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ABSTRACT OF DISSERTATION

STATISTICAL ERROR ANALYSIS OF GROUND WATER SYSTEMS

A method is developed, which, by considering the input
variables to a numerical model of flow in porous media as random
variables, enables the accuracy of these input variables to be
related to the accuracy of the output. The input variables considered
are initial head, permeability, discharge, storage coefficient and
saturated thickness and the output variable is head after a period of
time. The method involves the use of the Monte Carlo technique to
generate a random sample of the final head, the computation of a
tolerance limit width and a coefficient of variation on the final head
which are used as measures of its accuracy, and a regression
analysis to determine a predictive relation between the accuracy of
the input variables and the accuracy of the final head. The results
indicate that if only one of the input variables contains error then
this error is linearly related to the error in final head. If all input
variables contain error, then only the error on initial head is
significant in predicting the error in final head.

In addition, a method of estimating the parameters of the
probability density functions of the input variables from available

field data is described and the relation is determined between the
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accuracy of these estimates and the number of data points used to

make the estimate. The significance and application of the results

in ground water system management is discussed.

Robert Bibby
Civil Engineering Department
Colorado State University

Fort Collins, Colorado 80521
March, 1971
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INTRODUCTION

A numerical model, obtained by approximating the partial
differential equation of flow in porous media by finite differences,
is commonly used to analyze groundwater systems. Its application
requires that values be assigned to the input variables, permeability,
storage coefficient, saturated thickness, initial head and discharge,
and then the model is used to compute values of head at various
times. It is an entirely deterministic model and is frequently used
in situations in which nothing is known of the accuracy of the
estimates of the input variables or how errors in these estimates are
related to the accuracy of the results. Further, the relation between
the amount of field data available and the accuracy of the estimates
of the input variables is usually not known. This study is aimed at
establishing these relations by a combined use of deterministic and

stochastic methods.



RESEARCH OBJECTIVES AND THEIR SIGNIFICANCE

The principal objective of this study is to relate the accuracy
of the estimates of the input variables of the numerical model to the

X

accuracy of the estimate of the output. Thus, if ,5,(1, )’\(42, =svin M

are the estimates of p input variables Xl’ X Xp and have

pres

erTOrs €., €55, ep, respectively, and ¥ is the estimate of the
output variable, Y, with error €y then a relation of the form,
eY=E1(€1, €ns s ep) P

was sought, where, E_  denotes the function relating the errors.

1

This error relation was determined by considering the
estimates of the input variables as random variables. Further re-
search objectives were then to establish a technique for estimating
the parameters of the probability density functions of the input
variables from available field data and to find the relation between
the amount of field data used to make the estimate and the accuracy
X

of the estimate. Thus, if n field observations Xl sy X

1’ 127t In

are available to estimate Xl, it was required to find,

X = EZ(XII’ X

1 12*°%*** "in

and



€1:E3(n) ’

where, EZ’ E3 denote functions relating the variables.
With the results of this research it is hoped that future
numerical model studies of groundwater systems will be made more
effective, since, the relative importance of the input variables will
be known from the point of view of the influence that they have on the
accuracy of the results. Also, future data collection should be
conducted more efficiently since the amount of data needed to obtain
a certain accuracy in the estimate of an input variable will be known.
In addition, data can be collected on only the more important
variables influencing flow in ground water basins. It should also be
possible to determine how much more data it would be necessary to

collect on each input variable to obtain a specified increase in the

accuracy of the estimate of the output variable.



LITERATURE REVIEW

The study of ground water systems has only recently been made
tractable with the introduction of numerical models. In consequence,
little work has been reported on the study of the sensitivity of the
response of ground water systems to changes in the system para-
meters. However, the other tools used in this study, namely
Regression Analysis, Non-parametric statistics and Monte Carlo
techniques are widely used, although not simultaneously, and in
conjunction with a deterministic model. Since these three methods
are so well known, the literature on them will not be reviewed. Only
that literature which pertains to the analysis of the sensitivity of
the hydraulic response of a ground water system will be discussed.
Literature on the numerical model will be cited in the section in
which the model is described.

McM illan( 13)

investigated the relative importance of basin-
wide heterogeneity of permeability in operational analysis of ground
water basins. His analysis consisted of repeated numerical
solutions of Laplace's Equation with variable coefficients. In his
analysis he allowed the following factors to vary one at a time:

i) basin-wide mean value of permeability,

ii) basin-wide standard deviation of permeability,

iii) mean hydraulic gradient,



iv) grid size,
v) grid length to width ratio,
vi) probability density function of permeability,
vii) size of homogeneous and heterogeneous blocks within the
basin, and
viii) the weighting factor used to approximate the average
permeability between grids.
His results, obtained for a rectangular groundwater basin in
which two opposite boundaries were impermeable and the other two

were constant heads, indicated the following empirical relationship,

"4 ’K
2" FaX®
where, T4 = standard deviation of the differences in head for
homogeneous and heterogeneous solutuions,
AH = average drop in head between grids in the direction
of flow,
ox = basin-wide sample standard deviation of permeability,

K = basin-wide sample mean of permeability,
F = empirical factor with a value in the range 0.05 to
2. 0.
Of the factors considered, (iv)-(viii) had little effect on the
above relation. The relation has limited application because only

the steady-state flow equation is being solved for a simple



groundwater model in which only one aquifer parameter, perme-
ability, is considered random. Also the relation is deduced from a
small amount of data, and so further restricts its applicability.
Bittinger( 3) investigated the influence that the total input, the
aquifer parameters and water management practices have on the
return flow in stream aquifer systems. His technique consisted of
varying the influencing factors one at a time and analyzing the effects
on return flow. He concluded that the return flow response is
principally dependent upon the total volume of water added to the
aquifer, the width of the aquifer, the location of the application area
and the aquifer constant, (KbT)/(SWZ) where, K is permeability,
b is saturated thickness, T is time, S is specific yield and W is
aquifer width. Water management practices could also significantly
effect return flow. Areal variations in permeability and bedrock
configuration were found to have an insignificant influence on return
flows.

1
Woods( 7

developed a water quality model of a general
hydrologic system. The system included a ground water aquifer and
he investigated, by changing one variable at a time, the sensitivity
of the water quality and system hydrology to changes in physical
parameters of the system and in management practices. So far as

the ground water aspects of this analysis were concerned, he

concluded that the most sensitive term to changes in specific yield



was the mazimum representative head difference driving flow into
drains but this sensitivity decreased with time. Changes in the
initial values of this representative head difference had little influence
on other system parameters. Changes in the amount of applied
irrigation water induced significant effects on all system parameters.

The methods used by Bittinger and Woods to investigate ground
water system response involved assigning a small number of
different values to the input variables and observing the effect on
system response. Such an approach can at best give only a super-
ficial indication of the sensitivity of the system response to changes
in the input variables.

Eshett (6)

assumed the change in water table elevation in a
sub-area of an aquifer to be a linear function of four surface
variables, precipitation, pumping, delivered water and artificial
spreading. In each sub-area he found maximum likelihood estimates
of the coefficients of this linear function assuming the observations
of the variables to be normally distributed. Dividing each sub-area
into grids, he was able to estimate the net discharge from each grid.
He then used these values of net discharge as input to a numerical
model of the entire aquifer and solved for water table elevation after
a period of time. The regression analysis involved only the surface

factors which influence a ground water system and did not consider

any of the aquifer parameters as random variables. Also, the



interdependence of these surface factors and the fact that large
time steps were involved in the study, made it impossible to determine
their relative importance in predicting net discharge.
(10) ; ; .

Longenbaugh used stepwise multiple regression to develop
a prediction equation for river accretion from applied irrigation
water, precipitation, pumping and evapotranspiration. He concluded
that the best equation, from a practical point of view, for the aquifer

he studied, was,

Y = -3595 + 2. 328'7X1 + 1064X2
where
Y = river accretion
Xl = variable measuring volume of ditch diversion,
X2 = variable measuring precipitation amount.

Pumping volume and consumptive use were found to be non-
o : : : - (11)
significant in this aquifer. Longenbaugh and Bittinger reported
studies of this same problem using techniques of multivariate
analysis. As with Eshett's study, the regression equation used by
Longenbaugh and Longenbaugh and Bittinger involved only the surface
factors affecting a ground water system. They also encountered

problems due to the correlation of the independent variables in the

regression equation. It was this correlation which led them to



consider multivariate analysis. The results of this approach were

(11)

not reported in reference .

Rorabaugh( 15)

determined the correlation between changes in
water table elevation, precipitation and temperature by graphical
means. He used the relationships which he established to predict
maximum change in water table elevation during a year knowing the
elevation at the beginning of the year. The predictions were
acceptably accurate, but, since only the surface factors influencing

the ground water system were considered, the results are limited

in applicability.



NUMERICAL MODEL

The equation of transient flow in a porous medium may be

derived from the mass continuity equation and Darcy's Law and

(8)

written, (Jacob )s

0 oh 0 oh oh

—— —_ —— —\Av = Ny 1

ax(KbAy ax)Ax+ay (K bAx 8y) y=Q+84x ¥ e (1)
where, X,y = space coordinates (L)

K = permeability (L/T)
b = saturated thickness (L)
A x, Ay = grid dimensions (L)
h = head (L)
Q = discharge rate from grid (L3/T)
= storage coefficient (for confined flow); specific
yield (for unconfined flow)
T = time (T)

For unconfined flow, b = (h-2), where z is the bedrock
elevation (L), so equation (1) is non-linear in h. For confined flow
b is independent of h, so equation (1) is linear in h.

Dividing the region of flow into grids and using an implicit
central finite difference scheme, equation (1), written for one of

these grids, becomes:
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AT hT+AT + BT hT+AT " CT hT-I-AT + DT hT+AT

i, j-1 i, j+1 i-1,j i1,
T+ T
-(A+B+C+D+E)Th'iI‘—;AT=Q AT/Z-Eh (2)
where,
r 1-1
AT_ ( Ax ) +( A x )
L\ 2ZKbAy Lol 2Kb Ay i, i
. =1
BT_ (Ax > +( A x )
[\ 2KbAYy i, j+1 2Kb Ay g f o
-1
T Ay A ]
Ll [(2Kbe>. .+(2Kb£x). .
i-1,) i,]
T [ & A N
oT . [( Ly . ___x__> ]
2KbAx /. ) 2KbAx/ . .
& i+l,|j 1,
i AxA
g = | (S2x8Yy) Y)i,j}
J At
The i, j notation (see Fig. 1)
i-1,j

refers to the grid for which a

i,j=-11,j [i,51

particular equation is written and y
. . i+1,j
the superscripts represent the time
x
level of computation. FIGURE 1

Equation (2) is written for every grid in the flow region and
the resulting equations are solved simultaneously to give the head
in each grid at time (T + AT). The development of this model and its

2 2 H 2 1
applications have been reportedby(l) (2): 4)u (3) (2).
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The input variables to the model are hI, the initial head, K,
b(or z), Q and S and the output is hF, the final head at a given time.
The average value of each of the input variables in every grid has
to be specified for input. It is therefore required to relate the
accuracy of these input variables to the accuracy of hF, to estimate
the parameters of the density functions of the input variables from
field data and to relate the accuracy of these estimates to the amount

of data used.



THEORETICAL FRAMEWORK

Assume that each of the input variables has a unique non-
random value at each point in the aquifer, and that an observation
of any one of these input variables at a point in the aquifer cannot
be made accurately, but involves a measurement error. This error
is considered to be purely random and to be free of bias. For
example, if n points (xi, yi; i=l,...., n) are chosen either randomly
or by design in the aquifer and at each point an observation of

permeability is made, then,

where, ki = observed value of permeability at the point
(xi, Yi) (random and observable),
Ki = true value of permeability at the point (xi, Yi)
(non-random and unobservable),
ei = measurement error at the point (xi, Yi)
(random and unobservable),

n = number of observations.

The errors, e. will be considered to be independent of Ki’

(16)

mutually uncorrelated and normally distributed, with mean

. 2 .
zero and variance T that is,
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andCov(ei, ej) 20, 121 sone B JF Y onse B 18]
The variance,af{, of ei is assumed constant for each

observation at each point in the aquifer. It follows that,

2

ki'\jN(Ki’ o-K) , 1= 'L % ae il

The spatial variation of each input variable is assumed to be
expressable as a function of the space coordinates by an equation of

the form (using permeability as an example),

K=oz0 +ozl X1 + 4o +aN-l XN-I 5
where,
a. = constant coefficient (unknown),
i
Xi = Xi(x,y), where x,y are space coordinates,
N = number of terms in the equation necessary to
closely approximate the spatial variation in K
Then,
k, = + X X +@,, 1= 1ios iy
i ao arl 1) i + +aN_1 N-1,i ei 1 n

k=a'Xt+te . {3}
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The coordinates (Xi’ Yi; i=1,....,n) of each observation,

(ki; i=1l,...n) will be considered to be observed without error, so

that each of the variables (in(xi, Yi); j=1,....,N-1, i=1,....,n) is

known exactly, and equation (3) fits the normal theory of the General

Linear Hypothesis Model of Full Rank, Model I, Case A* (see

Appendix 2). Using this theory, maximum likelihood estimates can
K

be found for (ai; i=l,....,N-1) and crz . If these estimates are

designated @ and GZ , they are shown in Appendix 2 to be given by,

K
. -1
2= X0 XK
—~ 2 -1
where, a~N (o, o (X'X) )
k'k -2a' X'k
and 32 e
& K (n-N)
~2
(o8
where, (n-N) g{ PJXZ (n-N)
’K

The input to the numerical model is the mean value of each
variable in each grid. For permeability, the true mean value in a

grid, K, is given by

x+Ax ,y+Ay
g 1
K—AXAYSX SY (ozo+a1 Xl+... +aN-1XN—l)dXdY'

where, the grid has coordinates (x,y), (%, y+Ay), (x+Ax,vy),

(x+AQx, y+Ay).

%
The linear model classification used in this dissertation is

the same as that given by Graybill (7),
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The estimate of K in this grid will be taken to be,

x+Ax py+Ay
- 1 ~ ~ -
. R oo dx d
K AXAYS S (ao + ole1 + + aN-IXN-l) xdy (4)
X y
and is such that,
;NN(—K, pz)
K

The standard deviation, Pk’ will be taken as the measure of

~

error in the estimate, K, of K. It is shown in Appendix 3 that,

" K
Pye =Tl ~ vy § & LpsunsM=ly 15 Lynooaith o
where, f(in)= a known function of X'i’ j=1,...,N-1, i=1,...,n.

The estimate of p K will then be ’}3 K’ where,

Tk
P = (X j=1,...,N-1, i=1,...,

Equations analogous to equation (4) for each of the input
variables provide a method of estimating the mean value of each of
the input variables in every grid from available observations. The
accuracy of these estimates is given by equations analogous to
equation (5) and is inversely proportional to the square root of the
number of observations used to make the estimate.

The solution to the numerical model for every time step in-
volves the inversion of a matrix whose size is equal to the number of

grids of the system being considered. This makes it practically
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impossible to determine directly the relations between the measures
of error on the input variables, 'ﬁ)’K, ’5b (or ’ﬁ)’z), ’p’hl, ’b’Q, ﬁs, and
the accuracy of the final head after a number of time steps. In

consequence, the following procedure was adopted to investigate the

error relations,



EXPERIMENTAL PROCEDURE

In determining the relationship between the errors on the
input variables and the error on the output, two general cases were
considered: (i) each of the input variables, considered singly, was
assumed to contain error and the other variables to be known exactly,
(ii) all of the input variables, considered simultaneously, were
assumed to contain error. The procedure for determining the
relationship was basically the same for both cases, and is described
first of all when only permeability, of the input variables, is
considered to contain error and secondly when all of the input
variables are simultaneously considered to contain error. It
consists of the application of the Monte Carlo technique to generate
a random sample from the density of hF’ the computation of a
tolerance limit to be used as a measure of error on hF from the error
on the input variables.

When only permeability of the input variables contains error,

the procedure is as follows:

STEP 1
A randomly generated value of K and 'E)K is assigned to each

grid. The other variables are assigned random mean values and

zero variances.
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STEP 2

In every grid a random value of permeability is generated
from its distribution, which is assumed to be normal, N(IZ{, 52 ).
Thus, it is implicitly assumed that the differences between E and
K and between '5K and P do not influence the prediction of the final
head and the determination of the accuracy of the prediction. This
assumption has no effect on the determination of the error relations
between the input and output variables, but is significant in the

application of these error relations. This significance is discussed

in the section on application of results.

STEP 3
With these random values of permeability and the fixed values
of the other input variables, the deterministic model is used to

solve for the head after a specified time.

STEP 4
Repeat STEPS 2 and 3 until a random sample of size M of

values of head in every grid is generated, that is, (hF) » 171, w0 s M
i

STEP 5
In every grid determine the tolerance limits on hF and the
width of the tolerance limit, t. The theory of tolerance limits is

developed in Appendix 4.
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STEP 6

Randomly generate a new value of/EK in every grid and repeat
STEPS 2, 3, 4 and 5 until a sample of size m of tolerance limit
widths, t, in each grid is obtained. Each width will correspond to

a value of ?;K

STEP 7

Using the theory of the Regression Model, Model III, Case 2*,
find a predictive relation between t and SK

The theory of the Regression Model, Model III, Case 2, is
described in Appendix 2, and to apply the theory of the model to find
the relation between t and 'F‘J’K it is assumed that the joint density of

t and ’F‘)’K is given by,

x5 5 1 1 t‘G(‘N’K) ;
f(t, pK)=h(pK)V-27T-—6' exp '3(_—T—> (6)
t! t!
where,

G(’ﬁK) is a linear (in the coefficients «.) function of ’;‘)’K, and
i
h(b’K) is the marginal density of ’,SK and does not contain

o, i=l...N or Tt In this study G(f)’K) was taken to be a polynomial,
~N N ~

so that, G(pK) = izzo ai(pK)

It follows from equation (6) that the conditional distribution of

i

t given BK = }3>’K is f(t'), where,

(7)

q\Following Graybill's classification.
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N L i 2
-z y
ft) = (/5. = 3% ) = 1| 1| "5%0 (B g)
pK pK F_Z_n_o_t' P o_t' #
so that,
b i
" — ~ — Nk - x®

The coefficients a, i=zl. ... N can now be estimated and the

value of N determined such that the '"best'' predictive relation

x

between E(t') and SK

is obtained. This was done in the following
manner.

In every grid, the linear equation,

was fitted to the data (tj, (b’K)J.; j=l....m). A test of the hypothesis,
Hozal = 0, was made. If this hypothesis was accepted then it was
concluded that the data were fitted better by E(t') = constant than

by the linear equation being considered. If the hypothesis was

rejected it was concluded that the data were better represented by

the linear equation. In a similar way the equations,
1 = + ~ON + ~noKR
and

k3

~ %k ~ R 2
E(t'Ys y.+ ¥ P +|¥ (P + ¥, (P ,
0 1 "K 2 'K 3'FPK
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were fitted to the data, and the hypotheses, HO:[S o 8 0 and

H :

o y3 = 0 were tested. These tests determine whether the data are

better represented by a quadratic or linear equation and cubic or
quadratic equation respectively. If, for instance, the hypothesis,
H

= 0 were rejected and the hypotheses, Hozﬁz =0, H 0,

0% 0° Y3~

were accepted, then it was concluded that the data were 'best"
represented by a linear equation. In general, before accepting that
a polynomial of a given order 'best'' represents the data it is
necessary to accept the null hypotheses on two polynomials of
immediately higher order.

The data generated in the above procedure was used to estimate

the coefficient of variation of hF’ ChF, by,

M
1 =
h
%Mo) i=] (BF; - Hhp)
h_ - = ’
F oo
| M
M =— X h )
F
B Mooy %%

These were also regarded as measures of error on the input
and output variables. They were considered in addition to the

previously described measures of error because they are
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dimensionless. The '"best'" polynomial relating EhF and GK was
then determined using exactly the same procedure as the one
described above.

