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ABSTRACT OF THESIS

AN ANALYSIS OF GRATING CELL FEATURES FOR TEXTURE

DISCRIMINATION

The design of artificial vision systems has been influenced by knowledge of the

early stages of processing in the human vision system. The discovery of direction-

ally sensitive cells in the human visual cortex lead to the theory of edge detection in

computer vision, and the discovery that simple cell receptive fields can be modeled

as Gabor filters has lead to the development and use of Gabor jets.

In this thesis, we evaluate a low-level image feature inspired by “grating” cells

found in the human visual cortex. These cells, and the features based on them,

detect spatial gratings–repeated patterns of light and dark bars–in their receptive

fields. We evaluate the utility of grating cell model features to distinguish differ-

ent textures using Fisher’s linear discriminant. It will be shown that the grating

cell features contain significantly more distinguishing information than another

standard Gabor-filter-based image feature.

John Stevens
Department of Computer Science
Colorado State University
Fort Collins, CO 80523
Summer 2010
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Chapter 1

Introduction

The design of artificial vision systems has been directly influenced by our knowl-

edge of the human visual system, and in particular our knowledge of the early

stages of visual processing in cortical areas V1 and V2. For example, Hubel and

Wiesel’s early work with single-cell [HW62] recordings lead to the discovery of

directionally sensitive cells in V1, which lead to the theory of edge detection in

computer vision [MH80]. More recently, the discovery in the 1980’s that simple

cell receptive fields can be modeled as Gabor filters [JP87, PGJ89] has lead to the

development and use of Gabor jets [FA91].

This thesis aims to evaluate another model derived from single-cell recordings

taken from neurons in the visual cortex. Von der Heydt observed cells that re-

spond to grating patterns, but not to single bars or edges [vdHPD92]. Petkov

and Kruizinga developed a non-linear computational model that mimics the ob-

served properties of these grating cells [PK97]. This thesis tests the hypothesis

that grating cell responses, being non-linear, contribute useful information above

and beyond simple linear filters. The problem of texture discrimination is ana-

lyzed as an example of problems where grating cell responses might be expected

to improve performance.
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Since Hubel and Wiesel’s cell-recording work [HW62], neuroscientists have per-

formed electrode readings on thousands of cells found in the primary visual cortex

(V1) and other areas of the mammalian visual cortex. These experiments are

generally conducted as follows: visual stimuli are presented to an animal while

electrodes measure the firing rates of individual cells or small groups of neurons in

its visual cortex. The goal is to model neurons by finding functions that map the

input in the visual field to their firing rates.

One family of cells observed by Hubel and Wiesel, called simple cells, have

receptive fields that consist of adjacent excitatory (light in this region causes the

cell’s firing rate to increase) and inhibitory (light in this region causes the cell’s

firing rate to decrease) bands. It was later found [Mar80, JP87] that the Gabor

function [Gab46] closely modeled the receptive fields of simple cells.

Since this discovery, Gabor filters have been used as feature extractors in com-

putational vision, in such tasks as texture [JF90], object recognition [RB97], and

face recognition [SB06]. At a Face Authentication Test in 2004, the top two per-

forming algorithms used features extracted with Gabor filters [MKS+04]. Gabor

filters can also be viewed as an example of steerable filters [FA91].

Not all cells in the primary visual cortex are simple cells. Another class of cells,

called complex cells, includes a broader range of receptive field behaviors and do

not have a single mathematical model. One type of complex cell, first found by

Von der Heydt [vdHPD92], responds to gratings, alternating patterns of light and

darkness at a particular orientation and spatial frequency, but not to single bars

or edges.

Petkov and Kruizinga developed a computational model of these grating

cells [PK97]. This model was developed to emulate the behavior of the grating
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cells observed by von Der Heydt by responding to grating patterns at particular

orientations and spatial frequencies, but not responding to single bars or edges,

even if the bars or edges occur at the selected orientation and frequency. This is

achieved through a non-linear combination of linear simple cell (Gabor) responses.

Petkov and Kruizinga provide a limited analysis of their grating cell operator

in the context of the problem of texture discrimination [KP99]. They concluded

that the grating cell operator extracts meaningful information about oriented tex-

ture. This thesis expands that work, providing an independent evaluation of the

grating cell operator on the texture discrimination problem. Our work differs from

that of Petkov and Kruizinga in that we perform the evaluation on larger dataset

developed by a third party.

We use the Fisher criterion to evaluate the performance of grating cell model

features and another Gabor-based feature–Gabor energy–for discriminating tex-

ture. Significant improvement with grating features would support the hypothesis

that grating cell responses are useful texture measures. Alternatively, a lack of

improvement does not mean that grating cells are useless; they may simply serve

another purpose than texture discrimination. Nonetheless, since texture discrimi-

nation has been suggested as a major role for grating cells [KP99], a negative result

would suggest that the role of grating cells needs to be rethought.

With grating cell model features, pairs of images will be shown to have much

higher Fisher criteria scores than with Gabor-energy features. In addition, we

show that the grating cell features are a much sparser representation of texture

in an image. Research suggests that V1 may employ a sparse coding to represent

visual input [OF97].

Chapter 2 reviews the biological literature on Gabor and grating cells, and
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discusses their computational models. Chapter 3 details the grating cell model

under evaluation. Chapter 4 describes the evaluation of grating cell models for

texture discrimination. Chapter 5 details the experimental results, and Chapter 6

presents final conclusions and future work.
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Chapter 2

Literature Review

2.1 Biology

Hubel and Wiesel [HW62] observed different cell types in the mammalian visual

cortex, which they termed simple cells and complex cells. Simple cell receptive

fields consist of excitatory and inhibitory regions, with the response of the cell

determined by linear spatial summation. Complex cells encompass a broader range

of cell behaviors that lack a single model.

2.1.1 Simple Cells

Hubel and Wiesel defined cells whose receptive fields had four certain properties

as simple cells. These properties are: 1) distinct excitatory regions, in which light

stimuli increase the firing rate of the cell, and inhibitory areas, in which stimuli

decrease the firing rate of the cell 2) linear summation within each excitatory or

inhibitory area, so that the firing rate of the cell is excited or inhibited linearly

with the strength of the stimuli in the corresponding area 3) antagonism between

excitatory and inhibitory areas, so that stimuli in inhibitory regions cancels out

stimuli in excitatory regions, and 4) the ability to predict the response to a stimulus
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from a map of the excitatory and inhibitory areas.

Simple cell receptive fields consist of excitatory and inhibitory bands. Some

observed receptive fields were bipartite, consisting of two adjacent regions, one

excitatory and one inhibitory, and some had three bands, with an excitatory or

inhibitory band between two bands of the opposite type.

It was hypothesized [Mar80] that simple cell receptive fields are modeled by

Gabor filters [Gab46]. Gabor filters had been used in one-dimensional signal pro-

cessing because they minimize the joint error in the spatial and spatial-frequency

domains. Daugman proved [Dau85] that a two-dimensional Gabor filter minimizes

an analogous two-dimensional error, paving the way for the use of Gabor filters in

computational vision.

