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ABSTRACT 

 

CHARACTERIZING HOST GENETIC RESISTANCE TO WHEAT STREAK MOSAIC 

VIRUS (WSMV) AND FUSARIUM WILT DISEASE 

 

Crop production is limited by a variety of biotic stresses caused by pathogens. This study 

focuses on wheat streak mosaic disease in wheat, caused by the viral pathogen Wheat streak mosaic 

virus (WSMV), and Fusarium wilt disease in banana, caused by the fungal pathogen Fusarium 

oxysporium f.sp. cubense (Foc). In this dissertation, I applied genomic and transcriptomic tools to 

study the Wsm2 locus that confers genetic resistance to WSMV. Analyzing exome and 

transcriptome reads from wheat lines carrying Wsm2, I characterized structural variations and 

identified unique transcripts specific to these Wsm2 carrying lines. Moreover, examination of 

candidate genes within the Wsm2 interval identified several tandemly duplicated candidate genes 

annotated as Bowman-Birk inhibitor (BBIs), which triggered my interests to perform a genome-

wide characterization of this gene family in wheat. I studied the possible mechanisms behind its 

copy number and functional domain duplications and analyzed its diverse role in plant biotic and 

abiotic stress using wheat RNA-seq expression data. Finally, I analyzed a time course 

transcriptomic dataset from banana root infected with Foc subtropical race 4 strain (Foc-STR4). I 

used gene co-expression assembly network (WGCNA) to study host plant transcriptional response 

to Foc infection and analyzed the expression profiles of candidate genes underlying a novel locus 

conferring resistance to Foc-STR4 and prioritized candidates. In summary, this dissertation studied 

genetic variants underlying host genetic resistance to WSMV and Foc and shed light on plant 

defense mechanisms against these two important crop pathogens.  
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CHAPTER 1. INTRODUCTION 

Crops suffer from a variety of diseases that affect both yield and quality. During my PhD, 

I studied host genetic resistance to Wheat streak mosaic virus (WSMV) in wheat and Fusarium 

wilt disease in banana which is caused by fungal pathogen Fusarium oxysporium f.sp. cubense 

(Foc). This chapter serves as an introduction to disease background, plant immunity mechanisms, 

and current knowledge on wheat and banana genomic resources. In my research, I applied genetic, 

genomic and bioinformatic tools to characterize genetic variation underlying QTLs that confer 

resistance to WSMV in wheat and Foc in banana and used transcriptomic approaches to explore 

plant resistance mechanisms. Results from these projects are described in Chapters 2 – 4.  

1.1 Background 

There is an urgent need to sustainably increase global food production and meet the challenge 

to feed over 9 billion people by 2050 (J et al., 2010). Bread wheat (Triticum aestivum L.) is one of 

the three major cereals that dominate global food production, providing approximately 20% of all 

calories consumed as well as significant amounts of protein and nutrients for human consumption 

(FAOSTAT, 2020). Banana (Musa sp.) is the leading fruit crop in world agricultural production 

and trade and is an important staple food source in developing countries (FAOSTAT, 2020). 

Among the most important factors limiting crop production are biotic stresses that can cause 

plant disease, including viruses, fungi, bacteria, nematodes, and insects (Singla & Krattinger, 

2015). Fungal pathogens are a major source of disease to wheat production and cause leaf rust 

(Puccinia triticina Eriks), stem rust (P. graminis Pers. f. sp. tritici), stripe rust (P. striiformis 

Westend f. sp. tritici), and powdery mildew (Blumeria graminis f. sp. tritici) (Narang et al., 2020; 

Singla & Krattinger, 2015). Viral diseases also threaten worldwide wheat production and include 

the yellow dwarf disease (YDD) that is caused mainly by Barley Yellow Dwarf Virus (BYDV, 
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genus, Luteovirus, family, Luteoviridae) (Miller and & Rasochová, 1997) and wheat streak mosaic 

disease (WSMD) that is caused by infection with Wheat Streak Mosaic Virus (WSMV, genus, 

Tritimovirus, family, Potyviridae) (Singh & Kundu, 2018). The major constraint for global banana 

production is Fusarium wilt disease, also known as Panama disease, which is caused by the fungal 

pathogen Fusarium oxysporium f.sp. cubense (Foc) (Ploetz, 2006). Disease symptoms for WSMV 

and Foc are illustrated in Figure 1.1.  

Figure 1.1. Disease symptoms of WSMV and Foc infection. (A) The viral pathogen WSMV affects wheat leaves, 

and infected plants show a yellowed mosaic pattern with discontinuous streaks. (B) The soil-borne fungal pathogen 

Foc affect banana root, and lead to leaf discoloration, yellowing and wilt along the edges of leaves.  

Different disease management tools are available to control biotic stresses. Chemical control, 

such as using fungicides, miticides, and pesticides, is not always available for many diseases, such 

as Wheat streak mosaic disease and Fusarium wilt disease (Ploetz, 2015; Singh & Kundu, 2018), 

and are not environmentally friendly. Moreover, cultural practices, such as removing diseased 

individuals, can be costly and laborious. In comparison, genetic resistance is the most effective 

and sustainable long-term management option to reduce yield losses caused from various biotic 

stresses (Bailey-Serres et al., 2019). In wheat, although some disease resistance loci have been 

identified with molecular markers, only a small number of underlying resistance (R) genes have 

been cloned and characterized (Bakala et al., 2021). The evolution of genomic approaches has 
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accelerated cloning of R genes from wild relatives, using techniques such as R gene enrichment 

sequencing (RenSeq), Associated Genetics Renseq (AgRenSeq) (Arora et al., 2019) and 

Mutagenesis Renseq (MutRenSeq) (Armstrong et al., 2019). However, introgression of these genes 

into elite crop cultivars remains laborious with traditional breeding methods, and technically 

difficult with transgenic approaches as many wheat cultivars remain recalcitrant to tissue culture 

and regeneration (Gao, 2021). As crops and pathogens compete in their evolution, the pathogens 

may overcome the resistance provided by single R genes, making the R gene ineffective against 

newly evolved pathogen strains (Frank, 1992). Cloning and characterization of resistance genes 

helps us to understand plant immunity mechanisms. Greater access to more cloned R genes could 

be engineered into crops as a stack to help breed for strong, durable, and broad-spectrum resistant 

crops to fight against various pathogens. 

1.2 Molecular Basis of Plant Biotic Stress Resistance 

Plant innate immunity against pathogens can be categorized into two main groups. The first 

layer of resistance is triggered by perception of pathogen or microbial associated molecular 

patterns (PAMPs/MAMPs) through plant transmembrane pattern recognition receptors (PRRs) 

which results in PAMP-triggered immunity (PTI) (Zipfel, 2014; Couto & Zipfel, 2016; Sánchez-

Martín & Keller, 2019). Pathogens can release effectors to suppress PTI, leading to effector 

triggered susceptibility (ETS) (Jones & Dangl, 2006). In turn, plants have evolved resistance (R) 

genes that can recognize pathogen avirulence effectors (Avr), leading to effector-triggered 

immunity (ETI) (Jones & Dangl, 2006).  

Plant immune responses downstream of PTI and ETI overlap and include calcium ion influx, 

reactive oxygen species (ROS) production, mitogen-activated protein kinase (MAPK)-mediated 

signaling, transcriptional reprogramming and hormone accumulation (Bigeard et al., 2015; Cui et 
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al., 2015). Important hormone-mediated plant immune responses include the antagonistic crosstalk 

between salicylic acid (SA) and jasmonic acid (JA) pathways (Shigenaga et al., 2017). SA 

accumulation induced plant ETI-mediated resistance against biotrophic and hemi-biotrophic 

pathogens, whereas JA and ethylene (ET) biosynthesis and signaling usually induces PTI-mediated 

resistance against necrotrophic pathogens (Glazebrook, 2005). 

Most dominant R genes in plants cloned to date encode nucleotide-binding site (NBS) and 

leucine-rich repeats (LRRs) proteins, which directly or indirectly interact with pathogenic Avr 

effectors to trigger downstream defense responses (Balconi et al., 2012). The NBS-LRR proteins 

(NLRs) contain three main domains: the central nucleotide binding domain (NB-ARC) is highly 

conserved and binds ADP or ATP molecules, LRRs at the C-terminus that are important for 

recognition specificity, and a highly diverse N-terminus with two main domain groups, the coiled-

coil (CC) or Toll and Interleukin-1 Receptor (TIR) domains that are responsible for downstream 

signaling after pathogen recognition (Marone et al., 2013; de Ronde et al., 2014). R gene-mediated 

resistance often induces hypersensitive responses (HR) that includes programmed cell death (PCD) 

and causes detectable necrotic lesions in the infected tissues (Greenberg & Yao, 2004). In rare 

occasions of plant resistance to some viral pathogens, the R gene mediated ETI response does not 

trigger observable necrosis or HR, defined as extreme resistance (ER) (de Ronde et al., 2014). 

1.3 Natural Genetic Variation is an Important Source of Genetic Resistance 

The long-term strategy to develop crops with genetic resistance to biotic stress often relies on 

exploring natural genetic diversity for resistance alleles followed by introgression of such 

resistance genes into elite varieties by recombination. Genetic variation includes single nucleotide 

polymorphism (SNPs), small insertion and deletions (Indels), as well as larger structural variations 

(SVs) such as copy number variations (CNVs), gene presence/absence variations (PAVs), and 
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chromosomal rearrangements (Escaramís et al., 2015; Yuan et al., 2021). Advances in high-

throughput sequencing technologies have facilitated the identification of SVs in plants, and there 

is growing evidence showing that SVs are important sources of genetic variation associated with 

disease resistance traits (Wellenreuther et al., 2019). Genome wide analysis of SVs have shown R 

genes are highly enriched for CNVs in many plant species, including soybean (E et al., 2012; 

McHale et al., 2012; Lee et al., 2015), barley (Muñoz-Amatriaín et al., 2013), maize (Richter et 

al., 1995; Beló et al., 2009), and rice (Yu et al., 2013). CNVs can be one of the possible 

mechanisms to enhance plant disease resistance through duplication or deletion of R genes to 

modify gene expression levels.  

1.3.1 Accessing natural genetic variation in polyploid wheat  

As one of the major cereal crops, diseases in wheat pose a particularly large challenge to 

maintaining food security. An expanding set of genomic resources facilitates the study of diverse 

sources of genetic variation that can be applied to develop wheat cultivars with genetic resistance 

to important pathogens. Two major classes of domesticated wheat account for the vast majority of 

production: tetraploid durum wheat (Triticum turgidum ssp.durum; AABB genome) used for pasta, 

and hexaploid common wheat (Triticum aestivum L.; AABBDD genome) used for making bread, 

noodles and cookies (Jorge & Jan, 2007). Common wheat originates from two separate 

hybridization events (Thomas et al., 2014). The first occurred approximately 0.5 to 0.9 million 

years ago between Triticum urartu (AA genome) and an unknown species related to Aegilops 

speltoides (BB genome) which gave rise to Triticum turgidum ssp. dicoccoides (AABB genome). 

The second hybridization event between Triticum turgidum ssp. durum (AABB) and Aegilops 

tauschii (DD) occurred approximately 10,000 years ago (El Baidouri et al., 2017). 
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Genetic studies in wheat species are complicated due to its large and polyploid genome (16 

Gb for common wheat and 12 Gb for durum wheat) and highly repetitive DNA sequences (> 85%) 

(Appels et al., 2018; Maccaferri et al., 2019). Central to many genetic studies is the most complete 

and best annotated chromosome-level genome assembly of the common wheat landrace ‘Chinese 

Spring’ (IWGSC RefSeq v1.0), which has a total assembly size of 14.5 Gb, representing 94% of 

the whole genome and includes 107,891 high-confidence (HC) gene models and 161,537 low-

confidence (LC) gene models (Appels et al., 2018). A recent optical map based on long-read 

sequencing refined the ‘Chinese Spring’ reference genome as IWGSC RefSeq v2.1 with 108,010 

HC and 161,535 LC gene models on this assembly (Zhu et al., 2021). 

In addition to ‘Chinese Spring’, sixteen other wheat lines have publicly available reference-

quality genome assemblies, representing the wheat pangenome (Walkowiak et al., 2020). These 

resources facilitate the study of within-species genomic variation and haplotype analysis (Brinton 

et al., 2020). Moreover, the genome sequence of wild emmer wheat (Triticum 

turgidum ssp. dicoccoides, AABB genome) ‘Zavitan’ (Avni et al., 2017) and a modern durum 

wheat ‘Svevo’ (Maccaferri et al., 2019) has been released, together with the genome sequence of 

diploid ancestral progenitors Triticum urartu (AA genome, Ling et al., 2018) and Aegilops tauschii 

(DD genome, Luo et al., 2017), which are important genetic resources to study wheat evolution 

and to explore genetic diversity for rare disease resistance alleles in wild species.  

To dissect natural genetic variation underlying important QTLs in wheat lines without 

genome assemblies, reduced representation methods such as genotyping-by-sequencing (GBS) is 

attractive and is routinely applied in wheat breeding programs instead of whole genome sequences 

(WGS) (Poland & Rife, 2012). GBS can reduce the genome sequencing complexity with relatively 

low cost but still be able to discover genetic polymorphisms that span whole genomes from specific 
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wheat cultivars (Poland & Rife, 2012). Another reduced representation method for genetic variant 

discovery in wheat is exome sequencing that targets the coding regions of the genome (Biesecker 

et al., 2011; Winfield et al., 2012; Gardiner et al., 2019). Exome capture sequencing can be used 

to detect SNP variants as well as SVs (Saintenac et al., 2011). The detected genome-wide genetic 

polymorphisms, especially SNPs, can be utilized for association mapping, i.e., genome-wide 

association studies (GWAS) (Huang & Han, 2014; Ogura & Busch, 2015) and refined linkage 

mapping, i.e., quantitative trait locus (QTL) mapping (Hussain et al., 2017). For example, linkage 

and association analysis using iSelect SNP array identified a locus on wheat chromosome 6D that 

provides resistance to wheat curl mite (Dhakal et al., 2018). 

In addition to genomic approaches to discover genetic variation, transcriptomics is also a 

powerful approach to study candidate genes underlying the QTLs using RNA transcript levels 

(Lowe et al., 2017). RNA sequencing (RNA-seq), which uses high-throughput sequencing to 

quantify transcripts in biological samples, can be used to quantify gene expression during 

development and under different conditions, and can also be used to discover novel transcripts or 

splice variants in de novo transcriptome assemblies (Wang et al., 2009). Furthermore, RNA-seq 

data can be used to assemble gene co-expression networks to reveal the gene regulation processes 

and to predict function of uncharacterized genes (Borrill et al., 2015). The wheat gene expression 

atlas contains over 900 RNA-seq samples from various tissue types, spanning different 

developmental stages, including multiple biotic and abiotic stresses and cultivars (Borrill et al., 

2016; Ramírez-González et al., 2018). This RNA-seq database facilitates the study of potential 

molecular functions of orthologous genes of interest and provides sources to narrow down 

candidate genes within a QTL region (Borrill et al., 2019). 
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1.3.2 Genomic resources for banana 

Similar to wheat, the banana genome is also polyploid and most cultivated bananas have a 

triploid genome (2n = 3x = 33, genome constitutions of AAA, AAB, or ABB), derived from two 

diploid progenitors, Musa acuminata (AA genome) and Musa balbisiana (BB genome) (D’Hont 

et al., 2000). The first Musa reference genome is of DH-Pahang, a doubled haploid Musa 

acuminata genotype (2n = 22, AA genome), of the subspecies malaccensis with a genome of 523 

Megabases (Mbp) containing 36,542 protein-coding gene models (D’hont et al., 2012). Other 

genomic resources and tools for banana include several other Musa genome assemblies, 

transcriptomics and metabolic pathways, and genetic variants compared to rice that are available 

on the Banana Genome Hub (Droc et al., 2013), which facilitates studies to understand the basis 

of disease resistance in banana. 

1.4 Dissertation Overview 

During my PhD, I researched the Wsm2 locus that confers WSMV resistance in wheat. An 

examination of candidate genes within this locus revealed extensive duplication of Bowman-Birk 

inhibitor (BBI) genes, a family of plant protease inhibitors (PIs), which triggered my interest to 

characterize this gene family in wheat. I used genomic and transcriptomic tools to characterize 

genetic variants underlying Wsm2. I also worked on a collaborative project with Dr. Elizabeth 

Aitken’s lab at University of Queensland in Australia to study banana Fusarium wilt disease 

resistance. 

In Chapter 2, I performed a genome wide characterization of the BBI gene family in common 

wheat and used phylogenetics to compare with the orthologs in rice, maize, barley and 

Brachypodium (Xie et al., 2021). I explored SVs of this gene family in wheat progenitors and 

among wheat cultivars and identified extensive CNVs and PAVs as well as small genetic variation 
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that leads to tandem functional domain duplications. The expression profiles of BBIs in common 

wheat were explored using RNA-seq databases, showing that members of this gene family likely 

have diverse functions throughout wheat development, and in response to biotic and abiotic stress. 

In Chapter 3, I performed genomics and transcriptomics characterization of the Wsm2 locus. 

Haplotype analysis in wheat pangenomes revealed that the genomic region underlying the Wsm2 

locus is highly dynamic among wheat cultivars and the variants conferring WSMV resistance are 

likely to be rare. I analyzed exome capture reads from ‘Snowmass’ (Wsm2+) and identified genetic 

polymorphisms and CNVs for candidate genes underlying Wsm2 locus. I performed an RNA-seq 

study and explored unmapped reads using a de novo transcriptome assembly of Wsm2+ lines to 

identify unique transcripts specific to Wsm2+ line. From the RNA-seq study, I also explored host 

responses to WSMV infection and identified five candidates within Wsm2 interval. My study sheds 

light on possible causative genes underlying Wsm2 and facilitates hypothesis generation of 

candidates that can be tested to breed WSMV resistant wheat cultivar. Moreover, this work also 

developed CRISPR/Cas9-edited gene knockout mutants to test one of the top selected causative 

gene, RPM1, underlying Wsm2 locus.  

In Chapter 4, I analyzed a time course transcriptome dataset for resistant and susceptible 

banana genotypes in response to Foc-STR4 infection and used gene co-expression network 

assembly (WGCNA) to study overall transcriptomic changes. I found that the reactive oxygen 

species (ROS) production and cell wall strengthening related responses were induced in both 

resistant and susceptible banana genotypes. Comparatively, the resistant genotype induces such 

defense responses much faster and transiently than in susceptible genotype. Moreover, the 

transcriptome analysis also helped to prioritize candidates underlying a novel Foc-STR4 resistance 

locus identified from a QTL-seq study. 
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CHAPTER 2. EXTENSIVE STRUCTURAL VARIATION IN THE BOWMAN-BIRK 

INHIBITOR FAMILY IN COMMON WHEAT (TRITICUM AESTIVUM L.)1 

2.1 Summary 

Bowman-Birk inhibitors (BBI) are a family of serine-type protease inhibitors that modulate 

endogenous plant proteolytic activities during different phases of development. In this study, we 

used a Hidden Markov Model (HMM) profile-based search to identify 57 BBI genes in the 

common wheat (Triticum aestivum L.) genome. The BBI genes are unevenly distributed, with large 

gene clusters in the telomeric regions of homoeologous group 1 and 3 chromosomes that likely 

arose through a series of tandem gene duplication events. The genomes of wheat progenitors also 

contain contiguous clusters of BBI genes, suggesting this family underwent expansion before the 

domestication of common wheat. However, the BBI gene family varied in size among different 

cultivars, showing this family remains dynamic. Because of these expansions, the BBI gene family 

is larger in wheat than other monocots such as maize, rice and Brachypodium. We found BBI 

proteins in common wheat with intragenic homologous duplications of cysteine-rich functional 

domains, including one protein with four functional BBI domains. This diversification may expand 

the spectrum of target substrates. Expression profiling suggests that some wheat BBI proteins may 

be involved in regulating endogenous proteases during grain development, while others were 

induced in response to biotic and abiotic stresses. This information will facilitate the functional 

characterization of individual wheat BBI genes to determine their role in wheat development and 

stress responses and their potential application in breeding. 

 

1 Published in BMC Genomics Journal. Authors: Yucong Xie, Karl Ravet, and Stephen Pearce. (Xie et al., 2021) 
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2.2 Introduction 

Plant proteases play vital roles in diverse biological processes by modulating programmed 

cell death, nutrient remobilization and defense responses (Clemente et al., 2019). Their activity is 

regulated by different classes of protease inhibitors (PIs) which bind to their protease substrates 

either through an irreversible trapping reaction or a tight-binding reaction (Laskowski & Kato, 

1980; Laskowski & Qasim, 2000; S. Bateman & N.G. James, 2011). In plants, PIs regulate the 

activity of endogenous proteases to prevent proteolytic degradation, for example, by controlling 

the mobilization of storage proteins in seeds and kernels, and regulating senescence (Pak & Van 

Doorn, 2005; Volpicella et al., 2011). They also play important roles in plant defense by regulating 

the activity of exogenous proteases from different types of pests and pathogens to prevent cellular 

damage (Haq et al., 2004). In response to insect feeding, plant PIs are released into the insect’s 

guts and inhibit digestive protease enzymes, which can prevent nutrient absorption, retarding their 

growth and development (Chen, 2008). Plant PIs are also induced by effector triggered immunity 

in response to bacterial and fungal pathogens to inhibit their proteolytic enzymes (Hellinger & 

Gruber, 2019; Jashni et al., 2015; Lawrence & Koundal, 2002). PIs are categorized into four broad 

classes according to their target protease specificity: serine PI (serpins), cysteine PI (cystatins), 

aspartic acid PI (pepstatins), and metallo-carboxy PI (Laskowski & Kato, 1980). PIs are further 

classified into types, families and clans to reflect their evolutionary relationships based on 

sequence homology, structural variation and biochemical function (Birk, 2003; Rawlings et al., 

2004; Rawlings & Barrett, 1993). The latest PI classifications are maintained in the MEROPS 

database (Rawlings et al., 2018). 

Bowman-Birk inhibitors (BBIs) are a family of serine-type PIs in MEROPS family I12, clan 

IF, that inhibit trypsin and chymotrypsin protease activity via the tight-binding reaction mechanism 
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(Birk et al., 1963; Bowman, 1946). Members of the BBI family are best known for their role in 

plant defense against phytophagous insects, and have been used to engineer insect-resistant 

transgenic crops (Singh et al., 2020). Overexpression of a cowpea trypsin inhibitor gene, which 

encodes a BBI protein, confers resistance to insects in the orders Coleoptera and Lepidoptera in 

tobacco (Hilder et al., 1987), rice (Xu et al., 1996), and wheat (Bi et al., 2006). Several BBI 

proteins also exhibit trypsin-like protease inhibition against fungal pathogens including 

Mycosphaerella arachidicola, Fusarium oxysporum, and Botrytis cinerea (Komarnytsky et al., 

2006; Ye et al., 2001), Fusarium culmorum (Pekkarinen et al., 2007) and Pyricularia oryzae (Qu 

et al., 2003), as well as bacterial pathogens such as Xanthomonas oryzae pv. Oryzae (Pang et al., 

2013). One rice BBI, APIP4, interacts at the protein level with both a fungal effector and host NLR 

receptors as part of the innate immune response, and plants carrying loss-of-function mutations in 

this gene exhibit increased susceptibility to Magnaporthe oryzae (Zhang et al., 2020). In wheat, 

genetic mapping studies identified putative BBI genes as candidates for seedling resistance to tan 

spot (Juliana et al., 2018) and Fusarium head blight (Sari et al., 2019). There is also evidence that 

BBIs play roles in more diverse processes, such as tolerance to salinity (Shan et al., 2008), 

oxidative (Dramé et al., 2013), and drought stress (Malefo et al., 2020; Yan et al., 2009), and 

regulating Fe uptake via an unknown mechanism (Zhang et al., 2014). 

First discovered in soybean in 1946 (Bowman, 1944), BBIs had until recently only been 

described in the Fabaceae and Poaceae families (Mello et al., 2003). The BBIs are now known to 

be widely distributed in angiosperms (James et al., 2017; Mello et al., 2003; Qi et al., 2005), and 

evolutionary and phylogenetic analyses suggest they share a common ancestral sequence (James 

et al., 2017). The characterization of five BBIs in Selaginella moellendorffii, the oldest known 

extant vascular plant, show that this ancestral protein has a characteristic “double-headed” 
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structure with two homologous and spatially separated inhibitory loops within one BBI domain 

(James et al., 2017). Conserved inhibitory loops form reactive motifs providing dual specificity 

(Mello et al., 2003). BBI domains are also characterized by a series of conserved Cysteine (Cys) 

residues, which form disulfide bridges to provide structural stability required to maintain inhibitory 

loop conformation (Mello et al., 2003; Qi et al., 2005). The mutation of a single conserved Cys 

residue forming a disulfide bridge is sufficient to abolish the activity of either inhibitory loop 

(Clemente et al., 2015), and BBI domains with fewer than ten Cys residues are predicted to be 

non-functional (Mello et al., 2003). The Cys-formed inhibitory loops contain reactive domains 

composed of variable amino acids responsible for binding to trypsin and to chymotrypsin, 

including two residues, P1 and P1’, that are proposed to play a role in determining protease 

substrate specificity (Mello et al., 2003). BBI proteins also commonly have a hydrophobic signal 

peptide (SP) at their N-terminus, with high sequence diversity among different BBIs (Baek et al., 

1994; Baek & Kim, 1993). The SP is required for BBI protein translocation and secretion into the 

extracellular space, although it is not necessary for protease inhibition since the inhibitory loops 

can function independently of the rest of the BBI protein (Nishino et al., 1977). There is also 

evidence that BBI proteins can act in the nucleus (Zhang et al., 2014). All characterized BBI 

proteins in dicotyledonous plants have a conserved “double-headed” structure with a consistent 

molecular weight of approximately 8 kDa (Birk, 1985; James et al., 2017; Mello et al., 2003; Qi 

et al., 2005). 