When all the input variables are simultaneously considered to

contain error the procedure for determining a predictive equation

between these errors and the error on output is described below.

The notation is adopted that p y = ’b’K, 0 5 = 'b’b (orp Z), P 3= SQ’
a - N 2 = n
P4 PhI’ Pg=Pge
STEP 1
A randomly generated value of K, b (or ;), (5, 1-11, S and

?J'i, i=l....5 is assigned to each grid.

STEP 2
In every grid a random value of K, b (or z), Q, hI and S is

generated from its distribution, which is assumed to be normal.

STEP 3
With these values of the input variables, the deterministic

model is used to solve for the head after a specified time.

STEP 4
Repeat STEPS 2 and 3 until a random sample of size M of

values of head in every grid is generated, that is, (hF)i’ i=l....M.
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STEP 5
In every grid determine the tolerance limits on hF and the

width of the tolerance limit, t.

STEP 6

Randomly generate a new value of ’f)’i, i=l....5 in every grid
and repeat STEPS 2, 3, 4 and 5 until a sample m of tolerance limit
widths, t, in each grid is obtained. Each width will correspond to

a set of values of?ﬁi, 151es oo B

STEP 7

Using the theory of the Regression Model, Model III, Case 2,
find a predictive relation between t and ¥ "y i=l.... 5.

To fit the theory of the Regression Model for this multivariate

case, it is assumed that the joint density of t and ﬁi, i=l....5 is

given by,

Bt Bop i5leess B 2T, Imlh o B) oo g s

:Pi: s e o0 pl’ s o 00 i\l_z_‘rro't” P 2
t-G(p ., i=l....5)\ 2
(7)
o_tll

where,
G('f‘)'i, i=l....5) is a linear (in the coefficients ai) function of 6’1,

i=l,..,5, and, h(,“a’,l, i=l....5) is the marginal density of b’i,
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i=l.... 5 and does not contain ai, i=l....N or ¢ In this study

tll'
G(*) was taken to be a polynomial in f)’i, T2 PR

It follows from equation (7) that the conditional distribution of

t given (3, = fi': i=1....5) is f(t'"), where,

sl

£(t") = f(t;/ﬁii = ?)Mi’ i=1....5) =

b3 2
t - G(F%, i=l....
1 - 1 (pl, i=] 5)
'\I—Z_Trﬂ't” p 2' Utll
so that,
E (t") = E(t/§, = $%, i=1....5) =G(s’:, i=1....5)

It is now necessary to estimate the coefficients of the
polynomial G(*) and determine which of them are significantly
different from zero; that is, determine which terms in the polynomial
have to be considered in order to adequately represent the data. This
was done when G(*) was assumed to be a polynomial consisting
only of linear (in the variables) terms and when it consisted of
linear and quadratic (in the variables) terms. These two poly-

nomials can be written explicitly as,

5
G(*)= = oz“él where, B, =1 ,

i=0
and
5 5,5 .
. % ol 3k P
G()=Ealpi+2(2ap1"f).),L=6 ..20,p0=1.
i=0 i=1\j=1 ]
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For each polynomial, tests of hypotheses were made on the
coefficients ;s both individually and simultaneously, to determine
which coefficients were significantly different from zero. These
tests are described along with the results.

A regression model involving only errors in initial heads was
also investigated. This is described together with the reasons why
it was studied in the section on results.

For each of the regression models, involving tolerance
interval widths and estimates of standard deviations, that has been
described, an exactly similar model was studied relating estimates
of the coefficients of variation of the input variables and the final
head.

The results of the investigation of all of the above regression
models are presented in the following section, and the computer

program used for the investigation is described in Appendix 5.



RESULTS

I. CONFINED FLOW

I.A. Each Input Variable Considered Singly

A confined aquifer, divided into 20 square grids, was used to
determine the predictive relations between the errors in the input
variables, considered singly, and the error in the output. Six
variations of this 20 grid model were considered, which differed in
boundary conditions and the ''randomness'' of the data used. They
are described in Appendix 1.

For each of the 20 grids, in each of the 6 models, and for each
of the 5 input variables, the ''best'' polynomial relating errors on
hF to errors on the estimates of the input variables were deter-
mined. The results, when the measures of error on hF are tolerance
interval widths, are summarized in Table 1. The entries in the
table are the number of grids (out of 20) in which the ""best"
polynomial was linear, quadratic or cubic.

For some of the models the '"best' polynomial was deter-
mined between the estimates of the coefficient of variation of the
input and output variables. The results are given in Table 2. In
this table, o is the ''gradient' coefficient in the linear equation.

1

It indicates whether the error on the output variable is less than or
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greater than the error on the input variable. Since the
coefficients of variation are dimensionless, a value of @, less than
unity indicates that the error on output is less than the error on
input and a value greater than one indicates that the output error is
greater than the input error.

The following observations can be made from the results

given in Tables 1 and 2:

1) the majority of '"best'' polynomials, for all five input
variables, are linear, in both the ''tolerance-interval-
width'' regression model and the '""coefficient-of-
variation'' regression model;

2) for initial head, the mean value of o, is . 9747, in-
dicating that the error in initial head has an approximate
one-to-one relation (slope of regression line approxi-
mately unity) with the error in final head;

3) the mean values of ) for the other four input variables
indicate that the error on final head is two or three
orders of magnitude less than the input errors on these
variables.

These observations are made from results obtained for

comparatively short periods of time and so are valid only for these

time periods.



TABLE 1. INPUT VARIABLES CONSIDERED SINGLY.
POLYNOMIALS FOR "TOLERANCE-INTERVAL-WIDTH"
REGRESSION MODEL; CONFINED FLOW.

IIBEST "

MODEL"
TYPE OF
POLYNOMIAL | (i) (ii) | (iii) | (iv) (v) | (vi)
LINEAR 16 18 16 18 19 | 17
K QUADRATIC 3 2 1 0 1 0
CUBIC 1 0 3 2 0 3
g‘ LINEAR 16 16 16 17 16 | 16
&
i h, | QUADRATIC 1 1 1 1 1 1
© ;
Z CUBIC 3 3 3 2 3 3
&
< LINEAR NO 19 19 19 18 | 18
iz
Qs QUADRATIC | RUN 1 1 1 1 1
&)
. CUBIC 0 0 0 1 1
M
é LINEAR 19 19 18 18 20 | 17
<
> | b QUADRATIC 1 0 0 1 0 1
2
o CUBIC 0 1 2 1 0 2
&
LINEAR 17 17 17 17 17 | 17
Q QUADRATIC 2 2 2 2 A 2
CUBIC 1 1 1 1 1 1

Entries in the table are, for each model and each input variable, the
number of grids (out of 20) in which the ''best' polynomial was linear,

quadratic or cubic.

*Each model is described in Appendix 1.




TABLE 2. INPUT VARIABLES CONSIDERED SINGLY .

"BEST" POLYNOMIALS FOR "COEFFI-
CIENTS-OF-VARIATION'" REGRESSION MODEL; CONFINED FLOW.

TYPE OF POLYNOMIAL RANGE ON MEAN OF
a,” IN THE a; IN THE
LINEAR QUADRATIC CUBIC 70 GRIDS 20 GRIDS
g K 19 1 0 .001533 .006447
gé Model (v) .015160
&
&
Z hy 17 0 3 .830 L9747
E Model (iii) 1.093
<
H
z
O S 19 0 1 .000054 .001644
; Model (v) .004045
|
M
5 b 18 2 0 .000103 .00216
Eg Model (v) .007558
>
H
E Q 19 1 0 .000378 .00125
Z | Model (v) .002495

Integer entries in the table are,for each input variable, the number of grids (out of 20) in which the
'best' polynomial was linear, quadratic or cubic.

*
a
1

is the ''gradient coefficient' in the linear polynomial.

0¢
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I.B. Input Variables Considered Simultaneously

A confined aquifer, divided into 20 square grids, was used to
determine the relations between the errors in the input variables,
considered simultaneously, and the output variable. Two basic
regression models were considered, a 6-coefficient model and a 21-
coefficient model. In terms of tolerance interval width and

estimates of standard deviations these can be written,

5
N o— ~ % ~
E(t)—.z a Bl where Po=1>
i=0
and
5 5 5
! = 57 B * % = e o 0 o ~>k= 0
E(t") .2 aipi+.2 <.Z. aLpipj), L=6 20, Po 1
i=0 i=]1 \j=1

Similar models relating estimates of coefficients of variation
on input and output were also investigated, so that four models in
all were studied.

The 6-coefficient model was studied over four time steps
covering a 110 day period and the 21-coefficient model over one
time step of 20 days.

The boundary conditions and data used to study these models
are given in Appendix 1, and the results are summarized in Tables
3, 4, 5, 6 and 7. Table 3 gives the number of grids (out of 20), in
which the hypotheses, HO: [ (ozi:0, aj unspecified) , i=0,...5,

j=0....5, j#i] , HO:[(aO,al,az,a ,a5) = 0, @, unspecified ],

3
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HO:[(a N

7%, %, 5) = 0,(a0,a4) unspecified |, were rejected at the

95% level in the 6-coefficient regression models. Table 4 indicates
whether, for the 6-variable 'coefficient-of-variation'' regression
model, the estimates of the regression coefficients tended to
increase or decrease with time and whether they tended to be
positive or negative throughout the study period. Table 5, for the
6-variable model, indicates the way in which the sum of squares of
deviations from the regression line changed with time, and Table 6
gives typical estimates of the regression coefficients in one grid for
the 6-variable ''coefficient-of-variation' regression model. Table
7 gives the number of grids (out of 20) in which the hypotheses
Ho(ozi = 0, i=0....20) were rejected at the 95% level in the 21-
coefficient regression model.

The following observations can be made from the results given

in Tables 3-7:

1) from Table 3 it can be seen that only the error in initial
head is of significance in predicting the error in final
head up to 110 days, and that the predictive relation is
linear and, from Table 6, initially one-to-one,

2) from Table 3 the coefficients g al, az, a5y ag are
non-significant from zero both individually and

simultaneously,
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3) from Tables 4 and 6, the regression coefficient as-
sociated with error in initial head, a4, decreases
monotonically with time, but is always positive,

4) from Tables 4 and 6, the constant regression coefficient,
gy tends to increase with time, but up to 110 days does
not become significantly different from zero,

3’ %5

5) from Table 4, the regression coefficients @), oy
do not show any discernable trends and are as liable to
be negative as positive,

6) from Table 5, the sum of squares of deviations tends to
decrease with time up to 110 days,

7) from Table 7, none of the product terms introduced by
using the 21-coefficient model is significantly different
from zero and the error in initial head remains the only
significant input error in predicting the error in final
head.

For the 21-variable '"coefficients-of-variation' regression
model, the hypothesis, HO:[ (ao, Peee@as Qg .ozzo) = 0], was
tested at the 95% level and accepted in 19 of the 20 grids, indicating
that these coefficients are simultaneously non-significant, and that
for this regression model, as well as the 6-variable model, the
error in final head is linearly related to the error in initial head.

The results for the 21-coefficient regression model given in

Table 7 were obtained using 100 data points. A run was made using
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TABLE 3. INPUT VARIABLES CONSIDERED SIMULTANEOUSLY;
6-COEFFICIENT REGRESSION MODEL; CONFINED
FLOW.
'"TOLERANCE-INTERVAL- 'COEFFICIENT-OF-
WIDTH!' VARIATION'
REGRESSION MODEL REGRESSION MODEL
RESULTS AT END RESULTS AT END
OF TIME STEP OF TIME STEP
REGRESSION T
COEFFICIENT | 1 2 3 4 1 2 3 4
NUMBER OF GRIDS, ' ) 0 0 0 0 0 0 0 0
OUT OF 20, IN a, 0 1 0 0 0 1 0 0
WHICH REJECT a, 1 0 0 0 1 1 1 1
H:(a.=0)AT a 21 21212 |o}jo|o |oO
o i 3
95% LEVEL, AT a, 20 |20 (20 |19 |19 |19 |19 |19
THE END OF EACH o 0 0 0 1 2 2 2 2
TIME STEP
NUMBER OF GRIDS IN WHICH
REJECT H :(a,.,a_,a,,a_,a_)=(
o ' 0 2 10 0 0 0 1 2 2 2
AT 95% LEVEL A”f‘ END3 8
OF EACH TIME STEP
NUMBER OF GRIDS IN WHICH
REJECT H : (a,,a,,a,,a.)=0
o ‘7172 %3275 ol ol oo 221|212
AT 95% LEVEL AT END
OF EACH TIME STEP




TABLE 4.

CONFINED FLOW.
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INPUT VARIABLES CONSIDERED

SIMULTANEOUSLY. NATURE OF ESTIMATES OF RE-

GRESSION COEFFICIENTS IN 6-VARIABLE,

CIENTS-OF-VARIATION' MODEL.

'COEFFI-

TIME CHANGE OF NO OF ESTIMATES WHICH
ESTIMATES OF WERE ENTIRELY POSITIVE
REGRESSION COEFFICIENT OR NEGATIVE WITH TIME
INCREASE | DECREASE | BOTH | POSITIVE [NEGATIVE | BOTH
13 5 2 12 8 0
11 7 1 7 12 1
9 8 3 7 13 0
9 8 3 9 9 2
0 20 0 20 0 0
10 7 3 11 8 1
TABLE 5. CONFINED FLOW. INPUT VARIABLES CONSIDERED

SIMULTANEOUSLY. TIME CHANGE OF SUM OF
SQUARES OF DEVIATIONS IN 6-COEFFICIENT MODEL.

INCREASE

-

DECREASE | MINIMUM

o

N

MAXIMUM

s

'"TOLERANCE-
INTERVAL-WIDTH'

REGRESSION MODEL

15

'COEFFICIENT-OF -

VARIATION'

REGRESSION MODEL

16




TABLE 6.
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TYPICAL ESTIMATES OF THE REGRESSION COEFFI-
CIENTS IN THE 6-VARIABLE 'COEFFICIENTS-OF -
VARIATION' MODEL. INPUT VARIABLES CONSIDERED
SIMULTANEOUSLY; CONFINED FLOW.

RESULTS AT END OF TIME STEP:

] 2 3 4
=
4 2 .001091 .001566 .002437 .003229
E @ -.00077 -.00079 -.00091 -.00109
By
8 a, -.02295 -.02484 -.02784 -.03000
O
> a, -.00787 -.00922 -.01137 -.01289
o)
2 a .9795 .9500 .8938 .8398
2 4
f a, .00956 .00910 .00863 .00864
|
o
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TABLE 7. CONFINED FLOW. INPUT VARIABLES CONSIDERED
SIMULTANEOUSLY. 21-COEFFICIENT REGRESSION

MODELS.
'"TOLERANCE- '"COEFFICIENT-OF -
INTERVAL-WIDTH' VARIATION'
REGRESSION MODEL REGRESSION MODEL
a9 01 0
o, 1 11
a, 0 1
a, 1 1!
a, 19 19
a. 0 1
a 1! 14
a, 11 11
0.8 11 1l
a9 0 1
%0 0 0
a4 03 Od
a5 4 3
a3 1 li
@4 O2 21
a . 21 2l
O 1 2
a5 12 21
1 %18 . °
! (119 0 1
%0 0 2

Entries in table are number of grids (out of 20) in which hypothesis
Hozai = 0 was rejected at 95% level.

Superscripts on entries in table are number of times coefficient was
negative and significantly different from zero.
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only 40 data points but did not give definitive results. Compared to
Table 7, the number of times the null hypothesis was rejected on
this run was fewer for all of the variables. This indicates that the
power of the test of the hypothesis HO: [ @ =0, i=0.... 20], in-
creases with increasing number of data.

In view of the results obtained with these two regression
models, indicating the dominant influence of the error in initial head,
a regression model involving only errors in initial head was in-
vestigated.

For any one grid it was defined by,

1y — $ ~ %K ~ 3k 4 ~OR 4 ~ oK
E(ty) = o, al(phl)0+a2(phl)l oz3(phl)2 a4(phl)3

with a similar model relating the

estimates of the coefficients of 2
variation of input and output. The 3 0 1
subscripts refer to a pattern of grids

4
as in Figure 2. This model takes
into account the influence that FIGURE 2

errors in initial head in neighboring
grids have on the error in final head in any one grid. The data
used was the same as for the 6-variable regression model which

has just been described. The results are given in Tables 8, 9, 10.
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The nature of the 20 grid model meant that only grids 7, 8, 9, 12,
13, 14 (see Figure 3) had four neighboring grids as shown in Figure
3. Grids 1, 5, 16, 20 had two

neighboring grids and grids 2,

3: 4’ 6: 10: 11: 15: 17: 18: 19: 1 2 3 4 5

had 3 neighboring grids. For this 6 |78 9|10

reason, depending on which grid 11 712) 13/ 14]15

was being considered, the __16 o el

regression model involved 6, 5, or FIGURE 3
4 coefficients. Thus, in Tables 8

and 9, aO is the constant coefficient, ozl is the coefficient associated

with error in initial head in the grid being considered and o consists
of all the coefficients associated with errors in initial head in
neighboring grids. For all 20 grids, there are therefore, 20
estimates of g and @, and 62 estimates of a* .

Table 8 gives the number of times that the hypotheses,
Hyie; = 0, i=0, 1, aica*), H,
rejected at the 95% level. Table 9 indicates whether, in the

: [a ,a*] = HO:[a*] = 0, were

0
""coefficient-of-variation'' model, the estimates of the regression
coefficients tended to increase or decrease with time, and whether
they tended to be positive or negative throughout the study period.
Table 10 indicates the way in which the sum of squares of deviations

from the regression line changed with time.
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The following observations can be made from the results given

in Tables 8, 9, 10:

1)

2)

from Table 8 it can be seen that only the error in initial
head in the grid being considered is of significance in
predicting the error in final head up to 110 days, and
that the predictive equation is linear. Initially, it is
also approximately a one-to-one relation,

from Table 8, the coefficients @y o® are non-
significant both individually and simultaneously in
predicting the error in final head up to 110 days,

from Table 9, the regression coefficient associated
with error in initial head, al, decreases monotonically
with time but is always positive,

from Table 9, the constant coefficient, g shows a
tendency to increase with time, but up to 110 days does
not become significantly different from zero,

from Table 9, the coefficients associated with errors in
initial head, o", do not show any discernable trend and
are as liable to be negative as positive,

from Table 10, the sum of squares of deviations from

the regression line tends to decrease with time up to

110 days.
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TABLE 8. CONFINED FLOW. RESULTS FOR REGRESSION MODEL
INVOLVING ERRORS ON INITIAL HEAD.

'"'TOLERANCE-INTERVAL- 'COEFFICIENT-OF-
WIDTH!' VARIATION'
REGRESSION MODEL REGRESSION MODEL
TIME
TEP| 2 3 4 1 |2 |3 4
COEFF.

a, 0 0 o |l ofl olol]o| o

o, 18 |18 |18 |18 || 18 |18 |18 | 18
o* 32| 32| 43| 3% o |o | 1t] 1t

NUMBER OF GRIDS
IN WHICH REJECT
Hyt [2, %] =0
AT 95% LEVEL

NUMBER OF GRIDS
IN WHICH REJECT
Ho: [a*] =0

AT 95% LEVEL

Superscripts on entries in table are number of times regression
coefficient was negative and significantly different from zero.

o™ consists of all coefficients associated with errors in initial head
in neighboring grids.

The entries in the table opposite o™ are the number of times (out of
62) that the hypothesis Hya; = 0 was rejected for any of the coeffi-
cient in a*,

The entries in the table opposite aps @, are the number of grids (out
of 20) in which the hypothesis, HO: a; =0, i =0, 1, was rejected.
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TABLE 9. CONFINED FLOW. NATURE OF ESTIMATES OF RE-
GRESSION COEFFICIENTS IN THE 'COEFFICIENTS-
OF-VARIATION' MODEL INVOLVING ERRORS ON
INITIAL HEAD.

