
IEEE TRANSACTIONS ON AUTOMATIC CONTROL. VOL. AC-32, NO. 1, JANUARY 1987 69 

:,,I,’ , , 

L 

f 
‘1.00 n.w I M . ~  a45.10 

-____. J 

I -v 

Fig. 1. Open-loop step response for the  delta  wing aircraft model. 
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Fig. 2.  Open-loop step CPA and CG of the  delta wing aircraft model. 

CPA and CVE for systems with many inputs and outputs directly from 
step or impulse data, thereby bypassing the parameter estimation 
problem. As shown in [4], [ 5 ] ,  the displayed CPA and CVE reveal 
important properties of the timedomain input-output modes which are 
valuable for multivariable control system analysis and design. 

APPENDIX 

To prove that (7) is consistent. 

Z, ( l )w , (2 )=  -Z(2)W,(l) 

[h; ( l ) I -  G(l)]~i(2)= - [X,(2)1- G(2)] w;(l) 

where C ( j  ) is an n X n matrix of rank n. Since hi(l) is one of the 
distinct eigenvalues of G(I), the matrix [h,(l)Z - G(I)] is of rank n - 1. 

By definition of the dual eigenvector: 

~~(l)[h~(l)I- G(1)] = O  

since u f ( 1 )  is orthogonal to the  space spanned by [hi(l)Z - G(l)]. 
We also have 

~j(l)[X,(2)Z - G ( 2 ) ] ~ i ( l )  = X(2) - ~ ; ( l ) G ( 2 ) ~ , ( 1 )  = 0. 

Therefore,  the column vector [hi(2)I - G(2)]wi(I) is also orthogonal 
to u:(l) and, hence, must lie in the (n - I)-dimensional space spanned by 
[X,(l)Z - G(1)]. The same argument can be extended for all the sampling 
instants. 
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Feedback Control of Two-Time-Scale  Block 
Implemented  Discrete-Time  Systems 

K. KHORASANI AND M. R. AZIMI-SADJADI 

Abstract-The block processing technique is applied to a class of two- 
time-scale linear discrete-time systems. Block state-space structures for 
slow and  fast subsystems have been obtained. Based upon these models, 
blocked slow and  fast controls  are designed. In addition, an extra  control 
is designed to exactly compensate for the  effects of the parasitics. 

I. INTRODUCTION 

Block processing was originally introduced by Burrus [l  J as an efficient 
method for implementation of  recursive digital filters, especially when 
used in conjunction with fast transform techniques. He used matrix 
representation of linear filtering operations and obtained different block 
recursive structures in the  form  of state-variable with block feedback. 
More recently, Barnes and Shinnaka [2]  have  derived  a 1-D multiinput, 
multioutput (MIMO) block state-space structure from a I-D single-input, 
single-output (SISO) state-space model. They have shown that the poles of 
the block state-space model are the Nth power ( N  being the block size) of 
the poles of an associated state-space realization, i.e., if the original SISO 
system is assumed to  be stable, then the poles of the MIMO block 
implemented filter move closer to the origin of the unit circle  as  the block 
length is increased. They have also shown [3] that the block state-space 
exhibits reduced roundoff error and eigenvalue sensitivity characteristics 
when compared to those of its scalar  counterpart. 
In this paper, the block processing technique is applied to  a class of 
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linear discrete-time systems which exhibit two-time-scale behavior. It is 
shown that, using this scheme, the slow dynamics will remain slow while 
the fast dynamics become faster. By a proper choice of the block size N i t  
is possible to design an additional compensating control which can be 
applied to the full system to compensate exactly for  the effects of the 
parasitics. 