By contrast, almost all BBIs in monocotyledonous plants lack conserved Cys residues in the 

second inhibitory loop that are required to inhibit chymotrypsin, leading to a “single-headed” 

structure so that each BBI domain consists of only one functional reactive loop to inhibit trypsin 

activity (Mello et al., 2003). The only known exceptions are three “double-headed” BBIs in the 
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banana (Musa acuminate) genome, indicating that the “single-headed” BBI structure originated 

since the monocot and dicot lineages diverged (James et al., 2017). Evolutionary models indicate 

that monocot BBIs underwent internal domain duplications within a single protein that resulted in 

multiple inhibitory loops (Mello et al., 2003; Prakash et al., 1997; Qu et al., 2003). Previous studies 

divided monocot BBI proteins into six groups (MI-I to MI-VI) on the basis of their functional 

domain number and the number and position of conserved Cys residues (Habib & Fazili, 2007; 

Lawrence & Koundal, 2002; Mello et al., 2003). To simplify, these six BBI models in monocots 

can be grouped into three broad classes; one comprised of 8 kDa proteins with a single functional 

domain (groups MI-I, MI-II, and MI-III), a second class with a molecular weight of approximately 

16 kDa and a duplicated single-inhibitory loop (groups MI-IV and MI-V) and a final category of 

larger proteins with three tandemly duplicated BBI domains. While the first two classes are 

widespread in monocots, only three rice BBIs have been described which fall into the final class 

(Qu et al., 2003).  

Genome-wide studies of the BBI gene family have been performed in rice (Qu et al., 2003), 

common bean (Galasso et al., 2009) and other angiosperms (James et al., 2017). However, to date, 

only three BBIs have been characterized in common wheat (Triticum aestivum L.), a crop which 

provides approximately 20% of the calories and proteins consumed by the human population 

(USDA-FAO, 2018). Of the three BBI proteins isolated from wheat germ, IBB1 has two 

homologous functional domains, each with one functional inhibitory loop (Odani et al., 1986; Raj 

et al., 2002), whereas IBB2 and IBB3 have only one functional domain (Odani et al., 1986; Poerio 

et al., 1994). These three BBIs inhibit protease activity, control protein metabolism during wheat 

kernel development and germination, and inhibit fungal trypsin-like activity and hyphal growth 

(Chilosi et al., 2000). Three other putative genes with sequence homology to BBIs (wali3, wali5, 
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and wali6 ) were isolated as cDNAs from wheat root tips (Richards et al., 1994; Shan et al., 2008; 

Snowden et al., 1995). These putative BBI genes are transcriptionally induced by wounding or by 

the imposition of toxic metal stress, but their function against protease was not tested (Shan et al., 

2008; Snowden et al., 1995).  

The identification of wheat BBI genes is complicated by the high frequency of residue 

substitution and sequence variability among encoded proteins, and the complexity of the wheat 

genome. Common wheat is an allopolyploid (genomes AABBDD) produced from two separate 

hybridization events. The first occurred approximately 0.5 to 0.9 million years ago between T. 

urartu (AA) and an unknown species related to Aegilops speltoides to form the tetraploid wild 

emmer wheat T. turgidum ssp. dicoccoides (AABB). A second hybridization event between T. 

turgidum ssp. durum and Ae. tauschii (DD) gave rise to common wheat, approximately 10,000 

years ago (El Baidouri et al., 2017). 

In the current study, we used a Hidden Markov Model (HMM)-based approach to describe 

the BBI gene family in common wheat, revealing it to be larger than in other monocot species. We 

found evidence of extensive gene duplications throughout wheat’s evolutionary history, as well as 

internal duplications that further diversified the functional BBI domains of individual proteins. 

The findings from our study highlight the extent of variation in the BBI gene family in the Triticeae 

lineage and will facilitate their functional characterization to explore how this diversity impacts 

wheat development and plant defense. 

2.3 Results 

2.3.1 Bowman-Birk inhibitor genes are unevenly distributed in the common wheat genome 

We identified 57 BBI genes in the hexaploid common wheat genome using a three-step 

HMM-based approach outlined in Figure 2.1. We first used the HMM profile for BBI (Pfam: 
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PF00228, downloaded from the Pfam database) to search the IWGSC RefSeq v1.1 protein database 

and identified 39 BBI proteins. We generated a new HMM profile based on the alignment of these 

39 sequences and used this in a second search against the same protein database to identify 62 BBI 

proteins, including 23 that were not found in the first step. We performed HMMscan on each 

protein and excluded five sequences that lacked a BBI Pfam domain (Table S2.1). A final search 

using an HMM profile built from an alignment of the remaining 57 BBIs did not yield any 

additional proteins, confirming this is a comprehensive list of annotated BBI proteins in the wheat 

landrace ‘Chinese Spring’ (Table S2.1).  

We manually adjusted the start codon position for five BBIs to match homologous sequences 

(Table S2.2). After manual curation, 50 full-length BBIs are predicted to have an N-terminal SP 

domain, with cleavage positions ranging from 15 to 30 amino acids. Seven N-terminally truncated 

BBIs are predicted to lack a functional SP domain (Table S2.1). 

The 57 BBIs include three genes (TraesCS3A02G046000, TraesCS3B02G036400, and 

TraesCS1B02G025900) that encode previously characterized BBI proteins - IBB1, IBB2, and 

IBB3 (Table S2.3) (Odani et al., 1986; Poerio et al., 1994). Three other previously described 

putative BBI genes (wali3, wali5 and wali6 (Richards et al., 1994; Snowden et al., 1995)) were not 

found among the 57 BBIs. An HMMscan analysis of the corresponding full-length proteins 

(TraesCS1D02G265900, TraesCS1D02G265800 and TraesCS1B02G276900) revealed that they 

did not contain a BBI domain, indicating these genes do not encode functional BBI proteins (Table 

S2.3). 

Wheat BBI genes are unevenly distributed across the genome with two gene triads on 

chromosomes 4 and 5 and large clusters on homoeologous group 3 (36 BBIs) and group 1 

chromosomes (15 BBIs) (Figure 2.2). The BBI genes in these clusters are separated by short 
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physical distances and in several instances include adjacent BBIs, suggesting they arose through 

tandem gene duplication events (Figure 2.2). For example, the ten BBIs on chromosome 3A span 

a region of just 270 kb and include four adjacent BBIs (Figure 2.2B). All wheat BBIs were located 

in the telomeric regions (R1 and R3) of their respective chromosomes (Figure 2.2A). 

This pattern of gene duplication is consistent with homology analysis that divided the 57 BBIs 

into six homoeologous categories (Table 2.1). Overall, 21 BBI genes (36.8% of the total) formed 

seven complete triads (1:1:1 for A:B:D genome), close to the 35.8% for all wheat genes in the 

genome (Appels et al., 2018). By contrast, 14% of BBI genes form groups characterized by gene 

duplication (n:1:1/1:n:1/1:1:n) compared to 5.7% of all wheat genes (Appels et al., 2018) (Table 

2.1). In addition, one group of genes consisted of four tandemly duplicated genes on chromosome 

1B (0:4:0), while on chromosome 3, one group exhibited duplications of both the A and B 

homoeologs (2:2:1) (Table 2.1, Table S2.4). 

Table 2.1 Homoeologous group identification and categorization of the BBI gene family in wheat 

Cate

gory 

number 

Homoeologous 

group (A:B:D) 

Number 

of groups 

Number 

of genes 

% 

of genes 

1 1:1:1 7 21 36.8 

2 2:1:1 and 1:2:1 2 8 14 

3 1:1:0 and 0:1:1 2 4 7 

4 0:4:0 1 4 7 

5 2:2:1 and 2:0:2 2 9 15.8 

6 Singletons 11 11 19.4 

- Total 25 57 100 

 

To determine whether these duplication events affected the selective pressure on BBI genes, 

we performed a Ka/Ks ratio analysis to calculate the sequence divergence rate for the clusters of 

BBIs on individual homoeologous group 1 and 3 chromosomes. A ratio of non-synonymous (Ka) 

to synonymous (Ks) nucleotide changes greater than one indicates divergent function of two genes, 
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whereas a Ka/Ks ratio of less than one indicates purifying selection and conserved function. The 

Ka/Ks ratios for pairwise comparisons of BBI genes on homoeologous group 1 chromosomes were 

all less than one, except for one branch on chromosome 1D between TraesCS1D02G020600 and 

TraesCS1D02G018700LC that had a value of 1.17 (Figure S2.1). By contrast, eight branches on 

homoeologous group 3 chromosomes had Ka/Ks values greater than one, including four branches 

on 3A, two branches on 3B, and two branches on 3D (Figure S2.1). 

Overall, our analysis shows that the BBI family in wheat is unevenly distributed across the 

genome and includes large gene clusters in the telomeric regions of homoeologous group 1 and 

group 3 chromosomes. The distribution of the genes in these clusters suggest they originated from 

paralogous expansion through tandem duplication events. 

2.3.2 BBI genes underwent extensive tandem duplications in the Triticeae 

We next compared the BBI family in wheat with other monocot species. Using the same 

approach and criteria (Figure 2.1), we identified six BBIs from Brachypodium (B. distachyon), 

seven from maize (Z. mays), eleven from rice (O. sativa), and sixteen from barley (H. vulgare) 

(Figure 2.3A). A full list of BBIs from each species is provided in Table S2.5. Considering its 

hexaploid genome, common wheat has an average of 19 BBI genes per diploid genome, 3.2-fold 

more than Brachypodium, 2.7-fold more than maize, 1.7-fold more than rice, but just 1.2-fold more 

than barley (Figure 2.3B). 

To explore the genetic relationships between BBIs in these species, we constructed a 

phylogenetic tree from all identified proteins. The tree separated wheat BBIs into three broad 

clades, each of which also contained BBIs from other species, except clade A that does not contain 

maize BBIs (Figure 2.3C). Clade A clustered all wheat BBIs located on homoeologous group 1 

and 5 chromosomes. Clade B included the majority of wheat BBIs located on homoeologous group 
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3 chromosomes, with the remainder clustered in clade C together with the BBI gene triad from 

chromosome 4 (Figure 2.3C). 

Consistent with their relatively recent divergence and the similarity in size of the BBI gene 

family, most barley BBIs co-located with wheat BBIs (Figure 2.3C). However, one cluster of 

contiguous BBIs on barley chromosome 3H suggests that gene duplication events also occurred 

independently in this species (Clade C, Figure 2.3C). Maize and rice BBIs formed two distinct 

clusters in clade B and clade C, which included several adjacent BBIs in their respective genome 

assemblies, suggesting that BBI gene duplication also occurred independently in both these species 

(Figure 2.3C). 

BBI proteins were also separated according to the type of reactive site and the number of 

active domains they contained, as defined by Mello et al. (Mello et al., 2003). Every BBI from all 

species in clade A contains a single active BBI domain and all fall into the MI-I group except for 

one barley BBI (HORVU5Hr1G068510) that does not match any previously characterized BBI 

group (Figure 2.3C). The wheat BBIs clustered in clades B and C are all multi-domain proteins 

and fall into either the MI-II or MI-IV groups except for three wheat BBIs with more than two 

domains that are most similar to the MI-IV group (Figure 2.3C). The cluster of rice, maize and 

Brachypodium BBIs in clade C were most similar to the wheat BBIs on homoeologous group 3 

chromosomes, and were also all multi-domain proteins, represented by groups MI-IV, MI-V and 

MI-VI (Figure 2.3C). 

This phylogeny reveals that the BBI gene family in monocots is subject to a complex pattern 

of internal and external gene duplication events, resulting in multi-domain BBIs and gene copy 

number variation in each species. In wheat, extensive gene duplication on homoeologous group 1 
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and especially group 3 chromosomes, that also occurred in barley, account for the greater numbers 

of BBI genes in the Triticeae lineage compared to other grasses. 

2.3.3 The BBI gene family underwent gene duplication and deletion events both before and 

after common wheat’s domestication 

To gauge the approximate timing of the BBI gene family expansion in wheat, we identified 

BBI proteins from common wheat’s ancestors. We found 12 BBIs from T. urartu, and 17 from Ae. 

tauschii, the diploid progenitors of the A and D genomes of common wheat, respectively (Figure 

2.4A). Because the diploid wheat B genome progenitor is unknown, we analyzed T. dicoccoides, 

an allotetraploid progenitor with genomes AABB, and identified 23 BBIs. We excluded one of 

these genes from our analysis (TRIDCUv2G007850) because it was not assembled into a known 

chromosome, leaving eight BBIs on the A genome and fourteen on the B genome (Figure 2.4A). 

Compared to each diploid progenitor genome, the corresponding genome in T. aestivum contained 

a greater number of BBIs (Figure 2.4B). There were 1.3-fold more BBIs on the A genome of T. 

aestivum than in T. urartu and 1.9-fold more genes than in the A genome of T. dicoccoides (Figure 

2.4B). There were 1.5-fold more BBIs on the B genome of T. aestivum compared to T. dicoccoides. 

By contrast, the T. aestivum D genome contains only 1.2-fold more BBI genes than Ae. tauschii 

(Figure 2.4B). 

Phylogeny showed that most genes from wheat ancestors were clustered into orthologous 

groups with their corresponding genes in common wheat (Figure 2.4C, Table S2.6). Orthologs of 

the BBI genes on T. aestivum homoeologous group 4 chromosomes were present in T. urartu (A 

genome) and Ae. tauschii (D genome), but absent from T. dicoccoides (AB genomes). Orthologs 

of the BBI genes on T. aestivum group 5 chromosomes were present in both A and B genomes of 
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T. dicoccoides and in the D genome of Ae. tauschii (Table S2.6). None of these genes were 

duplicated in any wheat species. 

By contrast, the similarity and genomic position of BBI gene clusters on homoeologous group 

1 and 3 chromosomes in progenitor wheat species suggests that many BBI gene duplication events 

occurred before common wheat’s domestication. On Ae. tauschii chromosome 1D, six contiguous 

BBI genes are clustered within 800 kb, while on chromosome 3D, eight BBI genes are clustered 

within 500 kb, suggesting they arose through tandem duplication (Table S2.5). In T. dicoccoides, 

there are five BBI genes on chromosome 3A within a 264 kb region and thirteen BBI genes on 

chromosome 3B within a 696 kb region (Table S2.5). This phylogeny also revealed several 

instances of gene duplications in hexaploid T. aestivum that were absent in the diploid or tetraploid 

progenitors. For example, we found a cluster of four adjacent paralogous BBIs on chromosome 

1B of T. aestivum that were all absent from T. dicoccoides, suggesting that tandem duplication 

events occurred after common wheat’s domestication (Figure 2.4C and Table S2.6). 

To analyze the diversity within the BBI gene family arising from selections made during 

domestication and breeding, we identified BBIs in the genome assemblies of four common wheat 

cultivars (Table S2.7). The total number of BBI genes in these cultivars ranged from 55 in ‘Mace’ 

to 60 in ‘Jagger’ (Table 2.2). While the BBI gene triads on chromosomes 4 and 5 were conserved 

in all cultivars, phylogenetic analysis indicated several instances of gene loss and gain on 

homoeologous group 1 and 3 chromosomes (Figure S2.2). Although the BBI gene number varied 

between cultivars on each of these chromosomes, this variation was greatest on chromosomes 1B, 

1D and 3B (Figure 2.5, Table 2.2). Strikingly, none of the five analyzed cultivars shared an 

identical complement of BBI genes. 
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Table 2.2 BBI genes in five common wheat varieties, separated by chromosome. 

Chromosom

e 

Chines

e Spring 

Jagge

r 

Mac

e 

Juliu

s 

Landmar

k 

∆!"#$!%& 

1A 3 3 3 3 2 1 

1B 5 5 4 6 3 3 

1D 7 9 9 9 10 3 

3A 10 11 10 10 11 1 

3B 14 13 11 12 13 3 

3D 12 13 12 13 13 1 

4A 1 1 1 1 1 0 

4B 1 1 1 1 1 0 

4D 1 1 1 1 1 0 

5A 1 1 1 1 1 0 

5B 1 1 1 1 1 0 

5D 1 1 1 1 1 0 

Total 57 60 55 59 58 5 

∆!"#$!%&  shows the inter-varietal variation in BBI gene number for each chromosome. 

Taken together, analysis of the BBI gene family in different wheat germplasm reveals that 

while the gene triads on chromosomes 4 and 5 did not undergo expansion throughout wheat 

evolution, the gene clusters on homoeologous group 1 and 3 chromosomes are more variable. 

Many gene duplication events occurred before domestication, but the increase in gene number in 

common wheat and variation among modern wheat cultivars shows that the BBI family remains 

dynamic. 

2.3.4 Wheat BBI genes on homoeologous group 3 chromosomes encode proteins with 

duplicated active domains 

We next studied in greater detail the functional domains in the 57 BBIs from ‘Chinese Spring’. 

The majority of wheat BBIs (36 proteins, 63%) had one functional BBI domain, including all 15 

BBIs located on homoeologous group 1 chromosomes, the gene triads on chromosomes 4 and 5 

and 15 BBIs on homoeologous group 3 chromosomes (Figure 2.6AB). Of the remaining BBIs on 

group 3 chromosomes, 18 had two functional BBI domains (Figure 2.6C), two proteins 
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(TraesCS3D02G036400 and TraesCS3D02G035700) had three domains and one protein 

(TraesCS3B02G038300) had four domains (Figure 2.6D). The gene structure of wheat BBIs 

reveals that while the majority have either one (6 BBIs, 10%) or two exons (45 BBIs, 79%), five 

genes including all three-domain proteins had three exons, while the gene (TraesCS3B02G038300) 

encoding the four-domain protein had four exons (Figure S2.3). This suggests that the genes 

encoding three- or four-domain BBI proteins may have evolved either from complete or partial 

gene duplication followed by fusion of tandem-duplicated genes. However, the genomic sequences 

encoding these domains, including intron and flanking sequences, were variable between domains, 

suggesting they did not arise from recent duplication events. 

We characterized the number and positions of conserved Cys residues within the reactive 

motifs of wheat BBIs according to the evolutionary scheme of Mello et al. (Mello et al., 2003) and 

with respect to substrate specificity. The first reactive inhibitory motif for trypsin was predicted to 

be conserved and functional in all wheat BBIs except for three proteins: TraesCS3A02G049400LC, 

which has a truncated motif in a functional BBI domain (Figure 2.6B), TraesCS3D02G033700, 

which has a two amino-acid deletion within the reactive motif (Figure 2.6B), and 

TraesCS3B02G037200, which carries a Cys to Tyrosine (Y) amino acid substitution in the final 

residue of the first reactive motif (Figure 2.6C). The vast majority of wheat BBIs carried K/R-S 

amino acids at the P1 and P1’ positions, respectively (Figure 2.6), the consensus motif for monocot 

trypsin inhibition (Mello et al., 2003). All MI-I type BBIs had a K/R-S motif except one protein 

(TraesCS1D02G019800LC) that has a Glycine (G) in the P1 residue (Figure 2.6A). Among the 

MI-II type BBIs, the P1-P1’ motif was more diverse. Notably, four homoeologous BBIs on group 

3 chromosomes each exhibited Serine (S) to Valine (V) substitutions at position P1’, while each 

protein in the triad on chromosome 4 had a Glutamate (E) residue at position P1 (Figure 2.6B). 
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Most MI-IV type BBIs also had a K/R-S motif in both reactive sites except a homoeologous triad 

of BBIs with Serine to Tyrosine (T) substitutions in the P1’ residue (Figure 2.6C). In all 57 wheat 

BBIs the disulfide bridge (C10 and C11) supporting the second inhibitory motif for chymotrypsin 

was lost (Figure 2.6). 

The gene triad on chromosome 5 and all 15 BBIs on homoeologous group 1 chromosomes 

each encode BBI proteins with functional domains comprised of 12 Cys residues that form six 

disulfide bridges, except for TraesCS1A02G022000 and TraesCS1A02G019800LC which carry 

amino acid substitutions at Cys residues in positions C6 and C14, respectively (Figure 2.6A). The 

homoeologous triad of BBIs on chromosome 4 fall into the MI-II group (Figure 2.6B). BBIs on 

group 3 chromosomes were the most divergent. There were 15 BBIs categorized into the MI-II 

group that each contain ten Cys residues, except for TraesCS3A02G049400LC which has a 

deletion encompassing four Cys residues, and TraesCS3A02G045700, TraesCS3B02G042700LC 

and TraesCS3D02G034100 which each carry a single Cys amino acid substitution (Figure 2.6B). 

Another 18 BBIs encode two-domain proteins categorized in the MI-IV group although three 

(TraesCS3D02G035300, TraesCS3B02G037300 and TraesCS3B02G03740) had a truncated 

second domain, while another protein (TraesCS3B02G03720) has fewer than ten Cys residues in 

both domains (Figure 2.6C). The three wheat BBIs with more than two domains could not be 

categorized into any previously described MI evolutionary group (Figure 2.6D). The three-domain 

proteins TraesCS3B02G036400 and TraesCS3D02G035700 are most similar to the MI-IV group 

but each underwent internal duplication of one domain resulting in three adjacent BBI domains 

that have distinct Cys positions from the previously proposed MI-VI three-domain group (Mello 

et al., 2003). TraesCS3B02G036400 has a truncated second domain and a deletion of five Cys 

residues while the Cys positions in TraesCS3D02G035700 are also divergent from existing models 
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(Figure 2.6D). Each of the four domains in TraesCS3B02G038300 are full length and contain ten 

conserved Cys residues, suggesting all four may be functional (Figure 2.6D). In summary, five 

BBIs (TraesCS3A02G045700, TraesCS3D02G034100, TraesCS3B02G042700LC, 

TraesCS3A02G049400LC, and TraesCS3B02G03720) have fewer than ten Cys residues in one or 

both BBI domains, and are predicted to be non-functional. While four other multi-domain BBIs 

(TraesCS3B02G036400, TraesCS3B02G03730, TraesCS3B02G03740, and 

TraesCS3D02G035300) have fewer than ten Cys residues in one domain, these proteins are 

predicted to exhibit protease inhibition activity since at least one other domain remains intact 

(Figure 2.6D and Table S2.1). A summary of the different types of wheat BBI proteins in common 

wheat is shown in Figure 2.7. 

2.3.5 Wheat BBI genes exhibit diverse expression profiles during development and in 

response to biotic and abiotic stress 

We next used public RNA-seq datasets to characterize transcript levels of the 57 BBI genes 

in common wheat (Borrill et al., 2016). Genes were clustered into four main groups based on their 

expression profile in different wheat tissues and at different stages of development (Figure 2.8A). 

Genes in group I showed relatively high transcript levels in most plant tissues during development. 

BBIs in group II were predominantly expressed in root tissues, while BBIs in group III were 

expressed most highly during the early stages of leaf, stem and spike development. Finally, genes 

in group IV showed low levels of expression in most tissues and included ten genes with no 

detectable transcripts in any assayed tissue (Figure 2.8A).  

We also identified a subset of wheat BBIs that exhibit stress-responsive changes in expression 

(Figure 2.8B). The majority of the highly expressed BBIs in group I are induced in response to 

stripe rust and Septoria tritici blotch infection and are suppressed by heat stress (Figure 2.8B). 
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Several BBIs in other groups were induced by multiple biotic stresses, including some genes in 

group IV that were only expressed in response to stress, indicating they may play a role in general 

immunity. Many of the BBI genes with no detectable expression in any of the reported conditions 

encode proteins lacking a SP or with truncations and amino acid changes in critical domains, 

suggesting they may be non-functional (Figure 2.8). 

2.4 Discussion and Conclusion 

2.4.1 Diverse wheat genomic resources facilitate gene family characterization studies 

In this study, we identified and characterized the BBI gene family in the common wheat 

landrace ‘Chinese Spring’, four modern cultivars, and their extant progenitors, using HMM-based 

homology searches (Figure 2.1). This approach incorporates position-specific alignment scores 

and ensemble algorithms to evaluate all possible alignments. By weighting the relative likelihood 

of each alignment to identify orthologous proteins against a Pfam protein database, HMM may 

provide greater sensitivity than other sequence-based searches to identify all members of a gene 

family (Potter et al., 2018). In addition, Pfam annotations are more specific than superfamily 

protein groupings that are assembled in other databases, allowing for the more stringent 

classification of proteins. For each species, a single HMMsearch using a profile downloaded from 

the Pfam database was insufficient to identify all BBI proteins, likely because this general profile 

does not reflect species-specific diversity in this protein family (El-Gebali et al., 2019). A second 

search using a custom HMM profile built from an alignment of BBIs from the first screen yielded 

additional BBIs in every species analyzed, and for wheat, included 13 BBI proteins not associated 

with a BBI Pfam domain in their IWGSC RefSeq v1.0 gene model annotations (Appels et al., 

2018). We confirmed that each protein contained at least one BBI Pfam domain using HMMscan, 

although it is important to note that these sequences represent in silico predictions and the 
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inhibitory function of each protein should be validated using biochemical assays, especially for 

those lacking conserved Cys residues. 

Access to a greater diversity of high-quality genome assemblies for wheat will allow for more 

detailed gene characterization studies in this species. For example, the recent assembly of a more 

contiguous ‘Chinese Spring’ genome using both short and long read sequencing resolved 5,799 

gene duplications that were not annotated in IWGSC RefSeq v1.1 (Alonge et al., 2020). These 

include two BBI genes (T4033720, a paralog of TraesCS3A02G046300 that is located 6 Mb 

downstream on the same chromosome, and T4042195, a paralog of TraesCS5B02G498100 located 

on chromosome 3B) that were not present in the IWGSC RefSeq v1.1 assembly (Table S2.8). 

Beyond ‘Chinese Spring’, an international wheat pan-genome project aims to sequence and 

assemble multiple common wheat genomes (Walkowiak et al., 2020). Among the five varieties we 

analyzed in this study, no two had the same complement of BBI genes (Figure 2.5), although it is 

important to note that presence/absence variation between varieties may be the result of incomplete 

genome assembly. A set of fully-annotated, high-quality genome assemblies of diverse wheat 

varieties will be a valuable resource to characterize the full extent of natural genetic variation in 

wheat.  

2.4.2 The wheat BBI gene family underwent extensive duplication resulting in copy number 

variation and multi-domain proteins 

Consistent with previous studies, our phylogenetic analysis shows that the BBI family is 

subject to widespread gene duplication events that likely occurred independently in each monocot 

species since they last shared a common ancestor (James et al., 2017; Qu et al., 2003). In rice, ten 

BBI genes are located in a 430 kb region of chromosome 1 (Qu et al., 2003), in maize, four BBIs 

are 200 kb apart on chromosome 3 and in barley, eleven BBIs are located within a 450 kb region 
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of chromosome 3H (Figure 2.3C, Table S2.5). Each of these regions is syntenic with the distal 

region of wheat homoeologous group 3 chromosomes (La Rota & Sorrells, 2004; Munkvold et al., 

2004), suggesting that a common mechanism associated with this region of the genome, likely 

conserved in all crop species, triggers gene duplication at these loci. We found some evidence of 

other gene duplication events within 200 kb of BBI gene clusters in wheat, including 11 genes 

encoding proteins annotated as “Disease resistance RPM1” on chromosome 1B and 12 genes 

encoding E3-Ubiquitin ligase proteins on chromosome 3D (Table S2.9 and Table S2.10). However, 

these duplications were not shared between homoeologous chromosomes, suggesting they arose 

from recent duplication events, and are unlikely to be associated with BBI protein function in 

wheat.  

