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Abstract

Large-scale Automated Protein Function Prediction

Proteins are the workhorses of life, and identifying their functions is a very important

biological problem. The function of a protein can be loosely defined as everything it performs

or happens to it. The Gene Ontology (GO) is a structured vocabulary which captures

protein function in a hierarchical manner and contains thousands of terms. Through various

wet-lab experiments over the years scientists have been able to annotate a large number

of proteins with GO categories which reflect their functionality. However, experimentally

determining protein functions is a highly resource-intensive task, and a large fraction of

proteins remain un-annotated. Recently a plethora automated methods have emerged and

their reasonable success in computationally determining the functions of proteins using a

variety of data sources by sequence/structure similarity or using various biological network

data, has led to establishing automated function prediction (AFP) as an important problem

in bioinformatics.

In a typical machine learning problem, cross-validation is the protocol of choice for eval-

uating the accuracy of a classifier. But, due to the process of accumulation of annotations

over time, we identify the AFP as a combination of two sub-tasks: making predictions on

annotated proteins and making predictions on previously unannotated proteins. In our first

project, we analyze the performance of several protein function prediction methods in these

two scenarios. Our results show that GOstruct, an AFP method that our lab has previously

developed, and two other popular methods: binary SVMs and guilt by association, find it

hard to achieve the same level of accuracy on these two tasks compared to the performance
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evaluated through cross-validation, and that predicting novel annotations for previously

annotated proteins is a harder problem than predicting annotations for uncharacterized pro-

teins. We develop GOstruct 2.0 by proposing improvements which allows the model to make

use of information of a protein’s current annotations to better handle the task of predict-

ing novel annotations for previously annotated proteins. Experimental results on yeast and

human data show that GOstruct 2.0 outperforms the original GOstruct, demonstrating the

effectiveness of the proposed improvements.

Although the biomedical literature is a very informative resource for identifying protein

function, most AFP methods do not take advantage of the large amount of information con-

tained in it. In our second project, we conduct the first ever comprehensive evaluation on the

effectiveness of literature data for AFP. Specifically, we extract co-mentions of protein-GO

term pairs and bag-of-words features from the literature and explore their effectiveness in

predicting protein function. Our results show that literature features are very informative

of protein function but with further room for improvement. In order to improve the quality

of automatically extracted co-mentions, we formulate the classification of co-mentions as a

supervised learning problem and propose a novel method based on graph kernels. Experi-

mental results indicate the feasibility of using this co-mention classifier as a complementary

method that aids the bio-curators who are responsible for maintaining databases such as

Gene Ontology. This is the first study of the problem of protein-function relation extraction

from biomedical text.

The recently developed human phenotype ontology (HPO), which is very similar to GO,

is a standardized vocabulary for describing the phenotype abnormalities associated with

human diseases. At present, only a small fraction of human protein coding genes have
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HPO annotations. But, researchers believe that a large portion of currently unannotated

genes are related to disease phenotypes. Therefore, it is important to predict gene-HPO

term associations using accurate computational methods. In our third project, we introduce

PHENOstruct, a computational method that directly predicts the set of HPO terms for

a given gene. We compare PHENOstruct with several baseline methods and show that it

outperforms them in every respect. Furthermore, we highlight a collection of informative

data sources suitable for the problem of predicting gene-HPO associations, including large

scale literature mining data.
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CHAPTER 1

Introduction

1.1. Functions of Proteins

Proteins are key players in the game of life, and recognizing the functions that they

are responsible for is a very important problem in biology. These macromolecules make up

half of the dry weight of cells and are major contributors to performing many activities in

cells [2]. For example, keratins provide structural support which protects cells from damage

or stress [3] while immunoglobulins play a key role in antibacterial and antiviral defense [4].

Ferritin supports iron storage and release [5] and hemoglobins facilitate the transport of

oxygen in red blood cells [6].

However, the definition of function is ambiguous because it usually consists of multiple

aspects. For example, a protein may be involved in a specific action such as an enzymatic

activity (i.e., biochemical aspect) or be part of a signalling pathway that carries out a

certain high level cellular process such as cell death (i.e., physiological aspect) or cause

a certain disease due to a mutation in its sequence (i.e., phenotypic or medical aspect).

Another fact that adds to this confusion is the fact that two proteins may have the same

enzymatic activity but they may be involved in completely different biological processes.

On the other hand, it is quite possible for two proteins that are part of the same biological

process to have completely different functions at the molecular level. Because of all these

factors, standardized vocabularies are of utmost importance for facilitating an unambiguous

discussion of protein function.
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1.2. Bio-Ontologies

The Gene Ontology (GO) [7] and the Human Phenotype Ontology (HPO) [8] are two

structured vocabularies which describe different aspects of protein function in a hierarchical

manner. Both of these ontologies are structured as directed acyclic graphs (DAGs). The

Gene Ontology, which is the more mature of the two, is composed of three independent

subontologies: molecular functions of proteins, biological processes they are part of and

cellular components in which these occur. For example, GO consists of categories such as

protein binding, RNA binding (molecular function), double-strand break repair, chromosome

segregation (biological process) and nucleus, cytoplasm (cellular component). Figure 1.1

depicts part of the GO DAG for the biological process subontology category “cellular nitrogen

compound metabolic process.”

The Human Phenotype Ontology, which was developed more recently than the Gene

Ontology, captures the phenotype aspect of proteins. In the medical context a phenotype is

defined as a deviation from the normal morphology, physiology, or behavior [9]. For example,

runny nose is a phenotype (i.e., symptom) associated with the disease common cold. HPO

is composed of the three subontologies: organ abnormality, mode of inheritance, and onset

and clinical course (see Fig. 1.2).

Organ abnormality is the main subontology which describes clinical abnormalities with

categories such as “hearing abnormality” and “abnormality of eye”. The onset and clinical

course subontology describes the typical time of onset of clinical symptoms and their speed

of progression. It consists of categories such as “neonatal onset”, “childhood onset”, and

“adult onset” for describing the age of onset, while the categories “slow progression” and
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Figure 1.1. Part of the GO DAG showing all ancestors of the biological
process category “cellular nitrogen compound metabolic process”. Arrows
indicate ‘is-a’ relationships.

