987 x-29.9)]+42.1 \tag{39}
\end{equation*}
$$

\]

Values of S_{T} and ρ obtained were $\pm 2.00^{\circ} \mathrm{F}$ and 0.967 , respectively. Equation 39, along with tre observed average monthly temperatures, are plotted in Fig. 3.

The plotting of average monthly temperatures is somewhat misleading in that the actual daily variations are likely to be greater. For example, only about $2 / 3$ of the daily temperature observations would be expected to fall between the curves $T \pm \mathrm{S}_{\mathrm{T}}$. Table 5 gives the significance of various statistical limits. From Fig. 3, it is apparent that the predicted duration of $32^{\circ} \mathrm{F}$ daily temperatures is about 10% too short, the predicted beginning date is about a month late (26 days), and the predicted end of $32^{\circ} \mathrm{F}$ daily temperatures is about 10% late. Perhaps these errors would have been reduced if all 192 values of $\mathrm{T}>32^{\circ} \mathrm{F}$ had been used, rather than 6 representative values.

From Fig. 3, one could infer that about 68.2% of the time, one would expect a beginning date of ice cover of $x=58 \pm 6$ days and an end of ice cover at $x=183 \pm 6$ days, giving a duration of about 126 ± 8 days, during which no temperatures greater than $34^{\circ} \mathrm{F}$ would be observed.

Figure 3. - 1962 water year temperatures for the Colorado River at Hot Sulphur Springs, Colo.

TABLE 5.- SIGNIFICANCE OF STA TISTICAL LIMITS

Curves	Percentage of daily temperature observations included
$\mathrm{T} \pm \mathrm{S}_{\mathrm{T}}$	68.2
$\mathrm{~T} \pm 2 \mathrm{~S}_{\mathrm{T}}$	95.4
$\mathrm{~T} \pm 3 \mathrm{~S}_{\mathrm{T}}$	99.730
$\mathrm{~T} \pm 4 \mathrm{~S}_{\mathrm{T}}$	99.994

THERMAL POLLUTION

Curtis, Doyle and Whetstone ${ }^{9}$ have illustrated the effect of thermal pollution by applying equation 1 to points above and below the points of pollution. The equations they obtained were, respectively,

$$
\begin{equation*}
T_{c}=-20.2[\sin (b x-20.2)]+57.9 \tag{40}
\end{equation*}
$$

with $\rho=0.952$ and $\mathrm{S}_{\mathrm{T}}=4.59^{\circ} \mathrm{F}$, and

$$
\begin{equation*}
\mathrm{T}_{\mathrm{c}}=-21.7[\sin (\mathrm{bx}-30.8)]+60.8 \tag{41}
\end{equation*}
$$

with $\rho=0.969$ and $\mathrm{S}_{\mathrm{T}}= \pm 3.91^{\circ} \mathrm{F}$. Equations 40 and 41 intersect at roughly $x=130$ and $x=240$ and give approximately the same value of T_{c} in the interval $130 \leqq x \leqq 240$. In this interval, the stream flow was roughly 3 to 4 times the quantity of water used for cooling purposes.
${ }^{9}$ Curtis, L. W., Doyle, T. J. and Whetstone, G. W., Discussion of
"Annual Variation of Stream Water Temperature, " by J. C. Ward.
Discussion is in Journal of the Sanitary Engineering Division, A SCE, Volume 90, No. SA4, Proc. Paper 4006, August, 1964, pages 92-97.

While the maximum probable temperature was increased $4.4^{\circ} \mathrm{F}$, the minimum probable temperature was increased only $1.4^{0} \mathrm{~F}$. Even though the effect of thermal pollution on ice cover is unknown, it appears that probably the effect would be to delay the beginning and shorten the duration. If this is the case, then some thermal pollution might be desirable in some streams.

