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ABSTRACT OF DISSERTATION 

STATISTICAL ERROR ANALYSIS OF GROUND WATER SYSTEMS 

A method is developed, which, by considering the input 

variables to a numerical model of flow in porous media as random 

variables, enables the accuracy of these input variables to be 

related to the accuracy of the output. The input variables considered 

a;re initial head, p~rmeability, discharge, storage coefficient and 

saturated thick;ness and the output variable is head after a period of 

time. The met4od involves the use of the Monte Carlo technique to 

generate a random sample of the final head, the computation of a 

tolerance limit width and a coefficient of variation on the final head 

which are used as measures of its accuracy, and a regression 

analysis to determine a predictive relation between the accuracy of 

the input variables and the accuracy of the final head. The results 

indicate that if only one of the input variables contains error then 

this erro;r is linearly related to the error in final head. If all input 

variables contain error, then only the error on initial head is 

significant in predicting the error in final head. 

In addition, a method of estimating the parameters of the 

probability density functions of the input variables from available 

field data is described and the relation is determined between the 
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accuracy of these estimates and the number of data points used to 

make the estimate. The significance and app\ication of the results 

in ground water system management is discussed. 

Robert Bibby 
Civil Engineering Department 
Colorado State University 
Fort Collins, Colorado 80521 
March, 1971 
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INTRODUCTION 

A numerical model, obtained by approximating the partial 

differential equation of flow in porous media by finite differences, 

is commonly used to analyze groundwater systems. Its application 

requires that values be assigned to the input variables, permeability, 

storage coefficient, saturated thi ckness, initial head and discharge, 

and then the model is used to compute values of head at various 

times. It is an entirely deterministic model and is frequently used 

in situations in which nothing is known of the accuracy of the 

estimates of the input variables or how errors in these estimates are 

related to the accuracy of the results. Further, the relation between 

the amount of field data available and the accuracy of the estimates 

of the input variables is usually not known. This study is aimed at 

establishing these relations by a combined use of deterministic and 

stochastic methods . 



RESEARCH OBJECTIVES AND THEIR SIGNIFICANCE 

The principal objective of this study is to r elate the accuracy 

of the estimates of the input variables of the numerical model to the 

~ ~ ,._, 
accuracy of the estimate of the output. Thus, if X 

1
, x2 , .... , Xp 

are the estimates of p input variables X 
1

, x
2

, . ... , X p and have 

errors 
,._, 

E 1, Ez, ...• , Ep, respectively, and Y is the estimate of the 

output variable, Y, with error Ey, then a relation of the form, 

was sought, where, E 1 denotes the function relating the errors. 

This ~rror relation was determined by considering the 

estimates of the input variables as random variables. Further re-

search objectives were then to establish a technique for estimating 

the parameters of the probability density functions of the input 

variables from available field data and to find the relation between 

the amount of field data used to make the estimate and the accuracy 

of the estimate. Thus, if n field observations x
11

, x
12

, ... ,, X 1n 

are available to estimate X 
1

, it was required to find, 

and 
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where, E
2

, E 
3 

denote functions relating the variables. 

With the results of this research it is hoped that future 

numerical model studies of groundwater systems will be made more 

effective, since, the relative importance of the input variables will 

be known from the point of view of the influence that they have on the 

accuracy of the results. Also, future data collection should be 

conducted more efficiently since the amount of data needed to obtain 

a certa~n accuracy in the estimate of an input variable will be known. 

In addition, data can be collected on only the more important 

variables influencing flow in ground water basins. It should also be 

possible to determine how much more data it would be necessary to 

collect on each input variable to obtain a specified increase in the 

accuracy of the estimate of the output variable . 



LITERATURE REVIEW 

The study of ground water systems has only recently been made 

tractable with the introduction of numerical models. In consequence, 

little work has been reported on the study of the sensitivity of the 

response of ground water systems to changes in the system para-

meters. However, the other tools used in this study, namely 

Regression Analysis, Non-parametric statistics and Monte Carlo 

techniques a.re widely used, although not simultaneously, and in 

conjunction with a deterministic model. Since these three methods 

are so well known, the literature on them wi,ll not be reviewed. Only 

that literature which pertains to the analysis of the sensitivity of 

the hydraulic response of a ground water system will be discussed. 

Literature on the numerical model will be cited in the section in 

which the model is described. 

McMillan( I 3) investigated the relative importance of basin-

wide heterogeneity of permeability in operational analysis of ground 

water basins. His analysis consisted of repeated numerical 

solutions of Laplace's Equation with variable coefficients. In his 

analysis he allowed the following factors to vary one at a time: 

i) basin-wide mean value of permeability, 

ii) basin~wide standard deviation of permeability, 

iii) mean hydraulic gradient, 
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iv) grid size, 

v) grid length to width ratio, 

vi) probability density function of permeability, 

vii) size of homogeneous and heterogeneous biocks within the 

basin, and 

viii) the weighting factor used to approximate the average 

permeability between gr ids. 

His results, obtained for a rectangular groundwater basin in 

which two opposite boundaries were impermeable and the other two 

were constant heads, indicated the following empirical relationship, 

where, er d = standard deviation of the differences in head for 

homogeneous and heterogeneous solutuions, 

~H = average drop in head between grids in the direction 

of flow, 

er K = basin-wide sample standard deviation of permeability, 

K = basin-wide sample mean of permeability, 

F d = empirical factor with a value in the range O. 05 to 

2. 0. 

Of the factors considered, (iv)-(viii) had little effect on the 

above relation. The relation has limited application because only 

the steady-state flow equation is being solved for a simple 
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groundwater model in which only one aquifer parameter, perme-

ability, is considered random. Also the relation is deduced from a 

small amount of data, and so further restricts its applicability. 

Bittinger( 3) investigated the influence that the total input, the 

aquifer parameters and water management practices have on the 

return flow in stream aquifer systems . His technique consisted of 

varying the influencing factors one at a time and analyzing the effects 

on return flow. He concluded that the return flow response is 

principally dependent upon the total volume of water added to the 

aquifer, the width of the aquifer, the location of the application area 

2 and the aquifer constant, (KbT)/(SW ) where, K is permeability, 

b is saturated thickness, T is time, S is specific yield and W is 

aquifer width. Water management practices could also signifie1:antly 

effect return flow. Areal variations in permeability and bedrock 

configurahon were found to have an insignificant influence on return 

flows. 

( I 7) . 
Woods developed a water quality model of a general 

hydrologic system. The system included a ground water aquifer and 

he investigated, by changing one variable at a time, the sensitivity 

of the water quality and system hydrology to changes in physical 

parameters of the system and in management practices. So far as 

the ground water aspects of this analysis were concerned, he 

concluded that the most sensitive term to changes in specific yield 
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was the max imum representative h ead difference driving flow into 

drains but this sensitivity decreased with time. Changes in the 

initial values of this representative head difference had little influence 

on other system parameters. Changes in the amount of applied 

irrigation water induced significant effects on all system parameters. 

The methods used by Bittinger and Woods to investigate ground 

water system response involved assigning a small number of 

different values to the input variables and observing the effect on 

system response. Such an approach can at best give only a super-

ficial indication of the sensitivity of the system response to changes 

in the input variables. 

( 6) 
Eshett assumed the change in water table elevation in a 

sub-area of an aquifer to be a linear function of four surface 

variables, precipitation, pumping, delivered water and artificial 

spreading. In each sub-area he found maximum likelihood estimates 

of the coefficients of this linear function assuming the observations 

of the variables to be normally distributed. Dividing each sub-area 

into grids, he was able to estimate the net discharge from each grid. 

He then l,lSed these values of net discharge as input to a numerical 

model of the entire aquifer and solved for water table elevation after 

a period of time. The regression analysis involved only the surface 

factors which influence a ground water system and did not consider 

any of the aquifer parameters as random variables. Also, the 
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interdependence of these surface factors and the fact that large 

time steps were involved in the study, made it impossible to determine 

their relative importance in pred icting net discharge. 

Longenbaugh ( lO) used stepwise multiple regression to develop 

a prediction equation for river accretion from applied irrigation 

water, precipitation, pumping and evapotranspiration. He concluded 

that the best equation, from a practical point of view, for the aquifer 

he studied, was, 

where 

Y = - 3595 + 2. 3287X 1 + 1064X 2 

Y = river accretion 

x
1 

= variable measuring volume of ditch diversion, 

x
2 

= variable measuring precipitation amount. 

Pumping volume and consumptive use were found to be non-

significant in this aquifer. Longenbaugh and Bittinger ( l l) reported 

studies of this same problem using techniques of multivariate 

analysis. As with Eshett's study, the regression equation used by 

Longenbaugh and Longenbaugh and Bittinger involved only the surface 

factors affecting a ground water system. They also encountered 

problems due to the correlation of the independent variables in the 

regression equation. It was this correlation which led them to 
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consider multivariate analysis. The results of this approach were 

not reported in reference ( l l). 

( 15) . Rorabaugh determined the correlation between changes in 

water table elevation, precipitation and temperature by graphical 

means. He used the relationships which he established to predict 

maximum change in water table elevation during a year knowing the 

elevation at the beginning of the year. The predictions were 

acceptably accurate, but, since only the surface factors influencing 

the ground water system were considered, the results are limited 

in applicability. 



NUMERICAL MODEL 

The equation of transient flow in a porous medium may be 

derived from the mass continuity eqµation and Darcy's Law and 

written, (Jacob (S)), 

where, x, y = space coordinates (L) 

K = permeability ( L/ T) 

b = saturated thickness ( L) 

6. x, 6.y = grid dimensions (L) 

h = head (L) 

Q = discharge rate from grid (L 3/T) 

S = storage coefficient (for confined flow); specific 

yield (for unconfined flow) 

T = time (T) . 

For un.confined flow, b = (h-z), where z is the bedrock 

elevation ( L), so equation ( 1) is non-linear in h. For confined flow 

b is independent of h, so equation ( 1) is linear in h. 

Dividing the region of flow into grids and using an implicit 

central finite difference scheme, equation ( 1), written for one of 

these grids, becomes: 
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(A+ B + C +D + E)T h!~LT = QT+LT/2 - E hT (2) 
1, J 

where, 

AT :;:: [( 2~~y) i,j-1 + (z~~Y) ( 
1, J 

BT = [(z~b~y) i,j+l + (z~~yt r 
CT = [(z~bL\_l,j +(2K~2L)J-l 
DT 

[( 2~b~x). l . + 
6 ) ]~l = (2Kb~x .. 

1+ 'J 1, J 

E = [ ( S6x6y) i . ] 
6t 'J 

The i, j notation ( see Fig. 1) 

refers to the grid for which a 

particular equation is written and 

i- l ,j 

i,j- i, j i,j+ 11 

i + l ,j the superscripts represent the time 

level of computation. FIGURE 1 

Equation ( 2) is written for every grid in the flow region and 

the resulting equations are solved simultaneously to give the head 

in each grid at time (T + 6T). The development of this model and its 

1. · h (1), (2), (4), (5), (12) app 1cat10ns ave been reported by 
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The input variables to the model are h
1

, the initial head, K, 

b(or z), Q and Sand the output is hF, the final head at a given time. 

The average value of each of the input variables in every grid has 

to be specified for input. It is therefore required to relate the 

accuracy of these input variables to the accuracy of hF, to estimate 

the parameters of the density runctions of the input variables from 

field data and to relate the accuracy of these estimates to the amount 

of data us ed. 



THEORETICAL FRAMEWORK 

Assume that each of the input variables has a unique non-

random value at each point in the aquifer, and that an observation 

of any one of these input variables at a point in the aquifer cannot 

be made accurately, but involves a measurement error. This error 

is considered to be purely random and to be free of bias. For 

example , if n points (x . , y,; i= I, ..•. , n) are chosen either randomly 
l l 

or by design in the aquifer and at each point an observation of 

permeability is made, then, 

where, 

k . = K . + e. i = 1 ..• n, 
l l l 

k . = observed value of permeability at the point 
l 

(x . , y.) (random and observable), 
l l 

K. = true value of permeability at the point (x., y . ) 
l 1, l 

(non-random and unobservable), 

e . = measurement error at the point (x., y . ) 
l l l 

(random and unobservable), 

n = number of observations. 

The errors, e . , will be considered to be independent of K . , 
l l 

mutually uncorrelated and normally distributed, ( 16 ) with mean 

d . 2 h . zero an variance CJ" K' t at 1s, 
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i = 1 .••• n, 

and Cov( e., e.) = 0, i = I . . . • n, j = I • . . • n, 
l J 

i 1' j . 

The variance,o-~, of ei is assumed constant for each 

observation at each point in the aquifer. It follows that, 

k. ,-1 N (K., 
l l 

i = 1 •••• n 

The spatial variation of each input variable is assumed to be 

expressable as a function of the space coordinates by an equation of 

the form (using permeability as an example), 

where, 

Then, 

a. = constant coefficient (unknown), 
l 

X. = X .(x, y), where x, y are space coordinates, 
l l 

N = number of terms in the equation necessary to 

closely approximate the spatial variation in K • 

k. = a + a X + ... + a X + e , i = I •••. n, 
1 0 I l~i N-1 N-1,i i 

or, in matrix notation, 

k = a' X + e ( 3) 
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The coordinates (x., y.; i = 1, .... , n) of each observation, 
l l 

(k.; i= 1, .•. n) will be considered to be observed without error, so 
l 

that each of the variables (X .. (x., y.); j=l, .... , N-1, i=l, .... , n) is 
J l l l 

known exactly, and equation ( 3) fits the normal theory of the General 

,:.: 
Linear Hypothesis Model of Full Rank, Model I, Case A ( see 

Appendix 2). Using this theory, maximum likelihood estimates can 

2 be found for (a.; i=l, .... ,N-1) and erK. If these estimates are l . 

designated a and IT~, they are shown in Appendix 2 to be given by, 

where, 

k' k - a' X' k 
and, -2 er =-------

K (n-N) 

,,.__ 2 

where, 
er K 2 

(n-N) - 2 -r--1x (n-N) 

erK 

The input to the numerical model is the mean value of each 

variable in each grid. For permeability, the true mean value in a 

grid, K, is given by 

where, the grid has coordinates (x, y), (x, y+6y), (x+6x, y), 

(x+6x, y+6y). 
_,_ 
-,-

The linear model classification used in this dissertation is 
the same as that given by Graybill ( 7). 
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The estimate of K in this grid will be taken to be, 

and is such that, 

::::: 
K ~N(K, 

The standard deviation, p K' will be taken as the measure pf 

error in the estimate, K, of K. It is shown in Appendix 3 that, 

j=l, ... ,N-l, i=l, ..• ,n , 

where, f(X .. )= aknownfunctionofX .. , j :;:, l, .•• ,N-l, i = l, ... ,n. Jl , Jl 

The estimate of p K will then be 'p K' where, 

'! K p K =--:;:;- f(X .. ) 
"In Jl 

j = l, ... , N - l, i= l, ... , n 

Equations analogous to equation ( 4) for each of the input 

vai;-iables· provide a method of estimating the mean value of each of 

the input variables in every grid from available observations. The 

accuracy of these estimates is given by equations analogous to 

equation ( 5) and i s inversely proportional to the square root of the 

number of observations used to make the estimate. 

The solution to the 'numerical model for every time step in-

( 5) 

valves the inversion of a matrix whose size is equal to the number of 

gr ids of the system being considered. This makes it practically 
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impossible to determine directly the relations between the measures 

of error on the input variables, p K' 'p b (or p z), p h/ p Q' PS' 
the accuracy of the final head after a number of time steps. In 

and 

consequence, the following procedure was adopted to investigate the 

error relations. 



EXPERilvt:ENT AL PROCEDURE 

In determining the relationship between the errors on the 

input variables and the error on the output, two general cases were 

considered: (i) each of the input variables, considered singly, was 

as surned to contain error and the other variables to be known exactly, 

(ii) all of the input variables, considered simultaneously, were 

assumed to contain error. The procedure for determining the 

relationship was basically the same for both cases, and is described 

first of all when only permeability, of the input variables, is 

considered to contain error and secondly when all of the input 

variables are simultaneously considered to contain error. It 

consists of the application of the Monte Carlo technique to generate 

a random sample from the density of hF, the computation of a 

tolerance limit to be used as a measure of error on hF from the error 

on the input variables. 

When only permeability of the input variables contains error, 

the procedure is as follows: 

STEP 1 

-
A randomly generated value of K and p K is assigned to each 

grid. The other variables a;re assigned ;random mean values and 

zero variances. 
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STEP 2 

In every grid a random value of permeability is generated 

::: ,.., 2 
from its distribution, which is assumed to be normal, N(K, p K), 

-
Thus, it is implicitly assumed that the differences between K and 

K and between p K and p K do not influenc~ the prediction of the final 

head and the determination of the accuracy of the prediction, This 

assumption has no effect on the determination of the error relations 

between the input and output variable$, but is significant in the 

application of these error relations, This significance i,s discussed 

in the section on application of results, 

STEP 3 

With these random values of permeability and the fixed values 

of the other input variables, the deterministic model is used to 

solve for the head after a specified time, 

STEP 4 

Repeat STEPS 2 and 3 until a random sample of size M of 

values of head in every grid is generated, that is, (h ) , i=l,,,, ,M, 
F-1 

STEP 5 

In every grid determine the tolerance limits on hF and the 

width of the tolerance limit, t. The theory of tolerance limits is 

developed in Appendix 4, 
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STEP 6 

Randomly generate a new value of p K in every grid and repeat 

STEPS 2, 3, 4 and 5 until a sample of size m of tolerance limit 

widths, t, in each grid is obtained, Each width will correspond to 

a value of p K' 

STEP 7 

>:< 
Using the theory of the Regression Model, Model III, Case 2 , 

find a predictive relation between t and p K' 

The theory of the Regression Model, Model III, Case 2, is 

described in Appendix 2, and to apply the theory of the model to find 

the relation between t and p K it is assumed that the joint density of 

t and p K is given by, 

exp { .!. ( t - G( p K)) 2 } 
t' 2 (J"t' 

( 6) 

where, 

G(p K) is a linear ( in the coeffi,cients c\) function of p :{:(' and 

h(p K) i,s the marginal density of p K and does not contain 

ai, i=l. .. Nor crt,' 
N 

so that, G( p K) = 
i=O 

In this study G( p K) was taken to be a polynomial, 

rJ i a/p K) 

It follows from equation ( 6) that the conditional distribution of 

t given pK = Pi( is f(t'), where, 

,:, Following Graybill' s ( 7 ) classification. 



f( t I) = f(t /pK = p ,K-~ ) = __ l_ 
.Jzrro-t' 
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{ 
1 ( t exp - 2 

so that, 

E( t I) = E( t/ p K = pi<) = 
N 

i=O 

The coefficients a., i=l. .. . N can now be estimated and the 
l 

value of N determined such that the "best" predictive relation 

between E(t') and p is obtained. This was done in the following 

manner. 

In every grid, the linear equation, 

was fitted to the data (t . , (pK) .; j=l. •.• m). A test of the hypothesis, 
J J 

H
0

:a
1 

= 0, was made. If this hypothesis was accepted then it was 

concluded that the data were fitted better by E(t' ) = constant than 

by the linear equation being considered. If the hypothesis was 

rejected it was concluded that the data were better represented by 

the linear equation. In a similar way the equations, 

and 
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were fitted to the data, and the hypotheses, H :j3 = 0 and 0 2 

H
0

: y 
3 

= 0 were tested. These tests determine whether the data are 

better represented by a quadratic or linear equation and cubic or 

quadratic equation respectively. If, for instance, the hypothesis, 

H
0
:a

1 
= 0 were rejected and the hypotheses, H

0
:13

2 
= 0, H 0 : y

3 
= 0, 

were accepted, then it was concluded that the data were "best" 

represented by a linear equation. In general, before accepting that 

a polynomLal of a given order "best" represents the data it is 

necessary to accept the null hypotheses on two polynomials of 

immediately high~r order. 

The data generated in the above procedure was used to estimate 

the coefficient of variation of hF, ChF' by, 

~ = 

1 
(M - 1) 

1 
M 

M 

i: 1 (hFi - µhF) 2 

µh 
F 

M 

i= 1 

and the coefficient of variation of permeability, CK, by 

N 

~ PK 
CK = = 

K 

These were also regarded as measures of error on the input 

and output variables. They were considered in addition to the 

previously described measures of error because they are 
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dimensionless. The "best" polynomial relating chF and CK was 

then determined using exactly the same procedure as the one 

described above. 

When all the input variables are simultaneously considered to 

contain error the procedure for determining a predictive equation 

between these errors and the error on output is described below. 

The notation is adopted that p 1 = 'p K' 'p 2 = 'p b (or P z ), P 3 = P Q' 

STEP 1 

- -- - - -
A randomly generated value of K , b (or z), Q, h

1
, S and 

p., i= 1. ••• 5 is assigned to each grid. 
l 

STEP 2 

In every grid a random value of K, b ( or z), Q, h
1 

and S is 

generated from its distribution, which is assumed to be normal. 

STEP 3 

With these values of the input variables, the deterministic 

model is used to solve for the head after a specified time. 

STEP 4 

Repeat STEPS 2 and 3 until a random sample of size M of 

values of head in every grid is generated, that is, (hF)i, i=l. ... M. 
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STEP 5 

In every grid determine the tolerance limits on hF and the 

width of the tolerance limit, t. 

STEP 6 

Randomly generate a new value of p., i= 1 •••• 5 in every grid 
l 

and repeat STEPS 2, 3, 4 and 5 until a sample m of tolerance limit 

widths, t , in each grid is obtained. Each width will correspond to 

a set of values of p ., i= l. . .. 5. 
l 

STEP 7 

Using the theory of the Regression Model, Model III, Case 2, 

find a predictive relation between t and p . , i = 1 .... 5. 
l 

To fit the theory of the Regression Model for this multivariate 

case, it is assumed that the joint density oft and p ., i= l. ... 5 is 
l 

given by, 

f(t , 'p . , i = l •.•. 5) = 
l 

where, 

h ( p., i = 1 ..•. 5) . r--: 
l "I 21T<Ttll 

l 
ex p {-

G(p ., i = l. .. , 5) is a linear (in the coefficients a . ) function of p., 
l l l 

i=l. •.. 5, and, h(p . , i. = l. •.• 5) is the marginal density of p ., 
l l 

( 7) 
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i= 1. • .. 5 and does not contain c\, i=l. •.. N or CT t" ' In this study 

G( ·) was taken to be a polynomial inp., i=l. ... 5. 
l 

It follows from equation (7 ) that the conditional distribution of 

t given(~.=~ '~ , i=l. .•• 5) is f(t1'), where, 
l l 

f( t II) = f( t / p . = p ,:'., i= 1. •• • 5) = 
l l 

1 

,Jz:rr CT t" 

G( p': , i= 1. ••• 5)) 2 
} , 

(T t" ' 

so that, 

E (t") = E(t/ ,,;p .=Np >'f 1·-1 5) l i' - • • • • "'* = G( p . , i= I •.•• 5) . 
l 

It is now necessary to estimate the coefficients of the 

polynomial G( · ) and determine which of them are significantly 

different from zero; that is, determine which terms in the polynomial 

have to be considered in order to adequately represent the data. This 

was done when G( · ) was assumed to be a polynomial consisting 

only of linear (in the variables) terms and when it consisted of 

linear and quadratic (in the variables) terms. These two poly-

nomials can be written explicitly as , 

G( •) 

and 

G(. ) 

5 
::; a. p '~ , where, 

. O l l 
1 = 

,J 

p O = 1 

,., * 
p O = 1. 
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For each polynomial, tests of hypotheses were made on the 

coefficients a., both individually and simultaneously, to determine 
l 

which coefficients were significantly different from zero. These 

tests are described along with the results. 

