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ABSTRACT OF DISSERTATION 

STATISTICAL MODELING WITH 

COGARCHQy, q) PROCESSES 

In this paper, a family of continuous time GARCH processes, generalizing the 

COGARCH(l,l) process of Kliippelberg, et. al. (2004), is introduced and studied. 

The resulting COGARCH(p, q) processes, q > p > 1, exhibit many of the charac­

teristic features of observed financial time series, while their corresponding volatility 

and squared increment processes display a broader range of autocorrelation struc­

tures than those of the COGARCH(l, 1) process. We establish sufficient conditions 

for the existence of a strictly stationary non-negative solution of the equations for the 

volatility process and, under conditions which ensure the finiteness of the required 

moments, determine the autocorrelation functions of both the volatility and squared 

increment processes. The volatility process is found to have the autocorrelation func­

tion of a continuous-time ARMA process while the squared increment process has the 

autocorrelation function of an ARMA process. 

To estimate the parameters of the COGARCH(2, 2) processes, the least-squares 

method is used. We give conditions under which the volatility and the squared in­

crement processes are strongly mixing, from which it follows that the least-squares 

estimators are strongly consistent and asymptotically normal. Finally, the model is 

fitted to a high frequency dataset. 
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Statistics Department 

Colorado State University 
Fort Collins, CO 80523 

Fall 2009 

in 



ACKNOWLEDGEMENTS 

First, I would like to thank my adviser Dr. Peter Brockwell for his continued 

guidance, inspiration and support and for uncountable discussions and revisions of this 

dissertation. I would also like to thank my graduate committee members, Dr. Haonan 

Wang, Dr. Chihoon Lee, and Dr. Mahmood Azimi-Sadjadi for their suggestions and 

advise. 

I thank Dr. Peter Brockwell, Dr. Richard Davis and Dr. Hari Iyer for helping 

me during a hard time I encountered a few years ago. 

I am eternally thankful to my parents for supporting me through all my adven­

tures. I know, in particular, the great distance has been hard for you. 

I would like to thank my wife Tugsgerel for her love, support and understanding 

over the years. I thank my daughter Michelle and son Irvin for their love and patience 

with my busy schedule during this graduate study. Their sweet support has always 

been truly touching. This dissertation would not have been possible without them. I 

dedicate it to my family. 

IV 



Contents 

1 Prel iminaries 1 

1.1 Introduction 1 

1.2 ARMA processes 4 

1.3 Levy processes 7 

1.4 CARMA processes 10 

1.5 GARCH processes 16 

2 C O G A R C H processes 19 

2.1 The C O G A R C H ( l , l ) process 19 

2.2 The COGARCH(p,g) equations 20 

2.3 Stationarity conditions 26 

2.4 Second order properties of the volatility process 36 

2.5 Positivity conditions for the volatility 48 

2.6 The autocorrelation of the squared increments 51 

2.7 An Example 58 

3 Parameter es t imat ion 61 

3.1 Preliminary estimation 61 

3.2 Least-squares estimators 63 

3.3 Strong consistency and asymptotic normality of the least-squares esti­

mators 66 

3.4 The estimation algorithm 75 

3.5 A simulation study 76 

3.6 Estimating the volatility 80 

3.7 Real data analysis 84 

3.7.1 Filtering the data 86 

3.7.2 Fitting COGARCH(2, 2) to squared 30-minute returns . . . . 88 

v 



3.7.3 Volatility estimation and goodness-of-fit 89 

4 Conclusions 92 

4.1 Summary 92 

4.2 Future problems 93 

References 94 

Appendix 98 

VI 



List of Figures 

1 A sample path of a standard Brownian Motion 9 

2 A Sample path of a compound Poisson process with standard normal 

jumps 10 

3 The simulated compound-Poisson driven COGARCH process 59 

4 The sample autocorrelation functions of the volatilities and of the 

squared COGARCH increments 60 

5 ACF of the squared increment process in the COGARCH(l,2) case . 73 

6 Preliminary estimators of 0 77 

7 Least-squares estimators of the AR.MA parameters 79 

8 Least-squares estimators of the COGARCH parameters 79 

9 COGARCH(l,2) estimated volatility 83 

10 Dow Jones 5-minutes data recorded from February 12th, 2003 to May 

12th, 2006 84 

11 Dow Jones unnltered log returns, their squares and ACF 85 

12 Dow Jones estimated seasonality coefficients 87 

13 Dow Jones filtered log returns, their squares and ACF 87 

14 Estimated volatilities and residuals for the 30-minute log returns . . . 90 

15 ACF of the squared 30-minute log returns and the residuals 91 

vn 



List of Tables 

3.1 Least-squares estimates of COGARCH parameters 80 

via 



1 Preliminaries 

1.1 Introduction 

In financial econometrics, discrete-time GARCH (i.e. generalised autoregressive con­

ditionally heteroscedastic) processes are widely used to model the returns at regular 

intervals on stocks, currency investments and other assets. Specifically, a GARCH 

process (£n)neN typically represents the increments, In Pn — In Pn_i, of the logarithms 

of the asset price at times 1,2,3,.... These models capture many of the so called 

stylized features of such data, e.g. tail heaviness, volatility clustering and depen­

dence without correlation. For GARCH processes with finite fourth moments, the 

autocorrelation functions of both the squared process and of the associated volatility 

process are those of ARMA (autoregressive moving average) processes. The squared 

GARCH(1,1) process, for example, has the autocorrelation function (ACF) of an 

ARMA(1,1) process and the corresponding volatility has the autocorrelation func­

tion of an AR(1) process. 

Various attempts have been made to capture the stylized features of financial 

time series using continuous-time models. The interest in continuous-time models 

stems from their use in modelling irregularly spaced data, their use in financial ap­

plications such as option-pricing and the current wide-spread availability of high-

frequency data. In continuous time it is natural to model the logarithm of the asset 

price itself, i.e. Gt = lnP t , rather than its increments as in discrete time. 

Notable among these attempts is the GAR.CH diffusion approximation of Nelson 

(1990). (See also Duan (1997) and Drost and Werker (1996).) Although the GARCH 

process is driven by a single noise sequence, the diffusion limit is driven by two inde­

pendent Brownian motions {Wf )t>o and (Wt )t>o- For example, the GARCH(1,1) 

diffusion limit satisfies 

dGt = at dWt
W, da\ = 0(7 - a\)dt + pa] dWf\ t > 0. (1.1) 
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The behaviour of this diffusion limit is therefore rather different from that of the 

GARCH process itself since the volatility process (u2)t>o evolves independently of 

the driving process {W{ )t>o in the first of the equations (1.1). 

Another approach is via the stochastic volatility model of Barndorff-Nielsen and 

Shephard (2001a, 2001b) in which the volatility process a2 is an Ornstein-Uhlenbeck 

(O-U) process driven by a non-decreasing Levy process and G satisfies an equation 

of the form dGt — p-dt + at dWt, where W is a Brownian motion independent of the 

Levy process. The autocorrelation function of the Levy-driven O-U volatility process 

has the form p(h) = exp(—c\h\) for some c > 0, but this class can be extended by 

specifying the volatility to be a superposition of O-U processes as in Barndorff-Nielsen 

(2001), or a Levy-driven CARMA (continuous-time ARMA) process as in Brockwell 

(2004). As in Nelson's diffusion, the process G is again driven by two independent 

noise processes and the volatility process a2 evolves independently of the process W 

in the equation for G. 

A continuous-time analog of the GARCH(1,1) process, denoted COGAR,CH(l,l), 

has recently been constructed and studied by Kliippelberg et al. (2004). Their con­

struction is based on the explicit representation of the volatility of the discrete-time 

GARCH(1,1) process to obtain a continuous-time analog. Since no such represen­

tation exists for higher-order discrete-time GARCH processes, a different approach 

is needed to construct higher-order continuous-time analogs. In this thesis we do 

this by specifying a system of Levy-driven stochastic differential equations for the 

processes G and a2. If the volatility process a2 is strictly stationary we refer to the 

process G as a COGARCH(p, q) process. In the special case p = q = 1 we recover the 

COGARCH(l, 1) process of Kliippelberg et al. (2004). In general we obtain a class of 

processes G with uncorrelated increments but for which the corresponding volatility 

and squared increment processes exhibit a broad range of autocorrelation functions. 

The volatility process has the autocorrelation function of a continuous-time ARMA 

process. 
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It is not clear how the approach outlined above leading to the COGARCH(l, 1) 

process can be generalised to higher order GARCH processes in continuous time. In 

particular, the recursion corresponding to (2.1) (see below) cannot be solved easily 

and generalised to a continuous time setting. In this thesis we adopt a different but 

related approach which allows us to define a continuous time GARCH process of 

order (p, q) with 1 < p < q. The process is driven by a single Levy process and, when 

p = q = 1, it reduces to the COGARCH(l, 1) process. It will therefore be referred 

to as a COGARCH(p,q) process. While the COGARCH(l, 1) process is restricted to 

have decreasing ACF, for higher orders this is not necessarily the case and we can 

obtain damped oscillatory behaviour. 

The dissertation is organised as follows: 

In Chapter 1, we present some background information on ARMA, CARMA and 

discrete-time GARCH processes. 

Most of Chapter 2 is the published work of Brockwell, Chadraa and Lindner 

(2006). In Section 2.2, we specify a system of stochastic differential equations for the 

COGAR,CH(p, q) process G and its associated volatility process, which we shall denote 

by V. This is directly motivated by the corresponding structure of the discrete-time 

GARCH(p, q) process. We then show that the solution of these equations coincides 

with that of the COGARCH(l, 1) equations if p = q — 1. Notation and definitions 

used throughout the paper are given at the end of Section 2.2. 

In Section 2.3, we give sufficient conditions for the existence of a strictly station­

ary volatility process. In the COGARCH(l, 1) case, these are exactly the necessary 

and sufficient conditions obtained by Kluppelberg et al. (2004). More detailed re­

sults are given in the special case when the driving Levy process is compound-Poisson. 

The proofs rely on the fact that the state vector of the COGARCH(p,g) process, sam­

pled at uniformly spaced discrete times, satisfies a multivariate random recurrence 

equation. 

In Section 2.4, we focus on the autocorrelation structure of the stationary volatil-
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ity process. Just as the discrete-time GARCH volatility process has the autocor­

relation function of an ARMA process, the COGARCH volatility process has the 

autocorrelation function of a CARMA process. 

Section 2.5 deals with conditions which ensure positivity of the volatility, while 

the autocorrelation structure of the squared increments of the COGARCH process 

itself is obtained in Section 2.6. The results are illustrated with simulations in Sec­

tion 2.7. 

In Section 3.3, we show that when the driving Levy process is compound Poisson 

and p — q = 2, then the state process and the squared increment of the COGARCH 

process are strongly mixing with exponential rate. 

In Chapter 3, we propose a least-squares estimation algorithm for the parame­

ters of a COGARCH(2, 2) process, making use of the property that the autocorre­

lation function of the squared increments of the COGARCH(p, q) process is that of 

an ARMA(g, q) process. The squared increment process of the COGARCH(2, 2) is 

strongly mixing which ensures that the least-squares estimators (LSE) are strongly 

consistent and are asymptotically normal. Finally, the COGARCH(2, 2) model is 

fitted to a high-frequency data set. 

1.2 A R M A processes 

The process {Yn,n — 0, 1,...} is said to be an ARMA(p,q) process with real-valued 

parameters {fa,..., <̂ p; 6\,..., 9q; a} if it is a stationary solution of the equations 

Yn ~ faYn-i ~ (f>PYn-p = cr(Zn + 9\Zn_x H \- 9qZn_q), (1.2) 

where a > 0, <pp ^ 0, f)q ̂  0, {Zn} ~WN(0,1), i.e. a sequence of uncorrelated random 

variables with mean zero and variance 1 and the polynomials <j>(z) := 1 — faz — .. . ~ 

4>pz
p and 9(z) := 1 + Q\z + • • • + 9qz

q have no common zeroes. The process {Yn} is 

said to be an ARMA(p, q) process with mean fi if {Yn — p,} is an ARMA(p, q) process. 

If we suppose in addition that the sequence {Zn} is an independent and identically 
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distributed sequence then {Y„} is said to be a strict ARMA process. In this case {Yn} 

is a strictly stationary process, i.e. for each positive integer j and for each (n\,..., nf), 

the joint distribution of (Fn i + / j , . . ., Yn+h) is independent of h. 

It is more convenient to use the more concise form of (1.2) 

ct>(B)Yn = a9(B)Zn, (1.3) 

where B is the backward shift operator (BjYn = Yn-j, BjZn = Zn-j, j — 0, ±1 , . . . ) . 

The time series {Yn} is said to be an autoregressive process of order p (or AR(p)) 

if 9{z) = 1, and a moving-average process of order q (or MA(<j)) if <p{z) = 1. A 

stationary solution {Yn} of equations (1.2) exists (and is also the unique stationary 

solution) if and only if 

(f>(z) = \-faz-... -cf>pz
p ^ 0 for all \z\ = 1. (1.4) 

i 

An ARMA(p, q) process {Yn} is causal if there exist constants {tpj} such that 

X^ol^jl < °° a n d 

oo 

Yn = ^2a't/jjZn_j (1.5) 

for all n. Causality is equivalent to the condition 

cj)(z) = 1 - cplZ - ... - (f)pz
p ^ Q for all |z| < 1. (1.6) 

An ARMA(p, q) process {Yn} is invertible if there exist constants {TTJ} such that 

OO 

a n = / ,, KjYn-j 
j=0 

for all f. Invertibility is equivalent to the condition 

9(z) = l + 61z + ... + 0qz
q ^0 for all |ar| < 1. (1.7) 

The process {Yn} has an equivalent state-space representation, given by 

Yn = aO'Xn (1.8) 

file:///-faz-


and 

X n + i — $ X n — eZn+1 (1.9) 

where 

* 

0 

0 

1 

h 

, e = 

0 

0 

0 

1 

, 0 = 

Or-1 

&r-2 

01 

. 0Q . 

0 1 0 •• 

0 0 1 - -

0 0 0 •• 

r := max(p, q + 1), 6Q := 1, 6j := 0 for j > q and 4>j := 0 for j > p. The causality 

condition (1.6) implies that the eigenvalues of the matrix $ are all less than 1 in 

absolute value so that the state-vector has the stationary solution 

3=0 

which, with (1.8), immediately yields EYn — 0 and 

lY(h) := E[Yn+hYn] = a26'^S 6 

(1.10) 

(1.11) 

where S = £[X nX;j = £ ~ 0 * W * , J ' . 

Parallel to the time domain representation (1.5) of {Yn}, there is a spectral or 

frequency domain representation, 

0(6-*") 
Yn = ^ e - d Z ( W ) , (1.12) 

U <t>(e-

where {Z(u>), —ir < u) < n} is an orthogonal increment process with mean zero and 

E\dZ(u)\2 — dujj(2TX), and the ACVF has the corresponding spectral representation 

lv{h) f f(u>)eih"duj, 

where the spectral density function / is given by 

T2 , flj-g-tuA ,2 

/M = a 
2 7 <f>(e-

— 7T < UJ < IT. 



Because the spectral density of an ARMA process is a ratio of trigonometric polyno­

mials, it is often called a rational spectral density. 

In the case when q < p and the reciprocals, £ i , . . . , £ p , of the zeroes of the 

polynomial <j)(z) are distinct, the ACVF can be written as 

Mh)—'^*i&mr)(' • ( ' 
1.3 Levy processes 

The volatility of a COGARCH(p, q) process has the autocovariance structure of a 

CARMA process. This section is to provide the basic facts about the Levy processes 

which will drive the CARMA processes. For more information on Levy processes we 

refer to the books by Applebaum (2004), Bertoin (1996) and Sato (1999). 

Definit ion 1.1. Let {^l,!F,{J:t)a<t<.oo^P) be a filtered probability space, where TQ 

contains all the P-null sets of T and (Tt) is right-continuous. An adapted process 

L := {Lt, t > 0} with L0 — 0 a.s. is a real valued Levy process if 

(Li) L has independent increments, i.e., Lt — Ls is independent of Fs, 0 < s < t < oo, 

(L2) L has stationary increments, i.e., Lt — Ls has the same distribution as L t_ s , 0 < 

s < t < oo, 

(L3) L is continuous in probability, i.e., for all e > 0 and all t > 0, 

l i m P ( | L , , - L s | > e ) = 0. 

Every Levy process has a unique modification which is cadlag (right-continuous 

with left limits) and also a Levy process. We shall therefore assume that our Levy 

process has these properties. The characteristic function of L, ift[Q) = E(exp(i9Lt)), 

has the form, 

<pt{9) = exp(ta0)), e e R, 

7 



where £(8) is often called characteristic exponent or Levy symbol and satisfies the 

following Levy -Khinchin formula, 

m = i-ltf -T2
L

6-+ [ (e** - 1 - i9xl]xl<1) duL{x). (1.14) 

The triplet j L G R, r\ > 0 and uL uniquely determines the distribution of L and is 

called the characteristic triplet of L. 

The measure vL on IR is called the Levy measure. As usual, the Levy measure 

i*i is required to satisfy 

/ min(l, ].x'|2) dui[x) < oo 
JM. 

and ^L(O) = 0. From the Levy -Khinchin formula, we see that, in general, a Levy 

process can be decomposed into three parts: a constant drift part, a Brownian motion 

part, and a pure jump part. If A is a Borel subset of {x : \x\ > e} for some e > 0, 

then the number of jumps with sizes in A, occurring in any time interval of length 

t > 0, has the Poisson distribution with mean tv(A). If v is a finite measure, i.e. 

f(Ko) = JR v{dx) < oo, then almost all paths of L have a finite number of jumps on 

every compact interval and the process is said to have finite activity. Otherwise, if 

i/(M0) = oo, then an infinite number of jumps occur in any interval of positive length 

with probability one and the process is said to have infinite activity. As we shall see 

in the examples below, Poisson processes and compound Poisson processes have finite 

activity. 

Example 1.2 (Brownian motion). The Levy process B is a Brownian motion if VB 

is a zero measure, EBt = 7si and Var(fif) = rBt. Hence, the Levy symbol of a 

Brownian motion is given by 

with the characteristic triplet (7s,Tg,0). When j B = 0 and rB = 1, it is called a 

standard Brownian motion. A simulated sample path of a standard Brownian motion 

is shown in Figure 1. For a detailed discussion of Brownian motion, we refer to 

Karatzas and Shreve (1991). 

8 



O S 
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0 . 2 

O 

— 0 . 2 
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— 0 . 6 

— O S 

— 1 < 

Figure 1: A simulated sample path of a standard Brownian motion. 

Example 1.3 (Poisson process). Let ( r n ) n 6 N be a strictly increasing sequence of 

stopping times, then the counting process N defined by 

oo 

^ : = ^ / [ r „ o o ) W 
1 = 1 

for each t > 0 is an adapted process and if further TV has independent and stationary 

increment, it is called a Poisson process. For each t > 0 and some A > 0, Nt is Poisson 

distributed with parameter At. The parameter A is called the jump rate of TV. The 

differences Tn+i := r n + i — Yn are called sojourn times; Tn measures the duration that 

the Poisson process sojourns in state n. The Levy symbol of a Poisson process TVt 

with jump rate A is given by 

i{6)= f (ei9x-l-i6xl(-1,1){x))\5l(dx) = \{eie-I), 
TR 

and the characteristic triplet is (0, 0,A<5i), where 5\ denotes the Dirac measure with 

total mass 1 concentrated at the point 1. From the characteristic function, it imme­

diately follows that ENt = Xt and VarTVt = \t. The sample path of a Poisson process 

is piece-wise constant with discontinuities of size one at random points (rn)„eN-

Example 1.4 (Compound Poisson process). Let {Yn)ne^ be a sequence of i.i.d. 

random variables with distribution function Fy, independent of a Poisson process 
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N = {Nt)t>o- The compound Poisson process Lt is defined as 

Nt 

Lt = ̂ 2Yu t>0. 
i=l 

The Levy symbol of the compound Poisson process Lt is given by 

i{6) = f(eiex - l)\FY{dx) = i6lL + \{e** - 1 - i6I^ltl){x))\FY{dx), 
JR JR 

where JL = A J, , xFy(dx). Hence the characteristic triplet is ( 7L ,0 , XFy). The 

sample path of a compound Poisson process is piece-wise constant with discontinuities 

at random points (rn)n6m, but with random jumps with distribution Fy. A simulated 

sample path of a compound Poisson process with parameter A = 25 and standard 

normal jumps is shown in Figure 2. 

2 

1 . 5 

1 

0 . 5 

O 

— 0 . 5 

— 1 

— 1 . 5 

—2 

O 0 . 2 0 . 4 O . S 0 . 8 1 

Figure 2: Simulated sample path of a compound Poisson process with parameter A = 25 and standard 

normal jumps. 