ANNUAL VARIATION OF WATER TEMPERATURE IN LAKES AND RESERVOIRS

In storage reservcirs, at least one additional quanitity is added to those discussed above, depth. In general, the behavior of reservoirs that are frozen over for part of the year is as follows: ${ }^{10}$

1. In the spring, the temperature may be approximately the same at all depths.
2. In the summer, the temperature decreases with depth, but the temperature gradient may not be constant. Summer stratification may begin in May or June and may persist for 4 to 6 months. From 30 to 50 feet below the surface, the temperature may be approximately constant. Below this there may be a thermocline about 10 to 20 feet thick in which the temperature decreases at a rate of $0.5^{\circ} \mathrm{F}$ per foot or more.
${ }^{10}$ Kittrell, F. W., "Thermal Stratification in Reservoirs," Symposium on Streamflow Regulaticn for Quality Control, Public Health Service Publication No. 999-WP-30, June 1965, pages 57-76.
3. In the fall, the temperature may again be approximately constant for all depths.
4. Because $39.2^{\circ} \mathrm{F}$ is the temperature at which water has its maximum density, if there is an ice cover, the temperature may increase from $32^{\circ} \mathrm{F}$ just below the ice to $39.2^{\circ} \mathrm{F}$ at a greater depth, and the temperature gradient may vary with depth.

The above is, of course, highly simplified and numerous exceptions may occur, as Kittrell has pointed out. 10

Lake Mead, ${ }^{11}$ in general, does not behave very much like the above model because it apparently has no ice cover during any part of the year. In general, probably the behavior of reservoirs that are not frozen over for part of the year may have summer stratification as previously described, but the temperature may be approximately constant for all depths only during the winter or early spring. Because temperature measurements were made at irregular intervals of time, the calculations for the 5 foot depth are shown in Table 6 .

The results for all depths analyzed are given in Table 7. ${ }^{\sigma}{ }_{T}$ is the arithmetic standard deviation in ${ }^{0} \mathrm{~F}$ and is given by:

$$
\begin{equation*}
\sigma_{T}=\sqrt{\frac{\Sigma(\mathrm{T}-\overline{\mathrm{T}})^{2}}{\mathrm{n}-1}} \tag{42}
\end{equation*}
$$

The results for the 5 foot depth indicate a behavior similar to streams, and presumably the beginning and duration of ice cover could
${ }^{11}$ Reference 3, pages 177-182.