A regression model involving only errors in initial heads was 

also investigated. This is described together with the reasons why 

it was studied in the section on results. 

For each of the regression models, involving tolerance 

interval widths and estimates of standard deviations, that has been 

described, an exactly similar model was studied relating estimates 

of the coefficients of variation of the input variables and the final 

head. 

The results of the investigation of all of the above regression 

models are presented in the following section, and the computer 

program used for the investigation is described in Appendix 5. 



RESULTS 

I. CONFINED FLOW 

I. A. Each Input Variable Considered Singly 

A confined aquifer, divided into 20 square grids, was used to 

determine the predictive relations between the errors in the input 

variables, considered singly, and the error in the output. Six 

variations of this 20 grid model were considered, which differed in 

boundary conditions and the "randomness" of the data used. They 

are described in Appendix 1. 

For each of the 20 grids, in each of the 6 models, and for each 

of the 5 input variables, the "best" polynomial relating errors on 

hF to errors on the estimates of the input variables were deter-

mined. The results, when the measures of error on hF are tolerance 

interval widths, are summarized in Table I. The entries in the 

table are the number of grids (out of 20) in which the 11best 11 

polynomi.al was linear, quadratic or cubic. 

For some of the models the 11best 11 polynomial was deter-

mined between the estimates of the coefficient of variation of the 

input and output variables. The results are given in Table 2. In 

this table, a 
1 

is the 11 gradient 11 coefficient in the linear equation. 

It indicates whether the error on the output variable is less than or 
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greater than the error on the input variable . Since the 

coefficients of variation are dimensionless, a value of a 
1 

less than 

unity indicates that the error on output is less than the error on 

input and a value greater than one indicates that the output error is 

greater than the input error. 

The following observations can be made from the results 

given m Tables 1 and 2: 

1) the majority of 11 best 11 polynomials, for all five input 

variables, are linear, in both the 11 tolerance-interval-

width 11 regression model and the 11 coefficient-of-

variation 1
' regression model; 

2) for initial head, the mean value of a 
1 

is • 9747, in-

dicating that the error in initial head has an approximate 

3) 

one-to-one relation ( slope of regression line approxi-

mately unity) with the error in final head; 

the mean values of a for the other four input variables 
1 

indicate that the error on final head is two or three 

orders of magnitude less than the input errors on these 

variables , 

These observations are made from results obtained for 

comparatively short periods of time and so are valid only for these 

ti me periods. 
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TABLE 1. INPUT VARIABLES CONSIDERED SINGLY. "BEST" 
POLYNOMIALS FOR "TOLERANCE-INTERVAL-WIDTH" 
REGRESSION MODEL; CONFINED FLOW. 

MODEL * 

TYPE OF 
POLYNOMIAL ( i) ( ii) ( iii) ( iv) ( v) ( vi) 

LINEAR 16 18 16 18 19 17 

K QUADRATIC 3 2 1 0 1 0 

CUBIC 1 0 3 2 0 3 

P:: LINEAR 16 16 16 17 16 16 0 
P:: 
P:: 

hl QUADRATIC 1 . 1 1 1 1 1 
CJ z CUBIC 3 3 3 2 3 3 
1-1 z 
1-1 

<I! LINEAR NO 19 19 19 18 18 
E-1 z 
0 s u QUADRATIC RUN 1 1 1 1 1 

CUBIC 0 0 0 1 1 
i:Q 
::; LINEAR 19 19 18 18 20 17 
P:: 
<I! > b QUADRATIC 1 0 0 1 0 1 
E-1 

CUBIC 0 1 2 1 0 2 
z 
1-1 

LINEAR 17 17 17 17 17 17 

Q QUADRATIC 2 2 2 2 2 2 

CUBIC 1 1 1 1 1 1 

Entries in the table are, for each model and each input variable, the 
number of grids ( out of 20) in which the "best" polynomial was linear, 
quadratic or cubic. 

;,'"Each model is described in Appendix 1. 



TABLE 2. INPUT VARIABLES CONSIDERED SINGLY. "BEST" POLYNOMIALS FOR "COEFFI-
CIENTS-OF-VARIATION" REGRESSION MODEL; CONFINED FLOW. 

TYPE OF POLYNOMIAL RANGE ON MEAN OF ,,_ 
a -~ IN THE a 1 IN THE 

LINEAR QUADRATIC CUBIC to GRIDS 20 GRIDS 

p::; K 19 1 0 .001533 .006447 0 p::; Model (v) .015160 
p::; 

a z hr 17 0 3 .830 .9747 
H z 
H 

Model ( iii) 1. 093 

[-i z 
0 s 19 0 1 .000054 .001644 u Model (v) .004045 
....:i 
i:q 

b 18 2 0 .000103 .00216 H p::; 
Model ( v) .007558 

> 
[-i 
0 

Q 19 1 0 .000378 .00125 
z Model (v) .002495 H 

Integer entries in the table are, for each input variable, the number of grids ( out of 20) in which the 
'best' polynomial was linear, quadratic or cubic. 

~:ca 1 is the "gradient coefficient" in the linear polynomial. 

vJ 
0 
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I. B. Input Variables Considered Simultaneously 

A confined aquifer, divided into 20 square grids, was used to 

determine the relations between the errors in the input variables, 

considered simultaneously, and the output variable. Two basic 

regression models were consider ed, a 6-coefficient model and a 21-

coefficient model. In terms of tolerance interval width and 

estimates of standard deviations these can be written, 

5 
,,, ,,, 

E(t') ,-J ... ... where 
N ,,, ... 

1 = a . p . Po = 
i=O 

l l 

and 

5 5 5 
p ,j ) E(t') /V :.:< 

+ i:\ C:i 
r.J ;,}( L = 6 .... 20, N >:< 1. = a. p . aL p . ' Po = 

i=O l l l 

Similar models relating estimates of coefficients of variation 

on input and output were also investigated, so that four models in 

all were studied. 

The 6- coefficient model was studied over four time steps 

covering a 110 day period and the 21-coefficient model over one 

time step of 20 days. 

The boundary conditions and data used to study these models 

are given in Appendix 1, and the results are summarized in Tables 

3, 4, 5, 6 and 7 . Table 3 gives the number of grids ( out of 20), in 

which the hypotheses, H
0

: [ (a .=0, a . unspecified) , i=O .... 5, 
l J 

j=O .... 5, j;ti], H
0
:[(a

0
,a

1
,a

2
,a

3
,a

5
) = 0, a

4 
unspecified), 
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9 5% level in the 6-coefficient regression models. Table 4 indicates 

whether, for the 6-variable "coefficient-of-variation" regression 

model, the estimates of the regression coefficients tended to 

increase or decrease with time and whether they tended to be 

positive or negative throughout the study period. Taple 5, for the 

6-variable model, indicates the way in which the sum of squares of 

deviations from the regression line changed with time, and Table 6 

gives typical estimates of the regression coefficients in one grid for 

the 6-variable "coefficient-of-variation" regression model. Table 

7 gives the number of grids (out of 20) in which the hypotheses 

H
0

(ai::;: 0, i=0 ..•. 20) were rejected at the 95% level in the 21-

coefficient regression model. 

The following observations can be made from the results given 

in Tables 3-7: 

1) from Table 3 it can be seen that only the error in initial 

2) 

head is of significance in predicting the error in final 

head up to 110 days, and that the predictive relation is 

linear and, from Table 6, initially one-to - one, 

from Table 3 the coefficients a
0

, a , a , a , a
5 

are 
l 2 3 

non- significant from zero both individually and 

simultaneously, 
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3) from Tables 4 and 6, the regression coefficient as-

sociated with error in initial head, a
4

, decreases 

monotonically with time, but is always positive, 

4) from Tables 4 and 6, the constant regression coefficient, 

a
0

, tends to increase with time, but up to 110 days does 

not become significantly different from zero, 

5) from Table 4, the regression coefficients a
1

, a
2

, a
3

, a
5 

do not show any discernable trends and are as liable to 

be negative as positive, 

6) from Table 5, the sum of squares of deviations tends to 

decrease with time up to 110 days, 

7) from Table 7, none of the product terms introduced by 

using the 21-coefficient model is significantly different 

from zero and the error in initial head remains the only 

significant input error in predicting the error in final 

head. 

For the 21-variable 11 coefficients-of-variation 11 regression 

model, the hypothesis, H
0
:[(a

0
, .... a

3
, a

5
, .... a

20
) = 0], was 

tested at the 95% level and accepted in 19 of the 20 grids, indicating 

that these coefficients are simultaneously non-significant, and that 

for this regression model, as well as the 6-variable model, the 

error in final head is linearly related to the error in initial head. 

The results for the 21-coefficient regression model given in 

Table 7 were obtained using 100 data points. A run was made using 
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TABLE 3. INPUT VARIABLES CONSIDERED SIMULTANEOUSLY; 
6-COEFFICIENT REGRESSION MODEL; CONFINED 
FLOW. 

'TOLERANCE-INTERVAL- 'COEFFICIENT-OF-
WIDTH' VARIATION' 

REGRESSION MODEL REGRESSION MODEL 

RESULTS AT END RESULTS AT END 
OF TIME STEP OF TIME STEP 

REGRESSION 
COEFFICIENT 1 2 3 4 1 2 3 4 

NUMBER OF GRIDS, ao 0 0 0 0 0 0 0 0 

OUT OF 20, IN al 0 1 0 0 0 1 0 0 

WHICH REJECT a2 1 0 0 0 1 1 1 1 

H : ( a . = 0) AT a3 2 2 2 2 0 0 0 0 
0 l 

95% LEVEL, AT a4 20 20 20 19 19 19 19 19 

THE END OF EACH a5 0 0 0 1 2 2 2 2 
TIME STEP 

NUMBER OF GRIDS IN WHICH 
REJECT H 0 : (a0 , a•r' a 2 , a 3 , a 5)=C 
AT 95% LEVEL A END 

0 0 0 0 1 2 2 2 

OF EACH TIME STEP 

NUMBER OF GRIDS IN WHICH 
REJECT H

0
: (a 1,a2,a3,a 5 )=0 

AT 95% LEVEL AT END 
0 0 0 0 2 2 2 2 

OF EACH TIME STEP 
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TABLE 4. CONFINED FLOW. INPUT VARIABLES CONSIDERED 
SIMULTANEOUSLY. NATURE OF ESTIMATES OF RE-
GRESSION COEFFICIENTS IN 6-VARIABLE, 'COEFFI-
CIENTS-OF-VARIATION' MODEL. 

TIME CHANGE OF NO OF ESTIMATES WHICH 
ESTIMATES OF WERE ENTIRELY POSITIVE 

REGRESSION COEFFICIENT OR NEGATIVE WITH TIME 

INCREASE DECREASE BOTH POSITIVE NEGATIVE BOTH 

ao 13 5 2 12 8 0 

al 11 7 1 7 12 1 

a2 9 8 3 7 13 0 

a3 9 8 3 9 9 2 

a4 0 20 0 20 0 0 

a5 10 7 3 11 8 1 

TABLE 5. CONFINED FLOW. INPUT VARIABLES CONSIDERED 
SIMULTANEOUSLY. TIME CHANGE OF SUM OF 
SQUARES OF DEVIATIONS IN 6-COEFFICIENT MODEL. 

INCREASE DECREASE MINIMUM MAXIMUM 

le b, C 
'TOLERANCE-

INT ER VAL-WIDTH' 2 15 2 1 
REGRESSION MODEL 

'COEFFICIENT-OF-
VARIATION' 2 16 1 1 

REGRESSION MODEL 
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TABLE 6. TYPICAL ESTIMATES OF THE REGRESSION COEFFI-
CIENTS IN THE 6-VARIABLE 'COEFFICIENTS-OF-
VARIATION' MODEL. INPUT VARIABLES CONSIDERED 
SIMULTANEOUSLY; CONFINED FLOW. 

RESULTS AT END OF TIME STEP: 

1 2 3 4 
f--i z ao . 001091 .001566 .002437 .003229 
1-t u -.00077 -.00079 -.00091 -.00109 1-t al 

a2 -.02295 -.02484 -.02784 - . 03000 
0 u 
z a3 -.00787 -.00922 -.01137 -.01289 
0 
1-t 
U) 

a4 . 9795 ,9500 .8938 . 8398 U) 

,z 
. 009 56 .00910 .00863 .00864 a as 

.~ 
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TABLE 7. CONFINED FLOW. INPUT VARIABLES CONSIDERED 
SIMULTANEOUSLY. 21-COEFFICIENT REGRESSION 
MODELS. 

'TOLERANCE- 'COEFFICIENT-OF-
INTERVAL-WIDTH' VARIATION' 

REGRESSION MODEL REGRESSION MODEL 

ao 0 0 

al 1 l 1 

a2 0 1 1 

a3 1 11 

a4 19 19 

a r::; 0 1 l 

a6 11 11 

a7 11 11 

a8 1 l 11 

a9 0 1 

alO 0 0 

all 0 0 

a12 
4j 32 

al3 1 11 

a14 0 21 

a 1 r::; 
2Z 21 

all1 
1 l 21 

a17 1 2 

al8 
3<:'. 31 

al9 0 1 

a20 0 2 

Entries in table are number of grids ( out of 20) in which hypothesis 
H :a. = 0 was rejected at 95% level. 

0 1 

Superscripts on entries in table are number of times coefficient was 
negative and significantly different from zero. 
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only 40 data points but did not g ive definitive results. Compared to 

Table 7, the number of times the null hypothesis was rejected on 

this run was fewer for all of the variables. This indicates that the 

power of the test of the hypothesis H : [ a. = 0, i=0 .... 20], in-
0 l 

creases with increasing number of data. 

In view of the results obtained with these two regression 

models, indicating the dominant influence of the error in initial head, 

a regression model involving only errors in initial head was in-

vestigated. 

For any one grid it was defined by, 

with a similar model relating the 

estimates of the coefficients of 

variation of input and output. The 

subscripts refer to a pattern of grids 

as in Figure 2. This model takes 

into account the influence that 

errors in initial head in neighboring 

2 

3 0 1 

4 

FIGURE 2 

grids have on the error in final head in any one grid. The data 

used was the same as for the 6-variable regression model which 

has just been described. The results are given in Tables 8, 9, 10. 
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The nature of the 20 grid model meant that only grids 7, 8, 9, 12, 

13, 14 ( see Figure 3) had four neighboring grids as shown in Figure 

3. Grids 1, 5, 16, 20 had two 

neighboring grids and grids 2, 

3, 4, 6, IO, 11, 15, 17, 18, 19, 1 2 3 4 5 

had 3 neighboring grids. For this 6 7 8 9 10 

reason, depending on which grid 11 12 1 3 14 15 

was being considered, the 16 17 18 19 20 - --~ 

regression model involved 6, 5, or FIGURE 3 

4 coefficients. Thus, in Tables 8 

and 9, a
0 

is the constant coeffic i ent, a 
1 

is the coefficient associated 

with error in initial head in the grid being considered and a,:, consists 

of all the coefficients associated with errors in initial head in 

neighboring grids. For all 20 grids, there are therefore, 20 

-~ 
estimates of a

0 
and a 

1 
and 62 estimates of a ''' • 

Table 8 gives the numbe;r of times that the hypotheses, 

rejected at the 9 5% level. Table 9 indicates whether, in the 

11 coefficient-of-variation 11 model, the estimates of the regression 

coefficients tended to increase or decrease with time, and whether 

they tended to be positive or negative throughout the study period. 

Table 10 indicates the way in which the sum of squares of deviations 

from the regression line changed with time. 
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The following observations can be made from the results given 

in Tables 8, 9, 10 ~ 

1) from Table 8 it can be seen that only the error in initial 

head in the grid being considered is of significance in 

predicting the error in final head up to 110 days, and 

that the predictive equation is linear . Initially, it is 

also approximately a one-to-one relation, 

2) from Table 8, the coefficients a
0

, a ,~ are non-

significant both individually and simultaneously in 

predicting the error in final head up to 110 days, 

3) from Table 9, the regression coefficient associated 

with error in initial head, a , decreases monotonically 
1 

with time but is always positive, 

4) from Table 9, the constant coefficient, a
0

, shows a 

tendency to increase with time, but up to 110 days does 

not become significantly different from zero, 

5) from Table 9, the coefficients associated with errors in 

initial head, 
,t, , ,, 

a , do not show any discernable trend and 

are as liable to be negative as positive , 

6) from Table 10, the sum of squares of deviations from 

the regression line tends to decrease with time up to 

llOdays. 
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TABLE 8. CONFINED FLOW. RESULTS FOR REGRESSION MODEL 
INVOLVING ERRORS ON INITIAL HEAD. 

'TOLERANCE-INTERVAL- 'COEFFICIENT-OF-

WIDTH' VARIATION' 
REGRESSION MODEL REGRESSION MODEL 

1 2 3 4 1 2 3 4 
p 

. 
0.0 0 0 0 0 0 0 0 0 

0.1 18 18 18 18 18 18 18 18 

a. * 32 32 43 32 0 0 11 11 

NUMBER OF GRIDS 
IN WHICH REJECT 2 2 2 2 0 0 0 0 
H0 : [ a. 0 ; a *] = O 
AT 95% LEVEL 

NUMBER OF GRIDS 
IN WHICH REJECT 2 2 2 2 0 0 0 0 
H

0
: [a.*] = 0 

AT 95% LEVEL . . 

Superscripts on entries in table are number of times regression 
coefficient was negative and significantly different from zero. 

a.* consists of all coefficients associated with errors in initial head 
in neighboring grids. 

The entries in the table opposite a.* are the number of times ( out of 
62) that the hypothesis H

0
: o.i = 0 was rejected for any of the coeffi-

cient in a.~!<. 

The entries in the table opposite a. 0 , a. 1, are the number of grids ( out 
of 20) in which the hypothesis, H

0
: o.i = 0, i = 0, 1, was rejected. 
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TABLE 9 . CONFINED FLOW. NATURE OF ESTIMATES OF RE-
GRESSION COEFFICIENTS IN THE I COEFFICIENTS-
OF-VARIATION' MODEL INVOLVING ERRORS ON 
INITIAL HEAD . 

TIME CHANGE OF NO. OF EST IMA TES WHICH 
ESTIMATES OF WERE ENTIRELY POSITIVE 

REGRESSION COEFFICIENTS OR NEGATIVE WITH TIME 

INCREASE DECREASE BOTH POSITIVE NEGATIVE BOTH 

ao 12 6 2 8 11 1 

al 0 20 0 20 0 0 

,J, 

26 30 6 33 28 1 a ''' 

TABLE 10. CONFINED FLOW. TIME CHANGE OF SUM OF 
SQUARES OF DEVIATIONS IN REGRESSION MODEL 
INVOLVING ERRORS ON INITIAL HEAD. 

INCREASE DECREASE MINIMUM 

le_ 
'TOLERANCE-

INTERVAL-WIDTH' 2 16 2 
REGRESSION MODEL 

'COEFFICIENT-OF-
VARIATION' 1 19 0 

REGRESSION MODEL 
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A comparison of the sum of squares of deviations in the above 

model involving only errors in initial head and the previous 6-

variable model, shows that the sum of squares was less throughout 

the study period in the 6-variable model in about 60% of the grids and 

greater in the other 40%. 

II. UNCONFINED FLOW 

n. A. Input Variables Considered Simultaneously 

A confined aquifer, divided into 20 square grids, was used to 

determine the relations between the errors in input variables, 

considered simultaneously, and the output variables. The following 

regression model was studied, 

and a similar model relating estimates of coefficients of variation 

on input and output variables. 

Results were obtained for this model with runs of one time 

step (20 days), 6 time steps (240 days) and..10 time steps (440 days). 

The boundary conditions and data used in these runs are given in 

Appendix I. The boundary conditions were defined to be constant 

gradients throughout a time step, but were allowed to change 

randomly with each time step. Impermeable boundaries and constant 

head boundaries are special cases of such boundary conditions, and 

so they are considered to be quite general. 
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The results are summarized on Tables 11- 18. Tables 11, 12, 

15 give the number of grids in which the hypotheses, H
0

: [(a. = 0, a. 
l J 

unspecified), i=O .... 5, j=O .... 5, j;t i] and H
0
:[(a

0
,a

1
,a

2
,a

3
,a 5 ) = 0, 

a 
4 

\lnspecified] were rejected at the 9 5% level for the 1, 6 and 10 

time step runs respectively. Table 15 also gives similar results 

Tables 13 and 16 give, for the "coefficient-of-variation" regression 

model, the number of grids in which the estimates of the regression 

coefficients increased or decreased with time, and the number of 

grids in which the estimates of the regression coefficients were 

either positive or negative throughout the study period for the 6 and 

10 time step runs respectively. Table 14 gives, for the "tolerance-

interval-width" regression model, the way in which the sum of 

squares of deviations from the regression line changed during the 

study period in the 6 time step run. Table 17 gives the way in which 

the sum of squares of deviations changed in the 10 time step run and 

Table 18 gives a typical set of es t imates of the regression coefficients 

for one grid in the 10 time step run of the "coefficients-of-variation" 

model. 