“rapidly progressive” describe the pace of progression of the phenotypes. The mode of inher-

itance subontology describes the inheritance patterns of the phenotypes such as “autosomal

dominant” (i.e., conditions which are expressed in individuals who have inherited just one

copy of the mutated sequence from their parents).

Both the Gene Ontology and Human Phenotype Ontology are composed of thousands

of categories. Experimentally determining the set of GO/HPO categories associated with a

protein is a highly resource-intensive task [10]. However over the years, scientists have been

able to annotate a large number of proteins with GO and HPO categories which reflect their

functionality through various wet-lab experiments and clinical diagnosis. Currently there

are more than 100,000 GO and 50,000 HPO annotations for a large number of proteins. But
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Figure 1.2. Portions of the HPO subontologies (a) organ abnormality (b)
onset and clinical course (c) mode of inheritance.
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as the cost of sequencing continues to decline rapidly [11] leading to an increasingly larger

gap between sequences with and without annotations, it is not realistic to use experimental

determination as the sole means of annotation. This has led to a large fraction of proteins

without a single GO/HPO annotation – in fact only less than 1% of proteins have any ex-

perimentally validated annotations to-date [12]. So, it goes without saying that a significant

interest in automated annotation efforts became commonplace during the last decade espe-

cially because of the fact that having so many annotations to work with makes it possible

to use machine learning to predict new annotations as described below.

1.3. AFP: Automated Function Prediction

In recent years, the bioinformatics community has witnessed the rapid emergence of many

computational methods that can automatically predict GO terms for a given protein [13].

Many of the earliest methods performed “transfer of annotation” using amino acid sequence

similarity to proteins with known functions [14]. Over the years, discriminative algorithms

such as SVMs [15, 16] and decision trees [17, 18], as well as probabilistic models which perform

label propagation on graphs [19–21] have been developed. More recently, structured output

methods, such as GOstruct [22] which was developed by our lab, have come to the forefront in

GO term prediction. The reasonable success in computationally determining the functions of

proteins using a variety of data sources – by protein sequence or structure similarity or using

various biological network data [23, 24, 22, 13] – has led to the establishment of automated

function prediction (AFP) as one of the most important bioinformatics challenges in the last

decade. However, according to a community based competition for evaluating automated

function prediction methods (CAFA, see below), levels of accuracy of current methods need

significant further improvement [13].
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1.4. CAFA: Critical Assessment of Function Annotation

Due to this emergence of a multitude of computational methods for GO term prediction,

the community has realized the need for a systematic and organized means of comparing the

performance of these methods in order to assess how far the area has progressed. Taking

note from critical assessment efforts such as CASP (Critical Assessment of protein Structure

Prediction) [25] and CAPRI (Critical Assessment of Prediction of Interactions) [26], the AFP

community decided to hold its own competition: CAFA (Critical Assessment of Function

Annotation) [13]. The main objective of CAFA is to gather all AFP researchers in one

place to fairly assess and compare the latest computational methods using a centralized and

independent assessment. In the first CAFA (CAFA1) the participants were provided with a

list of protein targets that didn’t have any previous GO annotations and were asked to submit

computational predictions using their own AFP methods [13]. Once the predictions were

submitted the organizers collected the experimentally validated GO annotations acquired

for those target proteins over a period of 6 months. Finally the computational predictions

were compared against those annotations to compute the accuracy of each AFP method.

The recent CAFA2 challenge1 [27] had exactly the same setup, except that the list of

100,000 target proteins consisted of both annotated and unannotated proteins. The added

requirement of making predictions on currently annotated proteins makes CAFA2 a more

realistic representation of the function prediction problem, as it better models the accumu-

lation of annotations over time.

1http://biofunctionprediction.org/
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1.5. HMC: Hierarchical Multilabel Classification

As mentioned above, both the Gene Ontology and and the Human Phenotype Ontology

are well defined hierarchies with directed acyclic graph structure. Therefore protein function

prediction of either GO or HPO terms falls into the category of hierarchical multilabel

classification (HMC) problems [28], as a given protein can be annotated with multiple labels

(i.e., categories), and the set of those labels have a hierarchy associated with them.

The traditional approach for solving HMC problems is to decompose the problem into

multiple single label problems and apply independent binary classifiers for each label sepa-

rately [29]; however, this approach has several disadvantages. First, independent classifiers

are not able to learn from the inter-relationships between the labels. Second, the leaf terms

typically have a low number of annotated examples making it difficult to learn an effective

classifier. Furthermore, the predicted labels are typically hierarchically inconsistent, i.e., a

child term (e.g. “protein binding” in GO) is predicted while its parent term (e.g. “binding”)

is not—making it difficult to interpret the predictions. To remedy this problem, an addi-

tional reconciliation step of combining independent predictions to obtain a set of predictions

that are consistent with the topology of the ontology is required (see e.g. [30] for a discussion

of several of reconciliation methods that are effective for GO term prediction).

An alternative approach is to use a single classifier that learns a direct mapping from

inputs (i.e., proteins) to the space of hierarchically consistent labelings; this can be achieved

using structured prediction, which is a framework for learning a mapping from inputs to

label spaces that have a structure associated with them [31]. This framework can capture

information from the inter-relationships between labels and allows the prediction a set of

labels that are hierarchically consistent, eliminating the need for multiple classifiers, and the
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need for establishing hierarchical consistency between the predictions. Previously we have

shown the effectiveness of modeling the GO term prediction problem using a structured

prediction framework [22, 32].