One possible factor contributing to the high rate of duplications in the BBI family may be the 

location of gene clusters in distal telomeric regions of each chromosome (Figure 2.2), which are 

hotspots for evolution, recombination events (Glover et al., 2015) and, in polyploid species, 

homoeologous exchange (Zhang et al., 2020). Characterization of the MADS-box transcription 

factor family in wheat revealed a positive correlation between the number of genes in a subfamily 

and their proximity to the telomere (Schilling et al., 2020). In barley, large segmental duplications 

occurred more frequently in the telomeres, and were associated with increased gene copy number 

variation, potentially because of higher rates of non-allelic homologous recombination in these 

regions (Bretani et al., 2020). However, their position alone cannot account for the extent of BBI 

duplication, because the genes on homoeologous group 4 and 5 chromosomes are similarly located 

in the telomere but did not undergo duplication in any barley or wheat genome analyzed in our 

study (Figure 2.3C).  
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Although we found evidence of BBI gene duplication in all analyzed monocot genomes, this 

family was larger in wheat and barley due to more extensive tandem duplication events on wheat 

homoeologous group 1 and 3 chromosomes and barley chromosome 3H (Figure 2.3). Although 

many of these gene duplication events had already occurred in wheat’s diploid and tetraploid 

progenitors, we also identified several duplication events that occurred since common wheat’s 

domestication (Figure 2.4), demonstrating that the process driving BBI family expansion in wheat 

remains active. In polyploid wheat species, relaxed selection pressure arising from gene 

redundancy may partially account for the greater expansion of the BBI gene family (Comai, 2005). 

However, the similar size of the BBI gene family in diploid barley and wheat progenitors shows 

that gene duplication occurs to a similar degree in different Triticeae species, demonstrating that 

polyploidy is not necessary for BBI duplication. Further studies will be required to determine the 

mechanism or factors driving BBI gene family expansion in the Triticeae. 

Our study also revealed that BBI domain duplication, possibly originating from incomplete 

gene duplication followed by gene fusion or internal duplication, resulted in further diversification 

of encoded wheat BBI proteins, potentially enlarging the spectrum of their protease substrates 

(Figure 2.6). Despite the high level of conservation of the P1-P1’ motif in wheat (Figure 2.6), this 

motif is more variable in other monocots such as rice and banana (James et al., 2017; Qu et al., 

2003), so its importance for substrate recognition will require further analysis. Domain duplication 

is a common feature of BBI evolution in different plant species, including an ancient event that 

gave rise to the “double-headed” BBI structure conserved in dicots (James et al., 2017; Mello et 

al., 2003; Qu et al., 2003). Our in silico analysis predicted that all wheat BBI proteins lack a 

functional second reactive motif to inhibit chymotrypsin activity (Figure 2.6), consistent with 

analyses of other monocot BBIs (Mello et al., 2003; Qi et al., 2005). However, previous studies 
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have detected chymotrypsin inhibition in protein extracts from the wheat endosperm, so it is likely 

that this activity is performed by a distinct family of protease inhibitors, potentially members of 

the cereal trypsin/a-amylase inhibitor family (Di Maro et al., 2011; Tedeschi et al., 2012). 

Multi-domain monocot BBIs were previously isolated and characterized in other monocot 

species (Mello et al., 2003; Nagasue et al., 1988; Qu et al., 2003; Tashiro et al., 1990). The 

separation of all single-domain BBIs and all multi-domain BBIs in our phylogenetic tree suggests 

that these multi-domain BBIs were already present in the common ancestor of these grasses 

(Figure 2.3C). In wheat, all multi-domain BBIs are located on homoeologous group 3 

chromosomes (Figure 2.6). Our finding that BBIs on both group 1 and group 3 chromosomes 

underwent complete gene duplication but only the BBIs on group 3 chromosomes underwent 

domain duplication (Figure 2.3C and Figure 2.6), suggests that the mechanism of gene duplication 

differs between group 1 and group 3 chromosomes. Alternatively, the reduced selective pressure 

on BBI genes on homoeologous group 3 chromosomes (Figure S2.1) may result in a higher 

magnitude of gene expansion and an increased frequency of internal duplications giving rise to 

multi-domain proteins. These include three- and four-domain BBI proteins distinct in structure 

from any previously proposed BBI protein model (Figure 2.6D). In order to determine the impact 

of this variation, it will be critical to identify the endogenous and exogenous interacting substrates 

of the BBI family, which remain poorly understood. 

2.4.3 Functional characterization of wheat BBI genes 

Gene duplication events can impact molecular evolution in different ways (Magadum et al., 

2013). These include: (i) loss of protein function resulting from excessive mutation accumulation 

(ii) gain of protein function as a result of gene overexpression, (iii) neo- or sub-functionalization, 

and (iv) modulation of protein activity by duplicating and diversifying reactive sites. Our analyses 
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indicate that the wheat BBI family potentially contains members exhibiting each of these features. 

Several wheat BBI genes exhibited truncations, mutations in active sites and undetectable 

transcript levels in all assayed tissues (Figure 2.8A), suggesting they may be non-functional 

pseudogenes. Conversely, we also identified homoeologous BBI genes that exhibit divergent 

expression profiles, suggesting they may have taken on new functional roles during wheat 

development (Figure 2.8A). Several wheat BBIs exhibit high transcript levels in the grain, 

suggesting they may regulate endogenous protease activity during grain development (Figure 

2.8A). We also identified a subset of BBIs that are transcriptionally induced in response to fungal 

and bacterial pathogens, consistent with previous studies in other plants (Chilosi et al., 2000; 

Othman et al., 2014; Qu et al., 2003), which may indicate these genes contribute to plant defense 

responses (Figure 2.8B). One of these genes, TraesCS1A02G021400, is induced in response to 

four pathogens (Figure 2.8B) and was previously identified as a candidate gene for wheat seedling 

resistance to tan spot (Juliana et al., 2018). It would be interesting to characterize this gene to 

determine its potential role in disease resistance in wheat. Another wheat BBI gene, 

TraesCS1B02G025900, was identified as a candidate defense hub gene for Type II Fusarium head 

blight resistance (Sari et al., 2019). However, this BBI gene is expressed primarily in root and stem 

tissues and is not induced in response to any biotic stress assayed in our study (Figure 2.8), 

suggesting it is unlikely to play a role in disease resistance. Some pathogens secrete proteases as 

part of their infection cycle, and in response, plants have co-evolved different classes of PIs to 

inhibit their activity (Qu et al., 2003). In wheat, a greater number of BBI proteins with more 

numerous and diverse reactive sites may allow the wheat plant to inhibit a wider range of 

pathogenic protease substrate variants as part of an effective response against fungal and bacterial 

pathogens (Qu et al., 2003). Identification of the protease inhibitors interacting with wheat BBIs 
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will allow for a more detailed understanding of their mode of action. Future studies might include 

an analysis of the co-expression of BBIs and their protease targets during development and in 

response to biotic or abiotic stress. It is interesting to note that the distal area of chromosome arm 

3BS, which includes a cluster of 14 BBI genes, overlaps with the Wheat Streak Mosaic Virus 

resistance locus Wsm2 (Dhakal et al., 2018; Tan et al., 2017). Although there is no evidence that 

BBI proteins act as an R gene for virus resistance, they might function as antagonistic interacting 

proteins with other R proteins to trigger defense responses (Malefo et al., 2020). 

In conclusion, we found that the BBI gene family in common wheat is larger than in other 

monocots due to a series of tandem duplication events in the telomeric regions of homoeologous 

group 1 and group 3 chromosomes. The increased frequency of gene duplications on 

homoeologous group 3 chromosomes likely gave rise to multi-domain BBI proteins with novel 

reactive sites. It will be important to determine the endogenous and exogenous protease substrates 

of individual BBIs and to identify how divergent and duplicated active sites impact their specificity 

and activity.  Our description of this gene family in wheat will facilitate the functional 

characterization of individual BBI genes. Reverse genetics tools will facilitate hypothesis testing 

to determine the role of BBI genes in wheat development and defense responses (Uauy et al., 2017), 

and to help identify natural genetic variation that may be valuable for elite cultivar development. 

2.5 Methods 

2.5.1 Identification of Bowman-Birk inhibitors in plant genomes 

High and low confidence wheat protein annotations from IWGSC RefSeq v1.1 (Appels et al., 

2018) were downloaded from the IWGSC sequence repository hosted by URGI 

(https://urgi.versailles.inra.fr/download/iwgsc/IWGSC_RefSeq_Annotations/v1.1/) and 

concatenated into a single FASTA file consisting of 298,774 protein sequences. Protein sequences 
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were obtained from the reference assemblies of Hordeum vulgare (IBSC_v2, 236,301 protein 

sequences), Brachypodium distachyon (v3.0, 52,972 protein sequences), Aegilops tauschii 

(Aet_v4.0, 258,680 protein sequences) (Luo et al., 2017), and Triticum urartu (ASM34745v1, 

33,483 protein sequences) (Ling et al., 2018) from Ensembl Plants 

(https://plants.ensembl.org/info/website/ftp/index.html). Oryza sativa proteins were downloaded 

from the Rice Genome Annotation Project (Oryza_japonica.MSUv7, 55,986 protein sequences) 

(RGAP, http://rice.plantbiology.msu.edu) and converted to IRGSP-1.0 gene IDs and Zea mays 

proteins (Zea_mays.B73_RefGen_v4, 131,585 protein sequences) were downloaded from 

MaizeGDB (https://www.maizegdb.org). Triticum turgidum ssp. dicoccoides wild emmer wheat 

‘Zavitan’ WEWseq v2 proteins (205,916 sequences) were downloaded from 

https://search.datacite.org/works/10.5447/ipk/2019/0 (Avni et al., 2017). 

The identification of BBI proteins in each species was performed with HMMER analysis 

(Potter et al., 2018) against the local protein annotation database using a three-step approach 

outlined in Figure 2.1. First, we performed an HMMsearch using the HMM profile for the 

Bowman-Birk protease inhibitor family (Pfam: PF00228) which was downloaded from Pfam 32.0 

(El-Gebali et al., 2019) using an E-value threshold of 1e-5. We next aligned the BBI protein 

sequences identified from the first step using HMMalign and built a new HMM profile based on 

the multiple alignment using HMMbuild. We used the new generated HMM profile to conduct a 

second HMMsearch against the same species-specific protein databases. Finally, we examined the 

list of BBI proteins for the presence of a BBI Pfam domain (PF00228) using HMMscan with an 

E-value threshold of 0.05. Proteins that contained the Pfam domain were classified as BBI. We 

then performed alignment of the identified BBI protein sequences from all species with MAFFT 

(Katoh et al., 2018) and noticed that several BBIs were predicted to lack a signal peptide due to 
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misannotation of the methionine start codon. We manually curated the position of the N-terminal 

start codon of several BBIs from T. aestivum, Ae. tauchii, T. urartu, T. dicoccoides and H. vulgare 

to match homologous sequences. Full curation details are provided in Table S2.2, and includes 

details of BBI proteins with N-terminal truncations likely caused by point mutations. The curated 

sequences were used in all subsequent analyses. 

2.5.2 Chromosomal locations and homology identification  

All identified wheat BBIs were mapped to the IWGSC RefSeq v1.1 genome assembly to 

identify their chromosomal location (Appels et al., 2018). To determine homologous relationships 

between genes, we performed all-to-all BLAST using the 57 proteins as queries and applied an E-

value threshold of 1e-10. Putative paralogs or homoeologs were defined as homologous BBIs with 

a BLASTP e-value < 1e-10 and identity > 75% on the same or homoeologous group chromosome, 

respectively. This approach was also used to identify orthologous relationships between BBIs in 

common wheat and progenitor genomes. The synteny and homologous relationship of wheat BBI 

genes were visualized with Circos plot using R shinyCircos (Y. Yu et al., 2018). Each chromosome 

was divided into telomere (R1/R3), centromere (C) and R2 segments according to information 

from the IWGSC RefSeq v1.1 genome assembly (Appels et al., 2018). The distance of wheat BBIs 

and other high- and low-confidence gene models were mapped to individual chromosomes using 

the R Sushi package plotBed function (Phanstiel et al., 2014).  

We calculated Ka/Ks ratios using an online tool hosted by the computational biology unit 

(CBU http://services.cbu.uib.no/tools/kaks) using the coding sequence of each common wheat 

BBI gene. We excluded one BBI (TraesCS3D02G035800) from the Ka/Ks ratio analysis due to a 

premature termination codon in its coding sequence. The remaining 56 BBIs were grouped 



 

45 

according to their chromosome and used to construct phylogenetic trees and calculate the pairwise 

Ka/Ks ratio for each branch. 

2.5.3 Alignment and phylogenetic analysis 

We performed multiple sequence alignments using Clustal Omega using full-length BBI 

protein sequences identified in all species. Model selection was conducted with IQ-TREE using 

the lowest Bayesian information criterion (BIC) as WAG+G4 model (Kalyaanamoorthy et al., 

2017). We constructed the phylogenetic tree using the selected model with 1000 ultrafast bootstrap 

replicates UFBoot2 (Hoang et al., 2018; Nguyen et al., 2015). The resulting tree was visualized 

and annotated with the R package ggtree v2.0.4 (G. Yu et al., 2017). The domain model type for 

BBIs in grasses were determined manually by comparing the number and position of Cys residues 

to the model proposed by Mello et al. (Mello et al., 2003). 

2.5.4 Identification of BBI on homoeologous group 3 chromosomes in different wheat 

varieties 

The draft genome assembly for four common wheat varieties ‘Jagger’ (U.S.A, winter growth 

habit), ‘Julius’ (Germany, winter), ‘Landmark’ (Canada, spring), and ‘Mace’ (Australia, spring) 

were downloaded from the 10+ Wheat Genomes Project (https://wheat.ipk-

gatersleben.de/downloads/) and used to build local BLAST databases. We then used the full-length 

protein-coding sequences of each BBI gene from ‘Chinese Spring’ as queries and performed 

BLAST against the genomes of each wheat variety to identify their chromosomal position (Deng 

et al., 2007). The position of each BBI genes in these varieties was cross-referenced with GFF files 

to identify the corresponding gene ID provided by the 10+ Wheat Genome Project (Walkowiak et 

al., 2020). To identify BBIs present in these varieties but absent from the ‘Chinese Spring’ 

assembly, the corresponding genomic region spanning all BBI genes on homoeologous group 1 
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and group 3 chromosomes from each wheat variety were extracted locally using the bedtools 

getfasta command for ab initio gene prediction (Quinlan & Hall, 2010). The open reading frame 

(ORF) and putative gene model for each extracted DNA fragment was predicted with OrfM-0.7.1 

(Woodcroft et al., 2016). To determine whether predicted gene models contain a functional BBI 

domain, all predicted ORFs were scanned with HMMscan using an e-value cutoff as 0.05 and 

those BBIs with PF00228 domains were retained. After exclusion of common orthologs in other 

varieties, the unique BBIs in each variety were named using the first two letters of the cultivar 

name, followed by chromosome number, and ordered by their relative position on that 

chromosome. For example, JA_3A-1 represents the first unique BBI on ‘Jagger’ chromosome 3A. 

The BBI protein sequences from all varieties were then used to construct a phylogenetic tree with 

IQ-TREE using the WAG+G4 model with 1000 ultrafast bootstrap replicates UFBoot2 (Hoang et 

al., 2018; Nguyen et al., 2015). The resulting tree was visualized and annotated with the R package 

ggtree v2.0.4 (G. Yu et al., 2017). 

2.5.5 Gene structure analysis of the functional domains and motifs 

The complete genomic, CDS and amino acid sequences, as well as gene feature information 

of all BBIs identified were downloaded from IWGSC RefSeq v1.1 (Appels et al., 2018). Schematic 

representation of the exon-intron organization of wheat BBIs was conducted by comparing the 

CDS and the corresponding genomic sequences using Gene Structure Display Server 2.0 (Hu et 

al., 2015). To find conserved Cys-rich domains, the amino acid sequence for the functional 

domains of all identified BBIs in wheat, by aligning amino acid sequences between the first and 

last conserved Cys residue in each domain using MAFFT v7 for multiple sequence alignment 

(Katoh et al., 2018). All sequences were analyzed using Signal P v5.0 (Almagro Armenteros et al., 

2019) to predict the presence of N-terminal SP and for potential cleavage sites. 
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2.5.6 Gene expression analysis 

The expression data for wheat BBI genes in five tissues (spike, root, leaf, grain and stem) at 

three different developmental stages from hexaploid wheat var. ‘Chinese Spring’ (Lukaszewski et 

al., 2014) and under abiotic stress (heat and drought) condition at the one-week-old seedling stage 

(Liu et al., 2015) were mapped to the IWGSC RefSeq v1.1 genome and processed into TPM values 

as described previously (Pearce et al., 2015). Separately, we downloaded several biotic stress 

expression datasets as TPM from the online wheat expression browser expVIP (Borrill et al., 2016), 

including studies on fusarium head blight (Kugler et al., 2013; Schweiger et al., 2016), stripe rust 

(Cantu et al., 2013; H. Zhang et al., 2014), powdery mildew (H. Zhang et al., 2014), fusarium 

crown rot (Powell et al., 2017), Septoria tritici blotch (Rudd et al., 2015; Yang et al., 2013) and 

PAMP elicitors (Ramírez-González et al., 2018). For each pathogen, we calculated the log2 fold 

change of the transcript abundance for each treated sample compared to mock controls or samples 

at time zero at each time point and averaged the values of all time points. Heatmaps for tissue 

specific time course expression were constructed using log2 transformed TPM values with the R 

package pheatmap v1.0.12. Genes were clustered according to their expression level (metric, 

Euclidian; method, complete) and grouped by their chromosome type.  
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CHAPTER 2 FIGURES 

Figure 2.1 Pipeline for Bowman-Birk inhibitor (BBI) gene family identification in plant genomes. The 

identification of BBIs in the T. aestivum genome is presented as an example, including key steps and criteria for 

each step. The number of proteins identified at each stage are highlighted in red. 
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Figure 2.2 Distribution of 57 BBI in the T. aestivum genome a Chromosomal positions of wheat BBIs. Gene names 

are colored according to their homoeologous group. Chromosomal segments are indicated by different colors - distal 

regions of the chromosome R1 and R3 in red, centromeric region C in dark grey, and region R2 in light grey. b 
Distribution of genes within BBI clusters on homoeologous group 1 and group 3 chromosomes. Red dots represent 

BBI genes, whereas grey dot represent other annotated genes in the region, positioned according to their physical 

location in the IWGSC RefSeq v1.1 genome assembly. All high confidence (HC) and low confidence (LC) gene 

models are presented.  
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Figure 2.3 Comparison of the wheat BBI gene family with other monocots. a Total number of BBI genes in 

monocot genomes. Bars are color-coded based on species. b Ratios of total BBI gene numbers in common wheat 

compared to other monocot species, adjusted for wheat’s hexaploid genome. The 1:1 ratio is indicated by a bold 

line. c Circular phylogenetic tree of all BBI proteins from rice, maize, barley, Brachypodium and common wheat. 

Only bootstrap support values below 95 are indicated on the tree. Gene labels are color-coded by species and 

includes the BBI group based on the classification of Mello et al. (Mello et al., 2003).  
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Figure 2.4 Comparison of the BBI gene family in different wheat germplasm. a The number of BBI genes in the 

genomes of different wheat species. Bars are color coded by species. b Ratio of total BBI gene numbers in common 
wheat compared to progenitor species. The 1:1 ratio is indicated by a bold line. c Phylogenetic tree constructed from 

all BBI proteins from each wheat species. Only bootstrap support values below 95 are indicated on the tree. Genes 

are color-coded based on species. 
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Figure 2.5 Distribution of BBI genes on homoeologous group 1 and 3 chromosomes in different common wheat 
varieties. a. Homoeologous group 1 chromosomes. b. Homoeologous group 3 chromosomes. The ‘Chinese Spring’ 

BBIs are ordered according to their physical position in the IWGSC RefSeq v.1.1 genome assembly, but not to 

scale. Genes are colored according to their homology so that genes in the same color are orthologous in different 

varieties. The BBIs present in other varieties but absent in ‘Chinese Spring’ are labeled such that JA_3A-1 indicates 

the first unique BBI on ‘Jagger’ chromosome 3A. 
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Figure 2.6 Alignment of the conserved Cys-rich domains of common wheat BBI proteins. a Alignment of common wheat BBI proteins falling into group MI-I; b 

MI-II group; c MI-IV group; and d BBI proteins that cannot be classified into an existing group. The Cys residues are highlighted in red with their corresponding 

position indicated above each alignment. The blue arrow underneath the domain sequences highlight the P1 and P1’ positions.  
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Figure 2.7 Summary of the proposed structural composition of the BBI gene family in common wheat. Most wheat 

BBI proteins contain an N-terminal signal peptide, and between one and four reactive loop domains at the C-

terminus. The conserved Cys residues in the inhibitory domain are listed as C, and other amino acid residues 

indicated as dashes. The first reactive site is highlighted in red. The numbers of wheat BBIs from ‘Chinese Spring’ 

falling into each category are separated on the basis of presence or absence of complete signal peptides.  
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Figure 2.8 Expression profiles of common wheat BBI genes. a Transcript levels of BBI genes in five tissue types 

(root, leaf, stem, spike and grain) each at three different developmental stages based on the Zadoks scale. Genes 

were clustered based on their expression profile and all expression data is presented as log2 TPM. b Transcript 

levels of BBI genes in response to biotic and abiotic stress. Expression levels of each BBI gene in wheat plants 
infected with fusarium head blight, stripe rust, powdery mildew, fusarium crown rot, Septoria tritici blotch, and 

bacterium chitin and flg22 (PAMP) were compared to the corresponding mock treatment. Expression is presented as 

log2 fold change of the TPM between pathogen treatment and mock control. Drought and heat stress data is taken 

from one-week-old seedlings and presented as log2 fold change of the TPM between stress and control seedlings. 

Where multiple timepoints were in each dataset, mean fold-changes are presented. Genes are in the same orders as 

in the tissue specific developmental conditions in panel a. The number of BBI domains and chromosome for each 

gene are color-coded. The presence (+) or absence (-) of a signal peptide for each protein is indicated. 
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CHAPTER 3. GENOMIC AND MOLECULAR CHARACTERIZATION OF THE WHEAT 

STREAK MOSAIC VIRUS RESISTANCE LOCUS 2 (WSM2) IN COMMON WHEAT 

(TRITICUM AESTIVUM. L)  

3.1 Summary 

WSMV is an economically important viral pathogen that negatively impacts global wheat 

production, particularly in the Great Plains region of the U.S. The WSMV resistance locus Wsm2 

provides strong resistance and has been widely deployed, but the underlying causative genes has 

not been cloned, limiting our ability to understand the resistance mechanisms and to develop 

perfect markers for breeding. In this study, the Wsm2 interval was analyzed using wheat reference 

genomes, from which 94 candidate genes were identified. Haplotype analysis of Wsm2 in 

seventeen wheat cultivars collected from different agroecological zones indicated that the Wsm2 

locus is in a dynamic region of the genome and is a rare allele likely absent from many modern 

wheat cultivars. Examination of the Wsm2 locus using exome reads from ‘Snowmass’, a cultivar 

carrying the Wsm2 locus, identified gene copy number duplications for four adjacent UDP-

glycotransferase genes and other natural genetic variation underlying Wsm2. Through de novo 

assembly of RNA-seq reads that do not map to the wheat reference genome ‘Chinese Spring’, three 

unique transcripts specific to lines that contain Wsm2 locus (Wsm2+) were identified. Furthermore, 

five candidate genes within the Wsm2 interval were differentially expressed between Wsm2+ and 

lines absent for Wsm2 locus (Wsm2-) following WSMV infection and their expression in RNA-

seq were validated with qRT-PCR, these candidates are possible causative genes underlying Wsm2. 

For one of the candidates, annotated as RPM1, CRISPR/Cas9-edited plants carrying gene 

knockouts were developed for functional characterization of its molecular function in WSMV 

resistance.  
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3.2 Introduction 

Common wheat (Triticum aestivum L.) is one of the most important crops worldwide, 

providing approximately 20% of the calories and proteins consumed by the human population 

(FAOSTAT, 2020). Wheat streak mosaic virus (WSMV) is an economically important viral 

pathogen that threatens wheat production around the globe (Navia et al., 2013). In the United States, 

WSMV mainly affects crops grown in the Great Plains region, causing average annual yield losses 

of approximately 5%, although severe localized infections can result in complete crop failure 

(Singh & Kundu, 2018; McKelvy et al., 2021). Once infected with WSMV, wheat leaves exhibit 

a characteristic yellow and green streaked mosaic pattern (Hadi et al., 2011). For winter wheat 

cultivars, symptoms are most severe when infection occurs during tillering, and can include 

stunting, poor fertility, and reduced grain set (Hunger et al., 1992). 

WSMV is the type species of the genus Tritimovirus within the family Potyviridae (Stenger 

et al., 1998). The WSMV genome consists of a single positive-strand genomic RNA of 9,384 

nucleotides (nt) encoding a polyprotein of ~ 350 kDa, which is processed into ten mature proteins 

after cleavage by three proteinases encoded in the viral genome (P1, HC-Pro and NIa-Pro) 

(Tatineni & French, 2014). To systemically infect hosts, plant viruses require different viral 

components to establish initial local infection, followed by cell-to-cell movement through 

plasmodesmata and long-distance movement through the vascular tissue (Seo & Kim, 2016). The 

WSMV coat protein (CP) is required for its transmission by vectors (Tatineni & Hein, 2018) but 

can tolerate extensive point mutations and small insertions and deletions (Indels) while still 

retaining the ability to systemically infect wheat (Tatineni et al., 2014; Tatineni & French, 2014).  

The only known transmission vector for WSMV is the eriophyid wheat curl mite (WCM), 

Aceria tosichella Keifer, which has a body length of ~200 μm and is spread between crops by the 
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wind (Slykhuis, 1955). WCM is also the transmission vector for Triticum mosaic virus (TriMV) 

(Chuang et al., 2017), which interacts synergistically with WSMV in the field (Seifers et al., 2009; 

Tatineni et al., 2019). WSMV can be picked up by WCM from infected host plants during a 10- to 

30-minute feeding time and remains active in WCM for 7-9 days (Singh & Kundu, 2018). 