TABLE 6. - EXAMPLE CALCULATIONS FOR LAKE MEAD

Month (1)	Day (2)	$x \text {, days }$ (3)	bx, degrees (4)	T, ${ }^{0} \mathrm{~F}$ (5)	$\sin b x$ (6)	$\cos \mathrm{bx}$ (7)	$\sin \mathrm{bx}$ times cos bx (8)	$\sin ^{2} b x$	$\cos ^{2} b x$ (10)	$\begin{gathered} T \sin b x, \\ { }^{0} F \end{gathered}$ (11)	$\begin{array}{\|c} \mathrm{T} \cos \mathrm{bx} \\ { }^{0} \mathrm{~F} \\ (12) \\ \hline \end{array}$	$\begin{gathered} \mathrm{T}-\overline{\mathrm{T}}, \\ { }^{0} \mathrm{~F} \\ (13) \end{gathered}$	$\begin{gathered} (\mathrm{T}-\overline{\mathrm{T}})^{2}, \\ { }^{0} \mathrm{~F}^{2} \\ (14) \end{gathered}$	$\sin _{{ }^{0} \mathrm{~F}} \mathrm{bx},$ (15)	$\underset{{ }^{0} \mathrm{~F}}{\mathrm{q}} \mathrm{cos} \mathrm{bx},$ (16)	$\mathrm{T}_{\mathrm{c}},{ }^{0} \mathrm{~F}$	$\begin{gathered} T_{0}^{0}-T_{c}, \\ (18) \end{gathered}$	$\begin{gathered} (\mathrm{T}-\mathrm{T})^{2}, \\ { }^{0} \mathrm{~F}^{2} \mathrm{c}^{2}, \\ (19) \end{gathered}$
Oct.	3	3	3	74.1	0.052	0. 999	0. 052	0.003	0.998	3.9	74.0	7.1	50.4	-0.43	9.94	75.5	-1.4	1.96
Dec.	19	80	79	56.0	0.982	0. 191	0. 188	0.964	0.036	55.0	10.7	-11.0	121.0	-8. 08	1.90	59.8	-3.8	14.45
Jan.	30	122	120	54.4	0.862	-0.506	-0.436	0. 744	0.256	46.9	-27.6	-12.6	158.8	-7. 09	-5. 04	53.9	0.5	0.25
Mar.	1	152	150	54.1	0.500	-0.866	-0.433	0.250	0.750	27.0	-46.9	-12.9	166.4	-4. 11	-8.62	53.3	0.8	0.64
Apr.	3	185	183	56.6	-0.045	-0.999	0. 045	0.002	0. 998	-2.5	-56.5	-10.4	108.2	0. 37	-9.94	56.5	0.1	0.01
Apr.	26	208	205	63.8	-0.427	-0.904	0. 386	0. 182	0.826	-27. 3	-57.6	-3.2	10.2	3. 51	-8.89	60.6	3.2	10.25
June	8	251	248	69.4	-0.925	-0. 379	0. 350	0.855	0. 144	-64. 2	-26. 3	2.4	5.8	7. 60	-3.78	69.8	-0.4	0.16
June	28	271	267	70.4	-0.999	-0. 044	0. 044	0.998	0.002	-70.3	-3.1	3.4	11.6	8. 22	-0.44	73.8	-3.4	11.57
July	25	298	294	75.8	-0.913	0. 409	-0. 373	0.834	0.167	-69.1	31.0	8.8	77.5	7. 50	4.07	77.6	-1.8	3.26
A ug.	30	334	330	81.5	-0.505	0.863	-0.436	0.255	0.744	-41.1	70.4	14.5	210.2	4. 15	8.59	78.7	2.8	7.85
Sept.	28^{12}	363	358	80.6	-0.030	1. 000	-0.030	0.001	1. 000	-2. 4	80.6	13.6	185.0	0.25	9.95	76.2	4.4	19.38
Σ or a_{ij}				736.7	-1.448	-0. 236	-0.643	5. 088	5.921	-144. 1	48.7	-0. 3	1, 105.1	11.89	-2. 26	728.1	1.0	69.78
a_{ij}				a_{34}	$\mathrm{a}_{13}=\mathrm{a}_{31}$	$a_{23}=a_{32}$	$a_{12}=a_{21}$	a_{11}	a_{22}	a_{14}	a_{24}							

${ }^{12}$ The temperature measurements for depths 5 through 175 feet were made September 26 , and the measurements for 200 through 475 feet were made on September 30. The maximum depth at which temperature measurements were made during the 1962 water year was 483 feet.

TABLE 7. - SUMMARY OF TEMPERATURE ANALYSES FOR LAKE MEAD

Depth, feet	a, ${ }^{0} \mathrm{~F}$	c, degrees	$\overline{\mathrm{T}}_{\mathrm{C}},{ }^{0} \mathrm{~F}$	$\overline{\mathrm{T}}_{\mathrm{c}_{0}+\mathrm{a}}{ }^{\text {a }}$	$\overline{\mathrm{T}}_{\mathrm{c}_{0}-\mathrm{a}}^{{ }_{\mathrm{o}}{ }^{\text {a }} \text {, }}$	$\overline{\mathrm{T}},{ }^{0} \mathrm{~F}$	$\sigma_{\mathrm{T}},{ }^{0} \mathrm{~F}$	$\mathrm{S}_{\mathrm{T}},{ }^{0} \mathrm{~F}$	ρ
5	-12.93	-50.5	66.0	53.1	78.9	67.0	± 10.51	± 3.41	0.946
50	-13.2	-54.9	64.7	51.5	77.9	65.6	± 10.62	± 2.60	0.970
100	-7.71	-51.2	60.3	52.6	68.0	60.8	± 6.91	± 2.44	0.936
150	-5.03	-69.8	57.6	52.6	62.6	57.9	± 4.30	± 2.29	0.845
375	- 0.348	-12.6	53.8	53.5	54.1	53.8	± 1.21	± 1.52	
Average				52.7					