1.6. Protein Function Prediction Evaluation Protocols

As mentioned above, the AFP problem posed in CAFA is more challenging than the

typical machine learning problem, as the usual assumption in machine learning is that the

distribution of examples in the training set is reflective of that in the test set. In the CAFA

AFP problem this assumption likely does not hold because the training is performed on an

older set of annotations while testing is performed on newer annotations; and it is known

that distribution of GO categories changes over time due to strong biases in the annotation

process [33]. Furthermore, the annotations acquired for annotated proteins and the anno-

tations acquired for unannotated proteins can be expected to be different in frequency and

specificity: an annotated protein can be expected to acquire more specific GO categories

than an unannotated protein, and perhaps more of them, as the biology community tends

to study proteins that are already characterized.

We identify the CAFA2 requirements as a combination of two subtasks: making predic-

tions on annotated proteins and making predictions on unannotated proteins. In the task of

making prediction on annotated proteins, methods are trained using the set of annotations

acquired on or before a specific time-stamp t1, and tested on the set of annotations gathered

on the same set of proteins after t1. In other words, the same set of proteins are used for

training and testing, but the training labels are annotations that were available at t1, while

testing labels are annotations made available after t1. In the task of making predictions on

unannotated proteins, methods are trained using the set of annotations acquired on or before
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t1 while they are tested on the annotations acquired for proteins that were not annotated on

or before t1. In this setup, the proteins used for training and the proteins used for testing

are disjoint sets. An overview of the different sets of annotations used for these two AFP

tasks is given in Figure 1.3.

Figure 1.3. Overview of the two AFP subtasks. We distinguish between
three sets of annotations that are used to define the train/test set with respect
to the two tasks: making prediction for annotated proteins and making pre-
diction for unannotated proteins. Annotations accumulate between an initial
time t0 until t1 and form the set in grey, which is the training set for the task
of making prediction for annotated proteins. The set of annotations acquired
for those proteins after t1 form the set in blue, which is the test set in the task
of making prediction for annotated proteins. The set of annotations acquired
after t1 for proteins that were un-annotated before t1 is denoted by the set in
green, and is used as the test set in that task.

In our first project, we investigate the differences between these two AFP tasks with

respect to GO term prediction and how different AFP methods perform in each case. We

compare the performance of AFP methods on these tasks with their performance in cross-

validation, which is typically used by many to assess and compare AFP methods. Fur-

thermore, we determine whether the performance metric has an impact on the ranking of

different methods. Our results have ramifications for practitioners in the area of AFP which

should help them in the design of their computational experiments. Based on the findings of

this study, we proposed several improvements in GOstruct which led to better handling of
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these two subtasks and no degradation in performance in cross-validation. The new version

of GOstruct based on the proposed improvements, denoted has GOstruct 2.0, has improved

performance compared to original GOstruct, especially on the task of making predictions on

annotated proteins.

1.7. Biomedical Literature Mining for Protein Function Prediction

The biomedical literature is the most up-to-date resource of biological knowledge obtained

through experimentation. The role of bio-curators [34] is to perform the task of manually

analysing, interpreting and integrating the various biological knowledge into standardized

databases such as the Gene Ontology [35] and BioGRID [36]. The workflow of a typical bio-

curation pipeline is composed of identification of relevant articles, detection of bio-entities

(such as protein names), identification of relationships between entities along with supporting

evidence (e.g. experimental evidence for the interaction of two proteins) and finally, entering

that information into the database [37]. Due to the tedious nature of the various tasks

associated with the workflow described above, it is no wonder that the speed of curation has

not been able to keep up with the rate of publication [38].

Since the rate-limiting factor for bio-curator maintained databases such as the Gene

Ontology is the process of manual curation of data, biomedical literature mining has gained

significant attention as a potential solution in recent years. In fact, biomedical literature

mining has shown great promise in tasks such as protein-protein interaction extraction [39–

42]. But it is still unclear how useful it is for AFP, as little work has been done in the area [43].

Although most AFP methods developed in recent years make use of heterogeneous data

source such as sequence, structure, and protein-protein interactions [13], only a few of them

utilize information gathered from the biomedical literature. This is surprising given that
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the biomedical literature contains a wealth of information related to functions of proteins.

However, there is no clear consensus on how to best process the unstructured literature

information and what types of features work well for predicting protein function.

In CAFA1, only two teams out of 54 that submitted predictions exclusively used literature-

derived features [13]. Wong et al. used a nearest-neighbour/support vector machine ap-

proache with literature features extracted according the statistical significance of the differ-

ence in word co-occurrence probability between GO categories. However, they used only 34

GO categories in the second level of the hierarchy for their experiments [44, 45]. They observe

that the biomedical literature data is highly competitive with other data sources and that

combining literature features with others leads to improved performance [44, 45]. Another

team utilized events (such as molecular interaction) extracted from the literature for comple-

menting other data sources for predicting 385 of the most common GO categories [46]. They

found that although literature features by itself showed poor performance, those features

combined with other data sources outperform Blast2GO [14], a popular annotation transfer

method based on sequence similarity. They concluded that even though event-type text

mining shows promise as a valuable source of data for protein function prediction, further

research is needed to make it more effective [46].

In our second project, we conduct the first ever comprehensive evaluation of the infor-

mativeness of literature data and their effectiveness in GO term prediction. Specifically, our

collaborators developed a natural language processing (NLP) pipeline that processes millions

of biomedical papers to extract two different types of literature features: co-occurrences of

protein-GO terms (“co-mentions”) as well as bag-of-words features. We compare the two

types and assess how to best combine them for achieving the highest accuracy in GO term
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prediction. We also show that this pipeline is able to recall many correct co-mentions; but

a considerable amount of false positives are also extracted. Motivated by this observation,

we developed a method for filtering/classifying co-mentions for improving the quality of

predictions as described below.