TIME CHANGE OF NO. OF ESTIMATES WHICH
ESTIMATES OF WERE ENTIRELY POSITIVE
REGRESSION COEFFICIENTS OR NEGATIVE WITH TIME

INCREASE | DECREASE | BOTH| POSITIVE | NEGATIVE | BOTH

a, 12 6 2 8 11 1
o, 0 20 0 20 0 0
a* 26 30 6 33 28 1

TABLE 10. CONFINED FLOW. TIME CHANGE OF SUM OF
SQUARES OF DEVIATIONS IN REGRESSION MODEL
INVOLVING ERRORS ON INITIAL HEAD.

INCREASE DECREASE MINIMUM

o N | A

INTERVAL-WIDTH' 2 16 2
REGRESSION MODEL

'"COEFFICIENT-OF -
VARIATION!' 1 19 0
REGRESSION MODEL
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A comparison of the sum of squares of deviations in the above
model involving only errors in initial head and the previous 6-
variable model, shows that the sum of squares was less throughout
the study period in the 6-variable model in about 60% of the grids and

greater in the other 40%.

II. UNCONFINED FLOW

II. A. Input Variables Considered Simultaneously

A confined aquifer, divided into 20 square grids, was used to
determine the relations between the errors in input variables,
considered simultaneously, and the output variables. The following

regression model was studied,

%K
P+ a

ny — ~ ~ ot

0% P Tidg

Ps

and a similar model relating estimates of coefficients of variation
on input and output variables.

Results were obtained for this model with runs of one time
step (20 days), 6 time steps (240 days) and 10 time steps (440 days).
The boundary conditions and data used in these runs are given in
Appendix 1. The boundary conditions were defined to be constant
gradients throughout a time step, but were allowed to change
randomly with each time step. Impermeable boundaries and constant
head boundaries are special cases of such boundary conditions, and

so they are considered to be quite general.
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The results are summarized on Tables 11-18. Tables 11, 12,
15 give the number of grids in which the hypotheses, HO: [(ozi =0, ozj

unspecified), i=0....5, j=0....5, j#i] and HO:[(ao,al,az,a3, a5) =0,

a, unspecified] were rejected at the 95% level for the 1, 6 and 10

4
time step runs respectively. Table 15 also gives similar results

for the hypothesis, HO:[(a B

1?%yr @prag) =0, g0 a,) unspecified] .

Tables 13 and 16 give, for the ''coefficient-of-variation' regression
model, the number of grids in which the estimates of the regression
coefficients increased or decreased with time, and the number of
grids in which the estimates of the regression coefficients were
either positive or negative throughout the study period for the 6 and
10 time step runs respectively. Table 14 gives, for the 'tolerance-
interval-width' regression model, the way in which the sum of
squares of deviations from the regression line changed during the
study period in the 6 time step run. Table 17 gives the way in which
the sum of squares of deviations changed in the 10 time step run and
Table 18 gives a typical set of estimates of the regression coefficients
for one grid in the 10 time step run of the 'coefficients-of-variation'
model.

The following observations can be made from the results given
in Tables 11-18:

1) from Tables 11, 12, 15 it can be seen that the error in

initial head is significant in predicting the error in final



45

head up to 440 days, and that up to about 140 days the
relation is linear, and from Table 18 it is initially one-
to-one,

2) from Tables 11, 12, 15, the coefficients . az, a3, a5
are not significantly different from zero both individually
and simultaneously up to 440 days,

3) from Tables 13, 16, and 18, the constant coefficient,

o tends to increase with time, and from Tables 12 and

0’
15 it can be seen that after about 200 days it can no longer
be considered to be not significantly different from zero,

4) from Tables 13, 16 and 18 the regression coefficient
associated with the error in initial head, a, decreases
monotonically with time but is always positive,

5) from Tables 13, 16 and 18 the coefficients aps @y @

a_., do not show any discernable trends and are as

5’
liable to be negative as positive,

6) from Table 14, the sum of squares of deviations tends
to decrease with time up to 240 days, and Table 17 in-
dicates that in general this decrease continues up to 440
days, but that in an increasing number of grids a turning
point is reached.

As in the study of confined flow, because of the dominant

influence of the error in initial head in predicting error in final



TABLE 11.

UNCONFINED FLOW.
SIMULTANEOUSLY .

46

INPUT VARIABLES CONSIDERED
1 TIME STEP (20 DAYS)

'"TOLERANCE-
INTERVAL-WIDTH'
REGRESSION MODEL

'COEFFICIENTS-OF -
VARIATION'
REGRESSION MODEL

TIME

COEFF.

STEP

NUMBER
OF GRIDS a

(OUT OF 20)
IN WHICH a

REJECT
H:a.=0 a
le) %

AT
95% LEVEL a

20

20

NUMBER OF GRIDS
IN WHICH REJECT

Ho: [(10 al a, a3a5] =0

AT 95% LEVEL
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TABLE 12a. UNCONFINED FLOW. INPUT VARIABLES CON-
SIDERED SIMULTANEOUSLY. 6 TIME STEP (240

DAYS)
'"TOLERANCE-INTERVAL-WIDTH!
REGRESSION MODEL
TIME
STEP
1 2
COEFF. ? 4 2 e
a 11l o 0 0 2 3
0
NUMBER
OF GRIDS “1 1 ¢ 1 1 1 4
(OUT OF 20) 1 1
0
IN WHICH % 1 : 0 0 ¢
REJECT 1 1 2 1 1 1
e a, 1 1 2 1 1 1
o 1
AT
20 | 20 |20 |20 |20 0
95% LEVEL %4 2
1 1 1 1 1 1
%5
NUMBER OF GRIDS
IN WHICH REJECT . . X , . ,
Hy 2 [ao, a;, Gy, Gy (15] =0
AT 95% LEVEL

Superscripts on entries in table are the number of times the coeffi-
cient was negative and significantly different from zero.
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TABLE 12b. UNCONFINED FLOW. INPUT VARIABLES CON-
SIDERED SIMULTANEOUSLY. 6 TIME STEPS (240

DAYS)
'"COEFFICIENT-OF-VARIATION'
REGRESSION MODEL
TIME
STEP
1 2 3
COEFF. * . 6
0
aO 0 0 1 1 4
NUMBER al 2 1 0 1 0 0
OF GRIDS
(OUT OF 20) a, 0 0 0 0 0 0
IN WHICH
REJECT a, 0 0 0 0 0 0
H :a.=0
o 1
AT a, 20 20 20 20 20 20
95% LEVEL
a 0 gt it ar | it
5
NUMBER OF GRIDS
IN WHICH REJECT Y 0 0 1 3 5 8
Ho.[ao, a,, Gy, Qg 0.5]_
AT 95% LEVEL

Superscripts on entries in table are number of times the coefficient
was negative and significantly different from zero.
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UNCONFINED FLOW.
SIDERED SIMULTANEOUSLY .

INPUT VARIABLES CON-

6 TIME STEPS.

NATURE OF ESTIMATES OF REGRESSION COEFFI-
CIENTS IN 'COEFFICIENTS-OF-VARIATION' MODEL.

TIME CHANGE OF
ESTIMATES OF

REGRESSION COEFFICIENTS

NO. OF ESTIMATES WHICH
WERE ENTIRELY POSITIVE
OR NEGATIVE WITH TIME

INCREASE

DECREASE

BOTH

POSITIVE

NEGATIVE

BOTH

19

0

6

2

12

6

11

8

10

12

el

20 0 20 0 0

11 4 11 5 4

TABLE 14.

UNCONFINED FLOW. INPUT VARIABLES CON-
SIDERED SIMULTANEOUSLY. 6 TIME STEPS. TIME
CHANGE OF SUM OF SQUARES OF DEVIATIONS.

DECREASE

\

MINIMUM

-

2 TURNING
POINTS

i~

MAXIMUM

'"TOLERANCE-
INTERVAL-WIDTH'
REGRESSION MODEL

16 2 1 1
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TABLE 15a. UNCONFINED FLOW. INPUT VARIABLES CONSIDERED SIMULTANEOUSLY. 10 TIME
STEPS (440 DAYS).

"TOLERANCE-INTERVAL-WIDTH' REGRESSION MODEL
TIME
TEP
1 ]2 |3|als 6] 7 g8 | o | 10
COEFF.
a 22l 2t i1 ]2 3]s 5| 6 6
NUMBER 0
OF GRIDS
o, ' B EETE BT EPEN BPE BTN BEPT N BT Bt
(OUT OF 20) 1 1
a oloflolo]lo|lo]o ol 1 1
IN WHICH 2
T 1 T 1 11 1 T 1 1
st 3t | 2 | 3t 3|3t 1 Tl 2
REJECT Q3
H :a =0
o i a, 20 |20 |20 |20 |20 |20 |20 |20 |18 | 17
e oo o |11 ]o]o o | 1t 1!
95% LEVEL %5
NUMBER OF GRIDS
IN WHICH REJECT
3 |3 |3 |4 |4 |67 (13|15 |17
(... a a a )=
Ho(o’ 1’ 2’ 3’ 5) 0
AT 95% LEVEL
NUMBER OF GRIDS
IN WHICH REJECT
3 |3 |33 |1 ]1]o0 o] o 0
H:@,a ,a_ a )=0
o G %%y @y
AT 95% LEVEL

Superscripts on entries in table are number of times the coefficients are negative and significantly
different from zero.
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TABLE 15b. UNCONFINED FLOW. INPUT VARIABLES CONSIDERED SIMULTANEOUSLY. 10 TIME
STEPS (440 DAYS).

'COEFFICIENT-OF-VARIATION' REGRESSION MODEL

TIME
STEP 1| 23| a4]|s5]| 6| 7 8 | 9 | 10
COEFF.
NUMBER 0.0 0 1 1 1 1 4 6 7 8 9
OF GRIDS
1 2
o Moo | o | 2t 2t 2t 2| R 22| 2
(OUT OF 20)
IN WHICH o, ol ololo|lol ol o o | o 1!
REJECT a 3 1 1 1 2 2 2 2 2 2 1
H : Cli =0
o a, 20 [20 [20 |20 |20 |20 |20 20 |20 20
AT
1
95% LEVEL a ol o o 12| 1| oY 1t 1] 2] 2t

NUMBER OF GRIDS
IN WHICH REJECT

H :(a,a aa ,a)=0
0(0’ 17273 5)
AT 95% LEVEL

NUMBER OF GRIDS

IN WHICH REJECT

H :(@a,a,a,a)=0
o @005 a)

AT 95% LEVEL

Superscripts on entries in table are number of times the coefficients are negative and significantly

different from zero.



TABLE 16.

52

UNCONFINED FLOW.

INPUT VARIABLES CON-
10 TIME STEPS.

SIDERED SIMULTANEOUSLY .
NATURE OF ESTIMATES OF REGRESSION COEFFI-
CIENTS IN 'COEFFICIENTS-OF-VARIATION' MODEL.

TIME CHANGE OF NO. OF ESTIMATES WHICH

ESTIMATES OF WERE ENTIRELY POSITIVE
REGRESSION COEFFICIENTS OR NEGATIVE WITH TIME

INCREASE |DECREASE | BOTH|| POSITIVE | NEGATIVE | BOTH
a 16 0 4 10 0 10
a, 4 8 8 8 4 8
a, 4 8 8 5 8 7
a, 7 2 11 10 4 6
a 0 20 0 20 0 0

4
ag 7 5 8 3 7 10
TABLE 17. UNCONFINED FLOW. INPUT VARIABLES CON-

SIDERED SIMULTANEOUSLY .

10 TIME STEPS. TIME

CHANGE OF SUM OF SQUARES OF DEVIATIONS.

DECREASE

N

MINIMUM

N

2 TURNING
POINTS

L~

3 TURNING
POINTS

Y

'"TOLERANCE-
INTERVAL-WIDTH'
REGRESSION MODEL

12

'"COEFFICIENT-OF -
VARIATION'
REGRESSION MODEL

13




TABLE 18. UNCONFINED FLOW. INPUT VARIABLES CONSIDERED SIMULTANEOUSLY. 10
TIME STEPS. TYPICAL ESTIMATES OF REGRESSION COEFFICIENTS IN
'"COEFFICIENTS-OF-VARIATION' MODEL.
COEFF.
g']l:‘I\E/:IlED a5 oy a, agz (14 a5
1 -.001229 .007663 .008883 .002526 .922341 .017935
2 -.000920 .007811 .006873 .002016 .788755 .016479
3 -.000319 .008345 .005124 .001167 .671388 .013862
4, .000421 .008984 .003835 .000131 .569848 .010888
5 .001386 .009615 .002816 .001228 .466938 .007113
6 .002309 .010023 .002188 .002438 .383043 .003723
7 .003138 .010189 .001767 .003377 .315063 .000897
8 .003858 .010146 .001470 .004039 .260380 -.001425
9 .004464 .009960 .001264 .004447 .216661 -.003295
10 .004961 .009684 .001118 .004615 .181704 -.004676

€9
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head, a regression model involving only errors in initial head was
investigated.

For one grid this can be written,

E(t) = ag + a,(¥, o T2 (B )y + oy ®, )y ey By )yt ey MO
I I I I I

where the subscripts refer to a pattern of grids as in Figure 2. A
similar model relating the estimates of the coefficients of variation
was also studied. The data used in studying this model was the
same as that which has just been described for the 10 time step run.
The results are given in Tables 19, 20, 21, where, o® has the same
definition as given for the confined flow model.

Table 19 gives the number of times that the hypotheses
Hy: (e, = 0), i=0, 1, o, c a*] , H: [(ao,a*) =0] and H: (o %0),
were rejected at the 95% level. Table 20 indicates whether, in the
"coefficients-of-variation'' model, the estimates of the regression
coefficients tended to increase or decrease with time and whether
they tended to be positive or negative throughout the study period.
Table 21 indicates the way in which the sum of squares of deviations
from the regression line changed with time.

The following observations can be made from the results given
in Tables 19, 20, 21:

1) from Table 19, the error in initial head in the grid being

considered is of significance in predicting the error in
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final head up to 440 days, but this significance decreases
after about 400 days, and up to 140 days the predictive
relation is linear. Initially, it was also approximately

a one-to-one relation,

2) from Table 20, o, shows a tendency to increase with
time, but this is not as marked as in the previous 10
time step model (see Table 16), and it is non-significant
up to about 300 days, after which, from Table 19, it
cannot be considered to be non-significant from zero.
Again, this is not as marked as in the previous 10 time
step model (see Table 15),

3) from Table 20, o" shows a tendency to be positive and
to increase with time, and from Table 19, it is non-
significant, both individually and simultaneously, up to
about 300-350 days, after which it cannot be considered
to be non-significant from zero,

4) from Table 20, o, decreases monotonically with time

1
and is positive,

5) from Table 21, the sum of squares of deviations from
the regression line shows a tendency to decrease with
time.

A comparison of the sum of squares of deviations in the above

model involving only errors in initial head and the previous 10 time
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TABLE 19a. UNCONFINED FLOW. RESULTS FOR REGRESSION
MODEL INVOLVING ERRORS ON INITIAL HEAD.
'TOLERANCE-INTERVAL-WIDTH'
REGRESSION MODEL
TIME
STER| 1 |2 |15 |4 |5 |6 |7 | 8 ke |10
COEFF.
a, 1 1 2l | 21 | 3 2 2 4 | 4|4
a, |20 |20 |20 |20 |20 |20 |20 |20 |18 [16
¥ 4 1 A 3 52 {6l | 4 156
NUMBER OF GRIDS
INWHICHREJECT 1 1 0 ] 5 | 8 |10 |15 |16 |17
, a ]
A‘I‘ 955} LEVEL
NUMBER OF GRIDS
IN WHICH REJECT | | : . . W e S

H,: [a¥] =
AT 95% LEVEL

a* consists of all the coefficients associated with errors in initial

head in neighboring grids.

The entries in the table opposite a, and a. are the number of grids

(out of 20) in which the hypothesis H

zZero.

o:[o‘i:

Superscripts on entries in the table are the number of times the
regression coefficient was negative and significantly different from

o [ai:

The entries in the table opposite o™ are the number of times (out of
62) that the hypothesis H

0,a,C a*] was rejected.

0, i=0, 1] was rejected.
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TABLE 19b. UNCONFINED FLOW. RESULTS FOR REGRESSION
MODEL INVOLVING ERRORS ON INITIAL HEAD
'COEFFICIENT -OF -VARIATION'
REGRESSION MODEL
TIME
STEP | 4 2 |3 |4a|s5]|6]7]8]|9 |10
COEFF.
a, 1 1 1 1 213136 68
@ 20 (20 |20 {20 |20 |20 |20 |20 |20 |18
a* 33 122 |20 |4 |4a|la|le6]| 9|10 |12
NUMBER OF GRIDS
RS LA 1 0o |1 4 | 9 |10 |15 |15 |17 |17
H :[apg a™] =0
AT 95% LEVEL
NUMBER OF GRIDS
IN WHICH REJECT . . i NPT B O e

HO: [a*] =0
AT 95% LEVEL

a* consists of all the coefficients associated with errors in initial
head in neighboring grids.

The entries in the table opposite ay and a
(out of 20) in which the hypothesis H_: [a;

are the number of grids
=0, 1% 01,1] was rejected.

The entries in the table opposite a® are the number of times (out of

62) that the hypothesis H_: [a

Superscripts on entries in the table are the number of times the

1

. =0

%k .
,a.Ca ] was rejected.

regression coefficient was negative and significantly different from

zero.
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UNCONFINED FLOW. NATURE OF ESTIMATES OF

REGRESSION COEFFICIENTS IN THE 'COEFFICIENTS-

OF-VARIATION' MODEL INVOLVING ERRORS ON

INITIAL HEAD.

TIME

CHANGE OF

ESTIMATES OF
REGRESSION COEFFICIENT

NO.OF ESTIMATES WHICH
WERE ENTIRELY POSITIVE
OR NEGATIVE WITH TIME

INCREASE

DECREASE

BOTH

POSITIVE

NEGATIVE

BOTH

11

2

7

13

2

5

0

20

0

19

28

27

21

32

TABLE 21.

UNCONFINED FLOW. TIME CHANGE OF SUM OF

SQUARES OF DEVIATIONS IN REGRESSION MODEL
INVOLVING ERRORS ON INITIAL HEAD.

\

DECREASE

MINIMUM

-

2 TURNING
POINTS

[l

3 TURNING
POINTS

T W

'"TOLERANCE-
INTERVAL-WIDTH'

REGRESSION MODEL

12

'COEFFICIENT-OF
VARIATION!'

REGRESSION MODEL

12
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step model shows that for small periods of time the sum of squares
is less in the 10 time step model than the initial heads model in
about 75% of the grids but after 440 days this is reduced to about
50%. However, it is noteworthy that after 440 days all of the grids
(7, 8, 9, 12, 13, 14) which have four neighboring grids have a
smaller sum of squares in the model involving only errors in initial

head than in the 10 time step model.



DISCUSSION OF RESULTS

In using a numerical model to study confined groundwater
aquifers the results of this study clearly indicate that when there is
an error in only one input variable, that this error is linearly
related to the error in output. For error in initial head, this re-
lation is approximately one-to-one for short time periods, but for
the other input variables the error on output is one or two orders of
magnitude less than the input error. These relations have been
demonstrated only for comparatively short periods of time. How
they change over long time periods and whether they hold for
unconfined flow have not been investigated, but in view of the
similarity of the results of the error relation for both confined and
unconfined cases when the input variables were considered
simultaneously, it is thought that for short periods of time similar
linear relations would hold for unconfined flow. However, extra-
polation of these results to longer time periods is considered
inappropriate without further study. Such study was not undertaken
because the situation in which all the input variables contain errors
is far more typical.