be predicted in the same manner, but this should be verified experimentally. At the other extreme, the correlation at the 375 foot depth is so poor that it is more accurate to represent the temperature at this depth as $\overline{\mathrm{T}} \pm \sigma_{\mathrm{T}}{ }^{0} \mathrm{~F}$. The observed values of $53.8 \pm 1.2^{0} \mathrm{~F}$ correspond very closely to the observed temperatures in the Colorado River just downstream from Lake Mead ${ }^{13}$ which varied from $52^{\circ} \mathrm{F}$ to $55^{\circ} \mathrm{F}$ with an average of about $54.2^{0} \mathrm{~F}$ for the 1962 water year.

Some of the data in Table 7(1962 water year) are plotted in Fig. 4 along with observed data for the 1959 water year ${ }^{14}$ at the 5 foot depth. The sine curve for the 50 foot depth is not plotted because it is very close to the sine curve for the 5 foot depth.

It should be pointed out that, in general $\overline{\mathrm{T}}$ and $\overline{\mathrm{T}}_{\mathrm{c}}$ will not be the same, but may be rather close if temperature measurements are made at equal intervals of time distributed uniformly throughout the year and if no temperatures of $32^{\circ} \mathrm{F}$ or less are recorded. Furthermore, $\overline{\mathrm{T}}_{\mathrm{c}}$ is always calculated using equation 25 and never by dividing the sum of the T_{c} values by the number of T_{c} values, although again, if the T_{c} values are distributed uniformly at equal intervals of time throught the year, the results will be about the same.

13
Reference 3, page 183. ${ }^{14}$ Reference 7, pages $138-144$.

Figure 4.-Lake Mead water temperature

From Table 7, it appears that

$$
\begin{equation*}
\overline{\mathrm{T}} \approx \overline{\mathrm{~T}}_{\mathrm{c}} \tag{43}
\end{equation*}
$$

Equation 43 might have been more accurate if the temperature measurements had been made at equal intervals of time distributed uniformly throughout the year. Also, it appears that possibly

$$
\begin{equation*}
\overline{\mathrm{T}}_{\mathrm{c}}+\mathrm{a} \approx \overline{\mathrm{~T}}_{\mathrm{D}} \tag{44}
\end{equation*}
$$

where $\overline{\mathrm{T}}_{\mathrm{D}}=$ maximum average value of $\overline{\mathrm{T}},{ }^{0} \mathrm{~F}$.
The observed values of $\overline{\mathrm{T}}$ are plotted in Fig. 5 and indicate that $\overline{\mathrm{T}}_{\mathrm{D}}$ is approximately $53.8^{\circ} \mathrm{F}$ for Lake Mead. Also, it appears that $\overline{\mathrm{T}}$ is approximately constant for all depths in excess of about 275 feet, and for depths greater than 275 feet,

$$
\begin{equation*}
\overline{\mathrm{T}} \approx \overline{\mathrm{~T}}_{\mathrm{D}} \quad \text { (only for depths } \geqq 275 \text { feet) } \tag{45}
\end{equation*}
$$

Although occasional temperature measurements were made at depths greater than 425 feet, there were not enough measurements to determine a reasonably accurate value of $\overline{\mathrm{T}}$. In addition, the measure ments were not distributed throughout the year. However, none of these measurements varied more than $0.4^{0} \mathrm{~F}$ from the value of T observed at the 375 foot cepth.