Co-mention classification is the problem of classifying whether a given co-mention of a

protein name and a functional category implies a functional relationship between the two

entities according to the semantics of the context surrounding the two entities. In this prob-

lem, a co-mention is a positive example if the context containing the two entities suggest

that the mentioned protein possesses the functionality described by the mentioned functional

category (see Fig. 6.1). Therefore this can also be identified as the task of automatically

extracting protein-function relations from the biomedical literature. We formulate this as a

supervised learning problem and develop a novel classification method that uses random walk

graph kernels as its underlying model. We also implement several other approaches based on

(1) bag-of-words (2) word embeddings and (3) graphlet kernels for the purpose of compari-

son. We perform a comprehensive evaluation of these methods and the experimental results

indicate that word embeddings based methods work best overall while the random walk ker-

nel based method outperforms the graphlet kernel. Overall results indicate that automatic

extraction of protein-GO relations shows great promise as a complementary approach that

can help human curators make the process more efficient by prioritizing of co-mentions with

high prediction scores. This is the first study of the problem of co-mention classification or

automated protein-function relation extraction from the biomedical literature.
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1.8. Human Phenotype Ontology Term Prediction

Our third and final project focuses on the problem of HPO term prediction. As mentioned

above, currently, only a small fraction (∼3,000) of human protein coding genes are known

to be associated with hereditary diseases, and only those genes have HPO annotations at

the moment. But researchers believe that there are many other disease-causing genes in the

human genome and estimate that another 5,000 genes can be associated with phenotypes.

Therefore, it is important to explore the feasibility of developing computational methods for

predicting gene-HPO associations. While there is a plethora of computational approaches

for the related task of prediction of gene-disease associations [47], our method is one of the

only two computational methods [48] that can directly predict gene-HPO term associations

at the time of writing.

We define the HPO prediction problem as directly predicting the complete set of HPO

terms for a given gene. As described above, this problem is a hierarchical multilabel classi-

fication problem [28], since a given protein can be annotated with multiple HPO categories

that are hierarchically related to each other. In our previous work, we have shown that

modeling the GO term prediction problem using structured prediction approach is highly

effective [22, 32]. In this work we demonstrate the effectiveness of this strategy for HPO term

prediction using the same methodology, and explore a variety of data sources that are useful

for this task, including large scale data extracted from the biomedical literature. We compare

our method with several baseline and non-structured methods and show that formulating

the HPO term prediction as a HMC problem provides overall better performance.
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1.9. Publications associated with the Presented Work

The details of the study on protein function evaluation protocols was published in the

GigaScience Journal [49] where we demonstrated that the task of predicting for annotated

proteins is more challenging. Consequently we developed GOstruct 2.0 by proposing mod-

ifications that help it handle this task better; we plan to submit our work on GOstruct

2.0 to The 7th ACM Conference on Bioinformatics, Computational Biology, and Health In-

formatics (ACM BCB). We published the findings of our exploratory study on the use of

text-mining features for automated protein function prediction in the Journal of Biomedical

Semantics [50] in which we detail an NLP pipeline that can extract co-mention and bag-

of-word features from Biomedical text. Based on the finding that this pipeline produces a

considerable amount of false positives, we developed co-mention classifier based on graph

kernels which can be used to filter co-mentions. Finally, our work on HPO term prediction

and PHENOstruct was published in the F1000 Journal [51].

1.10. Overview of Chapters

We start off by describing GOstruct and previous work on biomedical relation extraction

in Chapter 2. In Chapter 3, we detail our comprehensive study on different protein function

evaluation protocols and present the major findings of the study and their ramifications for

the AFP community. We present GOstruct 2.0 and the proposed improvements that help

it better handle the task of making predictions for annotated proteins in Chapter 4. We

demonstrate its improved accuracy on human data by comparing to the original GOstruct.

In Chapter 5, we describe our comprehensive study for evaluating the informativeness of

literature features for protein function prediction. Based on the finding that our NLP pipeline

produces a considerable number of false positives, we developed a novel method based on
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random walk kernels for automatically extracting protein-function relations from biomedical

text as described in Chapter 6. We evaluate the performance of this and several other

approaches on manually curated co-mention datasets and demonstrate that an automated

pipeline for extracting protein-function relations from text shows great promise as a tool

that can be used by bio-curators for making the curation process significantly efficient. In

Chapter 7, we focus our attention to the problem of HPO term prediction. We model this

problem as a structured prediction problem and implement PHENOstruct which is capable

of predicting a set of HPO terms for a given protein. We compare PHENOstruct with several

baseline methods and show that modeling this as a structured prediction problem provides

better performance overall. In Chapter 8, we summarize the major contributions of our work

and discuss several open problems.
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CHAPTER 2

Previous Work

2.1. Data sources for AFP

With the advent of various computational methods that can automatically predict GO

categories for a given protein, many different informative data sources such as sequence and

structure have come to light over the years [13]. Proteins are chains of amino acids that fold

into a 3-dimensional structure [2]. The sequence and its structure typically define which func-

tions are performed by different functional domains of a protein; therefore it is understood

that proteins with similar sequence (even across different species), that arose from a com-

mon ancestor and known as homologs, tend to perform similar functions [2, 52]. Therefore,

many of the earliest methods solely utilized the sequence and structural similarity between

proteins for transferring the known annotations of a protein to its (unannotated) homologs

(i.e., other proteins that share ancestry) based on the knowledge that sequence/structural

similarity is correlated with functional similarity. Popular sequence alignment tools such as

BLAST [53, 54] and BLAT [14] are used for computing sequence similarity. These tools align

the sequence of a query protein to a large database of annotated protein sequences and re-

trieves a list of similar sequences along with confidence scores. Similarly, I-TASSER [55] and

HHpred [56] are two of the leading structural alignment tools used for computing structural

similarity.

Proteins must be co-localized to the same cell compartment in order to cooperate for

performing a certain function. Therefore, information about protein localization can be in-

formative of their functions due to the fact that many biological processes are known to be
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localized to certain cellular compartments [57]. The ‘sorting signals’ that direct the trans-

portation of a particular protein and ultimately determine where it ends up are contained

in the amino acid sequence. These are called sequence motifs (i.e., short sub-sequences that

tend to frequently re-occur across sequences and are believed have some biological signifi-

cance). Tools such as WOLF PSORT program [58] can be used for extracting localization

features. WOLF PSORT converts the amino acid sequence to a set of numerical features

based on sequence properties such as motifs and amino acid composition [58]; these features

are predictive of sub-cellular localization and in turn their functions.