However, the WSMV carried by WCM cannot be passed to the next WCM generation through the 

egg stage (Singh & Kundu, 2018). Upon landing on wheat plants, the WCM remains hidden in 

rolled and curled leaves as well as leaf sheaths of wheat seedlings, and can survive for several 

months (Navia et al., 2013). As a result, there are no effective miticides against WCM (Navia et 

al., 2013). Moreover, growing plants in the field such as volunteer wheat, and other monocots and 

wild weeds, including oats (Avena sativa), barley (Hordeum vulgare), rye (Secale cereale), corn 

(Zea mays) and foxtail millet (Setaria italica), can serve as a ‘green bridge’ for WCM to complete 

their life cycle between wheat cropping seasons (Singh & Kundu, 2018). This broad range of hosts 

makes it ineffective and impractical for many growers to use cultural practices to completely 

eradicate WCM from infected fields (Singh et al., 2018). Therefore, the long-term strategy to 

prevent damage caused by WCM and WSMV is to develop wheat cultivars with genetic resistance 

to the WSMV-WCM disease complex (Harvey et al., 1999). 

To date, four quantitative trait loci (QTL) associated with WCM resistance have been 

identified from grass species and ancestors of common wheat (Thomas & Conner, 1986; Whelan 

& Hart, 1988; Malik et al., 2003). Although these resistance alleles inhibit WCM reproductive 

potential and reduce its transmission rate in the field, the effectiveness varies between WCM 

populations (Murugan et al., 2011). Moreover, because these loci are all derived from alien 

introgressions, they are associated with linkage drag and the host genetic resistance to WCM varies 

according to different field conditions (Harvey et al., 1999). 
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In addition to introgressing genetic resistance to WCM, efforts have been made to identify 

alleles with direct resistance to WSMV itself. Four QTLs (Wsm1, Wsm2, Wsm3 and c2652) for 

WSMV resistance have been identified to date (Haley et al., 2002; Sharp et al., 2002; Haber et al., 

2006; Divis et al., 2006). Both Wsm1 and Wsm3 also confer resistance to TriMV (Seifers et al., 

2009). Wsm1 and Wsm3 originated in intermediate wheatgrass (Thinopyrum intermedium) and 

were transferred into common wheat cultivars through alien translocation and have only been 

mapped at low resolution to a whole chromosome arm (Wells et al., 1982; Friebe et al., 2009; W. 

Liu et al., 2011; Danilova et al., 2017). When deployed in elite cultivars, these alleles confer a 

yield penalty due to linkage drag, limiting their value in wheat breeding program. For example, in 

the absence of WSMV infection, Wsm1 confers a yield penalty of up to 30% (Seifers et al., 1995; 

Sharp et al., 2002). c2652 was identified from a hard red spring wheat population with an unknown 

pedigree (Haber et al., 2006) and has not been utilized in wheat germplasm development. In 

contrast, Wsm2 was first identified from a wheat breeding line CO960293-2 and most likely 

originated in a common wheat background (Haley et al., 2002). Among the four QTLs conferring 

resistance to WSMV, Wsm2 is the only locus that has been mapped to a relatively short genomic 

region (Zhang & Hua, 2018).  

Despite one recently discovered WSMV isolate from Setaria viridis that can break Wsm2-

mediated resistance (Kumssa et al., 2019), Wsm2 provides strong resistance to a variety of WSMV 

strains (Seifers et al., 2006; Lu et al., 2012). The Wsm2-mediated WSMV resistance was effective 

and led to consistently low WSMV incidence in field conditions, highlighting the value of 

deploying Wsm2 in breeding programs to control WSMV (McKelvy et al., 2021). Moreover, there 

is no evidence of deleterious impacts on yield and agronomic traits associated with Wsm2 (Lu et 

al., 2012). Wsm2 is temperature sensitive and is less effective in field temperatures above 18 °C 



 

76 

(Seifers et al., 2006). Wsm2 has been introduced into several common wheat cultivars by 

recombination, including ‘RonL’ (J. T. Martin et al., 2007), ‘Snowmass’ (Haley et al., 2011), 

‘Clara CL’ (Martin et al., 2014), ‘Oakley CL’ (Zhang et al., 2015), and ‘Joe’ (Zhang et al., 2016).  

Linkage mapping in two F2:3 populations showed that the inheritance of the WSMV resistance 

underlying Wsm2 is controlled by a single dominant allele located on chromosome arm 3BS (Lu 

et al., 2011). Subsequent studies further mapped the Wsm2 locus to a region of less than 1 cM in a 

recombinant inbred line (RIL) population (Assanga et al., 2017; Tan et al., 2017). Four SNP 

markers tightly linked to Wsm2 were transformed into KASP assays and validated in a RIL 

population (‘CO960293’ ×  ‘TAM111’) and in two doubled haploid populations (‘RonL’ × 

‘Ripper’ and ‘Snowmass’ × ‘Antero’), from which haplotypes associated with WSMV resistance 

and susceptibility, respectively, were identified (Tan et al., 2017). Two of the tightly linked SNP 

markers located at 16.4 Mbp, one at 17.8 Mbp, and a left boundary flanking marker defined by 

recombination in the RIL population was mapped to 18.9 Mbp physical position on the wheat 

reference genome (Tan et al., 2017). A genome wide association study (GWAS) performed on 597 

wheat breeding lines identified ten other significant SNP markers associated with WSMV 

resistance (Dhakal et al., 2018). These ten SNPs mapped to a physical interval flanking a 17.1 – 

18.9 Mbp telomeric region on chromosome 3B in the wheat reference genome IWGSC RefSeq 

v1.0, coinciding with the Wsm2 locus. This region contains a high density of genes encoding 

Bowman-Birk inhibitors (BBI) and is highly diverse between wheat cultivars with evidence of 

structural variation (Xie et al., 2021). 

Fewer resistance (R) genes have been characterized for viral pathogens than for either 

bacterial or fungal pathogens (Kourelis & van der Hoorn, 2018), partly due to our more limited 

understanding of plant immunity mechanisms for plant viruses (Ronde et al., 2014). The majority 
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of cloned single dominant antiviral R genes to date belongs to the nucleotide binding site leucine-

rich repeat (NB-LRR) type, that recognize avirulence factors (Avr) encoded by viral pathogens to 

trigger Effector-Triggered Immunity (ETI), which is generally associated with hypersensitive 

response (HR) or the production of salicylic acid (SA) (Ronde et al., 2014). Some dominant R 

genes against viruses have different resistance mechanisms from the classical NB-LRR type R 

gene and do not induce HR or SA production (Cosson et al., 2012). For example, RTM1, RTM2, 

and RTM3 cloned in Arabidopsis thaliana encode lectin proteins that restrict the long-distance 

movement of Tobacco Etch Virus (TEV) (Whitham et al., 2000; Chisholm et al., 2001; Cosson et 

al., 2010). Another example is the Tm-1 gene cloned in tomato that encodes a protein containing a 

TIM-barrel domain that inhibits Tomato mosaic virus (TMV) replication (Ishibashi et al., 2007; 

Ishibashi & Ishikawa, 2013). Similarly, Wsm2-mediated resistance against WSMV does not induce 

HR and confers resistance to WSMV by impeding long-distance viral movement (Tatineni et al., 

2016).  

Despite these studies that shed some light on Wsm2-mediated resistance, the causative genes 

underlying Wsm2, or any other WSMV resistance gene, has yet to be cloned. Identifying the 

causative gene underlying Wsm2 will allow for experiments to characterize the molecular role of 

Wsm2, look for alternative allelic variation conferring resistance to novel WSMV isolates, and to 

characterize the functional pathways by which WSMV resistance can be induced (Skoracka et al., 

2018). With better understanding and knowledge of the viral resistance genes, further studies can 

apply genome editing tools for targeted manipulation of resistance genes to help breed WSMV-

resistant wheat cultivars more efficiently.  

Recent advances in genomic resources have facilitated genetic mapping and functional 

genomics studies in wheat. The wheat reference genome assembly has been annotated for the 
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landrace ‘Chinese Spring’ (Appels et al., 2018; Zhu et al., 2021). Beyond this reference sequence, 

genome assemblies of sixteen other wheat cultivars facilitate studies of within-species genomic 

diversity (Walkowiak et al., 2020). Whole genome sequencing (WGS) and assembly remains 

expensive and technically challenging in common wheat due to its large, polyploid genome 

(Lukaszewski et al., 2014). Instead, exome capture sequencing or transcriptome sequencing can 

help reduce sequencing costs while providing informative genetic variation in individual advanced 

lines and to understand the molecular mechanisms underlying key aspects of plant development 

and defense responses. 

In this study, the Wsm2 locus was found to lie in a dynamic region of the wheat genome 

characterized by structural variation among different wheat cultivars. Genotypic and phenotypic 

data suggest the Wsm2 gene is rare among modern wheat cultivars, but its presence was confirmed 

in a ‘Snowmass’ mapping population. Exome capture reads from ‘Snowmass’ revealed two high 

impact genetic variants together with seven CNVs underlying Wsm2. Additionally, an RNA-seq 

study was performed on ‘Snowmass’ derived doubled haploid lines that also carry Wsm2 locus 

(Wsm2+) and the de novo assembly of the unmapped transcriptomic reads identified three unique 

transcripts absent from the wheat reference genome. Additionally, five genes within the Wsm2 

locus were found differentially expressed between genotypes, including a gene annotated as RPM1 

that contains an LRR domain. Functional validation of RPM1 was performed using CRISPR/Cas9 

to generate wheat knockout mutants, which will be characterized using WSMV inoculation assays. 

3.3 Materials and Methods 

3.3.1 Plant materials 

Seeds of the wheat cultivars ‘Jagger’, ‘SY Mattis’, ‘Robigus’, ‘Mace’, ‘Paragon’, ‘Landmark’, 

‘Stanley’, ‘Claire’, ‘Weebill’, ‘Cadenza’, ‘Kronos’, and ‘Chinese Spring’ were obtained from 
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Seedstor (https://www.seedstor.ac.uk/search-browseaccessions.php?idCollection=35) and were 

used to perform WSMV phenotyping assays. A Triticum aestivum L. doubled haploid (DH) 

population (n = 116) produced by Heartland Plant Innovations Inc. was developed by wheat-maize 

wide hybridization (Santra et al., 2017) from the parents ‘Snowmass’ (WSMV resistant) and 

‘Antero’ (WSMV susceptible) and used for linkage mapping. ‘Snowmass’ and ‘Antero’ leaf 

tissues were used to quantify WSMV by qRT-PCR in a time course from 0, 5, 10, and 15-day post 

inoculation (dpi). For the RNA-seq study, eight individuals homozygous for the Wsm2 locus were 

selected from the DH population as plant materials. Using GBS markers within 16.5 Mbp to 18.8 

Mbp on IWGSC RefSeq v1.0 genome, four individuals were shown to have an identical haplotype 

to ‘Snowmass’ (Wsm2+), and another four had an identical haplotype to ‘Antero’ (Wsm2-) (Table 

S3.1). Meanwhile, the phenotype scores confirmed that Wsm2+ DH lines are resistant to WSMV, 

whereas Wsm2- DH lines are susceptible (Table S3.1). Additionally, the exome reads of 

‘Snowmass’, ‘Antero’, ‘Brawl’, ‘Byrd’, ‘Hatcher’, ‘C0940610’, and ‘Platte’ were captured using 

the NimbleGen SeqCap EZ wheat whole-genome assay and sequenced as described in Jordan et 

al., 2015 and He et al., 2019. 

3.3.2 WSMV inoculation and phenotype evaluation 

An isolate of WSMV originally collected from Akron, Colorado in 2017 was propagated in 

the greenhouse by mechanically inoculating on susceptible winter wheat genotype ‘Longhorn’ 

every six months. Leaf tissues with a yellow streaking or mosaic pattern typical of WSMV were 

collected, frozen at -80 ℃ and used to prepare fresh inoculum. The inoculum was prepared with 

1:10 (w/v) dilution of the WSMV-infected wheat leaf tissue and 0.01 M potassium phosphate 

buffer (pH 7.4) and inoculated on two-week-old seedlings. To determine the effectiveness of the 

Wsm2 allele, wheat plants were grown in a PGR15 growth chamber (Conviron, Manitoba, Canada) 
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in a 12 h photoperiod with temperatures set to 18 ℃ day/15 ℃ night. Mechanical inoculation was 

performed using a soft sponge soaked with inoculum that was gently rubbed on the surface of 

wheat seedling leaves that were previously dusted with Carborundum powder. Phenotyping was 

evaluated two and three weeks after inoculation of WSMV by examination of visual symptoms 

based on a 1-5 scale; (1 = no chlorosis; 2 = a few chlorotic streaks; 3 = moderate mosaic; 4 = 

severe mosaic; 5 = severe mosaic, necrosis, and yellowing) (Tan et al., 2017). Plants with scores 

≤ 2 were considered resistant, and plants with scores > 2 were considered susceptible. 

3.3.3 Haplotype analysis for within-species variation at the Wsm2 locus  

BLAST alignment of 100 bp surrounding sequences (Total 201 bp sequence with the SNP at 

position 101 bp) of four tightly linked SNP markers (IAAV6442, BS00018764_51, IWA7647 and 

BS00026471_51, Table S3.2) identified the physical position of Wsm2 on the wheat reference 

genomes IWGSC RefSeq v1.0 (Appels et al., 2018) and RefSeq v2.1 (Zhu et al., 2021). These 

SNPs were also mapped to the genome assemblies of sixteen other wheat cultivars (Mace, Lancer, 

CDC Stanley, CDC Landmark, Julius, Norin61, ArinaLrFor, Jagger, Cadenza, Paragon, Kronos, 

Robigus, Claire, Spelt, Weebill, SY Mattis) to analyze genomic variation using the Galaxy 

platform (Afgan et al., 2018). 

3.3.4 Linkage mapping analysis for the DH population  

The DH population was subjected to genotyping-by-sequencing (GBS, Elshire et al., 2011) 

and data was processed as described in Liu et al., (2016). The GBS markers were mapped to wheat 

reference genome IWGSC RefSeq v1.0 (Appels et al., 2018) and annotated for their position, for 

example, S3B_16589830 indicates the marker is placed on wheat chromosome 3B at the physical 

position 16,589,830 bp. Quantitative trait loci (QTL) analysis was performed with R version 4.0.3 
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package qtl (Arends et al., 2010) and ASMap (Taylor & Butler, 2017) considering the mean 

phenotyping scores from four biological replicates of each DH line.  

3.3.5 Exome capture analysis for genomic variations underlying Wsm2 locus 

Raw paired-end Illumina reads were filtered for quality using fastp (Chen et al., 2018). Reads 

were then aligned to the wheat reference IWGSC RefSeq v1.0 assembly using bowtie2 v. 2.3.5 

(Langmead & Salzberg, 2012) with the following parameters: -k 2 -N 1 -L 22 -D 20 -R 3. The 

alignments were subjected to samtools v1.11 to generate sorted BAM files and then bcftools v1.11 

(Danecek et al., 2021) was used to and call variants within Wsm2 locus with mpileup command. 

The SnpEff (Cingolani et al., 2012) tool was used to predict the effects of genetic variants, 

including SNPs, indels, and multiple-nucleotide polymorphisms. The sorted BAM files from 

‘Antero’, ‘Brawl’, ‘Byrd’, ‘Hatcher’, ‘C0940610’, and ‘Platte’ were used as a reference set to assay 

copy number variation (CNV) for the test sample ‘Snowmass’ (Wsm2+) using the ExomeDepth R 

package (Plagnol et al., 2012). The default parameters were used, except for transition probability 

= 0.001 (“CallCNVs”) and min.overlap = 0.01 (“AnnotateExtra”). 

3.3.6 WSMV quantification 

The amount of WSMV cDNA in whole leaf tissues from ‘Antero’ and ‘Snowmass’ was 

quantified with qRT-PCR in five biological replications over the time course of 0, 5, 10, and 15 

days after inoculation with WSMV (dpi). Total RNA from leaf samples were isolated with 

spectrum total RNA kit (Sigma, USA), followed by on-column DNase I digestion treatment 

(Sigma-Aldrich) to remove genomic DNA. WSMV was detected via qRT-PCR using coat protein 

(CP) specific primers and the probe listed in Table S3.3. The one-step RT-PCR reaction was 

carried out in the Taqman master mix reagent kits (Applied biosystems) to quantify the absolute 

amount of WSMV.  
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3.3.7 RNA-seq library preparation  

Sixteen samples were collected for the RNA-seq experiment, including four biological 

replicates of two genotypes (Wsm2+ and Wsm2-) and two treatments (mock inoculation with 

phosphate buffer (C) and WSMV inoculation with infected tissue (T)). RNA-seq samples were 

labeled as Wsm2- (C), Wsm2- (T), Wsm2+ (C) and Wsm2+ (T). Whole leaf tissue was harvested at 

10 dpi, stored at -80 ℃ and ground to a homogenized fine powder in liquid nitrogen. Total RNA 

was isolated with spectrum total RNA kit (Sigma, USA) and quantified using Qubit. The Agilent 

2100 bioanalyzer (RNA Nano Chip, Agilent, CA) was used to check RNA integrity. The library 

construction and sequencing via Illumina HiSeq 2000 were performed by Novogene Co., Ltd 

(Sacramento, CA, USA), approximately 150 bp paired end (PE) raw reads were generated.  

3.3.8 Transcript abundance, differential expression (DE) and GO enrichment analysis 

To quantify WSMV reads in the RNA-seq samples, the coding sequence from WSMV isolate 

KSHm2014 (9,384 bp) was retrieved from NCBI database (MK318278.1, 

https://www.ncbi.nlm.nih.gov/). This sequence was concatenated to the IWGSC RefSeq v1.0 

wheat genome (Appels et al., 2018) as an additional FASTA entry, and used as the reference 

genome to build index files for alignments. Raw reads of each paired-end library were examined 

for sequence quality and adaptor sequences were removed using Fastp with default settings (Chen 

et al., 2018). Trimmed paired-end RNA-seq reads were aligned to the reference genome using 

STAR (Dobin & Gingeras, 2015) with parameters “-outFilterMismatchNmax 6 -alignIntronMax 

10000”. Non-normalized reads were counted with featureCounts (Liao et al., 2014) with 

parameters “-t gene -p” and used as input for the R package “DEseq2” (Love et al., 2014). Read 

counts of WSMV in each sample were normalized to clean reads of the corresponding samples for 

count per million (cpm) of WSMV. Differentially expressed genes (DEGs) were identified from 
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pairwise comparisons for treatment effect (WSMV-treated vs. mock-treated), and for genotypic 

effect under each condition: Resistant vs. Susceptible under WSMV-treated condition ($!"#$%

!"#$&) 

and under mock-treated condition (%!"#$%

!"#$& ). The P-value threshold was determined using 

Benjamini and Hochberg’s approach (Benjamini & Hochberg, 1995) for controlling the false 

discovery rate (FDR < 0.01) without controlling the log2 fold change (FC). Venn diagrams were 

drawn using VENNY software (Oliveros, 2007). Gene ontology (GO) enrichment analyses were 

performed with the TopGO R package (Alexa A, 2021) and Fisher tests were conducted to identify 

significant GO terms (P < 0.01). 

3.3.9 De novo transcriptome assembly of unmapped reads in Wsm2+ and presence/absence 

analysis of unique transcripts in the wheat pangenomes 

During the STAR alignment, reads that did not map to IWGSC RefSeq v1.0 were collected 

with parameter “-outReadsUnmapped” and assembled with Trinity (Grabherr et al., 2011) using 

the following parameters: “-seqType fq –samples_file<input_file> -max_memory 10G -CPU 20”. 

The proportion of reads mapped to the assembly was assessed with Bowtie2 (Langmead & 

Salzberg, 2012). Then CD-HIT (cd-hit-est – c 0.95) was used to remove redundant transcripts. The 

assembled transcripts were used as BLASTn queries against the NCBI nucleotide database (cutoff: 

1e-5) to annotate gene function. DEG analysis were performed on unmapped reads against 

assembled transcriptomes to identify candidate genes overlapped between the comparison of 

$!"#$%

!"#$& and &'(2 +'

(. The transcript sequences for overlapped DEG candidates that considered 

as unique transcripts in Wsm2+ compared to ‘Chinese Spring’ were extracted and used as queries 

in BLASTn searches (default: 1e-3) against the coding sequences (CDS) of ten wheat cultivars 

using the Galaxy platform (Afgan et al., 2018) for presence and absence (PAV) analysis. The PAV 

analysis for unique candidates among wheat cultivars was performed using the criteria that: 
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presence (+) was indicated as the top BLAST hit having a CDS similarity percentage > 96%. 

Absence (-) was indicated when no BLAST output was returned or when the top BLAST hit had 

a CDS similarity percentage < 96%. For unique transcripts in Wsm2+ that are also present in other 

wheat cultivars, the corresponding gene ID and physical position were extracted using the Galaxy 

platform (Afgan et al., 2018). 

3.3.10 Gene expression validation with qRT-PCR  

Transcript levels of selected candidate DEGs identified from RNA-seq experiments were 

validated with qRT-PCR using the same samples used for WSMV quantification. First-strand 

cDNA was synthesized from 2 µg of total RNA using SuperScript IV Reverse Transcriptase Kit 

(Thermo Fisher Scientific, USA) according to the manufacturer’s instructions. The qRT-PCR were 

performed using PowerUp SYBR Green Master Mix (Thermo Fisher Scientific, USA) in a 20 µL 

reaction with 100 ng cDNA and 1 μL of a 10 μM solution for each primer. Relative gene expression 

analysis was calculated using ACTIN as the internal control gene and 2%∆'( method was used for 

relative quantification. Primer efficiency and specificity were determined by analyzing 

amplification in a four-fold dilution series and checking the dissociation curve for a single 

amplified product and calculated as: Efficiency (%) = (4
!

"#$%& − 1) × 100. All primers in this study 

had an efficiency greater than 90% and are listed in Table S3.3. 

3.3.11 Functional validation of TraesCS3B02G035800 with CRISPR/Cas9  

To characterize the function of TraesCS3B02G035800, CRISPR/Cas9 was used to generate 

gene knockout mutants in elite wheat cultivars. The coding sequence was used as a query in a 

BLAST search to identify homoeologous copies. Two sgRNAs which are 500 bp apart and targeted 

at the first exon of this gene (Figure S3.1) were designed based on WheatCRISPR (Cram et al., 

2019) web tool by inputting candidate gene name and selecting for targeting at coding sequences 
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for all homoeologous copies (Table S3.4). Primers to clone sgRNAs are listed in Table S3.4. To 

clone sgRNA, the JD633-GRF4-GIF1/CRISPR-Cas9 vector (Debernardi et al., 2020) was used 

and sgRNA sequences were introduced by GoldenGate reaction into two AarI sites of the vector 

and transformed into chemically competent Escherichia coli DH5α cells. The JD633-GRF4-

GIF1/CRISPR-Cas9-gRNA vector was validated by Sanger sequencing using primer pairs TaU6-

promoter/gRNA-scaffold (Table S3.3). The constructs were first transformed into Agrobacterium 

strain AGL1 by electroporation and then into ‘Snowmass’ and ‘Snowmass 2.0’ wheat embryos 

with Agrobacterium-mediated transformation (Hayta et al., 2019). Genomic DNA was extracted 

from leaf tissues using a standard CTAB DNA extraction method and a PCR assay was performed 

to detect the presence of Cas9 in the DNA samples (initial denaturation at 95 ℃ for 5 min; 40 

cycles of 95℃ for 30 s, 60 ℃ for 1 min, and 68 ℃ for 1 min; and a final extension at 68 ℃ for 5 

min). The genotyping assay primers (Table S3.3 and Figure S3.1) were designed using Primer3 

(Koressaar & Remm, 2007) and amplification products were then subjected to Sanger sequencing 

with integrated DNA technology (IDT) company. 

3.4 Results 

3.4.1 Genomic characterization of Wsm2 in common wheat  

3.4.1.1 Analysis of within-species genomic variation for Wsm2 in seventeen wheat cultivars  

To refine the physical position of the Wsm2 locus, four SNP markers each within 1 cM of 

Wsm2 from previous mapping experiments (Table S3.2) were mapped to a 2.4 Mbp region (16.5 

Mbp to 18.9 Mbp) on chromosome arm 3BS of the IWGSC RefSeq v1.0 genome assembly (Table 

S3.5). In the IWGSC RefSeqv2.1 assembly, these markers spanned a 2.5 Mbp region on the same 

chromosome arm (22.0 Mbp to 24.5 Mbp, Table S3.5) due to a 100 kbp insertion at approximately 

24.2 Mbp (Figure S3.2). In both references, this region included the same 94 annotated gene 
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models (50 high confidence, 44 low confidence, Table S3.6). The wheat IWGSC RefSeq v1.0 

reference genome is based on the landrace ‘Chinese Spring’, which carries the WSMV-

susceptibility haplotype across the four SNP markers and exhibits a susceptible phenotype with a 

mean score equal to 4.0 two weeks post inoculation (Figure 3.1). The results show that the wheat 

reference genome IWGSC RefSeq v1.0 likely does not contain the Wsm2 genetic variation.  

 

Figure 3.1. Haplotype and genomic variation underlying Wsm2 in eleven wheat cultivars. A) Haplotypes were 

grouped based on allele type. B). Cultivar names and the Wsm2 interval size. C) Phenotype scores were measured 

two- and three-week post WSMV inoculation, scores separated by slash. Phenotype scores for seeds not available 

for subjecting to WSMV screening were indicated dash D) The resistant haplotype allele type was highlighted with 

green, whereas susceptible allele type in pink. Scores underlying the allele type indicate the physical position (Mbp) 

in each respective genome assembly.  
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To compare within-species genetic diversity at the Wsm2 locus, the corresponding genomic 

region of each SNP marker was mapped to the physical position in ten additional wheat cultivars 

with pseudomolecule genome assemblies (Figure 3.1). This region contained large structural 

variation between cultivars. For example, the physical distance between four markers spans from 

2.2 Mbp in ‘Julius’ up to 20.4 Mb in ‘Mace’ due to a 19.6 Mbp insertion between KASP2 and 

KASP3 markers (Figure 3.1). Moreover, the order of the four markers was inverted in 

‘ArinaLrFor’, suggesting genomic inversions of Wsm2 locus in this cultivar.  

To further analyze Wsm2 haplotypes, another six wheat cultivars with scaffold-level genome 

assemblies were included in the analysis. In total, eight haplotypes in this region were identified 

among all seventeen wheat cultivars (Table 3.1). The ‘CGTG’ haplotype associated with WSMV 

susceptibility was identified in ‘Chinese Spring’ and ‘Norin61’, whereas the resistance haplotype 

‘AACT’ was identified in ‘Robigus’, ‘SY Mattis’, ‘Jagger’, and ‘ArinaLrFor’ (Table 3.1). 