When the input variables to the numerical model are all
considered to contain error there is a marked similarity and

consistency between the results obtained for confined and unconfined
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flow. Outstanding amongst these is that the error in initial head is
the only significant input error so far as predicting the error in
final head is concerned. This result is compatable with the results
obtained when only one variable contained error. For small periods
of time the predictive relation between the error in initial head and
error in final head, in any one grid, is linear and initially it is
approximately one-to-one. The dependence of the error in final
head on the error in initial head, in any one grid, has been shown to
decrease with time, while, concurrently, the value of the constant
coefficient in the regression equation is increasing and the errors in
initial head in neighboring grids tend to become significant. The
errors on the input variables K, b (or z), Q and S are always non-
significant at the 95% level in predicting the error in final head.
Another consistent feature of the results is that the sum of squares
of deviations from the regression line has a marked tendency to
decrease with time.

The results do, however, show minor variations, both between
the confined and unconfined cases and between the different
regression models considered, that are worthy of comment.

For unconfined flow the significance of the errors in initial
head in neighboring grids is more marked, though this is possibly
due to the fact that results were obtained after a longer period of
time in the unconfined case, and it is then that these errors become

significant.
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For unconfined flow, the constant regression coefficient showed
a greater tendency to increase with time and become significant at
an earlier time in the regression model consisting of all five input
variables than the one consisting only of initial heads. This would
seem to be due to the greater significance that errors in initial head
have in predicting errors in final head. The fact that this difference
was not apparent for confined flow is probably due, again, to the
comparatively short length of study period.

There is also an indication that the sum of squares of
deviations from the regression line ceases to decrease after some
time, but results for longer study periods would be needed to
determine whether it begins to increase or becomes asymptotic.

An implication of these results, which is an apparent
contradiction, is that after a large time period the best predictive
equation for the error on final head will be E(t'"') = constant, and
that any regression coefficients associated with errors in input
variables will be non-significant. This implication is suggested by,

(i) error on initial head becomes less important with

time (even though it may remain significant in some of
the grids),

(ii) errors in K, b (or z), Q, S are never significant,

(iii) the constant coefficient increases in significance with

time.
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The implication would appear to be a contradiction because if
all errors in input variables are zero then the error in final head
should be zero for all time. However, the contradiction is only ap-
parent for the following reasons.

After a large period of time the error on the final head in any
one grid will be influenced by the errors on all the input variables
in all the grids of the model, but the contribution that each one of
these input errors makes to the final error will be small. There-
fore, the final error becomes a function of a large number of
variables each one of which contributes only a small amount. If this
function is assumed to be a linear (in the coefficients) function of all
the input errors, then it can be viewed as a ''flat'" surface in
n-dimensional space, since all the coefficients will be small and
represent gradients. This ''flat' surface could be closely approxi-
mated by a constant over a large range of values of the input
variables. Thus, if a regression equation is fitted to data obtained
after a large time only the constant coefficient would appear to be
significant. This does not imply that the error on final head is
independent of the input errors, only that after a large period of
time the contribution of each of these input errors is so small as to
be statistically non-significant. Nor does it preclude the case of
zero error on final head when input errors are zero.

It is reasonable to assume that the value which the constant

takes on is determined far more by the errors in initial head than by
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the errors on other input variables, even though all of them are
statistically non-significant.

The conclusions drawn from this study are strictly only
applicable to the models (physical and regression), data and time
periods considered. However, the general nature of the physical
models used and the consistency and acceptability of the results
obtained from the regression models which have been considered
suggests that these two criteria are not too restrictive in making
general use of the results. So far as the data is concerned, it should
be noted that the errors on K, b(or z), Q, S have been shown to be
non-significant compared to the error on hI only when the errors are
measured with respect to the true mean values of the variables in a
grid and only for the range of errors which has been considered.
Thus, gross errors on any one of the input variables or extreme
differences between the estimated and true mean values of the input
variables would probably significantly influence the estimates of
final head and its accuracy. For instance, if discontinuities occur
in the spatial change of the true values of one of the input variables,
as at fault zones or with abrupt lithological changes, and go undetected,
then the results obtained from the application of the procedures of
this study would be erroneous. It is therefore incorrect to conclude
that any values of K, b (or z), Q, S can be used as input to the

model without having any effect on the output, whereas, it is
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correct to conclude that any values of these variables which are
within these ranges of error of the true mean values would not
significantly change the prediction of final head and the accuracy of
the prediction. Also, the data used in this study is typical of
Colorado aquifers and the applicability of the results to different
types of data has not been demonstrated. The fact that, in the
"coefficients-of-variation'' models, dimensionless quantities have
been considered, indicates that the results should be applicable to
many situations. However, the results may not be applicable where
the data which greatly differs from that used in this study. The
extrapolation to longer time periods is more hazardous and should

only be done with great care.



APPLICATION OF RESULTS

The experimental procedures used in this study and the results
obtained have a number of applications and implications in ground
water hydrology. Some of these will be indicated and elaborated
upon in the following discussion. They fall generally in the areas of
data collection, economics of aquifer management, and the
relations between accuracy of results and number of field observations
available.

Perhaps the most obvious application to which the results and
techniques of this study can be applied is to the case in which data
is available on the input variables in an aquifer and it is required to
predict the water table elevation at some future time and estimate
the accuracy of the prediction. This could be done as follows:

1) using equations (4) and (5) compute ;I:{, i (or ;), 5,

g, iI and p .+ i=l....5 in all grids, from available
field data,

2) using the Monte Carlo technique, as applied in this
study, generate a random sample of hF for the specified
future time,

3) in every grid compute a tolerance interval on hF. This
tolerance interval can be used as the prediction of the

final head and the width of the interval as a measure of
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the accuracy of the prediction. This procedure does

not take into account the influence that the differences
between the true mean value of a variable in a grid and
the estimate of this value and between Ei and Py have on
the predicted value of final head and the estimate of the
accuracy of the prediction. Using permeability as an
example, it is conceivable that |I={—-I-{_| could be large and

that,;)K <Py This would result in the prediction of

the final head being incorrect, since random values

2

K/

would be generated from N(IZ{, '{512{) instead of N(E, P

and in assigning a greater accuracy to this prediction

than is justified. However, the probability that |I:{-E|

is large is very small and decreases with increasing

sample size, and it is more probable that :K will be

larger than Pr than smaller. Also, the errors on the

variables, K, b(or z), Q and S have been shown to be

non-significant, so that the consequences of the above

assumption are further diminished.

Having obtained the tolerance interval in every grid from

available data it might then be desirable to determine how much more
field data, and on which variables, would be required to improve the

accuracy of the prediction (that is, decrease the width of the

tolerance interval) by a specified amount. This can be accomplished
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by making use of the fact that the results of this study indicate that,
after any period of time, only the errors in initial head, of all the
input errors, are significant in predicting the error in final head.
Therefore, to reduce the tolerance interval width it is necessary to
reduce the error in initial head. This study has established the
validity of this predictive relation but has not investigated in detail
the time dependence of the coefficients in the predictive equation.
Thus, for a particular grid of any aquifer after an arbitrary time,

it is not possible to simply specify the desired value of tolerance
interval width and then solve the prediction equation for the necessary
values of errors on initial heads that will achieve this specified
value. For this reason a simple trial and error procedure will be
described to arrive at these specified values of errors in initial
heads. For small periods of time only the error in initial head in
the grid under consideration is of significance in predicting the error

in final head, that is;

B} e -
E(t )—a0+al P

Thus, to obtain a decrease in the tolerance interval width from
E(t'a') to E(t't')), where ta is the computed width corresponding to

(“F')hl) , estimated from the available field data, and tb is the desired
a

'b 2
that will give the width E(t‘]'o). This value is easily determined by

width, it is necessary only to find the value of ’E)h , say (ﬁh )
i I
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trial and error. Now, from equation (5),

£(X..) ’

(ﬁhI)a N n_ ji

and the term | ’&h f(in)] is approximately the same for any value
I
of n and is known. Therefore, the total number of observations

is n. , where,

needed to obtain an error (Bh )b b

I
2

V_na (ﬁhl)a
V[

(py )
th

and the extra number of observations needed is (nb - na).

For larger periods of time the error in initial head in grids
neighboring the one under consideration become significant. There-
fore, the procedure described above for small time periods would
have to be modified to include these neighboring grids but is other-
wide directly applicable.

This determination of the number of additional observations
needed to obtain an improved accuracy on the predicted value of head
immediately raises the economic question of whether or not the
value to be gained from the increase in accuracy is ''worth'' the cost
of obtaining the extra data. This question and similar ones which
occur in aquifer management can be approached using the results

of this study.
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A further implication of the results of this study is in the
design and operation of observational data networks. It is clear that
greatest emphasis should be given to obtaining water table elevation
data and considerably less emphasis to the determination of other
aquifer parameters.

The procedures and techniques developed in this study are
basically to be used for predictive purposes. However, where
historical data is available, as on water table elevations, the
combined use of "'matching' techniques and this predictive model is

possible.



CONCLUSIONS

The following conclusions can be made, subject to the

restrictions described in the section on discussion of results.

For confined flow, when only one input variable is considered

to contain error, the following conclusions can be made for short

time periods:

i)

iii)

errors on input variables and final head are linearly
related,

for initial head this relation is initially one-to-one,

for K, b, S and Q the error on output is one to two orders

of magnitude less than the input error.

For both confined and unconfined flow, when the errors on

input are considered simultaneously, the following conclusions can

be made:

i)

ii)

iii)

the error in initial head is the only significant error in
predicting error on final head in any one grid,

for short periods of time these errors on input and output
are linearly related and initially are one-to-one,

the importance of the error in initial head in predicting
error in final head decreases with time and the errors

in initial head in neighboring grids become significant,
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iv) after long time periods the error on final head approaches
a constant value, where the constant is considered to be

a function of all the input errors.



RECOMM ENDATIONS

One of the results of this study is that after large periods
of time the predicted value of accuracy of final head in any one grid
is equal to a constant. The time-dependence of this constant value
is worthy of further detailed investigation. Also, the applicability
of the results of this study to groundwater systems in which extreme
errors occur in the field data or where large and abrupt spatial
changes in the values of the input variables are present should be
further studied.

The results of this study provide a basis for an economic
analysis of ground water systems dealing with the general problem of

benefit and cost of data collection.
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APPENDIX 1

I. CONFINED FLOW

A. EACH INPUT VARIABLE CONSIDERED SINGLY

The relation between the estimates of standard deviation of
each of the variables hI’ K, S, b, Q and the tolerance width on hF

were determined for the following models:

MODEL (i)

The confined aquifer was divided into 20 square grids, with
boundaries as shown in Figure A.1.1. Values were assigned to all

of the input variables as shown in Table A. 1. 1.

Column 1 2 3 4 5
$ 4 4 4 4
MPERMEABLE BOUNDARY

Constant Constant
Head Head
Boundary Boundary
H H
o 1

IMPERMEABLE BOUNDARY
Fig. A.1.1. PLAN VIEW OF MODEL (i)

MODEL (ii)

The model and model boundary conditions were the same as
for Model (i), but the values of the input variables were randomly

generated. Each variable, except the one for which the error
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relation was being determined, was assigned a maximum, median
and minimum value and in each grid a random value of the variable
was generated from a triangular distribution based on these three

numbers.

MODEL (iii)

This was the same in all respects as Model (ii) except that the
mean value of the variable for which the error relation was being
determined was, in each grid, generated from a triangular
distribution. The standard deviations of K, S, b, Q were computed

from these randomly generated mean values.

MODEL (iv)

This model is the same as Model (iii), except that results

were obtained at the end of 3 time steps.

MODEL (v)

In Models (i) - (iv) the constant head boundaries Ho, Hl’ were
equal throughout the run. In this model they are assigned different
values. Also in the first four models the values of initial head in
each grid had been generated from the same triangular distribution.
For this model the triangular distributions were different between

columns in the model. This difference between the columns was

made compatable with the values assigned to HO and Hl'
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MODEL (vi)

For this model,the 20 grid model was assumed to have
constant gradient boundaries (Figure A.1.2). At each boundary grid
the constant gradient boundary was randomly generated from a

triangular distribution.

CONSTANT GRADIENT

GTOP
CONSTANT CONSTANT
GRADIENT, GRADIENT,
GLEFT GRITE

CONSTANT GRADIENT
GBOT

Fig. A.1.2. PLAN VIEW OF MODEL (vi)

The objective in studying all the above models was to take into
consideration all of the types of boundary conditions which are
normally met in ground water systems (but not of course all possible
combinations) and also to progress to the stage at which all the data
used in the models was being randomly generated. Any results
obtained for the latter condition can more reasonably be expected to

be generally valid.

The actual data used in the models is given in TABLE A. 1. 1.



INPUT VARIABLE CONTAINING ERROR:

K hI S b Q
Ho’H1(FT) 100 200 200 200
hI(FT) 100 -- 200 200
b(FT) 50 75 --- 75
Q(FT 3/DAY) 5000 5.10° 5.105 -
S - .2 o2 i 2
MODEL K(FT/DAY) - 100 NO RUN 100 100
(1) " 100 200 75 5.10°
p 5(5) 35% 2(2)16 +625(.625)6.25 12.103(12.103)
12.104
DX,DY (FT) 1000 10000 10000 10000
DT(DAY) 50 40 10 10
i NT 1 1 1 1
¢4 = Mean value of variable containing error NT = Number of time steps
p = Standard deviation of variable *5(5)35 = 5, 10, 15, 20, 25, 30, 35

DX = DY = Grid dimensions

DT = Time step size

TABLE A.1l.1la

e sle
RS

Maximum, median and minimum
values defining triangular
distribution.

DATA USED IN MODELS (i) - (vi)

6L



INPUT VARIABLE CONTAINING ERROR:

K hp S b Q
H_,H (FT) 100 200 200 200 200
“h(FT) 55-100-145%% ——r T00-200-300 | 100-200-300 |T00-200- 300
b(FT) 45-50-55 70-75-80 55-75-95 - 55-75-95
Q(FT3/DAY)| .1-.2-.3  0-5.105-1.106 0-5.105-1.106 | 0-5.105-1. 106 i
S 0-5000-10000 | .1-.2-.3 ~mm odFon3 Vadmalia 3
MODEL| K(FT/DAY) _— 1-100-199 1-100-199 1-100-199 | 1-100-199
(ii) u 100 200 .2 75 5.10°
p 3(3)27 2(2)16 .004(.004).04 |.625(.625)6.25 12.103(12.103)
12. 104
DX, DY (FT) 1000 10000 10000 10000 10000
DT(DAY) 50 40 10 10 10
NT 1 1 1 1 1

TABLE A.1.1

.b (cont.)

08



INPUT VARIABLE CONTAINING ERROR:

K hp S b Q
H,, H{FT)
hi(FT)
. DATA AS DATA AS | DATA AS DATA AS DATA AS
e MODEL (ii) MODEL (ii)| MODEL (ii) MODEL (ii) MODEL (ii)
Q(FT3/DAY)
S
MODEL| K(FT/DAY)
(iii) u 1-100-199 175-200-225| .1-.2-.3 55-75-95 1.10°-5.105-9,10°
PMIN (u/3.7)/8.0 | <ce-a- (u/5.0)/10.0 (100-u/4)/10 (u/5)/10
P PvN PMIN®PMIN 2(P)16 Py P POPhan | PN M 10PN P M N 0PN
DX, DY (FT)| 1000 10000 10000 10000 10000
DT(DAY) 1 20 10 10 10
NT 1 1 1 1 1

TABLE A.1l.1l.c

(cont.)

I8



INPUT

VARIABLE CONTAINING ERROR:

h;

S

b

MODEL
(iv)

H ,H(FT)

1

1

h(FT)

b(FT)

Q(FT3/DAY)

S

K(FT/DAY)

DATA AS

DATA AS

DATA AS

DATA AS

DATA AS

1%

MODEL (iii)

MODEL (i)

MODEL (iii)

MODEL (iii)

PMIN

MODEL (iii)

P

DX, DY (FT)

DT(DAY)

NT

Vi
S

TABLE A.1.1. d (cont.)

Z8



INPUT VARIABLE CONTAINING ERROR:

K by s b Q
H_(FT) 130 230 260 260 260
H, (FT) 70 170 200 200 200
hy (FT) HMEAN-25 HMEAN | --ce-cee-e- HMEAN-100 HMEAN | HMEAN-100 HMEAN | HMEAN-100 HMEAN
HMEAN+25 HMEAN+100 HMEAN+100 HMEAN+100
HMEAN (FT) 120(10)80 220(10) 180 250(10)210 250(10)210 250(10)210
b (FT) ] l |
Q(FT3/DAY) DATA AS
s MODEL (iii)
MODEL | K(FT/DAY)
) " DATA AS HMEAN-25 HMEAN DATA AS DATA AS DATA AS
HMEAN+25
P MODEL (iii) * MODEL (iii) MODEL (iii) MODEL (iii)
P
DX, DY (FT) DATA AS
DT(DAY) MODEL (iii)
NT

i

TABLE A.1.1.e (cont.)

€8



INPUT VARIABLE CONTAINING ERROR:

K hy S b Q
HMEAN(FT) .
hy(FT)
b(FT)
Q(FT3/DAY)
S
K(FT/DAY)
7}
MODEL - DATA AS DATA AS DATA AS DATA AS DATA AS
(i) b MODEL (iii) | MODEL (iii) | MODEL (v) | MODEL (v) | MODEL (v)
DX, DY(FT)
DT(DAY)
NT V
GTOP(FT) 0-5-10 0-25-50 0-25-50 0-25-50 0-25-50
GBOT(FT) ~10--5-0 -50--25-0 250--25-0 | -50--25-0 -50--25-0
GRITE(FT) ~20--10-0 ~100--50-0 | -100--50-0 | -100--50-0 | -100--50-0
GLEFT(FT) 0-10-20 0-50-100 0-50-100 0-50-100 0-50-100

TABLE A.1.1.f

(cont.)

¥8
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B. INPUT VARIABLES CONSIDERED SIMULTANEOUSLY
The model and data used to study the prediction equation,

3P T %Ph T sl

~ >X< ~

2Py

o e
N

E(t') = a, + al"f);i: + +a , are given in

0
Figure A. 1. 3 and Table A. 1.2,
The standard deviations of the input variables were randomly
generated from uniform distributions and the maximum and

minimum values assigned to these distributions are given in Table

v, ey {8

IMPERMEABLE BOUNDARY

CONSTANT CONSTANT

HEAD HEAD

BOUNDARY BOUNDARY
I_Io Hl

IMPERMEABLE BOUNDARY

FIGURE A.1l.3. PLAN VIEW MODEL USED TO STUDY
FIRST REGRESSION MODEL.

The model and data used to study the second regression model

consisting of the first and second terms of the Taylor Expansion are
given in Figure A. 1.4 and Table A. 1. 3.

The mean values of each of the input variables in each grid
were randomly generated from triangular distributions and the

standard deviations from uniform distributions. The constant



gradients in each of the boundary grids were also generated from

triangular distributions.

CONSTANT
GRADIENT,
GLEFT

CONSTANT GRADIENT,

CONSTANT
GRADIENT,
GRITE

CONSTANT GRADIENT, GBOT

FIGURE A.1.4. PLAN VIEW OF MODEL USED TO STUDY
SECOND REGRESSION MODEL.
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H ,H (FT) 200 " .2
o) 1 S
) P T 200 o | .004 04
(FT) 1% 10 K u 100
A
b u 75 (FT/DAY) o |1 20
(FT) |p |1 10 |DX,DY(FT) 10000
O(FT 3/ |u 5.105 NT 4
DAY) |p |0 1. 105 |[DT(DAY) 10, 20, 40, 40

sl
Maximum and Minimum values defining uniform distribution.