The following observations can be made from the results given 

in Tables 1 1 - 18 : 

1) from Tables 11, 12, 15 it can be seen that the error in 

initial head is significant in predicting the error in final 
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head up to 440 days, and that up to about 140 days the 

relation is linear, and from Table 18 it is initially one-

to-one, 

2) from Tables 11, 12, 15, the coefficients a
1

, a
2

, a
3

, a
5 

are not significantly different from zero both individually 

and simultaneously up to 440 days, 

3) from Tables 13, 16, and 18, the constant coefficient, 

a
0

, tends to increase with time, and from Tables 12 and 

15 it can be seen that after about 200 days it can no longer 

be considered to be not significantly different from zero, 

4) from Tables 13, 16 and 18 the regression coefficient 

associated with the error in initial head, a 
4

, decreases 

monotonically with time but is always positive, 

5) from Tables 1 3, 16 and 18 the coefficients a 
1

, a 
2

, a 
3

, 

a
5

, do not show any discernable trends and are as 

liable to be negative as positive, 

6) from Table 14, the sum of squares of deviations tends 

to decrease with time up to 240 days, and Table 17 in-

dicates that in general this decrease continues up to 440 

days, but that in an increasing number of grids a turning 

point is reached. 

As in the study of confined flow, because of the dominant 

influence of the error in initial head in predicting error in final 
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TABLE 11. UNCONFINED FLOW. INPUT VARIABLES CONSIDERED 
SIMULTANEOUSLY. 1 TIME STEP (20 DAYS) 

'TOLERANCE - 'COEFFICIENTS-OF-
INTERVAL-WIDTH' VARIATION' 
REGRESSION MODEL REGRESSION MODEL 

1 1 . 
p 

ao 1 0 

NUMBER 
OF GRIDS al 0 0 

(OUT OF20 
IN WHICH a2 1 1 

REJECT 
H : a . = 0 a 0 0 

O 1 3 

AT 
95% LEVEL a4 20 20 

a5 0 1 

NUMBER OF GRIDS 
IN WHICH REJECT 0 0 
Ho: [ao al a2 a3 a5] = 0 
AT 95% LEVEL 
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TABLE 12a. UNCONFINED FLOW. INPUT VARIABLES CON-
SIDERED SIMULTANEOUSLY . 6 TIME STEP ( 240 
DAYS) 

1 TOLERANCE-INT ERV AL-WIDTH' 
REGRESSION MODEL 

1 2 3 4 s 6 . 
p 

ao 11 0 0 0 2 3 

NUMBER 1 0 1 1 1 2 OF GRIDS al 

( OUT OF 20) 
a2 0 11 11 0 0 0 IN WHICH 

REJECT 11 11 22 11 11 11 
H ·a.= 0 a3 

o· 1 

AT 20 20 20 20 20 20 9S% LEVEL a4 

as 1 1 1 1 1 1 

NUMBER OF GRIDS 
IN WHICH REJECT 
Ho: [ao, al, a2' as] = 0 0 0 

a3, 
1 2 4 7 

AT 9S% LEVEL 

Superscripts on entries in table are the number of times the coeffi-
cient was negative and significantly different from zero. 
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TABLE 12b. UNCONFINED FLOW. INPUT VARIABLES CON-
SIDERED SIMULTANEOUSLY. 6 TIME STEPS (240 
DAYS) 

'COEFFICIENT-OF-VARIATION' 
REGRESSION MODEL 

1 2 3 4 s 6 
p 

. 

ao 0 0 0 1 1 4 

NUMBER al 2 1 0 1 0 0 
OF GRIDS 

( OUT OF 20) a2 0 0 0 0 0 0 
IN WHICH 

REJECT a3 0 0 0 0 0 0 
H :a . = 0 

0 l 

AT a4 20 20 20 20 20 20 
9So/o LEVEL 

as 0 11 11 11 11 0 

-
NUMBER OF GRIDS 
IN WHICH REJECT 0 0 1 3 s 8 
Ho:[ao, al, a2' a3, as]= 0 
AT 9S% LEVEL 

Superscripts on entries in table are number of times the coefficient 
was negative and significantly different from zero. 
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TABLE 13. UNCONFINED FLOW . INPUT VARIABLES CON-
SIDERED SIMULTANEOUSLY. 6 TIME STEPS. 
NATURE OF ESTIMATES OF REGRESSION COEFFI-
CIENTS IN 'COEFFICIENTS - OF - VARIATION' MODEL. 

TIME CHANGE OF NO. OF ESTIMATES WHICH 
ESTIMATES OF WERE ENTIRELY POSITIVE 

REGRESSION COEFFICIENTS OR NEGATIVE WITH TIME 

INCREASE DECREASE BOTH POSITIVE NEGATIVE BOTH 

ao 19 0 1 6 2 12 

al 6 7 7 11 7 2 

a2 8 6 6 10 7 3 

a3 12 3 5 4 8 8 

a4 0 20 0 20 0 0 

a5 5 11 4 11 5 4 

TABLE 14. UNCONFINED FLOW. INPUT VARIABLES CON-
SIDERED SIMULTANEOUSLY. 6 TIME STEPS. TIME 
CHANGE OF SUM OF SQUARES OF DEVIATIONS. 

DECREASE MINIMUM 2 TURNING .MAXIMUM 
POINTS ,~ 

'TOLERANCE-
INTERVAL-WIDTH' 16 2 1 1 
REGRESSION MODEL 
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TABLE 15a. UNCONFINED FLOW. INPUT VARIABLES CONSIDERED SIMULTANEOUSLY. 10 TIME 
STEPS (440 DAYS). 

'TOLERANCE-INTERVAL-WIDTH' REGRESSION MODEL 

1 2 3 4 5 6 7 8 9 10 
p 

. 

a. 21 21 1 1 
NUMBER 0 

2 3 5 5 6 6 

OF GRIDS 11 11 11 11 11 11 21 11 11 a. 1 
1 

(OUT OF 20) 
0 

IN WHICH a. 2 0 0 0 0 0 0 0 11 11 

REJECT a. 3 
31 31 2 31 31 i 11 11 11 21 

H :0. . =0 
0 I a. 4 20 20 20 20 20 20 20 20 18 17 

AT 
11 11 a. 5 0 0 0 1 1 0 0 0 95% LEVEL 

NUMBER OF GRIDS 
IN WHICH REJECT 
H : (0. I a. I a. ,a. ' a. ) = 0 3 3 3 4 4 6 7 13 15 17 

o O 1 2 3 5 
AT 95% LEVEL 

NUMBER OF GRIDS 
IN WHICH REJECT 
H : (O. a. a. 0.)=0 3 3 3 3 1 1 0 0 0 0 

o 1' 2 ' 3' 5 
AT 95% LEVEL 

Superscripts on entries in table a re number of times the coefficients are negative and significantly 
different from zero. 
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TABLE 15b. UNCONFINED FLOW. INPUT VARIABLES CONSIDERED SIMULTANEOUSLY. 10 TIME 
STEPS (440 DAYS). 

'COEFFICIENT- OF-VAlUATION' REGRESSION MODEL 

I~ 1 2 3 4 5 6 7 8 9 10 
. 

p 

NUMBER a 0 
0 

1 1 1 1 4 6 7 8 9 

OF GRIDS 
11 1 l l 2 a 0 0 2 21 21 l 2 

1 
(OUT OF 20) 

IN WHICH a 0 0 0 0 
2 

0 0 0 0 0 11 

REJECT a 1 1 1 2 
3 

2 2 2 2 2 1 
H : a . =0 

0 l 
a 

4 
20 20 20 20 20 20 20 20 20 20 

AT 
9S% LEVEL a 0 0 0 11 

5 
11 11 11 11 21 21 

NUMBER OF GRIDS 
IN WHICH REJECT 

1 1 2 3 8 9 13 16 17 H :(a , a ,a ,a ,a ) = O 18 
0 0 1 2 3 5 

AT 95% LEVEL 

NUMBER OF GRIDS 
IN WHICH REJECT 
H o : (al, a2,a3, as)= o 1 1 1 1 1 0 0 1 1 2 

AT 95% LEVEL 

Superscripts on entries in table a re number of times the coefficients are negative and significantly 
different from zero. 
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TABLE 16. UNCONFINED FLOW. INPUT VARIABLES CON-
SIDERED SIMULTANEOUSLY. 10 TIME STEPS. 
NATURE OF ESTIMATES OF REGRESSION COEFFI-
CIENTS IN 'COEFFICIENTS-OF-VARIATION' MODEL. 

TIME CHANGE OF NO. OF ESTIMATES WHICH 
ESTIMATES OF WERE ENTIRELY POSITIVE 

REGRESSION COEFFICIENTS OR NEGATIVE WITH TIME 

INCREASE DECREASE BOTH POSITIVE NEGATIVE BOTH 

ao 16 0 4 10 0 10 

al 4 8 8 8 4 8 

a2 4 8 8 5 8 7 

a3 7 2 11 10 4 6 

a4 0 20 0 20 0 0 

as 7 5 8 3 7 10 

TABLE 17. UNCONFINED FLOW. INPUT VARIABLES CON-
SIDERED SIMULTANEOUSLY. 10 TIME STEPS. TIME 
CHANGE OF SUM OF SQUARES OF DEVIATIONS . 

DECREASE MINIMUM 2 TURNING 3 TURNING 
POINTS POINTS IL_r\ 1~ 

'TOLERANCE-
INTERVAL-WIDTH' 12 4 1 3 
REGRESSION MODEL 

'COEFFICIENT-OF-
VARIATION' 13 7 

REGRESSION MODEL 



TABLE 18. UNCONFINED FLOW. INPUT VARIABLES CONSIDERED SIMULTANEOUSLY. 10 
TIME STEPS. TYPICAL ESTIMATES OF REGRESSION COEFFICIENTS IN 
'COEFFICIENTS-OF-VARIATION' MODEL. 

ao I p I al I a · 2 I a3 I a4 I as 

1 I -.001229 .007663 -.008883 .002526 .922341 .017935 

2 I - . 000920 .007811 -.006873 .002016 .788755 . 016479 

3 I -.000319 .008345 -.005124 .001167 .671388 .013862 

4 , I .000421 . 008984 -.003835 .000131 . 569 848 I .010888 
I 

U1 

5 I .001386 I . 009615 -.002816 -.001228 .466938 . 007113 
(..v 

6 I .002309 .010023 -.002188 -.002438 .383043 .003723 

7 .003138 .010189 -.001767 -.003377 .315063 I .000897 

8 .003858 .010146 -.001470 -.004039 .260380 I -.001425 

9 .004464 .009960 -.001264 -.004447 .216661 -.003295 

10 . 004961 .009684 -.001118 -.004615 .181704 -.004676 
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head, a regression model involving only errors in initial head was 

investigated. 

For one grid this can be written, 

where the subscripts refer to a pattern oi grids as in Figure 2. A 

similar model relating the estimates of the coefficients of variation 

was also studied. The data used in studying this model was the 

same as that which has just been described for the 10 time step run. 

The results are given in Tables 19, 20, 21, where, has the same 

definition as given for the confined flow model. 

Table 19 gives the number of times that the hypotheses 

were rejected at the 9 5% level. Table 20 indicates whether, in the 

"coefficients-of-variation" model, the estimates of the regression 

coefficients tended to increase or decrease with time and whether 

they tended to be positive or negative throughout the study period. 

Table 21 indicates the way in which the sum of squares of deviations 

from the regression line changed with time. 

The following observations can be made from the results given 

in Tables 19, 20, 21: 

1) from Table 19, the error in initial head in the grid being 

considered is of significance in predicting the error in 
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final head up to 440 days, but this significance decreases 

after about 400 days, and up to 140 days the predictive 

relation is linear. Initially, it was also approximately 

a one-to-one relation, 

2) from Table 20, a
0 

shows a tendency to increase with 

time, but this is not as marked as in the previous 10 

time step model (see Table 16), and it is non-significant 

up to about 300 days, after which, from Table 19, it 

cannot be considered to be non-significant from zero. 

Again, this is not as marked as in the previous 10 time 

step model (see Table 15), 

3) from Table 20, a* shows a tendency to be positive and 

to increase with time, and from Table 19, it is non-

significant, both individually and simultaneously, up to 

about 300- 350 days, after which it cannot be considered 

to be non-significant from zero, 

4) from Table 20, a 1 decreases monotonically with time 

and is positive, 

5) from Table 21, the sum of squares of deviations from 

the regression line shows a tendency to decrease with 

time. 

A comparison of the sum of squares of deviations in the above 

model involving only errors in ini tial head and the previous 10 time 
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TABLE 19a. UNCONFINED FLOW. RESULTS FOR REGRESSION 
MODEL INVOLVING ERRORS ON INITIAL HEAD. 

'TOLERANCE-INTERVAL-WIDTH' 
REGRESSION MODEL 

1 2 3 4 5 6 7 8 9 
p 

. 
ao 1 1 21 21 31 2 2 4 4 

al 20 20 20 20 20 20 20 20 18 

a* 44 11 . 1 
2 3 3 51 61 4 5 

NUMBER OF GRIDS 
IN WHICH REJECT 1 1 0 1 5 8 10 15 16 * H : [ a

0
, a ] = 0 

A~ 9 5% LEV:E:L 
-·•-· 

NUMBER OF GRIDS 
IN WHICH REJECT 1 1 1 1 1 2 3 5 5 
I-{0 : [ a*] = 0 
AT 95% LEVEL 

a* consists of all the coefficients associated with errors in initial 
head in neighboring grids. 

10 

4 

16 

6 

-

17 

5 

The entries in the table opposite a 0 and a 1 are the number of grids 
( out of 20) in which the hypothesis H : [a. = 0, i = 0, 1] was rejected. 

0 l 

The entries in the table opposite a* are the number of times ( out of 
62) that the hypothesis H

0
: [ ai = 0, a ic a*] was rejected. 

Superscripts on entries in the table are the number of times the 
regression coefficient was negative and significantly different from 
zero. 
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TABLE 19b. UNCONFINED FLOW. RESULTS FOR REGRESSION 
MODEL INVOL YING ERRORS ON INITIAL HEAD 

'COEFFICIENT-OF-VARIATION 1 

REGRESSION MODEL 

'~ STEP 1 2 3 4 5 6 7 8 9 10 
COEFF. 

' 

ao 1 1 1 1 2 3 3 6 6 

a 20 20 20 20 20 20 20 20 20 
1 
,,, 33 22 21 a ,,, 4 4 4 6 9 10 

NUMBER OF GRIDS 
IN WHICH REJECT 1 0 1 4 9 10 15 15 17 H

0
: [a 0, a ~:c] = 0 

AT 95% LEVEL 

NUMBER OF GRIDS 
IN WHICH REJECT 1 1 1 1 2 3 3 3 3 H

0
: [a*] = 0 

AT 95% LEVEL 

a* consists of all the coefficients associated with errors in initial 
head in neighboring grids. 

8 

18 

11 

17 

4 

The entries in the table opposite a 0 and a 1 are the number of grids 
(out of 20) in which the hypothesis H

0
: [ai = 0, i= o1,l] was rejected. 

The entries in the table opposite a~' are the number of times ( out of 
62) that the hypothesis H : [a . = 0, a . Ca ~:cl was rejected. 

0 l l 

Superscripts on entries in the table are the number of times the 
regression coefficient was negative and significantly different from 
zero. 
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TABLE 20. UNCONFINED FLOW. NATURE OF ESTIMATES OF 
REGRESSION COEFFICIENTS IN THE 'COEFFICIENTS-
OF-VARIATION' MODEL INVOLVING ERRORS ON 
INITIAL HEAD. 

TIME CHANGE OF NO. OF ESTIMATES WHICH 
ESTIMATES OF WERE ENTIRELY POSITIVE 

REGRESSION COEFFICIENT OR NEGATIVE WITH TIME 

INCREASE DECREASE BOTH POSITIVE NEGATIVE BOTH 

ao 11 2 7 13 2 5 

al 0 20 0 19 0 1 

* 28 7 27 21 9 32 a 

TABLE 21. UNCONFINED FLOW. TIME CHANGE OF SUM OF 
SQUARES OF DEVIATIONS IN REGRESSION MODEL 
INVOLVING ERRORS ON INITIAL HEAD. 

DECREASE MINIMUM 2 TURNING 3 TURNING 
POINTS POINTS I\_/\ b 

'TOLERANCE-
INTERVAL-WIDTH' 12 6 1 1 
REGRESSION MODEL 

'COEFFICIENT-OF-
VARIATION' 12 8 

REGRESSION MODEL 
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step model show s that for small periods of time the sum of squares 

is less in the 10 t ime step model than the initial heads model in 

about 75% of the grids but after 440 days this is reduced to about 

50%, However, it is noteworthy that after 440 days all of the grids 

(?, 8, 9, 12, 13, 14) which have four neighboring grids have a 

smaller sum of squares in the model involving only errors in ini tial 

head than in the 10 time step model. 



DISCUSSION OF RESULTS 

In using a numerical model to study confined groundwater 

aquifers the results of this study clearly indicate that when there is 

an error in only one input variable, that this error is linearly 

related to the error in output. For error in initial head, this re-

lation is approximately one-to - one for short time periods, but for 

the other input variables the error on output is one or two orders of 

magnitude less than the input error. These relations have been 

demonstrated only for comparatively short periods of time. How 

they change over long time periods and whether they hold for 

unconfined flow have not been investigated, but in view of the 

similarity of the results of the error relati on for both confined and 

unconfined cases when the input variables were considered 

simultaneously, it is thought that for short periods of time similar 

linear relations would hold for unconfined flow. However, extra-

polation of these results to longer time periods is considered 

inappropriate without further study. Such study was not undertaken 

because the situation in which all the input variables contain errors 

is far more typical. 

When the input variables to the numerical model are all 

considered to contain error there is a marked similarity and 

consistency between the results obtained for confined and unconfined 
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flow . Outstanding amongst these is that the error in initial head is 

the only significant input error so far as predicting the error in 

final head is concerned. This result is compatable with the results 

obtained when only one variable contained error . For small periods 

of time the predictive relat ion between the error in initial head and 

error in final head , in any one grid, is linear and initially it is 

approximately one-to - one . The dependence of the error in final 

head on the error in initial head, in any one grid, has been shown to 

decrease with time, while , concurrently, the value of the constant 

coefficient in the regression equati on is increasing and the errors in 

initial head in neighboring grids tend to become significant. The 

errors on the input variables K, b (or z), Q and Sare always non-

significant at the 9 5% level in predict ing the error in final head. 

Another consistent feature of the results is that the sum of squares 

of deviations from the regression line has a marked tendency to 

decrease with time . 

The results do, however , show minor variations, both between 

the confined and unconfined cases and between the different 

regression models considered, that are worthy of comment. 

For unconfined flow the significance of the errors in initial 

head in neighboring grids is more marked, though this is possibly 

due to the fact that results were obtained after a longer period of 

time in the unconfined case, and it is then that these errors become 

significant. 
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For unconfined flow, the constant regression coefficient showed 

a greater tendency to increase with time and become significant at 

an earlier time in the regression model consisting of all five input 

variables than the one consisting only of initial heads. This would 

seem to be due to the greater significance that errors in initial head 

have in predicting errors in final head. The fact that this difference 

was not apparent for confined flow is probably due, again, to the 

comparatively short length of stu dy period. 

There is also an indication that the sum of squares of 

deviations from the regression line ceases to decrease after some 

time, but results for longer study periods would be needed to 

determine whether it begins to increase or becomes asymptotic. 

An implication of these results, which is an apparent 

contradiction, is that after a large time period the best predictive 

equation for the error on final head will be E(t") = constant, and 

that any regression coefficients associated with errors in input 

variables will be non-significant. This implication is suggested by, 

( i) error on initial head becomes less important with 

time ( even though it may remain significant in some of 

the grids) , 

(ii) errors in K, b (or z) , Q , S are never significant, 

(iii) the constant coefficient increases in significance with 

time. 



63 

The implication would appear to be a contradiction because if 

all errors in input variables are zero then the error in final head 

should be zero for all time. However, the contradiction is only ap-

parent for the following reasons. 

After a large period of time the error on the final head in any 

one grid will be influenced by the errors on all the input variables 

in all the grids of the model, but the contribution that each one of 

these input errors makes to the final error will be small. There-

fore, the final error becomes a function of a large number of 

variables each one of which contributes only a small amount. If this 

function is assumed to be a linear (in the coefficients) function of all 

the input errors, then it can be viewed as a 11 flat 11 surface in 

n-dimensional space, since all the coefficients will be small and 

represent gradients. This 11 flat 11 surface .could be closely approxi-

mated by a constant over a large range of values of the input 

variables . Thus, if a regress ion equation is fitted to data obtained 

after a large time only the constant coefficient would appear to be 

significant. This does not imply that the error on final head is 

independent of the input errors, only that after a large period of 

time the contribution of each of these input errors is so small as to 

be statistically non- significant. Nor does it preclude the case of 

zero error on final head when input errors are zero. 

It is reasonable to assume that the value which the constant 

takes on is determined far more by the errors in initial head than by 
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the errors on other input variables , even though all of them are 

statistically non- significant. 

The conclusions drawn from this study are strictly only 

applicable to the models (physical and regression), data and time 

periods considered. However, the general nature of the physical 

models used and the consistency and acceptability of the results 

obtained from the regression models which have been considered 

suggests that these two criteria are not too restrictive in making 

general use of the results. So far as the data is concerned, it should 

be noted that the errors on K, b(or z), Q, Shave been shown to be 

non-significant compared to the error on h
1 

only when the errors are 

measured with respect to the true mean values of the variables in a 

grid and only for the range of errors which has been considered. 

Thus, gross errors on any one of the input variables or extreme 

differences between the estimated and true mean values of the input 

variables would probably significantly influence the estimates of 

final head and its accuracy. For instance, if discontinuities occur 

in the spatial change of the true values of one of the input variables, 

as at fault zones or with abrupt lithological changes, and go undetected, 

then the results obtained from the application of the procedures of 

this study would be erroneous. It is therefore incorrect to conclude 

that any values of K, b (or z), Q., S can be used as input to the 

model without having any effect on the output, whereas, it is 
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correct to conclude that any values of these variables which are 

within these ranges of error of the true mean values would not 

significantly change the prediction of final head and the accuracy of 

the prediction. Also, the data used in this study is typical of 

Colorado aquifers and the applicability of the results to different 

types of data has not been demonstrated. The fact that, in the 

"coefficients-of-variation" models, dimensionless quantities have 

been considered, indicates that the results should be applicable to 

many situations. However, the results may not be applicable where 

the data which greatly differs from that used in this study. The 

extrapolation to longer time periods is more hazardous and should 

only be done with great care. 



APPLICATION OF RESULTS 

The experimental procedures used in this study and the results 

obtained have a number of applications and implications in ground 

water hydrology. Some of these will be indicated and elaborated 

upon in the following discussion. They fall generally in the areas of 

data collection, economics of aquifer management, and the 

relations between accuracy of results and number of field observations 

available. 