2.1.2 Complex Cells

The class of complex cells represents a variety of cell behaviors and is not described

by a single mathematical model, as the class of simple cells is. Complex cells do

not generally have the summation and mutual antagonism properties of simple

cells.

Hubel and Wiesel observed several different behaviors in the cells they classified

as complex cells [HW62]. Some responded to bars of a specific width at a specific

orientation located anywhere in the cell’s receptive field. Another cell responded

to a vertically oriented edge anywhere in its receptive field.

Von der Heydt [vdHPD92] observed cells in V1 that responded only to spatial

grating patterns, alternating light and dark bars at a specific orientation. These

grating cells respond weakly or not at all to single bars or edges. The finding

of cells with such non-linear behavior challenged the idea that V1 performed only
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linear spatial-frequency filtering and that non-linear processing only occurs in later

stages.

2.2 Petkov and Kruizinga’s Grating Cell Model

Petkov and Kruizinga [PK97] developed a computational model of the grating

cells that were observed by von der Heydt. This model is designed to mimic

the properties of the observed grating cells and respond only to repeated spatial

gratings and not respond to single bars, edges, or partial gratings. A spatial

grating is a repeated pattern of oriented light and dark bars containing at least

three repetitions.

The grating cell model uses features computed by a simple cell model based on

Gabor filters, which is described in the next section. The simple cell responses are

combined non-linearly to produce the grating cell model outputs.

The following sections discuss two image operators based on Petkov’s simple

cell and grating cell models. Another Gabor filter based operator used in the

literature, the Gabor energy operator, is also discussed. These operators act on

images and produce feature maps. A feature map for an operator on an input

image consists of the responses of the operator at each pixel in the input image.

2.2.1 The Gabor Model of Simple Cell Receptive Fields

Simple cell responses are used to compute Petkov and Kruizinga’s grating cell

model. The model of simple cells first convolves an image with a Gabor kernel.

The Gabor kernel responses are then normalized for contrast, then a hyperbolic

ratio function is applied and negative values are culled.

The Gabor function is:
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gξ,η,θ,λ,φ(x, y) = e
−

x′2 + γ2y′2

2σ2 cos

(

2π
x′

λ
+ φ

)

(2.1)

where

x
′

= (x − ξ) cos θ − (y − η) sin θ

y
′

= (x − ξ) sin θ − (y − η) cos θ

The Gabor function is a Gaussian function convolved with a sinusoidal func-

tion. The parameters ξ and η position of the center of the receptive field of the

Gabor function in an image, and the parameter θ specifies its orientation. The

substitutions x′ and y′ accomplish this rotation and translation. The parameter γ

is the eccentricity of the Gaussian function. γ is fixed at 1

2
in all Gabor functions

used in this thesis. This value has been found to be consistent with observations

of the responses of real simple cells [PK97, JP87].

The standard deviation of the Gaussian, σ, is set to .56 λ, and is therefore a

dependent parameter to the Gabor function. The constant .56 was chosen based

on the spatial-frequency bandwidths of the observed receptive fields of real simple

cells, per Petkov and Kruizinga [PK97].

The Gabor function is convolved with an image I:

rξ,η,λ,θ,φ =

∫ ∫

I

gξ,η,θ,λ,φ(x, y)I(x, y)dxdy (2.2)

The value rξ,η,λ,θ,φ is normalized by dividing the response by the average gray

level within its receptive field. The result of this normalization is that the response

is based on the contrast within the receptive field, not on the intensity. The average

Gray level of the image in the operator’s receptive field, αξ,η,λ, is computed using

the Gaussian component of gξ,η,θ,λ,φ:
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αξ,η,λ =

∫ ∫

I

e
−

x2 + γ2y2

2σ2 I(x, y)dxdy (2.3)

where σ is set to .56λ, as in the Gabor function.

In order to obtain a response function similar to those of real cells, a hyperbolic

ratio of the contrast-normalized Gabor filter responses is taken. The hyperbolic

ratio function is:

h(x) =
Rx

x + C
(2.4)

where R is the maximum response (as x goes to ∞) and C is the semi-saturation

constant (value of x for which h(x) is R
2
).

The final response of the simple cell operator is as follows:

s =







0 if α = 0,

χ

(

h(
rξ,η,λ,θ,φ

αξ,η,λ

)

)

otherwise.
(2.5)

χ is the Heaviside step function, which is defined as:

χ(x) =

{

0 x < 0

x x ≥ 0
(2.6)

In the grating cell model (described in the next section), even symmetric (φ = 0

and φ = π) simple cell operators are used. An even symmetric simple cell operator

with φ = 0 will respond strongly to a bar that has a width of half of the operator’s

wavelength. Even symmetric cell operators with φ = 0 are referred to as “on-

center”, since the central peak of the Gabor function is positive. An operator with

a φ of π is referred to as “off-center” as its Gabor function has a negative central

peak.
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2.2.2 Grating Cell Model

The grating operator is designed to respond to oriented spatial gratings. As with

the simple cell operator, orientation (θ) and wavelength (λ) are parameters to the

grating cell operator. The operator responds to a pattern of three or more bars,

and not have any response to two bars or a single bar, or to edges.

In broad terms, a grating operator with wavelength λ works by detecting bars

of width λ
2

along an interval of length 3λ centered at a location. Even symmetric

simple cell operators are used to detect bars. Non-linear post processing of the

simple cell operator feature maps results in a grating subunit value for each pixel,

which takes on a value of 0 or 1. A value of 1 indicates that that pixel is part

of a spatial grating of the specified wavelength and orientation. There are two

grating subunits for each pixel, one indicating whether the pixel is on a “bar”, the

other indicating whether it is in the space between bars. The final grating operator

response at a pixel location (ξ,η) is a Gaussian weighted summation of the grating

subunit values in a neighborhood around the pixel.

To determine the value of a grating subunit, the quantities Mξ,η,n and Mξ,η are

computed as follows:

Mξ,η,n = max{sξ′,η′,λ,θ,φn
|η′, ξ′ :

n
λ

2
sin θ ≤ (ξ′ − ξ) < (n + 1)

λ

2
sin θ,

n
λ

2
cos θ ≤ (η′ − η) < (n + 1)

λ

2
cos θ,

φn =

{

0 n = −3,−1, 1

π n = −2, 0, 2
}

Mξ,η = max{Mξ,η,n|n = −3 . . . 2}
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Each grating subunit’s value is based on the simple cell responses along a line

segment with orientation θ and length 3λ centered at (ξ, η). This line segment is

further broken up into six line segments of length λ
2
, indexed by integers n from -3

to 2. The value Mξ,η,n for the subsegment n is the maximum simple cell response

in an axis-aligned box with corners at the points (ξ + nλ
2
cos θ, η + nλ

2
sin θ) and

(ξ + (n + 1)λ
2
cos θ, η + (n + 1)λ

2
sin θ). For odd values of n, φn = 0, so the value of

Mξ,η,n is the maximum on-center simple cell response in that box. For even values

of n, φn = π, so the value is the maximum off-center simple cell response. See

figure 2.1 for an example of how the boxes are arranged along such a line segment.