1.4 C A R M A processes 

A natural analogue, in continuous time, of the stochastic difference equation (1.3) is 

the stochastic differential equation, 

a(D)Y(t) = ab(D)DL{t), t>0, (1.15) 

10 
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where a is a strictly positive scale parameter, D denotes differentiation with respect 

to t, a(z) := zp + aizp~l + • • - + ap, b(z) := b0 + b\Z + - • • + bp_1z
p~l, and the coefficients 

bj satisfy bq = 1 and bj = 0 for q < j < p. To avoid trivial and easily eliminated 

complications we shall assume that a(z) and b(z) have no common factor. 

The continuous-time analogue of the driving noise terms Zn in equation (1.2) 

are the increment of the process L. We shall assume that L is a Levy process on 

(—00,00), i.e. a process with homogeneous independent increments, continuous in 

probability, with cadlag sample-paths and L(0) = 0. We shall also restrict attention 

to second-order Levy processes, i.e. those satisfying the condition EL(l)2 < 00, and 

suppose, without further loss of generality, that VarL(i) — t and EL{t) — /it for 

some JJ, € E. The increments of L on disjoint intervals of equal length are then 

independent and identically distributed random variables with finite variance and 

some infinitely divisible distribution which could, for example, be Gaussian, gamma, 

compound Poisson, inverse Gaussian or one of many other possibilities. 

Since the derivatives on the right of equation (1.15) do not exist in the usual 

sense, we write the equation in state-space form, 

and 

where 

Y(t) = <rb'X(t), 

dX(t) - A~X{t)dt = edL(t), 

(1.16) 

(1.17) 

A = 

0 

0 

0 

-ap 

1 

0 

0 

—ap_x 

0 

1 

0 

— O p _ 2 . . 

0 

0 

1 

. - O i 

, b = 

bo 

h 

bp-2 

bp-i 

, e = 

0 

0 

0 

1 

with solution satisfying 

X(t) = eA{t-s)X(s) + f eAit-u)edL(u), for all t > s. 
J s 

11 
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In the Gaussian case L is Brownian motion, equation (1.17) is interpreted as an ltd 

equation and the integral in equation (1.18) is defined as in Protter (2004). 

If we restrict attention to causal solutions, i.e. if we make the assumption that 

X(s) is independent of {L(t) — L(s),t > s} for every s, then necessary and sufficient 

conditions for the existence of a strictly stationary process X satisfying equation (1.18) 

(see Brockwell et. al. (2005)) are 

5R(Ar)<0, r = l , . . . , p , ' (1.19) 

and, under these conditions, the stationary solution must satisfy 

X(i) is distributed as / eAuedL{u) for all t, (1.20) 

Jo 

where A l 5 . . . , Ap are the eigenvalues of A (which are the zeroes of the autoregressive 

polynomial a(z)). Condition (1.20) specifies the stationary marginal distribution of 

X(i) and condition (1.19) is the continuous-time analogue of the causality condi­

tion (1.6). 

If we assume that the conditions (1.19) and (1.20) hold, and let s —> — oo in 

equation (1.18) we find that 

X(t) - f eA(t-u)edL(u). (1.21) 
J — oo 

Conversely if X(i) is defined by equation (1.21) then X is a strictly stationary causal 

process satisfying equation (1.18). 

We now define the strictly stationary causal CARMA process by equation (1.16) 

with X given by equation (1.21). Thus 

Y(t) = f ab'eA{t~u)edL{u). (1.22) 
J — oo 

From this equation we find that EY(t) — o\ib§jav (where /i = EL(1)) and 

lY{h) := Cov[F(£ + h), Y{t)] = a V e ^ ' S b , (1.23) 

where S = E[X(t)X(t)'] = J0°° eAuee'eA'ydy. 

12 



Although the expression (1.23) for the autocovariance function has an awkward 

appearance, it is possible to evaluate the matrices eAh and E explicitly in terms of 

the eigenvalues of the matrix A using its Jordan decomposition. The eigenvalues of 

A, as already indicated, are just the roots of the equation a(z) = 0 and the right 

eigenvector of A corresponding to the eigenvalue A is [1 A • • • Ap_1]'. 

From the resulting expression for the autocovariance function of the process 

{Y(t}} the spectral density 

1 f'°° 
M w ) : = ^ / e^h

lY(h)dh 
O O 

is found as 

M") = rrr^' -°°<*<°°. (i.24) 
Z7T \a[lU))\l 

A much simpler form of (1.23) can be derived from (1.24) by contour integration. 

Thus, substituting from (1.24) into the relation 

1 f°° 
lr(h) = — e-^fyMdut, 

2?r J_00 

and changing the variable of integration from u to z = iu>, we find that 

7r(/i) - 5, /i > 0, 

where S is the sum of residues of ezh[b(z)b{—z)]/[a(z)a(—z)] in the left half of the 

complex plane. This gives the general expression 

dm~l {z-X)mez^b{z)b(-z)' 
•*<*>- £ 7 ^ ( m - 1 ) ! dzm~l a(z)a{-z) 

(1.25) 
{A:a(A)=0} v" '' L ~ " -\~/~\ -/ J z=\ 

where m is the multiplicity of the root A of a(z) = 0. In the case when the roots are 

distinct, equation (1.25) simplifies to 

z—' a'(Xr)a(—Ar) 

For the process to be minimum, phase the roots of b(z) = 0 must have real parts 

less that or equal to zero. (This corresponds to invertibility for discrete time ARMA 
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processes.) For a one-to-one correspondence between the second order properties 

of {Y{t)} and the parameters o,j , . . . , av, &i,..., bq, it is necessary to restrict b(z) to 

satisfy the minimum phase condition and to be non-negative in a neighborhood of 

z = 0. Every CARMA process has such a representation, and in order to avoid trivial 

ambiguities, we shall identify CARMA process whose coefficients in this minimum 

phase representation are the same. 

Example 1.5. The Gaussian CARMA(1,0) (or CAR(l)) process is the simplest 

continuous-time ARMA process. It is defined formally as a stationary solution of 

the first-order stochastic differential equation 

(D + a)Y(t) = bDW{t), (1.27) 

where a > 0 and {V7(£)} is a standard Brownian motion. From(1.16) and(1.21) with 

b = b and with L replaced by standard Brownian motion W on (-co, oo), we have 

Y(t) = b I e-^-^dWiu). (1.28) 

J — oo 

For s < t 

Y(t) = e-ait~s)Y(s) + b ! e-a{t-u)dW{u). (1.29) 

This shows that the process is Markovian, i.e. that the distribution of Y(t) given 

Y(u),u < s, is the same as the distribution of Y(t) given Y(s). It also shows that 

the conditional mean and variance of Y(t) given Y(s) are 

E[Y(t)\Y(s)] = e-a^-s)Y{s) 

and 

Now we can use the Markov property and the moments of the stationary distri­

bution to write down the Gaussian likelihood of observations y{t\)-,... ,y{tn) °f a 

CAR(l) process satisfying (1.27). This is the joint density of (Y(ti),.. .,Y(tn))' at 

(y( t i ) , . . . , y{tn))', which can be expressed as the product of the stationary density at 
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y{t\) and the transition densities of Y(ti) given V(^-i) = y(U-i), i — 2,.. .,n. The 

joint density is therefore given by 

_l
 t(y{k)-rn,c 

»=i A 

where / is the standard normal density, m\ — 0, v\ = b2/(2a), and for z > 1, 

and 

2a 
Ui = ^ _ ( l _ e - 2 - ( ' i - ^ 0 j 

Notice that the times t; appearing in (1.30) are quite arbitrarily spaced. It makes the 

CAR(l) process useful for modeling irregularly spaced data. 

If the observations are regularly spaced, say t, = i, i = 1 , . . . , n, then the joint 

density g is exactly the same as the joint density of observations of the discrete-time 

Gaussian AR(1) process 

Xn = e aXn_i + Zn, 

where {Zn} is a white noise process with mean 0 and variance 62(1 — e~2a)/(2a). This 

shows that the "embedded" discrete-time process {Y(i), i — 1,2,...} of the CAR(l) 

process is a discrete-time AR.(1) with coefficient e~Q. 

Example 1.6. The CARMA(2,1) process with parameters a\, a2, bo, b\ is a stationary 

solution of the stochastic differential equation 

D2Y{t) + aiDY(t) + a2Y{t) = {b0 +b1D)DW{t), t > 0. (1.31) 

In order for a causal stationary solution to exist it is necessary that the roots of the 

equation 

\2 + aiX + a2 = 0 (1.32) 

have negative real parts. For a minimum phase solution we also require that bo > 0 

and bi > 0. In the case when (1.32) has two distinct complex conjugate roots 

Aj = a + if3 and A2 = a - i/5, a < 0, (3 > 0 (1.33) 
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it follows from (1.26) that the autocovariance function of {Y(t)} is 

ivih) = 7y(0)eQ|'11 

where 

cos(Ph) + sin(/?|/i|) 
a{b\a2 - bf) 

0^2 + b2
0) 

(1.34) 

,,(0) = % ± 3 (1.35) 

Note that if A = a + i(3 is any complex number with non-zero imaginary part and if 

u> = a, + ib is any complex number, then 

K{h)=Loem+u>em, -oo < h< oo (1.36) 

is the autocovariance function of a CARMA(2,1) or CARMA(2,0) process if and only 

if 

a < 0, (1.37) 

a > 0 (1.38) 

and 

|/3| <a | a | / | 6 | . (1.39) 

Condition (1.38) expresses the obvious requirement that K(0) > 0 and a straightfor­

ward calculation shows that (1.39) is then necessary and sufnceient for the Fourier 

transform 
1 f°° 

/ M = ^ J e^h"K(h)dh 

to be non-negative for all LO G (—oo, oo). 

1.5 GARCH processes 

In early econometric models, the variance of the daily percent change in asset price 

was assumed to be a constant. However, many econometric time-series models exhibit 

periods of unusually large volatility followed by a periods of relative tranquility. In 
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such circumstances, the assumption of constant variance (homoscedasticity) is inap­

propriate. Engle (1982) introduced the ARCH(p) process {Xn} as 

Xn = y/v^en (1.40) 

where {en} is an i.i.d. N(0,1) sequence and vn is the (positive) function of {Xk, k < 

n}, defined by 
p 

vn = a0 + Y^a^Xl-v (L 4 1 ) 

with a0 > 0 and â  > 0, i = I,...,p. The name ARCH signifies autoregressive 

conditional heteroscedasticity. vn is the conditional variance of Xn given {Xk, k < n). 

The ARCH(]9, q) process given by (1.40) and (1.41) has been extended by Boller-

slev (1986). The generalized ARCH(p, q) model, called GARCH(p, q), is the process 

in which the variance equation (1.41) is replaced by 

p i 

vn = aQ + Y^ <*i*l-i + Yl hVn->' (L42) 
%=\ j=\ 

with a0 > 0, a* > 0, i = 1 , . . . , p and (ij > 0, j = 1 , . . . , q. 

The simplest example from the class of GARCH models is the ARCH(l) process. 

The recursions (1.40) and (1.41) give 

Xl = a0e
2

n + a.X^el 

k 

— n S^rJc^c-2 r2 J- rvk + 1 Y2 r2r2 r2 

- a0 2_^ a1enen_1 • • • en_j + ax An_k_1enen_l • • • en_k. 
.1=0 

If |ai | < 1 then the last term converges to 0 with probability one as k —* co. The 

first term converges with probability one by Proposition 3.1.1 of Brockwell and Davis 

(1991), and hence 
oo 

^ = a o £ > i 4 4 - i - - - 4 - . r (1.43) 
j=0 
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From (1.43) we immediately find that 

E[X?] = 00/(1-0!). (1.44) 

Since . 

N 
ao^l + ^ ^ n - i - ' - ^ - i j - (1-45) 

it is clear that {Xn} is strictly stationary and hence, since £ p ^ ] < oo, also (weakly) 

stationary. Also it is straight-forward to find that 

E[Xn] = E(E{Xn\sk, k < n}) = 0, (1.46) 

E[Xn+hXn] = E{E[Xn+hXn\ek,k<n + h]) = 0, h > 0. (1.47) 

Thus the ARCH(l) process with |cti| < 1 is strictly stationary white noise. However, 

it is not an i.i.d. sequence, since from (1.40) and (1.41), 

E[Xl\Xn^) = (a0 + a.X^EiellX^r] = aQ + axZl_x ± EX2
n. 

This also shows that {Xn} is not Gaussian, since strictly stationary Gaussian white 

noise is necessarily i.i.d.. From (1.43) it is easy to show that £[X^] is finite if and only 

if 2>a\ < 1. If £pf*] < oo, the squared process Yn = X\ has the same autocovariance 

function as the AR(1) process Wn = a\Wn^i + en, a result that extends also to 

ARCH(p) processes. It can be shown that for every a.\ in the interval (0,1), E[Z^k] = 

oo for some integer k. This indicates the "heavy-tailed" nature of the marginal 

distribution of Xn. 

The ARCH(p) process is conditionally Gaussian, in the sense that for given 

values of {Xk, k = n — 1 , . . . , n — p}, Xn is Gaussian with known distribution. This 

makes it easy to write down the likelihood of Zp+\,..., Zn conditional on {Zi,..., Zp} 

and hence, by numerical maximization, to compute conditional maximum likelihood 

estimates for the parameters. For example, the conditional likelihood of observations 

{z2l • • •, zn} of the ARCH(l) process, given Zx — z\, is 
n -i 2 

L = f j ,/Ma0 + aiz*) ^ I " 2(a0 + a.zU))-
t=2 
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2 COGARCH processes 

2.1 The COGARCH(l , l ) process 

The construction of the COGARCH(l, 1) process due to Kliippelberg et al. (2004) 

starts from the denning equations of the discrete time GARCH(1,1) process (£n)neN0i 

£n = f n ^ , crl = a0 + a^l^ + / V „ - i , n e No, (2.1) 

where a0,ai, and (5\ are all strictly positive and (sn)nen0
 ls a sequence of iid (inde­

pendent and identically distributed) random variables with mean zero and variance 

1. The recursions (2.1) can be solved to give 

n—1 n—1 n—1 

°l = « ° E Wtfi + axe^ + olXlWx + a^) 

t fn r w i \ r™"1 i 
= [al + a0 exp ^ - ^k>g(/?i + a^) dsj exp ^ ^ log(/?: + axs)) , 

where |_sj denotes the integer part of s £ R. The COGARCH(l, 1) equations are 

then obtained by replacing the driving noise sequence (£n)n6N0 by the jumps (ALt = 

Lt — Lt_)t>Q of a Levy process. More precisely, observing that 

n—1 n—1 

$^log(A + al£]) = n log ft + ^ l o g ( l + ( a i / f r ) ^ -2^ 

i=o j=o 

for ft > 0, and writing q for — log ft, t̂ o for ct0 &
nd wi for «i, leads to the equations 

d,Gt = otd,Lu t>0, Go = 0, (2.2) 

a\ = (al + oj0 j eXs dsje~Xt~, t > 0, (2.3) 

where the auxiliary process (Xt)t>o is defined as 

Xt :=Vt- ^ T l o§ (l + ^iev(ALs)
2) . (2.4) 

0<s<t 

Here, u0 > 0, ux > 0, 77 > 0 and CT^ is independent of (Lt)t>o- The COGARCH(l, 1) 

process is the solution G of these equations and, under specified conditions on the 
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coefficients and the distribution of a\, the volatility process a2 is strictly stationary 

and G has stationary increments. 

As shown in Proposition 3.2 of Kluppelberg et al. (2004), the process (of )t>0 

satisfies the stochastic differential equation 

da2
t+ = ujQdt + a2eXt-d{e~Xt), t > 0, 

and 

a2 = Lo0t -j] I a2
sds + c^e" ] T crs

2(ALs)
2 + a2, t> 0. 

"'° 0<s<t 

The COGARCH(l, 1) process with stationary volatility has been shown to have 

many of the features of the discrete time GARCH(1,1) process. As shown in 

Kluppelberg et al. (2004, 2006), the COGARCH(l, 1) process has uncorrelated in­

crements, while the autocorrelation functions of the volatility a2 and of the squared 

increments of G decay exponentially. Further, the COGARCH(l, 1) process has heavy 

tails and volatility clusters at high levels (see Kluppelberg et al. (2006) and Fasen 

et al. (2006)). While the volatility clustering can be also achieved in the stochastic 

volatility model of Barndorff-Nielsen and Shephard if the driving Levy process has 

regularly varying tails (see Fasen et al. (2006) or Fasen (2004)), this is impossible 

for the GARCH diffusion (1.1). For an overview of extremes of stochastic volatil­

ity models, see Fasen et al. (2006). Also, observe that many of the features of the 

COGARCH(l, 1) process can be obtained in a more general setting, as in Lindner 

and Mailer (2005). 

2.2 The COGARCH(p,g) equations 

Let (£n)n£No be an i.i.d. sequence of random variables. Let p, q > 0. Then the 

GARCH(p,g) process (^„)ngN0 is defined by the equations, 

al = a0 + ai£_x + ... + a p ^_ p + /3i^_x + . . . + Pqa^q, n > s, 

(2.5) 
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where 5 := maxQo, q), o\,... ,o2
s_x are i.i.d. and independent of the i.i.d. sequence 

{£n)n>s, arid £n = Gn+\ — Gn represents the increment at time n of the log asset price 

process (Gn)„eN0. Note that the continuous-time GARCH process will be a model for 

{Gt)t>o and not for its increments as in discrete-time. 

Equation (2.5) shows that the volatility process (a^)ne^0 can be viewed as a 

"self-exciting" ARMA(<7,p— 1) process driven by the noise sequence (0"£_i£jUi)neN-

Motivated by this observation, we will define a continuous time GARCH model for 

the log asset price process (Gt)t>o of order (p,q) by 

dGt = atdLt, t > 0, G0 0, 

where (at
2)t>0 is a CARMA(g,p — 1) process driven by a suitable replacement for the 

discrete time driving noise sequence {^n-i£n-i)neN-

The state-space representation of a Levy-driven CARMA(<7,p—1) process (V't)t>o 

with driving Levy process L, location parameter c, moving average coefficients a\,.. ., 

ap, autoregressive coefficients 0\,... ,/3q and q > p is (see Brockwell (2001)), 

tpt = c 

Kt = 

+ a'Ct, 

0 

0 

0 

-pq 

1 

0 

0 

-0 , -1 

0 

1 

0 

~Pq-2 •• 

0 

0 

0 

1 

• -01 

(tdt + 

0 

0 

0 

1 

dLt 

where a' = [a\,. . ., aq], a ; := 0 for j > p, and the coefficient matrix in the last equa­

tion is —/?! if q = 1. (The CARMA(g,p — 1) process, (ipt)t>o, is a strictly stationary 

solution of these equations, which exists under conditions found in Brockwell (2001).) 

In order to obtain a continuous-time analog of the equation (2.5) we suppose that 

the volatility process (of )t>o has the state-space representation of a CAR.MA(^,p— 1) 

process in which the driving Levy process (Lt) is replaced by a continuous-time analog 

of the driving process (c^_i£^_i)neN hi (2.5). 
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The increments of the driving process in continuous time should correspond to 

the increments of the discrete-time process, 

n—1 n—1 

We therefore replace the innovations en by the jumps ALt of a Levy process (Lt)(>0 

to obtain the continuous-time analogue, 

Rt-.= ] T a s l (AL s)
2 , i > 0 . 

0<s<t 

If L has no Gaussian part (i.e. T\ = 0 in (1.14)), we recognise R as the quadratic 

covariation of G, i.e. 

Rt=Y, *U&LS)
2 = taldiL,^ = [G,G]t. 

0<s<t ^° 

If L has a Gaussian part, then *}20<s<t(ALs)
2 = [LiL]^, the discrete part of the 

quadratic covariation, and we have in general 

Rt= f o2
s_d[L, L}{?\ i.e. dRt = o\_ d[L, L][d). 

Jo 

The COGARCH(p,g) equations will now be obtained by specifying that the 

volatility process V(= a2) should satisfy continuous-time ARMA equations driven by 

the process R defined above. Provided V is non-negative almost surely (conditions 

for which are given in Section 2.5), we can define a process G by the equations Go = 0 

and d,Gt — yfVtdLt. Under conditions ensuring that V is also strictly stationary, we 

refer to G as a COGARCH(p, q) process. As we shall see, when p = q — 1, the solution 

of the COGARCH equations coincides with that of the COGARCH(l, 1) equations 

(1.3)—(1.5) of Kliippelberg et al. (2004). (The parameters Pi,..., (3q and c*i,..., ap 

in the following definition should not be confused with the parameters denoted by the 

same symbols in the defining equation (2.5) of the discrete-time GARCH process.) 