Perhaps the mo st obvious application to which the results and 

techniques of this study can be applied is to the case in which data 

is available on the input variables in an aquifer and it is required to 

predict the water table elevation at some future time and estimate 

the accuracy of the prediction. This could be done as follows: 

1) using equations (4) and (5) compute K, b (or z) , Q, 

S, h
1 

and pi' i = 1 .••• 5 in all grids, from available 

field data, 

2) using the Monte Carlo technique, as applied in this 

study, generate a random sample of hF for the specified 

future time, 

3) in every grid compute a tolerance interval on hF. This 

tolerance interval can be used as the prediction of the 

final head and the width of the interval as a measure of 
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the accuracy of the prediction. This procedure does 

not take into account the influence that the differences 

between the true mean value of a variable in a grid and 

the estimate of this value and between p. and p . have on 
l l 

the predicted value of final head and the estimate of the 

accuracy of the prediction. Using permeability as an 

example, it is conceivable that I K-K I could be large and 

'v 

that p K << p K' This would result in the prediction of 

the final head being incorrect, since random values 

2 - 2 
would be generated from N(K, p K) instead of N(K, p K) 

and in assigning a greater accuracy to this prediction 

than is justified. However, the probability that IK-KI 
is large is very small and decreases with increasing 

I"\., 

sample size, and it is more probable that p K will be 

larger than p K than smaller. Also, the errors on the 

variables, K, b(or z), Q and Shave been shown to be 

non-significant, so that the consequences of the above 

assumption are further diminished. 

Having obtained the tolerance interval in every grid from 

available data it might then be desirable to determine how much more 

field data, and on which variables, would be required to improve the 

accuracy of the prediction ( that is, decrease the width of the 

tolerance interval) by a specified amount. This can be accomplished 
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by making use of the fact that the resl!lts of this study indicate that, 

after any period of time, only the errors in initial head, of all the 

input errors, are significant in predicting the error in final head. 

Therefo:ve, to reduce the tolerance interval width it is necessary to 

reduce the error in initial head. This study has established the 

validity of this predictive relation but has not investigated in detail 

the time dependence of the coefficients in the predictive equation. 

Thus, for a particular grid of any aquifer after an arbitrary time, 

it is not possible to simply specify the desired value of tolerance 

intervc1,l width and then solve the prediction equation for the necessary 

values of errors on initial heads that will achieve this specified 

value. For this reason a simple trial and error procedure will be 

described to arrive at these specified values of errors in initial 

heads. For small periods of time only the error in initial head in 

the grid under consideration is of significance in predicting the error 

in final head, that is; 

Thus, to obtain a decrease in the tolerance interval width from 

E(t 11
) to E(t'b' ), where t is the computed width corresponding to a a 

(p h ) , estimated from the available field data, and tb is the desired 
Ia 

width, it is necessary only to find the value of ph , say (ph ) , 
I I b 

that will give the width E(t'b). This value is easily determined by 
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trial and error. Now, from equation ( 5), 

o-h 
I =---.fre" a 

f(X .. ) Jl 

and the term [ crh f(X .. )] is approximately the same for any value 
I Jl 

of n and is known. Therefore, the total number of observations 

needed to obtain an error (ph )b is nb, where, 
I 

and the extra number of observations needed is (nb - na). 

For lcl.rger periods of time the erro.r in initial head in grids 

neighboring the one under consideratton become significant. There-

fore, the procedure described above for small time periods would 

have to be modified to include these neighboring grids but is other-

wide directly applicable. 

This determination of the number oi additional observations 

needed to obtain an improved accuracy on the predicted value of head 

immediately raises the economic question of whether or not the 

value to be gained from the increase in accuracy is 11worth 11 the cost 

of obtaining the extra data. Thi s qµestion and similar ones which 

occur in aquifer management can be approached using the results 

of this study. 
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A further implication of the results of this study is in the 

design and operation of observational data networks. It is clear that 

g;reatest emphasis should be given to obtaining water table elevation 

data and considerably less emphasis to the determination o~ other 

aquifer parameters. 

The procedures and techniques developed in this study are 

basically to be 1,1sed for predictive purposes . However, where 

historical data is available, as on water table elevations, the 

combined µse of "matching" techniques and this predictive model is 

possible. 



CONCLUSIONS 

The following conclusions can be made, subject to the 

restrictions described in the section on discussion of results. 

For confined flow, when only one input variable is considered 

to contain error, the following conclusions can be made for short 

time periods: 

i) errors on input variables and final head are linearly 

related, 

ii) for initial head this relation is initially one-to-one, 

iii) for K, b, S and Q the error on output is one to two orders 

of magnitude less than the input error. 

For both confined and unconfined flow, when the errors on 

input are considered simultaneously, the following conclusions can 

be made: 

i) the error in initial head is the only significant error in 

predicting error on final head in any one grid, 

ii) for short periods of time these errors on input and output 

are linearly related and initially are one-to-one, 

iii) the importance of the error in initial head in predicting 

error in final head decreases with time and the errors 

in initial head in neighboring grids become significant, 
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iv) after long time periods the error on final head approaches 

a constant value, where the constant is considered to be 

a function of all the input errors. 



RECOMMENDATIONS 

One of the results of this study is that after large periods 

of time the predicted value of accuracy of final head in any one grid 

is equal to a constant. The time-dependence of this constant value 

is worthy of further detailed investigation. Also, the applicability 

of the results of this study to groundwater systems in which extreme 

errors occur in the field data or where large and abrupt spatial 

changes in the values of the input variables are present should be 

further studied. 

The results of this study provide a basis for an economic 

analysis <;>f ground water systems dealing with the general problem of 

benefit and cost of data collection. 
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APPENDIX 1 

I. CONFINED FLOW 

A. EACH INPUT VARIABLE CONSIDERED SINGLY 

The relation between the estimates of standard deviation of 

each of the variables h
1

, K, S, b, Q and the tolerance width on hF 

were determined for the following models: 

MODEL (i) 

The confined aquifer was divided into 20 square grids, with 

boundaries as shown in Figure A. 1. 1. Values were assigned to all 

of the input variables as shown in Table A. 1. 1. 

MODEL (ii) 

Column 1 2 
J J. 

3 4 5 

Constant 
Head 
Boundary 

H 
0 

J,. J, J,. 
IMPERMEABLE BOUNDARY 

Constant 
Head 
Boundary 

Hl 

IMPERMEABLE BOUNDARY 

Fig. A. 1. 1. PLAN VIEW OF MODEL (i) 

The model and model boundary conditions were the same as 

for Model (i), but the values of the input variables were randomly 

generated. Each variable, except the one for which the error 
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relation was being determined, was assigned a maximum, median 

and minimum value and in each grid a random value of the vari.able 

was generated from a triangular distri.bution based on these three 

numbers. 

MODEL (iii) 

This was the same in all respects as Model ( ii) except that the 

mean value of the variable for which the error relation was being 

determined was f i.n each grid, generated from a triangular 

distribution. The standard deviations of K, S, b, Q were computed 

from these randomly generated mean values. 

MODEL (iv) 

This model is the same as Model (iii) , except that results 

were obtained at the end of 3 time steps. 

MODEL (v) 

In Models (i) - (iv) the constant head boundaries H
0

, H
1

, were 

equal throughout the run. In this model they are assigned different 

values. Also in the first four models the values of initial head in 

each grid had been generated from the same triangular distribution. 

For this model the triangular distributions were different between 

columns in the model. This difference between the columns was 

made compatable with the values assigned to H
0 

and H 1. 
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MODEL (vi) 

For this mod~l, the 20 grid model was assumed to have 

constant gradient boundaries (Figure A. 1. 2). At each boundary grid 

the constant gradient boundary was randomly generated from a 

triangular distribution. 

CONSTANT 
GRADIENT, 
GLEFT 

CONSTANT GRADIENT 
GTOP 

CONSTANT GRADIENT 
GBOT 

CONSTANT 
GRADIENT, 
GRITE 

Fig. A. 1. 2. PLAN VIEW OF MODEL (vi) 

The objective in studying all the above models was to take into 

consideration all of the types of boundary conditions which are 

normally met in ground water systems (but not of course all possible 

combinations) and also to progress to the stage at which all the data 

used in the models was being randomly generated. Any results 

obtained for the latter condition can more reasonably be expected to 

be generally valid. 

The actual data used in the models is given in TABLE A. 1. 1. 



INPUT VARIABLE CONTAINING ERROR: 

K hl s b Q 

H
0

, H
1
(FT) 100 200 200 200 

hi FT) 100 - - - 200 200 

b(FT) 50 75 - - - 75 

Q(FT 3/DAY) 5000 5. 105 5. 105 - - -
s . 2 . 2 • 2 . 2 

MODEL K(FT/DAY) - - - 100 NO RUN 100 100 
( i) µ 100 200 

p 5(5)35* 2( 2) 16 

DX, DY (FT ) 1000 10000 

DT(DAY) 50 40 

NT I I 
i 

µ = Mean value of variable containing error 
p = Standard deviation of variable 
DX = DY = Grid dimensions 
DT = Time step size 

75 5. IO~ 

. 62 5( • 62 5) 6. 2 5 I 2. IO 3( 12. IO 3) 
12. 104 

10000 10000 

10 10 

I I 

NT = Number of time steps 
>:<5(5)35 = 5, 10, 15, 20, 25, 30, 35 
J.,J., 

,,, ,,,Maximum, median and minimum 
values defining triangular 
distribution. 

TABLE A. I. la DATA USED IN MODELS (i) - (vi) 

-.J 
...!) 



INPUT VARIABLE CONT AINI-NG ERROR: 

K hr s b 

H
0

, H 1 (FT ) 100 200 200 200 

hr(l< "l) 55- 100-145•~* - -- 100-200- 300 1 0 0 - 2 0 0 - 30 0 

b(FT) 45-50-55 70-75-80 55-75-95 -- -
Q(FT3/DAY ) . 1- . 2-.3 0- 5. 10 5 -1. 106 0-5. 10 5-1. 10 6 0- 5. 10 5-1.1o6 

s 0-5000-10000 .1-.2-.3 - - - .1-.2-.3 

MODEL K(FT/DAY) - -- 1-100-199 1-100-199 1-100-199 

(i i ) µ 100 200 • 2 75 

p 3( 3)2 7 2(2)16 .004(. 004). 04 .625(.625)6.25 

DX, DY (FT) 1000 10000 10000 10000 

DT(DAY) 50 40 10 10 

NT l 1 1 1 

TABLE A. 1. 1. b (cont.) 

Q 

200 

100-200- 300 

55-75-95 

- - -
.1- • .2-,. 3 

1-100-199 

5. 10 5 

12. 103(12. 103) 
12.104 

10000 

10 

1 

00 
0 



H 0 , H -JFT) 

hr( FT) 

b(FT) 

Q(FT3/DAY) 

s 
MODEL K(FT/DAY) 

(iii) 
µ 

PMIN 
p 

DX, DY (FT) 

DT(DAY) 

NT 

INPUT VARIABLE CONTAINING ERROR: 

K hr s b 
I I~ I\ I~ 

DATA AS DATA AS DATA AS DATA AS 
MODEL (ii) MODEL (iil MODEL (ii) MODEL (ii) 

'~ \ I 

1-100-199 l 7 5-2 00-225 .1-.2-.3 55-7 5-9 5 

(µ/ 3. 7)/8. 0 ------ (µ/ 5. 0)/ 10. 0 ( 100-µ/4)/10 

PM rJ PM rJ 8 PMIN 2(2)16 PMn1 PMr-J lOpMIN PMIN(p Mr-JlO PMIN 
1000 10000 10000 10000 

1 20 10 10 

1 1 1 1 

TABLE A. 1. 1. c ( cont. ) 

Q 

II\ 

DATA AS 
MODEL (ii) 

\ I 

1. 10 5-5. 10 5- 9. 10 5 

(µ/5)/10 

PMmf PMr-J 10 PMIN 
10000 

10 

1 

CX) ...... 



H
0

, H 1(FT) 

hlFT) 

b(FT) 

Q(FT 3/DAY ) 

s 
MODEL K(FT/DAY) 

( iv) 
µ 

PMIN 
p 

DX, DY (FT ) 

DT(DAY) 

NT 

INPUT VARIABLE CONTAINING ERROR: 

K hr s b 

DATA AS DATA AS DATA AS DATA AS 

MODEL (iii) MODEL (i) MODEL (iii ) MODEL (iii ) 

,, ,, 
I 

3 3 3 3 

TABLE A. 1. 1. d ( cont. ) 

Q .~ 

DATA AS 

MODEL (iii ) 

3 

00 
N 



K 

H (FT) 130 
0 

H
1 

(FT) 70 

h1 (FT) HMEAN-25 HMEAN 
HMEAN+25 

HMEAN (FT) 120(10)80 

b (FT) 

Q(FT3/DAY) 

s 

MODEL K(FT/DAY) 
(v) 

DATA AS µ 

PMIN 
MODEL (iii) 

p 
DX, DY (FT) 

DT(DAY) 

NT 

INPUT VARIABLE CONTAINING ERROR: 

h1 s b 

230 260 260 

170 200 200 

----------- HMEAN-100 HMEAN HMEAN-100 HMEAN 
HMEAN+100 HMEAN+100 

220(10)180 250(10)210 250(10)210 

DATA AS 

MODEL (iii) 

HMEAN-25 HMEAN DATA AS DATA AS 
HMEAN+25 

MODEL (iii) MODEL (iii) 

DATA AS 

MODEL (iii) 

TABLE A.1. 1. e (cont.) 

Q 

260 

200 

HMEAN-100 HMEAN 
HMEAN+100 

250(10)210 

DATA A.S 

MODEL (iii) 

00 
\.,) 



HMEAN(FT) 

hr( FT) 

b(FT) 

Q(FTS/DAY) 

s 
K(FT/DAY) 

µ 

MODEL PMrN 
(vi ) 

p 

DX, DY(FT ) 

DT(DAY) 

NT 

GTOP(FT) 

GBOT(FT) 

GRrTE(FT) 

GLEFT(FT) 

INPUT VARIABLE CONTAINING ERROR: 

K hr s b 
,~ 

/1\ /\ 

DATA AS DATA AS DATA AS DATA AS 

MODEL (iii ) MODEL (iii) MODEL (v) MODEL (v) 

,, 
11/ •It 

0-5-10 0-25-50 0-25-50 0-25-50 

-10--5-0 -50--25-0 -50--25-0 -50--25-0 

-20--10-0 -100--50-0 -100--50-0 -100--50-0 

0-10-20 0-50-100 0-50-100 0-50-100 

TABLE A. 1. 1. f ( cont. ) 

Q 

/I\ 

DATA AS 

MODEL (v) 

I 

0-2 5-50 

-50--25-0 

-100--50-0 

0-50-100 

-

00 
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B. INPUT VARIABLES CONSIDERED SIMULTANEOUSLY 

The model and data used to study the prediction equation, 

Figure A. 1. 3 and Table A. 1. 2. 

Th~ standard deviations of the input variables were randomly 

generated from uniform distributions and the maximum and 

minimum values assigned to these d i stributions are given in Table 

A, 1. 2. 

IMPERMEABLE BOUNDARY 

CONSTANT 
HEAD 
BOUNDARY 

H 
0 

CONSTANT 
HEAD 
BOUNDARY 

Hl 

IM PERMEABLE BOUNDARY 

FIGURE A. 1. 3. PLAN VIEW MODEL USED TO STUDY 
FIRST REGRESSION MODEL. 

The model and data used to study the second regression model 

consisting of the first and second terms of the Taylor Expansion are 

given in Figure A. 1. 4 and Table A. 1. 3. 

The mean values of each of the input variables in each grid 

were randomly generated from triangular distributions and the 

standard deviations from uniform distributions, The constant 
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gradients in each of the boundary grids were also generated from 

triangular distributions. 

CONSTANT 
GRADIENT, 

GLEFT 

CONST ANT GRADIENT, 
GTOP 

1--~--'----l----1--__J 

CONSTANT 
GRADIENT, 

GRITE 

CONSTANT GRADIENT, GBOT 

FIGURE A. l. 4. PLAN VIEW OF MODEL USED TO STUDY 
SECOND REGRESSION MODEL. 
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~
0

, H
1
(FT) 200 s µ . 2 

hI j:J, ' 200 .004 .04 p 

(FT) p 1 '~ 10 K µ 100 

b 75 ( FT/DAY) 1 20 µ p 

(FT) p 1 10 DX, DY( FT) 10000 

~(FT 3/ µ 5. 10 5 NT 4 

DAY) p 0 1. 105 DT(DAY) 10,20,40,40 

==~ Maximum and Minimum values defining uniform distribution. 

TABLE A. 1. 2. DATA USED TO STUDY FIRST REGRESSION MODEL 

hI µ 17 5,:, 200 225 K µ 50 100 150 

(FT) 1 I µhI - 140 I / 5 
(FT/ 1 µK/5 p DAY) p 

b u 60 75 90 DX, DY{ FT) 10000 
(FT) p 8 NT 1 

-
Q µ 0 5. 10 5 1.106 DT(DAY) 20 

(FT 3/ 
µQ/5 DAY) p 0 GTOP(FT) -80 0 80 

s u • 1 . 2 . 3 GBOT(FT) -80 0 80 
p . 004 .04 GRITE(FT) -80 0 80 

GLEFT(FT) -80 0 80 

** Ma~imum and minimum values defining uniform distribution. 

Maximum, median and minimum values defining triangular 
distribution. 

TABLE A. 1. 3. DATA USED TO STUDY SECOND REGRESSION MODEL 
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II. UNCONFINED FLOW 

A. INPUT VARIABLES CONSIDERED Sil\..1ULTANEOUSLY 

The model and data used to study the predictive equation, 

E(t") = Q'o + alpK + a2p z + 0'3PQ + Q'J>h +asps, for unconfined flow 
I 

is given in Figure A. 1. 5 and Table A. 1. 4. 

CONSTANT GRADIENT, GTOP 

CONSTANT 
GRADIENT, 

GLEFT 

CONSTANT 
GRADIENT, 

GRITE 

CONSTANT GRADIENT, GBOT 

FIGURE A. 1. 5. 

The mec;1.n values of each of th-e input variables in each grid 

were randqmly generated from triangular distributions and the 

standard deviations from uniform distributions. The constant 

gradient i n each boundary grid were also generated from triangular 

distributions. The numbers given in Table A. 1. 4 defined these 

distributions, and remained the same for the 1, 6 and 10 time-step 

runs. However, the random samples generated from the distributions 

were diff~rent for each run. 

Also, the value of the constant gradient was allowed to change 

with each time step. The value of the constant gradient for any time 
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step other than the first was randomly generated from a triangular 

distribution whose median value was the value of the gradient in the 

preceding time step and whose maximum and minimum values were 

the median value plus five and minus five respectively. 
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hl µ 275 300 32 5 

(FT) p 1 10 
-

z µ_ 50 75 100 

(:fT) p 1 10 

Q µ 0 5. 10 5 1. 106 

(FT 3/DAY) p 0 µQ/ 5 

s µ .1 • 2 . 3 

p . 004 . 02 

K µ 50 100 150 

(FT/DAY) p 1 µK/5 

DX, DY (FT) 10000 

NT 1, 6, 10 

DT(DAYS) 20, 40, 40, 40, 50, 50, 50, 50, 50, 50 

GTOP (FT) -80 0 80 

GBOT (FT) -80 0 80 

GRITE (FT) -80 0 80 

GLEFT (FT) -80 0 80 
I 

TABLE A. 1.4. 



APPENDIX 2 

GENERAL LINEAR HYPOTHESIS MODEL OF FU LL RANK, MODEL 

I, CASE A, AND REGRESSION MODEL, MODEL III, CASE 2. 

The description of these two linear models is taken from 

Graybill (7 ). 

GENERAL LINEAR HYPOTHESIS MODEL OF FU LL RANK, MODEL 

I, CASE A. 

Consider a random variable y which has a density function, 

f( y : X 1 • • • • • X p, (3 1 • • • • • p) 

where, x. = known, non-random variables, 
l 

~. = unknown parameters. 
l 

As smne that, 

( i) 

(ii) 

p 
E('y) = .x. 

. l l l 
1= 

Var (y) = 

2 

2 
CT 

( iii) CT is independent of ~ . and x . . 
l l 

If a random sample, y. , j= 1. .••• n, is taken from this 
J 

density, that is 



where, 
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p 
y. = (3 . .X . . + e. 

J i,::: 1 l J l J 

e. = random error, 
J 

j:::l ..... n , (A.2.1) 

and if the random errors, e . , j=l ..•.• n, are uncorrelated, then 
J 

E( e.) = 0 
J 

2 Var (e. ) = c, 
J 

Equation (A. 2. 1) can be written in matrix notation as, 

If the random sample is taken in such a way that the x .. are 
Jl 

specified ( either randomly or by design) and then an observation, 

Y ., is made and i£ the rank of X is p (p < n), then, this is the 
J - -

General Linear Hypothesis Model of Full Rank. Case A of this 

model is when~ rv N (0, 
2 

c, · l) . 

REGRESSION MODEL, MODEL III, CASE 2. 

Consider the random variables y, x 1 •.... xp which have the 

density function, 

where 

G(x 1 .... xp) is a linear (in the coefficients (3 i) 

function of x . , 
l 
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h(x 
1 
.•.. x p) is the marginal density of (x 1 ..... x p) and 

does not contain the parameters j3. 
l 

2 or cr- • 

It follows that the conditional density of y given (x 1 = X
1

, 

x = X , •••. , x = X ) is normal, that is, 
2 2 P P 

f( y / x l = X l' ••• , x = X ) = p p ,fTrr (]" 
1 

{ 

1 ( y-G (Xl •.•• X ) ) 2} 
exp -- . p 

2 ' (]" 

and, 

If a rand om s ample, ( y . , X 
1
. , • • • X . ; j = 1 • • • • n) , is taken 

l J Pl 

from this density, that is, 

y . = G(X 
1
., • • • X . ) + e . , 

l J Pl l 
j= 1 . • • n, 

where, e. = random error, 
l 

and if the random errors, e., j=l. ••• n, are uncorrelated, then, 
l 

E( e.) = 0 
l 

Var (e .) = 
l 

2 
(]" 

This is the Regression Model, Model UI, Case 2. 

2 
POINT ESTIMATES OF J!_ AND cr-

' 

For both of the models maximum likelihood estimates can be 

obtained for (i and 
2 

(]" . For Model I, Case A, the likelihood function 

is: 
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2 1 L (~ : ~, CT ) = -, __ 2_n_/_2 
(2lT CT ) . 