TABLE A.1.2. DATA USED TO STUDY FIRST REGRESSION MODEL

h 4 | 175% 200 225 K |u 50 100 150
. (FT/ =75
by -
(FT) p |1 | h; 140|/5 DAY)| P 1 K
b u | 60 75 90 | DX,DY(FT) 10000
(FT) p 13kk 8 NT 1
Q wlo 5.105 1.10° | DT(DAY) 20
(FT3/
DAY) p o Ha/s GTOP(FT) |-80 0 80
S pl.1 .2 .3 GBOT(FT) |-80 0 80
o| .004 .04 GRITE(FT) |-80 0 80
GLEFT(FT)-80 0 80

SRR
Maximum and minimum values defining uniform distribution.
*
Maximum, median and minimum values defining triangular
distribution.

TABLE A.1.3. DATA USED TO STUDY SECOND REGRESSION MODEL
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II. UNCONFINED FLOW

A. INPUT VARIABLES CONSIDERED SIMULTANEOUSLY

The model and data used to study the predictive equation,

E(t") = o, + alﬁK + aZ?’Z + a3ﬁQ + oz4”p‘hI + as’b’s, for unconfined flow

is given in Figure A. 1.5 and Table A. 1. 4.

CONSTANT GRADIENT, GTOP

CONSTANT CONSTANT
GRADIENT, GRADIENT,
GLEFT GRITE

CONSTANT GRADIENT, GBOT

FIGURE A.1.5.

The mean values of each of the input variables in each grid
were randomly generated from triangular distributions and the
standard deviations from uniform distributions. The constant
gradient in each boundary grid were also generated from triangular
distributions. The numbers given in Table A. 1.4 defined these
distributions, and remained the same for the 1, 6 and 10 time-step
runs. However, the random samples generated from the distributions
were different for each run.

Also,the value of the constant gradient was allowed to change

with each time step. The value of the constant gradient for any time
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step other than the first was randomly generated from a triangular
distribution whose median value was the value of the gradient in the
preceding time step and whose maximum and minimum values were

the median value plus five and minus five respectively.
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hy " 275 300 325
(FT) p 1 10

z u 50 75 100
(FT) o 1 10

Q u 0 5.10° 1. 106
(FT3/DAY)| o 0 NE

S 7] 1 .2 3

o . 004 . 02

K u 50 100 150
(FT/DAY) | p 1 Hye/5
DX, DY (FT) 10000

NT 1, 6, 10
DT(DAYS) 20, 40, 40, 40, 50, 50, 50, 50, 50, 50
GTOP (FT) -80 0 80
GBOT (FT) -80 0 80
GRITE (FT) -80 0 80
GLEFT (FT) -80 0 80

TABLE A. 1.4.




APPENDIX 2

GENERAL LINEAR HYPOTHESIS MODEL OF FULL RANK, MODEL

I, CASE A, AND REGRESSION MODEL, MODEL III, CASE 2.

The description of these two linear models is taken from

Graybinl {7,

GENERAL LINEAR HYPOTHESIS MODEL OF FULL RANK, MODEL

I, CASE A.

Consider a random variable y which has a density function,

f(y:xl..... xp, By eoree pp) ’

where, x. = known, non-random variables,
i

ﬁi = unknown parameters.

Assume that,

p
(1) E(y)= Z p.x
' ii
i=1
' s _ 2
(ii) Var (y) = ¢
2
(iii) o is independent of ﬁi and x,
If a random sample, Yj » j=lea... n, is taken from this

density, that is
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P
y.= S B.X..+e, , =l vvve. n , (A.2.1)

where,
e. = random error,

and if the random errors, ej, j=1 ..... n, are uncorrelated, then

E(e.) =0
J
Var (eJ.) = 0'2

Equation (A.2.1) can be written in matrix notation as,
Y=Xpte

If the random sample is taken in such a way that the xji are
specified (either randomly or by design) and then an observation,
YJ_, is made and if the rank of X is p (p < n), then, this is the
General Linear Hypothesis Model of Full Rank. Case A of this

model is when e ~v N (O, U'Zi) .

REGRESSION MODEL, MODEL III, CASE 2.

Consider the random variables vV, Xpeeens xp which have the

density function,

2

V-G(x,...x
f(y, x x ) = h(x )-—l-— ex l( :
’ o 1 . p m - P 2 o
where
G(xl. ...X ) is a linear (in the coefficients Bi)

function of x_,
i

9’)
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h(xl. ...X ) is the marginal density of (xl ..... xp) and
does not contain the parameters pi or ¢

It follows that the conditional density of y given (x1 = Xl,

x =X ,....,x =X ) is normal, that is,
2 2 P

V-G (X e .X )\ 2
fly/x, =X x =X )= : ex —1-( i .R)
Y 1’°°" Tp PP N2mo P72 o
and,

= = = ..o.X .
E(y/x1 Xl,...,xp xp) G(X, p)

. X ;j=l....n), is taken

If a random sample, A ) I ;
5 (YJ 1y PJ

from this density, that is,
g - G X «9 o e 0 X . + e.’ .=l LI n,
¥y=GlEy pi) V&

where, eJ. = random error,
and if the random errors, ej, j=l.... n, are uncorrelated, then,
E( eJ.) =0

Var (ej) = 0 2

This is the Regression Model, Model III, Case 2.

2
POINT ESTIMATES OF g AND ¢

For both of the models maximum likelihood estimates can be
obtained for B and o 2. For Model I, Case A, the likelihood function

is:
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L ( 2) 1 £ L
e:P, ¢ )=T"7, exXp(-
(zno_Z)n/Z > 0_2
1 (Y -X8)'(X-XP)

S — RN { -

(211'0'2)n/2 20 %
; n 2 1
i.e. Log[L()]=->Log(2mo ") - > (X - XB)'(X -XB)

20

ive. 2 [Log[L(-)]]=—5 (X'Y - X'XB) = 0

5p 2 2
aaz[mg[“"”:'zgnz +<z—zi>'iz-§§> .
e B=(X'X)X'Y , (A.2.2)
since (X'X) has an inverse,
and rE (Y- XBIE-X§) , (A.2.3)

(n-p)

making a correction for bias in equation (A.2. 3).

These estimates have the following properties,

(i) consistent and efficient
(ii) unbiased
(iii) sufficient
(iv) complete
(v) minimum variance unbiased

(vi) BrNEB » o2 (XX
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2
2
(vii)  (n-p) —7z ~x (n-p)

Q

N 9

(viii) B and ¢“ are independent.
For Model III, Case 2, the maximum likelihood estimates of

B and UZ can be derived in similar manner. They are exactly the

same as the ones derived above, but have the following properties:

(i) consistent and efficient,
(ii) unbiased,
(iii) sufficient.

CONFIDENCE INTERVAL ESTIMATES OF B; AND o o

For Model I, Case A. a confidence interval can be put on crz

using the fact that,

A 2
a

2
(n-p) >~ X (n-p)
o

This means that two constants, o, and o, can be found such that,

0
~ 2
G - -
P{a0<(n-p) 2 Sal} =(1 -a) ,
’&’zn 2 /(}2 n
P ¢ v 222 Pl (] -a)

which is the (1 - a) confidence interval on ©

A confidence interval can be obtained for (3,1 by using the
Pi P th
facts that, ————] ~ N(0, 1), where c, is the i~ diagonal
o Ve, i

element of (z'ﬁ)'l , and

~ 2
g
3 x% (n-p) ,

(n-p)

o
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and that these two statistics are independent. Thus,

~~

P8y
?'_«I?;_:I ~ t(n-p)

and the constant ta/2 can be found such that,

P - Py
P{- ta/Zﬁ o V-Ci ﬁta/?,}: l -«
i. e. P{(ﬁi-%/z mJﬁ)ﬁﬁig(ﬁi+Rﬂzafd?p}= l -«
which is a (1 - ) confidence interval on (Si.
It can be shown (Graybill X p. 204, Johnston(g)) that the

above confidence intervals on ﬁi and 02 also apply in Model III,

Case 2.

x*
TESTING THE HYPOTHESIS, Hjy: Y = Y,

If Model I, Case A, Y = X + e, is partitioned so that,

Y=X Yy +X, L te

1 2|2

where -Y-l has dimension (rx 1) then the likelihood ratio rest of the

hypothesis, H :ll = fl , can be found by making use of the fact that

0
the statistic u, defined by,

has a non-central F-distribution, F'(r, n-p, \), and that if and only

if the null hypothesis is true u has a central F-distribution,
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F(r,n-p). With probability of type I error a, the hypothesis

03

! is rejected ifu > F (r, n-p).
a

Hy:x, =X
Again, it can be shown that this test can be applied in Model

III, Case 2, with the same probability of type I error.



APPENDIX 3

PROOF THAT: VAR (K) <1/n

It has been shown that in a grid [(x,y), (x + Ax,y), (x,y+AYy),

(x+Ax,y+Ay) ], the estimate of the mean value of permeability,

~

K, is normally distributed, viz,

= - 2
K~ N (K, pK)

where, K = true mean value of permeability in the grid, and
pf{ = Var (K)
xtAxCy+Ay N
= ——— r dx d E
Var AxAy S .2 ai Xi x dy
x y i=0
where XO =1,
N x+Ax (Cy+Ay Xi
= Var RCH j Beby dx dy
i=0 b4 y
N -~
=Var & a.J }
; ii
i=0
x+Ax Cy+Ay X,
where Ji = S m dx dy, i=0... N.
x b 4
2 N N o
Therefore, pP.,= 2 T J J. Cov(a., a.) . (A.3.1)
K . ; i im 73
i=0 j=0
; . . 2 —_——
Now, the covariance matrix of @ is ¢ g X'X)

where,
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~ X X
1 X1 12 IN
1 X%, X5 XoN
X= ‘
X
i 1 nl . . ) . . ) . XnN_
and
n n
- s x -~ % -
B gy 3 e Wit
n
2 X % 2 .
=1 %21 ¥
X'X = :
n n’ 2
\_iE:IXiN e o o o e © & e s o e i§1 XiN _

The general term of this matrix is,

n
E K, A,

, j=0 vee N, k=0 ... N .
=1 U ik

This can be rewritten,

n Xi' Xik
A n
i=1
n Xi' X'k
so that the term = (—Jn—l) will always have the same order of
i=1

magnitude for any value of n.
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Thus,
— n X, n X, -
1 = Iil dnon s mp B Sﬂ
i=1 i=1
X'X=n =nY
¥ il
X. n X,
3 ;N R B ;N
| i=1 i=1 g
and(x':X)'lz-l S
— a— n —
2
7K
Therefore, Cov (ai, ozj) = F(Xij) "
where, F(Xij) is a function of the space coordinates and has

the same order of magnitude for any value of n.

In equation (A. 3.1) Ji and JJ. are constants,

thus,
2N N
2 K
Pk~ " m > JiJ'F(Xi') ’
i=0 j=0 J
o _2
i. e, pf{= B F'(Xij)
o
- K ]
i.e. PK = T F (Xij)
1
1. €. pKOC_V_IT



APPENDIX 4

TOLERANCE LIMITS#*

The development of tolerance limits is based on a simple
property of order statistics, namely that the distribution of the area
under the density function between any two ordered observations is
independent of the form of the density function. This is stated in

Theorem. 1.

Theorem. 1.

If z is a continuous random variable with density f (z),
z
-0 <z < o, and Xl «e.. X _is an ordered sample from this
distribution, and
u, =S Y fz)dz = F(X) , i=l... N,
-0

then, the joint density of u., given by
g(ul...u )=N! , 0<u <u2<...< u_<1

is independent of fz(z)

From g(u u__), the distribution of the area under fz(z)

1* o My

between any pair of ordered observations can be found, viz.,

*
This description is based on that given by Mood and
Graybill (14),
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Theorem. 2.

Let the random variable Yi . be the area under fz(z) between

’

Xi and Xj (i < j), then, the density of Yi . is,

2

N !
in J.(Y) = Gei-1) (N-j40)1 ¢

jei=l N-j+i
W ey T, 0egs

Tolerance limits are defined to be L1 and L2 such that,

LZ
PS fz(z)dz>f} =1-a

Ly

L1 and L2 are functions of the ordered sample from the density

L
fz(z), and the density of SLZ fz(z) dz is given by Theorem 2.
1
LZ
Thus, if Y :SL fz(z) dz, then P{ Y > p} =1-a
1
4 N! j-i-1 N-j+1
.o . - o l_ = = 1_ .
A o BO--DIm-grY) (y) Ay e

From this equation, if any three of the four variables, o, B,
[ Ll' LZ] » N, are specified the other can be determined. For

example, if (1-a) =.9, f =.9, N= 38, then, L. = X1 and L2 =X .,

1 N
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APPENDIX 5
COMPUTER PROGRAM

The computer program as described here is written to obtain
a finite difference solution to the unconfined flow equation when the
region of flow is rectangular and the boundary conditions are
constant gradients. Simple modifications can be made for other flow

regions and boundary conditions. The regression models,

1) o o ~ ~ ~
E(t )—o.r0+oz1 pK+a2p +013ph +a4pQ+aspS

4
+
R
el
+
o]

"ny — o4
E(c)—ao+ozch+c)zzcZ 3 h 4 °Q 5Cg

are analyzed by the program.

DESCRIPTION OF PROGRAM SUBROUTINES

Subroutine READATA

The following variables are read in by this subroutine;
NBETA, NTSTEP, NVAR, NRUN, NROW, NCOL,STUDENT
TIM
KBC,
FKMIN, FKMED, FKMAX

HMIN, HMED, HMAX
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ZMIN, ZMED, ZMAX,
QMIN, OMED, QM AX,
PHIMIN, PHIMED, PHIMAX,
DX, DY,
GTMIN, GTMED, GTMAX,
GBMIN, GBMED, GBMAX,
GRMIN, GRMED, GRMAX,
GIMIN, GIMED, GLMAX,
These variables are defined in the program. The data is also

written out by the subroutine.

Subroutine RANDOM

This subroutine generates random values of the mean of the
normal distributions of hI, K, Q, S and z from triangular
distributions defined by the minimum, median and maximum values
of each variable. Random values of the standard deviations of the
normal distributions of these input variables are generated from
uniform distributions defined by the upper and lower values of these
variables. These upper and lower values are defined in the sub-
routine. Random values of the constant gradient boundary conditions,
GTOP, GBOT, GRITE, GLEFT, are also generated from triangular
distributions defined by the minimum, median and maximum values

of the variables.
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Subroutine RANDY

This subroutine generates random values of hI’ z, Q K, S

from their normal distributions.

Subroutine AMATRIX

This subroutine computes the values of the elements of the
matrix equation which results from writing the finite difference

equation for each of the interior grids of the flow region.

Subroutine RBSOLYV

This subroutine solves the matrix equation set up in sub-
routine AMATRIX by Gauss Elimination. Savings in computer
storage and execution time are effvected by condensing the matrix
from being square with dimension (NROW-2)*(NCOL-2) to being
rectangular with (NROW-2)*(NCOL-2) rows and NROW columns. The
dimensions of this reduced matrix make it desirable to define

NCOL > NROW.

Subroutine MINMAX

This computes the values of tolerance interval width and

coefficient of variation in each grid for the end of each time step.

Subroutine POLY

This subroutine computes the maximum likelihood estimates

of the regression coefficients, confidence intervals on the
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coefficients and tests the hypotheses Ho :[ao, ays @y, a4,a5] = 0 and

Ho : [a1a2a4a5] = 0. The results of these computations are written

out.

Data Preparation

Before using the program it is necessary to define the
dimensions of the variables to suit the problem being studied. This
involves the DIMENSION statements of the main program and sub-
routine POLY and the COMMON statements. Also, tolerance
interval widths are computed in this program from a random sample
of size 38. If this sample size is changed adjustments have to be
made in subroutine MINMAX. Changes would also have to be made
to study different regression models.

Data cards are read in as follows (for NCOL=7, NROW=6,
NTSTEP< 16)

CARD 1 NBETA, NTSTEP, NVAR, NRUN, NROW, NCOL,

STUDENT FORMAT (6 110, F10-3)
CARD 2 TIM (I), I=1, NTSTEP
FORMAT (16F5°1)

CARDS 3-8 KBC (I,7J), J=1, NCOL, I=1, NROW
FORMAT (7 I 10)

CARDS 9-14 FKMIN (I1,J), J=1, NCOL, I=1, NROW

FORMAT (7 F 10-2)



CARDS 15-20

CARDS 21-26

CARDS 27-32

CARDS 33-38

CARDS 39-44

CARDS 45-50

CARDS 51-56

CARDS 57-62

CARDS 63-68

CARDS 69-74

CARDS 75-80

CARDS 81-86

107

FKMED (I ,J), J=1, NCOL, I=1, NROW

FORMAT (7 F 10°2)
FKMAX (I,J), J=1, NCOL, I=1, NROW
FORMAT (7 F 10°2)
HMIN (I,J), J=1, NCOL, I=1, NROW
FORMAT (7 F 10-2)
HMED (I,J), J=1, NCOL, I=1, NROW
FORMAT (7 F 10°2)
HMAX (I,J), J=1, NCOL, I=1, NROW
FORMAT (7 F 10°2)
ZMIN (I,J), J=1, NCOL, I=1, NROW
FORMAT (7 F 10°2)
ZMED (I,J), J=1, NCOL, I=1, NROW
FORMAT (7 F 10°2)
ZMAX (I,J), J=1, NCOL, I=1, NROW
FORMAT (7 F 10:2)
QMIN (I, J), J=1, NCOL, I=1, NROW
FORMAT (7 F 10-2)
QMED (I,J), J=1, NCOL, I=1, NROW
FORMAT (7 F 10-2)
QMAX (1,J), J=1, NCOL, I=1, NROW
FORMAT (7 F 10-2)
PHIMIN (I,J), J=1, NCOL, I=1, NROW

FORMAT (7 F 10.2)



CARDS 87-92

CARDS 93-98

CARDS 99-104

CARDS 105-110

CARD

CARD

CARD

CARD

CARD

CARD

CARD

CARD

111

112

113

114

115

116

117

118
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PHIMED (I,J), J=1, NCOL, I=1, NROW
FORMAT (7 F 10-9)

PHIMAX (I,J), J=1, NCOL, I=1, NROW
FORMAT (7 F 10-9)

DX (I,J), J=1, NCOL, I=1, NROW
FORMAT (7 F 10-2)

DY (I,J), J=1, NCOL, I=1, NROW
FORMAT (7 F 10-2)

GTMIN (J), J=1, NCOL

FORMAT (7 F 10-2)

GTMED (J), J=1, NCOL
FORMAT (7 F 10°2)

GTMAX (J), J=1, NCOL
FORMAT (7 F 10-2)

GBMIN (J), J=1, NCOL

FORMAT (7 F 10-2)

GBMED (J), J=1, NCOL
FORMAT (7 F 10-2)

GBMAX (J), J=1, NCOL
FORMAT (7 F 10-2)

GRMIN (I), I=1, NROW

FORMAT (7 F 10+2)

GRMED (I), I=1, NROW

FORMAT (7 F 10-2)



CARD 119

CARD 120

CARD 121

CARD 122
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GRMAX (I), I=1, NROW
FORMAT (7 F 10-2)
GLMIN (I), I=1, NROW
FORMAT (7 F 10-2)
GLMED (I), I=1, NROW
FORMAT (7 F 10+2)
GLMAX (I), I=1, NROW

FORMAT (7 F 10°2)
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<: START :)

\

DIMENSION VARIABLES IN MAIN
PROGRAM AND SUBROUTINE POLY

1

CALL READATA
READS IN AND WRITES OUT DATA

Y

CALL RANDOM
GENERATES RANDOM VALUES OF MEAN AND
STANDARD DEVIATION OF HI, Z, FK, Q,
PHI, AND OF BOUNDARY GRADIENTS.

\

Y

DO 3333 1IVAR

1, NVAR

\

!