Proteins perform their function by interacting with other proteins and macromolecules;

therefore the set of interaction partners a protein has often can reveal valuable information

about the types of processes they are involved in [2]. Based on this intuition, various protein-

protein interaction and other functional association data networks are being used as input

features in many AFP methods. Examples of other functional associations are co-expression

(calculated based on the set of genes that tend to express together) and co-occurrence (cal-

culated based on proteins that tend to be located in the same cell compartments often) [59].

BioGRID [36] and STRING [59, 60] are two of the most popular databases containing these

biological network data. The BioGRID database provides binary interactions acquired from

physical and genetic interaction experiments [36]. STRING provides interaction/associa-

tion data between two given proteins based on several different evidence channels (such as

co-expression and co-occurrence) [60].

The biomedical literature is the largest collection of functional knowledge available to the

AFP community. A functional category, protein name or a name of other macromolecules

mentioned alongside a particular protein name within a relatively short span (such as a
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sentence, paragraph or an abstract) can be very informative of that protein’s function [50].

Hence, there have been recent attempts to automatically extract co-occurrences from text

such as protein-GO category pairs [50] and protein-molecule names [61] and use them as

input features for predicting protein function. However, not all co-occurrences of protein

names and other biological entities in text represent valid functional relationships; methods

that can classify or filter these extracted co-occurrences are required to improve the quality of

this data [50]. In Chapter 6 we propose a novel pipeline for classifying protein-GO category

co-occurrences extracted from biomedical text.

2.2. AFP methods

Many of the earliest AFP methods were homology-based techniques which simply per-

formed “transfer of annotation” using amino acid sequence similarity to proteins with known

functions [14, 62, 63]. These methods use a threshold on the sequence similarity scores for

finding the top-k other annotated sequences and simply assign their annotations to the query

protein. For example, Henning et al. uses the confidence scores generated by BLAST for

transferring GO annotations [63]. However, studies have shown that simple transfer of anno-

tation is likely to produce lower accuracies due to the fact that the assumption of homologs

having similar function has limited validity [64, 52]. Consequently there has been recent

attempts that use homology features as input to much more advanced algorithms (rather

than use them in a simple nearest-neighbour type approaches mentioned above). For exam-

ple, FANN-GO represents each protein using a fixed-length vector in which each dimension

corresponds to a function category. These scores are computed using sequence alignment

similarity scores and represent the confidence that a particular protein is associated with the

categories. These vectors are used for training an ensemble of neural networks which can
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ultimately predict the functional categories of a previously unseen protein [24]. In our work,

we utilize a similar set of scores as input to our methods; see Appendix A for a detailed

description of how they are calculated.

Over the years, discriminative algorithms such as SVMs [15, 16] and decision trees [17, 18]

have been extensively used for protein function predictions. Both Guan et al. [65] and

Obozinski et al. [15] developed AFP methods that use ensembles of SVMs that are trained

on a combination of several data sources such as protein sequence information and protein-

protein interactions. Hayete et al. [18] developed an AFP method that trains an ensemble

of decision tree classifiers for each GO category using protein sequence data.

Another popular approach for AFP is ‘guilt-by-association’ [66] which typically uses label

propagation algorithms on a network generated from functional associations [19–21]. At its

core, most of these methods utilize the concept of nearest-neighbour/neighbour voting to

compute confidence scores for an unannotated node and a given functional category by their

association to neighbouring nodes that are already annotated with that particular category.

For example, GeneMANIA [21, 23], which is one of the most popular guilt-by-association

AFP methods, uses combined functional association network generated from various data

sources such as co-expression, co-localization and physical interactions. Networks are com-

bined using different weights per each GO category. GeneMANIA first computes discrimi-

nant scores for each training node which measure the level of association between the corre-

sponding protein and the particular GO category. Then a Gaussian field label propagation

algorithm [67] is applied for propagating these scores to all the test proteins in the network.

All of the methods described above extensively model the AFP problem as multiple binary

label prediction problem where each binary label represents a single functional category. So,
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essentially these methods try to answer the question “Does protein A perform a certain

function B?” The downsides of this approach are: (1) inability to learn from the inter-

relationships between the labels, (2) some of the categories at the bottom of the hierarchy

may have a low number of annotated examples making it difficult to learn an effective

classifier and (3) predicted labels may be hierarchically inconsistent. To remedy the third

issue, some binary classification methods use an additional reconciliation step of combining

independent predictions to obtain a set of predictions that are consistent with the topology

of the ontology using Bayesian networks or logistic regression [15, 16, 68]. For example,

Obozinski et al. [30] describe 11 different reconciliation methods that are effective for GO

term prediction such as simple heuristics and more sophisticated Bayesian methods.

In order to address all the above issues associated with binary prediction, an elegant

solution is to model the AFP problem as a hierarchical multilabel classification problem

(i.e., ask the question “which categories are associated with a particular protein?”). For

example, Clus-HMC-Ens is a state-of-the-art HMC method based on decision tree ensembles

which has been shown to be very effective for GO term prediction [69]. Modeling the AFP

problem as an HMC problem can also be achieved using structured prediction [31], which is a

learning framework for inferring a mapping between inputs and structured label spaces such

as GO categories. In view of this, previously our lab has developed GOstruct [22, 32], an

AFP method based on structured prediction framework, which is described in detail below.

2.3. GOstruct

GOstruct [22] is an AFP method developed by our lab that uses a structured SVM [31],

which allows it to explicitly model GO term prediction as a hierarchical multi-label prediction

problem [28]. The structured SVM is able to address prediction problems where the labels,

20



or outputs, have complex inter-relationships; in the AFP setup, this allows us to use a

single classifier for each of the GO subontologies or even model them together. Like other

structured output methods, the GOstruct structured SVM learns a compatibility function

that models the association between a given input and a structured output [31] as described

next.