{ 
er - ' er -~~)} 

exp -
2 CT 

2 

i. e. 
n 2 

Log [ L( · ) ] = - 2 Log ( 2 1r CT ) 
I 

2 ( y - X ~) I ( y - X ~) 
2 CT 

i.e. _£..[Log(L(·)]]=-
1
- (X'Y - X'Xft) = 0 a~ -2 

CT 

i.e. _Q__ [ Log [ L( · ) ] ] = - .,__ n 
oCTZ 2CT 

i.e. 

since (X'X) has an inverse, 

and = (n-p) 

making a correction for bias in equation (A. 2, 3). 

These estimates have the following properties, 

( i) 

( ii) 

( iii) 

(v) 

(vi) 

consistent and efficient 

unbiased 

sufficient 

complete 

miniml;lm variance unbiased 

2 1 
~rvN(~, CT (X'X)-) 

(A.2.2) 

(A. 2, 3) 
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"' 2 2 
(vii) (n-p) CT 

2 rv X (n-p) 
CT 

,,.,_ ,,.,_ 2 (viii) {3 and CT are independent. 

For Model Hl, Case 2, the maximum. likelihood estimates of 

and CT 
2 can be derived in similar manner. They are exactly the 

'•: 

same as the ones derived above, but have the following properties: 

( i) consistent an.d efficient, 

( ii) unbiased, 

( iii) sufficient. 

CONFIQENCE INTERVAL ESTIMATES OF{3i AND 
2 

CT 

For Model I, Case A. a confidence interval can be put on 

using the fact that, 

I\ 2 
( 

CT .2 ( n-p) --2 rv x n-p) 
CT 

2 
CT 

This means that two constants, a
0 

and a 
1

, can be found such that, 

p {ao < (n-p) 

...... . 2 
p { CT (n - p) 

Q' 1 

,,.._.2 
CT.

2 
<a

1
} =(1-a), 

CT 

,,.._ 2 
2 CT (n - p)} __ < CT < __ _,__ _ _. _ _. ( 1 - a) , 

ao 

which is the ( 1 - a) confidence interval on CT 
2

• 

A confidence interval can be obtained for {3 . by using the 
,..., l 

[
{3.-{3. 

facts that, . 1,J:i. 1
] I"\./ N( 0, 1), where c. is the /h diagonal 

CT -C. l ,.. . l 

element of (X'X)- 1 , and 

.'o- . 2 
(n-p) ---2 rv X2 (n-p) , 

CT 
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and that these two statistics are independent. Thus, 

[
13.-13.] 
<T l . t( n-p) 

l 

and the constant t al 2 ~an be found such that, 

....... --
i. e. p { (l3. - t / Z er ,Jc.) < l3. < (A. + t / Z er ·,Jc.)} = 1 - a 

l a l - 1- l"'l a l 

which is a ( 1 - a) confidence interval on 13 .. 
l 

It <;:an be shown (Graybill(?) p. 204, Johnston( 9 )) that the 

above confidence intervals on 13. and er 
2 also ap!)lY in Model III, 

l 

Case 2. 

~:c 
TESTING THE HYPOTHESIS, Ho: .J1 = .11 

If Moclel I, Case A, Y :;: X {2. + £, is partitioned so that, 

where Y 
1 

has dimension ( r x 1) then the likelihood ratio rest of the 

hypothesis, H
0

: Y = Y , can be found by making use of the fact that -1 -1 

the statistic u, defined by, 

....... ~ 
_~~I ~I X. - 12 ~ 12 1. 

u - r :f.'Y - f' X' Y 

has a non-central F-distribution, F'(r, n-p, >-.. ), and that if and only 

if the null hypothesis is true u has q. central F-distribution, 



97 

F(r, n-p). With probability of type I error a, the hypothesis 

* H : v = Y is rejected if u > F (r, n-.p). 0 ..._l -1 a 

Again, it can be shown that this test can be applied in Model 

Ill, Case 2, with the same probability of type I error. 



APPENDIX 3 

PROOF THAT: VAR (K) ex: 1/n 

It has been shown that in a grid [ (x, y), (x + 6 x, y), (x, y+ 6 y), 

(x + 6.x, y + 6 y) ] , the ~stimate of the mean value of permeability, 
=:'. 

K, is normally distributed, viz, 

where, K = true mean value of permeability in the grid, and 

where 

Therefore, 

2 =:'. 
pK = Var (K) 

= Var{6. 1
6 

Jx+D.x~y+D.y; a. Xi dx dy} 
X y . Q l 

X y 1::; 

= Var{: 
i=O 

= Var { ~ - J,} 
. Q l l 
1= 

where x0 = L 

X. } 
6.x~y dx dy 

Ji C t+6x f+6y X . 
l 

6x6y dx dy, i=O ... N. 

z N N 
pK = 'E Z J . J . Cov (;; . , ~.) 

i=O j=O l J l J 

Now, the covariance matrix of a is 2 (X'X)-1 
CT K - - , 

where, 

(A. 3. 1) 



X= 

and 

1 

1 

1 X 

99 

nl • 

n n 
n .zl X. l • 1= l 

0 
•• 

0 0 0 0 i~l XiN 

X'X 0 

n' n 2 
.z XiN . 
1= 1 

. • . • • . . . • . . Z XiN 
i= 1 

The general term of this matrix is, 

n 
Z X . . X .k, 

i= 1 lJ l 

This can be rewritten, 

n X . . X .k 
n Z ( lJ l ) 

n 
i= 1 

j = 0 • • • N, k= 0 • • • N • 

n X .. X .k 
so that the term Z ( 11 1 

) will always have the same order of n 
i= 1 

magnitude for any value of n. 



Thus, 

1 
n X.

1 _1_ 
n 

. i= 1 

100 

. . . . . . . " 
n X . 

n 
i= 1 

X'X = n = n Y 

. xz n XiN n 
iN . . . . . . . . 

i= 1 
n 

i= 1 
n 

.1 1 - 1 and (2S_'X) - y 
n 

2 
CT 

Therefore, Cov (a . , a .) = K 
F(X . . ) , 

l J n lJ 

where, F(X . . ) is a function of the space coordinates and has 
lJ 

the same order of magnitude for any value of n. 

In equation (A. 3. 1) J . and J . are constants, 
l J 

thus, 

2 CT K2 N N 
p = -- J. J. F( X . . ) , 

K n i=0 j=0 1 J lJ 

i. e. 
2 CT K2 

p K = -n- F'(Xij) 

i.e. 
CT 

K 
p ::.: -- F" (X .. ) 

K rn lJ 

i.e. 



APPENDIX 4 

TOLERANCE LIMITS >:< 

The development of tolerance limits is based on a simple 

property of order statistics, namely that the distribution of the area 

under the density function between any two ordered observations is 

independent of the form of the density function, This is stated in 

Theorem. 1. 

Theorem. 1. 

If z is a continuous random variable with density f (z), 
z 

~oo < z < oo, and X 
1 

distribution, and 

XN is an ordered sample from this 

f(z) d z = F(X . ) 
l 

i:o: 1 . • • N, 

then, the joint density of u . , given by 
l 

is independent off (z) 
z 

0 < u 1 < u 
2 

< .•. < uN < 1 

From g(u 1 ... uN), the distribution of the area under fz(z) 

between any pair of ordered observations can be found, viz., 

* This description is based on that given by Mood and 
Graybill ( l 4). 
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Theorem. 2. 

,Let the random variable Y . . be the area under f (z) between 
l, J Z 

X. and X. ( i < j), then, the density of Y . . is, 
l J . . l, J 

f (y) = N! (y)j-i-l(l-y)N-j+i' 
Y. . (j-i-1) !(N-j+i) ! 

1, J 
O<y<l. 

Tolerance limit$ are defined to be L 1 and L
2 

such that, 

L 1 and L 2 are functions of the ordered sample from the density 

fL2 
f ( z), and the density of JL f ( z) dz is given by Theorem 2. 
z l z 

J
L2 

Thus, if Y = f (z) dz, then L
1 

z P{Y>{3} = 1 - (l' 

t. e. t N! j-i-1 N-j+l 
-{3 ( ..... j---i--1-) -, (-N---j +-1) ! ( y) ( 1 -y) dy = 1 -a 

From, this equation, if any three of the four varir,bles, a, {3, 

[ L 1, L 2 ] , N, are specified the other can be determined. For 

example, if (1-a) = .9 , {3 = .9, N = 38, then, L = X and L = X . 1 1 2 N 
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APPENDIX 5 

COMPUTER PROGRAM 

The computer program as described here is written to obtain 

a finite difference solution to the unconfined flow equation when tlie 

region of flow is rectangular and the boundary conditions are 

constant gradients. Simple modifications can be made for other flow 

regions and boundary conditions. The regression models, 

are apalyzed by the program. 

DESCRIPTION OF PROGRAM SUBROUTINES 

Subroutine READATA 

The following variables are read in by this subroutine; 

NBETA, NTSTEP, NVAR, NRUN, NROW, NCOL,STUDE[,JT 

-· TM 

KBC, 

FKMIN, FKMED, FKMAX 

HMIN, HMED, HMAX 
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ZMIN, ZMED, ZMAX, 

QMIN, QMED, QMAX, 

PHIMIN, PHIMED, PHIMAX, 

DX, DY, 

GTMIN, GTMED, GTMAX, 

GBMIN, GBMED, GBMAX, 

GRMIN, GRMED, GRMAX,. 

GLMIN , GLMED, GLMAX! 

These variables are defined in the program. The data is also 

written out by the subroutine. 

Subroutine RANDOM 

This subroutine generates random values of the mean of the 

normal distributions of h
1

, K, Q, S and z from triangular 

distrtbutions defined by the minimum, median and maximum values 

of each variable. Random values of the standard deviations of the 

normal distributions of these input variables are generated from 

uniform distributions defined by the upper- and lower values of these 

variables. These upper and lower values are defined in the sub-

routine. Random values of the constant gradient boundary conditions, 

GTOP, GBOT, GRITE, GLEFT, are also generated from triangular 

distributions defined by the minimum, median and maximum values 

of the variables. 
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Subroutine RANDY 

This subroutine generates random values of hi' z ,, Q, K, S 

from their normal distributions. 

Subroutine AMA TRIX 

This subroutine computes the values of the elements of the 

matrix equation which results from writing the finite difference 

equation for each of the interior grids of the flow region. 

Subroutine RBSOL V 

This sµbroutine solves the matrix equation set up in sub-

routine AMATRIX by Gauss Elimination. Savings in computer 

storage and execution time are effected by condensing the matrix . 
from being square with dimension (NROW-2)*(NCOL,.2) to being 

rectangular with (NROW-2)*(NCOL-2) rows and NROW columns. The 

dimensions of this reduced matrix make it desirable to define 

NCOL > NROW. 

Subroutine MINMAX 

This computes the values of tolerance interval width and 

coefficient of variation in each grid for the end of each time step. 

Subroutine POLY 

This subroutine computes the maximum likelihood estimates 

of the regression coefficients, confidence intervals on the 
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coefficients and tests the hypotheses H
O 

: [ a
0

, a 1, a
2

, a 4 , a 
5

) = 0 and 

H
O 

[ a 1 a 2
a 

4
a 

5
] = 0. The results of these computations are written 

out. 

Data Preparation 

B~fore using the program it is necessary to define the 

dimensions of the variables to suit the problem being studied. This 

involves the DlMENSION statements of the main program and sub-

routine POLY and the COMMON statements. Also, tolerance 

interval widths are computed in this program from a random sample 

of size 38. If this sample size is changed adjustments have to be 

made in subroutine MINMAX. Changes would also have to be made 

to study different regression models. 

Data cards are read in as follows (for NCOL=7, NROW=6, 

NTSTEP< 16) 

CARD 1 

CARD 2 

NBETA, NTSTEP, NVAR, NRUN, NROW, NCOL, 

STUDENT FORMAT ( 6 110, Fl0• 3) 

TlM (I) , I = 1, NTSTEP 

FORMAT ( l 6F5· 1) 

CARDS 3-8 KBC (I, J), J::l, NCOL, I=l, NROW 

FORMAT ( 7 I 10) 

CARDS 9-14 FKMIN (I,J), J=l, NCOL, I=l, NROW 

FORMAT (7 F 10· 2) 
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CARDS 15-20 FKM:ED (I ,J), J=l, NCOL, I=l, NROW 

FORMAT (7 F 10· 2) 

CARDS 21-26 FKM:AX (I,J), J=l, NCOL, I=l, NROW 

FORMAT (7 F 10· 2) 

CARDS27-32 HM~N(I,J), J=l, NCOL, I=l, NROW 

FORMAT (7 F 10• 2) 

CARDS 33-38 HMED (1,J), J=l, NCOL, I=l, NROW 

FORMAT (7. F 10• 2) 

CARDS 39 .. 44 HMAX(I,J), J=l, NCOL, I=l, NROW 

FORMAT (7 F 10• 2) 

CARDS 45-50 ZMIN (I, J), J= 1, NCOL, I=l, NROW 

FORMAT (7 F IO· 2) 

CARDS 51-56 ZMEp (I, J), J=l, NCOL, I=l, NROW 

FORMAT (7 F 10• 2) 

CARDS 57-62 ZMAX (I, J), J=-1, NCOL, I=l, NROW 

FORMAT (7 F 10• 2) 

CARDS 63-68 QMIN (I, J), J== 1, NCOL, I=l, NROW 

FORMAT (7 F 10• 2) 

CARDS 69-74 QMED (I, J), J= 1, NCOL, I=l, NROW 

FORMAT (7 F 10·2) 

CARDS 7 5-80 QMAX (I, J), J= 1, NCOL, I= 1, NROW 

FORMAT (7 F 10· 2) 

CARDS 81-~6 PHIMIN (I,J), J=l, NCOL, I=l, NROW 

FORMAT (7 F 10. 2) 
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CARDS 87-92 PH.IMED (I, J), J=l, NCOL, I=l, NROW 

FORMAT (7 F 10· 9) 

CARDS 93-98 PHIMAX (I, JL J=l, NCOL, I=l, NROW 

FORMAT (7 F 10· 9) 

CARDS 99-104 DX (I,J), J=l, NCOL, I=l, NROW 

FORMAT (7 F 10· 2} 

CARDS 105-110 DY (I,J), J=l, NCOL, !;::l, NROW 

FORMAT (7 F 10· 2...) 

CARD 111 

CARD 112 

CARD 113 

CARD 114 

CARD 115 

CARD 116 

CARD 117 

CARD 118 

GTMIN ( J), J= 1, NCOL 

FORMAT (7 F 10· 2) 

GTMED (J), J=L, NCOL 

FORMAT (7 F 10• 2) 

GTMAX ( J), J= 1, NCOL 

FORMAT (7 F 10· 2..) 

GBMIN (J), J=l, NCOL 

FORMAT (7 F 10• 2) 

GBMED ( J), J= 1, NCOL 

FORMAT (7 F 10• 2) 

GBMAX (J), J=l, NCOL 
I 

FORMAT (7 F 10· 2...) 

GRMIN (I), I=l, NROW 

FORMAT (7 F 10• 2) 

GRMED (I), !;:: 1, NROW 

FORMAT (7 F 10· 2) 



CARD 119 

CARD 120 

CARD 121 

CARD 122 

109 

GRMAX (I), I= I, NROW 

FORMAT (7 F 10· 2) 

GI.MIN(!), I=d, NROW 

FORMAT (7 )J' 10•2) 

GI.MED (I), I=l, NROW 

FORMAT (7 F 10• 2...) 

GI.MAX (I), I= 1, NROW 

FORMAT (7 F 10• 2) 
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START 

lllMENSLON VARIABLES IN MAIN 
Pl{Ol;(V\M ANJ) SUBROIJTINE POLY 

CALL READATA 
Rl:Al)S IN AND WRITES OUT DATA 

CALL RANDOM 
GENERATES RANDOM VALUES OF MEAN AND 
STANDARD DEVIATION OF HI, Z, FK, Q, 
PHI , AND OF BOUNDARY GRADIENTS. 

DO 3333 IVAR= 1, NVAR 

DO 2222 IRAN= 1, NRUN 

CALL RANDY 
GENERATES RANDOM VALUES OF HI, FK, Q, 
PHI , Z 

DEFINE HT FOR BEGINNING OF STUDY 
PERIOD 

DO 1111 !STEP= 1, NTSTEP.,__ ____ _ 

COMPUTE SATURATED THICKNESS AND CHECK 
FOR DRY GRIDS 
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CALL Af~ATRIX 
COMPUTES VALUES OF ELEMENTS OF MATRIX 
EQUATION 

CALL RBSOLV 
SOLVES MATRIX EQUATION 

DEFINE HT AT END OF TIME STEP 

STORE VALUES OF HT IN HOT 

CALL MINMAX 
COMPUTES TWIDE AND CVHAT FROM VALUES 
OF HEAD STORED IN HOT 

DO 70 I= 2, NR 
DO 70 J = 2, NC 

DEFINE X, THE OBSERVED VALUES OF THE 
INDEPENDENT VARIABLES IN THE TOLERANCE-
INTERVAL-WIDTH REGRESSION MODEL. 
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DEFINE Y, THE OBSERVED VALUES OF THE 
DEPENDENT VARIABLE IN TiiE TOLERANCE-
INTERVAL-WIDTH REGRESSION MODEL 

CALL POLY 
COMPUTES MAXIMUM LIKELIHOOD ESTIMATES 
OF REGRESSION COEFFICIENTS, CONFIDENCE 
INTERVALS ON THE COEFFICIENTS, TESTS 
THE HYPOTHESES, H0 :( a 0 , a 1,a2 ,a4, a5]=0 
AND H0 : La 1,a2 , a4 , a5]=0 

DEFINE X FOR COEFFICIENTS-OF-VARIA-
TION REGRESSION MODEL 

DEFINE Y FOR COEFFICIENTS-OF-VARIA-
TION REGRESSION MODEL 

CALL POLY 

END 
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l~-~L-~_'< A '1 ST AT FJ.,.f;l 
L THIS ~0 1S~A~ SOLVfS U\l:O\lFINF.D FLJW P~ORLEr WHfN ~!, Z, PHI, Q, FK, ARE RA\lDJV 

l ~~ JT V~K IA RLES WITH \lORMAL DJSTRl~UTIONS. 
' •;:q o SYSTEM MUST BE R.ECTA '~GULAR 
C ~JU\lUA QY CONOITIJNS MUST B~ :ONSTANT GRAD if ~TS. 
C I ~ TH E Kf.G RESSIO\l MODELS, 
L T =AO+ Al *SK+A2 *S l+A 3~SH + A4*S0+A5 ~,s P 
C C=AO+Al*CK+A2*CZ+A1*CH+A4*CU+A5*CP 

\- Ht:~ E, 
C SK ,CK=STA •\l. DEV.,C'JEFF OF VAR. OF PERM EAfllLITY 
C SZ ,Cl=STA"J. OEV.,COEFF rJF VAR. OF BEDROCK ELEV. 
C SH ,CH=STA\l. DF.V.,CJEFF OF VAR. OF INITIAL HEAD 
,. s o ,:Q= STA"J. DEV. , COF. FF OF VAR. OF nr s r.HA RGF. 
C S-1 , CP=S TA 'l . DEV. ,C clEF F OF VC.R. JF SPE CIFIC Y !ELD 
C T H,:C '1 /1 X • i..lKELIHOOD ESTIMATES OF THE ~E GRESSIO\l COEFFS. ARE CALCLUATED 
,- THI: HYP UTHESF.S (AI) =O, (AO,Al,A2,A4,A5)=0, (Al,A2,A4,A5)=0,ARE TESTED. 