Definition 2.1. (The COGARCH(p, q) equations) If p and q are integers such 

that ? > p > 1, cto > 0, a i , . ' . . , a p G M, ft,...,/?, 6 R, ap ^ 0, j3, / 0, and 
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a. P+I aq — 0, we define the (q x r^-matrix B and the vectors a and e by 

B 

0 

0 

0 

-pq 

1 

0 

0 

- /Vi 

0 

1 

0 

-0,-2 •• 

. 0 

. 0 

1 

. -Pi 

, a = 

a i 

« 2 

a g - i 

aq 

, e = 

0 

0 

0 

1 

with 5 := —Pi if g = 1. Then if L — (Lt)t>0 is a Levy process with non-trivial Levy 

measure, we define the (left-continuous) volatility process V = (Vt)t>o with parameters 

B, a, a0 and driving Levy process L by 

Vt = a0 + a'Y t_, i > 0, K0 = a0 + a'Y0, 

where the stoie process Y = (Yf)(>0 is the unique cadlag solution of the stochastic 

differential equation 

(d) dYt = BYt_ dt + e(a0 + a'Yt_) d[L, L}r, t > 0, (2.6) 

with initial value Y0, independent of the driving Levy process (Lt)t>o- If the process 

(Vt)t>o is strictly stationary and non-negative almost surely, we say that G = {Gt)t>o, 

given by 

dGt = VvtdLu t>0, Go = 0, 

is a COGARCH(p,q) process with parameters B, a, a0
 a n d driving Levy process L . 

D 

That there is in fact a unique solution of (2.6) for any starting random vector 

Yo follows from standard theorems on stochastic differential equations (e.g. Protter 

(2004), Chapter V, Theorem 7). The stochastic integrals are interpreted with respect 

to the filtration F = (^t)t>0i which is defined to be the smallest right-continuous 

filtration such that !FQ contains all the P-null sets of T', (Lt)t>o is adapted and Y0 is 

TQ measurable. 
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Without restrictions on a0, a and B, the process V is not necessarily non-

negative, in which case G is undefined. Conditions which ensure that V is non-

negative will be discussed in Section 2.5. In particular, it will be shown that if 

a'eBte > 0 for alH > 0 and Y0 is such that V is strictly stationary, then V is non-

negative with probability one. Even if V takes negative values however, the process 

is of some interest in its own right and many of our results for V are valid without 

the non-negativity restriction. 

Conditions for stationarity of V are discussed in Section 2.3. 

We next show that if p = q = 1, the solution of the COG ARCH equations 

in Definition 2.1 coincides with the solution of the COGARCH(l, 1) equations of 

Kluppelberg et al. (2004). 

Theorem 2.2. Suppose that p = q — 1, and that a0, a\ and (3 are all strictly positive. 

Then the processes (Gf)t>o and (Vt)t>o of Definition 2.1 are respectively the processes 

{Gt)t>o and (of )t>o defined by (2.2) - (2.4), with parameters u>o = aoAj ^i = ct\e~01 

and r\ = (3\. 

Proof. From dYt = -f3{Yt dt + Vt d[L, L](
t
d) and Vt+ = a0 + QlYt follows that 

dVt+ = aidYt = -arfi Vt~a° dt + axVt d[L, L][d), 

and hence that 

Vt+ = a0Pit - A f Vsds + aiJ2 Vs{&Ls)
2 + V0. 

^ 0 0<s<t 

But this equation is also satisfied by the volatility process (of )(>o of (2.3) when 

UJQ = a0Pi, rj = 0\ and u)\ — a1e~/31, as shown in Proposition 3.2 of Kluppelberg et 

al. (2004), and uniqueness of the solution gives the claim. • 

We conclude this section with a few definitions and some notation which will be 

used throughout the paper. 
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Definition 2.3. Let a and B be as in Definition 2.1. Then the characteristic poly­

nomials associated with a and B are given by 

a(z) := «i + a2z + ... + a.vz
v~l, z e C , 

b{z) := z' + A * 9 " 1 + . . . + /?„ zeC. 

The eigenvalues of the matrix B (which are exactly the zeroes of 6) will be denoted 

by Ai,. . ., \q and assumed to be ordered in such a way that 

3?A„ < $RAg_! < . . . < KAi 

(where RXi denotes the real part of Aj). Further, define 

X:=X{B) :=5RAi. 

For the rest of the paper, convergence in probability will be denoted by "—>", 

uniform convergence on compacts in probability by " —> ", and equality in distribution 

by "=". For x € R we shall write log+(.x) for log(max{l,a;}). The transpose of a 

column vector c £ C will be denoted by c'. If || • || is a vector norm in Cq, then the 

natural matrix norm of the (q x q,)-matrix C is defined as ||C|| = supc€C«,\r0j TOT-

Correspondingly, for r G [1, oo] we denote by ]| • ||7. both the vector Lr-norm and the 

associated natural matrix norm. Recall that the natural matrix norms of the Ll,L2 

and L°° vector norms are the column-sum norm, the spectral norm and the row-sum 

norm, respectively. 

The (q x ^-identity matrix will be denoted by Iq or simply /, and the canonical 

vector (0,. . . , 0,1, 0 , . . . , 0)', with zth component equal to 1, by e,. For eq we simply 

write e. By diag (Ai,. . ., Xq) we mean the diagonal (q x c^-matrix with these entries 

on the diagonal. The Kronecker product of two (q x g)-matrices A and B will be 

denoted by A ® B, and by vec (A) we denote the column vector in C which arises 

from A by stacking the columns of A in a vector (starting with the first column). For 

the properties of the Kronecker product we refer to Liitkepohl (1996). 
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2.3 Stationarity conditions 

In this section we consider conditions under which the volatility process (Vt)t>o spec­

ified in Definition 2.1 is strictly stationary. The parameters B, a and cto, and the 

state process (Yt)t>o are as specified in Definition 2.1. The condition (2.8) estab­

lished in Theorem 2.4 below is necessary and sufficient for stationarity in the special 

case p — q = 1. For larger values of p and q it is sufficient only, but not unduly 

restrictive since there is a rich class of models satisfying the condition. Without seri­

ous loss of generality we shall assume that the matrix B can be diagonalised. Since 

the only eigenvectors corresponding to the eigenvalue A4 are constant multiples of 

[1, Aj, A^,. . . , \1~ ]', this is equivalent to the assumption that the eigenvalues of B are 

distinct. Let S be a matrix such that S~lBS is a diagonal matrix, for example, 

1 ••• 1 

Ai • • • A0 

S= q . (2.7) 

(For this particular choice, S~lBS = diag (A t , . . . , A?).) 

Theorem 2.4. Let (Y()t>0 be the state process of the COGARCH(p,q) process with 

parameters B, a and aQ. Suppose that all the eigenvalues of B are distinct. Let L be 

a Levy process with non-trivial Levy measure vi, and, suppose there is some r € [1, oo] 

such that 

/ l o g ( l + WS^ea'SWry^dvLiy) < -A = -A(fl), (2.8) 
./R 

for some matrix S such that S~1BS is diagonal. Then Yt converges in distribution 

to a finite random variable Y^, as t —> oo. It follows that if Y0 — Y^, then (Yt)t>o 

and (Vt)t>o are strictly stationary. 

Remark 2.5. (a) If (K)t>o is the volatility of a COGARCH(l, 1) process with pa­

rameters B = —f3\ < 0, a'o > 0 and «i > 0, then | j5_ 1ea'5| | r = ct\ and, as already 
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indicated, the condition (2.8) is necessary and sufficient for the existence of a strictly 

stationary C.OGARCH(l, 1) volatility process. (See Kliippelberg et al. (2004), The­

orem 3.1.) 

(6) For general q > 2, the quantity ||5_1eaS||,. depends on the specific choice of 

S and on r. Observe that it is sufficient to find some S and some r such that (2.8) 

holds. • 

The proof of Theorem 2.4 will make heavy use of the general theory of multi­

variate random recurrence equations, as discussed by Bougerol and Picard (1992), 

Kesten (1973), and Brandt (1986) (in the one—dimensional case). The proof is given 

after the proof of Theorem 2.8, since equation (2.15) will be needed in the proof of 

Theorems 2.4 and 2.6. 

The COGARCH state vector satisfies such a multivariate random recurrence 

equation, as indicated in the following theorem. 

Theorem 2.6. Let (Yt)t>o be the state process of the COGARCH(p,q) process with 

parameters B, a and ao, and driving Levy process L. Then there exists a family 

{Js,u KSit)o<s<4 of random (q x q)-matrices Js<t and random vectors ~Ks,t in K9 such 

that 

Yt = Js,tYs + K,,t, 0 < s < t. (2.9) 

Further, the distribution of (JSlt,KS)t) depends only on t — s, (JSutl,KSutl) and 

{JS2,t2> KS2,j2) are independent for 0 < Si < t\ < s2 < t2, and for 0 < s < u < t, 

Js,t = Ju,tJs,u- (2.10) 

If additionally the conditions of Theorem 2.4 hold, then the distribution of the vector 

YQQ is for any h > 0 the unique solution of the random fixed point equation, 

Yoc = JCAYOO + K0lh, (2.11) 

withYoo independent of (Jo,An ̂ -o,h) on the right hand side of (2.11). 
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R e m a r k 2.7. (a) The stationarity condition (2.8) is easy to check. However, as the 

proofs of Theorems 2.4 and 2.6 show, a weaker stationarity condition is the existence 

of a vector norm || • || and t0 > 0 such that J0,t0
 anc^ ^o,t0 satisfy the conditions 

E l o g | | J 0 , t o l | < 0 and £ l o g + | | K 0 , t J < oo. (2.12) 

By (2.10), E log || Jo,t01| < 0 is equivalent to the requirement that there is a strictly pos­

itive value of tj such that the Lyapunov exponent of the iid sequence (Jt1n,ti(n+i))n6Noi 

i.e. 

lim - £ ( l o g | | J t l ( n _ i ) , ( i n - - - J0 , t l | |) = inf ( -E (log || J t l(„-i) . t l„ • • • JQ,tl ||) ) , 

(which is independent of the specific norm) is strictly negative. As shown by Bougerol 

and Picard (1992), provided £ l o g + \\J0M\\ < oo, Elog+ \\K.ottl\\ < oo and a certain 

irreducibility condition holds, then strict negativity of the Lyapunov exponent is not 

only sufficient but also necessary for the existence of stationary solutions of such 

random recurrence equations. 

(b) The conditions of Theorem 2.4 imply the conditions (2.12) with the matrix 

norm defined as the natural norm | | ^ | | s , r = | |S _ 1 j45 | | r , corresponding to the vector 

norm, 

| |c| |B>r := | | 5 - 1 c | | r , c€<C«. (2.13) 

Observe, however, that the conditions of Theorem 2.4 are in general not necessary 

for stationarity. For example, using methods similar to those in the proofs of Theo­

rems 2.4 and 2.6, it can be shown that for any vector norm || • ||, and for t > 0, 

II-AMH < HeBtU + e l |B |" exp( ] T log ( l + (AL,)2 | |ea ' | | ) ) | |ea'| | ^ (^af. 
\0<.s<t / 0<.s<t 

Now if X(B) < 0, then | |eB t | | —» 0 as t —» oo, and (2.12) can be satisfied without 

assuming that all the eigenvalues of B are distinct, but choosing ||a|| sufficiently 

small and imposing certain integrability conditions on L. We shall not pursue this 

argument here as the conditions of Theorem 2.4 will be sufficient for our purposes. 

• 
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The matrices Jst and the vector K.st of Theorem 2.6 will be constructed ex­

plicitly when L is compound-Poisson, and in the general case will be obtained as 

the limit of the corresponding quantities for compound-Poisson-driven processes. In 

the compound-Poisson case we shall show that the stationary state vector satisfies a 

distributional fixed point equation which is much easier to handle than (2.11). Also, 

we compare the stationary distribution of Yoo with the stationary distribution of the 

state vector when sampled at the jump times of the Levy process. This is the content 

of the next theorem: 

Theorem 2.8. (a) Let (Y£)t>0 be the state process of a COGARCH(p,q) process 

with parameters B, a and a0. Suppose that the Levy measure vL of the driving Levy 

process L is finite and write the compound Poisson process [L, L}^ in the form 

N(t) 

[L,L]<*= £(ALS)2 = X > , 
0<s<t i= l 

where N(t) is the number of jumps of L in the time interval (0,t] and Zx is the square 

of the ith jump size. Let T\ denote the time at which the first jump occurs and let 

Tj, j = 2 ,3 , . . . , be the time intervals between the (j — l ) t h and j t h jumps. Further, 

let (7o,Zo) be independent of (Tj, Zi)iefi with the same distribution as (T\,Z\). For 

i G N0, let 

Q = (/ + Zi^)eBT\ 

Di = a0Ze, 

and Tn = Xw'=i -^ (where T0 := 0). Then the discrete time process (Yrn)neN0 satisfies 

the random recurrence equation 

Yrn+X - Cn + 1Y r n + D n + l l n e N0. (2.14) 
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l{/v(t)^o}D/v(t) 

Further, for any t > 0, 

+CJV(J) • • • C\Y0 

|l{W(t)^0} 

JV(t)-2 

i=0 

A eB(t~rN(t)) 
N{t)-1 

Di + ^ ^ C\ • • • Ci~Di+i + C\ • • • CN(t) Y c 

(2.15) 

(b) Assume additionally that the conditions of Theorem 2.4 are satisfied. Then the 

infinite sum Ylt^o Ci ' ' ' QDj+i converges almost surely absolutely to a random vector 

Y, which has the stationary distribution of the sequence (Yr„)n6N0 . The stationary 

state vector Y^ satisfies 

Y ^ e ^ Y , (2.16) 

where T is independent of {Ti, Zi)ie^Q and has the distribution ofTx. Further, Y^ is 

the unique solution in distribution of the distributional fixed point equaMon 

Yoo = QYQQ + R, (2.17) 

where Y^ is independent of (Q, R ) and 

Q •= e B T o ( / + Zoea'), 

R := a0Z0e
BToe. 

The fixed point equation (2.17) will play a crucial role in the determination of 

the covariance matrix of Y ^ , studied in the next section. 

P r o o f of T h e o r e m 2.8. (a) It follows from (2.6) that Y f satisfies dYt = BYt dt for 

t e [ r „ , r „ + i ) , so that 

Y t = eB^T^YYn, t e [ r „ , r n + 1 ) , n G N0. (2.18) 
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At time T^+i a jump of size e(a0 + a'Yrn+1-)Zn+i occurs, so that 

Y r„+ 1 = Y r n + 1 - + e ( a o + a 'Yrn + l-)Z„+ i 

= (J + Zn+iea')Y rn+1_ + cx0Zn+1e 

= Cn + iYrn + D n + 1 ) n G N 0 , 

which is (2.14). Solving this recursion gives 

n-2 

and the first equality in (2.15) follows from this and Yt = eB^t~rNI-ti')YrN(ty The 

second equality in (2.15) is a consequence of the fact that the infinite random element 

(N(t), rV(t), CN{I), D^t) , • • •, C\, Di,0, 0,...) has the same distribution as 

(Ar(£),rAr( t),Ci,Di,...,Cw(t),Djv(t),0)0)...); indeed, for any n <E N0 and c > 0 

the random vectors (Ci, D i ) , . . . , (Cn, D„) are iid and depend on the restriction 

{N(t) = n, rjv(t) > c} only in terms of ^ " = 1 Tj and Tn+i, but not on the Ti, 

i = 1 , . . . , n, individually. 

(b) Let S1 be such that S~1BS =: A is diagonal and define the vector norm 

llclls,r — ll'S'^llr as in equation (2.13), so that the associated natural matrix norm 

is H/lHs.r — \\S~1AS\\r. Then we have for t > 0, 

| |eBt |L = | | 5 e A t 5 - 1 | L = ||eAt|| - ext. (2.19) 
II II B , r II II o ,r II II r v ' 

This gives ||Ci||j3,r < (1 + Zi||ea'||Bir)eATl and ||Di||s>r = ao||el|s,r Z\, so that, using 

V[L,L]([X,OO)) = VL{{V 6 R : |y| > v^} for x > 0, 

^logHCillB.r < A£?(Tx) + £;iog(l + Zi||ea'||B,r) 
A 

by (2.8) and 

+ —7^l log(l + ||ea'| |B, r7/2)^L(y)<0 
VLW 7(0,OO) 

Elog+fr) = - j — t \og+{y2)duL{y) < oo. 
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From the general theory of random recurrence equations this implies the almost sure 

absolute convergence of Yl'tLo C\ • • • CiDi+\ to Y which has the stationary distribution 

of (Yr„)„eN, see e.g. Bougerol and Picard (1992). 

To prove (2.16), for m € N let 

m— 1 

Y m := 2_^ C\ • • • CiDi+i + C\ • • • C m Y 0 , 

and 

Y, •= P
B(t-rN(t))Y f > n 

x t,m • c x mi ° _ w -

Since the random variable [t — ~^N{t)) is asymptotically independent of 7 i , Z\,..., 

Tm, Zm (for t —* oo, m fixed), it follows that eB^ - r j vC'^ is asymptotically independent 

of Y m , and hence Yt,m converges in distribution to eBTYm, as t —> oo, where T 

is exponentially distributed with parameter i^(R) (e.g. Taylor and Karlin (1994), 

Section 7.4.4) and independent of 7 \ , Z\,..., Tm , Zm and hence can be chosen to be 

independent of (Ti)jej^ (Y^i^ (as in the statement of the theorem). Moreover, eBTYm 

converges almost surely, hence in distribution to eBTY', as m —> oo. Denote by Yt the 

expression in the lower line of (2.15). Then (2.16), and in particular the existence of 

the limit variable Yoo in the compound Poisson case, follow from (2.15) and a variant 

of Slutsky's Theorem (e.g. Brockwell and Davis (1991), Proposition 6.3.9), provided 

lim l i m s u p P ( | | Y t - Y ( > m | |B , r > e) = 0, V e > 0. (2.20) 

Since | |eB< t- rw>)| |B | r < 1, and l { W o } &i + Z^i'1 Ci • ••CiDi+1+C1 • • -CmY0-

Ym converges almost surely, hence in probability as t —» oo to YltLm C\- • • C,D i + i — 

C\ •• -CmYo, which itself converges almost surely to 0 as m —» oo, (2.20) is true 

and (2.16) follows. That Yoo satisfies (2.17) is clear from (2.16), and that it is the 

unique solution follows from £ l o g ||Q||js,r < 0 and £ l o g + ||R||jg,r < oo. D 

The proof of Theorem 2.8 (6) already showed the existence of the limit variable 

YQO for the case of a driving compound Poisson process. Nevertheless, this existence 

will be reestablished in the proof of Theorems 2.4 and 2.6 for the general case, making 
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use of Theorem 2.8 (a) only. We shall use an approximation argument and introduce 

the following notation: 

Definition 2.9. Let L be a Levy process. Then for any e > 0, the y/e-cut Levy 

process (Lf )t>0 is defined by 

0<s<t,|AL s |>v/i 

If (Yt)t>o is a state process of a COGARCH(p, q) process driven by L, then the 

COGARCH(jD, q) process with the same parameters and starting vector but driving 

Levy process (Lt )j>o will be denoted by (Yt )t>0. 

The quadratic covariation of L^ is given by 

0<.s<t,|ALs|
2>£ 

In particular, the corresponding COGARCH volatility results in being driven by a 

compound Poisson process. With this notation, we have the following lemma: 

Lemma 2.10. Let (Y4)t>0 be the state process of a COGARCH(p,q) process. Then 

Yf' converges in ucp toYt, as e —> 0. 

Proof of Lemma 2.10. This is an easy consequence of perturbation results in 

stochastic differential equations: recalling the definition of prelocal convergence in //p , 

1 < p < oo, as in Protter (2004), page 260, it is easy to see that [L^e\ L^} converges 

prelocally to [L, L}^ in H_p, 1 < p < oo, as e —* 0 (for example, with stopping times 

Tk = fc). The claim then follows from Theorems 14 and 15 of Chapter V in Protter 

(2004). • 

Proof of Theorems 2.4 and 2.6. We shall first concentrate on (2.9) and (2.10) 

and then prove Theorem 2.4 and the rest of Theorem 2.6 simultaneously. Let e > 0, 

and assume the representation 

Ne{t) 

[L<'U«>]t = 5 > ( e > . 
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where Z/£' is the y^-cut Levy process of Definition 2.9. Define Cf and Dt- similarly 

as in Theorem 2.8. Further, let 

Ac) ._ B ( ( - r « ( ) ) c ( £ ) . . . c ( , ) 

ATe(t)-2 

K o , t - - e N'w [1{Nc(t)*o}UNe{t)+ 2 ^ c,ftre(t)""GAft(0-<1JAfe(t)-«-

1=0 

Then, by Theorem 2.8 (a), 

Y t
w = J # Y 0 + KJg. (2.21) 

From the previous Lemma we know that Y t converges in ucp to Yt as e —> 0. Since 

this is true for any starting value Y0, it holds in particular for Y0 = 0, and from (2.21) 

follows that KQJ converges in ucp to some K0>t, as e —> 0. Hence, again from (2.21) 

it follows that for arbitrary Y0, 

J « Y o = Y i e ) - K J 3 ^ Y t - K o , t l as e - 0. 

Since this holds for arbitrary Yo, we conclude that JQ.j converges in ucp- to some J0,t 

as e —> 0. From (2.21) then follows 

Y t = Jo.tYo + K0,(. 