II. SINGULARLY  PERTURBED  DISCRETE-TIME  SYSTEMS 

Consider the following linear discrete-time singularly perturbed system 
which has been treated in [4]: 

y(n)=C1x(n)+C2z(n)  (2) 

where x E RP, L E R", u E R, y E R, and E > 0 is a small 
perturbation parameter.  The system in (1) and (2) is said to be expressed 
in the fast time scale n 141. Vectors x and z represent the slow and fast 
states, respectively. The decoupling transformation [5] can be utilized to 
separate the slow and fast dynamics.  Then, we have 

[ :;I = p  [:] 
where 

Application of (3) and (4) to (1) and (2) yields 

where matrices L (size m X p )  and A4 (size p X m) are the real roots of 

A U L - L - A ~ I + E L A ~ ~ L - E L A ~ I = O  

- ~ M A ~ + M + A 1 ~ + ~ ~ I M - . / I I ~ L M - E M L A 1 2 = 0  

respectively. It can easily be shown that 

L(E)  := L =   - ( I ~ - A D ) - I A ~ ~ + E L , ( E )  

where L,  satisfies 

Thus, the decoupled form of (5 )  and (6) becomes 

= [ +./I, E ~ A ~ ~ L ,  0 
A ~ ~ - E ( I ~ - A ~ ~ ) - ' A Z I A I ~ + E ~ L , A I ~  1 

[x;] 
. [ %+';;I + [ E B , - - ~ ( M L B I + M , B ~ )  

y ( n ) = [ C l + C 2 ( 1 2 - A 2 2 ) - 1 A 2 1 - ~ C 2 L r  C 2 + ~ C I M - ~ C 2 L I w  

B ~ - E ( I ~ - A ~ ) - ' A Z I B I + E ' L , B ~  I u(n) (7) 

(8) 

where B, : = BI + AI2(Z2 - Ax)  

shown [4] to be 
Subsequently, the slow and fast subsystems for ( I )  and (2) can be 

x, (n+ l ) = ( I I + u l , ) ~ ~ ( n ) + ~ B , u , ( n )  (9) 

J's(n)=C,xs(n) (10) 

and 

Z/(n+ I ) = A , Z / ( ~ ) + B ~ U / ( ~ )  (1 1) 

Y / ( n ) =  Czzr(n) (12) 

respectively, where 

C, := C I + C ~ ( I ~ - A Z Z ) - I A ~ ~ ,  Z / = Z - ( I ~ - A U ) - ' ( A : I X , + ~ ~ ~ ~ ) .  

The slow and fast controls, u,(n) and uAn), are designed based upon the 
slow subsystem (91, (10) and the fast subsystem ( I   I ) ,  (12) to stabilize (9)- 
(12). 

Assumption I: The pair (A,, B,) is stabilizable in the continuous time 
sense, Le., the unstable subspace is contained in its controllable subspace; 
and the pair (A22, B 3  is stabilizable in the discrete-time sense, i.e., all the 
characteristic values of the matrix A22 that have moduli greater than 1 are 
controllable. 

Lemma 1 161: Under Assumption 1, there exists an E* > 0 such that 
the full system (1). (2) is stabilizable in the discrete-time sense  for all E E 
(0, E * ] .  

In the sequel, a MIMO state-space model for  the singularly perturbed 
system is derived utilizing the block processing scheme [2]. 

HI. BLOCK IMPLEMENTATION OF SINGULARLY PERTURBED 
DISCRETE-TIME SYSTEMS 

Assume that the input and output sequences are sectioned into blocks of 
size N. If the  state associated with each block is defined by the state at the 
edge element of the block, the state-space equations in (7) and (8) can be 
represented in block form  as 

where 

and similarly for Y(n). Also we have 
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A22 := A ~ - € ( I ~ - A ~ ~ ) - ' A ~ I A ~ ~ + € ' L , A I ~  W .  BLOCK FEEDBACK DESIGN 

I3 := Ag-II3Zo A:-'& Bm 

I310 := C B , - C ~ ( M L B I + M , B ~ )  

I320 : =  E ~ - € ( I Z - A ~ ~ ) - ' A Z I B I + E ~ L ~ B I  

C I O A  I I  G O A D  e := 

Clo : = C , + C Z ( I ~ - A ~ ~ ) - ' A ~ ~ - E C ~ L ~  

C ~ O  = Cz + ECI M - tC2LM. 