Let X be the input space where proteins are represented and let Y be the space of

labels (GO categories). The set of GO categories annotated to a given protein is collectively

referred to as its (structured) label. Y represents each GO subontology in a vector space

where component i represents category i. Given a training set {(xi, yi)}
n
i=1 where xiǫX

and yiǫY , the compatibility function f : X × Y → R maps input-output pairs to a score

that indicates the strength of the association of an input to a set of GO categories. The

predicted label ŷ for an input x can then be obtained using the argmax operator as ŷ =

argmaxy∈Yc
f(x, y) where Yc ⊂ Y is the set of all candidate labels. In this work we use

the combinations of all GO categories present in the training set as the set of candidate

labels Yc. The intuition is that the combinations of GO categories present in nature is more

representative of combinations that are biologically meaningful.

In order to obtain correct classification, the compatibility value of the true label (correct

set of GO annotations) of an input protein needs to be higher than that of any other candidate

label. GOstruct uses structured SVM training where this is used as a soft constraint; it tries

to maximize the margin, or the difference between the compatibility value for the actual

label and the compatibility for the next best candidate [31].
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GOstruct uses the following structured SVM formulation for learning,

min
w,ǫi

1

2
||w||22 +

C

n

n
∑

i=1

ǫi

subject to : f(xi, yi)−max
y∈Yc

f(xi, y) ≥ 1− ǫi for i = 1, ..., n(1)

ǫi ≥ 0 for i = 1, ..., n(2)

where w is the weight vector, C is a user-specified parameter, Yc is the set of candidate

labels, ǫi are the slack variables and || · ||2 is the L2 norm. The first constraint, Equation

(1), ensures that the compatibility score for the actual label of a protein is higher than all

other candidate labels.

In the structured-output setting, kernels correspond to dot products in the joint input-

output feature space, and they are functions of both inputs and outputs. GOstruct uses a

joint kernel that is the product of the input-space and the output-space kernels:

K((x1, y1), (x2, y2)) = KX (x1, x2)KY(y1, y2).

Different sources of data are combined by adding linear kernels at the input-space level, and

for the output space we use a linear kernel between label vectors. Each kernel is normalized

according to

Knorm(z1, z2) = K(z1, z2)/
√

K(z1, z1)K(z2, z2)

before being used to construct the joint input-output kernel.

GOstruct uses a set of heterogeneous data sources as input features: features based on

protein sequence properties (such as localization features), homology-based features, features
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computed from functional association networks (such as protein-protein interaction data) and

text mining features extracted from biomedical text [32]. Combining heterogeneous data

sources and modeling the problem as an HMC problem makes GOstruct very effective in

protein function prediction [22, 32]. In fact GOstruct produces state-of-the-art performance;

it was one of the top performers in CAFA1 [13].

In our recent work we have shown that GOstruct struggles to achieve the same level of

accuracy in the task of making predictions for already annotated proteins compared to its

accuracy measured by cross-validation [49]. The main reason for this decline in performance

is because GOstruct does not utilize a protein’s current annotations when making predictions

for an annotated protein. This makes the model less flexible because it does not take into

account the incomplete nature of current annotations. Therefore we develop GOstruct 2.0

by proposing novel constraints that account for the above mentioned limitation of the model.

Chapter 4 details these proposed improvements and the corresponding experimental results

that demonstrate that GOstruct 2.0 clearly outperforms original GOstruct on the task of

making predictions for annotated proteins.

2.4. AFP as a Biomedical Relation Extraction Problem

Relation extraction is the problem of automatically extracting relations between entities

from text [70]. Biomedical relation extraction is the more specific problem of extracting a

relationship between two (biological) entities in biomedical text [71]. Biomedical relation

extraction methods have been used for extracting protein-protein interactions, drug-drug

interactions, mutation-disease associations, drug-effect associations and several others [72].

The majority of biomedical relation extraction methods to date have been intended for

protein-protein interaction extraction [39–42].

23



Many of the earliest relation extraction methods have been simple co-occurrence based

methods which used concepts such as mutual information, chi-squared test and co-citation [73–

80] or rule-based/pattern-based methods that used manually created relation templates such

as “effector-relation-effectee” (for e.g. A activates B) [81–83]. Often these rule-based meth-

ods provided high precision but low recall due to the fact that manually created rules are

too specific such that they captured all relations adhering to that template but lacked the

ability to generalize [84].

Later, relation extraction methods based on supervised learning techniques have been de-

veloped which provided better performance. Many of the early supervised learning methods

were based on explicitly computed features such as all words between the two entities, num-

ber of words between them, flags indicating whether the two mentions are part of the same

phrase, words on which the entities are dependent on according to dependency tree, path

connecting entities in the parse tree and bag-of-words features generated from the three

regions (i.e., before, between and after) separated by the two entities [85, 86]. However,

some of the most successful methods in this area are kernel-based methods [72]. Giuliano et

al. [39] introduced a shallow linguistic kernel that combines a global context kernel (three

sets of bag-of-words generated from the regions separated by the two entities) and a local

context kernel in which ordered sequence of words within the neighbourhood of entities are

compared; this was intended for extracting protein-protein interaction relations from text.

Some of the other similar methods define kernels on various structural representations of the

sentences such as trees and graphs; Kim et al. [40] introduced a kernel on dependency graphs

generated from the sentences which counts the number of common sub-graphs for the task

of protein-protein relation extraction. They also introduced a hybrid kernel which counts
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the common substructures (i.e., very short walks) in dependency graphs [41]. For the same

task, Chowdhury et al. use a tree kernel which counts the common sub-trees enclosing the

two proteins in the parse tree generated by the corresponding sentence [42].

There does not exist any method for extracting protein-function relations from text at

the time of writing. One reason for this absence is the fact that even recognizing entities

such as a mention of a GO category (and to a lesser extent a protein) in itself is a very

challenging task [50]. But the main reason is the complex nature of the typical context

(for e.g. sentences) containing a functional relationships as opposed other relationship such

as protein-protein interactions. For example, templates such as “protein A interacts with

protein B” or “interaction of protein A and protein B” represent a large fraction of the

sentences containing protein-protein interactions [87] while it is almost impossible to develop

templates to capture protein-function relationship due to having vast differences between

corresponding sentences. Therefore, using template-based or rule-based relation extraction

methods for extracting protein-function relations is not feasible. In Chapter 6 we describe a

novel method based on graph kernels for extracting protein-function relations from text.
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CHAPTER 3

A close look at protein function prediction

evaluation protocols

3.1. Introduction

The Gene Ontology (GO) [7, 35] is a community-based resource on functional genomics.