The activity of a grating subunit, q, is computed as follows:

qξ,η,θ,λ =

{

1 if ∀n, n ∈ {−3 . . . 2}Mξ,η,θ,λ,n ≥ ρMξ,η,θ,λ

0 if ∃n, n ∈ {−3 . . . 2}Mξ,η,θ,λ,n < ρMξ,η,θ,λ

(2.7)

The value of a grating subunit is one if all values Mξ,η,θ,λ,n are withing a pro-

portion ρ of the largest of the values, Mξ,η,θ,λ. Petkov and Kruizinga use a value

of .9 for ρ.

From the subunit activations, the value of the grating operator at a point (ξ, η)

is computed as follows:

wξ,η,θ,λ =

∫

e
(ξ−ξ′)2−(η−η′)2

2(βσ)2 (qξ′,η′,θ,λ + qξ′,η′,θ+π,λ)dξ′dη′ (2.8)

The grating response w is the Gaussian weighted sum of subunit responses. The

parameter β determines the size of the receptive field of the grating cell operator

relative to the size of the receptive field of the simple cell operators on which

it is based. The sum of two subunit responses, qξ′,η′,θ,λ and qξ′,η′,θ+π,λ, is taken in

equation 2.8. qξ′,η′,θ+π,λ is activated by a grating that is 180o degrees (or π radians)

out of phase with the grating that activates qξ′,η′,θ,λ. Such a grating has the same
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Figure 2.1: Figure showing how the line segment for a grating subunit at location
(ξ, η) along which the simple cell responses are used to determine the activation of
grating subunit qξ′,η′,θ,λ. θ = π

4
, λ = 8 for this grating cell operator. The bounds of

the box for each subinterval are marked. The pixels are located at the intersections
of the gray lines. An ‘O’ indicates that the on-center simple cell response at a pixel
is use. An ‘X’ indicates that the off-center response is used. Note that in the box
for n = −1, there are only four pixels, whereas there are nine pixels in the other
boxes.
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orientation and scale, and image location as the one that activates qξ′,η′,θ,λ– only

the intensity of the bars are reversed.

The grating cell operator differs from linear filters, such as Gabor filters, in

that it does not give a partial response to partially matching stimuli. For example,

an on-center even-symmetric simple cell operator has three excitatory bands. The

response of the simple cell operator will be highest if the image intensity is high

in those excitatory bands and low in its inhibitory bands, but there will still be a

non-zero response if the intensity is high in only one of the excitatory bands. The

grating cell operator’s response is zero unless there are three or more bars present.

2.2.3 Gabor Energy Operator

Gabor-based features known as Gabor energy features [KP99] or phase-invariant

Gabor features [FS89] have been used in texture discrimination. The value of a

Gabor energy feature at a pixel is:

eθ,λ,ξ,η =
√

r2
ξ,η,λ,θ,0 + r2

ξ,η,λ,θ, π
2

(2.9)

where rξ,η,λ,θ,φ is the result of the convolution of a Gabor function with the

image, from equation 2.2. The value of the Gabor energy feature at a pixel is com-

puted by taking the square root of the sum of the squares of two Gabor responses

with phases 90o apart. As long as they are 90o apart, the value of the operator is

invariant to the particular phases used. We use θ = 0o and θ = 90o for all Gabor

energy operators in this thesis.
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2.3 Uses of the Grating Cell Model

Kruizinga and Petkov [KP99] evaluate their grating operator in the context of

texture discrimination and segmentation. They compare features derived from the

grating cell operator with Gabor energy and co-occurence matrix [Pec91] features.

Fisher linear discriminant analysis is used to analyze the separability of nine dif-

ferent textures using these three sets of features. Grating features achieved the

highest distance between different textures, and different textures were always lin-

early separable using grating features. In addition, Kruizinga and Petkov show

results of a K-means segmentation algorithm on mosaics of these textures using

each set of pixel-wise features. The qualitatively best segmentation was achieved

using the grating features.

Weinman et. al. make use of a modification of Petkov’s grating cell model for

detecting signs in natural images [WHM04]. This was chosen because sign text

consists of a series of mostly vertically oriented strokes that resemble a spatial

grating.

2.4 Other Grating Cell Models

Alternative models of grating cells exist. One such model is due to Lourens et.

al. [LBOT05], and another due to Du Buf [dB07]. Both models are similar to

Petkov’s model in that they post-process pixel-wise Gabor features.

Lourens et. al. [LBOT05] created one such model. Like Petkov’s model,

Lourens’ grating operator is based on a Gabor-based operator’s response along

a straight line. The length of the line along which the Gabor operator responses

are examined varies based on those Gabor operator responses, unlike Petkov’s op-
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erator. The Gabor responses along are combined nonlinearly, not just with the

maximum operator, but with the difference between the average and the mini-

mum and maximum along the interval. The authors claim that this leads to a

better match with the response profiles of actual grating cells than does Petkov’s

operator.

Du Buf’s grating cell operator [dB07], in contrast to Petkov’s operator, is aimed

at providing precise boundary localization between regions that resemble spatial

gratings and regions that do not. Du Buf’s grating cell operator labels each pixel

in an image as either “grating” or “non-grating”.
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Chapter 3

Grating Cell Model

This chapter gives a more detailed explanation of the grating cell model. Implemen-

tation issues are discussed first, followed by a qualitative analysis of the behavior

of the simple and complex cell models. The Gabor energy operator against which

the grating cell is compared in the evaluation is also discussed.

3.1 Implementation Details

The integral in equation 2.2 is implemented with the following summation:

rξ,η,λ,θ,φ =

ξ+ s
2

∑

i=ξ− s
2

η+
s
2

∑

j=η− s
2

gξ,η,λ,θ,φ(i, j)I(i, j) (3.1)

where I(x, y) is the image intensity at the point (x, y). The mask size, s is

chosen to be the smallest odd integer greater than or equal to 5σ. When ξ or η is

close enough to the edge that the limits of the summation are out of the boundaries

of the image, the indices are reflected, e.g. I(−3, 2) = I(3, 2).

For each chosen set of parameters (orientation and wavelength) for a simple

cell operator, a single Gabor kernel is created and convolved with the image, gen-

erating a feature map of raw Gabor responses to which contrast normalization, the
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hyperbolic ratio function, and the Heaviside step function are applied. Thus, the

location of the simple cell operator’s receptive field is not truly a parameter, since

the response at every pixel in the image is computed.

3.1.1 Contrast Normalization

Equation 2.3 is the calculation of the contrast normalization term as described in

[PK97]. As described, the contrast normalization is performed with an unrotated

Gaussian while the Gaussian used in calculating the Gabor kernel is rotated. This

leads to artifacts in the feature maps. For the implementation used in this evalua-

tion, the same oriented Gaussian as used in the Gabor function is used in contrast

normalization:

αξ,η,λ,θ,γ =

∫ ∫

I

e
−

x′2 + γ2y′2

2σ2 I(x, y)dxdy (3.2)

where

x
′

= (x − ξ) cos θ − (y − η) sin θ

y
′

= (x − ξ) sin θ − (y − η) cos θ

This integral is implemented as a convolution with a mask size of 5σ, as in

equation 3.1.