Moreover, a combination of another six haplotypes for these four markers were identified in the 

remaining twelve wheat cultivars. However, the WSMV phenotyping screening assay showed 

these wheat cultivars, regardless of their haplotypes, were all susceptible to WSMV infection 

(score > 2) two or three weeks after inoculation (Table 3.1). The lack of association between 

WSMV resistance and haplotypes suggested that these markers are not predictive to identify Wsm2 

when tested in wheat cultivars with quite diverse genetic background. Altogether, these results 

suggested Wsm2 lies in a highly dynamic region of wheat genome and is likely absent from all 

wheat cultivars with assembled genomes, making it a rare allele that likely just present in a few 

wheat cultivars that developed recently during wheat evolution. 
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Table 3.1. Haplotype analysis for Wsm2 in seventeen wheat cultivars. The resistant haplotype alleles or phenotype 

were indicated as green, whereas susceptible haplotype alleles or phenotype were indicated as pink. 

Marker Name KASP1 KASP2 KASP3 KASP4 Phenotyping 

Marker Position (bp) 16,443,466 16,455,416 17,770,942 18,873,524 14 dpi 21 dpi 

Susceptible C G T G 3.3 3.9 
Chinese Spring C G T G 4.0 3.8 

Norin61 C G T G a a 

Julius C G C G a a 

Kronos C A C G 4.0 4.6 

Cadenza C A T G 3.2 3.0 

Weebill C A T T 3.3 4.3 

Clarie C A T T 2.8 3.3 

CDC Stanley C A T T 3.9 5.0 

CDC Landmark C A T T 3.4 4.7 

Spelt A A T G a a 

Lancer A A T G a a 

Paragon A A C G 2.1 2.1 
Mace A A C G 3.7 5.0 

Robigus A A C T 3.4 4.6 

SY_Mattis A A C T 3.0 2.4 

Jagger A A C T 2.3 2.2 

ArinaLrFor A A C T a a 

Resistant A A C T 0.8 1.9 
agrey highlight means the seeds were not available.  

 

3.4.1.2 Linkage mapping confirms Wsm2 conferring WSMV resistance in ‘Snowmass’ 

To validate the association between Wsm2 and WSMV resistance, linkage mapping was 

performed in a biparental doubled-haploid mapping population (n = 116) derived from ‘Snowmass’ 

and ‘Antero’. The parental cultivar ‘Snowmass’ is resistant to WSMV, with an average phenotype 

score of 0.8, whereas ‘Antero’ is susceptible, with a mean score of 3.3 (Table S3.1). Four 

significant QTL for WSMV resistance were identified by linkage mapping (LOD > 3, P < 0.001) 

on chromosomes 3B, 3D, 5B and 7B (Figure 3.2). The strongest association was identified on 

chromosome 3B, where 60 significant markers (LOD > 3) were mapped, including 45 within the 

region between 11.9 Mbp to 28.5 Mbp, co-located with the previously defined Wsm2 region (16.5 

Mbp to 18.9 Mbp) (Table S3.7). In addition, two other significant markers (LOD > 3) were mapped 

to chromosome 3D at physical positions 4,397,505 bp and 5,446,355 bp. Sequence alignment 

showed that this region was not homoeologous to the Wsm2 locus on chromosome 3B (Figure 
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S3.3). Five other significant markers (LOD >3) were mapped to chromosome 7B and another 

significant marker (LOD >3) was mapped to chromosome 5B, respectively (Table S3.7). The 

results confirmed that ‘Snowmass’ contains the Wsm2 variant and the association between the 

Wsm2 locus and WSMV resistance at temperatures below 18 °C, making ‘Snowmass’ suitable 

plant material to characterize the genetic variants underlying the Wsm2 locus. 

 

Figure 3.2. QTL mapping of doubled haploid population (n = 116) from ’Snowmass’ and ‘Antero’.  

 

3.4.1.3 Exome capture reads revealed genetic and copy number variation underlying Wsm2 

As ‘Snowmass’ was confirmed to carry the rare Wsm2 allele, exome capture reads from 

‘Snowmass’ were used to characterize natural genetic variants underlying Wsm2. The exome reads 

from ‘Snowmass’ were mapped to the IWGSC RefSeqv1.0 genome and their effects on protein 

coding genes were predicted. Within the Wsm2 interval (16.5 Mbp to 18.9 Mbp), 851 

polymorphisms were identified between ‘Snowmass’ exome sequences and IWGSC RefSeqv1.0 

reference, leading to 3,380 genetic effects on all spliced transcript sequences (Table S3.8.1). Most 
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variant effects were either upstream (1,115, 33%) or downstream (1,371, 40.6%) of genes (Table 

S3.8.1). Six variants were predicted to have high impact on the protein coding gene, leading to 

either premature introduction of a stop codon within the coding sequence or frameshift variants 

(Table S3.8.2). Of the six high impact variants in ‘Snowmass’, four were also present in the 

WSMV susceptible parent ‘Antero’ (Table S3.8.2). The two high impact genetic variants unique 

to ‘Snowmass’ were insertion and deletion variants (Indels), one causing a frameshift in 

TraesCS3B02G042400LC (Patain), and another leading to a frameshift and splicing variant in 

TraesCS3B02G038300 (Bowman-birk trypsin inhibitor) (Table S3.8.2).  

To search for structural variation within the Wsm2 interval in ‘Snowmass’, exome capture 

read depth from ‘Snowmass’ was compared to the mean depth from the exomes of six other wheat 

cultivars (‘Antero’, ‘Brawl’, ‘Byrd’, ‘Hatcher’, ‘C0940610’, and ‘Platte’). None of the six 

cultivars exhibit resistance to WSMV except ‘Hatcher’ that is tolerant to WSMV (Albrecht et al., 

2020). Of the 94 genes within Wsm2, a cluster of four adjacent UDP-glycosyltransferase genes 

(TraesCS3B02G034700, TraesCS3B02G034800, TraesCS3B02G034900, and 

TraesCS3B02G035000) also underwent copy number duplications and have two to three additional 

copies in ‘Snowmass’ compared to the mean coverage in the reference genome set. In contrast, the 

WD repeat-containing protein 1 (TraesCS3B02G034400), ubiquitin-conjugating enzyme E2 

(TraesCS3B02G034500), and a trypsin inhibitor (TraesCS3B02G036200) are predicted to have 

fewer copies in ‘Snowmass’ (Figure 3.3). Collectively, the analysis of wheat pangenomes 

suggested that Wsm2 is likely to be absent from wheat cultivars with genomic resources, but it’s 

presence was confirmed in ‘Snowmass’. The exome reads from ‘Snowmass’ showed genetic 

variations, such as SNP, Indels and CNVs, underlying Wsm2 locus. 
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Figure 3. 3 Exome capture analysis of genomic variations underlying Wsm2 locus in ‘Snowmass’. A) CNV analysis 

for the Wsm2 locus in ‘Snowmass’ compared to a wheat exome reference set composed of ‘Antero’, ‘Brawl’, 

‘Byrd’, ‘Hatcher’, ‘C0940610’, and ‘Platte’ using ExomeDepth R package B) List of genes showing CNV, genes 

highlighted in red are predicted to have fewer copies in ‘Snowmass’, whereas genes highlighted in green are 

predicted to have duplicated copies in ‘Snowmass’.  

 

3.4.2 Transcriptomics to characterize plant response to WSMV infection  

3.4.2.1 WSMV accumulation following inoculation in Wsm2+ and Wsm2- wheat 

To compare the accumulation of WSMV in resistant and susceptible wheat, RNA was 

extracted from whole leaf tissues from ‘Snowmass’ (Wsm2+, WSMV resistant) and ‘Antero’ 

(Wsm2-, WSMV susceptible) at four time points after WSMV inoculation (0, 5, 10, and 15 dpi, 

Figure 3.4A). Following inoculation, WSMV accumulated in both genotypes throughout the time 

course, but at a much lower rate in Wsm2+ compared to Wsm2- (Figure 3.4A). There was no 

significant difference between genotypes in viral particles at either 0 and 5 dpi (P > 0.05), but at 

both 10 dpi (4.4-fold, P < 0.05) and 15 dpi (4.7-fold, P < 0.05) Wsm2+ contained significantly 

lower levels of WSMV compared to Wsm2- (Figure 3.4A). This result was consistent with visual 

symptoms, where Wsm2- individual plants showed characteristic streaked and mosaic patterns on 
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their leaves beginning at 10 dpi compared to Wsm2+ leaves that remained asymptomatic 

throughout the time course (Figure 3.4B). 

 

Figure 3.4 Characterization of the response of Wsm2+ and Wsm2- wheat to WSMV infection. A) WSMV 

quantification in ‘Snowmass’ (Wsm2+) and ‘Antero’ (Wsm2-) before (0), 5-, 10- and 15- day post inoculation (dpi). 

B) Phenotype of leaves in ‘Snowmass’ and ‘Antero’ 0, 5, 10, and 15- dpi. C) Quantification of WSMV reads in 

RNA-seq samples under four conditions: ①Wsm2- (C), ②Wsm2- (T), ③Wsm2+ (C) and ④Wsm2+ (T).  

 

3.4.2.2 Summary statistics of the RNA-seq experiment  

Based on the time course results, 10 dpi was selected as the time point to characterize the 

early transcriptomic response of wheat plants to WSMV infection. In this RNA-seq study, 16 

samples were collected from two genotypes (Wsm2+, Wsm2-) and two treatments (WSMV treated, 

mock treated). After adaptor trimming and removal of low-quality reads, an average of 26.7 

million reads were retained (Table S3.9). After alignment to the joint wheat-WSMV reference, 

WSMV reads were detected in all samples and calculated as WSMV read counts per million RNA 

seq reads (cpm) (Table S3.10). WSMV levels were much higher in WSMV-treated (T) samples 

(mean 50,418 cpm) compared to mock treated (C) samples (mean 5 cpm, Figure 3.4C). Comparing 

virus inoculated samples in both genotypes, the average amount of WSMV in Wsm2- (T) samples 
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is 5.86-fold higher compared to Wsm2+ (T) samples (P  < 0.001, Figure 3.4C) from RNA-seq 

reads, consistent with the 4.4-fold difference in WSMV accumulation between genotypes at 10 dpi 

as measured by qRT-PCR (Figure 3.4A). 

 Overall, an average 97.2% overall mapping rate was acquired across 16 samples to the joint 

reference of IWGSC RefSeq v1.0 and WSMV genomes. The average unique mapping rate for 

Wsm2- wheat samples was 84.5 ± 3.3%, whereas for Wsm2+ samples the rate was 81.0 ± 1.3% 

(Table S3.9). In the sample principal component analysis (PCA), PC1 explained 45% of variance 

in the overall transcriptome between samples and most samples were separated according to 

treatment (Figure S3.4). There were three ambiguous samples, of which two belong to Wsm2+ (T) 

(R2 and R4) and one belongs to Wsm2- (C) (R4) (Figure S3.4). The counts of WSMV reads in the 

two ambiguous Wsm2+ (T) samples were 4,227 cpm and 9,623 cpm compared to an average of 

22,440 cpm in other Wsm2+ (T) samples (Table S3.10), indicating that transcriptome variation in 

these samples may be due to variation in WSMV inoculation and infection. Samples were not 

grouped according to their genotype, indicating that the variation in overall transcript levels 

between genotypes within treatment groups were comparatively smaller compared to the treatment 

effect. 

3.4.2.3 Host overall transcriptomic changes comparing WSMV vs. mock-treated condition  

To characterize host transcriptomic responses to WSMV infection, differentially expressed 

genes between mock and WSMV-treated susceptible materials (Wsm2-) were analyzed (&'(2 −'

() 

(Table S3.11). In total, 8,975 genes were identified as differentially expressed genes (DEGs) in 

&'(2 −'

(, of which 5,031 genes were up-regulated and 3,944 genes were down-regulated after 

WSMV infection (Figure 3.5A). This comprised 74.2% of the total 121,016 expressed genes, 
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defined as raw read counts ≥ 1 in at least one of the samples, indicating that host plants undergo 

major transcriptional reprogramming in response to WSMV infection. 

Figure 3.5 Overview of differentially expressed genes between treatment and between genotype (%'()*+
'()*,and 

&'()*+
'()*,	) using IWGSC RefSeq v1.0 as a mapping reference. a) Number of up- and down-regulated DEGs (Padj < 

0.01) between treatment (WSMV treated vs. Mock treated samples. b) Heatmap of 8,975 DEGs from comparison of 

WSMV-treated vs. mock treated Wsm2- samples. The expression values are normalized by setting the mean of every 

row to 0 and the standard deviation of every row to 1. Hierarchical clustering separated these into DEGs that are 

either upregulated (n=5,031) or downregulated (n=3,944) in WSMV treated conditions. The top three enriched GO 

terms (biological process and molecular function) for each row cluster are shown on the right. c) Venn diagram of 

total DEGs (Padj < 0.01) between genotypes. d) Number of DEGs comparing Wsm2+ vs. Wsm2- under WSMV 

treated (%'()*+
'()*,	) or mock treated (&'()*+

'()*,	)conditions, located on each chromosome, genomes are color coded. 

 

Genes that were up-regulated in response to WSMV infection were significantly enriched (P 

< 0.01) for biological process GO terms related to ‘transport’ (GO:0006810) and ‘localization’ 

(GO:0051179), and for the molecular function GO terms ‘binding to calcium ion’ (GO:0005509), 

‘protein binding’ (GO:0005515), and ‘ATP binding’ (GO:0005524) (Figure 3.5B, Table S3.12), 
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Biological process:

• GO:0006810 (transport)

• GO:0051234 (establishment of 

localization)
• GO:0051179 (localization)

Molecular function:

• GO:0005509 (calcium ion binding)
• GO:0035639 (purine ribonucleoside 

triphosphate binding)
• GO:0005524 (ATP binding)
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indicating these processes are activated in host plants in response to viral infection. By contrast, 

genes down-regulated in response to WSMV treatment were most significantly enriched for 

biological process GO terms relating to ‘metabolic processes’ (GO:0015969, GO:0009119, 

GO:0033865) and the molecular function GO terms ‘catalytic or hydrolase activity’ (GO:0003825, 

and GO:0016787) (Figure 3.5B, Table S3.12), indicating host plants suppress metabolic activity 

in response to infection.  

3.4.2.4 Comparing transcriptional differences between genotypes under mock and WSMV-

treated condition 

To characterize transcriptional changes between genotypes, DEGs were analyzed under mock 

inoculation ( %!"#$%

!"#$& ) and virus inoculation ( $!"#$%

!"#$& ) conditions. Sixty-four genes were 

differentially expressed between genotypes in the %!"#$%

!"#$& comparison (Figure 3.5C), of which 28 

genes were up-regulated, and 36 were down-regulated in the Wsm2+ genotype (Table S3.11). Of 

the 64 DEGs, 22 (34.4%) are located on chromosome 3B (Figure 3.5D), with 14 close to Wsm2 

markers (from 13.7 Mb to 30.5 Mb) and five of the 94 genes defined in the region of the IWGSC 

RefSeq v1.0 genome (Table S3.13). 

In comparison, 3,499 genes were differentially expressed between genotypes under WSMV-

treated condition ($!"#$%

!"#$&), of which 1,920 were up-regulated and 1,579 were down-regulated in 

Wsm2+ genotypes. Among the 3,499 DEGs in $!"#$%

!"#$&, 2,059 (58.8%) of them have less than two-

fold-change values in one genotype versus the other (Table S3.11). Twenty-nine genes were 

differentially expressed between genotypes in both mock and WSMV-treated conditions, while 

3,470 genes were differentially expressed only after virus treatment (Figure 3.5C). These results 

are consistent with the PCA plot, indicating that WSMV infection induces a major shift in the 

transcriptome profile of the host plant. These 3,470 DEG are significantly enriched for GO terms 
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relating to different metabolic process (GO:0046128, GO:0072521, GO:0033865) and catalytic 

activity (GO:0003824, GO:0016757) (Table S3.12), indicating the Wsm2-mediated resistance 

likely causes major transcriptional changes on metabolic process or catalytic activity at 10 dpi. 

However, examination of enriched GO terms for these DEGs did not find any ‘defense response’, 

‘hormone regulation’, or ‘signaling transduction’ related terms (Table S3.12), suggesting resistant 

responses may not be significant at this time point.  

3.4.3 Analysis of transcriptomes to identify causative genes underlying Wsm2 

3.4.3.1 De novo assembly of unmapped reads revealed three unique transcripts in Wsm2+ 

To identify genetic variants or causative genes underlying Wsm2 that are specific to Wsm2+ 

materials and absent in the wheat reference genome IWGSC RefSeq v1.0 (Wsm2-, WSMV 

susceptible), a de novo assembly of RNA-seq reads that did not map to this reference was 

performed. A total of 23,066,200 unmapped reads (5.4% of all reads, Table S3.9) were combined 

from all 16 samples and assembled into 175,897 transcripts. Using CD-HIT clustering, these were 

collapsed to 161,210 non-redundant transcripts for subsequent analysis.  

The unmapped RNA-seq reads from all samples were mapped back to the de novo assembled 

transcriptomes to identify differentially expressed transcripts in Wsm2+ (T) compared to both 

Wsm2- (T) and Wsm2+ (C) conditions. From the two pairwise comparisons, 84 transcripts were 

differentially expressed between Wsm2+ (T) and Wsm2- (T), in addition to 102 transcripts that 

were differentially expressed between Wsm2+ (T) and Wsm2+ (C) (Table S3.14). Fourteen 

transcripts identified from unmapped reads were differentially expressed in both comparisons, 11 

of which were annotated as WSMV polyprotein gene, indicating those reads likely represent 

WSMV transcripts from the inoculum that have replicated in plant leaf tissues (Table S3.15). For 

the remaining three transcripts that were differentially expressed in both comparisons, one was 
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annotated as leaf rust 10 disease resistance locus receptor-like protein kinase (XM_037561459.1) 

and was significantly up-regulated in Wsm2+ (T) condition (TPM = 5.5, P < 0.001), but not 

expressed in either Wsm2- (T) or Wsm2+ (C) conditions. The other two were annotated as lectin-

like receptor kinase gene (MT027257.1), and cytochrome P450 (XM_037560405.1), and were 

expressed at low levels (TPM < 1.5) in Wsm2+ (C) condition and after WSMV infection they were 

significantly downregulated (5.7-fold change, P < 0.001) in $!"#$%

!"#$& (Table S3.15), indicating they 

likely promote plant susceptibility to WSMV infection.  

To confirm these three transcripts were truly absent in the wheat reference genome, their 

coding sequences were used as queries in BLASTn searches against a database of high and low 

confidence transcripts from the IWGSC RefSeq v1.0 assembly. The sequence similarity between 

these transcripts and the top BLAST hit in IWGSC RefSeq v1.0 was less than 96% (Table S3.16), 

validating this approach using de novo assembly of unmapped reads to detect the non-wheat 

reference genome annotated transcripts.  

To study if these transcripts were unique in Wsm2+ material, their sequences were also 

used as queries in BLASTn searches against the coding sequence (CDS) of ten other wheat 

cultivars. The cytochrome P450 transcript was present on the distal end of the long arm of 

chromosome 3B in all ten wheat cultivars near 840 Mbp, far from the Wsm2 locus that is located 

on the distal end of short arm 3B from 16.5 Mbp to 18.9 Mbp, suggesting it is unlikely to be 

orthologous to the Wsm2 region (Table S3.16). The leaf rust 10 disease resistance locus transcript 

was present in six wheat cultivars, and in each case located on chromosome 3B approximately 20 

Mbp downstream of the KASP1 marker for the Wsm2 locus (Table S3.16). The lectin-like receptor 

kinase transcript was absent in all wheat cultivars, indicating that this likely represents a rare 

transcript in Wsm2+ materials (Table S3.16). 
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3.4.3.2 Examination of candidate genes within Wsm2 found five possible causative genes 

underlying Wsm2 

To maximize the possibility to detect all possible Wsm2 causative genes, the candidate genes 

within Wsm2 interval based on wheat reference genome were studied as well. Of the 94 annotated 

candidate genes underlying Wsm2 interval from IWGSC RefSeq v1.0, five were differentially 

expressed between Wsm2+and Wsm2- at 10 dpi in the RNA-seq analysis and considered as 

possible causative genes underlying Wsm2 (Figure 3.6A). Their expression changes were validated 

using qRT-PCR (Figure 3.6B), demonstrating the reliability of RNA-seq to quantify transcript 

levels. Of the five candidates, two were more highly expressed in Wsm2- and encode WD repeat-

containing protein 1 (TraesCS3B02G034400) and Ubiquitin-conjugating enzyme E2 

(TraesCS3B02G034500) (Table S3.17). Consistently, the exome CNV analysis for these two 

candidates (TraesCS3B02G034400, TraesCS3B02G034500) revealed they have reduced copy 

number in ‘Snowmass’ (Figure 3.3), demonstrating a link between decreased transcript levels with 

a reduction in genome copy number for these two candidates in Wsm2+.  

The other three candidate genes were more highly expressed in Wsm2+ genotypes under 

both WSMV-treated and mock treated conditions, and encode SUF system FeS 

(TraesCS3B02G035600), Disease resistance protein RPM1 (TraesCS3B02G035800), and 

Chaperone protein DnaK (TraesCS3B02G035900). However, none of these up-regulated 

candidates in Wsm2+ were found with increased copy numbers in ‘Snowmass’ from the exome 

capture analysis (Figure 3.3), indicating their higher transcript levels in Wsm2+ is likely due to 

genetic variation in the promoter or other regulatory region.  
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Figure 3.6. Transcript levels of five DEGs within Wsm2 region. (A) log2TPM values of these five DEGs within 

Wsm2 interval from RNA-seq study. They were color-coded by four groups, Wsm2+ under WSMV treated (Wsm2+ 

T) and mock treated condition (Wsm2+ C) as well as Wsm2- under WSMV treated (Wsm2- T) and mock treated 

condition (Wsm2- C). (B) Expression in fold change to ACTIN reference for these five DEGs in a time course 

experiment with four time points (0, 5, 10, and 15-dpi). Samples were from leaves in Wsm2+ and Wsm2- after 

WSMV infection and RNA were extracted and run with qRT-PCR. * = P < 0.05. (C) Annotation for the five DEGs 

 

Of the four UDP-glycosyltransferase genes predicted to exhibit increased copy number in 

‘Snowmass’, three showed no significant differences in expression between genotypes and one 

gene (TraesCS3B02G034800) had unexpectedly lower expression in Wsm2+ samples in both 

WSMV treated and mock conditions (P < 0.05, Table S3.17). This result suggests that the 

increased copies likely do not play a role in plant response to viral or mock infection conditions.  

Previously, the Bowman-Birk inhibitor (BBI) gene family, with potential roles in biotic stress 

resistance, was found to have undergone extensive copy number and domain number duplication 

within the Wsm2 region (Xie et al., 2021). However, none of the fourteen BBIs located on 

chromosome 3B within the Wsm2 region were differentially expressed between genotypes (Table 
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to be induced or suppressed by WSMV infection at 10 dpi. Collectively, five of the 94 candidate 

genes within Wsm2 region, which were differentially expressed between genotypes, were 

considered as potential causative genes underlying Wsm2. One of the candidates annotated as the 

Disease resistance protein RPM1 (TraesCS3B02G035800) encodes an LRR domain protein was 

considered as a top candidate and was subjected to further functional validation. 

3.4.3.3 Generation of CRISPR/Cas9 edited mutant for disease resistance protein RPM1 

To characterize the function of wheat RPM1 (TraesCS3B02G035800) in WSMV resistance, 

the CRISPR/Cas9 genome editing tool was applied to generate gene knockout mutant for 

functional validation. The coding sequence of TraesCS3B02G035800 was used as a query in a 

BLASTn search against the IWGSC RefSeq v1.0 genome, revealing one homoeologous gene on 

chromosome 3D (TraesCS3D02G032900). There was no homoeologue on chromosome 3A, either 

in ‘Chinese Spring’, or ten other wheat cultivars that were analyzed (Table S3.18), suggesting this 

homoeologue has been lost in modern wheat during evolution.  

Two CRISPR/Cas9 constructs with distinct sgRNAs designed to target both B and D 

homoeologues were assembled and transformed into ‘Snowmass’ and ‘Snowmass 2.0’ embryos. 

Snowmass 2.0 (CO07W22-F5/Snowmass//Brawl CL Plus) has approximately one quarter of the 

genetic material from ‘Snowmass’, maintaining the Wsm2 allele and demonstrating strong WSMV 

resistance. A total of 24 transgenic plants were generated, twelve in ‘Snowmass’ background and 

another twelve in ‘Snowmass 2.0’ background (Table S3.19). The genotyping assay confirmed 

none of the transgenic plants in ‘Snowmass’ background has CRISPR/Cas9 edits, whereas three 

transgenic plants (#13, #16, and #23) in ‘Snowmass 2.0’ background have edits for both B and D 

homoeologues (Figure S3.1). The transgenic plant #13 has three SNPs mutation 

(C110G+T114G+T117G) on B copy and one SNP insertion (111insC) on D copy, plant #16 has 
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one SNP insertion and two SNPs mutations (113insG+T117A+G122A) on B copy and one SNP 

deletion on D copy (108delC), and plant #23 has one SNP deletion for both B and D gene copies 

(474delT) (Table S3.19). All mutations were in a heterozygous state. These T0 plant materials will 

be selfed to obtain T1 plants carrying homozygous mutations in both B and D gene copies to 

characterize the function of RPM1 using WSMV inoculation assays. 

3.5 Discussion 

3.5.1 Wsm2 is highly dynamic within wheat species and likely absent from modern wheat 

cultivars 

The Wsm2 locus has been mapped to the telomeric region of chromosome arm 3BS (Assanga 

et al., 2017; Lu et al., 2012; Tan et al., 2017) within a 2.4 Mbp interval (16.5 - 18.9 Mbp) based 

on the wheat reference genome assembly IWGSC RefSeq v1.0 (Figure 3.1). Analyses in the 

current study demonstrated that the Wsm2 region is diverse among different common wheat 

cultivars, with large structural variations underlying this locus within species (Figure 3.1). The 

telomeric regions of the chromosomes are associated with high rates of recombination during gene 

evolution, which results in frequent duplication and divergence events (See et al., 2006; Saintenac 

et al., 2009). Such high frequency in crossover and introgression at the end of chromosome 3BS 

are possible contributing factors for the large deletions/insertions and inversions for Wsm2 in 

different wheat cultivars. 