It provides a structured vocabulary (i.e., ontology) which describes functions of gene prod-

ucts (e.g. genes, proteins, ncRNAs, complexes) in a hierarchical manner. GO is composed

of thousands of categories and they are organized in a directed acyclic graph (DAG); more

general terms are found at the top (i.e., near the root node), and term specificity increases

from the root to the leaves. This implies the “true-path rule”: whenever a gene is annotated

with a given term, that implies the annotation of all its ancestor terms. GO is composed

of three independent subontologies: molecular function, biological process and cellular com-

ponent. The molecular function describes elementary activities at the molecular level. The

biological process subontology describes the operations or sets of molecular events. The cel-

lular component subontology describes locations, at the levels of subcellular structures and

macromolecular complexes. The molecular function, biological process and cellular compo-

nent subontologies are composed of more than 3,000, 8,000 and 1,000 categories, respectively.

A “GO annotation” provides the association between a specific GO category and a gene

product. It is typically accompanied by an evidence code which indicates the type of ex-

periment or methodology used for obtaining the annotation. Currently there are more than

100,000 experimentally validated annotations for about 25,000 distinct proteins belonging to
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more than 1,000 species. However, due the highly resource-intensive nature of these studies

the majority of the proteins are still unannotated [10].

For the last decade, developing methods for automatically predicting GO terms has

become a very active research area. Initially, “transfer of annotation” methods were the most

popular methods which solely utilized the amino acid sequence similarity to transfer exiting

annotations to their unannotated homologs [14]. But in later years, many other advanced

methods that use various discriminative algorithms such as Support Vector Machines [15,

16], decision trees [17, 18] and probabilistic models [19–21] emerged as better performers.

In previous work our lab developed GOstruct [22] by modelling the problem of GO term

prediction as a structured output problem which provides state-of-the-art performance [32].

CAFA (Critical Assessment of Function Annotation) [13] competition is organized every

two years for gathering all AFP researchers in one place to evaluate the latest AFP methods

using an independent and standardized assessment. The target proteins in the first CAFA

(CAFA1) was a list of proteins that didn’t have any previous annotations at the time but

the target proteins for CAFA2 was composed of both annotated and unannotated proteins.

Therefore CAFA2 requirements are a combination of two subtasks: making predictions on

annotated proteins and making predictions on unannotated proteins.

In this work we clearly delineate the differences between these two AFP tasks and how

performance of different AFP methods vary in each case. We compare the performance

of AFP methods on these two tasks versus their performance in cross-validation, which is

the popular technique for evaluating AFP methods. Additionally, we investigate how the

performance metric impacts the ranking of different AFP methods.
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3.2. Prediction Tasks

We identify two tasks in the area of automated function prediction: prediction of anno-

tations for proteins without previous annotations (denoted as “novel-proteins”, or NP) and

prediction of novel annotations for proteins that already have some annotations associated

with them (denoted as “novel annotations”, or NA). In order to understand the relative

difficulty of these tasks we compare the performance of several AFP methods under evalua-

tion protocols that directly capture these tasks and also compare them to the typically used

alternative, which is cross-validation. In what follows we describe in detail the protocols,

the data used, and the algorithms that were compared.

3.3. Evaluation Protocols

We compare three experimental setups: cross-validation (CV), novel-annotations (NA)

and novel-proteins (NP). CV is the standard cross-validation setup which is typically used

for evaluating AFP methods; more specifically, we use 5-fold cross validation where each fold

corresponds to a distinct randomly chosen set of proteins. In the NA protocol, methods are

trained using the set of annotations acquired on or before the year 2009, and tested on the set

of annotations gathered on the same set of proteins after 2009 (the “GO annotations” section

explains the criteria used for selecting the final set of annotations). In other words, the same

set of proteins are used for training and testing, but the training labels are annotations that

were available in 2009, while testing labels are annotations made available after 2009. An

annotation that was added with a new evidence code, but present in the training set was

not included in testing; similarly, we do not include an annotation in the test set when a

more specific annotation already exists in the training set. In the NP protocol methods are

trained using the set of annotations acquired on or before the year 2009 while they are tested
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on the annotations acquired for proteins that were not annotated on or before 2009. In this

setup, the proteins used for training and the proteins used for testing are disjoint sets. An

overview of the NA and NP setups is given in Figure 3.1.

Figure 3.1. Overview of the NA and NP setups. We distinguish between
three sets of annotations that are used to define the train/test set in the two
setups. Annotations accumulate between an initial time t0 until t1 (beginning
of 2009 in our experiments) and form a set A, which is the training set in both
NA and NP. The set of annotations acquired for those proteins after t1 form a
set B, which is the test set in the NA setup. The set of annotations acquired
after t1 for proteins that were un-annotated before t1 is denoted by the set C,
and is used as the test set in the NP setup.

In our experiments we focused on yeast and human. Yeast (S. cerevisiae) was the first

eukaryotic genome that was completely sequenced [88] which paved the way for it to be one

of the most intensively studied model species while understanding the functional roles of

human (H. sapiens) is a highest priority for tasks such as drug design [89]. The number

of proteins/annotations in the train/test sets with respect to the three setups are given in

Table 3.1. We note that our yeast/human test sets contain 5-10 times more proteins/an-

notations for each species and subontology combination than in the CAFA1 and CAFA2

challenges: In CAFA1 the test set consisted of 866 targets across 11 species consisting of
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5 yeast proteins (1 with molecular function and 5 with biological process annotations) and

285 human proteins (182 with molecular function and 195 with biological process annota-

tions) [13]. In the information made available during the CAFA2 workshop the organizers

revealed that CAFA2 test sets were composed of 656, 773 and 991 proteins with molecular

function, biological process and cellular component annotations, respectively. These come

from 27 species, but the vast majority of them were human proteins. The large number of

annotations allowed us to compute term-centric metrics in addition to the protein-centric

metrics used in CAFA. We ignored GO categories that were annotated with less than 10

proteins.