Using (13), the state vector is updated only at the beginning of each block 
while the  nth output block is being evaluated. This can be interpreted as a 
multirate system with reduced sampling rate. In view of Lemma 1 and 
assuming that N = p + m. it is observed that matrix B becomes 
nonsingular. 

Now, let us rewrite  (13)  as 

Y ( n ) = C [  W,(n) '  U72(n)']3 

where 

R, := ( I , + ~ ~ , - E ' A ~ ~ L ~ ) . ~ - ( Z ~ + E A ~ ) ~ ~ = O ( € ~ )  

R / : =  (A~-€ ( IZ -A:2 ) -1AZIA12+~2LrAIZ ) .~ - -A~~=0(€ ) .  

The block representation of the slow and fast subsystems (9)-( 12) are also 

and 

where 

Two cases have been considered in this section. In Section IV-A, 
feedback control laws are designed for separate slow and fast subsystems 
assuming full state measurements. Then, in Section IV-B,  output 
feedback control laws are obtained when the state measurements are not 
directly available for feedback. 

A. State Feedback 

The  state feedback law for  the slow control us@) is designed as 

u d n )  =K,x,(n) (20) 

where K,  is chosen so that Re X{A, + BsKs} < 0 and for sufficiently 
small E ,  (9) is asymptotically stable, that is, x&) -, 0 as n + 03. The 
elements of the block Us(n) can now be expressed in terms of the  state 
x,(nN) associated with the nth block, i.e., 

u,(nN) = K,x,(nN) 

u,(nN+  l)=K,x,(nN+ 1) 

= K ~ ( I ~ + E A , + E I ~ , K , ) x , ( ~ N )  

u,(nN+h'-l)=K,(I,+ul,+~B,K,) '~~'x,(nN).  (21) 

Arranging (21) in the  vector  form, the blocked slow control will become 

U s ( n ) = K X , ( n )  (22) 

where 

KS=[(K,)'  (K , ( I~+EA,+EI~ ,K , ) ) '  ... ( K , ( Z , + ~ A , + ~ 1 3 , K , ) h ' - ' ) ' ] ' .  

Now, applying the blocked slow control UJn) to (16),  the closed loop 
system becomes 

X~(n+I)=(I,+ui,)~"X,(n) 

N- I 

(1 6)  + E  ( Z ~ + E A , ) - ~ ~ I - ~ E , K , ( ~ + E A ~ + ~ I ~ , K , ) ~ X , ( ~ ) .  (23) 

(17) Equation (23) can be simplified to 

,=O 

X , ( ~ + ~ ) = ( Z , + E A , + E E , K , ) . ~ X , ( ~ ) .  (24) 

(18)  L e t  the state feedback law for  the fast control udn) be given by 

(1% u/(n)=KfZ,(n) (25) 

where Kf is chosen such that IX{A22 + &Kf}I < 1: that is, (13) is 
asymptotically stable so that zAn) + 0 as n + 03. The blocked fast 
control can be defined similarly to that of the slow control, that is, 

q ( n ) = K / Z / ( n )  (26) 

where 

K/=[(K,) '  (K/(A22+&K/))' ... ( K , ( A Z ~ + E ~ K ~ ) , ~ - ' ) ' ] ' .  