3.1.2 Hyperbolic Ratio Parameters

The values of the semi-saturation constant (C) and maximum response (R) of the

hyperbolic ratio function (equation 2.4) used in the simple cell operator are not

defined in [PK97].

A hyperbolic ratio function like the one described in equation 2.4 has a hori-

zontal asymptote at h(x) = R and a vertical asymptote at x = −C. The value of

17



−1.0 −0.5 0.0 0.5 1.0

−
1.

0
0.

0
1.

0

C=5

x

h(
x)

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
0.

0
1.

0

C=1.5

x

h(
x)

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
0.

0
1.

0

C=1

x

h(
x)

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
0.

0
1.

0

C=.5

x

h(
x)

Figure 3.1: Plots of hyperbolic ratio h(x) with different C values, R=1.
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h(x) approaches −∞ as x goes to ∞, and approaches −∞ as x goes to −C from

the right. Figure 3.1 shows hyperbolic ratio functions with different values of C.

For x values greater than −C, the sign of h(x) is the same as the sign of

x. When C is less than or equal to one, the vertical asymptote is inside the

range [−1, 1] of values produced after the contrast normalization step to which

the hyperbolic ratio function is applied. For x values slightly less than -C, h(x)

is a large positive value. If C is less than one, negative values in the feature

map after the contrast normalization step that would otherwise be set to zero by

the Heaviside step function instead become large positive values. This produces

artifacts in the feature maps generated by the simple cell operator. For this reason,

a value of 1.5 is chosen for C in all simple cell operators used in this evaluation.

As the first step in the grating operator is to produce feature maps using the

simple cell operator, the choice of the hyperbolic ratio parameters R and C needs

to be evaluated in the context of the grating cell operator.

In the grating cell operator, the simple cell responses are used to determine

grating subunit activations. A subunit at a location activates if all of the maximum

simple cell responses within intervals along a line segment centered at that location

are within a percentage of the maximum response along that line segment. The R

parameter scales all responses linearly and equally, so it does not effect the subunit

activations and thus does not effect the output of the grating operator.

Varying C in a range from 1.5 to 5 did not affect the output of the grating

cell operator. A value of 1.5 is used for C in all grating operators used in this

evaluation.

19



Figure 3.2: Grating operator feature maps on a synthetic grating (first row) and
a natural image from the Prague texture segmentation benchmark (second row).
First column: input image. Second column: ρ = .9. Third column: ρ = .6. Fourth
column: ρ = .4. Fifth column: ρ = .2.

3.1.3 Choice of ρ in Grating Cell Model

Petkov use a constant .9 for ρ. The parameter ρ is the threshold for grating subunit

activation. In order for a grating subunit to activate, the maximum simple cell

responses from each subinterval of a grating cell’s receptive field must be within

a factor of ρ of the maximum response. Lower values make it easier for grating

subunits to activate and result in stronger grating cell operator responses.

Grating operators with a ρ value of .9 responded well to synthetic images of

gratings, such as the one in Figures 3.5 and 3.6. On natural images, however, a

value of .9 was found to be too strict. Figure 3.2 for an example. The grating

operator detects the synthetic grating for all four values of ρ, but does not detect

the grating in the natural image for ρ = .9 or ρ = .6. The grating shown in

the natural image in figure 3.2 is one of the most pronounced spatial gratings in

any image in the dataset. Failing to detect such a grating would make for an
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uninteresting comparison. For this reason, we use a value of .2 instead of .9 for ρ.

3.2 Qualitative Analysis

Figure 3.3 shows the stages of simple cell operators with different orientations on

a synthetic image of a white bar on a black background. The bar is five pixels

wide, and the wavelength parameter of all operators in the figure is 10 pixels. In

this case, the width of the central peak of the Gabor mask used by the simple

cell operator is five pixels, the same as the width of the bar in the input image.

When the operator’s orientation matches the bar’s orientation, there is a peak in

the simple cell response at the center of the bar. The response drops off as the

center of the simple operator moves away from the center of the bar.

The response drops off as the orientation of the operator changes away from

the orientation of the bar. The response is smaller at θ = 22.5o, and smaller still

at θ = 45o. There is virtually no response at θ = 90o, at which point the bar is

perpendicular to the excitatory and inhibitory bands of the simple cell operator’s

receptive field.

Figure 3.4 shows the stages of the simple cell operator as the wavelength is

varied on the same synthetic bar image. The response at the center of the bar

drops off as the wavelength decreases. Note that, when the wavelength is 10

pixels, there are three peaks of equal magnitude, one on the center of the bar,

and two others to the left and right. These peaks in the feature map occur when

the smaller magnitude excitatory bands of the Gabor mask align with the bar.

The raw response is much lower than when the central peak overlaps the bar, but

average Gaussian-weighted image intensity is also lower, resulting in a peak similar

in magnitude to the central peak after contrast normalization.
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Figure 3.3: Stages of simple cell operators with different orientation parameters
applied to a synthetic bar image. Top: Input image, a synthetic image of a five
pixel wide white bar on a black background. First column: Gabor mask. Second
column: convolution of Gabor mask with input image. Third column: contrast
normalization of image from column 2. Fourth column: application of hyperbolic
ratio function to image from column 3 (C=1.5). Fifth column: application of
Heaviside step function to image from column 4. Row 1: θ = 0o, Row 2: θ = 22.5o,
Row 3: θ = 45o, Row 4: θ = 90o. λ = 10 for all operators.

22



Figure 3.4: Stages of simple cell operators with different wavelength parameters
applied to a synthetic bar image. Top: Input image, a synthetic image of a five
pixel wide white bar on a black background. First column: Gabor mask. Second
column: convolution of Gabor mask with input image. Third column: contrast
normalization of image from column 2. Fourth column: application of hyperbolic
ratio function to image from column 3 (C=1.5). Fifth column: application of
Heaviside step function to image from column 4. Row 1: λ = 12, Row 2: λ = 10,
Row 3: λ = 8, Row 4: λ = 5. θ = 0o for all operators.
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Figure 3.5: Shows stages of grating operators with different orientation parameters
on a synthetic grating image. Top: input image, a grating of white five pixel
wide bars on a black background. First column (from the left): on-center simple
cell responses. Second column: off-center simple cell responses. Third column:
θ = 0 subunits. Fourth column: θ = π subunits. Fifth column: grating operator
response. Row 1: θ = 0o, Row 2: θ = 22.5o, Row 3: θ = 45o, Row 4: θ = 90o.
λ = 10 and ρ = .6 for all operators.
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Figure 3.5 shows the stages of grating operators with different orientations on

a synthetic image of a grating of five-pixel-wide white bars on a black background.

This grating has a wavelength of ten pixels. The first two columns respectively

show the φ = 0o and φ = 180o simple cell responses used in computing the grating

cell response. The φ = 0o simple cell response is highest on the white bars, and

the φ = 180o simple cell response is highest on the black bars. The third and

fourth columns of the figure show the grating subunits. The fifth column shows

the grating response feature map.

The response of the grating operator is maximized when the orientation of the

grating in the images matches the orientation of the grating operator. The response

drops off the farther the orientation of the operator is away from the orientation of

the image grating. At θ = 22.5o, there is a much lower response from the grating

operator. At θ = 45o and θ = 90o, there is no response from the grating operator.