By starting at an arbitrary time s instead of at time 0, we obtain (2.9). For example, 

jfj is given by 

j(e) = e^-^l^c^t)... CNt{a)+2(I + ZNe{3)+1ea!)eB{r%W\ 0<s<t, 

giving (2.10). The independence and stationarity assertions on (JStt,K.Stt) are clear, 

since JStt and K.st are constructed only from the segment (Lu)s<u<t of the Levy process 

L. 

Now assume that all eigenvalues of B are distinct and that (2.8) holds. Apply-
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ing (2.19) to j g gives 

7(£)n < P B ( t - r ^( t ) ) | | \\r(£) r^ 

/V£(t) 

B,r 

-.(e) 

< e 

= eAt exp 

< eAt exp 

B,r 

,A(rie)-r<i\) :-rKw) ^ ( ( i + zWllea'IIOc 

/",(*) \ 
iY^\og(l + Z^\\S-lea'S\\r)\ 

(j2 log(l + (ALs)
2\\S~1ea.lS\\r)y 

\0<s<t ) 

(2.22) 

(2.23) 

Since || Jo,t||s,r < l i m s u p ^ g \\Jot \\B,T, we conclude that 

log I! 4 

giving 

,,tlkr < At + Yl lo^ + (AL,)2!^-^^!!,), (2.24) 
0 < 6 < t 

Elog\\Jo,th,r<t(x+ f log{l+ \\Sea'S-1\\y2)dvL{yyj < 0 

by (2.8) (see e.g. Protter (2004), Chapter I, Theorems 36 and 38). This is the left 

hand inequality of (2.12). To show that £ l o g + ||K0it||B,r < °°i observe that 

IIKO!JB,> 

^ Af t - r ( ^ , , , ) - , .I || Me) 
< e ^ ( t ) ; l{Ar£( t)^o}a0 | |e | |B , rZ^ ( t ) 

Ns(t)-2 

+ a 0 | | e | b , P £ ^ - r " ( o - i ) ( l + zW ( t ) | | ea ' | 
;=o 

\B,r 

(\ _L 7^ llpa'll „ \ 7^> 
y + zyv£(t)-«ilea I I ^ J ^/vE(t)-i-i 

7(e) (2.25) 

< a0 | |e | |s ,r l{N £ ( t )^o}^ e W 

N"£( t)-2 

+ao| |e | |B , r X ! 6 X P [ Z } 0 S ( 1 + ( A ^ ) 2 | l e a ' l l ^ ) ] ^ £ ( / . ) - , - i 
i = 0 0<s<t 

<a0\\S-1e\\rexp[ £ log(l + ( A L ^ H S - W S ^ ) ] £ (ALS)2 . (2.26) 
0 < s < t 0 < s < i 

From this follows that 

log ||K0lt| |B, r < logCorollS-^H,.) +£ log(l + ( A L s ) 2 | | S - W S | | r ) + log [L, L}\d). 
0<s<t 
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The expectation of the second summand is finite as shown above, and E(\og[L, L]t ) < 

oo since f,looAogxdi>[L,L](x) = JR,,llAogx2dvL(x) < oo, showing the right hand 

inequality of (2.12). 

Let (Jn,Kn)„6N be an iid sequence with distribution (J0>i,Ko,i), independent of 

L and Y0. Let 7 E [0,1) and n E N. Then it follows from (2.9) that 

TJ-2 

* n+7 "-n+j — l,n+7 T / j Jn+'y—l,n+j ' ' ' ^n+j—i—l,n+f—i"-n+j—i — 2,n+'y—i — l 

t=0 

"r "'n+7—1,n+7 ' ' ' •'7,7+1 * 7 

n-1 

— Ki + ^ ^ J\~'' J% Kj+i + Ji • • • J n Y 7 

i=l 

=:Gn + F n Y 7 , say. 

Since Slog ||</i||s,r < 0 and Slog+ ||Ki||j3.r < 00, it follows from the general theory 

of random recurrence equations (e.g. Bougerol and Picard (1992)) that Hn con­

verges almost surely to 0 as n —» 00 and that G„ converges almost surely absolutely 

to some random vector G, as n —> 00. Since Y has cadlag paths, it follows that 

suP7g[o,i) | |Y7 | |B | 7 . is almost surely finite. Hence 

lim sup | |i/„Y7 | |B r = 0 a.s., 
n_+cx>7G[0,l) 

and it follows that Y ( converges in distribution to Yoo := G as t —> 00. That Y^ 

satisfies (2.11) and is the unique solution is clear by the theory of random recurrence 

equations. Equations (2.11) and (2.9) then imply that if Y0 = Y ^ , then Yt = Y ^ 

for all t > 0, showing strict stationarity of (Yt)(>0 since it is a Markov process. • 

2.4 Second order properties of the volatility process 

In this section (Yt)t>o denotes the state process defined by (2.6), with parameters B, 

a and ao and driving Levy process L with Levy measure vi. The aim of this section is 

to study the autocorrelation function of the volatility process (Vt)t>o- We shall write 

M := / y2dvL{y) and p := / y4dvL(y), 
JK JR 
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and, if /J, < oo (i.e. EL\ < oo), 

B := B + fiea'. (2.27) 

Observe that B has the same form as B, but with last row given by {~Pq + /J,ct\,..., 

—Pi + pi,aq). We first give sufficient conditions for the moments of Yt to exist. 

Proposition 2.11. Suppose that the eigenvalues of B are distinct, A = A(B) < 0, 

|| • || is any vector norm on Cq and k G N. Then the following results hold. 

(a) IfE\L!\2k < oo and £||Y0||fc < oo, 

£ | | Y t f < o o V t > 0 . 

(b) If E\L\\2k < co, r G [1, oo], S is a matrix such that S~lBS is diagonal and 

f ((1 + | |5-1ea'5|| ry
2) fc - l) dvL{y) < -Xk, 

then S and r satisfy (2.8) and E||Y0O||'c < oo. In particular, .E(Yoo) exists if 

EL\ < oo and \\S~lea!S\\Tp, < -A, (2.28) 

and t/ie covariance matrix, cov(Y00), exists if 

EL\<oo and \\S~l ea! S\\2
r p < 2(-A - | |5_ 1ea'5| | r^). (2.29) 

Further, (2.29) implies (2.28), and (2.28) implies that all the eigenvalues of B have 

strictly negative real parts, in particular that B is invertible and Pq ^ ai/i. 

In order to prove Proposition 2.11, we will show that the state process (Yt)t>o 

can be majorised by the state process of a COGARCH(l, 1) process, for which we 

can apply the moment conditions of Kliippelberg et al. (2004). We further show 

that under the conditions of Theorem 2.4, the stationary distribution Yoo can be 

approximated by stationary distributions of compound Poisson driven COGARCH 

processes, and that there is a majorant for this approximation. This will allow to 

restrict attention to compound Poisson driven processes when calculating autocorre­

lations, the general case following from Lebesgue's dominated convergence theorem. 

This is the content of the next lemma: 
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L e m m a 2.12. Let (Yt)t>o be the state process of a COGARCH(p,q) process with 

parameters B, a and a$ > 0 such that all eigenvalues of B are distinct and that. 

X = X(B) < 0. Let r € [l,oo], S such that S~1BS is diagonal, and denote by 

II • ||B,r the vector norm defined in (2.13). Further, denote by (Y t)t>o the state process 

of a COGARCH(l,l) process with (1 x 1)-matrix X, vector | |ea ' | | s , r € K1, scaling 

parameter aQ\\e\\B,r > 0 and initial state vector Y0 := ||Yo||B>r. Then 

| | Y t | | B , r < Y t ) i > 0 . (2.30) 

/ / (2.8) is satisfied for this r, then there exist versions ofY^ and YTO such that 

IIYOOIIB,, ^ Y ^ . (2.31) 

Further, if (Yjf )t>o is the process defined in Definition 2.9 for e > 0, then versions 

o / Y i l can be chosen such that ||Y£, \\B,T S YOO for all e > 0 and YsJ —> Y^, as 

e - * 0 . 

Proof of L e m m a 2.12. We use the notations and setup of the proof of Theorems 2.4 

and 2.6. Let e > 0 and define a COGARCH(l , 1) state process Y similarly as above 

(with respect to Y(£)). Let J$t and Kot be defined similarly as JQJ and K^ t (with 

respect to Y ). Then it is easy to see that J01 and K 0 1 are the right hand sides 

of (2.22) and (2.25), respectively. In particular, | |J^ t \\B,T 5= Jot a n ( i I I ^OJ ||jB,r < K 0 t , 

and since Jot and K 0 1 converge in ucp as e —> 0 to some J0) t and K 0 t such that 

Y ( = Jo.tYo 4- Ko,t, 

it follows that | |Y t | |B ) r < Y t for fixed t > 0, giving (2.30). 

Similar quantities such as Js t and Js<t can be defined when going from time 

s to time t, and similar results hold. Let Vt :— a0 | |e | |B,r + ||ea'||B]T.Yt_ be the 

COGARCH(l , 1) volatility corresponding to Y ( £ ) . Define 

Xt := -Xt- ] T log(l + (AL s )
2 | | ea ' | |B , r ) , 

0<s<t 

X{
t
E) := -Xt- Yl lQg(l + (ALs)

2||ea'||B,r). 
0<s<t,(AL s)

2>e 
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Then it follows from Theorem 2.2 and (2.3), that 

ft 
T7<s> (r? - II-II x I ' j d ' l j . l „-X(£) 

K;+ = ( Vo - a 0 | | e | | B , rA / e a ds ) e"A< . 

r(<0 ^ ) K<0 Thus we have J 0 £ = e « and obtain another formula for K 0 ( , namely 

rt 

Kg = ||ea'||^ W " " A e - ^ - ^ d s "o l le l l f i ^e Xt—a0\\e\\BiTA j e v " ' " " ' as — a0\\e\\B,r 
o 

e X t - \ I'e-M-^ds-l 
o 

From this it can be seen that J^t and K 0 1 are bounded by J0,t = e Xt and 

Ko,t = llea'H^^aollellB.r 

respectively. Now define the versions 

oo 

YQO := y ^ JQ,I • • • Ji-i:jK.iti+i, 

i=0 
oo 

Y ( e ) . _ V ^ r(e) . . . 7(£) K ( e ) 

i=0 
oo 

Yoo := ^ ^ J o , i ' ' ' ^i-i,iKj t-i.i+1-
i=0 

In the proof of Theorems 2.4 and 2.6 we have seen that (2.8) implies that the sum 

defining Yoo converges almost surely. This then gives the claim, since 

•00 ( E ) 
Ji-l,i\\B,r, \\Ji-ii\\B,r < Ji-l,i, \\^-i,i+U\B,r^ 1 1 ^ i+l ||fi>r < Kj^+j 

( E ) ' ( E ) and J / JL 2 and K j / + 1 converge in probability to Jt-i,* and K l i + i as e —> 0, respectively. 

• 

Proof of Propos i t ion 2.11. All assertions apart from the implication "(2.28) 

= > X(B) < 0" follow immediately from Lemma 2.12 (observing that the existence 

of £^||yrt||'c is independent of the specific matrix norm) and the corresponding prop­

erties of the COGARCH(l , 1) process, see Section 4 in Kliippelberg et al. (2004). 

That (2.28) implies A(J3) < 0 is a consequence of the Bauer-Fike perturbation result 

on eigenvalues, stating that for every eigenvalue Xj of B we have 

min \\t - A,-1 < ||S_1(£ - fl)S||r = // HS^ea 'S^ , 
i=l,...,q 
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see e.g. Theorem 7.2.2 and its proof in Golub and van Loan (1989). • 

Next, we determine the autocovariance function of the (not necessarily station­

ary) volatility process of Definition 2.1. 

Theorem 2.13. Let (Vt)t>0 be the volatility process specified in Definition 2.1, with 

state process (Y t) t>0 and parameters B, a and a0. Suppose that EL\ < oo and that 

E||Y t | |
2 < oo V t > 0 (as is the case for example if the conditions of Proposition 2.11 

are satisfied). Then, with B defined as in (2.27), 

cov (Vt+h, Vt) = a'e5hcov (Yt) a, t,h> 0. (2.32) 

Proof of Theorem 2.13. Since for fixed t, almost surely Vt = Vt+ = a0 + a'Y t, we 

obtain 

cov (Vt+h, Vt) = a' cov (Yt+h, Yt) a. (2.33) 

For the ease of notation, we will assume that t = 0. Let J^ := J0^ and K^ := K0^ 

as constructed in the proof of Theorem 2.6. Then, using that ||eBi | | < e"5"' for any 

vector norm || • ||, it follows as in the proof of (2.23) that 

E\\Jh\\ < emt E | exp j J ^ log(l + (ALs)
2||ea'||) J 1 < oo (2.34) 

I \0<s<h / ) 

by Kliippelberg et al. (2004), Lemma 4.1 (a). Using that Y^ = Jh.Y0 + K^, we 

conclude that i£||K/i|| < oo and that 

E(YhY'0) = E(E(YhY'Q\Jh,Kh)) 

= E(JhE(y0Y'0) + KhE(Y'0)) 

= E(Jh) E(Y0Y^) + E(Kh) E(Y'0). 

On the other hand, 

E(Yh) E(Y'0) = E(Jh) E(Y0) E(Y'0) + E(Kh) E(Y'0), 
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so that cov(Yh,Y0) = E(Jh) cov (Y0), and (2.32) will follow from (2.33) once we 

have shown that 

E(Jt) = eSt, t > 0. (2.35) 

To do that, it suffices to assume that [L, L]t is a compound Poisson process. The 

general case then follows from the fact that Jt as defined in the proof of Theorem 2.4 

converges to Jt in Ll as e —> 0, since it converges stochastically and since there is 

an integrable majorant by (2.34) and its proof. So suppose that [L, L]t = X)»=i %i is 

compound Poisson with intensity e > 0 and let Ct — (I + Z-^ea!) eB(Ti~ri-l\ Then, for 

0 < s. t, it follows from (2.10) and the independence of J0.s and Js.s+t that 

E(Js+t) = E{Js)E(Jt), 

It is easy to see that E(Jt) is a continuous function in t G [0, oo). Further, E(J0) = / , 

and we conclude that (E(Jf))t>0 is a semigroup. We shall show that its generator Aj 

satisfies 

Aj := lim l{E(Jt) - I) = B + f y2 duL{y) ea! = B. (2.36) 

This then implies (2.35), since E(Jt) = eiAj, see e.g. Goldstein (1985), Proposition 2.5. 

To show (2.36), write 

Jt = eBt l{N{t)=o} + e B ( t - r i ) C! l{iv(t)=i} + e B ^ r ^ C m • • • d V(t)>2}. (2.37) 

We have P(N(t) — k) = e~ct(ct)k/(k\) since N(t) is Poisson distributed with para-
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meter ct. Then by (2.34), 

E ( e B ( t - r ^ , ) c i V ( t ) . . . C 1 l W i ) > 2 } ) 

< e^1 E I exp I £ log(l + Zi| |ea' | |) J l { w ( t ) > 2 } 

= el|BH( E I exp ( J ^ l o g ( l + Zj||ea'| |) I N(t) > 2 I P{N(t) > 2) 

/ (N(t)+2 \ \ 

< e 1 1 ^ E exp ^ log(l + ^ | | e a ' | | ) P(N{t) > 2) 

= e^tE({l + Z1\\ea'\\)(l + Z2\\ea'\\) 

:E ( exp ( J2 log(l + (AL s)
2 | |ea ' | | ) j j P(iV(t) > 2) 

= o(f) as t ->• 0, (2.38) 

since P(N(t) > 2) — o(t) as £ —> 0. Further, since Fi is uniformly distributed on 

(0, £), conditional that iV(£) = 1, it follows that 

= £ ( e s ( ' - r i ) ( / + Z i e a ' ) e B r i U ( 0 = l ) P(7V(i) = 1) 

1 ds 
eB( t- s ) ( / + E ( Z l ) e a ' ) e B ' 5 — e"rf ct. 

Since s u p 0 < s < t \\eBs — I\\ converges to 0 as t —> 0, we conclude that 

Jim -tE ( e ^ - ^ d l{iY(t)=i}) = (/ + £ (Zi )ea ' ) c . 

Now (2.37) and (2.38) give (2.36), since 

FA L) - I PBt -ct _ j 
lim W = lim — + c{I + E(Z1)ea') 
t—o i t->o < 

= -cI + B + c{I + E(Z1)ea') = B. 
D 

Since we are primarily interested in the stationary volatility process, we need to 

evaluate cov(Y 0 0 ) . But first we need an expression for E(Y00). 
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L e m m a 2.14. Suppose that all the eigenvalues of B are distinct and that (2.28) 

holds. Then 

EiY^) = -aofiB-'e^ n
a°tl e,. (2.39) 

We need the following lemma: 

L e m m a 2.15. Let T be exponentially distributed with parameter c, and suppose that 

\{B) < 0. Let 

M:=E{eBT®eBT). 

Then 

E(eBT) = (i-c-'B)-1, (2.40) 

M " 1 = / , 2 - (l®(c~lB)) - ({c-lB)®l). (2.41) 

Further, (I <8> B) + (B <g> / ) is invertible, and for any real (q x q) -matrix U the unique 

solution of ((I ® B) + (B ® /)) x = vec (U) is given by 

x = vec (- r eBt U eB'1 dt] . (2.42) 
\ Jo / 

Here, we denote by I the [q x q)-identity matrix, and by Iqi the (q2 x q2)-identity 

•matrix. 

Proof. Equations (2.40) and (2.41) follow by simple calculations and a diagonalisa-

tion argument, while invertibility of (/ <S> B) + (B ® I) and (2.42) are consequences 

of Lyapunov's theorem for the solution of Lyapunov equations, see e.g. Section 9.3 

in Godunov (1998). D 

Proof of L e m m a 2.14. Suppose first that the Levy measure of L is finite and let 

Q and R be as in Theorem 2.8 (h) (writing (T, Z) instead of (T0,Z0)). Then by 

Lemma 2.15, 

E(Q) = (l-c-1B)~1{I + E(Z)ea'), 

E(R) = a0E(Z)(l-c-1B)~1e, 
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so that (2.17) gives 

(I-E(Q))E(Y00) = E(R). 

Further, 

(/ - c~lB) (I - E{Q)) = [(/ - c~lB) - I - E(Z)ea!] = --{B + fiea!), 

giving 

^(Yoo) = -c(B + iJ,ea'yl (I - crlB) E(R) = -a0fi{B + /iea')_1e. 

Denoting u — (u\,..., uq)' :— [B + /iea')_1e, it is easy to see that ui = ... — uq = 0 

and u\ — \/{a.ifl — Pq). In the case when vL is infinite the result follows from 

Lemma 2.12, using that Y^ is an integrable majorant by (2.28). • 

The following theorem contains the main results of this section. It demonstrates 

that the autocorrelation function of the stationary COGARCH volatility process is 

the same as that of a continuous-time ARMA process. This reflects the corresponding 

discrete-time result that the autocorrelation function of a GARCH volatility process 

is the same as that of a discrete-time ARMA process. 

Theorem 2.16. Suppose that the eigenvalues of the matrix B are distinct, \{B) < 0 

and (2.29) holds. Then the matrix (I ® B) + (B ® /) + p((ea') <g> (ea')) is inveriible, 

and the covariance matrix ofY^ is the unique solution of 

{I®B) + (B®I) + p((ea') ® (ea')) vec (cov(Y00)) 

—alBlp 
= (R , 2

v e c ( e e ) - ( 2 - 4 3 ) 

Let (ipt)t>o be a stationary CARMA(q,p— 1) process (as defined in Section 2) with lo­

cation parameter 0, moving average coefficients a i , . . . , ap, autoregressive coefficients 

0i — iu,aq,(32 — Ma7-i! • • •! A? ~~ Q;i//, driving Levy process L and corresponding state 

process (Ct)t>o- Suppose that E(Li)2 < oo, E(L\) = \x and var (Lj) = p and define 

pec _ _ 

m :— p a!eBtee'eB *"adt = var (tpt) 
Jo 
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Then 0 < m < I, and 

COv(Yoo) = J-n 7^7- rCOv(Coo 

^ P I eBtee>eB'tdti {2M) 

{(3q - nai)2(l - m) J0 
Inl 

<%(% m v a r ^ ) = * , (2.45) 
(/3q - /iai)2 1 - m 

^(Voo) = 7 ^ ^ , (2.46) 
Pq - Mal 

£( '<U = 0 - ^ 7 - - (2-47) 

If (Yt)t>o is the stationary COGARCH volatility process, then 

a262 

coV(Vt+h, Vt) = -n Ag- cav(rpt+k, ^ ) , t,h> .0, (2.48) 
{Pq - / i a i ) 2 ( l - m ) 

showing, in particular, that V has the same autocorrelation function as tp. If the 

eigenvalues Ai,. . ., Xq of B are also distinct, and a(z) and b(z) are the characteristic 

polynomials associated with a and B, then 

( / ? , - M a 1 ) 2 ( l - m ) ^ ^ ( A j ) 6 ( - A i ) ' ' - ' ; 

where V denotes the derivative of b. 