C ll ! ME'J S l "'J Tiff 
C ,, A ( I P , ', { :_J W ) 
C >\ HS( I P) = 
C A( \lOE TA-ll 
C Y(NTST t: P,\lVA:{) 
C WHERE, 

FrJLL OW IN G VARIABLES, 
~/\TRIX JF CDEFFS. FROM FINIT ~ DIFF ~R.ENCE EQUATIONS. 
VECTOR It '' ti '' '' II 

C :~ "- rJ W = "JO • 0 F J W S lJ F C. R ID SYST EM 

A"lD 

C 
C 

NCG L = NO .OF COLS. OF GRID SYSTEM(NCOL GREATER THAN OR EQUAL TO NROW) 
IP= (\l~ OW-2)*(\lC OL -21 

C 
C 
C 

NTSTEP = "JJ. OF TIME STEPS 
\l V/\R = "JO. OF P'JINTS TO BE GENERATED FOR REGRESSION ANALYSIS 
\lB ETA =NO.OF REG~ESSION (OEFFS •• 

DI Mi\lS ION A/1(20,61, ~HS(20l, A(Sl, Y(l0,15) 

C CDTIME = TIME AT BEGINNING OF A TIME STEP 
C CTI~ E = TI~ E AT END nF A TIME STEP 
C \l {lJ\l = 'Hl . fJF fJRSERVATIOVS TO RE :;ENERATED FOR CDMPUfATION OF TOLERANCE INTERV 
C U)(( \lROW , NCrJ Ll = GR ID SIZE IN X-DIRECTIO'-J(FEETl 
C PY(N qJW,\lCOLl = GRID SIZ E IN Y-DIRECTION(FEETl 
C K8C ( NRDW ,\lC OL) = PARAMETER CHARACTERISI NG BOUNDARY CONDITIO NS 
C KBC 1, IF BOU NDARY GRIJ WITH CONST ~E AD OR CONST GRADIENT 
C K!3C = 2 , IF 1"1P ': ~M EIOUNOARY GRID 
C Kf<C = 31 IF I'JTE'RIOR GR I I) 
C )( \JJ q'H P*3+2*N ~JW*NCJL l = STJRES STA N. ~JOR MAL RA\l DOM NOS •• 
C F<(N RO~ , NCOLl = PERMEABILITY IN EACH GR ID(FEET/DAYI 
C B( N~• W, \lCJ L) = SATURATED THI:KNESS IN EACH GRIO(FEETl 
C Q(\l~ • W, \lCJ L) = DISCHA~GE IN EACH GRIO(FEET**3/DAY) 
L Hl( \lR O~ , \ICO Ll = INITIAL HEAD IN EA:H GR ID (FEET) 
C HT( N~:1w , \l CO L) = HEAD AT :uRRE~IT TIME I N EACH GRIO(FEETI 
C ;'ri l( 'JR (lw , 'lCO Ll = SPECJFI: YIELD IN EACH GRID (-) 
C Z( \lQJW , \JCO Ll = BF. DROCK ELEVATION IN EACH GRID (F EET) 
C fK MEAN ( \J~ JW,NC •Ll = MEAN VALUE OF PERMEARILITY IN EACH GRID (FEET/DAY) 
C F<M l \l ( NQO W, NC• Ll MI\lIMUM VALUE OF FKMEAN IN EAC-1 GRID(FT/DAY) 
C ~<M F.D ( NlJ W, NC• Ll MED IAN VALU E OF FK ME AN I N E/\CH GRID(FT/DAYl 
C H r~ AX ( N'< '. )W, NCO Ll MAXHIUM VALUE OF FK ME AN IN EAC-1 GRlll(FT/DAYl 
C ~<LJ~ ( \lqJ w,\lCJL) Ml\l!MUM VALUE OF FKVAR I N EA:H GRID(FEET/DAYI 
C ~KUP ( N<OW,NC •Ll MAXIMUM VALU E OF FKVAR I N EA:H GRID(FEET/OAY) 
C A\J ALA GO US VA QIA BLE S FJR ] ,Hl,PHI,Z HAVE SAME DEFl\lITIONS 

HV /\ ll ( N~l :W, ~lC lL,\lVAK) = ST/11\Jf) ARD JE VIAT IO'J tl F P~ l{Mt' ll !3 1LITY IN EACH GRID(Fl/UAY 
U~R(\li<l:l ,J , 'IJC lL,NVA R) = STA 'J. Dt:V. nF BfORf:CK 1'1 EA:H GR I D(FEET) 

_. ,d v /1 :, (1",'IJV/\'{) = STA\l.0EV.OF I NITIAL HE/\fl I '~ EACII GiUD(FEET) 
_. ; VII K C I D , ·JV AR l = ST Ml . DEV. 0 F D I SCH AR Gt: I f\! F /IC H GR ID ( FT** 3 / f) A Y ) 

r rl IV J\R ( ! P, ~VA~I = STA\l. DEV. OF SPECIFIC Yl[ID I ~ EACH GRID(-) 
- il 'H(IP, , 1<U N,'HSTF.P) = STJTFS VALUES OF HEAn I'll EAC H GRID FO R ALL NRLIN Ru'IS AT 

ENO OF EACH TIME STEP 
.. '., T,1[) ['.JT = VALU E JF STUDE\lTS TAT 9S P~ R Cf'JT LEVl: L FOR ( NVA 1~-NHETA) O. JF F. 

r~ 111t-.e 1<' ,\l V/\R , ~HSTF.P) STllRES VALUE S n r- TPLERANCE I NTE RVAL wIDTH IN EACH GRID 
AT E\lO OF EACH Tir ~ STEP 

- : vH/\ TC IP,\J Vl\ >t , \l TSTEP) STClREA VALUE'S OF SAl-1PLE 20E FFS. OF VARIATION IN EACH 
GRID AT E'IJD OF EACH TIME STEr 

X( •\JP. [ TA- 1, •NV/\R) 
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TIM( ~TST~ P) = LE'JGTH JF EACH TIME STEP 
GTJP ( ~CJ L,NTSTEP+l) = GRADIENTS FOR 'TOP' OF GRID SYSTEM 
GRJ T( NC nL,NTST EP+l) = GRADIE'JTS FOR 'BOTTOM' OF GRID SYSTEM 
G~ITE(NROW,~TSTEP+l) GRAUIETTS FOR 'RIGHT' 8F GRID SYSTEM 
GLEF T(N~ OW,NTSTEP+l) GRADIENTS FOR 'LEFT' OF GRID SYSTEM 
GTMPJ,GTMEO,GTMAX(NCOL) -= MINIMUM, MEDIAN, MAXIMUM VALUES OF GTOP 
~ IMJL hRL Y FOR GD • T, G~ITE, GLFFT 

COM~ON CTIME, CDTIME, NTSTEP, NROW, NCOL, NVAR, NKLJN 
l DX (6,7), DY(6,7), KBC16,7), XNORM(l50) 
2 FK(6,7), 8(6,71, )(6,7l, Hl(6,7), PHl(6,7), HT(6,7l, Z(6,7) 
1 , FK~EAN(6,7), ZMEA'J(6,7), QMEAN(6,7), HIME~N(6,7), PHIMEN(6,7) 
4, FKVAR(6,7,1'51, lVIIR(&,7,15) 
* ,) VA R(20,15l, HIVA~(20,l'.>), PHIVAR(Z0,15) 
5 , FK MI N(6,7l,ZMJN(6,7l,~MIN(6,7) ,HMIN(6,7),PHJMIN(6,7) 
6 , FK~EDl6,7l, ZME0(6,7), QMED(6,7), HM FD (6,7), PHIMED(6,7) 
7 , fK~AX(6,7l, Z~AXl6,7l, QMAX(6,7l, HMAX(6,7l, PHIMAX(6,7) 
8, FKLOW(6,7), ZLOW(6,7), QLOW(&,7l, HL OW (6,7), PHILOW(6,7) 
9, f-KUP(6,7l, ZUP(6,7l, QUP(6,71, HlJD(6,7), PHIUP(6,7) 
0 HOTl20,3H,10l, TWIDF(20,15,10), CVHATIZ0,15,10) 
l STUUE NT, NBETA 
4 X(5,15) 
6 , TIMllOI 
7 , GT ~INl7l, GT ME D(7l, GTMAX(7l, GBMINl7), GHMEDl7l, GBMAX(7l 
8, Gi'lM I Nl7l, GRMED(7l, GRMAX(7), GLMIN(7), GLMED(7l, GLMAX(7l 
9, GTJPl7,lll, GBJT(7,lll, GRJTE(6,lll, GLEFT(6,lll 

C CALL RE ADATA TO READ IN AND WRITE OUT INITIAL DATA 
CALL READATA 

C CAL L RA'JDJM TO GENERIITE ~AND•M VALUES OFMEAN AND STANDARD DEV. OF INPUT VARIAB 
CALL RANDOM 
NC NCOL - l 
r~R = NROW - 1 
IP= (NROW - 2l*(NCOL - 2) 

C EACH TI~ E THRU LOOP 3333 COMPUTES NVAR VALUES OF TWIDE AND CVHAT AT END OF 
C EACH Tl~ r STEP : •RRES~ONDING TD NVAR VALUES OF STAN. DEV. AND COEFFS. OF VAR. 
C '.JN HI, l, FK, PHI, Q. 

DO 33 33 IVAR-= 1,NVA~ 
C EACH Tl~E THRU LOOP 2222 COMPUTES NRUN RANUnM VALUES OF HEAD AT ~ND OF EACH 
C TIME STEP 

DO 2222 IRAN= l,NRUN 
C CALL RAhJDY TO GENERATE RANDOM VALUES OF HI, FK, Q, PHI, l. 

CALL R.ANDY(IVARl 
C SE T HT = HI FOR INTERIOR GRIDS 

DO 20 I = 2,NR 
DO 20 J = 2,NC 

?O HTII,JI = Hl(I,JI 
1lEF IN E HT FD~ ROIJND.\H GUDS /IS HT fOI{ ADJOl ~l lNG INTFRIOR GRID+ CONSTANT GRAD 

DO 21 I = 2, \JR 
YT(I,1) = HT(I,2) + GLEFT(I,ll 

21 HT(l,NCOL) = HT(I,N CI + GRITE(l,1) 
DO 22 J = 2,NC 
HTll,Jl = HT(2,JI + GTOPIJ,ll 

22 HT( NR OW,JI = HT('JR.,JI + GBOT(J,l) 
- EACH Tl ~E THQU LOOP 1111 COMPUTES HFAD AT END OF ONE TIME STEP 

CTIME-= 0.0 
on 1111 !ST EP-= 1,NTSTEP 

- CJMPUTE SATU!{ATED THI CKNE SS IN EACH GRID A1~(1 CHECK IF NO~l-NEGATIVE. IF NEGAT(V 
C WRITE OUT LOCATION OF DRY GR ID AND STOP EXECUTION. 

DO '>O I = 1,NROW 
DO '50 J -= 1, hJCOL 
3 11,J ') = 1-<T(l,Jl - Z(l,Jl 
KCH ECK = A(J,J)/1000000.0 + 2.0 
GO TO 151,50),KCHECK 

'> l WRIT E(6,52) I,J 
52 FOR ~AT(lHO,*DRY GRID *,213) 

S Ttlf' 
50 C!J f\J T I 'JU l': 

COT JME = CTIME 
CTl~ E = CTl~E + TIMIISTEP) 

- CALL AMATRIX TO SET UP MATRIX (AA) AND VECTOR (RHSl 
CA LL AMATRIX(IRA~,RHS,AA) 
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., ;:I\ LL ,< ' ISJL V TO SJ LVE MAnlx EQU. (AA)*IHT) = (RHS) 
CALL RBSO LV(AA,IP,NR ~W,RHS) 

~~ OE FI~ ~ HT AS VALUES OF HEAD AT END OF TIME STEP 
L = 0 
llO 1 J = 2, "I C 
11f.1 1 I = 2 ,NR 
L = L + l 

l HT ( 1,J) = RHS (L) 
~EO EFl ~t HT I N BOUND ARY GR ID S AS HT IN ADJOINING GRID PLUS CONS TANT GRADIENT 

I S = IS TEP + 1 
DO 23 I = 2,\JR 
HTII,l l = 1-H(I,2) + :;LEFT(I,IS) 

23 HT ( 1,\JC OL) = HT!I,NC) + GRITE(I,IS) 
1)(7 24 J = 2 , NC 
HT I 1, J l = IH ( 2, J) + G TOP ( I , IS) 

24 HT( NRO W,J) = HT(NR,Jl + GBOT!I,IS) 
STORE VALUE S OF HT I\J HDT FJR INTERI OR GRIDS AT EN D OF EACH TIME SYEP 

! GR ID= 0 
Dfl 7 I = 2,NR 
DO 7 J = 2, \JC 
I GR l 9 = IGRID + l 
HDT( !GRID, IRA"!, !STEP) 

7 Crf"J TINUE 
1111 CONTINUE 
2222 C:l'H !'-JUE 

HT (I, J l 

: : ALL MI\J MAX TO CJMPUTE TOL. INT. WlDTrlS AN D COEFFS. OF VAR. IN EACH GRID AT 
: E\JO EACH TIME STEP FRJM RANDOM SAMPLES OF HEAD STORED IN HDT 

CALL MIN~AX(HDT,N~UN,NROW,NCOL,TWIDE,IVAR,IP,NVAR,NTSTEP,CVHAT) 
1B3 CONTINUE 

C LJ UP 70 CJ MPUTES ESTI~ATES OF REGRESSION COEFFS., CONFIDENCE INTERVALS ON 
Trl ESE EST IMATES AND TESTS OF HYPOTHESES FO R BO TH 'TOLERANCE-INTERVAL-WIDTH' 

CANO ' CflEF FS- OF-VAR' REGRESSION MODELS, FOR ON E GR ID 
\JBtTA l = NBETA + NTSTEP 
~Jl = \!BETA - l 
I GR IO 0 
DO 70 I = 2, NR 
DO 70 J = 2, \JC 
!GRIil = !GRID+ l 
WRITE !6,72) IGRI D 

72 FOR~AT(lHO,*RESULTS ROR GRID*,I3) 
C LOOP 32 1 STORES OBSERVED VALUES OF INDEPENDENT VARIABLES OF REGRESSION EQU. 
C FJR 1 TOL-INT-WIDTH 1 ~JDEL IN (X) 

DO 32 1 K = 1,NVA~ 
X( 1, K) FKVAR( 1,J,K) 
Xl2,K) ZVAR(I,J,K) 
X!3 , K) HIVAR(IGRID,Kl 
Xl4,K ) QVARIIGRID,K) 
X(5,K ) =PHIVAR(IGRID,Kl 

i 21 CO'JT I\JUE 
C LJJn 71 STO~E S DRS ERV~D VALU ES AFT ER EVERY TIME STEP OF DEPENDENT VARIABLE 
C IT W!Dtl OF REGRESSION EQLJ., [N IY) 

DO 71 K = 1,NVAR 
11 0 71 L = 1,NTSTEP 
Y(L,K ) = TWIDE([ GRil.l ,K,Ll 

11 cn rn1NU E 
C CA LL POLY TO PERFORM RE GR ESSIO N ANALYSI S FOR 1 TOL-I NT-WIDTH' MODEL 

CALL PO LY(Y,X, NVA~ , N3E TA, NBE TA1, STUOENT,IGRID,Nl,IP, NTSTEP) 
L• JP 74 STORES ORS ERVED VALUES OF INDEP. VARIA BLES OF REGRESSION EQU., FOR . 

C ClE FF S. OF VARIA~LE ~E~RESSIJN MODEL, IN ( X) 
A(l) FK'I EAN(l,J) 
A( 2 ~ ZMEAN(t,Jl 
,\ I 3 > H I M EA \J I I , J ) 
A(4 ) (J"1EI\\J (l,J) 
A(5 ) PHIMEN(l,J) 
1JO 74 K = 1,NVAR 
DlJ 7 S L = 1, N l 

7~ XIL , ~ ) = X(L,Kl/A{L) 
74 CO NTI\JU I:: 

C LOJ P 77 ST• ~fS • RSER VE D VALUES AFTER EVER Y TIME STEP OF OEPENOENT VARIA~LES 
C ( CVHAT ) OF REGRES SION EQU •• IN Y 

on 77 K 1, NVAR 
i lJ 77 L = 1,\JTSTEP 



Y(L, K) = CVHAT(l~~IO,K,L) 
77 cn NTI\JUI:' 
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C CA LL P[JLY TO DERF JRM ~E:;RcSSIDN A\JALYSIS OF ' C<JE FF-nF-VAR' 'l• DEL 
CI\LL POLY(Y,X,NV/IR,NAETA,NBETAl,STUDENT,IGRIO,Nl,IP,NTSTEPI 

70 CD -\J T !\JU E 
ENLJ 
SJU~ J UTINE RANOY(IVA~I 

C THIS SU P,<{J LJTI\J E GE \J ER AH S RA\JD OM VALU ES OF q(, Z, ~ . DH!, FK FR0'-1 THEIR NOR"1Al 
C iJIST RI BJ TI ONS IN EACH GR IO. THFSE VALUES /I RE HELD CONS TANT FOR ENTIRE STUDY 
C PER l rJD 

COMM• \J CTIME, CDTIME, NTSTEP, NROW, NCOL, NV/IR, NRUN 
1 , l) X(6,71, DY(6,7l, KPC(6,71, . X"JORM(l50) 
2 , FK (6,71, 3 (6,71, ~ (6,7), Hl( 6 ,71, P1~1(6,71, HT(6,7l, Z(6,71 
3 , ~KMEl\~ ( 6 ,71, ZMEAN(6,7), QMEAN(6,71, HIMEAN(6,7), PHIME N(6,7) 
4, FK V/I R(6,7,15), lV/IR(6,7,l51 
* , ~VA R(Z0,151, HIVA~(20,151, PHIVAR(20,15) 
5 , FKM I N(6,71,7.Ml"J(6,7l, QMIN(6,71,HMI N(6,7),P--ilMIN(6,7) 
6 , FK"1ED(6,71, Z~E 0 (6,71, QMED(6,71, HMED(6,71, PHIMED(6,71 
7, FK MAX(6,71, ZMAX( 6 ,7), CM AX(6,71, HMAX(6,71, PHIMAX(6,7) 
A, FKLCJW (6,7), ZL:1W(6,71, QLOW(6,71, HL Ow(6,71, PHILOW(6,7) 
9 , FKU P( 6 ,71, lUP(6 1 7), QUP(6,7), HUP(6,71, PHIUP(6,71 
0, HD T( Z0 ,3 8 ,101, TWIDE(Z0,15,101, CVHAT(Z0,15,101 
l , STUD E\J T, \J AE T/1 
4 , X( 5 ,1 5 ) 
6, TI M(l OI 
7, STMI N(7), GTl-l l:0 171, GTMAX(71, Gt\M IN(71, GAMED(71, Gl:lMAX(7l 
A, GR Mll'H 71, GRMED(71, GRMAXl71, GLMI N(71, GLMEDl71, GLMAX(7l 
q , GTJP(7,111, GBDT17,lll, GRITE16,111, GLEFT(6,lll 

C N TOTAL NO. OF STA\J. NJRMAL RANDOM NUMBERS REQ UIRED 
N = (\JR OW - 21*(N: •L - 2)*3 + 2*NROW*NCOL 
!'JR = \JROW - 1 
NC= \JCOL - l 

C 1\1 THI S LOOP GE\JERATE I NDE P. STAN. NORMAL NUMBERS - FOR ALGORITHM SEE 'HANDBJO 
C -K OF MATH.FNS.• NATIJNAL BUREAU OF STA NDARDS, PA GE 953 

DD 1 I = 1, N, 2 
Rl RANF(OI 
R2 RANF(OI 
AL -1\L OG ( Rll 
Xl l.414213562373•SQR T(ALI 
AL 6.2831853073*R2 
XNLlRM ( 11 = Xl*CDS(ALI 
X~lOR M(l+ll = Xl*SIN(ALI 

C TRA\l SF O~~ STAN. \I JRM /IL ~ANDO~ NUM AE RS TO GIVE NOR"IAL RANDOM NUMBERS FOR HI, )~ 
C t'H l, FK, z. 
C FJR HI, Q, PH I ON LY NE ~D TO GENE RATE N/ S. FOR INTERIOR GRIDS.FOR FK, Z NEED TO 
C GFNERA TE NOS. FOR ALL GR IDS. 

K = 0 
IG RID = 0 
Dfl 4 I = 2, NR 
nn 4 J = 2, "lC 
! GR I D = ! GR I D + l 
K = K + 1 
HI (I,JI X\lDR M( KI* -HVAR(IGRID,IVA RI + HIM F. AN(l,JI 
K = K + 
J ( 1,J) X\JJRM(K)« l~VA'l.(IGRID,IVI\ R) + QMf ANII,JI 
K = K + 
PHl!l,JI= XNJR"l(Kl*PHIVAR!l<.Rlll,IVAR) + PHI ME:HJ,J) 

4 CDI\J T l'HJE 
DO 5 I = 1,NROW 
DO 5 J = 1,N CD L 
K = K + l 
FK (l,JI = X\J')RM(K)*FKVI\R(l,J,IVARI + FK"E AN(!,J) 
K = K + l 

5 Z(I,JI = XNORM(Kl*ZVAR(I,J,IVARI + ZM[MJ(I,Jl 
RF TU R\J 
END 
SUB~JU TI NE _READ ATA 

THI S su~~JU TI NE REA n S IN ALL TH E DATA 

C1M~O \l CTIM E, COTI ME , NTSTEP, NROW, NCOL, NVAR, NRUN 
1 , OX(6,7l, DY(6,7), KBC (6,7), XNORM !l5 0 1 
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2 , K ( 6, 7 l , B ( 6 , fl , ( 6, 7) , HI ( 6, 7) , PH I ( 6, 7 l , HT ( 6, 7) , Z ( 6, 7) 
1, f'K"IEA'J(6,7l, lM[A\J(6,7), QMEAN(6,7l, HIMEAN(6,7l, PHIME•J(6,7l 
<t, f-K VA R ( 6 ,7,15), LVAR(6,7,15) 
• , J VI\R(20,15l, HIVA~(20 ,1 5), PHIVI\R(20,15) 
5 , FK"ll \J(6,7),ZMIN(6, 7),QMINl6,7) ,HMIN(6,7l ,PHIMI\J(6,7l 
h , FK"IED(6,7l, ZME0(6,7l, QMED(6,7), HMED(6,7l, PHIMEOl6,7l 
7 , FKMAX(6,7), ZMAX(6,7), WM AX(6,7), HMA Xl6,7), PHIMAXl6,7) 
rl , f'K LOW (6,7l, lLJW(6,7l, QLOW(6,7), HL • W(6,7), PHIL OW(6,7) 
g , FKU PU, ,71, ZUP(6,7), QUP(6,7), HUP(6,7l, PHIUP(6,7) 
:J , HIHU0,3 8 ,10), TWID E (20,15,1 0l, CVH .II.T(20,15,10l 
I , S TUO E\J T, \J RE TA 
4 , X( 5 ,1 5 ) 
6 , TI "I ( 10 ) 

- - - - ---- -

7 , GP.IUH 7), GTM ED ( fl, GTMAX(7), GBM I N(7), Ge MED(7), GBMAX(7l 
R , l~K"II 'H7l, GRM ED (7), GRMAX(7), GLMI N(7l, GLMED(7), (;LMAX(7) 
g , GTJ P(7,lll, GROT(7,11), GRITEl 6 ,lll, GLEFT(6,lll 

REAU(5,ll \JB ETA, NTS TEP, NVAR, NRUN, NROW , NCOL, STUDENT 
FO~ "IA T(6llO,Fl0. 3 ) 
WR IT [ (6, 6 ) 

6 FO R'lJ\ T( lHO, * STUDE\JT NTST E P 
9 N~UN f\JROW NCOL 
9 'JBE TA*l 

WRIT [ l6,7) STUDE\JT, \JTSTEP, NVAR, NRUN, NROW, NCOL, NRETA 
7 FflkMA T(l-H ,F7.4,6I20) 

~F.AD (5, 2 l (TI M( I),1=1, NTST EPJ 
2 FO r<."1 1\TI l6F5. l) 

WRI TE(6, 8 ) 
8 FOR"IA T(lH0, 5 5X,*LENGTH OF TIME STEP(DAYSl*l 

WRI TE(6,9) ((1,TIM(l)l,I=l,NTSTEP) 
9 FflR"IAT(lH ,65X,11,F6.2l 

RF.A0 (?,1) ((KBC(l,Jl,J=l,N::: • Ll,I=l,\JROW ) 
3 FnR"li\T(7110l 

WRIT [ (6,10l 
10 FOkM ATllH0,60X,*KBC*l 

WR IT E(6,lll ((KB:11,Jl,J=l,N:::• Ll,I=l,NROW) 
11 FOR"IATllH ,711 8 ) 