Moreover, this study showed that although Wsm2 appears to originate in common wheat, it 

is likely absent from all seventeen wheat cultivars with sequenced genomes, including the wheat 

reference genome ‘Chinese Spring’ (Table 3.1). This result is in agreement with Tan et al., 2017 

that showed ‘Chinese Spring’ is susceptible to WSMV and with Zhang and Hua, 2018 who showed 

that Wsm2 is absent from wild Brachypodium accessions. Despite the diverse haplotypes in these 
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seventeen wheat cultivars, they all exhibited WSMV susceptibility (Table 3.1). The lack of 

association of the markers with WSMV resistance phenotypes indicated that current markers may 

not be predictive for Wsm2. Therefore, sequencing information from Wsm2 locus carrying wheat 

material would be useful to understand the natural variation underlying the Wsm2 locus and to 

identify perfect markers benefitting breeders.  

3.5.2 Applying genomic and transcriptomic resources to characterize natural variation 

underlying Wsm2 

 The wheat pangenome is a powerful resource to exploit natural variations and characterize 

the genetic variants associated with important agronomic traits and resistance to stresses 

(Walkowiak et al., 2020). The identification of haplotypes associated with distinct phenotypes 

from different wheat cultivars, and the corresponding genomic sequences can be extracted from 

such sequenced cultivars and for subsequent comparative genomic analysis to identify unique 

variants underlying genetic variants of interest (Brinton et al., 2020). However, such an approach 

is limited if the genetic variants of interest are not present in those sequenced wheat germplasms. 

This will become less of a problem in future as more and more cultivars are sequenced, and high-

quality sequence information is generated from a cultivar of interest. 

 To study the genetic variants from a cultivar of interest, targeted sequencing such as 

chromosome arm sequencing has been successfully applied to clone the broad-spectrum Lr22a 

leaf-rust resistance gene (Thind et al., 2017). However, chromosome sequencing remains costly. 

Instead, exome capture reads, genotyping-by-sequencing (GBS), or transcriptome data generated 

from a cultivar of interest are important resources to reduce the cost and complexity of whole 

genomes but still able to study critical genetic variants.  
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Our study validated the presence of Wsm2 in ‘Snowmass’ using GBS markers and linkage 

mapping in a doubled haploid population (Figure 3.2). We further analyzed exome reads in 

‘Snowmass’ and compared genetic and structural variants underlying Wsm2 with wheat reference 

genome IWGSC RefSeq v1.0 (Figure 3.3 and Table S3.8). Significant copy number duplications 

for four tandem duplicated UDP-glycotransferases genes were identified in ‘Snowmass’ (Figure 

3.3). The UDP-glycosyltransferase gene plays diverse roles in plant immunity against various 

types of pathogens, for example, it functions as a negative regulator of the necrotrophic fungus 

Botrytis cinerea (Castillo et al., 2019), whereas it promotes resistance to the hemi-biotrophic 

bacterial pathogen Pseudomonas syringae pv tomato carrying the AvrRpm1 gene (Langlois-

Meurinne et al., 2005).  

 The transcriptome reads from Wsm2+ wheat materials were mapped to IWGSC RefSeq 

v1.0 and the unmapped reads were subjected to de novo transcriptome assembly, from which three 

unique transcripts specific to Wsm2+ were identified (leaf rust 10 disease resistance locus protein 

kinase, lectin-like receptor kinase, and cytochromes P450, Table S3.15). Cytochromes P450 

proteins are known to function in phytoalexin biosynthesis, hormone metabolism regulation, and 

the biosynthesis of secondary metabolites and other defensive signaling molecules which regulate 

plant immunity against various pathogen types (Xu et al., 2015). The lectin-like receptor kinase 

gene (LecRLK) is a class of RLK that has many copies present on plant genomes and contains a 

lectin/lectin-like ectodomain which can bind to carbohydrate (Sun et al., 2020). LecRLKs are 

involved in plant basal defense against both biotrophic and necrotrophic pathogens through 

carbohydrate signal perception which triggers the PTI response (Sun et al., 2020). However, 

whether LecRLKs are also involved in ETI, or if they play a role in plant response to viral infection, 

remains unknown. The gene annotated as leaf rust 10 disease-resistance locus receptor-like protein 
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kinase-like (LRK10) was first identified from wheat providing resistance to fungal pathogen 

Puccinia triticina (Feuillet et al., 1997, 1998). The LRK10 gene was later characterized as an NLR-

class of R gene in wheat with a strong diversifying selected N-terminal CC domain, suggesting a 

complex molecular mechanism of pathogen detection and signal transduction (Loutre et al., 2009). 

Although no evidence suggests this LRK10 is involved in plant defense response to viral pathogens, 

it is possible that this candidate could directly or indirectly interact with viral molecules and be 

involved in a downstream signal transduction pathway important in immunity.  

3.5.3 Transcriptomics revealed possible causative genes underlying Wsm2 

 We also examined annotated genes within Wsm2 interval based on wheat reference genome 

IWGSC RefSeq v1.0 for those differentially expressed between genotypes and identified five 

possible candidates (Figure 3.6). The two down-regulated DEGs in Wsm2+ are annotated as WD 

repeat-containing protein 1 (TraesCS3B02G034400) and ubiquitin-conjugating enzyme E2 

(TraesCS3B02G034500), which are members of large protein families common in all eukaryotes 

with functions associated with basic cellular mechanisms (van Nocker & Ludwig, 2003).  

Two of the up-regulated DEGs in Wsm2+ are annotated as SUF system FeS 

(TraesCS3B02G035600) and Chaperone protein DnaK (TraesCS3B02G035900) (Figure 3.6). The 

chaperone protein DnaK (HSP70) is known to respond to both biotic and abiotic stress, by which 

it helps to prevent the accumulation of excessive newly synthesized proteins, and to ensure proper 

protein folding during their transition process (Park & Seo, 2015). Another up-regulated candidate 

in Wsm2+, annotated as RPM1 (TraesCS3B02G035800), is a known plant resistance (R) gene and 

encodes a CC-NB-LRR domain protein that can recognize the avirulence factor AvrRpm1 from 

the bacterial pathogen Pseudomonas syringae pv. maculicola 1 and trigger plant ETI defense 

responses (Grant et al., 1995). We prioritized this RPM1 gene as a strong candidate gene because 
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of its known role in resistance to pathogens in other plant species and used the CRISPR/Cas9 

genome editing tool with GRF-GIF system to generate gene knockout mutant in ‘Snowmass 2.0’. 

These mutant plants will be valuable materials to characterize the function of RPM1 in WSMV 

resistance.  

In conclusion, we demonstrated Wsm2 is a rare allele in modern common wheat cultivars and 

is likely to have unique genetic variation in ‘Snowmass’. We applied genomic and transcriptomic 

tools to characterize variants in ‘Snowmass’ and other Wsm2+ lines and searched for evidence to 

identify the possible causative genes underlying this Wsm2 locus. We selected one of the top 

candidates and generated gene knockout mutants using CRISPR/Cas9 technology. 

 

 

 

 

  



 

106 

REFERENCES  

Afgan, E., Baker, D., Batut, B., van den Beek, M., Bouvier, D., Čech, M., Chilton, J., Clements, 

D., Coraor, N., Grüning, B. A., Guerler, A., Hillman-Jackson, J., Hiltemann, S., Jalili, V., 

Rasche, H., Soranzo, N., Goecks, J., Taylor, J., Nekrutenko, A., & Blankenberg, D. (2018). 

The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 

2018 update. Nucleic Acids Research, 46(W1), W537–W544. 

https://doi.org/10.1093/nar/gky379 

Albrecht, T., White, S., Layton, M., Stenglein, M., Haley, S., & Nachappa, P. (2020). Ecology and 

epidemiology of wheat curl mite and mite-transmissible viruses in Colorado and insights into 

the wheat virome. BioRxiv, 2020.08.10.244806. https://doi.org/10.1101/2020.08.10.244806 

Alexa A, R. J. (2021). TopGO: Enrichment Analysis for Gene Ontology. 

Appels, R., Eversole, K., Feuillet, C., Keller, B., Rogers, J., Stein, N., Pozniak, C. J., Choulet, F., 

Distelfeld, A., Poland, J., Ronen, G., Barad, O., Baruch, K., Keeble-Gagnère, G., Mascher, 

M., Ben-Zvi, G., Josselin, A. A., Himmelbach, A., Balfourier, F., … Wang, L. (2018). 

Shifting the limits in wheat research and breeding using a fully annotated reference genome. 

Science, 361(6403), 7191–7191. https://doi.org/10.1126/science.aar7191 

Arends, D., Prins, P., Jansen, R. C., & Broman, K. W. (2010). R/qtl: High-throughput multiple 

QTL mapping. Bioinformatics (Oxford, England), 26(23), 2990–2992. 

https://doi.org/10.1093/bioinformatics/btq565 

Assanga, S., Zhang, G., Tan, C. T., Rudd, J. C., Ibrahim, A., Xue, Q., Chao, S., Fuentealba, M. P., 

& Liu, S. (2017). Saturated genetic mapping of wheat streak mosaic virus resistance gene 

Wsm2 in wheat. Crop Science, 57(1), 332–339. https://doi.org/10.2135/cropsci2016.04.0233 



 

107 

Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and 

powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B 

(Methodological), 57(1), 289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x 

Brinton, J., Ramirez-Gonzalez, R. H., Simmonds, J., Wingen, L., Orford, S., Griffiths, S., Haberer, 

G., Spannagl, M., Walkowiak, S., Pozniak, C., & Uauy, C. (2020). A haplotype-led approach 

to increase the precision of wheat breeding. Communications Biology, 3(1). 

https://doi.org/10.1038/s42003-020-01413-2 

Castillo, N., Pastor, V., Chávez, Á., Arró, M., Boronat, A., Flors, V., Ferrer, A., & Altabella, T. 

(2019). Inactivation of UDP-glucose sterol glucosyltransferases enhances Arabidopsis 

resistance to Botrytis cinerea. Frontiers in Plant Science, 10, 1162–1162. 

https://doi.org/10.3389/fpls.2019.01162 

Chen, S., Zhou, Y., Chen, Y., & Gu, J. (2018). Fastp: An ultra-fast all-in-one FASTQ preprocessor. 

Bioinformatics, 34(17), i884–i890. https://doi.org/10.1093/bioinformatics/bty560 

Chisholm, S. T., Parra, M. A., Anderberg, R. J., & Carrington, J. C. (2001). Arabidopsis RTM1 

and RTM2 genes function in phloem to restrict long-distance movement of tobacco etch virus. 

Plant Physiology, 127(4), 1667–1675. https://doi.org/10.1104/pp.010479 

Chuang, W. P., Rojas, L. M. A., Khalaf, L. K., Zhang, G., Fritz, A. K., Whitfield, A. E., & Smith, 

C. M. (2017). Wheat genotypes with combined resistance to wheat curl mite, wheat streak 

mosaic virus, wheat mosaic virus, and Triticum mosaic virus. Journal of Economic 

Entomology, 110(2), 711–718. https://doi.org/10.1093/jee/tow255 

Cingolani, P., Platts, A., Wang, L. L., Coon, M., Nguyen, T., Wang, L., Land, S. J., Lu, X., & 

Ruden, D. M. (2012). A program for annotating and predicting the effects of single nucleotide 



 

108 

polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-

2; iso-3. Fly, 6(2), 80–92. https://doi.org/10.4161/fly.19695 

Cosson, P., Schurdi-Levraud, V., Le, Q. H., Sicard, O., Caballero, M., Roux, F., Le Gall, O., 

Candresse, T., & Revers, F. (2012). The RTM resistance to potyviruses in Arabidopsis 

thaliana: natural variation of the RTM genes and evidence for the implication of additional 

genes. PLOS ONE, 7(6), e39169. 

Cosson, P., Sofer, L., Le, Q. H., Léger, V., Schurdi-Levraud, V., Whitham, S. A., Yamamoto, M. 

L., Gopalan, S., le Gall, O., Candresse, T., Carrington, J. C., & Revers, F. (2010). RTM3, 

which controls long-distance movement of potyviruses, is a member of a new plant gene 

family encoding a meprin and TRAF homology domain-containing protein. Plant Physiology, 

154(1), 222–232. https://doi.org/10.1104/pp.110.155754 

Cram, D., Kulkarni, M., Buchwaldt, M., Rajagopalan, N., Bhowmik, P., Rozwadowski, K., Parkin, 

I. A. P., Sharpe, A. G., & Kagale, S. (2019). WheatCRISPR: A web-based guide RNA design 

tool for CRISPR/Cas9-mediated genome editing in wheat. BMC Plant Biology, 19(1), 474–

474. https://doi.org/10.1186/s12870-019-2097-z 

Danecek, P., Bonfield, J. K., Liddle, J., Marshall, J., Ohan, V., Pollard, M. O., Whitwham, A., 

Keane, T., McCarthy, S. A., Davies, R. M., & Li, H. (2021). Twelve years of SAMtools and 

BCFtools. GigaScience, 10(2). https://doi.org/10.1093/gigascience/giab008 

Danilova, T. V., Zhang, G., Liu, W., Friebe, B., & Gill, B. S. (2017). Homoeologous 

recombination-based transfer and molecular cytogenetic mapping of a wheat streak mosaic 

virus and Triticum mosaic virus resistance gene Wsm3 from Thinopyrum intermedium to 

wheat. Theoretical and Applied Genetics, 130(3), 549–556. https://doi.org/10.1007/s00122-

016-2834-8 



 

109 

de Ronde, D., Butterbach, P., & Kormelink, R. (2014). Dominant resistance against plant viruses. 

Frontiers in Plant Science, 5(JUN), 1–17. https://doi.org/10.3389/fpls.2014.00307 

Debernardi, J. M., Tricoli, D. M., Ercoli, M. F., Hayta, S., Ronald, P., Palatnik, J. F., Dubcovsky, 

J. (2020). A GRF–GIF chimeric protein improves the regeneration efficiency of transgenic 

plants. Nature Biotechnology, 38(11), 1274–1279. https://doi.org/10.1038/s41587-020-0703-

0 

Dhakal, S., Tan, C. T., Anderson, V., Yu, H., Fuentealba, M. P., Rudd, J. C., Haley, S. D., Xue, 

Q., Ibrahim, A. M. H., Garza, L., Devkota, R. N., & Liu, S. (2018). Mapping and KASP 

marker development for wheat curl mite resistance in “TAM 112” wheat using linkage and 

association analysis. Molecular Breeding, 38(10), 119–119. https://doi.org/10.1007/s11032-

018-0879-x 

Divis, L. A., Graybosch, R. A., Peterson, C. J., Baenziger, P. S., Hein, G. L., Beecher, B. B., & 

Martin, T. J. (2006). Agronomic and quality effects in winter wheat of a gene conditioning 

resistance to wheat streak mosaic virus. Euphytica, 152(1), 41–49. 

https://doi.org/10.1007/s10681-006-9174-8 

Dobin, A., & Gingeras, T. R. (2015). Mapping RNA-seq reads with STAR. Current Protocols in 

Bioinformatics, 51(1), 11.14.1-11.14.19. https://doi.org/10.1002/0471250953.bi1114s51 

Elshire, R. J., Glaubitz, J. C., Sun, Q., Poland, J. A., Kawamoto, K., Buckler, E. S., & Mitchell, S. 

E. (2011). A robust, simple genotyping-by-sequencing (GBS) approach for high diversity 

species. PLOS ONE, 6(5), e19379–e19379. 

FAOSTAT. (2020). Food and Agriculture Organization of the United Nations Database, 

FAOSTAT statistics, Crops-FAOSTAT statistics, Crops. https://doi.org/10.1016/B978-0-12-

384947-2.00270-1 



 

110 

Feuillet, C., Reuzeau, C., Kjellbom, P., & Keller, B. (1998). Molecular characterization of a new 

type of receptor-like kinase (wlrk) gene family in wheat. Plant Molecular Biology, 37(6), 

943–953. https://doi.org/10.1023/A:1006062016593 

Feuillet, C., Schachermayr, G., & Keller, B. (1997). Molecular cloning of a new receptor-like 

kinase gene encoded at the Lr10 disease resistance locus of wheat. Plant Journal, 11(1), 45–

52. https://doi.org/10.1046/j.1365-313X.1997.11010045.x 

Friebe, B., Qi, L. L., Wilson, D. L., Chang, Z. J., Seifers, D. L., Martin, T. J., Fritz, A. K., & Gill, 

B. S. (2009). Wheat-thinopyrum intermedium recombinants resistant to wheat streak mosaic 

virus and Triticum mosaic virus. Crop Science, 49(4), 1221–1226. 

https://doi.org/10.2135/cropsci2008.09.0513 

Grabherr, M. G., Haas, B. J., Yassour, M., Levin, J. Z., Thompson, D. A., Amit, I., Adiconis, X., 

Fan, L., Raychowdhury, R., Zeng, Q., Chen, Z., Mauceli, E., Hacohen, N., Gnirke, A., Rhind, 

N., Di Palma, F., Birren, B. W., Nusbaum, C., Lindblad-Toh, K., … Regev, A. (2011). Full-

length transcriptome assembly from RNA-Seq data without a reference genome. Nature 

Biotechnology, 29(7), 644–652. https://doi.org/10.1038/nbt.1883 

Grant, M. R., Godiard, L., Straube, E., Ashfield, T., Lewald, J., Sattler, A., Innes, R. W., & Dangl, 

J. L. (1995). Structure of the Arabidopsis RPM1 gene enabling dual specificity disease 

resistance. Science, 269(5225), 843–846. https://doi.org/10.1126/science.7638602 

Haber, S., Seifers, D. L., & Thomas, J. (2006). A new source of resistance to Wheat streak mosaic 

virus in spring wheat. 28(2), 324–324. 

Hadi, B. A. R., Langham, M. A. C., Osborne, L., & Tilmon, K. J. (2011). Wheat streak mosaic 

virus on wheat: Biology and management. Journal of Integrated Pest Management, 2(1), J1–

J5. https://doi.org/10.1603/IPM10017 



 

111 

Haley, S. D., Johnson, J. J., Peairs, F. B., Stromberger, J. A., Heaton, E. E., Seifert, S. A., Kottke, 

R. A., Rudolph, J. B., Martin, T. J., Bai, G., Chen, X., Bowden, R. L., Jin, Y., Kolmer, J. A., 

Seifers, D. L., Chen, M.-S., & Seabourn, B. W. (2011). Registration of ‘Snowmass’ wheat. 

Journal of Plant Registrations, 5(1), 87–90. https://doi.org/10.3198/jpr2010.03.0175crc 

Haley, S. D., Martin, T. J., Quick, J. S., Seifers, D. L., Stromberger, J. A., Clayshulte, S. R., 

Clifford, B. L., Peairs, F. B., Rudolph, J. B., Johnson, J. J., Gill, B. S., & Friebe, B. (2002). 

Registration of CO960293-2 wheat germplasm resistant to Wheat streak mosaic virus and 

Russian wheat aphid. Crop Science, 42(4), 1381–1382. 

https://doi.org/10.2135/cropsci2002.1381 

Harvey, T. L., Seifers, D. L., Martin, T. J., Brown-Guedira, G., & Gill, B. S. (1999). Survival of 

wheat curl mites on different sources of resistance in wheat. Crop Science, 39(6), 1887–1889. 

https://doi.org/10.2135/cropsci1999.3961887x 

Hayta, S., Smedley, M. A., Demir, S. U., Blundell, R., Hinchliffe, A., Atkinson, N., & Harwood, 

W. A. (2019). An efficient and reproducible Agrobacterium-mediated transformation method 

for hexaploid wheat (Triticum aestivum L.). Plant Methods, 15(1), 121–121. 

https://doi.org/10.1186/s13007-019-0503-z 

He, F., Pasam, R., Shi, F., Kant, S., Keeble-Gagnere, G., Kay, P., Forrest, K., Fritz, A., Hucl, P., 

Wiebe, K., Knox, R., Cuthbert, R., Pozniak, C., Akhunova, A., Morrell, P. L., Davies, J. P., 

Webb, S. R., Spangenberg, G., Hayes, B., … Akhunov, E. (2019). Exome sequencing 

highlights the role of wild-relative introgression in shaping the adaptive landscape of the 

wheat genome. Nature Genetics, 51(5), 896–904. https://doi.org/10.1038/s41588-019-0382-

2 



 

112 

Hunger, R., Sherwood, J., Evans CK, & Montana, J. (1992). Effects of planting date and 

inoculation date on severity of wheat streak mosaic in hard red winter wheat cultivars. Plant 

Disease, 76, 1056–1060. 

Ishibashi, K., & Ishikawa, M. (2013). The resistance protein Tm-1 inhibits formation of a tomato 

mosaic virus replication protein-host membrane protein complex. Journal of Virology, 

87(14), 7933–7939. https://doi.org/10.1128/jvi.00743-13 

Ishibashi, K., Masuda, K., Naito, S., Meshi, T., & Ishikawa, M. (2007). An inhibitor of viral RNA 

replication is encoded by a plant resistance gene. Proceedings of the National Academy of 

Sciences of the United States of America, 104(34), 13833–13838. 

https://doi.org/10.1073/pnas.0703203104 

Jordan, K. W., Wang, S., Lun, Y., Gardiner, L. J., MacLachlan, R., Hucl, P., Wiebe, K., Wong, 

D., Forrest, K. L., Sharpe, A. G., Sidebottom, C. H. D., Hall, N., Toomajian, C., Close, T., 

Dubcovsky, J., Akhunova, A., Talbert, L., Bansal, U. K., Bariana, H. S., … Akhunov, E. 

(2015). A haplotype map of allohexaploid wheat reveals distinct patterns of selection on 

homoeologous genomes. Genome Biology, 16(1), 48–48. https://doi.org/10.1186/s13059-

015-0606-4 

Koressaar, T., & Remm, M. (2007). Enhancements and modifications of primer design program 

Primer3. Bioinformatics, 23(10), 1289–1291. https://doi.org/10.1093/bioinformatics/btm091 

Kourelis, J., & van der Hoorn, R. A. L. (2018). Defended to the nines: 25 years of resistance gene 

cloning identifies nine mechanisms for R protein function. The Plant Cell, 30(2), 285–299. 

https://doi.org/10.1105/tpc.17.00579 



 

113 

Kumssa, T. T., Rupp, J. S., Fellers, M. C., Fellers, J. P., & Zhang, G. (2019). An isolate of Wheat 

streak mosaic virus from foxtail overcomes Wsm2 resistance in wheat. Plant Pathology, 68(4), 

783–789. https://doi.org/10.1111/ppa.12989 

Langlois-Meurinne, M., Gachon, C. M. M., & Saindrenan, P. (2005). Pathogen-responsive 

expression of glycosyltransferase genes UGT73B3 and UGT73B5 is necessary for resistance 

to Pseudomonas syringae pv tomato in Arabidopsis. Plant Physiology, 139(4), 1890–1901. 

https://doi.org/10.1104/pp.105.067223 

Langmead, B., & Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nature 

Methods, 9(4), 357–359. https://doi.org/10.1038/nmeth.1923 

Liao, Y., Smyth, G. K., & Shi, W. (2014). FeatureCounts: An efficient general purpose program 

for assigning sequence reads to genomic features. Bioinformatics, 30(7), 923–930. 

https://doi.org/10.1093/bioinformatics/btt656 

Liu, S., Assanga, S. O., Dhakal, S., Gu, X., Tan, C.-T., Yang, Y., Rudd, J., Hays, D., Ibrahim, A., 

Xue, Q., Chao, S., Devkota, R., Shachter, C., Huggins, T., Mohammed, S., & Fuentealba, M. 

P. (2016). Validation of chromosomal locations of 90K array single nucleotide 

polymorphisms in US wheat. Crop Science, 56(1), 364–373. 

https://doi.org/10.2135/cropsci2015.03.0194 

Liu, W., Seifers, D. L., Qi, L. L., Friebe, B., & Gill, B. S. (2011). A compensating wheat–

thinopyrum intermedium robertsonian translocation conferring resistance to wheat streak 

mosaic virus and Triticum mosaic virus. Crop Science, 51(6), 2382–2390. 

https://doi.org/10.2135/cropsci2011.03.0118 

Loutre, C., Wicker, T., Travella, S., Galli, P., Scofield, S., Fahima, T., Feuillet, C., & Keller, B. 

(2009). Two different CC-NBS-LRR genes are required for Lr10-mediated leaf rust 



 

114 

resistance in tetraploid and hexaploid wheat. Plant Journal, 60(6), 1043–1054. 

https://doi.org/10.1111/j.1365-313X.2009.04024.x 

Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion 

for RNA-seq data with DESeq2. Genome Biology, 15(12), 550–550. 

https://doi.org/10.1186/s13059-014-0550-8 

Lu, H., Kottke, R., Devkota, R., Amand, P. S., Bernardo, A., Bai, G., Byrne, P., Martin, T. J., 

Haley, S. D., & Rudd, J. (2012). Consensus mapping and identification of markers for marker-

assisted selection of Wsm2 in wheat. Crop Science, 52(2), 720–728. 

https://doi.org/10.2135/cropsci2011.07.0363 

Lu, H., Price, J., Devkota, R., Rush, C., & Rudd, J. (2011). A dominant gene for resistance to 

wheat streak mosaic virus in winter wheat line CO960293-2. Crop Science, 51(1), 5–12. 

https://doi.org/10.2135/cropsci2010.01.0038 

Lukaszewski, A. J., Alberti, A., Sharpe, A., Kilian, A., Stanca, A. M., Keller, B., Clavijo, B. J., 

Friebe, B., Gill, B., Wulff, B., Chapman, B., Steuernagel, B., Feuillet, C., Viseux, C., Pozniak, 

C., Rokhsar, D. S., Klassen, D., Edwards, D., Akhunov, E., … Feuillet, C. (2014). A 

chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. 

Science, 345(6194), 1251788–1251788. https://doi.org/10.1126/science.1251788 

Malik, R., Brown-Guedira, G. L., Smith, C. M., Harvey, T. L., & Gill, B. S. (2003). Genetic 

mapping of wheat curl mite resistance genes Cmc3 and Cmc4 in common wheat. Crop 

Science, 43(2), 644–650. https://doi.org/10.2135/cropsci2003.6440 

Martin, J. T., Fritz, A. K., Seifers, D. L., & Shroyer, J. P. (2007). ‘RonL’ hard white wheat. Kansas 

State University Agricultural Experiment Station and Cooperative Extension Service L-926, 

3. 