Applying (26) to (IS), the resulting closed loop system becomes 

Z/(n+ 1)=(Az2+I32K~)"'Z/(n).  (27) 

Remark I :  A consequence of the above result is that if X,(€) : = 1 + 
ES;(E),  i = 1, 2, e . . ,  p and : = & ( E ) ,  j = 1, 2, . - ., m are the 
eigenvalues of the closed loop system (1) with state feedbask laws (20) 
and (25), then examining the eigenvalues of the blocked system (24) and 
(27) reveals that the slow eigenvalues X;", i = 1, . . . , p remain close to 

In the following section, the problem of desiging the blocked slow and the unit circle, whereas the fast eigenvalues j = 1, . ; m move 
fast controls for (16), (17) and (18 ) ,  (19) is addressed. closer to the origin. 
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The design objectives for the slow and fast subsystems can be met by 
applying the blocked slow and fast control strategies developed in (22) and 
(26) to (16)-(19). However.  the ultimate goal is to  ensure that the design 
objectives are satisfied for the full system. This can be accomplished by 
using an extra compensating control.  Therefore. U(n) will be 

TI := R , + E I M A ~ L - ~ ~ ~ M L  

T2 := ~ M A g - u l . z M  

T3 := ( Z ~ - € L I M ) A ~ L - L A . ~ ( Z I - E M L )  

7 4  : = R/-ELMA~+ELA.:M 

where the first term in (28) represents the compensating control and the 
second term represents the reduced controls (22) and (25) with X ,  and Z, 
replaced by X and Z, respectively. It can be shown that by applying U(n) 
to (15), the full closed loop system becomes 

X ( n + l ) = ( I , + ~ A , + ~ B s K I ) " X ( n )  (29) 

Z ( n +   l ) = ( A U + B / K / ) " Z ( n ) .  

As a consequence, the following result is established. 
Theorem 1: Let Lemma 1 hold and assume that N = p + m; then 

there exists an E* > 0 such that (15). with the control law U(n) given by 
(28). is asymptotically stable for all E E (0, E * ] .  Furthermore,  the 
following relations hold uniformly for all n 2 0: 

X ( n )  = X A n )  (30) 

Z ( n ) = Z f ( n ) .  (3 1) 

Comparing the results developed in Theorem 1 to those of the standard 
methods indicates that the slow and fast dynamics contain purely slow and 
fast parts, respectively. 

Remark 2: An approximate compensating control can be obtained by 
retaining the O(E) terms in M and L matrices (consequently in T,'s) and 
neglecting the higher order terms in E .  This approximation, which reduces 
the amount of required computation for matrices T,, i = 1, . . . , 4, would 
yield X(n)  = X,@) + O(e2) and Z(n)  = ZXn) + 0 ( e 2 )  uniformly for 
all n L 0. 

Remark 3: The exact elimination of the effects of the parasitic should 
come  as no surprise, because it could be derived independently of singular 
perturbation theory by performing eigenvalue placement on the  entire 
blocked full order system. Since the full order system is completely 
controllable for sufficiently small E ,  the eigenvalues of the blocked system 
can be placed arbitrarily. 

B. Output Feedback 

If the state measurements are not directly available for feedback, 
measurements can be  triken from the output. The output feedback laws for 
slow and fast controls are designed as 

u , ( n ) = H d J J n )  (32) 

U/(")=H/Y/(n) .  (33) 

Assumption 2: The pairs { ( I  + EA,), C,} and {A22, C2) are detectable 
in the discrete-time sense, i.e., the unobservable subspace is contained in 
the stable subspace. 

The output feedback gains H, and H, are chosen such that Re X{A, + 
B,H,C,) < 0, and (h{A22 + B2Hfc/)I < 1, that is, the slow and fast 
subsystems (9)-( 12) are asymptotically stable. 

Lemma 2: Under Assumption 2, there exists an E* > 0 such that the 
full system (l) ,  (2) is detectable in  the discrete-time sense for all E E (0, 
E * ] .  