Figure 3.6 shows the stages of grating operators with different wavelengths

on the same synthetic grating image. The first two columns respectively show

the φ = 0o and φ = 180o simple cell responses used in computing the grating cell

response. The grating operator response is highest when the wavelength parameter

of the operator matches the wavelength of the the image grating.

3.3 Gabor energy

To provide a baseline for comparison, we use Gabor energy features in segmenta-

tion.

Figure 3.7 shows, for three synthetic images, the Gabor energy feature maps

generated by Gabor energy operators with different orientation parameters.

Figure 3.8 shows, for three synthetic images, the Gabor energy feature maps
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Figure 3.6: Shows stages of grating operators with different wavelength parameters
on a synthetic grating image. Top: input image, a grating of white five pixel
wide bars on a black background. First column (from the left): on-center simple
cell responses. Second column: off-center simple cell responses. Third column:
φ = 0 subunits. Fourth column: φ = π subunits. Fifth column: grating operator
response. Row 1: λ = 12, Row 2: λ = 10, Row 3: λ = 8, Row 4: λ = 5. θ = 0o

and ρ = .6 for all operators.
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Symbol Parameter
λ Wavelength
θ Orientation
φ Phase
γ Eccentricity
σ Standard deviation
C Semi-saturation constant of hyperbolic ratio function
R Maximum value of hyperbolic ratio function
ρ Threshold for grating subunit activation

Table 3.1: Table of parameter symbols.

Parameter Petkov and Kruizinga This Thesis
λ Free parameter
θ Free parameter
φ Not a parameter, φ = 0 and φ = π used in grating model
γ Fixed at .5
σ Set to .56λ
C Fixed at 1.5
R Fixed at 1
ρ Fixed at .9 Fixed at .2

Table 3.2: Table of parameters in both models.
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Figure 3.7: Gabor energy feature maps for different synthetic images and different
orientations. Top row: synthetic bar, edge, and grating images. Second row:
θ = 0o. Third row: θ = 22.5o. Fourth row: θ = 45o. Fifth row: θ = 90o. λ = 10
for all operators.
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Figure 3.8: Gabor energy feature maps for different synthetic images and different
wavelengths. Top row: synthetic bar, edge, and grating images. Second row:
λ = 12. Third row: λ = 10o. Fourth row: λ = 8. Fifth row: λ = 5. θ = 0o for all
operators.
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generate by Gabor energy operators with different wavelength parameters.

3.4 Choice of θ Values

Figure 3.9 shows the response of the Gabor energy operator plotted against the

orientation of the operator for individual pixels within three synthetic images. An

orientation of zero degrees for the operator matches the orientation of the stimuli

in the images and maximizes the operator response. The response drops off as

the orientation changes away from zero degrees, becoming close to zero when the

operator’s orientation is 22.5 degrees off from the stimuli in the image. We therefore

choose θ values in 22.5 degree increments from zero degrees up to 167.5 degrees

for the Gabor energy operators generating the features used in the evaluation.

The same orientations are used in the grating operators. This is consistent

with Petkov and Kruizinga’s own use of their grating cell model [PK97, KP99].

3.5 Comparison

Figure 3.10 shows a side-by-side comparison of the Gabor bar, Gabor energy, and

grating operators on four synthetic images: a single bar, an edge, a “near grating”

consisting of two bars, and a true grating.

The Gabor bar operator has a high response to the bars in the bar, near-grating,

and true grating images. Of note is that there is also a band with a strong response

in the dark region of the edge image. This is another haloing artifact caused when

the secondary excitatory band of the Gabor filter falls on the edge of the light

region. The filter response is small, but so is the average gray level in the receptive

field, so the response after contrast normalization is high.
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Figure 3.9: Response of the Gabor energy operator plotted against the θ parameter
for three synthetic images. Solid line: synthetic bar image (sampled from the center
pixel of the bar). Dashed line: synthetic edge image (sampled from on the edge).
Dotted line: synthetic grating image (sampled from the center pixel of the central
bar of the grating). The vertical dashed line is at 22.5o, the vertical dotted line is
at 45o.
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Figure 3.10: Comparison of different operators on different input images. Top row:
input image. Second row: simple cell operator. Third row: Gabor energy operator.
Fourth row: grating cell operator.
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The Gabor energy operator responds strongly to all four stimuli. The grating

operator has no response to the single bar and edge images, and only a faint

response to the near-grating image. That the grating operator has any response

at all to the near grating is a result of the haloing in the Gabor operator. As seen

in Figure 3.10, there are four bars with a high response in the on-center Gabor

operator feature map. An off-center Gabor operator would have three bars of

high response, one between the two bars and one to either side. Since the grating

operator operates on Gabor operator feature maps and not on the image directly,

there are three or more bars and the operator has a response. The response is

small compared to the response to a true grating, and so the grating operator can

still be said to only respond strongly to gratings of three or more bars.

3.6 Image Pyramids and Scale Spaces

We want our image features to detect texture at different image scales. To accom-

plish this, we use a Gaussian image pyramid. An image pyramid is a collection of

representations of an image at different scales [FP02].

Each level in an image pyramid is a smoothed and subsampled image of the

previous level. The lowest level of the pyramid consists of the original image

convolved with a Gaussian mask with σ = 1. Each subsequent level is generated

by convolving the previous level with a σ =
√

3 Gaussian mask and downsampling

by selecting every other pixel. The lower levels of the pyramid contain larger

images and finer scales, while the higher levels contain smaller images and coarser

scales.

Features are generated by running the same operators on all levels of the im-

age pyramid, generating a feature map for each level. The feature maps for the
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coarser scales are upsampled back to the size of the original image using bilinear

interpolation. An image pyramid with six levels is computed for each image used

in the experiments.
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Chapter 4

Methods

The goal of this thesis is to experimentally determine whether grating cell responses

improve texture discrimination. Our method is to evaluate the results of a standard

texture discrimination algorithm on Gabor responses and grating cell responses.

The Prague texture segmentation benchmark [HM08] is a method and system

for evaluating texture segmentation. The method creates synthetic texture mosaics

with known ground-truth segmentations. Texture segmentation algorithms can be

applied to these images, and the output compared to the ground truth. The system

includes a web interface for specifying dataset parameters, downloading datasets,

and uploading segmented images for evaluation.

Although the Czech system was intended to evaluate segmentation algorithms,

we will use it for another purpose. Our goal is to evaluate the utility of grating

cell responses in texture discrimination. To accomplish this, we use textures from

the Prague benchmark, and use Fisher linear discriminant analysis to assess the

separability of these textures using grating and Gabor energy features.
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4.1 The Prague Texture Segmentation Bench-

mark

The Prague system generates two sets of images: textures and mosaics. The

textures are natural images. Each texture is a 512 by 512 color image. There are

10 categories of textures, described in more detail in the next section.

The textures in the benchmark dataset are images of natural and man-made

texture. The images are real images, as opposed to artificially synthesized textures,

were chosen by the authors of the benchmark because they are harder to segment.