Proof of Theorem 2.16. By Lemma 2.12 and the dominated convergence theorem, 

it is sufficient to assume that [L, L] is a compound Poisson process. Hence, let Q and 

R be as in Theorem 2.8, writing (T, Z) instead of (To, Z0), where T is exponentially 

distributed with parameter c > 0. Then 

£ ( Y M Y J - EiQY^Y'^Q1) = EiQY^K') + E(RY^Q') + E(RR') (2.50) 

by (2.17), and all these expectations exist by (2.29). Now 

EiQY^Y'^Q') = E(E[QY00Y'00Q'\Q]) 

= E(E[QE(Y00Y'00)Q'\T\) 

= E(eBTE[(I + Zea!)E(YooY'O0)(I + Zae')]eB'T). 
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Using that vec(AiA2A3) — (A'z ® .41)vec (A2) for matrices A\,A2 and A3 it follows 

with M as in Lemma 2.15 that 

vec (EiQY^Y'^Q')) 

= M vec {E ((/ + Zes!)EiyooY'OB){I + Zae'))) 

= M(E ((/ + Zea!) ® (/ + Zea'))) vec (T^Y^Y^)) 

= M(lq2 + £(Z)((ea') ® J) + £(Z)(7 ® (ea')) + £(Z2)((ea') ® (ea'))) 

xvec^CYooY^,)). 

Similar expressions can be obtained for vec(E(QY00Ii.')), vec (E^RY'^Q')) and 

vec (£(RR/)) and we obtain from (2.50) that 

[7,2 - M(/ ? 2 + £(Z)((ea') ® / ) + £ ( £ ) ( / ® (ea')) + £(Z2)((ea') ® (ea')))] 

xvec(E(Y0 0Y^)) 

- Mvec [a2£(Z2)ee' + aQ(E(Z)I + JB(Z2)ea')^(Y00)e' + a 0 e£(Y^) 

x(£(Z)7 + £(Z2)ae')] 

Multiplying this equation by cM~l, using (2.41), (2.39) as well as /i = cE(Z) and 

/o = c75(Z2), we obtain 

- (/ ® (B + /zea')) + ((5 + / W ) ® 7) + /o((ea') ® (ea'))] vec (T^Y^Y^)) 

= vec ag/oee' — al(/j,I + pea!)fx(B + fiea')~lee' — a\ee'(B' + /uae')~V 

x(/i7 + pae') 

Adding to this 

(7 ® 73) + ( 5 ® 7) + p((ea') ® (ea'))J vec (£;(Y00)JE(Y^)) 

^S E(Y0 0)E(Y^) + E(Yo c)E(Y^) 5 ' + pea'£:(Y00)£(Y^)ae' ' 

a2 vec L2ee '(B')-1 + ^B^ee' + p^ea!B~lee'{B')-la,e' 

= vec 
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on both sides results in 

- (/ ® B) + (B <g> /) + p((ea') ® (ea')) vec(cov(Y0)) 

= ag/9 1 - // f a ' 5 _ 1 e j vec (ee') = ^ g —-^ vec (ee'), 

which is (2.43), where we used (2.39) in the last equation. 

Now let A := (I<g>B) + (B<8>I) and x := vec (cov(YDO)). By Proposition 2.11 and 

Lemma 2.15, A is invertible. Observe that the matrix p((ea') ® (ea')) has non-zero 

entries only in the last row. Denote this row by c'. Further, set 7 := pal(3^{p,a\ — 

(3q)~2. Then (2.43) can be written as 

Ax. + (c'x)e,j2 = —76,2. 

We know already that a solution to this equation exists. Suppose there are two of 

them and, call them xx and x2. Then Ax\ — —(7 + c'xi)eg2 and Ax2 = - ( 7 + 

c'x2)e,2. Denoting the unique solution of y4y = -neq2 by y(n), n G M, it follows 

that xi = y(7 + c'xi) and x2 = y(7 + c'x2). Since Xj 7̂  0 ^ x2, this implies that 

7 + c'xi ^ 0 ^ 7 + c'x2, and using the linearity of the solution y(n) in n it follows 

that there is K ^ 0 such that x2 = /oq. Thus we have Ax\ = — (7 + c'xi)eq2 and 

KAXX = — (7 + /cc'x1)e(?2, and this is only possible if K = 1, so xx = x2. So the solution 

of (2.43) is unique, implying that the matrix A + p((ea') <g> (ea')) is invertible. 

By (2.42), the solution y{ri) of Ay = —neqi is given by 

y(n) = vec (n f e^ee'e5'1 dt) . (2.51) 

This gives 

cov (Yoo) = (7 + c' vec (cov ( Y ^ ) ) ) / e^ee'e8'1 dt. 
Jo 

Since both cov (Y^) and J*0°° eBtee'eB ' ' dt are positive semidefmite, it follows that 

7 + c' vec (cov (Yoo)) > 0- By Brockwell (2001), the stationary CARMA state vector 

Coo has covariance matrix 

cov (Coo) = p emee'eBlt dt, 
Jo 
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so that there is it > 0 such that 

cov(Y00) = ucov(Coo)- # (2.52) 

Inserting (2.52) in (2.43) and using (2.51) shows 

ea' / eBtee'eB'tdtae') = ——° q ,„vec(ee /), 
Jo J ( /? g- / ia i ) 2 

so that 
-a 2 /? 2 

—i/(l — m) vec (ee') = — ^— vec (ee'). 
{(3q - ixaxY 

Since u > 0 and a0, Pq 7̂  0, it follows that 0 < m < 1 and that 

11 — 2 

(/3, - / i « i ) 2 ( l - m ) ' 

giving (2.44). This implies (2.45) using V^ — a0 + a 'Y^, and (2.46) follows from 

(2.39). Finally, 

£(^oo) = a'E eme dLt = fi a'eBte dt = - ^ a ' B _ 1 e , 
Jo Jo 

giving (2.47), and (2.48) and (2.49) are direct consequences of (2.32), (2.44) and the 

autocovariance function of a CARMA process (see Brockwell (2001)). • 

2.5 Positivity conditions for the volatility 

In order for the definition of the COG ARCH price process dGt — yfVtd£ to make 

sense it is necessary that Vt be non-negative for all t > 0. The following Theorem 

gives necessary and sufficient conditions for this to occur with probability 1. 

Theorem 2.17. (a) Let (Yt)t>o be the state vector of a COGARCH(p,q) volatility 

process (K)t>o with parameters B, a and a0 > 0. Let 7 > —ao be a real constant. 

Suppose that the following two conditions hold: 

a'eBte > 0 V t > 0, (2.53) 

a 'e s tY0 > 7 a.s. V t > 0. (2.54) 



Then for any driving Levy process, with probability one, 

Vt>a0 + j>0 V t > 0. (2.55) 

Conversely, if either (2.54) fails, or (2.54) holds with 7 > —a0 and (2.53) fails, then 

there exists a driving compound Poisson process L and t$>Q such that P(Vto < 0) > 

0. 

(b) Suppose that all the eigenvalues of B are distinct and that (2.8) and (2.53) 

both hold. Then with probability one the stationary COGARCH(p,q) volatility process 

{Vt)t>o satisfies 

Vt>a0>0 V t > 0. 

Proof of Theorem 2.17. (a) Suppose that (2.53) and (2.54) both hold. By 

Lemma 2.10, it suffices to show (2.55) for the case that [L, L] == ̂ Ci=i %i 1S a com­

pound Poisson process, with jump times (r„)nSEN. Then it follows easily by induction 

from (2.6) and (2.18) that 

N(t) 

Yt = eBtYQ + J2eB(t-Tt)eVViZu t > 0. (2.56) 

i= l 

In view of the proof of (b) below, let s > 0. Then 

N(t) 

a'eSsY,. = a'eB(-5+t)Y0 + ] T a ' e
B ( s + ' ' - r i ) e F r , ^ (2.57) 

i=\ 
N{t) 

> 7 + J a ' e f l t ' + t - r i ' e V r r i Z i . (2,58) 
i = i 

Setting s = 0, it follows that Vt = a0 + a'Yt_ > a0 + 7 for t G [0, Ti], hence also 

^Ti+ > &a + 7 > 0 by (2.53) and (2.58), and an induction argument shows that 

Vt>aQ + j for all t > 0, i.e. (2.55) holds. 

For the converse, suppose first that (2.54) fails. Then, using the continuity of the 

function t H^ em, it follows that there is (tx, t2) C (0, 00) such that P(a0 + a'eB*Y0 < 

0 V t G {h,t2)) > 0, and since P(T1 > t2) > 0 we get the claim from (2.57). So 

suppose that (2.54) holds with 7 > — OJ0, but (2.53) fails. Suppose that the support 
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of the Levy measure of the compound Poisson process [L, L] (and hence the support 

of the jump distribution Z\) is unbounded. Let (i3, t4) C (0, oo) be an interval such 

that a'eBte < -cx < 0 for all t G {t3,t4) for some cx < 0. Let t5 > U. By (2.54) we 

have P{Vr1 > «o + 1 ) — 1> so that it is easy to see that the set 

A := {Tj. <t5< T2, t5 - I \ e (t3, t4), VTl > «o + 7} 

has positive probability. On A, we have by (2.57) 

Vt5 = a0 + a'eBt5Y0 + a 'eB ( t 5- r i ) e VTlZv 

Now a'eB^5 _ r^e < —c\, and by choosing Z\ (which is independent of Y\, T2 and Y0) 

large enough we obtain P(Vts < 0) > 0. 

(b) In view of (a) it remains to show that Y ^ satisfies (2.54). For the proof 

of this, it suffices by Lemma 2.12 to assume that [L,L] is compound Poisson. Let 

(Yt)(>o be a state process with Y0 = 0. Then (2.54) holds for Y0 with 7 = 0, and 

it follows from (2.58), (2.53) and (2.55) that a'eBsY t > 0 for all s,t > 0. Since Yt 

converges in distribution to Yoo as t —> oo, (2.54) follows with 7 = 0. D 

For the stationary COGARCH volatility process or for the process with Y0 = 0, 

the condition (2.53) alone is sufficient for almost sure non-negativity. The expres­

sion a'eBte is in fact the kernel of a CARMA process with autoregressive coeffi­

cients bi,....bq and moving average coefficients ai,...,aq. Results pertaining to 

non-negativity of a CARMA kernel have been recently obtained by Tsai and Chan 

(2004). We state their results in the next theorem in the context of COGARCH rather 

than CARMA processes. Statement (e) below has also been obtained by Todorov and 

Tauchen (2004). Recall that a function <f> on (0, oo) is called completely monotone if 

it possesses derivatives of all orders and satisfies (—l)n^$(t) > 0 for alH > 0 and all 

n G NQ. 

Theorem 2.18. Let B and a be the parameters of a COGARCH(p,q) process. If 

X(B) < 0 and a.\ > 0 we have the following results. 
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(a) For the COGARCH(p,q) process, equation (2.53) holds if and only the ratio 

of the characteristic polynomials a(-)/b(-) is completely monotone on (0, oo). 

(b) A sufficient condition for (2.53) to hold for the COGARCH(\,q) process is 

that either 

(i) all eigenvalues of B are real and negative, or 

(ii) if (Ajj, Aj1 + i) , . . . , (Ajr, Ajr+i) is a partition of the set of all pairs of complex conju­

gate eigenvalues of B (counted with multiplicity), then there exists an infective map­

ping u : { 1 , . . . , r} —> { 1 , . . . , n} such that Xu(j) is a real eigenvalue of B satisfying 

K(j) > 5R(Ab). 

(c) A necessary condition for (2.53) to hold for the COGARCH(l,q) process is 

that there exists a real eigenvalue of B not smaller than the real part of all other 

eigenvalues of B. 

(d) Suppose 2 < p < q, that all eigenvalues of B are negative and ordered as 

in Definition 2.3, and that the roots 7̂  of a(z) = 0 are negative and ordered such 

that 7p_i < . . . < 71 < 0. Then a sufficient condition for (2.53) to hold for the 

COGARCH(p, q) process is that 

k k 

5 > « ^ X > Vfce{l,...,p-l}. 

(e) A necessary and sufficient condition for (2.53) in the COGARCH(2,2) case 

is that both eigenvalues of B are real, that a2 > 0 and that a.\ > — a2^(B). 

Although characterisation (a) may be difficult to check in general, it gives a 

method of constructing further pairs (a, B) for which (2.53) holds, since the product 

of two completely monotone functions is again completely monotone. 

2.6 The autocorrelation of the squared increments 

In Section 2.4 we investigated the behaviour of the autocorrelation function of the 

volatility process. Since one of the striking features of observed financial time series 
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is that the returns have negligible correlation while the squared returns are signif­

icantly correlated, we now turn to the second-order properties of the increments of 

the COGARCH process itself. We therefore assume that V is strictly stationary and 

non-negative and define, for r > 0, 

G?':=Gt+r-Gt= / y/VadLa, t > 0. 
J{t,t+r] 

It is easy to see that (Gt )t>o is a stationary process. Let /i and B be defined as in 

Section 2.4. We then have the following theorem. 

Theorem 2.19. Let B, a and a0 be the parameters of a COGARCH(p,q) process 

whose driving Levy process has no Gaussian part and for which EL\ = 0. Suppose 

that the eigenvalues of B are distinct, that (2.28) and (2.53) hold and that V is the 

stationary volatility process. Then for any t > 0 and h > r > 0, 

£(G,(r)) = 0, (2.59) 

£((G[ r ))2) = -^-E(Ll), (2.60) 

cov(Gir\G£fc) = 0. (2.61) 

/ / in addition (2.29) holds then 

cov((Gi,))2, {G(;}hf) = E{L\) a!e*hB-\l - e~*r) cov(Yr, G
2
r), h > r, (2.62) 

var((Gf )2) = 6£(L2) a'K r + 2{rE{L\)E(Voc)f + rE{L\)E{Vl), (2.63) 

where 

cov(Yr, G
2) = [(/ - e5r)cov(Y00) - B~\e^ - /)cov(Y00)JB']e 

and 

K r := [(rl - Er\eSr - /))cov(Y00) - B^\B-x{eEr -I)- r/)cov(Y00)JB']e. 

The autocovariance function (2.62), like that of the CARMA process with para­

meters B and a, is a linear combination of terms of the form ex>h, j = 1 , . . . , q, where 

Ai , . . . , A, are the eigenvalues of B. 
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Proof of Theorem 2.19. We mimic the proof of Proposition 5.1 of Kliippelberg 

et al. (2004), i.e. in the COGARCH(l, 1) case. Observe that (2.59) and (2.61) follow 

immediately, since (Lt)t>o is & zero-mean martingale. Further, (Gt)t>o is a square 

integrable martingale, and using the compensation formula (e.g. Bertoin (1996), 

page 7), we have 

EG2
r = E F Vsd[L,L}s = £ ] T VS(&LS)

2 = E^rE^), 
^° 0<s<r 

and (2.60) follows from (2.46). Before showing (2.62), we verify that EG\ < oo 

if (2.29) is satisfied: it follows from the Burkholder-Davis-Gundy inequality (see e.g. 

Protter (2004), page 222) that EGA
t < oo if E[G,G}2 < oo. Let Vt = a0 | |e |U r + 

Hea'He.rYt- the volatility of the COGARCH(l, 1) process constructed in Lemma 2.12, 

and let Gt = J* y/VtdLt the corresponding GOGARCH(l, 1) price process. Then it 

follows from Lemma 2.12 that there is C\ > 0 such that 

Vs - a0||e||s,r 
0 < y s = a0 + a'Ya_ < a 0 + CiY8_ = a 0 + Ci- .. „. 

\\ea\\B,r 

Then 

[G,G\t = [ Vsd[L,L]s 
Jo 

- "ii—Til—'/ Vsd[L,L\s+\ao r——1 )\L,L\ 
l|ea'||B,r J0 V ||ea'||B,r / 

Cl \r T>\ . (n
 Ciao\\ehA \T n -[G,GJ t+ a0 n—7\\ )[LiL\t, 

\\esL'\\B,r V llea'l|a,7-

so that again by the Burkholder-Davis-Gundy inequality and Doob's maximal in­

equality, finiteness of EGt implies finiteness of E[G, G}2 and hence of EGj. That 

EGt < oo was already used in Kliippelberg et al. (2004). 

Denote by Er the conditional expectation with respect to the u-algebra TT. Using 

partial integration, we have 
ph+r 

(Gt])2 = 2 Gs.dGs + [G,G]h
h
+

+
r 

/

h+r 

Gs.^VsdLs+ Y, K(Ais)
2. 

h<s<h+r 
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Since the increments of L on the interval (h, h + r] are independent of TT and since 

L has expectation 0, it follows that 

Er f Gs.^/VsdLs = Q. 
Jh+ 

Recall that Y,s = JT>SYT + Kr>.s by (2.9). Hence we also have Y.,_ = Jr,s-Yr + Kr>,s_, 

so that by the compensation formula, 

Er{Gt]f = Er Y, («o + a 'Y^)(AL s)
2 

h<s<h+r 

= Er J2 (ao + a'J r,,_Y r + a'K r , s-)(AL s)
2 

h<s<h+r 

= E(L2)a0r + E{L2)a' f {EJr>sJ)YT ds 
Jh+ 

rh+r 

+E{L\)al / (EKr^)ds 
Jh+ 

ph+r 

= E{L\) / Er(Vs)ds. (2.64) 
Jh 

Since Y^ = Jr.^Y^o + Kr,s by (2.11), with Y ^ independent on the right hand side, 

and EJTiS = eS^'r^ by the proof of Theorem 2.13, it follows from (2.39) that 

EKr^ = (I - eS^)^—e1. 
(3q - Q j / i 

Hence 

Er(Va) = ao + a!e^-^Yr + a!-^—(I - e ^ - ^ 
Pq - Otlfi 

= - ^ _ + a^(.-r,/Yp_^i_eiy (265) 

Combining f£+r
 e

5<s-r> ds = e§hB~l(I - e~Sr) with (2.64), (2.65) and (2.39) gives 

Er(G^)2 = E{L\) f^El_ + a'e^B-\l - e~~Br) (Yr - EYr)) , 
\Pq - Ollf! J 

and we conclude with (2.60) that 

£ ( ( G ^ ) 2 ( G f ) 2 ) = E(Er((Gt])2Gl)) 

= E{L\) E I o
a°rPq G2

r + v!enhB~\l - e~Sr)(Yr - EYr)Gl) 
\pq - aifi J 

= (E{G2))2 + E(L2
1)a'e

ShB'\l - e~*r) [E(YrG
2

r) - (EYr)(EG2,)] , 
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showing (2.62). To calculate cov(Yr,G>), integrate by parts to get 

G2
T = 2 [ Ga.dGa + \G,G\r = 2 [ Gs^^VsdLs+ [ Vsd[L,L}s, 

Jo Jo Jo 

therefore 

cov(YrjG2) = cov(Yr,2 f Gs^^VsdLs+ f Vsd[L,L}s) 
Jo Jo 

pr pr 
= 2cov(Y r > / Ga-y/VadLa)+ cov(Yr, / Vsd[L,L]s). 

Jo Jo 

To calculate the first term, let /,. := JQ
r Gs-^/V^dLs. We already have that E(It) 

0 and that J* Gs-Vsy/V^dLs = 0. Integrating by parts and substituting dVT+ 

a.'BYrdr + aqVTd[L,L]id\ 

pr pr 

IrVr+ = / Is-dVr++ VsdIs + [V+,I}r 

Jo Jo 

= a'B f Is.Ysds + aq [ Is^Vsd[L,L]^+ I Gs-Vs^/7sdLs 
Jo Jo Jo 

+ a0 + a'B f Ysds + aq f V,d[L,L]W, f Ga.y/VadLa. . 
Jo Jo Jo J r 

Taking expectation, 

E(IrVr+) = a'B [T E(Is.Y„)ds + aqE(Ll) [ E(Is.Vs)ds + 0 
Jo Jo 

+ aqE I VS^/VSGS. d Y, (A£„)3 

0 0<u<s 
pr pr 

= a'B E(Is-Ys)ds + aqE(L\)a! I E(Is^Ys^)ds. 
Jo Jo 

where we have used /Rx3z/£,(d£') = 0 and E{IrVr+) = a!E{ITYr). ISYS = 7S_YS 

7S_YS_ almost surely for fixed s, so we have 

a!E(IaYa) = a!{B + aqE(L2
1)I) f E(I„Ya)ds. 

Jo 

The equality holds for any vector a, hence 

E(IrYr) = {B + aqE{L\)I) f E{IsYs)ds. 
Jo 
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Solving the integral equation and using I0 = 0, we get E(IrYr) — 0 for all r > 0. So, 

the first term of cov(Yr, G
2) is equal to 0. 