If the block size is chosen to be N = p + m ,  and Lemma 2 holds, then 
the N X N matrix is nonsingular. Applying the block processing 
scheme to (32) and (33) and using (9). the blocked slow and fast controls 
are designed as follows: 

U ~ ( n ) = H , Y , ( n ) = H , C * X , ( n )  (34) 

where 

HSC5 := [(H,C,)'   (H,C,(I+U~,+EB,H,C,))'  . . .  (H,C, 

. ( I + U ~ , + E B , H , C , ) " - ' ) ' ] '  

and 
V , ( ~ ) = H / ~ ~ ( ~ ) = H , ~ ~ Z , ( ~ Z )  (35) 

where 

H/C?/:= [(H/C/) '   (HfC/(A22+B,H/C/)) '  ... (H,-Ci 

' (A~z+B2H/C,)"-') ' ] ' .  

Applying the blocked slow and fast controls (34) and (35) to (16)-(19)! 
the resulting closed loop system becomes 

X,(n+l)=(Z+c4,+€B,H,C,).~X,(n) (36) 

Z/(tZ+  l)=(A2z+B*H/C,)'Z/("). (37) 

To ensure that the full design objectives are satisfied for the full system 
(15),  the overall control U(n) is chosen to be 

where the first term is the compensating control with TI, T2,  T3, and T, as 
defined in (28). and the second term is the reduced slow and fast controls 
(34) and (35) obtained by first replacing X,  and Z,-by X and Z, 
respectively, and then using [X@)' Z(n)'] '  = P- 'C- 'Y (n ) .  As a 
consequence. the following result is established. 

Theorem 2: Let  Lemma 2 hold and assume A' = p + m; then there 
exists an E* > 0 such that the system (15). with U(n) given by (38). is 
asymptotically stable for all E E (0, E * ] .  Moreover. the relations (30),  
(31) and 

Y ( n ) =  Y J n ) +  Y,(n)+O(E) (39) 

hold uniformly for all n 2 0. 

V. CONCLUS~ON 
The block processing method has been applied to singularly perturbed 

discrete-time systems.  The slow and fast subsystems have been expressed 
in the form of block state-space structures.  For these structures, slow and 
fast controls have been designed based upon state and output measure- 
ments. An extra compensating control is proposed which leads to an exact 
compensation of the effects of the parasitics. Moreover, it  is shown that 
by applying the proposed controls to the full system, the slow dynamics 
remain slow while the fast dynamics become faster. The block processing 
technique offers several other prominent advantages such as reduced 
finite word length effects [ 3 ] ,  reduced coefficient sensitivity, and 
increased data throughput rate. In addition, the parallel nature of this 
scheme is ideally suited for implementation in a multiprocessor environ- 
ment 171. The multirate implementation of the technique proposed in this 
paper is under investigation. 
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Deterministic Control for a New Class of Uncertain 
Dyaamical Systems 

Y.  H. CHEN 

Abstract-We study the problem of stabilization of nonlinear multiva- 
riable uncertain systems. We show that for a  nonlinear  plant with 
nonhenr input, a class  of slahilizing continuous-type cnntrollers can be 
constructed. 

I. INTRODUCTION 

When modeling a "real" system, one usually does not have, or cannot 
obtain, an "exact" model. The model usually contains uncertain 
elements, for example, uncertainties due  to  parameters, constant or 
varying. which are unknown or imperfectly known, or uncertainties due 
to unknown or imperfectly known inputs into the system. 

The deterministic approach, used  in 111-[6] for the design of stabilizing 
feedback controllers for linear multivariable uncertain systems, has been 
extended by Corless and Leitmann [7] for  a very general class of 
nonlinear multivariable systems. In all the cases above, the essential 
knowledge required for this design is the size of those uncertain elements. 
No statistical information about the uncertainty is assumed. For the 
nonlinear case,  Corless and Leitmann (71 and Barmish et a/. [8] showed 
that a nonlinear plant, stable or unstable, with linear input, can be 
stabilized by a feedback controller. In this paper, we demonstrate that a 
nonlinear plant with nonlinear input can still be stabilized. A continuous- 
type controller for this purpose is also synthesized. We note that, although 
[9] considers a  more general class of uncertain systems, the controllers 
there can depend discontinuously on the state. 