This dataset provides a challenge to the texture discrimination task evaluated in

this thesis. This evaluation does not aim for state-of-the-art performance on the

Prague benchmark, but to measure the effect that grating cell responses have on

performance.

The Prague benchmark is used via a web form found at

http://mosaic.utia.cas.cz. This web form provides an interface for generat-

ing and downloading datasets and uploading and evaluating segmentations.

4.2 Dataset

The dataset used for the evaluation was obtained from the Prague texture segmen-

tation benchmark system. The dataset consists of 108 textures in the following

categories:

• bark (12 textures)

• flowers (10 textures)

• glass (7 textures)
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• man-made (20 textures)

• nature (10 textures)

• plants (10 textures)

• rock (10 textures)

• stone (10 textures)

• textile (10 textures)

• wood (9 textures)

The dataset was generated from the Prague texture segmentation benchmark

website using the following parameters:

• “Colour” button selected for a Colour benchmark.

• “dataset size” set to “large (4x)”

• “supervised” checkbox checked

• “noise type” set to “no”

4.3 Fisher Linear Discriminant Analysis

We wish to analyze the effectiveness of grating features in texture discrimination.

We pose the problem of discriminating two textures as a classification problem,

with the pixels from the two texture images as the samples to be classified. Pixels

in the texture images are mapped to a high dimensional space using Gabor energy

or grating operators, with each dimension corresponding to the response of one
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image operator at that pixel. We use a linear classifier based on Fisher’s linear

discriminant. This description and implementation is based on [B+06].

Discriminant analysis for two-class classification works by projecting each data

point to a single dimension. Linear discriminant analysis uses a linear projection,

defined by a vector w. An input vector x is projected to one dimension by the

following equation:

y = wT x (4.1)

A threshold is then applied to classify the projected values. Fisher’s linear

discriminant is a way of finding the linear projection that maximizes the separation

of the two classes. The input to the Fisher linear discriminant classifier is N1

samples of class C1, and N2 samples of class C2.

The Fisher criterion is defined as the ratio of the variance between the two

classes to the variance within each class, and is given by the following equation:

J(w) =
(m2 − m1)

2

s2
1 + s2

2

(4.2)

where m1 and m2 are the means of the projected values of class 1 and class 2,

and s2
1 and s2

2 are the variances. This equation can be rewritten in terms of matrix

and vector operations like so:

J(w) =
wT SBw

wT SW w
(4.3)

where SB, the between-class covariance matrix, is:

SB = (m2 − m1)(m2 − m1)
T (4.4)
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and SW , the total within-class covariance matrix, is:

SW =
1

N1

∑

n∈C1

(xn − m1)(xn − m1)
T +

1

N2

∑

n∈C2

(xn − m2)(xn − m2)
T (4.5)

The w vector that maximizes this criterion is a unit vector in the direction of:

S−1

W (m2 − m1). (4.6)

The Fisher criterion increases as the projected points in different classes move

farther away from each other, and the projected points for points within the same

class move closer together. Higher values of the Fisher criterion indicate better

class separability. If the projected values of the two classes do not overlap, the

classes are said to be linearly separable.

In the experiments in this thesis, 10% of the pixels from a texture image are

selected randomly as the samples on which to perform classification, and samples

from two images are used as input samples to the classifier. The input samples

from each class are randomly partitioned into a training set, comprising 80% of

the samples, and a test set comprising the other 20%. The weight vector w and

the threshold are calculated using the training set. We report the Fisher criterion

for each comparison in Chapter 5. We also use receiver operating characteristic

curves to evaluate the separability of the classes in each comparison.

4.4 Classifier Evaluation Using Receiver Operat-

ing Characteristic Curves

A classifier can be constructed from the projected Fisher values by applying a

threshold to them, anc classifying all samples with a projected value above the
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threshold as one class, and all samples with a projected value below the threshold

as the other class. A receiver operating characteristic curve is a non-parametric

way of analyzing the performance of such threshold based classifiers across all

possible thresholds that could be chosen.

Let C1 be the “positive” class, and C2 be the “negative” class. A receiver

operating characteristic curve, or ROC curve, is a plot of the true positive rate,

that is the number of samples correctly classified as class C1, against the false

positive rate, the number of samples incorrectly classified as C1, as the classification

threshold is varied. Such a curve will always pass through the point (0,0) (for low

thresholds, there are no true or false positives) and (1,1) (for high thresholds, all

samples are classified as “positive”). If the classes are separable, the ROC cure

will pass through the point (0,1), which indicates that there is a threshold that

allows for a 100% true positive rate with no false positives.

The area under the ROC curve, or AUC, is a non-parametric measure of the

classifier’s effectiveness. Separable classes will have an AUC of 1. Two classes

with little or no separability will have an AUC close to .5. For a more thorough

discussion of ROC curves, see [Faw04].

In addition to calculating the AUC for each Fisher comparison, we also use the

AUC value to evaluate the amount of distinguishing information in each individual

feature band. For each comparison between two images, we take each individual

feature band in turn and use only the values of each sample in that feature band

to classify them. A classifier could be constructed by applying a threshold directly

to the feature values in each individual band. We report on the AUC for such

classifiers in Chapter 5.

The R package ROCR [SSBL05] was used to calculate the AUC and generate
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the ROC curves in this thesis.

4.5 Feature Bands Used in Comparison

For each of the Gabor energy and grating operators, 48 feature bands were gen-

erated for each image: eight orientations at each of six levels of scale. The ori-

entation parameters were 0o, 22.5o, ... 157.5o. These are the same orientations

used by Petkov and Kruizinga for grating operator orientations in their analy-

sis [PK97, KP99].

Each orientation is generated at six levels of scale. The first level of scale is the

original image size, and each level of scale represents a doubling of the size of the

receptive field of the operator. The wavelength parameter used for all operators

was 4 pixels, so at the effective scales of the operators used to generate features

are 4, 8, 16, 32, 64, and 128 pixels.

The set of 48 grating feature bands generated from an input image at the

previously described eight orientations and six scales will be referred to as the

“grating features” for an image. The set of Gabor energy bands will be referred to

as the “Gabor energy features” of an image.

4.6 Experiment Design

A total of 48 grating and Gabor energy features are generated for each image: 8

orientations (0o,22.5o,45o...157.5o) at each of 6 scales. A feature map for each of

these feature operators is generated for each 512x512 pixel texture image. This

projects each pixel into a 48 dimensional space, with each dimension being the

value of one of the feature maps at that pixel.
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For each image, 10% of the pixels are selected randomly to be the samples,

resulting in a set of 26214 samples for each image. The comparisons are performed

on this subset of the image.

A Fisher analysis is performed on the 48-dimensional samples taken from each

pair of texture images in the dataset, resulting in 5778 comparisons. 80% of the

samples in each class are selected to be the training samples, the other 20% are the

test samples. The Fisher projection vector and Fisher criteria is calculated using

the training samples. The AUC statistic is calculated using the test samples.
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Chapter 5

Results

In this chapter, we present the results of our evaluation. First, we present the

Fisher criteria scores and the area under the ROC curve (AUC) for the texture

pairs. Then, we provide a more detailed analysis of the performance of the grat-

ing cell operator. This analysis includes a subjective evaluation of the operator’s

performance across the different texture categories present in the Prague texture

segmentation benchmark.