To calculate the second term of the covariance, start with 

cfYr = BYr_ dr + eVr d[L, L]r, 

eVr d[L, L]r = dYr- BYr„ dr, 

Vr d[L, L)r = (dYr - BYr_ dr)'e, 

therefore 

rr rr 

/ Va d[L, L}s = / {dYs - BYS. ds)'e 
Jo Jo 

= (Yr - Y0 - / BYS_ ds)'e 
Jo 

= (Y'r-Y0- [rY's_dsB')e. 
Ja 

Thus, by the stationarity of Y and using cov(Yr, Y0) = eBrcov(Y0), 

c-r rr 

cov(Y,., / Vs d[L, L}s) = (cov(Yr) - cov(Yr, Y0) - cov(Yr, / Y5_ ds)B')e 
Jo Jo 

= (cov(Yo) - e5rcov(Y0) - / eS{r~s)cov{Ys.) ds B')e 
Jo 

= ((/ - e5r)cov(Y0) - B-l(e*r - I)cov{Y0)B')e. 

Finally, to calculate vai((Gf )2), integrate by parts and get 

G\ = 2 f G2
s_dG2

s + [G\G\ 
Jo 

= 2 / Gl_{2G8.y/VadL8 + Vad[L,L}s) 
Jo 

+ 2 [' Ga-y/VadLa + I Vsd[L,L]s,2 f Gs.^VsdLs+ f Vad[L,L]. 
.Jo Jo Jo Jo 

= 4 r G3
3_y/VadL, + 2 [ G2

S_VS d[L, L}3 + 4 f G2
S_VS d[L, L}3 

Jo Jo Jo 

+ 4 [rGs-Vsy/Vsd[[L,L},L}s+ [rVs
2d[[L,L},{L,L]]s, 

Jo Jo 
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Taking expectation and using E{L\) = E(L\) = 0, 

E(Gt) = ZE(L\) [ E{G]_Vs)ds + E{L\) [ E{V*)ds 
Jo Jo 

= 6E(Ll) f [cov(G2_, VS) + E(G2
S_)E(VS)} ds + rE(L\)E{Vl) 

Jo 

= 6E(LJ) f\^Cov{Gl_,Ys_) + sE{L\){E{V00))
2]ds + rE{L\)E{Vl) 

Jo 

= 6£(L2)a ' [\ov{Gl_,Y^)ds + Zr2{E{L\)E{V00))
2 + rE{L\)E{Vl). 

Jo 

The integral in the first term is 

Kr := / cov(G2_,Y5-)ds = / cov(G2, Y s) ds 
Jo Jo 

= [ [ ( / - e 5 i > o v ( Y T C ) - i r 1 ( e 5 s - / ) c o v ( Y 0 0 ) . B ' ] e d s 
Jo 

= [(rl - B-\eSr - 7))cov(Y00) - B-l{B-\eSr -I)- r/)cov(Y00)JB']e. 

So we have the variance of (G,(r))2 as follows, 

var((Gf)2) = £((G«) 4 ) - (£((G<r))2))2 = £(G?) - (£(G2))2 

= 6E(L2)a'K r + 2(r^(L2)JB(V00))2 + rE(Lt)£;(V'c
2

J). D 

The autocovariance function (2.62) and the variance (2.63) can also be written 

down, using (2.27) and (2.44)-(2.46), as the second degree polynomials in terms of 

parameter a: 

(1 ^m){j3q - fiai)2' 
-r(r)N2\ _ " O ^ q 7(0) := var((GrJ)2) - „ . '"" ^(a'Po a + a'Q0 + R), (2.66) 

7W:=cov((Gir))a,(C?i;)
fc)

2) = 7 - — ^ p — - — ( a ' n a + a ' Q J , h > r. (2.67) »8ff 
(1 - m)(/?, - ^aiy 

The autocorrelation function is therefore written as follows: 

#)Mff,[^-^V **'• (268) 
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where 

Po 

Qo 

2ii2lW-\B~l{e*r -I)- rl) - /]cov(G 

6/ i [ ( r / -P- 1 (eS r - -0)cov(CoO ) 

B-\B -T-t„Br /)-r/)cov(Coo)£']e, 

Ra = 2 r V + P 

and 

Q„ = ^B-Hl-e-^Kl-e^coviU 

-B-'ie^-I^oviC^B^e. 

Notice that the autocorrelation function is free of a0 and j3q, and is a function of 

only /? ! , . . . , (3q, therefore enables us to estimate the parameters $1,... ,J3q using the 

sample autocorrelations. The matrices P0) P^, Q0 and Qh are easily calculated since 

cov((00) is straightforward to find, for example, when q = 2, 

cov(Coo) 
/o 1 0 

2&& lo ft 

and when q — 3, 

cov((00) = 
2(0i02 - 03) 

/ & 0 - l \ 
P3 

0 1 0 

V-i o 02 y 
etc. 

2.7 An Example 

In this section we illustrate the properties established above using the COG ARCH (1,3) 

process driven by a compound Poisson process with jump-rate 2 and normally dis­

tributed jumps with mean zero and variance 0.74. The COGARCH coefficients are 
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a0 = a.i = l,/?i = 1.2, #2 = -48 + re2, and @3 = .064 + An2, from which we find 

that the eigenvalues of B are —.4, —.4 + ni and —.4 — 7ri. With S defined as in (2.7), 

||5'~1ea'5'|J2 = 0.21493 and it is easy to check from this that the conditions (2.28) and 

(2.29) are satisfied. Condition (b)(ii) of Theorem 2.18 also implies that the volatility 

process is non-negative. 

The eigenvalues of the matrix B = B + / W are - .25038, - .47481 + 3.14426* 

and —.47481 — 3-. 144261 From (2.49) we conclude that the autocorrelation of the 

volatility in this case is a linear combination of exp(—.250384) and a damped sinusoid 

with period approximately equal to 2 and damping factor exp(—.474814). 

2001 1 1 1 1 1 1 1 

-100 I ' ' ' ' ' ' ' 
0 1000 2000 3000 4000 5000 6000 7000 8000 

8 I 1 1 1 1 1 r 

Figure 3: The simulated compound-Poisson driven COGARCH(l,3) process with jump-rate 2, 

normally distributed jumps with mean zero and variance 0.74 and coefficients o.o = a.\ = 1, (3\ = 1.2, 

/?2 = -48 + n2 and /?3 = .064+ Aw2. The graphs show the process (Gt) sampled at integer times 

(top),the corresponding increments (Gj = Gt+i — Gt) (centre), and the corresponding volatility 

sequence (Vt = erf) (bottom). 

The top graph in Figure 3 shows the values at integer times 1 0 1 , . . . , 8100 of a 
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simulated series (Gt) with the parameters specified above, Y 0 = (1,1,1) ' and G(0) = 

0. The second graph shows the differenced series (Gt+i — Gt)t=wo 8099 a n d the last 

graph shows the volatility (cr^)t=i0ii...i8ioo-

As is the case for a discrete-time GARCH process, the increments (Gt+i — Gt) 

exhibit no significant correlation, but the squared increments ((Gt+i — Gt)
2) have 

highly significant correlations as shown in the second graph of Figure 4. The first 

graph in Figure 4 shows the sample autocorrelation function of the volatility process 

at integer lags. This too is highly significant for large lags, reflecting the long-memory 

property frequently observed in financial time series. As expected from the remarks 

in the first paragraph above, it has the form of an exponentially decaying term plus 

a small damped sinusoidal term with period approximately equal to two. 

Figure 4: The sample autocorrelation functions of the volatilities (V*) (left) and of the squared 

COGARCH increments {(Gt+i - Gt)
2) (right) of a realisation of length 1000000 of the COGARCH 

process with parameters as specified in Figure 3. The red dots indicate the theoretical autocorrela­

tions. 
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3 Parameter estimation 

As mentioned earlier, the ACF p(h), h > 1 of the process ((G\r )2)t>o is a linear 

combination of eXjh, j = 1 , . . . , q, where Ai , . . . , Xq are the eigenvalues of B (see (2.62)-

(2.63)). It is therefore the ACF of an ARMA(g, q) process, namely 

p(h) = Cl£
h + c2&

h + ••• + cqC
h, h = l,2,... (3.1) 

where ^ = e~A', j = 1 , . . . , q are the autoregressive roots of the ARMA(g, q) process, 

and ci,. . ., cq are constants. Fitting an ARMA(c/, q) process that gives the same ACF 

as that of the squared increment process ((G\f )2)t>o is the main idea of the estimation 

procedure proposed in this chapter. 

3.1 Preliminary estimation 

The autoregressive coefficients <p = {4>\,... ,4>q)' can be initially estimated by using 

the sample autocorrelations of the squared increment process {{G\f )2)t>o- Multiply­

ing the identity (j>[£j) = 0 by Cj^j1 and summing over j — 1 , . . . , q, we find that 

p(q + i) - (pip{q + i-l)- (f>2p{q + i - 2) (pqp(i) = 0 , i = 1, 2,. (3.2) 

Writing (3.2) for i = 1 , . . . ,q, we obtain the following system of linear equations of 

variables (p. 

R<t> = Pq, (3.3) 

where pq — (p(q + 1),.. ., p{2q))' and R is defined as 

/ 

R : = 

p{q) p(q-l) ••• p(l) 

p(q+l) p(q) ••• p{2) 

\p(2q-l) p(2q-2) ••• p(q)) 

(3.4) 

In order the equations (3.3) have unique solution, the matrix R must be non-singular. 

The determinant of R is calculated in the next lemma. 
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Lemma 3.1. 

detR = n c l C
1 f t (C 1 - ^ 1 ) 2 (3-5) 

i=l l<i<i<9 

Proof. Define a column vector 

£r ( J ):=[^---,£r~J+1]', »-J = I.•••.?• 

By the multilinearity property and using Vandermonde determinant (see Rao and 

Rao (1998)), 

9 1 

detR = d e t [ ^ c ^ ( 1 ) , . . . , ^ c 4 : 

»=i ?r€n 

= 11 Ct Z^ (̂1) ' ' ' (̂q) detKvr(l) ' ' • ' ' C(q) 1 
i=l ?r€n 

= I I ^ r 1 E * D • • • £& W w detKr(0) •••••£ 
"(0)1 

j=i Tren 
9 

=n^riEsisn('r)^a)-"Q'r n (s-1-*;1) 
i=i wen i<i<j<q 

i=i i<«<j<<2 wen 

i — l l<i<j<q 

where sign(7r) is 1 if IT is an even permutation, -1 if n is an odd permutation. • 

Since £ i , . . • ,£? are assumed to be distinct, from (3.5), d e t R ^ 0, therefore the 

equations (3.3) have a unique solution (p. 

Replacing the autocorrelations p(l),. • •, p(2q) by the corresponding sample auto­

correlations p ( l ) , . . . , p(2q), we obtain the preliminary estimators 0 of 0 which can be 

used as starting point for the least-squares estimation in Section 3.2. The preliminary 

estimator is not very efficient because it uses the first 2q lags of the autocorrelations 

and the determinant (3.5) is very close to zero therefore a small variation in the 
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sample autocorrelations would result in a significant change in the determinant (3.5), 

hence in the estimators of 0. 

The preliminary estimator of the autoregressive coefficients </> of ((Gt )2)t>o is 

strongly consistent in the case of a compound Poisson driven COGARCH(2,2) process. 

Let the estimator of <f> — (<f>i,..., <pq)' based on n observations be denoted as (j>n. 

Theorem 3.2. For the compound Poisson, driven COGARCH(2,2) process 4>n con­

verges to 4> almost surely, as n —> oo. 

Proof. The squared increment process ((Gt )2)t>o is mixing, therefore ergodic. 

Hence, by the theorem IV.2.2 of Hannan (1970) the empirical moments and the 

empirical autocovariances converge almost surely to their theoretical counterparts: 

ra ±Z> E(G(
t
l))\ 

7 W ^ # ) , h = 0,l,..., 

as N —* oo. The preliminary estimators of (p are continuous functions of the sample 

autocovariances and the sample moment of the observed data: m,7(0) , . . . ,7(217), 

hence we conclude that 

4>n —'-* <p a s n ~> °°i 

i.e. the preliminary estimators are strongly consistent. D 

3.2 Least-squares estimators 

The squared increment process {{G\! )2)t>o has an autocovariance structure of an 

ARMA(<7, q) process. Thus, fitting an ARMA(g,g) process to the squared increment 

process would enable us to estimate the parameters of the COGARCH process. The 

noise involved in the ARMA equation in Chapter 1 is assumed to be an i.i.d. sequence, 

or a martingale difference sequence. However, the noise sequence in the squared 

increment process {{Gp)2)t>o does not satisfy such strong assumptions. 
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However, under strong mixing and moment conditions, the least squares esti­

mators (LSE) of ARMA representations in which the noise is the linear innovation 

process, so called weak ARMA models, are strongly consistent and asymptotically 

normal (see Francq and Zakoian (1998)). In the case of the compound Poisson driven 

COGARCH(2,2) process the squared increment process ((Gjr )2)«>o satisfies these 

conditions, as will be shown in Section 3.3, therefore we can find estimators of the 

ARMA parameters of ((Gj )2)t>o which lead in turn to strongly consistent and as­

ymptotically normal estimators for the COGARCH parameters. 

We now introduce the notation of Francq and Zakoian (1998) below. Let (Xt)t>0 

be a second-order stationary process satisfying 

Xt = Y^^iXt^ + YJG^t-3 + eu (3.6) 
t= i j = i 

where {sf} is a sequence of uncorrelated random variables with zero mean and com­

mon variance a2, and the polynomials 4>(z) = 1 — faz — . . . — (f>qz
q and 9(z) = 

1 + 0\Z + .. . + 8gZq have all their zeros outside the unit disk and have no zero in 

common. Let (30 = (4>\, • • •, 4>q, 0\,. • •, 6q)', /3 = (/31;.. ., fog)', and denote by 0 the 

parameter space 

q 2q 

0 := {/3 €E R 9 : Yl Pi2? a n d Yl PjzJ n a v e a u their zeros outside the unit disk}. 
i = l 3=<]+l 

For all (3 G 0 , let {et(/3)} be the second-order stationary process (See Brockwell and 

Davis (1991), Chapter 3 for the existence and uniqueness of such a process) defined 

as the solution of 

<7 1 

et{(3) = Xt-Y,PiXt-i-Y,l3q+jet-j(l3), teZ. (3.7) 
i= i j = i 

If Pi = &, i = 1,. . ., q and (3j = 0j-q, j = q + 1,. •., 1q then {et(/3)} is the linear 

innovation of {Xt}, i.e. 

et = Xt - E(Xt\Hx(t - 1)) (3.8) 

where Hx{t — 1) is the Hilbert space generated by (Xs, s < t). 
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Given a realization of length n, Xi,...,Xn, et(f3) can be approximated, for 

0 < t < n, by et(f3) defined recursively by 

et(/3) = Xt- Ys&Xt-i - Ylh+J*-^®' (3.9) 
t=i j=\ 

where the starting values are e0(/3) = • • • = e_9+i(/3) = 0 and X0 = • • • = X_q+\ = 0. 

Let 5 be a strictly positive constant chosen so that the true parameter f30 belongs to 

the compact set 

q 2<? 

Qs := {(3 G M2«; the zeros of £ f3tz* and £ Pi*3 h a v e moduli > 1 + 5). 

The random variable f3n is called the least-squares estimator if it satisfies, almost 

surely, 
1 n 

^ n = a r g m i n - ^ e ? ( / 3 ) (3.10) 

For any /3 € Ga, let 

t=i 

and SsOn{(3) = (^|-On(/3),. . . , 3 / On(/3))'. Consider the following matrices: 

- 3 
J(/3) = lim V a r ( v ^ ^ O „ ( / 3 ) ) 

and 

where [A(i,j)] denotes the matrix A with elements ^4('j,j). 

The following is the main result that shows the strong consistency and the as­

ymptotic normality of the least-squares estimators. 

Theorem 3.3 (Francq and Zakoian (1998)). Let (Xt)tei be a, strictly stationary er-

godic process satisfying (3.6). Let (J3n) be a sequence of least-squares estimators 

defined by (3.10). Suppose /30 e Q$. Then 

(3n —> j30 a.s. as n —> oo. 
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If in addition, (Xt)tez satisfies E\Xt\
A+2v < oo and strongly mixing with the mixing 

rate such that Yl'k'-o a^ < oo for some v > 0. Then 

Vn~(Pn - A>) ~ N(Q, S) 

as n —> oo, where E := J~1(/30)/(/30) J_1(/30). 

3.3 Strong consistency and asymptotic normality of the least-

squares estimators 

In this section we establish the conditions of Fracq and Zakoian for strong consistency 

and asymptotic normailty of the least-squares estimators of the COGARCH(2,2) pa­

rameters when the driving Levy process is compound Poisson. We conjecture that 

the conditions hold more generally, but the results of this section cover the examples 

considered later in the chapter. 

We'll show that the state process (and therefore the volatility process) of the 

COGARCH(2,2) process is strongly mixing with geometric rate when the driving 

Levy process is compound Poisson. If the volatility process is strictly stationary 

and strongly mixing, then the squared increment process is also strongly mixing 

(see Haug et. al. (2007)). The mixing property guarantees strong consistency of 

the estimators proposed in Chapter 3 and the strong mixing property guarantees 

asymptotic normality of the estimators. 

A stationary Markov chain (Yn) is said to be strongly mixing with geometric rate 

when there exist constants C and a 6 (0,1) such that 

sup|cov(/(Yo),s(Yfc))| =: ak < Cak, 
f,9 

where the sup is taken over all measurable functions / and g with | / | < 1 and \g\ < 1. 

The function ak is called the mixing rate function of for the Markov chain (Yn) and 

is equal to 

afc = sup|cov(/(Y0) ,5(Y f c)) |= sup \P(A n B) - P(A)P(B)\, 
f,9 Ae<r(Y0,),Bea(Yk) 
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where the last equality follows from Doukhan (1994). 

Before showing the mixing conditions, we first recall the following definitions. 

A Markov chain {Yn} with state space E C W is said to be /i-irreducible for some 

measure n on (E,S) (£ is the Borel cr-field on E), if 

X^Pn(y> C) > ° f o r a11 y G E> whenever fi{C) > 0. 
n>0 

Here pn(y, C) denotes the n-step transition probability of moving from y to the" set C 

in n steps. 

The following lemma shows the irreducibility of {YFn } in the compound Poison 

case when the Z\ has strictly positive density on (0, oo). 

Lemma 3.4. / / B has distinct eigenvalues, \2 < X\ < 0 and conditions 2.8 and 

2.53 are satisfied, then the Markov chain {Yr„} with state-space {x = (xi,x2)' : 

x2 > max(AiXi, A2Xi)} is <p-irreducible where ip is the restriction of two-dimensional 

Lebesgue measure to in>2 
+ • 

Proof. We'll give the proof for COGARCH(2,2) case since the simulations and 

applications in Chapter 3 are concentrated on COGARCH(2,2) model. We have 

Y r i = e s r i Y 0 + e(a0 + a 'eB r i Y0)Z1. 

Under the conditions stated, {Y^} has strictly positive probability density with 

respect to cp on the subset of R^ 

S = {(2/1,2/2) : 0 < yi < m}, 

where 

X2 
(• ' r ; l — T 

m := max e,e x = ' x 

t>o , . 
X\ if x2 < 0, 

A2(z2-Ai3:i) 
A i (x 2 -A 2 a : i ) if x2 > 0, 

and e! = (1, 0)', e2 = e — (0,1)'. The time t at which the maximum occurs is 

to-= t 

' 0 if x2 < 0. 
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Define the mapping / = (/i , f2)' • R+ —> S as follows: 

2 / i = / i ( * ) = e ' i e
B 'x , 

2/2 = f2(t, z) = e'2e
Btx + (a0 + a 'eB tx)z, 

and define the following subset of S, 

5*1 = {(2/1,2/2) : ^1 <yi <m and y2 > e'2eBtx for some * G (0, t0)}. 

(Si may be empty, depending on x.) Under the mapping / . each point in 5 \ 5] has 

a unique inverse image in (to, 00) x R + and the inverse mapping hi is differentiate 

with strictly positive Jacobian: 

d(t,z) 
0(2/1,2/2) 

0(3/1.2/2) 
d(t,z) 

- 1 gl Q 
dt u 

(it (is 

= (ee B t x(a 0 + a ' e ^ x ) ) " 1 > 0 for any t > 0. 

Each point in Si corresponds to two distinct points, one in (to, 00) x M+ and one in 

(0, i0) x K+- The two inverse mappings, h\ and h2 respectively, are differentiable with 

strictly positive Jacobian. Since the joint density of Tx and Z\ is strictly positive on 

R+ we conclude that , conditionally on Y 0 = x, YrL has strictly positive density on 

S. Since the transition density p(x, y) of {Yr„, n = 0 ,1 , 2 , . . . } is strictly positive for 

x as specified and for every y G S, the two-step transition density p^ (x, z) is strictly 

positive for all z in the positive quadrant since 

p ( 2 ) ( x , z ) > / p(x, y)p(y, z)d<p, 

yeS:i/2>yo 

p(x, y) > 0 for all y G 5 and y0 can be chosen sufficiently large to ensure that 

p(y,z) > 0 for all y such that y2 > yo- (This follows by the same argument used in 

the first paragraph, noting that m —> 00 as x2 —» 00 for each fixed Xi). • 

We now state the result by Basrak et. al. (2002) which will be used to show 

that the process (Yrn)n€No is strongly mixing. 
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Theorem 3.5. For the stochastic reccurence equation 

Y r„+ 1 = Cn+1Yrn + D„+i, n G N0l 

suppose there exists an e > 0 such that E'HCiH* < 1 and £ |Di | c < oo. / / the Markov 

chain (Yrn)„6N0 ^s ^-irreducible, then it is geometrically ergodic and, hence, strongly 

mixing with geometric rate. 