 

115 

Martin, T. J., Zhang, G., Fritz, A. K., Miller, R., & Chen, M.-S. (2014). Registration of ‘Clara CL’ 

wheat. Journal of Plant Registrations, 8(1), 38–42. 

https://doi.org/10.3198/jpr2013.07.0040crc 

McKelvy, U., Brelsford, M., Sherman, J., & Burrows, M. (2021). Reactions of winter wheat, spring 

wheat, and barley cultivars to mechanical inoculation with wheat streak mosaic virus. Plant 

Health Progress. https://doi.org/10.1094/PHP-10-20-0083-RS 

Murugan, M., Cardona, P. S., Duraimurugan, P., Whitfield, A. E., Schneweis, D., Starkey, S., & 

Smith, C. M. (2011). Wheat curl mite resistance: Interactions of mite feeding with wheat 

streak mosaic virus infection. Journal of Economic Entomology, 104(4), 1406–1414. 

https://doi.org/10.1603/EC11112 

Navia, D., de Mendonça, R. S., Skoracka, A., Szydło, W., Knihinicki, D., Hein, G. L., da Silva 

Pereira, P. R. V., Truol, G., & Lau, D. (2013). Wheat curl mite, Aceria tosichella, and 

transmitted viruses: An expanding pest complex affecting cereal crops. Experimental and 

Applied Acarology, 59(1–2), 95–143. https://doi.org/10.1007/s10493-012-9633-y 

Oliveros, J. C. (2007). VENNY. An interactive tool for comparing lists with Venn Diagrams.  

Park, C. J., & Seo, Y. S. (2015). Heat shock proteins: A review of the molecular chaperones for 

plant immunity. Plant Pathology Journal, 31(4), 323–333. 

https://doi.org/10.5423/PPJ.RW.08.2015.0150 

Plagnol, V., Curtis, J., Epstein, M., Mok, K. Y., Stebbings, E., Grigoriadou, S., Wood, N. W., 

Hambleton, S., Burns, S. O., Thrasher, A. J., Kumararatne, D., Doffinger, R., & Nejentsev, 

S. (2012). A robust model for read count data in exome sequencing experiments and 

implications for copy number variant calling. Bioinformatics, 28(21), 2747–2754. 

https://doi.org/10.1093/bioinformatics/bts526 



 

116 

Saintenac, C., Falque, M., Martin, O. C., Paux, E., Feuillet, C., & Sourdille, P. (2009). Detailed 

recombination studies along chromosome 3B provide new insights on crossover distribution 

in wheat (Triticum aestivum L.). Genetics, 181(2), 393–403. 

https://doi.org/10.1534/genetics.108.097469 

Santra, M., Wang, H., Seifert, S., & Haley, S. (2017). Doubled haploid laboratory protocol for 

wheat using wheat–maize wide hybridization. In P. L. Bhalla & M. B. Singh (Eds.), Methods 

in Molecular Biology (Vol. 1679, pp. 235–249). Springer New York. 

https://doi.org/10.1007/978-1-4939-7337-8_14 

See, D. R., Brooks, S., Nelson, J. C., Brown-Guedira, G., Friebe, B., & Gill, B. S. (2006). Gene 

evolution at the ends of wheat chromosomes. Proceedings of the National Academy of 

Sciences of the United States of America, 103(11), 4162–4167. 

https://doi.org/10.1073/pnas.0508942102 

Seifers, D. L., Martin, T. J., Harvey, T. L., Fellers, J. P., & Michaud, J. P. (2009). Identification of 

the wheat curl mite as the vector of Triticum mosaic virus. Plant Disease, 93(1), 25–29. 

https://doi.org/10.1094/PDIS-93-1-0025 

Seifers, D. L., Martin, T. J., Harvey, T. L., & Gill, B. S. (1995). Temperature sensitivity and 

efficacy of wheat streak mosaic virus resistance derived from Agropyron intermedium. Plant 

Disease, 79(11), 1104–1106. https://doi.org/10.1094/PD-79-1104 

Seifers, D. L., Martin, T. J., Harvey, T. L., Haber, S., & Haley, S. D. (2006). Temperature 

sensitivity and efficacy of Wheat streak mosaic virus resistance derived from CO960293 

wheat. Plant Disease, 90(5), 623–628. https://doi.org/10.1094/PD-90-0623 



 

117 

Seo, J.-K., & Kim, K.-H. (2016). Long-distance movement of viruses in plants. Current Research 

Topics in Plant Virology (pp. 153–172). Springer International Publishing. 

https://doi.org/10.1007/978-3-319-32919-2_6 

Sharp, G. L., Martin, J. M., Lanning, S. P., Blake, N. K., Brey, C. W., Sivamani, E., Qu, R., & 

Talbert, L. E. (2002). Field evaluation of transgenic and classical sources of Wheat streak 

mosaic virus resistance. Crop Science, 42(1), 105–110. 

https://doi.org/10.2135/cropsci2002.1050 

Singh, K., & Kundu, J. K. (2018). Wheat streak mosaic virus. Plant Viruses, 131–148. 

https://doi.org/10.1201/b22221-8 

Singh, K., Wegulo, S. N., Skoracka, A., & Kundu, J. K. (2018). Wheat streak mosaic virus: A 

century old virus with rising importance worldwide. Molecular Plant Pathology, 19(9), 2193–

2206. https://doi.org/10.1111/mpp.12683 

Skoracka, A., Rector, B. G., & Hein, G. L. (2018). The interface between wheat and the wheat curl 

mite, Aceria tosichella, the primary vector of globally important viral diseases. Frontiers in 

Plant Science, 9(July), 1–8. https://doi.org/10.3389/fpls.2018.01098 

Slykhuis, J. T. (1955). Aceria tulipae Keifer (Acarina: Eriophyidae) in relation to the spread of 

wheat streak mosaic. Phytopathology, 45(3), 116–128. 

Stenger, D. C., Hall, J. S., Choi, I. R., & French, R. (1998). Phylogenetic relationships within the 

family Potyviridae: Wheat streak mosaic virus and brome streak mosaic virus are not 

members of the genus Rymovirus. Phytopathology, 88(8), 782–787. 

https://doi.org/10.1094/PHYTO.1998.88.8.782 



 

118 

Sun, Y., Qiao, Z., Muchero, W., & Chen, J. G. (2020). Lectin receptor-like kinases: The sensor 

and mediator at the plant cell surface. Frontiers in Plant Science, 11(December). 

https://doi.org/10.3389/fpls.2020.596301 

Tan, C. T., Assanga, S., Zhang, G., Rudd, J. C., Haley, S. D., Xue, Q., Ibrahim, A., Bai, G., Zhang, 

X., Byrne, P., Fuentealba, M. P., & Liu, S. (2017). Development and validation of KASP 

markers for wheat streak mosaic virus resistance gene Wsm2. Crop Science, 57(1), 340–349. 

https://doi.org/10.2135/cropsci2016.04.0234 

Tatineni, S., Alexander, J., Gupta, A. K., & French, R. (2019). Asymmetry in synergistic 

interaction between Wheat streak mosaic virus and Triticum mosaic virus in Wheat. 

Molecular Plant-Microbe Interactions, 32(3), 336–350. https://doi.org/10.1094/MPMI-07-

18-0189-R 

Tatineni, S., & French, R. (2014). The C-terminus of Wheat streak mosaic virus coat protein is 

involved in differential infection of wheat and maize through host-specific long-distance 

transport. Molecular Plant-Microbe Interactions, 27(2), 150–152. 

https://doi.org/10.1094/MPMI-09-13-0272-R 

Tatineni, S., & Hein, G. L. (2018). Genetics and mechanisms underlying transmission of Wheat 

streak mosaic virus by the wheat curl mite. Current Opinion in Virology, 33, 47–54. 

https://doi.org/10.1016/j.coviro.2018.07.012 

Tatineni, S., Kovacs, F., & French, R. (2014). Wheat streak mosaic virus infects systemically 

despite extensive coat protein deletions: Identification of virion assembly and cell-to-cell 

movement determinants. Journal of Virology, 88(2), 1366–1380. 

https://doi.org/10.1128/jvi.02737-13 



 

119 

Tatineni, S., Wosula, E. N., Bartels, M., Hein, G. L., & Graybosch, R. A. (2016). Temperature-

dependent Wsm1 and Wsm2 gene-specific blockage of viral long-distance transport provides 

resistance to Wheat streak mosaic virus and Triticum mosaic virus in wheat. Molecular Plant-

Microbe Interactions, 29(9), 724–738. https://doi.org/10.1094/MPMI-06-16-0110-R 

Taylor, J., & Butler, D. (2017). R package ASMap: Efficient genetic linkage map construction and 

diagnosis. Journal of Statistical Software, 79. https://doi.org/10.18637/jss.v079.i06 

Thind, A. K., Wicker, T., Šimková, H., Fossati, D., Moullet, O., Brabant, C., Vrána, J., Doležel, 

J., & Krattinger, S. G. (2017). Rapid cloning of genes in hexaploid wheat using cultivar-

specific long-range chromosome assembly. Nature Biotechnology, 35(8), 793–796. 

https://doi.org/10.1038/nbt.3877 

Thomas, J. B., & Conner, R. L. (1986). Resistance to colonization by the wheat curl mite in 

Aegilops squarrosa and its inheritance after transfer to common wheat. Crop Science, 26(3), 

527–530. https://doi.org/10.2135/cropsci1986.0011183x002600030019x 

van Nocker, S., & Ludwig, P. (2003). The WD-repeat protein superfamily in Arabidopsis: 

Conservation and divergence in structure and function. BMC Genomics, 4(1), 50–50. 

https://doi.org/10.1186/1471-2164-4-50 

Walkowiak, S., Gao, L., Monat, C., Haberer, G., Kassa, M. T., Brinton, J., Ramirez-Gonzalez, R. 

H., Kolodziej, M. C., Delorean, E., Thambugala, D., Klymiuk, V., Byrns, B., Gundlach, H., 

Bandi, V., Siri, J. N., Nilsen, K., Aquino, C., Himmelbach, A., Copetti, D., … Pozniak, C. J. 

(2020). Multiple wheat genomes reveal global variation in modern breeding. Nature, 

588(7837), 277–283. https://doi.org/10.1038/s41586-020-2961-x 



 

120 

Wells, D. G., Kota, R. S., Sandhu, H. S., Gardner, W. S., & Finney, K. F. (1982). Registration of 

one disomic substitution line and five translocation lines of winter wheat germplasm resistant 

to wheat streak mosaic virus (Reg. No. GP 199 to GP 204). Crop Science, 22(6). 

Whelan, E. D. P., & Hart, G. E. (1988). A spontaneous translocation that transfers wheat curl mite 

resistance from decaploid Agropyron elongatum to common wheat. Genome, 30(3), 289–292. 

https://doi.org/10.1139/g88-050 

Whitham, S. A., Anderberg, R. J., Chisholm, S. T., & Carrington, J. C. (2000). Arabidopsis RTM2 

gene is necessary for specific restriction of tobacco etch virus and encodes an unusual small 

heat shock–like protein. The Plant Cell, 12(4), 569–582. https://doi.org/10.1105/tpc.12.4.569 

Xie, Y., Ravet, K., & Pearce, S. (2021). Extensive structural variation in the Bowman-Birk 

inhibitor family in common wheat (Triticum aestivum L.). BMC Genomics, 22(1), 218–218. 

https://doi.org/10.1186/s12864-021-07475-8 

Xu, J., Wang, X. Y., & Guo, W. Z. (2015). The cytochrome P450 superfamily: Key players in 

plant development and defense. Journal of Integrative Agriculture, 14(9), 1673–1686. 

https://doi.org/10.1016/S2095-3119(14)60980-1 

Zhang, G., & Hua, Z. (2018). Genome comparison implies the role of Wsm2 in membrane 

trafficking and protein degradation. PeerJ, 2018(4), 1–18. https://doi.org/10.7717/peerj.4678 

Zhang, G., Martin, T. J., Fritz, A. K., Miller, R., Chen, M.-S., Bowden, R. L., & Bai, G. (2016). 

Registration of ‘Joe’ hard white winter wheat. Journal of Plant Registrations, 10(3), 283–286. 

https://doi.org/10.3198/jpr2016.02.0007crc 

Zhang, G., Martin, T. J., Fritz, A. K., Miller, R., Chen, M.-S., Bowden, R. L., & Johnson, J. J. 

(2015). Registration of ‘Oakley CL’ wheat. Journal of Plant Registrations, 9(2), 190–195. 

https://doi.org/10.3198/jpr2014.04.0023crc 



 

121 

Zhu, T., Wang, L., Rimbert, H., Rodriguez, J. C., Deal, K. R., De Oliveira, R., Choulet, F., Keeble-

Gagnère, G., Tibbits, J., Rogers, J., Eversole, K., Appels, R., Gu, Y. Q., Mascher, M., Dvorak, 

J., & Luo, M.-C. (2021). Optical maps refine the bread wheat Triticum aestivum cv. Chinese 

Spring genome assembly. The Plant Journal, 107(1), 303–314. 

https://doi.org/10.1111/tpj.15289 

 

 

  



 

122 

CHAPTER 4. TRANSCRIPTOMICS OF BANANA (MUSA ACCUMINATA) IN RESPONSE 

TO FUSARIUM OXYSPORUM F.SP. CUBENSE (FOC) SUBTROPICAL RACE 4 (STR4) 

INFECTION 

4.1 Summary 

Banana (Musa accuminata) is an important staple food in the developing world and one of 

the leading fruit crops globally. One of the main diseases limiting its production is Fusarium wilt 

disease caused by the fungal pathogen Fusarium oxysporum f.sp. cubense (Foc). The Foc race 4 

strain, first detected 50 years ago in South East Asia, has recently spread globally and is virulent 

to most banana cultivars on the market, making it urgent to identify genetic resistance and mitigate 

its effect on global banana production. To characterize the host transcriptomic response to 

subtropical race 4 (Foc-STR4) infection, our collaborators generated RNA-seq data from resistant 

and susceptible samples prior to infection (T0), and 1-, 3-, and 7-day post inoculation (T1, T3, and 

T7) with Foc-STR4. Time course transcriptomic analysis of samples indicated host plant undergo 

major transcriptional reprogramming after Foc infection, including the immediate broad down-

regulation of signaling transduction and biosynthetic related genes. Comparison of genes 

differentially expressed between resistant and susceptible genotypes revealed that common 

defense responses, such as reactive oxygen species (ROS) production and cell wall modification, 

occur in both resistant and susceptible materials after Foc infection. However, these responses 

were much slower in susceptible cultivars compared to resistant cultivars, indicating plant 

resistance is likely achieved by immediate induced signaling transduction as well as rapid defense 

responses. Our collaborators performed a QTL-seq study and identified a novel locus that confers 

resistance to Foc-STR4. Analysis of candidates underlying the locus identified thirteen genes that 
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were differentially expressed between genotypes, the full description of these candidates will be 

published alongside the QTL-seq study.  

4.2 Introduction 

Banana is one of the most important fruits in the world with over 100 million tons produced 

annually (FAOSTAT, 2020). Global banana production is severely affected by Fusarium wilt 

disease, also known as Panama disease, which is especially devastating in Asia, Australia, the 

Middle East, and Africa (Ploetz, 2015). In the Philippines alone, economic losses can reach $400 

million per year (Cook et al., 2015). This disease is caused by the soil-born hemi-biotrophic fungal 

pathogen Fusarium oxysporum f.sp. cubense (Foc) (Ploetz, 2006). Foc initially infects plants by 

attaching to host root hairs. Once inside the root, Foc can colonize the rhizomes and then move to 

the pseudostem, blocking the xylem vessels and eventually preventing water and nutrient transport 

(Li et al., 2013). Disease symptoms of Fusarium wilt include yellowing and wilting of leaf tissues, 

and brown discoloration and necrosis of xylem vessels in the rhizomes and stems (Ploetz, 2015).  

The banana cultivar ‘Cavendish’ provides 99% of bananas grown for export, and exhibits 

resistance to most historical Foc races (race 1, race 2, and race 3), mitigating the impact of 

Fusarium wilt disease (Ploetz, 2006). However, a new Foc strain named as race 4, evolved around 

1970 in South East Asia, is virulent for ‘Cavendish’ and many other banana cultivars (Ploetz, 

1994). The race 4 strain is further divided into tropical race 4 (Foc-TR4) and subtropical race 4 

(Foc-STR4), according to their infection areas (Buddenhagen, 2009). The initial outbreak of race 

4 Foc leads to spread worldwide so that this strain now presents a major threat to global banana 

production (Ploetz, 2015). Chemical controls against Foc, such as soil fumigants, fungicides, and 

cultural practices are uneconomic, ineffective, and environmentally unfriendly (Sismak & Zheng, 
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2018). The long-term solution to manage this disease is to identify sources of genetic resistance 

and introduce the resistance genes into commercial cultivars. 

Most cultivated bananas have a triploid genome (2n = 3x = 33, genome constitutions of AAA, 

AAB, or ABB), derived from two diploid progenitors, Musa acuminata (AA genome) and Musa 

balbisiana (BB genome) (D’Hont et al., 2000). There is a lack of natural disease-resistant 

germplasm for race 4 Foc strain among commercial banana cultivars (Chen et al., 2019). Efforts 

have been made to screen banana wild relatives to identify resistance sources against the virulent 

race 4 Foc strain. A wild banana accession ‘Pahang’ (Musa acuminata ssp. malaccensis, n = 11, 

A genome), was identified with strong resistance to Foc-TR4 (D’hont et al., 2012; Zhang et al., 

2018). Evaluation of ‘Pahang’ revealed the resistance mechanism is through suppression of fungal 

growth in the corm (Zhang et al., 2018). Moreover, the first banana reference genome assembly is 

from a doubled haploid ‘Pahang’ (DH-Pahang, AA genome), with a genome size of 523 Megabase 

pairs (Mbp) containing 36,542 protein-coding gene models (D’hont et al., 2012). 

Additionally, a screen of 129 diverse banana accessions identified ten that exhibit strong host 

resistance to Foc-TR4 (Zuo et al., 2018). Moreover, the potential ‘complete’ resistance in the 

rhizomes has been identified from a recent screen of 34 banana cultivars grown under controlled 

settings, providing valuable genetic resources for Fusarium wilt disease management (Chen et al., 

2019). To deploy such genetic resources into elite banana cultivars, genetic studies are required to 

map the resistance loci and identify causative genes. In addition, a better understanding of host 

responses to infection can help define plant defense mechanisms.  

A team at the University of Queensland has been working on the identification of QTLs 

controlling host resistance to Foc race 4 in bananas. They performed fine mapping using 430 F2 

individuals and identified a novel Foc race 4 type resistance locus in a 4.3 cM genetic interval on 
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chromosome 3. In this study, I analyzed the gene expression profiles of these candidate genes 

between resistant and susceptible cultivars in a time course prior to infection (T0), and 1-, 3-, and 

7-day (T1, T3, and T7) after infection with Foc-STR4. Moreover, I assembled gene co-expression 

networks for susceptible samples to study transcriptional changes in overall plant defense 

responses during infection. This analysis revealed that although susceptible samples still respond 

to Foc-STR4 infection by inducing ROS production and cell wall strengthening related genes, 

these defense responses were induced more slowly than in resistant materials. Moreover, 

comparing resistant versus susceptible samples for DEGs underlying the novel Foc-STR4 locus 

helped prioritized thirteen candidates that will be subjected to future functional validation assay.  

4.3 Materials and Methods 

The details of data preparation (plant materials, inoculation approach, pathogen strains, RNA-

seq library prep etc.) were performed by our collaborators and will be described in full in an 

upcoming publication.  

4.3.1 Experimental design  

The RNA-seq experiment comprised 24 samples from Musa acuminata ssp. malaccensis with 

two genotypes: resistant and susceptible; four time points: 0-, 1-, 3-, and 7-day post inoculation 

(dpi), where 0 dpi is prior to Foc infection; and three biological replicates (2 * 4 * 3 = 24 samples, 

Table S4.1). Each cDNA library was sequenced using the Hiseq 4000 platform (Genewiz), 

generating approximately 150 bp paired end reads for each sample.  

4.3.2 Differentially expressed genes (DEGs) analysis  

Reads containing adapter sequence and low-quality reads were removed using Fastp software 

(Chen et al., 2018). The paired-end filtered reads were aligned to an unpublished banana reference 

genome based on DH-Pahang shared by our collaborators. Differentially expressed genes (DEGs) 
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were analyzed using two different pipelines. The first pipeline used STAR for alignment (Dobin 

& Gingeras, 2015) with parameters “-outFilterMismatchNmax 6 -alignIntronMax 10000”. Non-

normalized reads were tabulated with FeatureCounts software (option: -M -g ID -t gene -p) (Liao 

et al., 2014). DEGs were identified from pairwise comparisons between resistant and susceptible 

samples at each time point ($0*
+, $1*

+, $3*
+, and $7*

+) and comparing Foc treated samples versus 

untreated samples (T0 vs. T1, T0 vs. T3, and T0 vs. T7) using DESeq2 R package (Love et al., 

2014). The P-value threshold was determined using Benjamini and Hochberg’s approach 

(Benjamini & Hochberg, 1995) for controlling the false discovery rate (FDR < 0.01) without 

controlling the log2 fold change (FC).  

The second pipeline used HISAT2 v2.1.0 (Kim et al., 2019) with default settings for 

alignment of filtered reads. The alignments were subjected to samtools v1.11 (Danecek et al., 2021) 

to generate sorted BAM files, which were used as input for StringTie v2.0.3 (Pertea et al., 2015) 

to perform de novo transcriptome assembly to identify novel splice variants. Outputs from 

StringTie were imported into the Ballgown R package (Frazee et al., 2015) for statistical tests to 

identify DEGs between genotypes based on gene- and transcript-level fragments per kilobase of 

transcript per million fragments mapped (FPKM) values (Pertea et al., 2016). The default statistical 

tests in Ballgown were used, based on a parametric F-test comparing nested linear models (Frazee 

et al., 2015). Multiple comparison adjustments were reported by q-values (Storey & Tibshirani, 

2003) for each transcript, and DEGs were defined as those genes with a q-value less than 0.01. 

Gene Ontology (GO) enrichment analysis was performed with the topGO R package (Alexa A, 

2021) running Fisher test for significantly enriched GO terms (P < 0.01 for DEGs from modules 

identified by WGCNA, and P < 0.05 for DEGs between genotypes) for biological process (BP), 

molecular function (MF), and cellular component (CC). The enriched GO terms together with its 
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Fisher test values were selected as inputs to remove redundant GO terms on Revigo webpage 

(Supek et al., 2011) with the parameter: “tiny-0.4”.  

4.3.3 Gene co-expression network assembly (WGCNA) analysis  

Both DESeq2 and Impulse2 (Spies et al., 2019) were used to call DEGs between time points 

(P adj < 0.01) and throughout the time course (T0, T1, T3, and T7). Comparing both statistical 

tests, shared DEGs from both tests were subjected to WGCNA analysis to construct a gene co-

expression network. A customized R script (wgcna_standard.R, Appendix C.1) adapted from a 

standard WGCNA analysis pipeline (Langfelder & Horvath, 2008) was used with the parameters 

power = 20, minmoduleSize = 30.  

4.4 Results 

4.4.1 Host plants undergo major transcriptomic reprogramming after Foc infection 

An average of 48.3 million clean 150-bp paired end (PE) reads were generated for 24 RNA-

seq samples after filtering (Table S4.2). The clean reads were aligned to a banana reference 

genome using two pipelines to compare the performance of STAR and HISAT2 alignment tools. 

Using STAR, the average overall mapping rate was 95.6% ±  1.6%, while the mean unique 

mapping rate was 87.8% ± 5.1% (Table S4.2). In contrast, using HISAT2 the average overall 

mapping rate was 96.5% ± 0.9%, and the average unique mapping rate was 82.8% ± 8.1% (Table 

S4.2). Because the STAR alignment pipeline yields a higher unique mapping rate than HISAT2, 

the outputs from STAR were used for all subsequent analyses.  

A principal component analysis (PCA) plot and sample-to-sample distance matrix were built 

based on whole transcriptome data from each sample (Figure 4.1). In general, samples were 

grouped distinctly by timepoint with little overlap between them, showing time points are the 

major driver of transcriptional differences in these samples. In the PCA plot, PC1 explained 72% 
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of variance in the overall transcriptome between samples, and most clearly distinguished samples 

prior to Foc inoculation (T0) from samples after Foc inoculation (T1, T3, and T7, Figure 4.1A). 

This profile indicates that both susceptible and resistant host plants undergo major transcriptomic 

reprogramming soon after Foc infection. Moreover, PC2 explained 11% of variance, separating 

samples T1, T3, and T7 from one another (Figure 4.1A), suggesting host plants underwent 

relatively smaller transcriptional changes from 24 hours after the initial infection. Despite major 

differences in transcription between timepoints, there were relatively smaller differences between 

genotypes, which remained clustered together by timepoint (Figure 4.1B).  

 

Figure 4.1. Summary of RNA-seq samples. (A) Principal component plot (PCA). The unit indicated percent variant 

explained (PVE). RNA-seq samples include three biological replicates for two genotypes (Resistant-R, and 

Susceptible-S) and four time points (before inoculation-T0, 1-, 3-, and 7-day post inoculation- T1, T3, and T7). (B) 

Sample correlation matrix. The heatmap shows the distance matrix for similarities and dissimilarities in expression 

profiles between samples. 

4.4.2 Co-expression networks reveal major host plant transcriptomic profiles following Foc 

infection  

To characterize the host transcriptomic response to Foc infection over time in susceptible 

genotypes, pairwise DEG analysis was performed between different stages following Foc infection 

and untreated T0 samples (T0 vs. T1, T0 vs. T3, and T0 vs. T7). The banana reference genome 

includes 36,443 gene models, of which 32,336 (88.7%) were expressed with ≥ 10 read counts in 
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at least one of the samples. In response to Foc infection, more than half of all expressed genes 

(16,278/32,336 = 50.3%) were differentially expressed (DESeq2 P adj < 0.01) in at least one 

pairwise comparison between treated and untreated samples, consistent with the PCA plot showing 

major differences between untreated (T0) and infected samples (T1, T3, and T7). At each pairwise 

comparison between T0 with time points after Foc infection (T1, T3, and T7), there were a greater 

number of genes upregulated than downregulated (Figure 4.2A). Out of the three pairwise 

comparisons, 5,637 DEGs were shared (Figure 4.2B), indicating those genes were induced or 

repressed throughout the time course from T1 to T7. In addition, 1,770, 1,577, and 3,266 genes 

were differentially expressed at only one time point (T1, T3, and T7) compared to T0, respectively 

(Figure 4.2B), indicating that temporary or stage specific transcriptional changes are greatest at 

the later time point, seven days after Foc infection.  