5.1 Fisher Results

We set out to show that grating cell features contain useful texture information.

The data from the texture discrimination experiments supports this contention.

Table 5.1 gives aggregate Fisher criteria statistics for the 5778 pairs of textures.

The mean Fisher score for all pairs of textures using grating features is over 890,

about 168 times higher than the mean score for all pairs of textures with Gabor

energy features.

The higher Fisher criterion values for grating features are also reflected in the

AUC values, although the difference is not as pronounced. There is a ceiling of 1
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Min. Max. Mean
Fisher Criterion (energy) 1.18772 30.24766 5.29668
Fisher Criterion (grating) 1.72117 6506.523 890.55103

Table 5.1: Minimum, maximum, and mean Fisher criteria for all pairs of textures.

Min. Max. Mean
AUC (energy) .8836155 1 .997503
AUC (grating) .9999981 1 1

Table 5.2: Minimum, maximum, and mean AUC for all pairs of textures.

for the AUC value. Out of the 5778 pairs of textures, 2113 pairs are separable using

Gabor energy features. This indicates that the Gabor energy features generally

contain enough information to distinguish two textures. When grating features are

used, all but two pairs of textures are separable. Grating features contain more

distinguishing texture information than Gabor energy.

Figure 5.1 shows histograms of the Fisher projected sample values using both

grating and Gabor energy features for the textures “bark17” and “glass8”. The two

textures are highly separable using grating features, but the two projected clusters

overlap when using Gabor energy features. Figure 5.2 shows the ROC curves for

Gabor energy and gratings for these two textures. As the two classes are separable

using grating features, the ROC curve for the grating features passes through the

point (0,1), indicating a 100% true positive rate with no false positives, and the

area under the curve is 1.0. The two textures are not separable using Gabor energy

features; the area under the ROC curve for Gabor energy features is .884.

Figure 5.3 shows histograms of the Fisher projected sample values using both

grating and Gabor energy features for the “panel3” and “wood” textures. These

two textures are separable using both Gabor energy and grating features. Using

grating features, the samples from each class project to tighter clusters than with
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Figure 5.1: Histograms of projected samples for bark17 and glass8 textures.
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ROC Curves for comparison of bark17 to glass8
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Figure 5.2: ROC curves for bark17 and glass8 textures.
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Figure 5.3: Histograms of projected samples for agave2 and bark10 textures.
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First Texture Second Texture J (energy) AUC (energy) J (grating) AUC (grating)
panel3 wood4 30.03542 1 1.721174 1
panel3 woodpanel3 14.96378 1 2.967591 1
wood4 woodpanel3 18.30076 1 3.190641 1
kaolin5 stone21 4.126295 0.9999425 3.855945 0.9999981
glass6 marble4 6.103584 1 4.217152 1

roofTiles4 woodpanel3 12.33496 1 4.372276 0.9999982
kaolin1 marble4 1.587033 0.9473344 4.563894 1

glassWall oak 6.202118 1 4.737781 1
glass5 wood4 19.26053 1 4.793367 1
glass5 glass6 3.773492 0.999931 4.877406 1

Table 5.3: Lowest performing grating pairss.

Gabor energy features.

5.1.1 Worst Grating Performance

Though grating cell features generally were better at separating two textures than

Gabor energy features, there are pairs of images in the dataset for which they did

not perform well. In this section, we examine the texture pairs with the lowest

Fisher criteria for grating cell features.

Table 5.3 shows the bottom 10 pairs ranked by Fisher criterion using grating

features. Of the worst 10 pairs for grating features, the panel3 and wood4 textures

are present in four.

Of note here is that for eight of these texture pairs, the Fisher criteria for energy

is greater than that for grating. The mean Fisher criterion value for the pairs using

energy features is 11.6687927, higher than the mean of the Fisher criteria for all

pairs using energy features.

For the ten pairs with the lowest grating Fisher criteria, the AUC value when

Gabor energy features are used is above the mean nine out of ten times. On the
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Minimum Maximum Mean
All Energy Bands .50000003 1 .7297038
All Grating Bands .5 1 .7997665

Table 5.4: Minimum, maximum, and mean AUC statistic for single band classifiers.

pairs that had low Fisher criteria with grating features, the Fisher criteria with

Gabor energy features was high. We explore this relationship more in section 5.1.4.

Figures 5.4 and 5.5 shows the projected histograms for both energy and grating

features for the worst performing grating pairs. What is interesting here is that the

grating feature histograms do not appear to be Gaussian, which is the assumption

made by Fisher’s linear discriminant. For “roofTiles4” and “woodpanel3”, the right

tail of the “woodpanel3” class is significantly longer than the left, and overlaps the

other class. For “panel3” and “wood4”, the “panel3” class has an almost uniform

distribution over its range, rather than a Gaussian.

5.1.2 Individual Feature Bands

For each pair of textures, we computed the area under the ROC curve for each

individual feature band. Overall, 277344 pairs of feature bands were compared.

Table 5.4 shows the aggregate statistics for the AUCs for all bands.

On average, each individual pair of grating feature bands is easier to distinguish

than each pair of Gabor energy feature bands. As Figures 5.6 and 5.7 show, the

distributions of AUC scores for grating and Gabor energy features is significantly

different.

The distribution for Gabor energy features is non-uniform, with fewer band

pair at higher AUC values. Since the AUC caps at 1, there is a ceiling effect, and

therefore a spike at 1. Compare this with the distribution for grating feature band

49



Projected panel3 and wood4 points, energy features

projected sample points

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0
5

10
15

20
25 panel3

wood4

Projected panel3 and wood4 points, grating features

projected sample points

D
en

si
ty

−0.04 −0.02 0.00 0.02 0.04 0.06

0
50

10
0

15
0

20
0

panel3
wood4

Figure 5.4: Histograms of projected samples for panel3 and wood4 textures.
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Figure 5.5: Histograms of projected samples for roofTiles4 and woodpanel3 tex-
tures.
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AUC for Gabor energy feature bands
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Figure 5.6: Histogram of AUC values for Gabor energy feature band pairs.
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AUC for grating feature bands
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Figure 5.7: Histogram of AUC values for grating feature band pairs.
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pairs. The distribution is nearly uniform between AUC values of .5 to 1, with two

large concentrations around .5 and around 1. The distribution of the AUC values

for pairs of grating feature bands is highly bimodal.

A single grating feature band is far more likely than a single Gabor energy

feature band to contain enough information to perfectly distinguish textures in

this dataset than a single energy band. 61321 pairs of grating feature bands had

an AUC value of 1. This is around 22.1%. If two images and one grating feature

band are selected at random from the dataset, there is a 22.1% chance that that

one band contains enough information to distinguish the pixels of the two images.

In contrast, only 1758, or .6%, of Gabor energy feature band pairs had an AUC

value of 1.

It is also true that each individual grating feature band is more likely than a

single Gabor energy feature band to contain little or no distinguishing information.

35618, or 12.8%, of the individual grating band pairs had an AUC value of exactly

.5. No individual Gabor energy band pair had an AUC value of exactly .5, and

only 6781 (2.4%) had AUC values less than .51.