I

DO 2222 1IRAN

1, NRUN

CALL RANDY
GENERATES RANDOM VALUES OF HI, FK, Q,
PHI, Z

\

DEFINE HT FOR BEGINNING OF STUDY
PERIOD

\
DO 1111 ISTEP = 1, NTSTEP

\

COMPUTE SATURATED THICKNESS AND CHECK
FOR DRY GRIDS

1111



55685 2222

111

4

CALL AMATRIX
COMPUTES VALUES OF ELEMENTS OF MATRIX
EQUATION

\

CALL RBSOLV
SOLVES MATRIX EQUATION

]

DEFINE HT AT END OF TIME STEP

\

STORE VALUES OF HT IN HDT

1111

>\ 2222

CALL MINMAX
COMPUTES TWIDE AND CVHAT FROM VALUES
OF HEAD STORED IN HDT

- 3333

DO 70 I = 2, NR

70

DO 70 J =

I
N
=z
(@)

)

DEFINE X, THE OBSERVED VALUES OF THE
INDEPENDENT VARIABLES IN THE TOLERANCE-
INTERVAL-WIDTH REGRESSION MODEL.




70

112

|

DEFINE Y, THE OBSERVED VALUES OF THE
DEPENDENT VARIABLE IN THE TOLERANCE-
INTERVAL-WIDTH REGRESSION MODEL

1

CALL POLY
COMPUTES MAXIMUM LIKELIHOOD ESTIMATES
OF REGRESSION COEFFICIENTS, CONFIDENCE
INTERVALS ON THE COEFFICIENTS, TESTS

1 . =
THE HYPOTJESES, HO.[aO,al,az,a4,u5] 0
AND H ,01=0

0°1%1°%2°% %

\

DEFINE X FOR COEFFICIENTS-OF-VARIA-
TION REGRESSION MODEL

\

DEFINE Y FOR COEFFICIENTS-OF-VARIA-
TION REGRESSION MODEL

\

CALL POLY

END
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PRUS>XAM STATELOD
THIS PRIGIAM SOLVES UNCONFINED FLOW PR/OBLEM WHEN 41, Z, PHI, Q, FK, ARE RANDIV
INPUT VARIABLES WITH NORMAL DISTRIRUTIONS.
SRID SYSTEM MUST BE RECTANGULAR
AJUNDARY CONDITIONS MUST BE CONSTANT GRADIENTS.
I[N THE REGRESSIDN MODELS,
T=A0+A1%SK+A2%SZ+A3%SH+AL*SO+A5%SP
C=AO+AL*CK+A2%CZ+A3XCH+AGXCQ+AS*CP
WHERE,
SKyCK=STAN. DEV.,COEFF OF VAR. OF PERMCABILITY
SZ9C2=STAN. DEV.,COEFF DF VAR. 0OF BEDROCK ELEV.
SHyCH=STAN. DEV.,CIEFF OF VAR. OF INITIAL HEAD
SO,CQ=STAN. DEV.,CDEFF OF VAR. OF DISCHARGE
S?,CP=STAN. DEV.,CREFF OF VAR, OF SPECIFIC YIELD
THZ MAX. LIKELIHOOD ESTIMATES OF THE REGRESSION COEFFS. ARE CALCLUATED AND
THE HYPUTHESES (AI1)=0, (AOyAl4A2,A4,A5)=0, (Al1,A2,A44A5)=0,ARE TESTED.

DIMENSITN THE FOLLOWING VARIABLES,
AACIP,NRUW) = MATRIX JF COEFFS. FROM FINITE DIFFERENCE EQUATIONS.
RHS(IP) = VECTOR ¢ K] e e e v
A(NBETA-1)
Y(NTSTEP,\VAR)
WHERE,
NROW NO. OF JWS OF GRID SYSTEM
NCOL NC.OF COLS. OF GRID SYSTEM(NCOL 3REATER THAN OR EQUAL TO NROW)
I[P = (NROW=2)%(NCOL-2)
NTSTEP = NJ. OF TIME STEPS
NVAR = NO. OF PJINTS TO BE GENERATED FOR REGRESSION ANALYSIS
NBETA = NO. OF REGRESSION COEFFS..

DIMENSION AA(2046)y RHS(20)y A(5)y Y(10,15)

CDTIME = TIME AT BEGINNING OF A TIME STEP

CTIME = TIME AT END OF A TIME STEP

NRUN = ND. OF OBSERVATIOVS TO BE GENERATED FOR COMPUTATION OF TOLERANCE INTERV
DX(NROW,NCOL) = GRID SIZE IN X-DIRECTION(FEET)

DY (NRIW,NCOL) = GRID SIZE IN Y-DIRECTION(FEET)

KBC(NROW,NCOL) = PARAMETER CHARACTERISING BOUNDARY CONDITIONS

KBC = 1, IF BOUNDARY GRID WITH CONST HEAD OR CONST GRADIENT
K2C = 2, IF IMPEIM BOUNDARY GRID
K8C = 3, IF INTERIDR GRID

XNIRM(I2%342%NRIWXNCIL) = STIRES STAN. NORMAL RANDOM NOS..
FL(NROW,NCOL) = PERMEABILITY IN EACH GRID(FEET/DAY)
3(NIDOW,NCIL) = SATURATED THICKNESS IN EACH GRID(FEET)
CINROWHNCIL) = DISCHARGE IN EACH GRID(FEET*%3/DAY)
HI(NRCw,NCOL) = INITIAL HEAD IN EACH GRID (FEET)
HTINROW,NCOL) = HEAD AT CURRENT TIME IN EACH GRID(FEET)
PHL(NRGw,MCOL) = SPECIFIC YIELD IN EACH GRID (=)
Z(NRIW,NCOL) = BEDROCK ELEVATION IN EACH GRID (FEET)
FXMEAN(NRIWSNCOL) = MEAN VALUE OF PERMEABRILITY IN EACH GRID (FEET/DAY)
FXMIN(NROW,NCOL) MINIMUM VALUE OF FKMEAN IN EACH GRID(FT/DAY)

FAMED(NRIW, NCOL) MEDIAN VALUE OF FKMEAN IN EACH GRID(FT/DAY)

FAMAX (NKOW,NCCL) MAXIMUM VALUE OF FKMEAN IN EACH GRID(FT/DAY)
FLLIWINRIW,NCIL) MINIMUM VALUE OF FKVAR IN EAZH GRID(FFET/DAY)

FKUP (NDOWyNCOL) MAXIMUM VALUE OF FKVAR IN EACH GRID(FEET/DAY)

ANALAGOUS VARTABLES FOR Q4HI,PHI,Z HAVE SAME DEFINITIONS
FLVAR (NR1IW e NCIOL 9 NVAR) = STANDARD DEVIATINN (OF PERMEARILITY IN EACH GRID(FI/ZDAY
TVAR(NRIW,NCIL,NVAR) = STAN, DEV.e NF BEDRCCK IN EACH GRID(FEET)
IVARCIDP g NVAR) = STANGOEV.NF INITIAL HEAD Iy EACH GRID(FEET)

JVAR(IP,VAR) = STAN. DEV. OF CISCHARGE IN FACH GRID(FT*%3/0AY)
PH4IVAR(IP,NVAR) = STAN. DEV. OF SPECIFIC YICID IM EACH GRIDI(-)
HOT(IP, VRUNGZNTSTEP) = STIOTES VALUES 0OF HEAR IN CACH GRID FOR ALL NRUN RUNS AT
END OF EACH TIME STEP

STUDENT = VALUE JF STUDENTS T AT 95 PER CENT LEVEL FNR (NVAR-NBETA) D. OF F,.
TalDECIP? W NVARGZNTSTEP) = STORES VALUES OF TOLERANCE INTERVAL WIDTH IN EACH GRID
AT END OF EACH TIME STEP
STOREA VALUES OF SAMPLE COEFFS. OF VARIATION IN EACH
GRID AT END DF EACH TIME STEP

CVHAT (I[P 3 NVARZNTSTEP)

1

X(NRETA-1,\NVAR)
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TIM(NTSTCEP) = LENGTH OF EACH TIME STEP

GTIP(NCIL,NTSTEP+1) = GRADIENTS FOR *TOP* OF GRID SYSTEM
GRAITINCOLGNTSTEP+1) = GRADIENTS FOR *'BOTTOM' OF GRID SYSTEM
GRAITE(NROW,NTSTEP+1) GRADIETTS FOR 'RIGHT* 0OF GRID SYSTEM
GLEFT(NIOW,NTSTEP+1) GRADIENTS FOR 'LEFT' OF GRID SYSTEM
GTMIN,GTMED,GTMAX(NCOL) = MINIMUM, MEDIAN, MAXIMUM VALUES OF GTOP
SIMILARLY FDR GROT, GRITE, GLFFT

COMMON CTIME, CDTIME, NTSTEP, NROW, NCOL, NVAR, NRUN
» DX(647)y DY(647)y KBC(6,7)y XNORM(150)
FK{GyT)y BlEyT)y 69T )y HI(E4T7)y PHI(O4T)y HT(6437)y Z(6457)
FKMEAN(6497)y ZMEAN(647)y QMEAN(6437) 9y HIMEAN(G647)y PHIMEN(6,47)
FKVAR(6437915)y ZVAR(647415)
QVAR(20415)y HIVAR(20415)y PHIVAR(20,415)
FKMIN(6yT) 9 ZMIN(643T7) yQMIN(647) ¢HMIN(6437) yPHIMIN(G,T)
FKMED(647)y ZMED(647)y QMED(647)y HMED(647)y PHIMED(6,7)
FKMAX(6497)y ZMAX(6497)y OMAX(6497)y HMAX(647)y PHIMAX(6,7)
FKLOW( 6, 7)y ZLOW(6,T7)y QLOW(G,7)y HLOW(6,47)y PHILOW(6,7)
FKUP(697)y ZUP(6537)y QUP(69T)y HUP(6H4T)y PHIUP(6,7)
HDT(20,38,10)y TWIDE(20,15410), CVHAT(20,15,10)
STUDENT, NBETA
X(5415) ‘
TIM(10)
GTMIN(T7)y, GTMED(7)y GTMAX(T7), GBMIN(7), GBMED(7), GBMAX(T)
GRMIN(7)y GRMED(7), GRMAX(7), GLMIN(7)y GLMEDI(T7),y GLMAX(T)
» GTIP(7411)y GBIT(7411)y GRITE(6,11), GLEFT(6,11)

READATA TO READ IN AND WRITE OUT INITIAL DATA
CALL READATA
CALL RANDIOM TO GENERATE JANDOM VALUES OFMEAN AND STANDARD DEV. OF INPUT VARIAB

CALL RANDOM

= NCOL -1
NR = NROW - 1

[P = (NROW - 2)%(NCOL - 2)

EACH TIME THRU LOOP 3333 COMPUTES NVAR VALUES OF TWIDE AND CVHAT AT END OF
EACH TIME STEP CORRESPONDING TO NVAR VALUES OF STAN. DEV. AND COEFFS. OF VAR.
ON HI, Z4 FKy PHI, Q.

DO 3333 IVAR = 1,NVAR
EACH TIME THRU LOOP 2222 COMPUTES NRUN RANDNOM VALUES OF HEAD AT END OF EACH
TIME STtP

DO 2222 IRAN = 1,NRUN
CALL RANDY TO GENERATE RANDOM VALUES OF HI, FKy Qy PHI, 7.

CALL RANDY(IVAR)
SET HT = HI FDOR INTERIDR GRIDS

e % % e e e % e 9 e e e w e w

TOONOCP~= DO NOCOWHFEDON—~

(@]
>
—

DD 20 I = 24,\NR
DO 20 J = 2,NC
20 HT(I+J) = HI(I.J) .
DEFINE HT FOR BOUNDARY GRIDS AS HT FOR ADJNOINING INTERIOR GRID + CONSTANT GRAD
DO 21 I = 24\NR

HT(I41) = HT(I,2) + GLEFT(I,1)
21 HT(UILNCOL) = HT{I4NC) + GRITE(I,1)
DO 22 J = 2,NC
HT(1sJd) = HT(2,J) + GTOP(J,y1)
22 HT(NROW,J) = HT(NR,J) + GBOT(J,l)
EACH TIME THRU LOOP 1111 COMPUTES HEFAD AT END 0OF ONE TIME STEP
CTIME = 0.0
DN 1111 ISTEP = 1,NTSTEP
COMPUTE SATURATED THICKNESS IN EACH GRID AND CHECK IF NOM-NEGATIVE. IF NEGATIV
WRITE OQUT LOCATION OF DRY GRID AND STOP EXECUTION,
DO 50 [ = 1,NROW
00 50 J = 1,NCOL
DlIyJd) = HT(IyJ) = Z(1,J)
KCHECK = B(1,J)/1000000.0 + 2.0
GO TO (51450),KCHECK
51 WRITE(6,52) 1,4J
52 FORMAT(LHO,*DRY GRID %*,213)
STUP
50 CONTINUE
COTIME = CTIME
CTIME = CTIME + TIM(ISTEP)
CALL AMATRIX T0O SET UP MATRIX (AA) AND VECTOR {(RHS)
CALL AMATRIX(IRAN,RHS,AA)
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-~ CALL RUSJILV TO SJLVE MATRIX EQU. (AA)%(HT) = (RHS)
CALL RBSOLV(AA, [PyNROW,RHS)
o REDEFIN= HT AS VALUES OF HEAD AT END OF TIME STEP

L =0
DO 1 J = 24NC
NN 1 I = 2,NR
L =L + 1
1 HT(I,J) = RHS(L)

REDEFINE HT IN BNUNDARY GRIDS AS HT IN ADJOQINING GRID PLUS CONSTANT GRADIENT
IS = ISTEP + 1
DN 23 1 = 2,\R
HT(I,1) = HT(I,2) + SLEFT(I,IS)
23 HT(I,NCOL) = HT(I4NC) + GRITE(I,IS)
NO 24 J = 24,NC
HT(1,J) = HT(2,J) + GTOP(I,1S)
24 HT(NROW,J) = HT(NR,J) + GBOT(I,IS)
L STORE VALUES OF HT IN HDT FOR INTERIDR GRIDS AT END OF EACH TIME SYEP
IGRID = 0
Do 171 =
DO 7 J = 2,NC
IGRID = IGRID + 1
HDT( IGRIDy IRAN, ISTEP) = HT(I,J)
7 CONTINUE
1111 CONTINUE
2222 CONTINUE
C CALL MINMAX TO COMPUTE TOL. INT. WIDTHS AND COEFFS. OF VAR. IN EACH GRID AT
C END EACH TIME STEP FROM RANDOM SAMPLES OF HEAD STORED IN HDT
CALL MINMAX(HDT,NIUNyNROW,NCOL s TWIDE,IVAR,IP,NVAR,NTSTEP,CVHAT)
3333 CONTINUE
LJ0P 70 CIMPUTES ESTIMATES OF REGRESSION CNDEFFS., CONFIDENCE INTERVALS ON
THESE ESTIMATES AND TESTS OF HYPOTHESES FOR BNTH 'TOLERANCE-INTERVAL-WIDTH!
AND *COEFFS-DF-VAR' REGRESSION MODELS, FOR ONE GRID
NBETAL = NBETA + NTSTEP
Nl = NBETA - 1
IGRID = 0
DO 70 1 = 2,NR
DO 70 J = 2,NC
IGRID = [GRID + 1
WRITE(6,72) IGRID
72 FORMAT(1HO,%RESULTS R0R GRID*,I3)
C LDOP 321 STORES DBSERVED VALUES OF INDEPENDENT VARIABLES OF REGRESSION EQU.
C FIOR *TOL-INT-WIDTH®' MODEL IN (X)

OO

D0 321 K = 1,NVAR
X(1lyK) = FKVAR(I,J9K)
X(2yK) = ZVAR(I,J4K)
X(34K) = HIVAR(IGRIDK)
X{4,K) = QVAR(IGRID,yK)

X{5,K) =PHIVAR(IGRID,K)
321 CONTINUE
C LJJ” 71 STORES OBRSERVED VALUES AFTER EVERY TIME STEP OF DEPENDENT VARIABLE
C (TWIDC) OF REGRESSION EQU.. IN (Y)
DD 71 K 1, NVAR
NO 71 L 1, NTSTEP
Y(L,K) = TWIDE(IGRIDsK,L)
71 CONTINUE
C CALL POLY TO PERFORM REGRESSION ANALYSIS FOR 'TOL-INT-WIDTH' MODEL
CALL POLY(YyXyNVARJNIETA,NBETAL,,STUDENT,,IGRIDyNL,IP,NTSTEP)

non

C LOJP 74 STORES ORSERVED VALUES OF INDEP. VARIABLES OF REGRESSION EQU., FOR
C COEFFS. OF VARIABLE REGRESSION MODEL, IN (X) :
A(1) = FKMEAN(I,J)
A(2Y = IMEAN(TI,J)
A(3) = HIMEAN(I,J)
Al4) = QMEAN(I,J)
A(5) = PHIMEN(I,J)

D3 74 K = 1,NVAR
DO 75 L = 1yN1
75 X{LyK) = X(L,K)/ZA(L)
74 CONTINUE
CoLOOP 77 STORES OBRSERVED VALUES AFTER EVERY TIME STEP OF NDEPENDENT VARIABLES
C (CVHAT) OF REGRESSION EQU.. IN Y
Do 77 K 1,NVAR
nog 77 L 1L, NTSTEP
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Y(LyK) = CVHAT(IGRID,K,yL)
77 CONTINUE
CALL POLY TO PERFIRM REGRESSION ANALYSIS OF *COEFF-0F-VAR' MODEL
CALL POLY(YyXyNVAR,NBETA,NBETALySTUDENT,IGRIDyN1,IP,NTSTEP)
70 CONTINUE
END
SJUBRJUTINE RANDY(IVAR)
THIS SURRIUTINE GENERATES RANDOM VALUES 0OF YI, Z, 2, PHI, FK FROM THEIR NORMAL
DISTRIBUTIONS IN EACH GRID. THESE VALUES ARF HELD CONSTANT FOR ENTIRE STUDY
PERIND
COMMON CTIME, CDTIME, NTSTEP, NROW, NCOLy NVAR, NRUN
y DX(64,7)y DY(647)y KBRCUE,T)y XNORM(150)
y FK(69T7)y 3(697)y A(64T)y HI(647)y PHI(6,4T)y HT(647)y Z(64T7)
v FKMEAN(6,7)y ZMEAN(647)y QMEAN(647)y HIMEAN(647)y PHIMEN(6,7)
y FKVAR(64537515)y ZVAR(657415)
» JVAR(20415)y HIVAR(20415)y PHIVAR(20,15)
y FKMIN(6,7)9ZMIN(6,7),QMIN(6,47) sHMIN(E,7) 3 PHIMIN(G6,7)
y FKMED(647)y ZMED(647)y QMED(64,7)y HMED(6457)y PHIMED(6,7)
» FXMAX(6,7)y ZMAX(647)y QMAX(647) s HMAX(647)y PHIMAX(6,7)
y FRLOW(G647)y ZLOW(G6,T7)y QLOW(64T7)y HLOW(647)y PHILOW(6,T7)
r FRUP(6497)y ZUP(6437)y QUP(643T7)y HUP(64T)y PHIUP(6,7)
y HDT(20,38,10), TWIDE(20415,10), CVHAT(20,15,10)
’
'
’
’
’
’
0

STUDENT, NBETA
X(5,15)
TIM(10)
SGTMIN(7)y GTMED(T7), GTMAX(7), GBMIN(T7)y GBMED(7), GBMAXI(T)
GRMIN(7), GRMED(7)y GRMAX(7), GLMIN(7), GLMED(7), GLMAXI(T7)
GTOP(7,11)y GBOT(7,411)y GRITE(6,411)y GLEFT(6411)
TOTAL NO. OF STAN. NJIRMAL RANDOM NUMBERS REQUIRED
N = (NROW = 2)%(NZOL - 2)%3 + 2%NROWXNCOL
NR = NROW - 1
NC = NCOL - 1
IN THIS LOOP GENERATE INDEP. STAN. NORMAL NUMBERS - FOR ALGORITHM SEE 'HANDBIO
-K OF MATH.FNS.' NATIJONAL BUREAU OF STANDARDS, PAGE 953
DD 1 I = 14N,y2