For depths less than about 275 feet, it might be possible to express a, cand $\overline{\mathrm{T}}_{\mathrm{c}}$ as a function of depth, but Fig. 5 and Table 7 indicate that this may not be a straight forward proposition. Perhaps values of a and $\overline{\mathrm{T}}_{\mathrm{c}}$ could be roughly estimated from Fig. 5, but the value of c would still be undetermined.

Figure 5.- Lake Mead average water tempemperature for 1962 water year

While S_{T} appears to decrease with depth, σ_{T} also seems to show somewhat the same general trend with the result that ρ generally decreases with depth.

Figure 6 is a hypothetical application of equation 1 to reservoirs that are frozen over for part of the year. Even if equation 1 could be applied in this manner, actual calculated values will undoubtedly differ from Fig. 6 in several respects. The temperature of the fall overturning is likely to be greater than that of the spring overturning and neither is likely to occur at the points of inflection. The values of $\overline{\mathrm{T}}_{\mathrm{c}}$ and c will probably vary with depth and all of the curves will probably be shifted to the right. It is unlikely that all curves will intersect at only 2 points. If a, c and \bar{T}_{c} could be expressed as functions of depth, it would be hypothetically possible to predict the thickness of the ice cover as a function of time, but this is extremely doubtful. In fact, it may be that the application of equation 1 to this type of reservoir, or even reservoirs in general, may be totally misleading and could obscure very important phenomena.

CONCLUSIONS

While equation 1 has been shown to be applicable to most streams that are not frozen over during any part of the year ${ }^{2}$, there is still insufficient evidence upon which to base any conclusions about

Figure 6. - Possible idealized behavior of reservoirs that are frozen over for part of the year
the utility of equation 1 for predicting the beginning and duration of ice cover in streams. This latter possibility has merely been indicated.

In order for equation 1 to be of real value with respect to thermal pollution, a, c and $\overline{\mathrm{T}}_{\mathrm{c}}$ will have to be quantitatively related to the physical parameters of streams. However, the detection of thermal pollution may be possible by either or both of two methods:

1. examination of temperature records both before and after the suspected beginning of thermal pollution, and
2. examination of temperature records both above and below the suspected points of pollution.

Application of equation 1 to lakes and reservoirs has been shown to be a possibility, but a great deal of additional study is strongly indicated. It is possible that equation 1 may be applicable only to lakes and reservoirs that are not frozen over during any portion of the year, or applicable only to lakes and reservoirs that are frozen over for a portion of the year, or neither or both.

In all of the above cases, it is very desirable to utilize all temperature data available and avoid using representative values obtained from individual observations. However, this is only feasible when a computer is available. However, analysis without a computer has been shown to be possible in every case, but in addition to other disadvantages, analysis without a computer increases the possibility of errors in calculated values.

One problem still unresolved is the determination of whether a temperature reading of $32^{\circ} \mathrm{F}$ means ice or liquid. It would be of considerable assistance, if, in the future, when temperatures of $32^{\circ} \mathrm{F}$ are recorded, a notation is made to the effect that the reading represented the actual temperature of the water, or was inferred because of ice cover. Finally, it is certainly possible that only portions of the surfaces of streams and reservoirs may be covered with ice of varying thicknesses, and that the fraction covered will be an additional variable.

ACKNOWLEDGMENTS

The work reported herein was performed at the Sanitary Engineering Laboratory of the Department of Civil Engineering at Colorado State University, Fort Collins, Colorado. The work upon which this publication is based was supported in part by funds provided by the United States Department of the Interior as authorized under the Water Resources Research Act of 1964, Public Law 88379. Some support was also received from the Colorado Agricultural Experiment Station.