U. DEFINITIONS AND NOTATIONS 

A function g: X X R + RP, X C R', is Caratheodory if and only if 
for each t E R, g ( .  , I )  is continuous; for each x E X, g(x, . ) is Lebesgue 
measurable; and, for each compact subset 33 of X x R ,  there exists a 
Lebesgue integrable function M D ( . )  such that, for all (x, t )  E D, 

! lg(x,  t)ll SMD(t). (1) 

A Caratheodory function g: X X R -+ RP is strongly Caratheodory iff it 
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satisfies (1) with Ms(  .) replaced by a constant Ma,. A nonlinear system 

- W = g ( x ( t ) ,  1) (2) 

is globally practically stable iff there exists a neighborhood (j3 of x = 0 
such that the following properties hold: i) (2) has global existence of 
solutions 191, [lo]; ii) (2) has indefinite continuation of solutions 191, [lo]; 
iii) the solutions of (2) are globally uniformly bounded, i.e., given any 
compact subset C of X, there exists d( C )  E R - such that, if x(. ) : [ to ,  00) 
-+ X is any solution of (2) with x&) E e, then 1 1  x(t) 11 5 d(C) for all r 
E [ t o ,  03): iv) the solutions of (2) are globally, uniformly, ultimately 
bounded, i.e., given any neighborhood 63 of x = 0, 63 3 $, and any 
compactsubset C o f X ,  thereexists3(C, 63) E R -  suchthat, ifx(.):[t,,, 
03) + X is any solution of (2) with x ( t 0 )  E e ,  then x(f) E 63 for all f 2 
to + 3 (C, 63); v) (uniform stability about a neighborhood) given any 
neighborhood CB of x = 0, 63 3 (j3, there exists a neighborhood Bo of x 
= 0 such that, if x(*):[ to, 03) -+ X is any solution of (2) with x(t,,) E 
(Bo ,  then x(t)  E 63 for all t E [ to ,  03). 

LII. MAIN RESULTS 

Consider an uncertain system 

- f = f ( x ,   t ) + B ( x ,  t )@(u,  0, r ) + B ( x ,  t M x ,  U ,  t )  (3) 

were t E R ,  x E R" is the state. u E R" is the control, u E RP is the 
time-varying uncertain parameter. We assume that u(.) is Lebesgue 
measurable and its values lie within a prescribed compact set X C RP, the 
functionsf(.), @(.), and e(.) are Caratheodory, and the function B ( . )  is 
strongly Carathecdory. 

Theorem: Suppose the uncertain system (3) satisfies the following 
assumptions. 

A.  1 )  There exists a known continuous function $( .): R + -+ R + , $(O) 
= 0, $ ( p )  > 0 for p > 0, such that 

7(;lull)5uT6(u. 0, 0 (4) 

for all (u,  t )  E R" X R,  u E C. Furthermore, @(O, u, t )  = 0. 

= 0, y ( p )  > 0 for p > 0, such that 
A.2) There exists a known continuous function y(.): R + -+ R , y(0) 

y ( $ ( d ) z q $ ( q )  for all qz0. ( 5 )  

A.3) The origin x = 0 of the nominal system 

i=m. I), (6) 

f(0, t )  = 0, is a uniformly asymptotically stable equilibrium point. 
Moreover, there exist a C' Lyapunov function V ( - ) :  R" x R + R and 
functions yi(.), i = I ,  2,  3, belonging to class K 1121, such that 

r l ( l ix l l )S  W ,  ~ ) ~ - A I I x I I )  (7) 

Then the control u(t) = p(x(t), t). with p ( x ,  t )  described below, renders 
system (3) globally practically stable. Here the functionp(-):R" x R 9 

R", strongly Caratheodory, is such that for e > 0, 
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