The presence of AUC values of exactly .5 for grating band pairs is explained by

the presence of grating bands that are identically 0. Of the 5184 grating feature

bands generated, 1404, or 27.1%, are identically 0. When a grating feature band

is entirely 0 for two textures, the AUC for those two textures along that band is

exactly .5. Any threshold less than 0 results in 0% true and false positive rates,

and any threshold greater than 0 results in 100% true and false positive rates.

None of the Gabor energy feature bands are entirely 0. When no grating of a

particular orientation and scale is present in an image, the corresponding grating

cell operator will produce a response of exactly 0. This is in contrast to the Gabor

54



energy operator, which will produce a small magnitude response due to noise even

when there is no actual energy at the operator’s orientation and scale.

5.1.3 Grating Cell Features as a Sparse Image Represen-

tation

The grating operator’s final response is a Gaussian smoothing of a discrete in-

termediate step, the grating subunit responses. This suppresses all responses to

stimuli that do not closely resemble the target spatial grating. This intermediate

discretization is reflected in the final outputs, which show a tendency to be either

exactly 0 or to high across much of an image.

102 out of the 108 images in the dataset have at least one identically 0 grating

feature band. The mean number of identically 0 grating feature bands per image is

13. The maximum number of identically zero grating feature bands in one image is

44. Grating feature bands are therefore a much sparser representation of an image

than Gabor energy feature bands, none of which were identically 0. This is true

both in terms of the number of bands which contained any information, and in

terms of the number of bands necessary to have enough information to distinguish

images.

5.1.4 Correlation Between Gabor Energy and Grating Re-

sults

The correlation, ρ, between two sets, X and Y, is defined as follows:

ρ =
Cov(X,Y )

σXσY

(5.1)

with Cov(X,Y ) being the covariance between X and Y, and σX and σY being

the standard deviation. Correlation ranges from -1 to 1. A value close to 1 indicates
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Category Textures Mean J , grating Mean J , energy Correlation
bark 12 786.2892 3.3978 0.04928685

flowers 10 1206.411 3.1235 0.1493595
glass 7 350.2044 4.0329 0.1479511

man-made 20 1091.002 7.6148 0.4690026
nature 10 777.6871 4.1392 0.3095019
plants 10 804.3594 3.0183 0.4056697
rock 10 428.7988 2.6138 -0.1190436
stone 10 631.0043 3.6923 0.6033728
textile 10 413.2916 8.7002 -0.173837
wood 9 504.7391 8.6570 -0.1491143

Table 5.5: By category statistics.

that X and Y vary linearly together. Larger magnitude values indicate a stronger

degree of dependence. We do not perform any statistical tests to determine the

significance of the correlation values presented in this thesis. We merely report

them and make anecdotal observations.

We compute the correlation between the Fisher criteria for pairss with Gabor

energy features and the Fisher criteria for the same pairs with grating features.

The correlation between the Fisher criteria values for pairs of textures using

Gabor energy features and the Fisher criteria values for pairs of textures using

grating features is 0.1695534. We found this value to be surprisingly low. This

indicates that grating cells are not just exploiting the same information in an

image more effectively than the Gabor energy features, but suggests that grating

cell features are fundamentally different from, not a refinement of, Gabor energy

features.
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5.2 By Category Study

Table 5.5 shows a summary of statistics for pairs of images from the same category.

The correlation between the Fisher criteria for grating and Gabor energy features is

highest for the “stone”, “man-made”, and “plants” categories. The best performing

categories for grating features were “flowers”, “man-made”, and “plants”.

Figure 5.8 shows the images in the “stone” category. The textures in this

category appear to have little oriented texture. No image has an obvious spatial

grating. This is reflected in the grating feature performance: the in-class pair mean

Fisher criteria is 631.0043, which is below the overall mean.

Figure 5.9 shows the images from the “rock” category. Comparisons on textures

within this category also performed worse than average with grating features, with

an in-class pair mean Fisher criteria of 428.7988. Some of the textures in this

category exhibit obvious spatial gratings, but many do not.

Figure 5.11 shows a selection of textures from the “man-made” category. Most

textures in this category contain obvious oriented texture. Many of these textures

are repeating simple geometric patterns. The Fisher criteria values for pairs with

grating features is suitably high: 1091.002.

Figure 5.10 shows the textures in the “flowers” category. The pairs within this

category with grating features did very well: the mean Fisher criteria was 1206.411.

While there appears to be oriented texture in the flower textures, most images do

not contain an obvious spatial grating.

Categories with textures containing more obvious spatial gratings tended to

perform better using grating features than categories with textures that did not

contain spatial gratings, although this does not appear to be a hard-and-fast rule.
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Figure 5.8: Textures in the “stone” category.
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Figure 5.9: Textures in the “rock” category.
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Figure 5.10: Textures in the “flowers” category.
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Figure 5.11: Twelve textures in the “man-made” category. The category contains
twenty textures in total.
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We leave a more thorough analysis of how the behavior of the grating operator

differs across categories of images to future work.
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Chapter 6

Conclusions

In this thesis, we compared features derived from a model of biological grating

cells to another Gabor-based image feature. The performance task for comparison

was texture discrimination.

The grating cell features were found to be more effective than Gabor-energy

features overall at distinguishing textures in a set of difficult, natural textures.

Image pairs had, on average, Fisher criterion scores 168 times higher in grating

cell feature space than in Gabor-energy feature space.

This result suggests the usefulness of the grating operator as a means to extract

low level information from natural images. Petkov and Kruizinga evaluated the

operator only in the context of “oriented texture”. We have broadened the analysis

to the general class of texture images in general, not just those visually identified

as being “oriented”.

The correlation between the Fisher criteria for pairs of images using grating

cell features and the Fisher criteria using Gabor-energy features is 0.1695534. This

low correlation suggests that grating cell features are not tapping into the same

image information as the Gabor energy operator.

Grating cell features are much sparser than Gabor energy features. A significant
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fraction of the grating feature bands contain no image information. However, a

significant fraction of pairs of grating feature bands from different images contain

enough information alone to distinguish those two images. Grating cell features

provide a sparser, but more information rich, representation of texture in an image.

Sparse coding has been suggested as a strategy employed in the visual cortex to

represent visual information [OF97]. The sparsity and effectiveness of the grating

cell ceatures for texture discrimination suggests that grating cells may play a role

in sparse representations in biological vision.

6.1 Future Work

The effectiveness of grating cell features in texture discrimination suggests their

use in other computer vision applications. The most direct next step is to use

grating features in the related problem of texture image segmentation. This is the

problem of taking an image consisting of regions containing different textures, and

determining the boundaries between the regions.

Kevin Burnett and Jason Remington used the grating cell model implementa-

tion developed for this thesis to test the effectiveness of grating cell features for

the texture segmentation task [BR].

The application of grating cells to other problems in Computer Vision is of

interest, given the performance of the grating cell features in the texture discrim-

ination task.

Other grating cell models can be analyzed and compared to Petkov’s. The

reproducible success of Petkov’s model has shown that grating cell features are

useful. Next, it could be established which existing grating cell model is the most

useful.
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