The following is the main result of this section. 

Theorem 3.6. Let (Yj)t>0 be the strictly stationary state process of a COGARCH(2,2) 

process that satisfies the conditions of Lemma 3.4- Then (Y t) t > 0 is strongly mixing 

with geometric rate. 

Proof. By Lemma 3.4, the Markov chain (Yrn)neN0 is /i-irreducible. It also satisfies 

the random recurrence equation (2.14). Recall that we have 

d = (I + Ziea')e
BT\ 

Di = a0Zie. 

The condition £||Ci||e < 1 for e > 0 in some neighborhood of zero is satisfied if 

£ log ||Ci|| < 0 and £711C7X11
5 < oo for some 6 > 0. Elog \\Ci\\ < 0 was shown during 

the proof of Theorem 2.8. It is straightforward to check 

£||Ci|| < £((1 + Zi||ea'||)eATl) < oo 

and the other condition £ |Di | = aQEZi< oo. Hence, by Theorem 3.5, the process 

(Yr„)n6N0 is strongly mixing with geometric rate. Denote the mixing rate function 

of ( Y r J as 

ak= sup \P(AnB)-P{A)P(B)\ <Cak. (3.11) 
^6CT(Yo),Be<r(Yr/c) 

By (2.14) and using the fact that T is independent of (T*, Zi)i£No and has the distri­

bution of 7\, we have, for any t > 0, 

a(Yt) = a(YrNit),T) C a(YTflw,T,Z) = a(Y r j v ( 0 + 1). 
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Hence, (Yt)t>0 is also strongly mixing with the mixing rate 

a't= sup \P{Ar\B)-P(A)P(B)\ 
Aea(Y0), Bea(Yt) 

< sup \P(AnB)-P{A)P(B)\ 
Aea(Y0),BE*(YrN{t) + 1 ) 

< C'act, 

where the last inequality follows from —& -^» c, as t —> oo. D 

Remark 3.7. If the state vector (Yt)t>0 is strongly mixing with geometric rate then 

the volatility process (Vt)t>o is also strongly mixing with geometric rate since strong 

mixing is preserved under linear transformation as well as the rate. The squared 

increment process (Grn)^6N
 a l s o inherits the strong mixing property as well as the 

rate from the volatility process (Vt)t>o- (see Haug, et. al. (2007)) • 

Remark 3.8. By Theorem 3.6 and Remark 3.7, the squared increment process 

((Gt )2)neN is strictly stationary and strongly mixing with geometric rate. If, for ex­

ample, the jump size distribution is standard normal then the driving compound Pois-

son process has finite moments of all orders, in particular, it follows that E(G[')8+4l/ < 

oo. It is straigh-forward to see the condition JZ'kLo0! < oo is satisfied for geo­

metric mixing rate. Hence all the conditions of the Theorem 3.3 are satisfied for the 

process ((G\; )2)neN- Given the realization of the squared increment process, we fit an 

ARMA(q, q) process and get the LSE of the COGARCH parameters that are strongly 

consistent and asymptotically normal (see Corollary 3.11). 

Remark 3.9. The maximum likelihood estimators of /30 can also be found by maxi­

mizing the Gaussian likelihood 

L^U2) = -^JTYn l e * p { 4 l > ; - *j)V",--l}, (3-12) 
V / ( 2 T T ) " ' ( ; 0 •••vn_i K ZJ^t J 

where Xj, j — 1,.. ., n are one step predictors and Vj_i, j = 1 , . . . , n are their corre­

sponding mean squared errors both of which can be calculated recursively from the 
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innovations algorithm (see Brockwell and Davis (1991)). Since the linear innovations 

(3.8) are equal to et = Xt — Xt, t > 0 and it can be shown that if {Xt} is invert-

ible then vn —> a2 as n —> oo, hence maximizing the likelihood (3.12) is essentially 

the same as minimizing the least-squares sum (3.10), i.e. the maximum likelihood 

estimators are asymptotically equivalent to the LSE. • 

The next step is to estimate a by matching the coefficients ci,. . . , cq in the (3.1), 

the ACF of an ARMA(g,g), with the corresponding coefficients of the ACF of the 

squared increment process and solving the resulting q second order equations system 

in terms of the parameter a. 

In the COGARCH(2,2) case, the ACF (2.68) is reduced to 

= ^ ( / i t » i ) 2 Ar 3 - (IKX2)2*!1 + 2^a1(Ai + X2)Xi2 + 2jua2(At + A2)A^ 
C 2p - 1 e^ (e^ - l ) - 2 (A?-A2) (a 'P 0 a + a'Q0 + ^o) 

l^iaifX^ ~ Q ^ ) 2 ^ 1 + 2/IQI(AI + A^Ag2 + 2/jq2(A1 + A2)A 

2p- 1e^(e^ - 1)-2(A? - Ai)(a'P0a + a'Q0 + R0) 

The ACVF of an ARMA(2,2) process is calculated as follows: 

iw 0fifT m ^ ^ ( l + ̂  + ^ x i + ̂  + ^cr2) 

- 1 
2 

»2 

,-! (1 + Oik + ^ | ) ( 1 + 01&"1 + # 2 ^ _ ^ - f c - i ^ T ^ l ^ - r ^2t,2Ax T ^is.2 T U 2 ( , 2 ; , _ 1 „ 

Matching the ACF of the squared increment process with 

P{h) = cx^
h + c2^\ h = 1, 2, • • • , 

the ACF of the ARMA(2,2) process and solving the resulting second degree equation 

system in a = (a\, a2) gives the parameter. 

In the COGARCH(l,2) case, the following equation is obtained: 

(-)2(^+^)+W^+M^+^) =»• 
From the ACVF of an ARMA(2,2), we can write 

ci (1 + flifr + 02g
2)(l + 6&1 + fl2£-2)fr(l - &2) 

c2 (i + ^ 2 + ^2
2)( i + <?ie2

_1 + ^ 2 - 2 ) 6 ( i - ^ r 2 ) ' 
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hence the solution for ctj can be written as follows: 

^ = — ( ( & - ! ) - > ( ! - € l - V 0°*M < 3 " 1 3 > 

( 6 - i ) - 2 ( i - G 

/( ^ + ^ + ^ J — Oogft) (1 + # i6 + ̂ 2<e!)(l + 01&"1 + <^2"
2) ,,„„ , ̂ 3 

^ r n (logfi) 
-3 

(fe-l)-^-^)-1 

where £1,̂ 2 are the autoregressive roots of the ARMA(2,2) process. 

Example 3.10. In this example, we show how the COGARCH coefficients can be 

calculated from the ACF of the squared increment process. For the COGARCH 

process with coefficients a0 — 1> ot\ = 0.1, a2 — 0, (5\ = 1, (52 = 0.2 and compound 

Poisson driving process with standard normal jumps and \x = EL\ = 1, the mean of 

the squared increment process is calculated as M := E(Gn )2 — 2 and the ACF of 

the squared increment process is calculated as 

p(h) = 0.1040e-a1127'1 - 0.0811e-a 8 8 m , h = 1, 2 , . . . (3.14) 

which is easily shown to be the ACF of an ARMA(2,2) process with parameters 

0i = 1.3052, 02 = -0.3679, 61 = -1.2642 and 02 = 0.3669. 

Figure 5 shows the ACF of the squared increment process at lags 1,2,..., 50. 

The autoregressive polynomial 

0(f) = 1 - 1.3052f-1 + 0.3679£-2, 

yields the zeros, 

ff1 = 0.8934 and &l = 0.4118, 

thus giving, by Theorem 2.19, 

A = log C16 = 1 and p2 = log £1 log 6 = 0.1. 
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I l l l l l l l 

Figure 5: ACF of the squared increment process of the C0GARCH(1,2) with parameters CHQ = 1, 

Qi = 0.1, Pi = 1, p2 = 0.2 and the compound Poisson driving process with standard normal jumps. 

Now we can calculate the matrices: 

Pn 
14.6900 1.1836 

-1.1836 0.2854, 
Qo = 

2.3673 

.6.5707, 
Ro 

We don't know if we have COGARCH(l ,2) or COGARCH(2,2) yet, so we'll find 

both «i and a 2 allowing for the possibility that a2 is not zero. Writing down the 

ACF of the squared increment process in terms of the parameter a as shown below, 

17.2007a? - 0.2185o| + 3.8771ai - 0.4370a2 
p(h) *2 -0.1127/1 

14.6900a? + 0.2853c^ + 2.3673a! + 6.5707a2 + 5 

-2.3295a? + 1.8340a£ - 4.1338a! + 3.6680a2 _a 8 8 7 3 / l 

14.6900a? + 0.2853a2 + 2.3673ai + 6.5707a2 + 5 

and matching the two autocorrelation functions yields the equations 

-150.7545a? + 2.3868a2
: - 34.9245ai + 10.7736a2 + 5 = 0, 

and 

-14.0288a? + 22.8957a;; - 48.5971ai + 51.7914a2 + 5 = 0, 

which give the solutions (0.1, 0) and (—0.2611, —0.3905). The latter solution does not 

satisfy the condition a2 > 0 given by Theorem 2.5, so we recover a>\ = 0.1 and a2 = 0, 

the parameters of a COGARCH(l , 2) model. If we had assumed that the process was 

COGARCH(l ,2) we could have found a i = 0.1 directly from (3.13). Further, we find 
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from (2.27) with /;, = 1, 

ft = ft = 1 and ft = ft + ai = 0.2, 

and, finally find a0 = 1 from (2.60) with M = 2 and // = 1. • 

We now summarize the least-squares estimation procedure proposed in this sec­

tion by the following corollary which applies in particular to the COGARCH(2,2) 

process with compound Poisson driving process. In order to avoid overparameteriza-

tion, we also assume that the driving process satisfies \i = EL\ = 1. For this process 

define the mapping Q : R5 -> R5 by (0,M) -> Q(/3,M) = 0 := (a0l a l7 a2) A , ^ ) , 

where 

M log 6 6 , „ . . . 
a ° = —n—n—T' 3 - 1 5 ) 

" i + l o g 6 log 6 

ft = a2 + log61og6, (3-16) 
^ = a1 + log^1logC2, (3.17) 

and £ i i6 are the autoregressive roots of the ARMA(2,2) process, M := E((G[ )2), 

and a = (ai, a2) is found by solving the resulting equations when matching the ACF 

of the squared increment process with the ACF of the ARMA(2,2) process, subject 

to the conditions (2.29), a2 > 0 and «i > -a2X{B). In the COGARCH(l,2) case, ax 

is given by (3.13). 

Denote the estimators of the COGARCH parameters as 0n = Q(J3n, M) and 60 = 

Q(/30, M), where M is the sample mean of the realizations of the squared increment 

process. Using the fact that the mapping Q is continuous in ((3, M) and differentiable 

at (/30, M) and given the strong consistency and the asymptotic normality of the 

estimators J3n, we get the strong consistency and the asymptotic normality of the 

estimators 0n by applying the delta method, which we summarize in the following. 

Corollary 3.11. Suppose that the conditions of Theorem 3.6 hold, and the driving 

Levy process satisfies EL\ = 1. Then as n —» oo, 

K - ^ e0. (3.i8) 
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//, in addition, (Lt)t>o is a Levy process such that EL\+IJ < oo for som,e positive 

constant u, then as n —> oo, 

MK - 0Q) - ^ dpwQiPo, M)N(0, £), (3.19) 

where £ is as in Theorem 3.3. 

3.4 The estimation algorithm 

In this section, we shall estimate the parameters 6 = (a0, a.\, a2,/3i,/32) of a COG-

ARCH(2,2) process, based on the results of the Corollary 3.11. We have the data 

d, i = 0,. .. , n, observed at equally spaced time intervals. Let r — 1 for simplicity, 

giving the returns 

G[1] = Gi+i - Git i = 0 , . . . , n - l . 

We assume that the conditions in the Corollary 3.11 are satisfied. 

Algorithm 3.12. 1. Calculate the sample moment 

and the sample autocovariances 

W := ~ "E « 0 2 - ^((Gf)2 ~M), h = 0,...,4. 

Then calculate the sample autocorrelations p{h) := 7(/i)/7(0), h = 1 , . . . ,4. 

2. Solving the equations 

p(2) p(l)\ / ^ \ = (p(3)\ 

yields the preliminary estimators 01; </>2. 

3. Find the LSE estimator 0 of ARMA(2,2) by minimizing the least-squares sum, 

(3.10) using the preliminary estimators <j>\, </>2 as initial values. 

4- Finding the zeros of the polynomial (f>(£) = 1 — 0i£_ 1 — <t>2i~2 yields £i and £2, 
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giving, ft = log£i£2 and ft = log£i log£2-

5. Match the ACF of the ARMA(2,2) with the ACF of the squared increments and 

solve the resulting equations to get a, subject to the conditions (2.29), d2 > 0 and 

&\ > c?2log£i. In the COGARCH(l,2) case, find a.\ from 

* - -2iog(66)f ( i+^+^+^r te2)aog6)-2 
( 6 - i ) - 2 ( i - c r 2 \ - l 

_ (i + 0~i6 + ui){i + gilr1 + g2er2)(1 ^ r 2 

(|2 - i ) - a ( i - & 2 ) - 1 

, / (1 + hi* + ^1) ( i + Oxfr + g2|2~
2) ,lnr ; ,-3 

(i + <?i£i + ^l?)(i + ^er1 + ^2lr2 

( 6 - i ) " 2 ( i - ^ ) 2 ^ - 1 
-(ioge2)-

3). 

Then get the estimators ft = ft + a2 (ft = ft in COGARCH(l,2) case) and ft = 

02 +Oil. 

6. Finally, find the estimator of a0 from do — Mf t / f t . 

3.5 A simulation study 

We now illustrate the estimation procedure by estimating the parameters of a simu­

lated COGARCH(l, 2) process where the driving Levy process is a compound Poisson 

process. The compound Poisson process is given by 

Nt 

Lt^^Yi, t>0, 
i=l 

where TV — (Nt)t>0 is a Poisson process with intensity c > 0, and ( Y ^ N are i.i.d. 

random variables with distribution function Fy, independent of N. For this driving 

Levy process, T\ — 0 and the Levy measure of L has the representation v(dy) = 

cFy(dy). Let the jump size distribution be a normal with mean 0 and variance a2. 

Then the driving Levy process has finite moments of all order, in particular, 

H = EL\ = ca2 and p = EL\ = 3ca4 < 00. 
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Let a0 — 1) oil = 0-1, &2 = 0, Pi = 1, /?2 = 0.2, c — 1 and <r2 = 1, as in Example 

3.10. With Y0 = (10, 1)' as a starting value, n — 1,000,000 equidistant realizations 

of the log returns G\ , i = 0 , . . . , n— 1 were simulated and Algorithm 3.12 was used to 

estimate the COGARCH(l,2) coefficients. This procedure was repeated 2000 times. 

We show the steps of the estimation algorithm in one of the simulations. 

Step 1: The sample mean and the sample ACF of the simulated squared returns 

were calculated: 

M = 2.0116, 

,5(1) = 0.0598, p(2) = 0.0696, p(3) = 0.0688 and ,5(4) - 0.0641. 

Step 2: The equation, 

0.0696 0.0598 

0.0688 0.0696 

0.0688 

.0.0641. 

gives the preliminary estimators 4>\ = 1-3088 and 02 = —0.3728. The histogram of 

the preliminary estimators of 0 in all 2000 simulations are shown in Figure 6. As 

discussed in Section 3.1, we see that the histograms are strongly skewed. 

Figure 6: Histogram of the preliminary estimators of <f>\ (left) and <fo (right). The true values are 

0i = 1.3052 and 02 = -0.3679. 

Step 3: Using the preliminary estimators as the initial value, the least-square 

estimators for (3 for the ARMA(2,2) model are calculated as, 

fa = 1.3047, 02 = -0.3768, 6X = -1.2681 and 62 - 0.3638. 
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The histograms of the estimated ARMA(2,2) coefficients are shown in Figure 7. The 

histograms appear to have the shape of normal distributions, confirming that the 

least-squares estimators are asymptotically normal. 

Step 4: Finding the zeros of 

4>{0 = 1 - 1.3047C-1 + 0.3768r2, 

gives, 

I" 1 = 0.8732 and &1 = 0.4315, 

thus giving, 

Pi = log £16 = 0.9760 and /§2 = log|i log|2 = 0.1140. 

Step 5: Calculate &\ = 0.0958. Then calculate 

J31 = (31 = 0.9760 and /32 = /f2 + «i = 0.2098. 

Step 6: Finally, using the sample mean from Step 1 to get 

a0 = MP2/P2 = 1.0930. 

Table 3.1 summarizes the simulation results after the Algorithm 3.12 is repeated 

2000 times. For each parameter, the empirical mean, bias, mean square error (MSE) 

and mean absolute error (MAE) with corresponding standard errors (in brackets) are 

calculated. The histogram of the estimated parameters are shown in Figure 8. All 

histograms show no striking deviation from normal distributions. The estimator for 

a0 appears a little skewed and has the largest standard error among all four estimators 

because of the tail heaviness of the squared increment process. 
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Figure 7: Least-squares estimators of the ARMA parameters. The true values are 4>\ = 1.3052, 

4>2 = -0.3679, 0! = -1.2642 and 02 = 0.3669. 
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Figure 8: Least-squares estimators of the COGARCH parameters. The true values are an = 1, 

on = 0.1, /3i = 1 and fi2 = 0.2. 
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Mean 

Bias 

MSE 

MAE 

a0 

1.0683(0.0100) 

0.0683(0.0100) 

0.1099(0.0059) 

0.2509(0.0069) 

d i 

0.0961(0.0010) 

-0.0039(0.0013) 

0.0018(0.00001) 

0.0337(0.0008) 

Pi 

1.0123(0.0054) 

0.0123(0.0054) 

0.0300(0.0014) 

0.1383(0.0033) 

02 

0.1986(0.0009) 

-0.0014(0.0009) 

0.0009(0.0001) 

0.0242(0.0006) 

Table 3.1: Estimated mean, bias, MSE and MAE of the LSE of the COGARCH parameters with 

corresponding standard deviations (in brackets). The true values are «o = 1, a\ = 0.1, 0i = 1 and 

/3a = 0.2. 

3.6 Estimating the volatility 

In this section, we show that the state process {Y(}, therefore the volatility process 

{Vt} can be approximated using the observed log returns, the estimated coefficients 

of the fitted COGARCH(2,2) model and an initial starting value Y0. The process 

{Vt} is usually called instantaneous volatility or spot volatility. Since the estimated 

coefficients of the COGARCH model are used in the approximation, we shall assume 

that the conditions of the Corollary 3.11 are satisfied so that the estimated coefficients 

are strongly consistent and asymptotically normal. We start with a fixed Y0 equal 

to the mean of the state vector of the fitted model. 

From (2.6), we can write that for a small time interval £, where h is a positive 

integer, 

l + h 
Yt 

<H 
dYK = 

t+i 

= B / Y.s_ds + e / 

(BYa-ds + eV3d[L,L]W) 

t+i 
Vsd[L, L] (d) 

Writing the Euler approximation, 

t+ H l 

Y,-ds « ~Yt 

and 
t+i 

V,d[L,L]W= Y, Vs(ALs)
2*(Gt+1-Gt) (G{fy2 

t<s<t+± 
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we obtain 

Y t + i « ( / + i s ) Y f + e(G^)2 . 

Using the recursion for Y f + 1 , . . . , Y i + 2, we get 

h 

1 ^ 1 

Yt+1 « (/ + -B)hYt + ]T(/ + lB)h-l<G{^)2 

t = i 

Hence the state process and volatility process at integer times can be estimated 

recursively from high frequency observations of G by 

h 

Yt+1 = e*Yt + J2(I + J^H0^)2 (3-2°) 
•i=i 

and 

K+1 = a0 + a Y t + l ! £ = 0 , 1 , . . . (3.21) 

where Y0 is an initial starting value and B is the matrix B with Pi,... ,0q replaced 

by Pi,... ,f3q. Given Yt and the observed the log returns Gt, G t + i , . . . , Gt+i we can 

estimate the state vector Y ( +i and therefore the volatility Vt+\- In the result shown 

below, these observations are availiable since we simulated the process. To apply this 

estimation in real data we set a unit time interval first, depending on the frequency 

of the data collected. For example, if we collected 5-minute log returns and then we 

can choose the unit time to be one hour so that h = 12, or we choose the unit time 

to be 30 minutes so that h = 6, etc. In Section 3.7 we show how the volatility is 

estimated using 5-minute log returns with the unit time chosen as 30 minutes. 