VXN F =T OUTNOV D WN—

N o=

R1 = RANF(0)

R2 = RANF(0)

AL = =-ALOG(R1)

X1 = 1.414213562373%SQRT(AL)
AL = 6.2831853073%R2

XNORM(I) = X1%COS(AL)
I XNORM(I+1) = X1I*SIN(AL)
TRANSFORM STAN. NORMAL RRANDOM NUMBERS TO GIVE NORMAL RANDOM NUMBERS FOR HI, Q3
PHIy FKy Z
FOR HI, Qy PHI ONLY NEED TN GENERATE N/S. FOR INTERIOR GRIDS.FOR FK, Z NEED T0
GENERATE NOS. FOR ALL GRIDS. '

K =0
IGRID = 0

DO 4 [ = 2,NR

DO 4 J = 2,NC

IGRID = IGRID + 1

K = K + 1 o
HI(I,J) = XNORM(K)* A4IVAR(IGRID,IVAR) + HIMEAN(I,J)

K = K + 1

Q(IyJd) = XNIRM(K)% QVAR(IGRID,IVAR) + QMEAN(T,4J)

K = K + 1

PHI(I,J)= XNORM(K)*PHIVAR(IGRID,IVAR) + PHIMEN(I,J)
4 CONTINUE

DO 5 I = 1,NROW
DO 5 J = 1,NCOL
K = K + 1
FK({ITy,J) = XNORM(K)*FKVAR(TI,J,IVAR) + FKMEAN(I,J)
K=K + 1
5 Z(IyJ) = XNORM(K)*ZVAR(I,JyIVAR) + ZMEAN(I,J)
RETURN
END

SUBRAUTINE _READATA

THIS SUWRJUTINE READS IN ALL THE DATA

COMMON CTIME, CDTIME, NTSTEP, NROW, NCOL, NVAR, NRUN
1 » OX(647)y DY(657)y KBC(647)y XNORM(150)



1

1

1

117

2 3 FK(647)y BUO64T)y A(69T7)y HI(69T)y PHI(O6,T)y HT(647)y Z(647)
3 9 FKMEAN(647), ZMLEAN(6,7), QMEAN(6,7), HIMEAN(6,7), PHIMEMN(6,7)
4 F‘\VAR(6’7115)0 LVAR(64T7,415)
® 9 OVAR(20415)y HIVAR(20,15)y PHIVAR(20,15)
5 9 FKMIN(6,7) 9 ZMIN(6y 7)3QMIN(657) yHMIN(6437) 4 PHIMIN(G,7)
6 5y FKMED(G6y7)y ZMED(64,7)y QMED(6497)y HMED(647)y PHIMED(6,7)
T v FKMAX(6,7)y ZMAX(647), QMAX{6437), HMAX(6,7), PHIMAX(6,7)
B8 oy FKLOW(647)y ZLIW(6,7)y QLOW(697)y HLOW(6,7)y PHILOW(6,7)
9 v FKUP(647)y ZUP(64T7)y QUP(69T)y HUP(E47)y PHIUP(6,7)
2y HBT(20,438410)y TWIDE(20,15,10), CVHAT(20,15,10)
1 » STUDENT, \BETA o e
4 4 X(5,415)
6 5 TIM(10)
7 5 GTMIN(T)y GTMED(7), GTMAX(7), GBMIN(7), GBMED(7), GEMAX(T7)
R 3 GRMIN(T7)y GRMED(7), GRMAX(T7), GLMIN(7), GLMED(7), GLMAX(T)
9 5 GTOP(T7411)y GBOT(7411)y GRITE(6,11)y GLEFT(6,411)
REAU(S5,1) NBETA, NTSTEP, NVAR, NRUN, NROW, NCOL, STUDENT
1 FORMAT(6110,F10.3)
WRITE(646)
6 FORMAT(LHO.* STUDENT NTSTEP NV AR
9 NRUN NROW NCOL
9 NBETAX)
WRITE(697) STUDENT, NTSTEP, NVAR, NRUN, NROW, NCOL, NBETA
7 FORMAT(LH ,F7.4,6120)
READ(542) (TIM(I),1=1,NTSTEP)
2 FORMAT(16F5.1)
WRITE(6,8)
8 FORMAT(1HO,55X,*¥LENGTH OF TIME STEP(DAYS) %)
WRITE(649) ((I,TIM(I)),I=1,NTSTEP)
9 FORMAT(LH ,65X,13,F6.2)
READ(S93) ((KBC(I4J)yJ=14NCNL),I1=1,NROW)
3 FORMAT(7I10)
WRITE(6,10)
0 FORMAT(LHO 60X *KBC*)
WRITE(6511) ((KBT(I4J)yJ=14NCOL),I=14NROW)
1 FORMAT(1H ,7118)
READ(Sy4) (( FKMIN(I,J)sJ=1,N20OL),1=1,NROW)
READ(S594) (( FKMED(I,J)4J=14NCOL),I=1,HNROW)
READ(54,4) (( FKMAX(I+J),J=14NCOL),I=1,NROW)
READ(5,4) (( HMIN(I,J),J=1,NC0OL),1=1,NROW)
READ(5494) (( HMED(L[4J)sJ=1,NCOL),I=1,NROW)
READ(S5,4) (( HMAX(I,J)yJ=14NCOL),I1=1,NROW)
READ(S544) (( IMIN(I4J)9J=1,NCOL) y1=1,NROW)
READ(S,4) ((  ZIMED(I4J),J=1,NCOL),I=1,NROW)
READ(S5,4) (( IMAX(T9J)yJ=14NZOL) y1=1,NROW)
READ(5494) (( QMIN(I9J)»J=14yNCOL)I1=1,NROW)
READ(S5y4) (( QMED(I,J)sJ=14NCOL),I=1,NROW)
READ(594) (( OQMAX(I,J)4J=1,NCOL),I=1,NROW)
READ(595) ((PHIMIN(IZJ),J=1,NCOL),I=1,NROW)
READ(545) ((PHIMED(I4J)5J=1,N20OL),I=1,NROW)
READ(5495) ((PHIMAX(I4J)9J=14NCOL),I=1,NROW)
5 FORMAT(7F10.9)
READ(54,4) (( DX(I4J)9J=14sNCOL),»I=1,NROW)
READ(54.4) (( DY(I4J)9J=14sNCOL) s [=1,NROW)
READ(Sy4) (GTMIM(J),J=1,NCCL)
READ(544) (GTMED(J)4J=1,NCOL)
READ(S,4) (GTMAX(J),J=1,NCOL)
READ(5,4) (GBMIN(J),J=1,NCOL)
READ(544) (GBMED(J)J=1,NCOL)
REAN(5,4) (GBRMAX(J)yJ=1,NCOL)
READ(594) (GRMIN(I)I1=1,NROW)
READ(544) (GRMED(I),I=1,NROW)
READ(Sy4) (GRIMAX(I),1=1,NROW)
READ(S44) (GLMIN(I),1=1,NROW)
REAUD(S5y4) (GLMED(I),I=1,NROW)
READ(544) (GLMAX(I),yI1=1,NROW)
4 FORMAT(7F10.2)
WRITE(6,412)
2 FORMAT(1HO,60X,% FKMIN%)

WRITE(6,13) (( FKMIN(IZJ)9Jd=14NCOL) »I=1,NROW)
13 FORMAT(1H ,7F18.5)
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WRITE(6,14)

FORMAT (1H0,60X 9% FKMED*)

WEITE(6,13) (( FXMED(I4J)yJd=14NCOL),I=1,NROW)
WRITE(6415)

FORMAT (1HO 360Xy % FKMAX%)

WRITE(6913) (( FKMAX(T,J)yJ=14NCOL),I=1,NROW)
WRITE(6y16)

FORMAT(LHO, 60X 4%  HMINX)

WRITHE(6,13) (1 HMIN(I,J)3J=14NCOL) y[=1,NROW)
WRITE(6,17)

FORMAT( LHOy 60X 9%  HMEDX)

WRITE(6413) (( HMED(I,J)9J=14NCOL)I=1,NROW)
WRITE(6,418)

FORMAT(LHOy 60X %  HMAX*)

WRITE(6,13) (| HMAX (T 9J) 9J=14NCOL) »I=1,NROW)
WRITE(6,19)

FORMAT(1HO,60Xy% ZMIN%)

WRITE(G6,13) (( ZMIN(I,J)9J=1,NCOL),I=1,NROW)
WRITE(6,20)

FORMAT(1HO 60X y%*  ZMEDX)

WRITC(6,13) (1 ZMED(I4J)9J=14NCOL) ,I1=1,NROW)
WRITE(6421)

FORMAT (LHO, 60X %  ZMAXX)

WRITE(6913) (( ZMAX(I4J)yJ=14NCOL),I1=1,NROW)
WRITE(6422)

FORMAT( LHO, 60Xy *OMIN %)

WRITE(6,13) (0 QMIN(I4J)3J=1,NCOL) ,1=1,NROW)
WRITE(G,23)

FORMAT(LHO,60X %  GMZD*)

WRITE(6,13) (( OMED(I+J)yJ=14NCOL),I=1,NROW)
WRITE(6,24)

FORMAT(1HO,60Xe% QMAXX)

WRITE(6,13) (( OMAX(I,J),J=1yNCOL),I=1,NROW)
WRITE(6425)

FORMAT(1HO 60Xy NX*)

WRITE(6,13) (( DX(T4J)9d=14yNCNL) 4y I=1,NROW)
WRITE(6426)

FORMAT (1HO 60X 4 % DY)

WRITEF(6413) (( DY(I4J)yJ=14NCOL),I=1,MNROW)

WRITE(6,527)
FORMAT( 1HO, 60Xy *PHIMIN%)
WRITE(64913) ((PHIMIN(IsJ)»J=1,NCOL),I=1,NROW)
WRITE(6,28)
FORMAT({ 1HO, 60Xy *PHIMED*)
WRITE(64913) ((PHIMED(I4J)9J=14NCOL),I=1,NROW)
WRITE(6,429)
FORMAT({1HOy 60Xy %*PHIMAX*)
WRITE(6413) ({PHIMAX(I,J),J=14NCOL),I[=1,NROW)
WRITL(6,30)
FORMAT (1HO y 60Xy %GTMIN*)
WRITE(6,13) (GTMIN(J)yJ=1,NCOCL)
WRITC(6431)
FORMAT(1HO 3 60X 3 *GTMEDX)
WRITE(6513) (GTMEDI(J) 4J=1,NCOL)
WRITE(6432)
FORMAT(1HO, 60Xy ¥GTMAX %)
WRITII(6913) (GTMAX(J)yJ=1,NCOL)
WRITE(6433)
FORMAT( 1HO, 60Xy *GBMIN*)
WRITH(6413) (GRMIN(J) 4J=1,NCOL)
WRITE( 64 34)
FORMAT(1HO 60Xy *GBMED*)
WRITE(6,13) (GBMED(J),yJ=1,NCOL)
WRITE(6435)
FORMAT(1IHO 9 60Xy *GBMAX*)
WRITE(6913) (GRMAX(J)yJ=1,NCOL)
WRITE(6936)
FORMAT( 1HOy 60X 9 *GRMIN*)
WRITE(6913) (GRMIN(I)I=1,NROW)
WIITT(6437)
FORVAT( 1HOy 60Xy *GRMED*)
WRITE(6413) (GRMED(I),I1=14NROW)
WRITE(6,438)
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33 FUORYAT(1HO, 60X, *GIMAXX)
WRITE(6413) (GRMAX(I),I=14NROW)
WRITE(6439)
39 FORMAT(1HO 60X *GLMINX)
WRITE(6413) (GLMIN(I),I1=1,NROW)
WRITE(6,40)
40 FORMAT(LHO 260Xy %*GLMEDY)
WRITIZ(6913) (GLMED(I)yI1=14NROW)
WRITFE(6441)
41 FORMAT(1HO,60X,*GLMAX%)
WRITE(6513) (GLMAX(I),I=1,NROW)
RETURN
END
SUBRAUTINE RANDOM
THIS SURRDYTINE GENERATES RANDOM VALUES NF PHIMEN, QMEAN, HIMEAN, FKMEAN, ZVMEA
-\, GTUGP?, GBOT, GRITE, GLEFT FROM TRIANGULAR DISTRIBUTIONS DEFINED BY THEIR MI
-\NIMUM, MEDIAN, MAXIMUM VALUES. y
4IVAR, PHIVAR, QVAR, FKVAR, ZVAR, FROM UNIFORM DISTRIBUTIONS DEFINED BY THEIR
MINMUM  AND MAXIMUM VALUES.
JNIFORM RANDIM NOS. IN INTERVAL (0,1) ARE PRTAINED FROM LIBRARY SUBROUTINE BY
CALLING RANF(O)e SUBRIUTINE RANSET SPECIFIES THE SEED FOR THIS RANDOM NJUMBER
GENERATE.
VALJES ARE ALSD ASSIGNED TO PHILOW, PHIUP,HLOW, HUP, QLOW, QUP, ZLOW, ZJP, FXL:
=Wy, FKUP.
COMMDN CTIME, COTIME, NTSTEP, NRNOW, NCOL, MVAR, ™NRUN
v DX(6437)y DY(697)y KBC(647)y XNORM(150)
FK{697)y BUOHyT)y QU647) 9 HI(E4T)y PHI(H637)y HT(647)y 2Z(6,47)
FKMEAN( 6, 7))y ZMEAN(6,7)y QMEAN(64,7)y HIMEAN(64,7)y PHIMEN(6,7)
FKVAR(637915)y ZVAR(647415)
WVAR(20,15), HIVAR(20,15), PHIVAR(20,15)
FKMIN(6,y7) 9 ZMIN(697) yQMIN(637) yHMIN(637) yPHIMIN(6,7)
FKMED(6,7)y ZMED(6497)y QMED(647)y HMERD(6,4T7)y PHIMED(6,7)
FKMAX(697)y ZMAX(6457)y QMAX(6457)y HMAX(643T7)y PHIMAX(647)
FKLOW(6,7)y ZLOW(6437)y QLOW(EyT7)y HLOW(647)y PHILOW(6,7)
FKUP(647)y ZUP(64T7)y QUPL6E,T)y HUP(64,T)y PHIUP(6,7)
HDT (204 38,10), TWIDE(20,15410),, CVHAT(20,15,10)
STUDENT, NBETA
X(5,15)
TIM(10)
GTMIN(T7)y GTMED(T7), GTMAX(T7), GBMIN(T7), GBMED(7), GBMAX(7)
GRIMIN(T7)y GRMED(T7), GRMAX(7), GLMIN(7), GLMED(7), GLMAX(T)
y GTOP(7411)y GBOT(7,411)y GRITE(O6,11)y GLEFTI(6,11)
CALL RANSET(354871033)
NR = NROW - 1
NC o= NCOL - 1
DO 100 T = 1,NROW
N0 100 J = 14NCOL
PHILIOW(I4sJ) = 0.004
PHIUP(1,J) = 0.02

® e W e e e e e e e e w e e

CONOPFP= O VNN #FDWN P~

HLOW(IsJ) = 1.0
HUP(I,J) = 10.0
QLOW(TI,J) = 0.0
ZLOW(IsJd) = 1.0
ZUP(I,4J) = 10.0
FKLOYW(TyJ) = 1.0
100 CONTINUE
DD 77T 1 = 24NR
DD 777 J = 2,NC
T = PHIMIN(I,J)
U = PHIMED(I,J)

<

PHIMAX(I,J)

= RANF(O)

T + SORT(RN*X(U = T)*(V - T))
GeLELU) GO TO 2

V = SQRTIRNH(U = V)*(V=T)=VXU+TXU=-VET+V%V)
MEN(TILJ) =6

HAIN( T,y J)

HYED (4 J)

HMAX(T4J)

= RANMF(G)

= T + SQRT(RN*(U - T)*(V - T))
F(G.LE.U) GO TO 3

T O D= X
z ul brd
W o~

_—N <
iz
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Vo= SQRTURN* (U = V)*(V=T)=VXUs+ TRU=VT+V*V)

3 HIMEAN(TLLJ) = 6
T = 2MIN(T,J)
J = JUED(I,J)
V = QMAX(1,J)

RN = RANF(0)
G = T 4+ SOQRT(RN*(U = TIx(V - T))
[IF(GeLELU) 60 TN 6
G =V = SORT(RNX(U = V)*X(V=T)=VxU+THU=V*T+V*V)
4 QMEAN(ILJ) = 6

QUP(T4J) = QMEAN(TI,J)/5.0

777 CONTINUL
DIy A’8 1
00 338 J
T

LyNROW
1sNCOL
IMIN(I,J)

U IMED(T,J)

\% IMAX(T,4J)

RN = RANF(O0)

G = T + SQRT(RN®(U

IFIG.LELY) GO TO 5

G o=V = SQRT(RN*(U

5 IMEAN(T,J) = G

T FKMIN(I,J)

u FXMED(T,J)

U FRMAX(T4J)

RN = RAMF(OQ)

G = T + SQRT(RN*(U

[F(G.LE.U) GO TO 1

G = V = SQRT(RN*(U

1 FKMEAN(I,J) = G

FKUP(I,J) = FKMEAN(I,J)/5.0
838 CONTINUE

WRITE(6452)

W

TI¥{V - T))

V) (V=T)=ViU+ T*U=VXT+V*V)

W

T)*(v - T))

V)% (V=T)=VXU+T*U=VET+V%V)

52 FORMAT(1HO,* ) HMEAN FKMEAN IME
9AN OMEAN PHIMEANX)
DO 53 1 = 2,\R
oG 53 J = 2,NC
WRITE(6,54) HIMEAN(I,J) FKMEAN(T»J) 9 ZMEAN(T 2 J) QMEAN(T,J) 9 PHIMEN(I
94J)

53 CONTINUE
54 FORMAT(1H ,5F20.6)
DO 10 J = 1,MNCOL

T = S5TMIN(GJ)
U = GTMED(J)
V = GTMAX(J)

RN = RANF(0)

G T + SQRT(RN*(U - T)*(V - T))
GeLELU) GO TO 11

Vo= SOQRT(RN*(U = V)I*(V=T)=VXU+T*U=-V¥T+V%V)
W(Jy1) = 6
SEMINCGI)
GBMED(J)
GIMAX(J)
N = RANF(O)

= T 4+ SQRT(RM*(J - TI*(V = T))

F(5.LE.U) GO TC 10

=V = SORT(RN*(U = VIR(V=T)=-VEU+T*U=VET+VxV)
10 G20T(Jdy1) = 6

DO 12 T = 14NROW

$1

1F

E]

11 5T

—_

nohon

—- AL C G

tp]

T = GRMIN(I)
U = GRIMED(T)
Vo= SGRMAXCT)

”RN = RANF(0)
G = T + SQRT(RN%(U - T)*(V - T))
IF(G.LELU) GO TO 13
5 o= Vo= SQRTIRIN%=(U = V)F(V-T)=V U+ Tx=VxT+V*V)
13 GRITE(L,1) = 6
T = SLMINCD)
o= OLMID(T)
Vo= SLMAX(1)
= RANF (D)
G = T + SORTU(RN*(J = TIx(V - T))
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IF(3eLELU) 6D TO 12

5=V o= SQRT(RN*(U - VIH(V=-T)=VxU+TH-VikT+V%V)
GLLET(I,1) = G

DO 15 K = 1,NTSTLP

D15 J = 1,NCOL

T = STOP(J4K) = 5.0

U = 5TUP(J,4K)

V = STOP(J,K) + 5,0

RN = RANF(0Q)

G =T + SARTIRNR(Y = TI*x(V = T))
IF(G.LELU) 52 TR 17

G =V = SQRT(RN*(U ~ VIX(V=T)=VXU+THU=-VERT+V*V)
STOP(JeK+1) = 6

T = SBOT(J4K) = 5.0

J = LROT(J,4K)

V = 5BIT(J,K) + 5.0

RN = RANF(0)

G = T + SQRT(RN*(U = Tix(V - T))