APPENDIX - NOTATION

The following symbols have been adopted for use in this paper:
a $\quad=$ amplitude of sine curve, in ${ }^{0} \mathrm{~F}$;
$\mathrm{a}_{\mathrm{ij}}=$ element of determinant;
$b \quad=0.987^{\circ}$ per day
c $\quad=$ phase coefficient of sine curve, in degrees;
$\mathrm{D} \quad=$ depth of a lake or reservoir, in feet;
${ }^{0} \mathrm{~F}=$ degrees Fahrenheit;
i $=1,2$ or 3 , dimensionless;
$j=1,2,3$ or 4 , dimensionless;
$\mathrm{n} \quad=$ number of pairs of observed values of T and x , dimensionless;
$\mathrm{p} \quad=$ parameter, in ${ }^{0} \mathrm{~F}$;
$\mathrm{q}=$ parameter, in ${ }^{0} \mathrm{~F}$;
$\mathrm{S}_{\mathrm{T}} \quad=$ standard error of estimate, in ${ }^{0} \mathrm{~F}$;
$\mathrm{T}=$ observed temperature of the stream, lake or reservoir water, in ${ }^{0} \mathrm{~F}$;
$\overline{\mathrm{T}} \quad=$ airthmetic mean or average value of T , in ${ }^{0} \mathrm{~F}$;
$\mathrm{T}_{\mathrm{c}}=$ calculated value of $\mathrm{T},{ }^{0} \mathrm{~F}$;
$\overline{\mathrm{T}}_{\mathrm{c}} \quad=$ arithmetic mean or average value of T_{C} (if all values of T_{c} are distributed at uniform intervals of time throughout the ${ }^{c}$ year), in ${ }^{0} \mathrm{~F}$;
$\overline{\mathrm{T}}_{\mathrm{D}} \quad=$ minimum average value of $\overline{\mathrm{T}}$ for a lake or reservoir, in ${ }^{0} \mathrm{~F}$;
$\mathrm{T}_{\text {max }}=$ maximum daily temperature of the stream water, in ${ }^{0} \mathrm{~F}$;
$\mathrm{T}_{\text {min }}=$ minimum daily temperature of the stream water, in ${ }^{0} \mathrm{~F}$;
$\mathrm{x} \quad=$ number of days since October $1(\mathrm{x}=1$ for October 1), in days;
$\alpha \quad=$ acute angle, in degrees;
$\gamma \quad=$ determinant of order 3, dimensionless;
$\Delta \mathrm{T}_{\text {max }}=$ difference between maximum daily temperatures of the stream water for two different water years, in ${ }^{0} \mathrm{~F}$;
$\rho \quad=$ index of correlation (ρ has a maximum possible value of one for perfect correlation), dimensionless;
$\Sigma=$ sum;
$\sigma_{\mathrm{T}} \quad=$ aithmetic standard deviation, in ${ }^{\circ} \mathrm{F}$.

[^0]: ${ }^{1}$ Associate Professor of Civil Engineering, Department of Civil Engineering, Colorado State University, Fort Collins, Colorado.

[^1]: ${ }^{3}$ Quality of Surface Waters of the United States, 1962, Parts 9-14, Colorado River Basin to Pacific Slope Basins in Oregon and Lower Columbia River Basin, Geological Survey Water-Supply Paper 1945, United States Government Printing Office, Washington, 1964, page 578.

[^2]: ${ }^{4}$ A temperature of $71^{\circ} \mathrm{F}$ was also observed at $\mathrm{x}=284$ and $\mathrm{x}=295$.
 ${ }^{5}$ A temperature of $67^{\circ} \mathrm{F}$ was also observed at $\mathrm{x}=317,318$ and 320 .
 ${ }^{6}$ These values have no real physical meaning when they are less than $32^{\circ} \mathrm{F}$.

[^3]: ${ }^{7}$ Quality of Surface Waters of the United States, 1959, Parts 9-14, Colorado River Basin to Facific Slope Basins in Oregon and Lower Columbia River Basin, Geological Survey Water-Supply Paper 1645, United States Government Printing Office, Washington, 1966, page 428.

[^4]: 8
 Reference 3, page 35 .