Haug et al. (2007) suggested the volatility approximation in the COGARCH(l, 1) 

case when h = 1. In the case of h = 1, (3.20) is reduced to 

Y w ^ e ^ + etGf ' ) 2 (3.22) 

To show the accuracy of the volatility estimation, n — 500 observations of a 

COGARCH(l,2) process with estimated coefficients «o — 1.0716, «i = 0.0958, Pi = 
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0.0976, /?2 = 0.2098, obtained in one of the simulations earlier, and compound Poisson 

driving process with standard normal jumps with intensity c — 1 was simulated, 

using the Matlab code provided in the Appendix. The true parameters were «o — 1, 

«! = 0.1, Pi = 1 and Pi = 0.2. We know ELX = 0 and EL\ = 1 for this driving-

process, h = 10 was used and the initial value Y0 = (5.1077, 0)' is chosen as the mean 

of the state vector of the fitted model. 

Figure 9 shows the simulated squared increments, the true volatility (shown by 

a blue line) of the COGARCH(l,2) process with parameters CHQ = 1, a\ = 0.1, P\ = 1 

and p2 = 0.2 and the estimated volatilities (shown by red lines) based on the simulated 

values Gt, t — 0, 0 . 1 , . . . , 500 and the estimated coefficients. Since we know from the 

simulation the values of Gh
 i_l in (3.20) we can use them to estimate the volatilities 

at integer times. When h = 10, the estimated volatility is essentially the same as 

the true volatility, except for the first few values. As expected, the approximation 

suggested by Haug et al. (2007) (i.e. with h = 1), also shown in Figure 9, is a less 

accurate approximation to the true volatility. The Matlab code used to approximate 

the volatility is given in. the Appendix. 

The goodness-of-fit of the model can be done by a residual analysis. The es­

timated residuals are computed by G-j^/vK, i — l,...,n. Since the jump size 

distribution is symmetric around zero, the residuals should have mean that is close to 

zero and symmetric around zero. The standard deviation of the residuals should be 

close to 1, the variance of the driving compound process per unit time. If the model 

is a good fit to the data the estimated residuals should be independent (so, in par­

ticular, they and their squares should be uncorrelated). Ljung-Box and McLeod-Li 

tests were performed to test the correlation of the residuals and their squares. The 

Ljung-Box test statistic is given by 

^—^ n — i 
i=i 

where p{i) is the empirical autocorrelation function of the residuals, and asymp-
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5 0 0 

5 0 0 

500 

Figure 9: Sample path of the squared increment process (top graph), theoretical (blue line) and 

the estimated volatility (red line) based on the observations G i , Gz,. .., G500 and the estimated 

coefficients. The middle graph is for h = 10 and the bottom graph is for h = 1. The blue and red 

lines are virtually indistinguishable when h = 10. 
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totically x2-distributed with k degrees of freedom. In the McLeod-Li test statistic, 

residuals are replaced by their squares. With k = 50 lags, the 95th percentile of 

the chi-square distribution was 56.9424. The Ljung-Box and McLeod-Li statistics 

were 39.4053 and 39.8425, respectively, providing evidence (as they should) of the 

appropriateness of the model. 

3.7 Real data analysis 

We modelled the 30-minute log returns of the Dow Jones Industrial Average recorded 

from February 12th, 2003 to May 12th, 2006 using the 5-minute returns to estimate 

the volatility. There was a total of 813 trading days not including the weekends and 

holidays with 78 5-minute observations per day, resulting in total of n = 63414 5-

minute observations. See Figure 10 for the Dow Jones Industrial Average Index "for 

the recorded time. In this example the unit of time is 30 minutes and h = 6. 

12000 

11000 

10000 

9000 

8000 

7000 

Jul 2004 Jul 2005 Jul 2006 

Figure 10: Dow Jones 5-minute data (P„) from February 12th, 2003 to May 12th, 2006. 
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Figure 11: Dow Jones unfiltered log returns (the top graph), their squares (the middle graph) and 

the ACF of the squared log returns. The ACF clearly contains a seasonal component with period 

78. 
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3.7.1 Filtering the data 

The squared increments of the logarithm of the 5-minute returns (known as squared 

log returns) and their ACF were calculated and are shown in Figure 11. The ACF 

clearly contains a seasonal component with period 78. This is a daily seasonality 

because trading is more intense at the beginning and at the end of a day, slows down 

around noon, and different days do not seem to differ to a high degree. Brodin and 

Kliippelberg (2006) suggested volatility weighting method to remove the effect of daily 

seasonality. Their method divides a period (day) into several smaller subperiods (5-

minute intervals) and then estimates the seasonality effect in each subperiod in terms 

of volatility. Then each subperiod is deseasonalized separately. The observed log 

returns, denoted by xn as in Brodin and Kliippelberg (2006), is a realization of the 

process 

xn — (i> + vnxn, n — 0 , . . . , 63413, (3.23) 

where xn are the deseasonalized returns, fj, is a constant drift and vn are the seasonality 

coefficients (volatility weights), estimated by 

vT = mediam=i ̂  . . )w|in i + T |. (3.24) 

Here we have NT = 813 days, during which we have observed our data in the given 

subperiod r € {1, 2 , . . . , 78}. In Figure 12 we show the estimated seasonality coeffi­

cients. The Matlab code for finding the seasonality coefficients and filtering the data 

can be found in Appendix. The seasonality coefficients also display the fact that 

trading is more intense at the beginning and at the end of a day. 

Finally, the deseasonalized log returns are calculated by 

xn = Xn7 ^\ n = 0 , . . . , 63413 (3.25) 

where fl is the sample mean of the log returns. The squared log returns of the filtered 

series and its ACF are shown in Figure 13. The filtered data now show no clear 

seasonal effect. 
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Figure 12: Dow Jones 5-minute data from February 12th. 2003 to May 12th, 2006. Estimated 

seasonality coefficients (volatility weights) for the 78 subperiods. 

x 10 

Mli^jiyMlki,^ 

Figure 13: Dow Jones filtered log returns (the top graph), their squares (the middle graph) and the 

ACF of the squared log returns. The filtered data now sljow no clear seasonal effect. 
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3.7.2 Fitting COGARCH(2, 2) to squared 30-minute returns 

We shall fit a C0GARCH(2,2) model to G using the filtered 30-minute log returns 

G0 , G[ ,..., G10568 (each of which is the sum of six successive filtered 5-minute log re­

turns) and using the filtered 5-minute returns to estimate the volatilities V\,..., V̂ 0569 • 

The unit of time will be 30-minutes with h = 6. We assume driving compound Pois-

son process has jump-rate c = 2 and normally distributed jumps with mean zero and 

variance 0.7071 so that it satisfies EL\ = 0 and EL\ = 1. 

Minimizing the least-squares sum (3.10) yields the estimated parameters of the 

ARMA(2,2) model as follows: 

0i = 1.6548, 4>2 = -0.6552, Qx = -1.5961 and 62 = 0.6021. 

The autoregressive polynomial, 

0(£) = 1 - 1.6548£-1 + 0.6552£~2, 

yields the zeros, 

4"1 = °-9986 and &1 = 0.6561, 

thus giving the eigenvalues Ai = —0.0014, A2 — -0.4214 and 

k = log 6 6 = 0.4228, h = log 6 log 6 = 0.0006. 

The ACF of the ARMA(2,2) process with the above parameters is calculated as, 

p{h) = 0.0985e-00014'1 + 0.0644e-a4214\ /» = 1,2,... 

The matrices P0, Q0 and R0 are calculated as follows: 

/3103.9260 1.6013\ / l .3539\ 
Po=\ , Qo = , Ro = 3.5. 

\ 1.6013 1.0968/ \3.9274/ 

Writing the ACV of the squared increments as a function of of a and matching it 

with the ACF of the ARMA(2,2) model yields the equations 

-2.8505.7894a2 + 1.1550a2; - 34.8905ai + 3.9766a2 + 3.5 = 0, 



and 

3261.9098a? - 26.9585a| + 57.6452ai - 19.7941a2 + 3.5 = 0, 

giving the solution (0.0117, 0.1860) for (a1 ,a2)- Now we can find 

ft = ft + d2 = 0.6088 and /32 = (32 + ax = 0.0122. 

Finally, using the sample mean M — 3.0458, we find 

a0 = M(32/(32 = 0.9760. 

3.7.3 Volatility estimation and goodness-of-fit 

Based on the filtered 5-minute log returns and the estimated coefficients, we can now 

estimate the volatility for 30-minute log returns. The unit of time is 30 minutes 

and we have h — 6 observations per unit interval. The Matlab code (See Appendix) 

implementing the recursions (3.21) and (3.20) resulted in the estimated volatilities 

shown in Figure 14. The starting vector Y0 is chosen to be equal to the mean of the 

state vector of the fitted model. 

We again use the residual analysis to check the goodness-of-fit of the model. The 

residuals are calculated similarly as before: 

G^/yfiu t = 1,2 10569. 

If the model is a good fit to the data then the residuals should be independent, have 

zero mean and standard deviation one. The sample mean and the sample standard 

deviation were —0.0232 and 0.9325, respectively, and the Ljung-Box and McLeod-Li 

test statistics with lags 189 were QLB — 222.0025 and QML = 214.0934, suggesting 

a good fit as the the critical value of the chi-square distribution at 0.05 level was 

222.0757. The ACF of the filtered squared 30-minute log returns, the residuals and 

the squared residuals, shown in Figure 15, indicates the model is a very good fit to 

the data. 
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Figure 14: Dow Jones squared filtered 30-minute log returns (G\ )2 (top graph), the estimated 

volatilities Vt based on the estimated coefficients and 5-minute log returns (middle graph) and the 

estimated residuals (bottom graph). 
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Figure 15: ACF of the filtered squared 30-rninute log returns (top graph), the residuals (middle 

graph) and the squared residuals (bottom graph). 
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4 Conclusions 

4.1 Summary 

In financial econometrics, discrete-time GARCH processes are widely used to model 

the returns observed at regular intervals. Continuous time models are especially use­

ful for the analysis of irregularly spaced data, and high-frequency data. In this paper, 

a family of continuous time GARCH processes, generalizing the COGARCH(l, 1) 

process of Kliippelberg, et. al. (2004), was introduced and studied. The resulting 

COGARCH(p, q) processes, q>p> 1,. exhibit many of the characteristic features of 

observed financial time series, such as tail heaviness, volatility clustering and depen­

dence without correlation. As in the discrete time case, the volatility and squared 

increment process of the COGARCH(p, q) model display a broader range of auto­

correlation structures than those of the COGARCH(l, 1) process. We established 

sufficient conditions for the existence of a strictly stationary non-negative solution of 

the equations for the volatility process and, under conditions which ensure the finite-

ness of the required moments, determined the autocorrelation functions of both the 

volatility and squared increment processes. The volatility process was found to have 

the autocorrelation function of a continuous-time ARMA process while the squared 

increment process was found to have the autocorrelation function of an ARMA process 

just as in the discrete time case. 

We proposed a least-squares method to estimate the parameters of a COGA-

RCH(2,2) process, making use of the property that the autocorrelation function of 

the squared increments of the COGARCH(p, q) process is that of an ARMA(g, q) 

process. We showed that when the driving Levy process is compound Poisson, then 

the state process and the squared increments of the COGARCH(2,2) process are 

strongly mixing with exponential rate, from which it follows that the least-squares 

estimators are strongly consistent and asymptotically normal. The COGARCH(2, 2) 

model with compound poisson driving process was fitted to the 30-minute log-return 
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series of Dow Jones Industrial average from December 29th, 2003 to May 12th, 2006. 

For this series we estimated the volatilities and conducted a residual analysis which, 

as hoped, gave residuals compatible with white noise. 

4.2 Future problems 

Future problems to be investigated include the following: 

• The condition (2.8) established in Theorem 2.4 is necessary and sufficient for 

stationarity of the state and the volatility processes in the special case p = q = 1, 

but only sufficient for processes with q > 1. It would be of interest to investigate 

the degree to which this condition can be relaxed when q > 1. 

• The strong mixing property shown in Theorem 3.6 is valid for COGARCH(2,2) 

processes when the driving Levy process is compound Poisson. The proof of 

Lemma 3.4, which shows the (^-irreducibility of the COGARCH(2,2) state 

process, needs to be generaziled to COGARCH(p, q) processes with q > 2 and 

with general driving Levy process. This would allow the strong mixing prop­

erty to be established in the general case and hence to establish asymptotic 

properties of the parameter estimators in greater generality. 

• The COGARCH(l, 1) model shows very similar behaviour to that of its discrete-

time analogue, the GARCH(1,1) process. Analogous connections between higher 

order COGARCH and G ARCH processes exist and will be the subject of further 

investigation. 

• Comparisons of COGARCH models fitted to observations of the same process 

made at different frequencies. 
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Appendix 

Simulating COGARCH(2,2) process 

7. Input variables: n, c, alpha_0,alpha_l, alpha_2,beta_l,beta_2 

sigma=sqrt(l/c); 

a=[alpha_l; alpha_2] ; 

e=[0; 1] ; 

B=[0 1; -beta_2 -beta_l] ; 

7, Simulating jump times 

jump_int(l)=-log(l-rand)/c; 

T(1)=j ump_int(1); 

j=i; 

for i=l:n 

n_jump(i)=0; 

while T(j)<i 

n_jump(i)=n_jump(i)+l; 

jump_int(j+l)=-log(l-rand)/c; 

T(j+l)=T(j)+jump_int(j+l); 

j=j+i; 

end 

end 

total_jumps=j-l; 

7, Counting the number of jumps 

N=ones(n,1); 

N(l)=n_jump(l); 

for i=2:n 

N(i)=N(i-l)+n_jump(i); 

end 
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'/, Simulating the driving process 

dL=sigma*randn(size(1:total_jumps)); 

L=ones(total_jumps,1); 

L(l)=dL(l); 

fo r j=2 : to ta l_ jumps 

L ( j ) = L ( j - l ) + d L ( j ) ; 

end 

7, Computing the processes V and Y 

V=ones (total.jumps,1); 

Y=ones(2,total_jumps); 

Y(:,l)=ones(2,l); 

Y(:,l)=expm(B*jump_int(l))*Y(:,1); 

Y(:,1)=Y(:,l)+(alpha_0+conj(a')*Y(:,l))*(dL(l))~2*e; 

V(l)=alpha_0+conj(a')*Y(:,1); 

fo r j=2 : to ta l_ jumps 

Y ( : , j ) = Y ( : > j - l ) ; 

Y ( : , j ) = e x p m ( B * j u m p _ i n t ( j ) ) * Y ( : , j ) ; 

Y ( : , j ) = Y ( : , j ) + ( a l p h a _ 0 + c o n j ( a ' ) * Y ( : , j ) ) * ( d L ( j ) ) - 2 * e ; 

V ( j ) = a l p h a _ 0 + c o n j ( a ' ) * Y ( : , j ) ; 

end 

'/„ Computing the process G 

G=ones( to ta l_ jumps ,1) ; 

G ( l ) = s q r t ( V ( l ) ) * d L ( l ) ; 

fo r j=2 : to ta l_ jumps 

G(j)=G(j-l)+sqrt(V(j))*dL(j); 

end 

'/, Realizations observed at integer times 
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while N(i)==0 

i=i+l; 

end 

G_obs(l:i-l)=0; 

G_obs(i:n)=G(N(i:n)); 

L_obs(l:i-l)=0; 

L_obs(i:n)=L(N(i:n)); 

for j=l:i-l 

V_obs(j)=alpha_0+conj(a,)*expm(B*j)*ones(2,1); 

end 

for j=i:n 

V_obs(j)=alpha_0+conj(a')*expm(B*(j-T(N(j))))*Y(:,N(j)); 

end 
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Least-squares estimation 

function f = lse(var) 

global X; 

X=X-mean(X); 

phi_l=var(l); 

phi_2=var(2) ; 

theta_l=var(3); 

theta_2=var(4); 

n=length(X); 

e=zeros(n,1); 

root=roots( [-phi_2 -phi_l 1]); 

if (abs(root(D) < 1) I I (abs(root(2)) < 1) 

f=inf; 

elseif (phi_l~2+4*phi_2<=0 I I phi_2>0) 

f=inf; 

else 

e(l)=X(l); 

e(2)=X(2)-phi_l*X(l)-theta_l*e(l); 

for i=3:n 

e(i)=X(i)-phi_l*X(i-l)-phi_2*X(i-2)-theta_l*e(i-l) 

-theta_2*e(i-2); 

end 

f=0; 

for i=l:n 

f=f+e(i)~2; 

end 

end 
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COGARCH(l, 2): Estimated volatilities and residuals 

% Determining the intervals where jump occurred 

for i=l:n 

t(i)=floor(T(i))+l; 

index(i)=floor((T(i)-t(i)+l)*h)+l; 

end 

N_jumps(l)=N(l); 

N_jumps(2:n)=N(2:n)-N(l:n-l); 

V_hat=ones(n,l); 

Y_hat=ones(2,n); 

Y_hat(: ,1) = [10; 1]; 

VJiat(l)=2; 

resid=ones(n,1); 

resid(l)=0; 

7, Computing estimated volatilities and residuals 

Y_hat(:,l)=(I+B/h)~h*[10; 1]; 

if N(l)==l 

YJiat(:,l)=Y_hat(:,l)+(I+B/h)~(h-index(l))*e*(G(l))"2; 

elseif N(1)>1 

YJiat(:,1)=Y_hat(:,1)+(I+B/h)~(h-index(1))*e*(G(1))"2; 

for j=2:N(l) 

Y_hat(:,l)=Y_hat(:,l) + (I+B/h)"(h-index(j))*e*(G(j)-G(j-l)) ~2; 

end 

end 

V_hat(l)=alpha_0+conj(a')*Y_hat(:,1); 

resid(l)=G_obs(l)/sqrt(V_hat(D) ; 

for i=2:n 

Y_hat(:,i)=(I+B/h)-h*Y_hat(:,i-l); 
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if N_jumps(i)>0 

for j=N(i-l)+l:N(i) 

Y_hat(:,i)=Y_hat(:,i)+(I+B/h)~(h-index(j))*e 

*(G(j)-G(j-l))~2; 

end 

end 

V_hat(i)=alpha_0+conj(a')*Y_hat(:,i) ; 

resid(i) = (G_obs(i)-G.obs(i-1))/sqrt(V_hat(i)); 

end 
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Filtering seasonal effect 

dow5_unfiltered=dlmread('dow5_unfiltered.tsm'); 

'/, Create 78 by 813 matrix 

for i=l:78 

for j=l:813 

unf ilteredKi, j)=dow5_unf iltered((j-l)*78+i); 

end 

end 

'/, Find the median absolute value for each column 

for i=l:78 

v(i)=median(abs(unf ilteredKi, :))) ; 

end 

for i=l:78 

f ilteredKi, : ) = (unf ilteredKi, :)-mean(dow5_unfiltered))/v(i); 

end 

7, Create the filtered data as a row matrix 

for i=l:78 

for j=l:813 

dow5_filtered((j-l)*78+i)=filteredl(i,j); 

end 

end 
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Dow Jones: Estimated volatilities and residuals 

V. Input: h, alpha_0, alpha_l, alpha_2, beta_l, beta_2, Y_1, Y_2 

a=[alpha_l; alpha_2] ; 

B=[0 1; -beta_2 -beta_l] ; 

k=length(dow30_filtered); 

for i=l:k 

dow30_filtered(i)=sum(dow5_filtered((i-l)*6+l:(i-l)*6+6)); 

end 

dow5_filtered_sq=dow5_filtered."2; 

V_hat=ones(k,1); 

Y_hat=ones(2,k); 

Y_hat(:,l)=expm(B)*[Y_l; Y_2] ; 

for j=l:h 

Y_hat(:,l)=Y_hat(:,l)+(I+B/h)"(h-j)*e*dow5_filtered_sq(j); 

end 

VJiat(l)=alpha_0+conj(a')*Y_hat(:,1); 

resid(l)=dow30_filtered(l)/sqrt(V_hat(l)); 

for i=2:k 

Y_hat(:,i)=expm(B)*Y_hat(:,i-l); 

for j=l:h 

Y_hat(:,i)=Y_hat(:,i)+(I+B/h)~(h-j)*e 

*dow5_filtered_sq((i-l)*n+j); 

end 

V_hat(i)=alpha_0+conj(a')*Y_hat(:,i); 

resid(i)=dow3CLfiltered(i)/sqrt(V_hat(i)); 

end 

mean_resid=mean(resid); 

std_resid=std(resid); 
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resid_sq=resid."2; 

mean_resid_sq=mean(resid_sq); 

var_resid_sq=var(resid_sq); 

Q-LB=0; 

Q_ML=0; 

for i=l:189 

rho_resid(i)=(resid(l:n-i)-mean_resid)'*(resid(l+i:n)-mean_resid)/ 

n/std_resid~2; 

rho_resid_sq(i)=(resid_sq(l:n-i)-mean_resid_sq)'*(resid_sq(l+i :n)-

mean_resid_sq)/n/var_resid_sq; 

Q_LB=Q_LB+rho_resid(i)"2/(n-i)*n*(n+2); 

Q_ML=Q_ML+rho_resid_sq(i) "2/(n-i)*n*(n+2); 

end 
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