[F(G.LELU) GO TN 16

G o= Vo= SARTIRN®(U = VIR(V=T)=V&U+TxU=VET+V*V)
GAOT(JyK+1) = 6

DO 1o T = 1,NROW

GRITE(I,K) - 5.0

GRITE(T,4K)

GRITE(I,K) + 5.0

RN = RANF(0)

G = T + SQART(RN*(U - Tix(V - T))

IF(G.LELU) 6D TO 19

G =V = SOQRT(RN*(U = V)®(V=-T)=V*U+T)U-VET+V*V)
GRITE(I,K+1) = G

<o
wounon

T = GLEFT(I4K) = 5.0
U = GLEFT([,K)
V = GLEFT(I,K) + 5.0

RN = RANF(0)

G = T + SQRT(RN*(U - T)x(V - T))

[F(G.LE.U) GD TO 18

G =V = SQRTURN*(U - V)IX(V=T)=V*U+T,U-VET+V*V)
GLEFT(I,K+1) = &

CONT INUE

IGRID
DO 40 1

DO 40 J 24NC
IGRIDL = IGRID + 1
DU 40 K = 1,\NVAR
RN = RANF(O)

29NR

I
oo

HIVARIIGRID,K) = N (HUP - HLOW) + HLOW
RN = RANF(0)
PHIVAR(IGRIDsK) = RN*(PHIUP -PHILNW) + PHILOW

RN = RANF(0)

QVARK(IGRID,K) = RN¥(JQUP(I,J) = QLOW) + QLOW
NI «1 1 Ly NROW

DO 41 J 1,NCOL

N0 41 K = 1,NVAR

RN = RANF(0)

FRKVAR(TyJyK) = RNR(FKUP(I4J) - FKLOW) + FKLNDW
RN = RANM(0)

IVAR (T 9 JeK) = RN®(ZUP - ZLOW) + ZLO0OW

RETURN

END

SYLRIJTINE MINMAX (X NRUN9JNROWSNCOL y T9 IVAR, IP4NVAR,NTSTEP,C)

DIMENSTON FLE38) 3 X(IPyIRUNZNTSTED) y T(IPy NVARZNTSTEP) aC(IP,NVAR,NTSTEP)

AaT=p)

\:.'.'\ = \IQF"‘N - 1

NC = NCOL - 1

RUN = NRUN

IGRIV = 0O

DN 200 IRDOW 249 MNR
00 zdH0 ICNL 24 MC
[5¢1D = IGRID + 1
D200 J = L14NTSTEP
S = 0.0

SS = 0.0
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DD 100 T = 1,NRUN

4 X(IG5RTI,y14J)

S S+ 5

SS = §§ + 5%

LOO FL(I) = GUIGRIN,T,J)

Bl = AMAXL(FLIOL) 3 FLI2)3FL03) 4F1(4)3F1(9)3FLI6),FLIT),FL(8),F1(9),
GELOLO) pFICLL) g FLEL2) oF1(L3) 3 F101A) 3FLULY) 3FL(16)4FLILT)sF1(18)4FLE13),4F1(
A1) s FLI20) s FLI21) 3 FL(22),FLI23),F1(24)4FL(25)4F1(26),F1(27),F1(28)
e FLE29)3F130)4FLI31) 4 FLI32),FL(33),F1L(34),FL(35),F1(36),FL(3T7),
IFL(32))

ST = AMINI(FLOL),FLU2)4FL(3)4FLI4)FL(5),FLIA)FLIT)FL(R),F1(9),
AETCLI) P L CIL) g FLCL2) 9y FICL3)oFL(14) 2F1(15)FLULn)FLI1T7),FLIL18),F1(139),FL(

7 FL9)y FLE20) 9 FLI2L) 4 FL(22),FLU23),F1(26),F1(25),F1(26),FL(27),F1(28)
I FLI29)3F1(30)3FLI31),F1(32),F1(33),F1(34),F1(35),F1(36),F1(37),
9F1(33))

TUIGRIDs, IVAR,J) = B1 - Sl

SDHAT = SQRT((SS - S%S/RUN)/(RUN - 1.0))

SMEAN = S/RUN

CVHAT(IG2ID, IVAR,J) = SDHAT/SMEAN

200 CONTINUE

RETURN

eND

SUBROUTINE RBSOLV (CyN,M,V)

C THIS SUBRJIUTINE SOLVES MATRIX EQUATION SET UP RY SUBROUTINE AMATRIX TO GIVE
C VALJES OF HEAD AT END OF TIME STEP.SOLUTION TECHIQUE IS GAUSS ELIMINATION.

DIMENSINN C(NyM)4VIN)

K=h=-1

LR=M=-3

DO 60 L=1,LR

IM=LR+1-L

DN 50 I=1l,IV

DO 0 J=2,K

50 ClLyJ=1)=C(LyJ)
60 C(LyK)=0.0

C(lyK)=C(1.M)

CllyM)=0.0

DO 70 I=24K

J=l=2
70 CIN=JyM)=0.0

CIN,K)=0.0

IM=\=-1

LP=K

DO 220 I=1,1M

NPIv=I]

LS=1+1

LL=LP=1

NO 100 L=LS,yLP

IF(ABS(C(Ly1))eGTLABS(CINPIV,1))) NPIV=L

100 CONTINUE

IFI(NPIVLLEST) 130,110

110 DY 120 J=14M
TEMP=C(14J)
ClLyJ)=CINPIV,J)

120 C(NPIVeJ)=TEMP

TEMO=v(])

VD) =v(iPIVv)

V(P IV)=TEMP

130 v(I)=v(I)/C(1,1)
DO 140 J=2,M
140 ClI1,J)=CL1,J)/C(1,1)

IFLIOEN=LR) LL=LL#]

DN 190 L=LSyLL

TEMP=C(L,1)

VIL)=VIL)-TIMPRV(])
DO 160 J=24M
150 ClLyJ=1)=ClLsJ)=-TEMPXC(]1,4J)
IF(LLEQLLS) 170,180
L7C C(L,%)=0.0
GO T 190
150 C(LyK)=0.0 ’ RBSOL180
190 CONTINUE

"non
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[F(leG=eN=LR) GO TO 220

TC¥P=CL(LP,y 1)

VILP)=V(LP)=TEMPRV(T)

CLPy 1) ==TEMPXRC(1,2)

DO 210 J=2,K
210 CLPyJ)=C(LPyJ)=-TEMPRC(T,J+1)

IF(LPLTN) LP=LP+]
220 CONTINUE

VIr)=VN)/C(Ny, 1)

Lp=2

DO 250 I=1,1IM

L=N-1

DO 240 J=2,LP

LL=L+J~-1
2640 V(L) = V(L) = C(LyJ)%®V(LL)

IF(LPeLTM=1) LP=LP#+1
250 CONTINUE

RLTURN

END

SUCROUTINE AMATRIX(IRAN , RHS , A)

DIMINSION A(20,6)y RHS(20)y, RKH(6,7)

COMMON CTIME,y CDTIME, NTSTEP, NRNOW, NCOL, NVAR, NRUN
DX(697)y DY(64T7)y KBC(64T)y XNORM(150)
FK(69T)y RLOE3T)y QU6437)y HI(647)y PHI(O,T)y HT(647)y Z(6,47)
FKMEAN(697)y IZIMEAN(647)y QMEAN(64,7)y HIMEAN(64,7), PHIMEN(647)
FKVAR(6497515)y ZVAR(6,7,15)
CVAR(20415)y HIVAR(20,415)y PHIVAR(2C,15)
FRKMIN{G9T) 9 ZMIN(G6+7) yQMIN(697) yHMIN(6 27 ) 9 PHIMIN(S,T7)
FKMED(647)y ZMED(647)y QMED(6437)y HMED(647)y PHIMED(6,47)
FKMAX(6H9T)y ZMAX(647)y QMAX(6497)y HMAX(647)y PHIMAX(6,7)
FKLOW(697)y ZLOW(6,37)y QLOW(6+7) sy HLOW(H,37) s PHILOW(6,T7)
FKUP(697)y ZUP(69T)y QUP(6E9T)y HHUP(6E4T)y PHIUP(6,47)
HDT(209384510)y TWIDE(20415410)y CVHAT(20415,10)
STUDENT, NBETA
X(5,15)
TIM(10)
GTMIN(T), GTMED(T7), GTMAX(T7), GBMIN(7), GBMED(7), GBMAX(7)
GRMIN(7), GRMED(7),y, GRMAX(7), GLMIN(7), GLMED(7), GLMAXI(T7)
GTOP(7,11)y GROT(7411)y GRITE(6,11)y GLEFT(6,11)

* DW=
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L SETS uUP MATRIX FIOR CONSTANT GRADIENTS BOUNDARY CONDITIONS ONLY
[
(06 5 e Ao o ¢ e ok AR AR Sk R o o e R Kl A % e R o R ok ok i ok e i ol ok o o o o o oo e o ok e ok e o o e e o o e o o ok o ok
C
MRA= (NRNOW - 2)%(NCOL - 2)
NCA = NRQOW
MC = NCOL - 1
NR = NROW = 1

NCAL = 1

MCAZ = N*Ow - 3
NCA3 = NRRDW - 2
nNeas4 = NROW - 1
NCAD = NROW

DO 33 J =14NCA

DA 90 T =1,NRA
J0 AlI,J) = 0.0

DC 91 T =1,NROW

NP 91 J =1,NI0L
Il AKH(CTyJ) = 0.0

IA =0

NO 130 J = 2,MNC
DN 100 I = 24,NR
Kl = KBL(T,J+1)
K2 = KBC(I-1,J)
K3 = KBC(I,J-1)
Kée = KRC(T+1,J)
IA = 1A + 1

PX= 2.0%FK(T9J)%DY (14 J)%R(1,d)/DX(1,J)

PY= 2.0%FK(T9J)%DX(I4J)%B(14J)/DY(I,J)

PL = 2.0%FKOL,J# 1) %DV (T, J+1)%B(1,J+1)/0X(1,J+1)
P1 = (PX%P1)/(PX + P1)
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P2 = 2.0%FK(I=19J)%¥DX(1=1,J)%B(1-1,J)/DY(I=-1,J)
02 = {PY®P2)/(PY % P2)
P3 = 2.0%FK(T,J=-1)1%0Y(1,J-1)%B(I,J-1)/0X(1,J-1)
P3 = (PX%P3)/IPX + P3)
P4 = 2,0%FR(T+LyJ)%DX(T+14J)%B(I+1,J)/NY(1+1,J)
P4 = (PYXP4)/(PY + P4)

PAHS = PHI(LJ)ADX(T1,0)%DY(1,4J) /DT
SOTT (19293)9K1
I PRl Iy J)=P1*HT(T,4J4+1)
A(IA,NCA3) = Pl
GO TN 2
3 ACLA,NCAS)=P]
2 GO T (4495496)4K2
4 RKHET1,J)=P2%HT(I=-14J) + RKHI(I,4J)
A(TA,NCA3) = P2+ A(IA,NCA3)
6N T 5
6 ACIAZNCA2)=P2
5 G T (748,9),K3
7 RKHIT9J)=P3%HT(I,J=1) + RKH(I,J)
ACIAZNCA3) = P3+ A([A,NCA3)
eoTN 8
9 A(IAWNCA1)=P3
8 GO T7 (10,114512) K4
1O RKH( T4 J)=P4xHT(I+14J) + RKHI(I,J)
A(TAYNCA3) = P4+ A(IA,NCA3)
Go TN 11
12 ACTAZNCA4)=P4
11 A(IA,NCA3) = ~A(TA,NCA3) =-(A(IA,NCALl) + A(IA,NCA2) + A(IA,NCA4) +
9 A(IA,NCAS) + PRHS)
RHS(IA) = Q(I9Jd) = PRHSHHT(I4J) - RKH(I,J)
100 CANTINUE
RETURN
EMND
SUBRIUTINE PILY(Yy Xy NVAR,N3ETAZNBETAL,,STUDENT,IGRIDyNLyIPyNTSTEP)
THIS SURRJQUTINE ESTS. CNEFFS., COMPUTES CONF. INT. ON EACH REGRESSION COEFFS.
TESTS HTPDS. (A0yA1,A2,A4,A5)=0, (A1,A2,A4,A5)=0
FOLLOWING VARIABLES HAVE TO BE DIMENSIONED,
STOMA2(NTSTEP) = EST. OF VARIANCE OF COND. DIST.
CONFUP(NTSTEP L,NBETA) = UPPER CONF. INT. ON REGRESSION COEFF.
CONFLOW(NTSTEP,ZNBETA) = LOWER CONF. INT. ON RFGRESSION COEFF.
FSTAT(NTSTEP) = F=STAT FOR TESTS CFHYPOS
E(NBLCTALNBETAL) = MATRIX (XX) AND (XY) FOR EACH TIME STEP IN NORMAL EQUATIDNS
(XX)*(BUTA) = (XY)
RHSINTSTEPZNBETA) = VECTOR (XY) FROM NORMAL FQUS. FOR EACH TINE STEP. (RHS) IS
SAME AS CULS. N2-NBETALl 0OF (F)
RBCTINTSTEP) = (BETA)®(XY)
RGAMMA(NTSTEP) = EST. OF REGRESSION COEFFS. IN REDUCFED MCDEL
FETA(NTSTEPZNRETA) = MAX, LIKFLIHOOD EST. (OF RZGRESSION CNEFFS.
F(2y I+NTSTEP) = MATRIX OF COEFFS. IN REDUCED MODEL
DIMENSION X(N1yNVAR), Y(NTSTEP, MVAR)
1 » SIGMA2(10)y CIONFUP(1046)y CONFLIOW(LOs6),y, FSTAT(10), E(6,416)
2 3 RHS(1046)y RBET(10), RGAMMA(10), RETA(1046),y F(2,12)
NAL = NO, OF REGRESSIIN COEFFS. ASSOCIATED WITH ERROR IN INITISL HEAD IN
LEGRESSION MODEL. FOR REGRESSION EQUS. IN THIS PRNOGRAM , THE COEFF. IS (A3) IN
rOTH MOTELS. THEREFQORE NHI = 6
NHI = 4
N2 = NRETA + 1
SET ELEMENTS NF (E) EQUAL ZERD

00 2 K = 1,N3ETA
60 2 L = 1,NBETAL
2 E(KyL) = 0.0

LIPS 20,21 DEFINE ELEMENTS OF (E) FOR CNLS.e 1-MNBRETA
ECLy L) = NVAR
DG 20 L = 25NBETA
vV = 0.0
00 3 K = 1,\VAR
L = b =1
3V = Vv + X(LLyK)

tlLlyL) =V

¢d E(L,1) =V
0zl L o= 2,\N3BETA
R 21 ¥ = Ly NBETA
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V = 0.0
DO 4 K = 1,\NVAR
4 V = V + X(L=-1,K)%X(M=1,K)

E(LyM) =V
21 E(M,L) =V
LOOPS 6,7 DEFIME ELEMENTS OF MATRIX (E) ROR COLS. N2-N3ETAlL
DO &6 L = N2,\NBETAlL
DO & K = 14,NVAR
LL = L - NBETA
6 E(1,L) = E(LlsL) + Y(LL,yK)
DD 7 J = N2,NBETAl
JJ = J - NBETA
DO 7 L = 2,NBETA
D3 7 K = 1,NVAR
7T E(Lyd) = E(LsJ) + YUJJyKIXX(L=14K)

LOOP 8 STORES COLS. N2-NBETA1l OF (E) IN (RHS)
DO 8 K = N2,NBETAL
KK = K - NBETA
DO 3 L = 1,NBETA
8 RHS(KK,L) = E(L,K) )
DEFINE COLS. 1-2 OF (F) TO 3E USED TO TEST HYPO THAT (Al1,A2,A4,A5)=0
E44 = E(NHI,ZNHI)

Fl1,1) = E(l,1)

F(1,2) = E(1,NHI) )
FI2,1) = F(1,2)

F(2,2) = E4&4

LOJP 30 DEFINES COLS. 3-NBET OF (F)

NBET = NTSTEP + 2

IT =1

DO 30 1 152

Do 31 J 3yNBET

JJ = J + NHI

31 F(IsJd) = E(II,JJ)

30 Il = II + NHI -1
LIBRARY SUBROUTIME MATRIX CONPUTES INVERSE OF COLS. 1-NBETA OF (E), AND SOLUTI
~0ON CORRESPINDING TO EACH VECTOR OJF (E) STORED IN COLSe N2-NBETAl. THIS
[NVERSE AND SOLUTION VECTORS ARE RETURNED IN (E). DETERMINANT OF MATRIX BEING
INVERTED IS RETURNED IN DET.

CALL MATRIX(10,NBETA,NBETA1,2,E,NBETA L,DET) ) ) e
LOJP 9 STORES SOLUTION VECTORS IN (BETA). THESE SOLUTION VECTORS ARE MAX. LIKE
~LIHOOD ESTS. OF REGRESSION COEFFS. « EACH VECTOR CORRESPONDS TO ONE TIME STEP

DO 9 1 = N2¢N\NBETAL

I1 = I - NBETA

DD 9 L = 1,NBETA

9 BETA(II,L) = E(L,I)

AN = NVAR - NBETA

LOOP 10 COMPUTES,

inon

(YY)= SUM OF SQUARES OF DEPENDENT VARIABLE.

{(RBET)=(BETA) *(XY)

(SIGMA2)= EST. OF VARIANCE NF COND. DIST.
DO 10 I = 1,NTSTEP

YY = 0.0
DO 11 J = 1,NVAR
IL YY =YY + Y(I,J)%%2
REETA = 0.0
DO 12 J = 1.\BETA

12 RBETA = RBETA + RHS(I4J)*%BETA(I,J)
SIGMA2(1) = (YY - RBETA)/AN
RBET(I) = RBETA
10 CONTINUE
LOJP 13 CIOIMPUTES CONF. INT. ON (BETA).
[F INT. CONTAINS ZERD , IT IS EQUIVALENT TO ACCEPTING HYPO THAT REGRESSION COE
-FFS. IS EQUAL TO ZERD.
DO 13 I = 14NTSTEP
DO 13 J = 1,NBETA
TRO3T = STUDENT*SQRT(E(J,J)*SIGMA2(I))
CONFUP(I,J) = BETA(I,J) + TROOT
13 CONFLOW(I,J) = BETA(I,J) - TROOT
DO 14 1 = 14NTSTEP
WRITE(6,16)
16 FORMAT(1H )
DO 14 J = 1,\NBETA



o

WRITC(6,1
14 CONTINUE
15 FOXKMAT(1H

T TCST HYPD

WRITiL(6,1
19 FORMAT(L1H
AN1 = N1
D0 17 I =
RGAMMA( )
FSTAT(I)
ERROR = §
17 WRITE(6,1
18 FORMAT(1H
TO TEST HYPO
WRITEH(6,3
34 FORMAT(1H
AM1 = NBE
CALL MATR
oD 32 1 =
RGAMMAL(T)
FSTATI(I)
32 WARITE(6,43
33 FORMAT(1H
RETURN
END
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5) JyCONFLOW(I,J),BETA(I,J),CONFUP(T,J)

220X91543F25.10)
(ADsAL9A2,A4,4,A5)=0

9)
)

1,NTSTCP
=RHS(I,NHI ) %%2/E44

= ((RBET(I) = RGAMMA(I))/ANL1)/SIGMA2(I)

IGMA2(T)*AN
8) 1y FSTAT(I1), ERROR

21104 % FSTAT = %43F20e4 % FRROR = *,F20.4)

(Al,A2,A4,A5)=0
4)

)
TA - 2

IX(1092yNBET2,F924DET)
L, NTSTEP
= F(lyI+#2)*RHS(I+NBETA,1)

+ F(2,142)%RHS(I+NBETA,NHI)

= ((RBET(I) - RGAMMA(I))/AN1)/SIGMA2(I)

3) I, FSTATI(I)
2y [10,% FSTAT = %,F20.4)
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