R[At)(5 , 4 1 I( FKMl 'Hl,Jl,J=l,N: • Ll,1 = 1,NRO W) 
REAll (5,4) (( FK MEO (l,J),J=l,N:::nu,1=1,r·JRO W) 
R[AD (5,41 ( ( FKMAX(l,Jl,J=l,NCOLl,I=l, NRO WI 
REAU(5,4) (( HMI\J(l,Jl,J=l,N:nu,I=l,NROW) 
READ (5,41 (( HMEDll,Jl,J=l,N:::• Ll,1=1,'IJRDWl 
REAO l5,4) (I HMAXII,.11,J=l,N:::OLl,I=l,•JRi:JWI 
~fAlJ (5,41 (( ZMl'-Hl,Jl,J=l,N:::• Ll,1=1,NROWl 
REA0 (5,4) ( ( ZM ED (l,Jl,J=l,N:::OLl,I=l,N RO WI 
READ 15,41 I( ZMAX(l,Jl,J=l,N:Oll,I=l,NROWI 
READ (5,41 (I QMIN(l,Jl,J=l,N:::• Ll,I=l,NROWJ 
READ(5,41 (( QMEDI 1,Jl,J=l,N:::•Ll,1=1,NROW) 
REA D(5,4) II f)M AXII,Jl,J=l,N:::• Ll,I=l,NROWI 
RfAn (5, 5 ) ( (PHIMIN(l,Jl,J=l,N::: • Ll,l=l,NROW) 
REAU l5, 5 1 (( PH I MED II,Jl,J=l,N: • LI ,I=l, NRO WI 
:u:Au ( 5 , 5 ) ( (PHI MllX ( I,J) ,J=l,NCOLI ,I=l,NR OWI 

S FOKM AT l7Fl 0 .91 
REA i) ( 5 ,4l (( DX (I,Jl,J=l,NCOLl,1=1, NRO W) 
'{ E l\11 (5,4) (( DY(l,Jl,J=l,NCOLl,I=l,NROW) 
REAil ( 5 ,4) ( GTMl ll (J),J=l, NCO Ll 
'{ EA il ( 5 , 4 I l GT ME D ( J I , J = l , NC O L I 
REA0 ( 5 ,41 I GTMl\ X(Jl,J=l,NC OLl 
REA IJ15,4) ( GBM IN(Jl,J=l,NCOLl -
RE ADl5,41 lGf\M ED IJl,J=l,NCOL) 
RE A1 l (5,4l ( Gf\)1AX(Jl,J=l,NCOLl 
RE AD (':i,4) ( G~M INl!l,I=l,NROWI 
REAtl ( S ,41 ( GR MEO ( I I, l=l,'IJROWI 
Ric A') ( 5 , 4 ) ( G M ,I\ X ( I I , I = l , \JR OW ) 
Rf AD l 5 ,4l ( GL~I N(Il,l=l,NROW) 
REAU (5,41 ( GLMED(Il,I=l,NROW,l 
RE AD (5, 4 ) ( GLMAX(l),l=l,NROW) 

4 F ll R r1 I\ T I 7 F l O • 2 ) 
WR IH ( 6 ,121 

1 2 Filk'1 ll T(l H0 , 60 X,* FKMI I\J *l 
-,R IT [ l 6 ,11) (I FK"II\Jll,Jl,J=l, NCO Ll,I=l,\JROWI 

I 3 FOk 'I AT ( l H , 7 F 1 8 . 5 I 

NVAR 
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1.; R l T f: ( 6 , 14 ) 
14 Fll:<'11\ T( l H0 1 60 X, * FK ME D*l 

,iru 1 1:: ( 6 ,l1) (( FK'I ED (l,J),J=l, NCOLl,I=l, NRn w) 
\-i R I T I: ( 6 , I 5 ) 

1 5 FnKvA T(l H0 , 6 0X, * FK MAX * ) 
WR I Tl: (6,1 3 ) (( FK'IAX(l,J),J=l,NCOLl,I = l, '-JR OW) 
l,f{ ! Tf: (6, 16) 

16 Ff7fU1A T(l H0 , 60 X, * HMI N~<) 
,.; '{ [ TH6 ,11) (( HM l \i (l,Jl,J=l, NCll ll,1=1, 1~R_OW ) 
,/R I TU 6 , l 7) 

17 Ffl K"I AT ( l HO, 6 0 X, * HM En,, ) 
WR !Tt:: (6,13) (( HMEO (I,Jl,J = l, NCOLl,I = l, NR OWl 
WR!Tf: ( 6 ,1 8 ) 

l t> FDRV.:. T( l H0 1 60 X, * HMAX* l 
W~ lf ( ( 6 ,1 3 ) ( ( HMAX(l,Jl,J=l, NCOLl ,1=1, NR OW) 
WP. I TE (6,l 9 ) 

1 ~ FOK~ AT(l H0 , 60 X, * ZMI N* l 
WR! f i: ( 6 ,131 (I Z"I I \J (l,Jl,J = l, t\J COLl,l=l, 'JROWl 
WRI TE ( 6 , 20 ) 

?O FO ><. ". AT(lH 0 , 6 0X, * ZMf.11* ) 
1, R IT C( 6 1 1 3 l (( Z.MEI J(l,Jl,J=l, NCIJ Ll,l = l, NROW) 
1, R I T t: ( 6 , 2 l ) 

2 1 F0 R""A T (lH0, 60 X, * Z'I AX * l 
WR IT E (6,13) (( ZMA X(l,Jl,J = l,\JCOLl,1=1, N~ OWl 
WR IT H 6, i'2 ) 

22 FOR ~ AT( lH0 1 60 X, * OMI ~ * l 
WK!T l: ( 6 ,13) (( Q 1HI\J ll,Jl,J = I, NCOLl,I = l, rJRl1 W) 
WK [T E ( 6 , 2 3l 

23 FOR'~,\ T( 1H 0 ,60X,* WMi:D* ) 
WR I TE (6,13) (( OMEi1 11,Jl,J=l,NCOLl,1=1, NROW) 
WR lT E ( 6 , 2 4) 

24 FORM AT(I H0 , 60X ,* QM AX * l 
WR IT t:: 16 ,13) (( OMA X!l,Jl,J=l, '\J Cn ll,I=l, '\J ROW l 
WR ! Tf: (6, 25 ) 

7 5 FORMA T(l H0 , 60 X, * 
WR ! Tt: { 6 ,13) (( 
WR. I TE (6, 26 l 

26 FOKM AT( l H0 , 60 X, * 
WR IT F (6,1 3 l (( 
WR I TE (6, 2 7l 

i1 X*) 
DX( 1,Jl,J=l, NCOL),1 = 1, NROW) 

DY* l 
DY(I,Jl,J=l, NCOL),1=1, NRO W) 

2 7 FORMA T(lH0, 60 X,*PH!MI N*l 
WR IT E{6,13) ((PHIMIN(I,Jl,J=l, NCOL),l=l, NRO W) 
WR !T f 16, 28 ) 

2 8 FORV, AT( 1H 0 , 60X , *~H I MED *l 
WR [ Ti: {6,1 3 1 ((PHIM ED ll,Jl,J=l, NCO L),1 = 1, NR_QW ) 
wR [T E l 6 , 29 l 

29 FOR ~ AT(l H0 , 60 X,*PHI MAX * l 
WR IT E ( 6 ,l 3 l ((PHIMAXll,Jl,J=l,NCOL),l=l, NROWl 
WR ! T[ (6 ,30 l 

1 0 FOR~ RT (l H0 , 60X ,* GTMI ~• l 
WR I TE ( 6 , 13 l ( GTM[\J(Jl,J=l, NCQ L) 
WR. J T C( o , 3 1) 

3 1 FnRMA T(l H0 , 6 0X,* GTMED *l 
WR J Ti: (6, 13 ) ! GTMED (Jl,J=l, NCO Ll 
WR IT H6 , 3 2l 

3 / FOR~ ,\T ( lH0 , 60X , * GTMAX* l 
~! '{ l H ( 6 , l'I ) ( r. TM AX ( J l , J = l , NC ll L) 
I-R [ T[ ( 6 , 3 3l 

.'i 1 FflR 111\T ( lH O,n OX, *GB"l l \J* l 
WR IT ~ ( 6 ,1 3 ) ( GRM I\J(Jl,J=l, NCOLl 
~::> t rt: 1 6 , 34 ) 
FQ~~~ T(l H0 , 60X , *GBM F~ • l 
•!R !f H6 , l3 l ! GB MED (Jl,J = l, "JCO Ll 
WP, 1Tt ( 6 ,1 5 ) 

15 FO~ MA T(lH0 , 60 X,* G8 MA X*l 
1'-'R IT Cl 6 ,1 3 ) I G[1MAX lJ),J=l,NCOLl 
l-1R IT [ ( 6 , 36 1 

1.6 Ff'R'-'A T ( l H0 , 60 X, * '.; RM l \J* l 
, '< J F ( 6 , 13 l ( GR"1 1 \J (Jl,I=l, NRO W) 
lil'. [f ;: ( 6 , 3 7) 

J 7 F'.JK " ,\T ( U-10, 60 X, *GRMEJ* ) 
WR [ H: ( 6 ,1 3 ) ( GRM EO(I),1=1, NRO W) 
WR I TH6 , 38 ) 



:lil FIJk';A T( IH0,60X,~'GV•I AX*l 
WRITt(6 ,l 3) ( GRMAX(l) ,1=1,NROW) 
WR ITH6,19) 

19 FOR~ AT(1H0,60X,*GL MI\J*l 
WRITE (6,13l (GLMP-Hll,I=!,N ROW l 
WR IT i: (6 1 40) 

4 0 FCRMA T(1H0,60X,* GLM EO* l 
WR J TC ( 6,Hl (GUH:D(ll,1=1,NROW) 
WR IT !cl 6 , 4 ll 

4 1 Ffl R'1A T( lH0,60X,* GLMA X*l 
WR ITE(6,13) (GU1AX(Il,1=1,NROWl 
RETJKN 
E'Hl 
SU B{n UTI NE RANDOM 
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t, THI S Sllli•VlJTl'l! E SENE !H,Tl: S :{A'IDllM VAL UES nF PHIME I\I , QMEAN, HIMEAN, FKMEA"I, Z'1 EA 
C -\J, GTLJD , GBO T, GR IT E , GLEF T F ROM TRIA NGU LAR DISTRIBUTIONS DE FINED RY THE!~ '11 
C -\JI MUM , ME DIA N , MA XI MUM VALUES. 
" ·• lv'f, R, ?I HV ,'IR , QVA R , FKVAR, ZVAR, FR ClM lJ\JIF f1RM OISTRl[lUTlllNS DEFINED BY THtI~ 
C ~ J\J MUM l~D MAXIMUM VALU ES . 
C ,J\JIH)RM RA\JllJM '\!JS , J'I! l\JTE RV I\L (0,1) APE fl [HAP.ED FROM LI BR ARY SUBROUTI"IE BY 
C C~LLPH; ;"{A\JF ( O). SUB {J lJTl ~JE RA NSE:T SP ECIFI !: S THE SEED FOR THIS RANDOM \Ji.J'1BE{ 
C GE \J[RATE . 
C VALJES ~R E ALS O ASSIG\JED TO PHILOW, PHIUP,HL OW, HUP , QLOW , QU P, ZLOW, ZJP, F<L · 
C - JW , FK UP . 

cnM~G\J CT I ME, CDTIME, MTSTEP, NRnw , NC n L, MVAR, \JRUN 
l , il X ( 6 , 7 l , DY ( 6 , 7 l , Kn C ( 6 , 7 l , X NOR !l( 1 5 0 l 
2 , FK (6,7l, 8 (6,71, Q (6 1 7l, Hl(6,7l, PHl(6,7l, HT(6,7l, Z(6,7l 
3, FK'1EA\J(6,7l, ZME ,\\J(6,7l, QMEAN(6,7l, HIMEANU,,7l, PHIMENl6,7) 
4 , FKVA~l6,7,15l, ZVAR(6,7,15l 
* , CVAR(20,15l, HIVA~l20,15l, PHIVARl20,15l 
5 , FK'1IN l6,7l,Z MI\Jl6,7l,QMIN(6,7l,HMIN(6,7l,PHIMIN(6,7l 
6 FKME D(6,7l, ZMED(6,7l, QMED (6,7l, HMF D(6,7l, PHIMEDl6,7l 
7 , FK'IAX(6,7l, Z'IAX(6,7l, QMAX 16,7l, HMAX(6,7), PHIMAX(6,7l 
B , FKLOW(6,7l, ZLOW(6,7l, QLOW(6,7l, HLOW(6,7), PHILOW(6,7l 
9, fKJP(6,7l, ZUP (6,7l, OUPl6,7l, HlJP(6,7l, PHIUPl6,71 
J , HDT( 20 , 38 ,10l, TWIOE(20,15,1 0 l, CVHAT(20,15,10l 
l , S T0D E~ T, \JBETA 
4 , X(S,151 
6 , TI !1 ( 10 l 
7 , GT'1ll\Jl7l, GTM ED (7l, GTMAXl7l, GBM IN(7l, GBME0 (7l, GBMAX(7l 
8 , t;~ 'll \1 (71, GR Mf. D(7l, GRM AX(7l, GLMIN(7l, GLMED(7l, GLMAX(71 
9 , GTJP(7,lll, G80T (7,lll, GRITE(6,lll, GLEF T(6,lll 

CA LL RANSE T(3548710A31 
r,JR = '-HOW - 1 
~K = 'IC OL - 1 
DD 100 I = 1,1\J HOW 
Dr 10 0 J = 1,NCOL 
PH IL J l'I ( I,Jl = 0 . 004 
PH JJ L> (l,Jl = 0.0? 
ilL Dw ( 1,Jl = 1.0 
HUP ( I , J l = I O. 0 
fK C1W(I,Jl = 0.0 
ZL CJw (l,Jl = 1. 0 
ZU P(I,Jl = 10,0 
f'KL •W (l,Jl = 1,0 

100 C:J ,'l fl\J UE 
nr 111 I = 2 ,1\J R 
DO 7 7 7 J = 2 , IJC 
T PH 1'·1 I N ( I, J l 
lJ = P Hl'IED ( l,Jl 
V = P H( '1AX ( l ,J) 
isl, = RA\if ( 0 ) 
G = T + SQR T(~ I\J* ( U - T)*(V - Tl) 
IF( G.L t . U l GO TO 2 
r, = - SQR T(R'l * IU - Vl*(V-Tl-V*U+T*U-V*T+V*Vl 

2 P H I :-1 ,: \J ( I , J l = G 
T Hr,. I ~1 ( [ , J l 
ti = H'l[D (l,Jl 
V = HM AX(l,Jl 
RfJ = RAf\J F(Ol 
r, = T + SQR T(R N* (U - T)*(V - Tl) 
IF ( G.LE. U l GO TO 3 
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G = V - S~'s T( 's"l* (U -
H l t-'. ~ ·.\ 'J (l,Jl = r, 
T •; 'I I e; ( I , J I 
11 = <"'. i: J ! 1 ,J 1 
V = ,~MAX(l,Jl 
1-l. ' , = 'l.:. ~, F ( 0 l 
G = T + SQRT ( RN* ( U - Tl * (V - Tl I 
IF( ~ .L E .Ul r,n Tn 4 
;; = V - SQR T( R'~* ( U - Vl*(V-Tl-V*ll+T *ll -V * T+V*Vl 

4 QM EA N(I,Jl = G 
(JUP !l,Jl Q'IEA N(l,,Jl/ 5 . 0 

777 CO"J T l'JU [ 
(11 J rl ,< H I = I , NP. n \~ 
,J :l d<l8 J 1,1\JCOL 
T lM I N(l,Jl 
U = Z'I Ell (l,Jl 
V = Z'lAX (l,Jl 
11 'IJ = R IVJ F ( 0 I 
r, = T + SQR T( RN* ( U - Tl * (V - Tl I 
I F ( C .L E . U l GU Tn 5 
G = V - SQR T( R"J*!U - Vl * !V-Tl-V* U+T *U-V * T+V *V l 

5 ZMf- ,\ .\J(l,Jl = G 
T FKM l '\J (I,Jl 
U = FK'll::D (l,Jl 
11 = FKMAX (l,Jl 
Cl \ J = 'l. :, ··1 F ( 0 I 
G = T + SQR T( RN* ( U - Tl * (V - Tll 
IF( G.L E . U l GO TO l 
G = V - SQ IH(R'J*IU - Vl*(V-Tl-V*ll+T*U-V*T+V*Vl 
FKMf'AN (l,Jl = G 
FKUP(l,Jl = FK'1E ,\ \l(l,Jl/5. 0 

H3 d CO'\JT l 'JU~. 
WR IT E(6, '>2 1 

'J 2 F OR '·'i\T ( lHO,* HME AN FKM F. i\N 
9A N QMEAN PHIMEAN*l 

f1D 51 I = 2 ,\I Q. 
DC 5 J = 2 , ~IC 

Z~E 

Ii I{ IT I: ( 6, 'i 4 I HP.' F.:. 'H I , J l , Ft< ~ EA 'J ( I , J l , ZMF ,\N ( I , JI , Q~E AN ( I , JI , PH IM EN ( I 
g ' J l 

53 CO '-H I\I UE 
54 Fll 'l '-'A T( l H , 5F20 . 6 l 

DO 10 J = 1, ~CO L 
T ,; TMl \l (Jl 
LI= GTM[f) (Jl 
V = 1; TM AX ( J I 
Ri·J = <A NF( O l 
G = T + SQRT (R N* (U - Tl*(V - Tl) 
!F ! G.L f: . U l GO TO 11 
G = V - SQR T( RN* (U - Vl*(V-Tl-V* U+T *U -V*T+V* Vl 

11 ,.:; rr: r> (J,ll = (; 
T :-;e,:~I'J (Jl 
U = GBMED (Jl 
V = r, 3MAX (Jl 
RN = RAI\JF ( O l 

= T + SQR T(R ~* ( J - Tl*(V - Tl) 
IF( ~ .L E . U l G• TO 10 
G = V - S r) RT( !-1.\i* (U - Vl*(V-Tl-V*U+T * IJ-V * T+ V*V l 

LO f, f}flT(J,ll = G 
Oll 1.2 I = 1, NIHJI-I 
T <;RM l 'J( I) 
II = r,c:i. McO ( I) 
V = ,:;R ~~J\X ( I) 
C(.'.1 = ~J\ "ff ( Ol 
G = T + SQ~ T( ~N• I U - Tl*(V - Tl) 
!F ( C, .L E . U l GO Tll LI 
G = V - SQR T(~',*(U - Vl*(V-Tl-V*U+T*lJ-V ~, T~V *V l 

I 1 •;11 I r f' ( I, l l = G 
T ::, L '11 ' J ( I ) 
'.J = S L~ [J lll 
V = .~L M <\ X ( I ) 
: , = :i.f>. .'J f ( Cl ) 
G = T + SQR T( R~O (J - Tl*(V - Tl) 
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I F ( : • U : . LI ) l; ,7 Tn 1 ;> 
c. = V - SQR f(,{ "-l* (U - Vl*(V-Tl-V*U+T* ll - V* T+V* Vl 

12 GL LF T( 1,ll = G 
rJ (l l "i K = 1,'HSTL:P 
flf ; lf. J = 1, NC(ll 
T ~T• P(J,Kl 5 . 0 
U = :; T L1 P ( J , K l 
V = ~TnP (J, K) • ~. o 
'{\i = /\ l~F ( 0 ) 
G = T + S~R T(R~*(U - f) * (V - Tll 
I F ( u .L E.U l 3 J Tn 17 
G = V - 5Q1U(f{N* (U - Vl*IV-T)-V(<\ J+T<'il-V*T+V'-'V ) 

17 ,; T; :P ( .J, K+l) = r; 
T ,;C OT (J, K l "> . O 
U = 0BIJf (J, Kl 
V = -, fl JT I J, K ) + c; . 0 
-< ~1 = RA"JF ( O ) 
G = I+ SQ'UIR'l*llJ - T)*(V - Tl) 
IF( G.L E . 11 ) :; 1 T () 16 
G = V - SQRT ( RN* IU - V)*lV-1)-V*U+r•u-v•T+VOV) 

1 6 G~~ llJ, K+l) = G 
on l b I = 1,'.J Rl lW 
T GR IT E ( I, K) 5. 0 
U = G<. ! Tf. ((, K ) 
V = CR IT [ ( I , K) + 5. 0 "\J = R ;\ •\IF ( 0 ) 
G = r + SJ RT( Rl\i* (U - Tl * IV - Tl) 
JF( C .LE.Ul GO TO 19 
G = V - SCR T(RN*(U - Vl*(V-T)-V*U•T*U-V*T+V*Vl 

l •J GK IT E ( I, K + 1) = G 
T GL EF T ( I, K) - 5. 0 
U = GL EF T(l, K l 
V = •~ LE FT( l, Kl + 5 . 0 
RN = UNF(O) 
G = T + SQRT(R N*( U - T)*(V - Tl) 
I F ( G.LE.U) GO TO 18 
G = V - SQR T(RN * IU - Vl*(V-Tl-V*U+T • U-V*T+V*Vl 

l 1J GLEFT( 1, K+l) = G 
l ':> CD"J Tl'JU !c 

I GR IO = 0 
DO 40 2 ,NR. 
rJO 40 J 2, NC 
I GK l lJ ! GR Iil + 
DC.1 1• 0 K = 1, \J VA R 
K ~J = R l\ ~l F ( 0 ) 
HIVA R( I GRID , Kl = ~l\i*(HUP 
RN = R A~JF ( 0 ) 

- HUJW) + HLOW 

f'H IV .:\. R ( J l;RJll ,K) = 'l.'.J*(DHJUP -PHJLllW ) + PHILOW 
I·'.', = R Al-IF ( 0 ) 

'• U OVl\ k ll GR Jr, , K ) = R\J*( :.J UP (J,J) - QLOW ) + ':'LOW 
ll l <. l l, 'JR.OW 
Dll 41 J = 1,NCOL 
ll (1 41 K = 1,NVI\ R 
R\J = U I\I F ( O ) 
FKV,\,.,, ( 1,J, K ) = R'·J* ( F ~. UP ( 1,Jl - FKL (lW) + FKLfJi.l 
Rc.: ='l.AJr ( O ) 

q zv .\ , (J,J, K ) = Rl\i* IZU P - Zl l7 W) + ZLl 1'.4 
ru:Tll R'.J 
f:N O 
SJ B~J JTl "J E MI \JMAX ( X, ~K IJN ,N ROW,NCOL,T,IV AR ,I P , ~VA R, ~TSTEP,Cl 
ll [ '1f JSl() \ I F l( 38) ,X( I P , ! 1-(lJI\J , IHSH;>) ,T( [ el , ' IVll R ,il!T S T[P ) ,C( Jfl, NVAR,NTSTEPI 

'H ~ P ) 
' )i'".:, = \J lJ ~ :,. -

' JC = \JClll -
,,u~: = illKUI\J 
I ( ; I-( I l ) = 0 
:, n 2•.) 0 l t<O W ?., 'H 
,Jn L :lO ! CO L 2 , ' JC 
[ ~1 10 = I GQ( O + l 
IH1 2 DO J = 1 , NT S TEP 
<; = cl . O 
ss = o. o 



[1 1., l \JO I = L, \J lllJ'I 
;, = X ( I •;-{ I iJ , I, J l 
S : S + 1; 
SS = SS + G*G 

l 0 0 r l ( I ) = G ( I ,; '{ I fl , l , .J ) 
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11 l = I\ MI\ X l ( F l ( l ) , F l ( ? l , F l ( i ) , F I ( 4 ) , F I ( '> I , F l ( 6 I , Fl ( 7 l , F l ( '3 ) , Fl ( 9 ) , 
,-i F l ( l i l ) , F I ( l l ) , F l ( l Z l , F I ( l , l , r l ( l 1, l , F l ( l ', l , F l ( l 6 ) , F l ( l 7 ) , F I ( l 8 l , F l ( l 9 ) , F l ( 
'J l '.J ) , r l ( 2 J ) , F l ( 2 l l , F l ( ;> ? l , F l ( Z 3 l , F I ( ;> 4 ) , F l ( ? 5 ) , F l ( 2 6 ) , F l ( Z 7 ) , F I ( 2 R ) 
Y , F l ( .!. 9 ) , f- l ( ., 0 l , F l ( ·1 l ) , F l I 3 Z ) , F l ( 1 -~ ) , F l ( ·1 1, ) , F l I ·1 5 ) , f l ( 1 I , F l I 3 7 I , 
Jf'l I ~P l l 

S l = AM I'l l (F l ( l), F l ( ?. ),Fl ( J ), Fl 14 ), F I 15 l, F l ( 6 l, F 117), F l 18 ), F l ( 9), 
·If l I 1 ,.) l , t" I I I I ) , I' l ( l 2 ) , F l ( l 3 ) , F I ( I 4 ) , f- I I 1 '> ) , f' I I l 1, ) , F l I I 7 ) , F I I l 8 ) , F I ( 1 9 ) , F l ( 
9 I '-1 I, F l ( 20 ), Fl I 2 l), F I I ? 2 l, Fl I '2 3 ), r- t ( 2 4 l, r: l ! ? 'i l, F I I 26 l, F I 1 2 7), Fl! 2H l 
'l , F I I ;> ') l , F l ( 3 ll ) , F l I 11 ) , , I ( , Z ) , F I I ·11 ) , F I I 14 l , F I I 3 5 l , F l ( 3 6 ) , F l ( 3 7 ) , 
'-IF l ( 3 /1 ) ) 

T I I G'l I D, IV ,r,. , J I = Cl l - S I 
SDHAT = SQR T(( SS - S*S / l{UN l/( RUN - 1. 0 )) 
SMEl\ \l = S / RU\J 
CVH~T (I G" l t) ,IV A.l. ,Jl = SDHAT/ SME•n 

?00 CCtNT l \lU E 
•l F TU'('J 
i:'.JD 
SUBR OJ TI \JE RBSO LV ( C ,N,~,Vl 

C T 0ilS SU (l-~Jt:i'(1-Ji···-s(i[vi s '1 ATR IX cr:l UATI O"J SE T UP BY SUBflOU TI"J E AMAT iUX TO GIV E 
C VA LJES Jf Htcl\fl AT END OF TI ME STE P. SOll JTl m , Tf. CHH)IJE I S GAUSS ELIMI \J AT IO \J. 