 

Figure 4.2. Summary of differentially expressed genes (DEGs) from pairwise comparisons of T1, T3, and T7 versus 

T0 in susceptible samples. (A) Bar chart for number of up- and down-regulated DEGs T0 vs. T1, T0 vs. T3, and T0 
vs. T7; (B) Venn diagram for total number of DEGs in each comparison. T0 means prior to Foc treatment, T1, T3, 

and T7 means 1-, 3-, and 7-day post Foc inoculation (dpi).  
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Using Impulse2, a tool to detect DEGs across time course expression data, 13,100 DEGs were 

identified, 12,961 of which were also significant by DESeq2 pairwise comparisons. This consensus 

set of DEGs was used to construct a co-expression network to characterize the predominant 

expression profiles during the infection time course. The network includes 12 modules, with the 

largest number of genes (3,716) in Module 1 (Table S4.3). Genes in this module are characterized 

by high transcript levels immediately before infection, followed by rapid downregulation and 

suppression following Foc infection for the remainder of the time course (Figure 4.3). Genes in 

Module 1 were most significantly enriched for the gene molecular function (MF) terms “DNA-

binding transcription factor activity” (GO:0003700), and for the biological processes (BP) terms 

“regulation of salicylic acid mediated signaling pathway” (GO:2000031), “regulation of signaling” 

(GO:0023051)“, “regulation of cell communication” (GO:0010646), “regulation of response to 

stimulus” (GO:0048583), “biosynthetic process” (GO:0045927), and “regulation of cellular 

process” (GO:0050794) (Table S4.4). These broad profiles indicate that following Foc infection, 

susceptible host plants rapidly suppress the expression of large groups of TFs that may regulate 

signal transduction, cellular process, and other biosynthesis processes. Furthermore, the 

downregulation of salicylic acid (SA) signaling pathways indicates that SA might plays a role in 

host plant response to this hemi-biotrophic pathogen’s infection. 

The genes clustered in Module 3 (1,812 DEGs) and Module 4 (1,339 DEGs) were induced 

rapidly at T1 and were significantly enriched for the BP terms “protein phosphorylation” 

(GO:0006468), “response to abiotic stimulus” (GO:0009628), “response to cold” (GO:0009409), 

and “response to red or far-red light” (GO:0009639) (Table S4.4), indicating following Foc 

infection host plant induced transcriptional changes to abiotic stress within 24 hours.  
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In contrast, the genes in the second largest module (Module 2, 2,553 DEGs) exhibited low 

transcript levels at T0 and T1 followed by rapid upregulation at T3 which is maintained throughout 

the remainder of the time course (Figure 4.3). Enriched GO terms for BP in Module 2 included 

hydrogen peroxide activity or reactive oxygen species (ROS) production (GO:0006979, 

GO:0042744, GO:0072593), and cell wall/lignin biogenesis (GO:0042546, GO:0046274) related 

terms (Table S4.4). The cell wall biogenesis and production of ROS related biological processes 

indicate host plants may activate these defense responses to fight against Foc, but responses were 

induced only 72 hours after infection.  

 

Figure 4.3. Expression profiles for modules identified from the WGCNA analysis. The expression for each module 

were displayed as the average TPM values of the eigengene representing that module. The module number and the 

number of DEGs in that module (in parenthesis) are displayed above the expression line and highlight in grey color. 
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Collectively, the WGCNA result suggested that following Foc-STR4 infection, host plants 

undergo transcriptional changes to abiotic stress response, as well as repressed SA signaling and 

other cell communication and biosynthetic processes within 24 hours. The biotic stress induced 

process, such as ROS production and cell wall strengthening were induced until 72 hours.  

4.4.3 Host defense related response was different between genotypes 24 hours after Foc 

infection 

In pairwise comparisons between resistant and susceptible genotypes (R vs. S), 1,097 genes 

(3.4% of all expressed genes), were differentially expressed in at least one timepoint (Table S4.5), 

consistent with the PCA plot result showing that there are comparatively fewer genes differentially 

expressed between genotypes than between time points. GO enrichment tests were performed 

separately for DEGs that were more highly expressed in resistant or susceptible materials at each 

time point (T0, T1, T3, and T7) (Table S4.6). 

Figure 4.4. Summary of DEGs between resistant versus susceptible samples (R vs. S). The Venn diagram shows the 

overlapping DEGs at each time point and the table below shows total number of DEGs at each time point. “Higher 
in Resistant” means these DEGs were upregulated in resistant sample and “Higher in Susceptible” means DEGs 

were downregulated in resistant samples  

 

At T0 before infection, 316 DEGs were identified, of which 140 DEGs were more highly 

expressed in resistant samples compared to 176 that were more highly expressed in susceptible 

samples (Figure 4.4). The great majority of these genes (292, or 92.4%) were differentially 

Time points Total #DEGs
Higher in 

Resistant

Higher in 

Susceptible

T0 316 140 176

T1 686 113 573

T3 58 26 32

T7 37 17 20

Total 1,097 296 801

T0 (R vs S)

T1 (R vs S) T3 (R vs S)

T7 (R vs S)
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expressed only at T0 (Figure 4.4), indicating they likely correspond to genotypic variation under 

unstressed conditions and may play a role in preparing plants for resistance to Foc infection.  

The majority of DEGs between genotypes were found at T1, which has 686 (686/1,097 = 

63%) DEGs, of which 113 had higher expression levels in resistant plants and 573 had higher 

expression levels in susceptible plants (Figure 4.4). Among them, there were 628 DEGs unique to 

this time point (Figure 4.4), indicating under stressed conditions the genes causing main genotypic 

difference for transcriptional changes to Foc infection happened within 24 hours. In comparison, 

fewer transcriptomic differences between genotypes were detected at later timepoints, with just 58 

DEGs identified at T3 and 37 DEGs identified at T7 (Figure 4.4). At T1, genes more highly 

expressed in resistant plants were enriched for many defense related GO terms such as “immune 

system process” (GO:0002376), “response to stress” (GO:0006950), “cell wall biogenesis” 

(GO:0042546), “response to oxidative stress” (GO:0006979), and “defense response to other 

organism” (GO:0098542) (Table S4.6). The result suggested that resistant plants likely activate 

these rapid defense responses within 24 hours after infection. 

4.4.4 Expression profiles of candidate genes underlying a STR4 resistance locus 

Our collaborators performed a QTL-seq study and identified a novel locus associated with 

resistance to Foc-STR4 in an interval of approximately 400 Kbp. Annotations for candidate genes 

underlying this QTL revealed a cluster of adjacent genes belonging to the same gene family. In 

total, 59 genes belong to this gene family were identified within the QTL interval, and can be 

grouped into four subfamilies, A, B, C and D, named according to the order of their physical 

position on the banana reference genome (Table S4.7). In total, there are 41 gene members in 

subfamily A (named A-1, A-2 etc.), nine genes in subfamily B, three genes in subfamily C, and 

six genes in subfamily D (Table 4.7). The expression profiles of these genes across the time course 
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were quantified as mean transcript per million (TPM) values, and pairwise DEG analysis was 

performed to compare expression levels between resistant and susceptible genotypes (Table S4.7). 

Most members of this family exhibit low transcript levels and only eight genes exhibited a 

mean expression level > 1 TPM (Figure 4.5A). Among the four expressed genes in subfamily A, 

two (A-1 and A-36) were only expressed in the resistant genotype, whereas the other two (A-5 and 

A-29) only expressed in susceptible genotype (Figure 4.5A). Moreover, two genes in subfamily C 

(C-1 and C-3) and one gene in subfamily D (D-5) were highly expressed in both resistant and 

susceptible genotypes throughout the time course, while another candidate gene (C-2) was 

expressed only at T3 and T7 (Figure 4.5A). Moreover, thirteen genes in this family were 

differentially expressed between genotypes (P < 0.001) in at least one time point (Figure 4.5B). 

Nine of these genes in subfamilies A and B were more highly expressed in resistant plants, while 

the remaining four genes from subfamilies C and D were more highly expressed in susceptible 

plants (Figure 4.5B).  

Figure 4.5. Expression profiles of candidates using STAR as the alignment tool and DESeq2 for statistical test to 

identify DEGs between resistant versus susceptible samples. (A) Heatmap of candidate genes after filtering out 
genes with average TPM < 1 across samples. Heatmap was generated based on log2TPM values. (B) Line plot of 

candidate genes that were significantly expressed between genotype (P < 0.001), the star indicates the significance 

level between genotype at each time point. 
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4.5 Discussion 

     In this study, transcriptomic data from banana root tissue was used to characterize host 

response to Foc STR4 strain infection. Overall, major transcriptional reprogramming for both 

resistant and susceptible genotypes occurred in response to Foc infection compared to 

uninoculated controls (Figure 4.1A). More than 50% of transcribed genes were differentially 

expressed in susceptible samples following Foc infection (Figure 4.2A). These findings are 

consistent with earlier studies of Foc infection. For example, Wang et al., (2012) identified large 

transcriptomic changes induced by Foc-TR4 in susceptible banana roots, with 4,729, 5,078, and 

5,531 DEGs 2, 4, and 6 dpi, respectively, using a de novo assembled banana reference genome 

that consisted of 21,622 gene models. Likewise, Sun et al., (2019) identified 9,612 DEGs in both 

Foc-TR4 resistant and susceptible materials comparing different infection stages (2, 4, and 6 dpi) 

to 0 dpi, confirming transcriptional reprogramming of banana roots in response to Foc-TR4 

infection. However, this is inconsistent with a study on the susceptible cultivar ‘Cavendish’ in 

response to Foc-TR4, where just 473, 722, and 1,043 DEGs were identified 3, 27, and 51 hours 

after Foc-TR4 infection in root tissues (Li et al., 2013). One reason for these differences could be 

the study design, such that in ‘Cavendish’, mock inoculated samples were used as the control group, 

whereas in the current study the T0 was uninoculated samples. The DEGs detected in our study 

comparing T1, T3, and T7 versus T0 may include transcriptional changes induced by the plant’s 

response to wounding or other mechanical stresses challenged with inoculation. 

Gene co-expression networks in susceptible materials revealed the broad transcriptomic 

profiles and changes in host molecular processes following Foc STR4 infection. Signaling 

transduction, response to stimulus, and SA-mediated signaling pathways related genes were 

downregulated and suppressed in susceptible samples within 24 hours of Foc infection (Figure 4.3 
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and Table S4.4). Signal transduction pathways play an indispensable role in activating plant 

defense responses after the perception of pathogens and these results suggest that repression in 

signal transduction pathways may be associated with plant susceptibility to Foc. Among the plant 

hormone-related signaling pathways known to regulate defense gene expression, jasmonic acid 

(JA) and ethylene (ET) pathways contribute to host resistance against Foc race 4, whereas the role 

of salicylic acid (SA) is not known yet (Li et al., 2012; Swarupa et al., 2014). Our study suggested 

that the SA pathways were suppressed in susceptible plants immediately after infection and may 

be a contributing factor to plant susceptibility to Foc-STR4. 

In addition to repressed signaling transduction, we found susceptible host plants induce other 

defense responses, such as ROS production and cell wall biogenesis (Table S4.4), although not 

until 72 hours after infection (Figure 4.3). Plants have developed a series of defense responses to 

fight against pathogen attack, and immediately after recognition of pathogen signals one common 

response is the production of ROS (Swarupa et al., 2014). This is consistent with Wang et al., 

(2012) who found that ROS production pathways were enriched in susceptible banana roots 

following infection with Foc-TR4. They concluded that banana roots responded to infection by 

Foc-TR4 through ROS production, but that these early defense activities in susceptible genotypes 

is not sufficient to provide resistance against the pathogen (Wang et al., 2012). Other than ROS 

production, cell wall strengthening is another important plant defense response against fungal 

pathogens that is usually induced in both susceptible and resistant materials (Bai et al., 2013; 

Swarupa et al., 2014).  

This study also investigated transcriptional changes between resistant and susceptible 

genotypes after Foc STR4 infection. Of the 1,097 genes differentially expressed between resistant 

and susceptible genotypes (Figure 4.4), the majority were identified within 24 hours after infection, 
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and were highly enriched for ROS production, cell wall biogenesis, and other stress related plant 

defense responses (Table S4.6). This result indicated that while these defense responses were 

induced in both genotypes, the timing and abundance is different between resistant and susceptible 

genotypes, and that the resistant genotypes have a much faster defense response. These findings 

were also reported in Bai et al., (2013) that demonstrated much faster early immune response in 

resistant cultivar compared to susceptible cultivar in response to Foc-TR4.  

Plants have two layers of innate immunity against pathogens, characterized by 

transmembrane pattern recognition receptors (PRRs) recognition of pathogen or microbial 

associated molecular patterns (PAMPS/MAMPs) triggered immunity (PTI), and intracellular 

nucleotide-binding site leucine-rich repeat receptor (NLR) type of resistance (R) gene perception 

of pathogen effector triggered immunity (ETI) (Jones & Dangl, 2006). Comparing the two 

immunity responses, there is substantial overlap between downstream defense responses during 

PTI and ETI after the initial perception of pathogens. Both responses include activation of 

mitogen-activated protein kinases (MAPKs), oxidative burst, and ion influx, suggesting the 

defense signaling converges in PTI and ETI (Navarro et al., 2004). However, compared to the 

prolonged and higher magnitude of ROS production and MAPK activation in ETI, the downstream 

signaling triggered in PTI is much more rapid and transient (Cui et al., 2015; Tsuda & Katagiri, 

2010). Considering differences in the magnitude and duration of early oxidative burst and cell wall 

lignification related defense responses that differentiate Foc-STR4 resistance from susceptibility 

in this study, the resistance mechanism is likely related to the initial recognition of the pathogen 

that leads to PTI responses. Further studies will be needed to characterize genes that involved in 

PTI signaling transduction and clarify plant immunity mechanism against Foc-STR4.  
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Outbreaks of Foc race 4 strain due to its high virulence and wide host range poses a major 

threat to global banana production, making it urgent to look for host genetic resistance to control 

this disease (Ploetz, 1994). Our collaborators conducted a QTL-seq study and identified a novel 

locus with resistance to Foc-STR4. To further narrow candidate genes underlying the locus, I 

identified thirteen genes differentially expressed between resistant and susceptible genotypes 

(Figure 4.5). These thirteen genes are considered top candidates for functional validation with 

CRISPR/Cas9, and a detailed description of candidate genes and their characterization will be 

published as part of the QTL-seq study.  
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APPENDIX A SUPPLEMENTARY MATERIALS FOR CHAPTER 2 

Appendix A.1 - Supplementary figures  

Figure S2.1 Ka/Ks phylogenetic tree of common wheat BBIs separated by chromosome. The values on each branch 

indicate the ratio for that pair of genes. Branches and values greater than one are highlighted in red. 
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Figure S2.2 Phylogenetic tree of BBIs identified in common wheat landrace ‘Chinese Spring’ and four common 

wheat varieties (‘Jagger’, ‘Mace’, ‘Landmark’ and ‘Julius’) on a homoeologous group 1, 4, and 5 chromosomes and 

b homoeologous group 3 chromosomes. The trees were built with the model (WAG+G4) which has the lowest BIC 
value using 1000 bootstrap replications. Only bootstrap support values below 95 are indicated on the tree. Genes are 

color-coded based on wheat variety. 
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Figure S2.3 Structural characterization of common wheat BBIs. a Phylogenetic tree of 57 wheat BBI genomic 

sequences. The alignment was conducted with IQ-TREE to predict best fit model for nucleic acid with the lowest 

BIC value. Gene names are color coded to indicate different clades which were grouped based on their nucleic acid 

structure. b Intron-exon structure of each BBI gene predicted by comparison of CDS and gDNA sequence. Blue 

rectangles indicate untranslated regions, black lines indicate introns and yellow rectangles indicate exons. c 

Functional domain discovery, the Bowman-Birk domain prediction was conducted by NCBI-CDD to look for 
smart00269 (Bowman-Birk type protease inhibitor from SMART database). Blue rectangles indicate BBI functional 

domains and black lines indicate other amino acids. 
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Appendix A.2 – Supplementary tables for chapter 2 (.xls) 

Table S2.1 List of 62 common wheat BBIs in the IWGSC RefSeq v1.1 genome assembly, and five additional genes 

that were excluded due to the lack of a complete BBI domain. Information includes their gene position (Gene ID 

based on IWGSC RefSeq v1.1 gene models, name based on their homoeologous relationships, chromosome 

locations and order), gene structure and features (number of exons and BBI domains, BBI domain evolutionary 

model types (Mello et al., 2003), amino acids at P1-P1` motif position, number of complete BBI domains with all 
required Cys residues, protein length and molecular weight), signal peptide prediction (SP prediction as signal 

peptide or other, prediction confidence, predicted cleavage site position, and + = present, – = absent), pseudogene 

prediction (T = True, F = False), and log2TPM values of expression during development and log2 Fold-change TPM 

of biotic and abiotic stress expression datasets. 

Table S2.2 List of BBI genes in T. aestivum, Ae. tauschii, T. urartu, T. dicoccoides, and H. vulgare for which 

manual curation was performed. Details of the position and confidence level of the signal peptide site are included 

for both the original predicted sequence and the manually curated sequence. Full details of the manual curation are 

provided in column K, which have been corrected for the initiation codon. All curated sequences have a signal 

peptide prediction greater than 0.97. BBI genes with abnormal N-terminal truncation were also listed in column G. 

Table S2.3 List of six putative wheat BBIs identified in previous studies. Information includes their original and 

alternative gene names, corresponding protein ID in the UniProt database, e-value for HMMscan of the BBI domain, 

protein sequences documented in the UniPort database, complete protein sequences based on their annotation in the 

IWGSC RefSeq v1.1 genome assembly and citations for the studies where these proteins were originally reported. 

Table S2.4 Common wheat BBI homoeologous groups divided by chromosome.  

Table S2.5 List of BBIs identified from O. sativa, Z. mays, B. distachyon, H. vulgare, Ae. tauschii, T. urartu and T. 

dicoccoides. Information includes species, gene number named by order of the gene ID from the source model, 

alternative name and the citation for where the name was first described, gene ID, chromosome position, BBI 

domain type, protein length, number of BBI domains, source of genome assembly and gene ID converter from 

IRGSP-1.0 to MSU for rice BBIs. For BBIs without alternative names and with uncharacterized model types, we 

used ‘-’ symbol. 

Table S2.6 Homologous relationships of BBIs in common wheat compared to T. urartu (A genome), Ae. tauschii (D 

genome) and T. dicoccoides (AB genomes). Orthologous genes are presented in the same row. BBIs with 

uncharacterized homologous relationships were placed in separate rows and labelled “ungrouped”. 

Table S2.7 List of BBIs identified in common wheat cultivars ‘Jagger’, ‘Landmark’, ‘Julius’ and ‘Mace’. 

Information includes their gene ID according to the 10+ wheat genome project annotation (Walkowiak et al., 2020), 

chromosome and positions and their projections in ‘Chinese Spring’ where available. BBI genes present in some 

cultivars but absent from ‘Chinese Spring’ were named based on the cultivar (e.g. JA means ‘Jagger’, JU means 

‘Julius’) followed by their chromosome and the physical order on that chromosome based on our de novo ORF 

prediction. For example, JA_1D-1 refers to the first BBI gene on ‘Jagger’ chromosome 1D that is absent from the 

‘Chinese Spring’ reference assembly. 

Table S2.8 List of two common wheat BBIs identified in the “Triticum 4.0” assembly of ‘Chinese Spring’, but 

absent from the IWGSC RefSeq v1.1 assembly. Information includes their gene name, chromosomal location, 

corresponding orthologous gene from the IWGSC RefSeq v1.1 assembly, gene structure and features (exon and 

domain numbers, model types, P1-P1` motif residues, protein length and molecular weight) and signal peptide 

prediction. 

Table S2.9 Functional annotation and genomic position of all genes 200 kb upstream and downstream of BBI 

clusters on homoeologous group 1 and 3 chromosomes. Information includes gene ID for both high and low 

confidence genes, their location on each chromosome, and their functional annotation and Pfam domains based on 

IWGSC RefSeq v1.1 gene models (Appels et al., 2018). BBI genes identified in our study are highlighted in red and 

genes annotated as other trypsin inhibitors are highlighted in blue. 

Table S2.10 Number of genes sharing functional annotation terms from IWGSC RefSeq v1.1 gene models 200 kb 

upstream and downstream of BBI clusters on homoeologous group 1 and 3 chromosomes. The number of BBIs on 

each chromosome is highlighted in red. Gene number is based on descriptive annotations from gene models. 
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Because some BBI genes identified in our study are annotated as ‘trypsin inhibitor’ in these gene models, there is a 

slight discrepancy between the number of BBI genes described in this table and the total number of BBIs. 
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APPENDIX B SUPPLEMENTARY MATERIALS FOR CHAPTER 3 

Appendix B.1 - Supplementary figures  

Figure S3.1. Functional validation of TraesCS3B02G035800 (annotated as RPM1) in wheat. Two sgRNAs, marked 

as scissors, were designed targeting TraesCS3B02G035800 and its homoeologous copy TraesCS3D02G032900 to 

generate gene knockout mutants with CRISPR/Cas 9. The Leucine-rich repeat (LRR) domains were marked with red 

box. Genotyping assay primers included a common forward primer (FP) and genome specific reverse primers (RP-B 

and RP-B), and they were marked as arrows 

 

 

 

 

 

 

 

 

 

 

WT GATATACTCTCACAAATTGGGGGCTTGTTGCAT

23-B GATATACTCTCACAAAT - GGGGGCTTGTTGCAT

23-D GATATACTCTCACAAAT - GGGGGCTTGTTGCAT

WT CGAAGAACTGAAGTCTC - GGG - TGGTGGAAGTG

13-B CGAAGAACTGAAGTCTG - GGG - GGGGGGAAGTG

16-B CGAAGAACTGAAGTCTC - GGGGTGGAGGAAATG

13-D CGAAGAACTGAAGTCTCCGGG - TGGTGGAAGTG

16-D CGAAGAACTGAAGTCT - - - GG - TGGTGGAAGTG
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Figure S3.2. Dot plot for Wsm2 locus in RefSeq v1.0 versus RefSeq v2.1. X-axis represented RefSeq v2.1, Y-axis 

indicate RefSeq v1.0. The dot plot was based on genomic DNA sequence of Wsm2. Green line indicated identify 

0.95-1 percentage. The graph was made with D-genies. 
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Figure S3.3. Dot plot for genomic sequence between significant QTL markers on 3D (4 Mb – 6 Mb) and the 2.4 Mb 

Wsm2 on 3B.  
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Figure S3.4. PCA plots for 16 samples in the RNA-seq experiments. Variety types are indicated by shape, circle 

means Wsm2+ whereas triangle means Wsm2-; treatment type are indicated by color, red means WSMV inoculation 
treatment (T) whereas blue means mock inoculation treatment (C). Each variety and treatment combination have 

four biological replicates.  
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Appendix B.2 – Supplementary tables for chapter 3 (.xls) 

Table S3.1. Haplotype and phenotype for selected doubled haploid individuals used for the RNA-seq study.  

Table S3.2. Information for four KASP markers from Tan et al., 2017 paper.  

Table S3.3. Primer and probe information for WSMV amplification, qRT-PCR gene expression, validating 

CRISPR/Cas 9 construct and genotyping RPM1 edits.  

Table S3.4. Homoeologues for TraesCS3B02G035800 and primers used to synthesis sgRNAs.  

Table S3.5. Physical position of four Wsm2 associated KASP markers in the wheat pangenomes.  

Table S3.6. Information for 94 candidate genes within Wsm2, including their physical position mapped to IWGSC 

RefSeq v1.0 and IWGSC RefSeq v2.1, gene ID and protein annotation.  

Table S3.7. Significant GBS markers (LOD > 3) from the linkage mapping analysis.  

Table S3.8. Polymorphisms and genetic variations underlying Wsm2 locus in ‘Snowmass’ when mapped to IWGSC 

RefSeq v1.0.  

Table S3.9. Read and mapping statistics of RNAseq samples using IWGSC RefSeq v1.0 or it’s combination with 

WSMV genome as reference.  

Table S3.10. Information for 16 RNA seq samples and the counts per million (CPM) value for the presence of 

WSMV genome in each sample.  

Table S3.11. Information for DEGs between treatment and between genotype using IWGSC RefSeq v1.0 as 

reference.  

Table S3.12. GO enrichment and significant GO terms (p < 0.01) for up- and down-regulated DEGs between 

WMSV treated versus mock treated samples and for the 3470 unique DEGs between genotype at WSMV treated 

conditions.  

Table S3.13. Position and annotation for the 22 DEGs on chromosome 3B in the &'()*+
'()*, comparisons. DEGs near 

Wsm2 markers are highlight with red.  

Table S3.14. Information for DEGs from pairwise comparisons when samples were mapped to de novo assembly of 

unmapped transcriptomes. 

Table S3.15. Information for differentially expressed genes from unmapped transcriptomes that overlapped between 

%'()*+
'()*, and ()*2 +-

..  

Table S3.16. Presence and absence analysis against wheat pangenomes for three unique transcripts identified from 

de novo assembly of unmapped transcriptomes.  

Table S3.17. Gene expression (TPM, log2 fold change, and padj) for the 94 candidate genes underlying Wsm2.  

Table S3.18. Blastn output for unique transcripts from the de novo transcriptome assembly of unmapped reads in the 

Wsm2+ samples against pangenome wheat cultivars.  

Table S3.19. Genotyping and edit effects of CRISPR/Cas 9 edited wheat materials.  
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APPENDIX C SUPPLEMENTARY MATERIALS FOR CHAPTER 4 

Appendix C.1 - The R script used to run WGCNA analysis (wgcna_standard.R). 

Appendix C.2 – Supplementary tables for chapter 4 (.xls) 

Table S4.1. Summary of the 24 RNA-seq samples. Libraries were named AC1 to AC24, and details include line ID, 

line name, time point (Day 0, 1, 3, or 7 post inoculation) and resistance or susceptibility to Foc-STR4.  

Table S4.2. Summary statistics of the RNA seq samples reads and alignment rates. The results for overall mapping 

rate, unique mapping rate, multi-mapping rate, and unmapped reads comparing two alignment tools, STAR and 

HISAT2, were included.  

Table S4.3. Modules identified from WGCNA analysis. The number of DEGs in each module, eigengene 

expression profile at each time point, the top enriched GO terms associated with MF and BP for each module, and 

hub gene information.  

Table S4.4. Significantly enriched GO terms (P < 0.01) associated with BP and MF for DEGs in each module 

identified from the WGCNA analysis.  

Table S4.5. Expression values and DEG statistics (log2 fold change with and without shrinkage and P adj) for DEGs 

between resistant versus susceptible samples within each time point at T0, T1, T3 and T7. 

Table S4.6. Significantly enriched GO terms (P < 0.05) associated with BP, MF, and CC for up- and down-

regulated DEGs between genotype at each time point. 

Table S4.7. Expression values of 59 candidate genes from the gene family identified underlying the novel QTL. The 

expression values were shown in transcript per million (TPM) for both resistant and susceptible genotype at all four 

time points.  

 