DI ~f \J S I O\l C ( \J , M),V( N ) 
K = ~\ - I 
L~ ="'l - 3 
DO 60 L =c l,L ~ 
[ M=cL .{ +l-L 
1.lO ,,o 1= 1, J)' 
DO •, 1) J =Z , K 

50 C IL, J -ll =cC (L, J ) 
6 0 C (L, K )= O. O 

C ( l, K )= C ! l, MI 
C ! l , f'. ) = O • O 
OD 7 0 I = 2 , K 
J; 1-2 

70 C I \J-J , Ml= O. O 
C( N, K)= O.O 
I '1 = \J -1 
LP =K 
l) f) no I= 1, I M 
"JP ! V= ! 
LS =l+l 
LL =LP-1 
110 100 L =L S ,LP 
IF ( AHS ( C ( L , ll l. GT . ABS ( C ( \J PIV,ll l) ~ P!V =c l 

100 CO -H I\JU E 
JF ( ~ ~ I V.L E.JI 1 30 ,11 0 

110 IJ;l l?O J = l, M 
TE~·,f>=C ( ! , J l 
C ( 1, J l =C ( NP ! V, J ) 

1?. O C ! ,p J l = T :=. •1 P 
T[ M"= V( l ) 
V( l l =V( '-JP JV l 
V( :JP IV ) =Tf'\P 

13 0 V( ll =V( ! )/ CII ,l l 
DO 1 40 J=Z , "I 

tt,O C ! I, J I =C ! I, J l / C (I , 1 1 
I f ( I • r:; [ • -~ - L Cl l L L = L L + I 
Ill ) l -JO L =c l S , LL 
TE .''.l' =C I L ,11 

VI L l =V ( L 1- TE"ID*V ( I l 
ll n 160 J= ? , M 

l 6 0 C (L , J- l)=c C ( L ,Jl-T i:'1f-'*C !l,Jl 
IF- ( L . E() . LS I 17 0 ,J H0 

l7U C(L,\.\ ) =O. O 
G•J T -.1 !Y O 

l t-0 C !L, K l =O. O 
J 9,J C:Y,T l \JUt' 

RBSOLl80 



11-'(I. G-.'J-L ~ l GO TO 2 20 
T C: ' 'P=C (L P , l l 

V ( LP )=V(L P )-T ~M P•V( ll 
C tL 0 ,ll =-T EMP•C (l, 2 1 
ll(l ? 10 J=2 , K 

7. 10 C (L P ,J)=C(LP,Jl-TEt-'P*C(l,J+ll 
IF(L P .LT. ~ll LP=LP+ l 

? 20 CfJ 'H I \JU [ 
V ( I,; l =V ( •~ l / C ( 'J, l l 
LP = 7. 
on 250 l=l,IM 
L= N-1 
ll 0 2 1, 0 J=2 ,LP 
LL=L+J-l 

,' 4 0 \/(LI= V(Ll - C (L,Jl *V (Ll) 
I F( LP.LT. M-1) LP=LP+l 

2 50 CO NT I \IU E 
RL TtJ :{ \j 
HJD 
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SU!: '< ;7 UTl 'JE _A_'1AT R IX(l'IA ~I , RHS, Ill 
DI M~N SIO \J A( Z0 , 6 1, RHS(ZOl, RKH l 6 ,7) 
CrM~ n \J CTI ~ E , CD TI ME, ~ TSTEP, NROW, NC n L, NVAR, NA UN 

1, DX (6,7l, DY (b,7), KBC(6,7l, XN OfH1(15 0 l 
2 , FK (6,7l, e t 6 ,7l, Q(6,7l, Hl(6,7l, PHl(f,,71, HT(6,7l, 2(6,71 
3 , ~K~EAN(6 ,7l, ZMEAN(6 ,7l, CMEA N(6,7l, HI MEAN(6,7l, PHIMEN(6,7l 
4 , FKVAK(6 ,7,l ~ l, ZVAR(6,7,l5) 
*, C.' VAR( 20 ,15l, HIVA=l(20,15l, PHIV A!.t ( ZC ,151 
5 , ~K'1 I N ( 6 ,71, ZMIN ( 6 ,7l, QM I N(6 ,7l ,H MI \J (6,7l, PHIMIN(6,7) 
6, FKME D( 6, 7l, Z~ELJU,,7l, QMED !6,7l, Ht-'Efl!6,7l, PH IMED!6,7l 
7 , FK~AXl6,7 l, ZMAX(6,7l, QM AX(6,7), HMAX (6,7), PHIMAX(6,7) 
R , FK LOW ( 6 ,7l, ZLOW(6,7), QLOW!6,7), HLUW!6,7), PHILOW(6,7) 
'! , FKUP(6,7l, ZUP(b,71, QUP(6,7l, i!UP ( 6 ,7l, PHIUP(6,7l 
'.J , IIOT( 20,113 ,1 0 l, TWI DE (Z 0, 15,1 0 ), CVH LIT (Z 0 ,15,1 0 ) 
1 , S TUD EN T, NBETA 
4, X(5, 15) 
6 , TIM(lOl 
7, :;TM I N(7l, GTMED (7l, '.; TMAX(7l, Sl3MP1(7l, G13MED( 7l, GCMAX(7) 
8 , ~R ~I N(7l, GRr-' [ D(7l, GR MAX17l, GLMIN17l, GLMED(7l, GL MAX(7) 

, GTOP(7,lll, GPOT(7 ,lll, GK IT E l 6 ,lll, GLEFTl6,lll 

(************************************************* ****************************** 
C 
L S ET S UP ~ AT R I X FJR Cn'JS TI\ NT GR ADIE NTS BO lJN DI\ RY cnN~ ITIO NS ON LY 
C 
C**************** *************************************************************** 
C 

~RA= (N R~ W - Z l * l'IJ CO L - 2 1 
NCI\ = NQQW 
~IC = 'lCC L -
~JR = \J'-1. [IW -
··,CI\ l 1 
'J CA 2 "-Ji~ n ~t -
' JC A ·s t\J~OW -
I JC A '+ /.Jf{(l,-• -
•~C/\:i r. ROl-i 
:1 0 •J ·) J =l , 'l!:: 11 
IJCl J I} I = 1, \!Q. I\ 

·JO 1\ ( 1 , ,1) = o. o 

3 
z 
1 

ll f:: ') I I = l, r--'ROW 
r>G ,) J J =l,'\JCOL 

•, l , K 1, ( I , J l 0 . 0 
I;, = 0 
!) 0 L , .... ·, v .) Z , ' IC 
I ) fl 10 0 I 2 , \J R 
K I KJ-IL. ( I, J + 1 l 
KZ Kt!C (l-1,Jl 
'<:3 KrlC ( 1,J-1) 
K4 KBC (l+l,Jl 
I II 1:. + l 
['X= 2 . o• rK ll,J) ';D Y(!,J)O R (l,J)/ DX (l,J) 
P Y= l . O~'FK (l,J) OJ)X (l,Jl * B ll,Jl/DY(l,Jl 
P l z . o•FK (l,J+ll * DY(l,J+ll *B (l, J+l) / ll X(l ,J+ l ) 
P l = (P X* Pl l/( PX + Pl l 
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f' 2 2 • 0 '-' F K ( I - L , J ) * ll X ( I - l , J ) * f\ ( I - 1 , J ) / DY ( I -1 , J ) 
DZ ( PY*P2 )/( µy + P? ) 
P '.\ 2 . Cl'~ F K ( I , J - 1 ) *fl Y ( I , J- 1 ) * B ( I , J -1 ) / L X ( I , J - l ) 
µ3 ( PX*P3 )/( PX + P3) 
P 4 2. 0 * r- K ( I+ l , J l * 0 X ( I + l , J ) * 13 ( I + l , J ) / I; Y ( I + L , J ) 
P4 (PY * P4)/(PY + P4) 
0 i.1 1 S = PI-' I ( I , J l * [) X ( I , ,J ) *DY ( l , J) / D T 
GI! T,·. (L, 2 ,1),Kl 
P K ;- I ( I , J ) = !' L * HT ( I , J + l ) 
A ( l ,\ , \JC/l _q = Pl 
GO Tn 2 
A ( l11,'•l CA5 )= P l 

/ GC r r (4, 5 ,~l,K 2 
-. r~KH ( l,J) =P2* 1lT( 1-1,J) + 'l.KH(l,J) 

1\ (1 ~ , 'JCl\ 1) = P 2 t A(ll\, NC I\'.\) 
\;n H _: 5 

6 fl ( l fl , \JCA?l=P2 
';, (;f l T :_1 ( 7, 8 , 9 ) , K 1 
7 RK !i(!,J) =P3* HT(l,J-I) + RKH(l,J) 

I\ ( [ ,\ , \JCI\, ) = p ·\+ I\( 11\, ~JC A)) 
l;f' r !l 8 

'-J !, (I !l , \JCA 1)=P3 
8 GO T0 (1 0 ,11,1 2 ),K4 

LU R. KH ( 1,J)=P4*H T(l+l,J) + RKH(l,Jl 
.~ ( 111,\J(A'l,) = P4+ A( IA, •\JC A3) 
r;n Tl' 11 

12 ,\( 1,', , \JCA4 )= P '• 
11 /\(1 ,~ ,\JCA3) = -A(IA, NC A1) -(A(IA,NCAll + A(IA,NCA2l + A(IA,NCA4) + 

9 Al l\, ,\JCA5) + PRHS) 
RHS (!Al = Q(I,Jl - P~HS*HT(I,Jl - RKH (!,J) 

LOO cnr-.., T I \J UF 
RE TUR \J 
END 
SUBR.J UTI \JE PJLY(Y,X,\JVAR,N3 E TA,N GE TA1,STUDENT,IGRID,Nl,IP,NTSTEP) 

C THI S SUR~• UTI\J E ~its. CnE FFS., COMPUTES CONF. INT. O\J EACH REGRESSION CDEFFS. 
C T ES TS HTPO S. (!\O,Al,A2,A4,A5)=0, (Al,A2,A4,A5l= O 
C F J LLOW l ~G VA~ I AB LES HAV E TO RE DI MENS I ONED , 
C S l l, MA2 ( 'l rST c 0 ) = EST. nF VARIA IJCE nF cmm . QIST. 
C C,J\JFUP ( 'JTSHP , tJBE TA) = UPPE~ :nNr. I NT. O\J RE'.; RES S I ON COEFF. 
C Cl\J FL Ow ( HSTl-'P,NBETA) = LOWE~ : • NF. I NT. 0'-1 RFGRE SSlflN COErF. 
C FS TAT( 4 TSTEP) = F-STAT FOR TESTS OFHYP OS 
C E ! \JR[ T /\ , NG FT/11) = MAT~IX ( XX ) AND (XYl F OR F ACH TI ME ST EP I N NORMAL EQUATIO\JS 
C ( XX ) * ! fJ[ TA) = (XY) 
C ~HS ( '.: T S Ti-. P , '\IHE TA) = VECTCJR (XY) FR OM \J OR~1 AL EQ US. F D<! E ACH TINE STEP. (KHS) IS 
C SA~E /IS CU LS . N2 -NBETA1 OF ( E l 
C 1 ~~ T( '\I T~ TEP ) = l ~ ETl\l*(XY) 
C ~:;A MM Al ~ TS TEP ) = tST. OF REGRESS ION COEFFS. IN REDUCED MOD EL 

i- F TA( '\I TS TEP , ~B[ T,\) = 'IAX, LIKELIHO OD E S T. OF REGR ESSION COEf'FS. 
F ( 2 ,I+ , TSTEP) = ~ATRIX nF COE FFS. I N RbD UCfO MODFL 

IJ I Mt !'-i S l !:'\I X(\ll,\JVAR), Y( '\! TS TEP, ' IVAR ) 
L, S ! G'~.\2 (1 0 ), c :nFUP(J 0 ,6), : n \lFL 'JW (I 0 , 6 ), FSTAT(l :l), E(6,16) 
2 , -{HS (l 0 , 6 ), RRE T(l O), >{G1\M MAllO), P.[ TA(l0, 6 ), Fl2,I2) 

C = ~o . OF RE~RESS IJ\J : • EFFS. ASSOCI ATED WITH ER ROR I N I NITISL HEAD IN 
C ?~G RtSS I J~ MODE L. FO~ { E'.; RE SSI O\J EQUS . l \l THIS PROG RAM , THE COEFF. IS (A3) IN 

~2 TH ~OSE LS . TH E ~EF O~ E \JH I = 4 
'\1 1--1 I = '• 
'J? = \JAHA +- 1 

C SF T EL t~F '\I TS nF (E) EQ UAL ZEQO 
l)u 2 K I , '\13E TA 
GG 2 L = l, N~ ETAl 

2. t ! K, L l = O . t1 
,_-lli'S r, , 21 11 ~F l ·'..;f ELi: '11':\JT S :JF Ill F 'lR cn v;. 1- ~,l<E TA 

E ( l, L) " '\I V-~R 
Dll /1) L = 2 , ' lB l: T/1 
V = 0 . 0 
D•7 3 K = l, , VAR 
LL = L - l 
V = +- X(L L ,K) 
t I l, L ) = V 

; ,J f ( L ,1) = V 
r,c, 2 1 L 2 , \J3E T<\ 
nr, 21 = L,\J 13f T<\ 



V = O.O 
DO 4 K = 1,\/VAR 

4 V = V + X(L-1,Kl*X(M-1,KI 
EIL, MI = V 

2 1 E(~l,LI = V 
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C LOOPS 6 ,7 DEFINE ELEME\/TS OF MATRIX (El ROR COLS. N2-NBETA1 
DO 6 L \/2,'IIBETAl 
OD 6 K l, r\JV AR 
LL = .L - 'II BET A 

6 E!l,Ll Ell,LI + Y(LL,Kl 
DO 7 J N2,NBETA1 
JJ J - NBETA 
DO 7 L 2,NBETA 
DO 7 K = 1,'IIVAR 

7 E(L,JI EIL,JI + Y(JJ,Kl*XIL-1,KI 
C LOOP 8 STOR ES COLS. N2-NBETA1 OF (El IN (RHSI 

DO 8 K = N2,NBETA1 
KK = K - NBETA 
DO 0 L = 1,\/BETA 

B ~HS ( KK ,LI = EIL,Kl 
C IJEFl\iE C'lLS . 1- 2 OF IF) TO tl E USED TO TEST HYPO Ti-iAT (Al,A2,A4,A5)=0 

E44 = E(NHl,'IIHI) 
Fll,11 E(l,11 
FI 1, 2 l = EI 1, NH I ) 
F(2,ll = Fll,21 
FI 2, 2 l · = E 44 

C LOJP 30 DEFINES COLS. 3-'IIBET OF (Fl 
NBET = NTSTEP + 2 
11 = 1 
DO 30 I = 1, 2 
un 3 1 J = 3,NBET 
JJ = J + NH! 

31 F(l,Jl = E(Il,JJI 
30 I I = 11 + NH I - l 

C LIBRARY SUBROUTIME MATRIX CONPUTES INVERSE OF COLS. 1-NBETA OF (El, AND SOLUTI 
C - 0\/ CORRE SP O'II Dl'II-G TO EACH VECTOR OF IEI - STORED IN COLS. "J2-NBETA1. THIS 
C 1\/V E~SE A\/0 SOLUTION VECTO RS ARE RETURNED IN IE). DETERMINANT OF MATRIX BEING 
C INVERTED IS RETURNED IN DET. 

CALL "IATRIX( 10,NBETA,NBETAl,2,E,NBETA ,OETl . _________ _ 
C LOJP 9 STORE S SOLUTION VECTORS IN IBETAI. THESE SOLUTION VECTORS ARE MAX. LIKE 
C -LIHOOD ESTS. OF REGRESSION COEFFS •• EACH VECTOR CORRESPONDS TO ONE TI"IE STEP 

DO 9 I = N2,\/BETA1 
I I = I - NP.E TA 
DO 9 L = 1, 'IIBETA 

9 BETA (ll,ll = E(L,11 
AN= \/ VAR - NBETA 

C LOOP 10 COM PUTES, 
C (YYl= SUM OF SQUARES OF DEPENDENT VARIABLE. 
C (RBETl=(BFTAl*(XYl 
C ISIGMA21= EST. OF VARIANCE OF CON D. DIST. 

00 l O I = 
yy = o.o 

1,NTSHP 

on 11 J 1, NVAR 
11 YY = YY + Y(l,Jl**2 

ROi:TA = 0.0 
DO 12 J = 1,\/ BE TA 

12 ~etTA =~BETA+ RH SII,Jl*BETA(I,JI 
S IGMA2 (11 = (YY - RBETAI/AN 
KBH ( 11 = RBE TA 

10 Cfl NTPJUE 
l UL.JP 13 COMPUTES CD'-JF. I\JT. ON (BETA). 
C IF I NT. CJ\/T~ I \JS ZEKO , IT IS EQUIVALE NT TO ACCEPTING HYPO THAT REGRESSION COE 
C -FFS . I S EQUA L TO ZERO. 

DO 13 I = 1,NTSTEP 
on 1~ J = 1,NBETA 
TROJ T = STUDENT*S~~T(E(J,Jl*SIGMA211)l 
CO lffUP (l,JI = BETA(l,JI + TRODT 

13 cnNFLJW (l,JI = BE T4(1,JI - TROOT 
OD 14 I = 1,NTSTEP 
WR!Tfl6 ,16) 

16 FOR"IAT ( lH I 
on 1~ J = 1, \JBE TA 
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~, R I T c. I 6 , 1 'i l J , C n \J FLOW I I , J l , BI: TA ( I , J l , CO ~I F UP I I , J l 
14 CONTI \J UE 
l :i f-- Okl"A TllH , 20X,15,3F25.10l 

C 
C TJ T[ ST HYP iJ (11 0 ,Al,A2,11 4 ,A5)=0 
C 

1-! Rl TC l 6 ,l 9 l 
l 'J f fl lH! A TI lH l 

AI\J l = N l 
DO 17 I = 1,NTST EP 
RGAMM AI I l= RHS( I , NH! l**2/E44 
I- STAT( ll = l( RB ET(ll - RSA MM A(lll/11 Nll/ SI ~M A2(11 
ER~ DR = S I GM ll21Il*A N 

17 wrt ! TE l 6 ,l H) 1, FSTATIIJ, ERRO R 
18 r o~~A T(l H ,110, * FSTAT = * ,F2 0 .4,* FRR [) R *,F 20.4) 

: Tn TE~ T HYP O ( Al,A 2 ,A4,A51=0 
WR!T t-16 , 34) 

34 FORM AT! lH ) 
A'l l = "I L\ ETA - 2 
CII LL ~AT ~ I X(l0,2,1\JB ET, 2 ,F, 2 ,DETl 
DD 37 I = 1, 1\J TSTEP 
RG /l ''. ~1 A(Il = F(l,1+2l*RHS(li·NBETA,ll + F12,1+2l*RHSll+N f\ ETA;NHil 
FSTATI II = II RB ETIIl - RGAMMA(IJ)/A Nll/S ISMA 2 1Il 

32 WR!Tt=l 6 ,Bl I, f' STATII) 
33 FO K~ AT(IH ,110,* FSTAT = *,F20.4) 

RETU R\J 
EI\J D 
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