Table 3.1. The number of proteins and the number of annotations in the
train and test sets for the three setups. Each cell in the table contains #pro-
tein/#annotations. For CV setup, numbers represent average values computed
across train/test folds (5-fold cross-validation).

yeast human
set. train test train test

F
CV 1532/2185 383/546 4532/8467 1133/2116
NA 1367/1706 208/285 4305/6898 799/1343
NP 1367/1706 521/677 4305/6898 1344/2174

P
CV 2752/5789 688/1447 7533/31794 1883/7948
NA 2834/5161 633/990 5824/12196 3301/13192
NP 2834/5161 604/1046 5824/12196 3574/12973

C
CV 3731/7053 932/1763 8440/19196 2110/4799
NA 4189/6968 813/1162 5082/8185 2966/5511
NP 4189/6968 476/681 5082/8185 5468/10200

In order to perform a fair comparison across setups we first identified the GO subgraph

that consists of only the GO categories common to all three setups (CV, NA and NP). Then

we computed the evaluation measures described next only on this subgraph.
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3.4. Evaluation measures

Each method provides a confidence score for each of its predictions. Following the same

procedure that was used in CAFA [13] these scores are recursively propagated upwards

towards the root by assigning the highest score among children to their parent term. The

true path rule is also applied to the ground truth in all three setups. However, in the

NA setup, the older annotations (i.e., annotations acquired before 2009) are removed from

the ground truth used for testing. By threshold on these propagated confidence scores we

compute the following protein-centric measures.

In what follows N denotes the number of proteins and M is the number of GO categories.

Protein-centric precision and recall at a threshold t are defined as

P pc(t) =
1

N

N
∑

i=0

TPi(t)

TPi(t) + FPi(t)
,

Rpc(t) =
1

N

N
∑

i=0

TPi(t)

TPi(t) + FNi(t)
,

where TPi(t), FPi(t) and FNi(t) are the number of true positives, number of false positives

and number of false negatives w.r.t. protein i at threshold t. Now we can define protein-

centric F1 as

F1pc =
2P pc(t)Rpc(t)

P pc(t) +Rpc(t)
.

which is the harmonic mean of protein-centric precision and protein-centric recall defined

above.
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3.5. Data

Each method was trained/tested using the same set of features and labels. We extracted

GO annotations from the Gene Ontology web site, UniProt, and species specific annotation

databases. We removed all annotations not originating from an experimental assay. We

generated three types of sequence features (localization signals, low complexity regions and

transmembrane data) as described elsewhere [32]. BLAST scores were represented using a

simpler version of a score used in [24]. We extracted PPI and other functional associations

data (co-expression, co-occurrence, etc.) from BioGRID 3.2.106, STRING 9.1 and GeneMA-

NIA 3.1.2. To take advantage of the information found in the biomedical literature, an NLP

pipeline was utilized to extract the co-occurrence of protein names and GO terms both at

the sentence and paragraph level from all full-text publications available in PubMed; this

pipeline is an improved version of the one used in our earlier work [32]. Appendix A describes

the data in more detail.

3.6. Models

We used following three AFP methods in our experiments: GOstruct [22], a collection of

binary SVMs, and a network-based guilt by association method (GBA). We describe all the

above methods in detail below.

GOstruct. As mentioned above, GOstruct [22] is an AFP method developed by our

lab. It is based on the structured SVM [31] and provides state-of-the-art performance in

cross-validation [32].

The Strut library1 with default parameter settings was used for running GOstruct.

1http://sourceforge.net/projects/strut/
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Binary SVMs. We trained a collection of binary SVMs, each trained on a single GO

category. Binary SVMs were trained using the PyML2 machine learning library with default

parameter settings. The SVMs used the same input-space kernels as GOstruct.

GBA. GBA is the in-house python implementation of the simplest form of guilt-by-

association [66] AFP algorithm (i.e., neighbour-voting) also called the Basic GBA (BGBA) [90].

It is a binary classifier which computes a confidence score with respect to a given test protein

and a GO category by using the connectivity of the test protein to other proteins annotated

with that GO category in a given input network. More specifically, this score is equal to the

fraction of direct neighbours which are annotated with that category. The kernel used for

the SVM methods was used as a network for the GBA procedure.

3.7. Results and Discussion

In order to evaluate how different AFP methods perform on the NA and NP tasks, and

how these evaluation protocols compare to cross-validation, we compared the performance of

GOstruct, binary SVMs and GBA using the three evaluation setups, CV, NA and NP, using

data from yeast and human. The results for the protein-centric F1 performance measure

appear in Figures 3.2, 3.3 and 3.4. It can be observed that accuracy computed using cross-

validation is much higher than in the NA and NP protocols in both human and yeast and

across all three GO hierarchies. The only exception to this trend is the similar performance

of GOstruct in the NP protocol, as discussed in more detail below. These results suggest

that in most cases cross-validation is not a good proxy for the performance in the more

realistic NA and NP protocols.

2http://pyml.sourceforge.net

33



0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

CV NA NP CV NA NP CV NA NP

GOstruct Binary SVMs GBA

p
ro

te
in

-c
e

n
tr

ic
 F

1

S. cerevisiae H. sapiens

Figure 3.2. Performance comparison between CV, NA and NP in the molec-
ular function subontology. GOstruct, Binary SVMs and GBA are evaluated
in CV (cross-validation), NA (novel-annotation) and NP (novel-proteins) in
yeast and human. Performance is evaluated using the protein-centric F1.
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Figure 3.3. Performance comparison between CV, NA and NP in the bio-
logical process subontology. GOstruct, Binary SVMs and GBA are evaluated
in CV (cross-validation), NA (novel-annotation) and NP (novel-proteins) in
yeast and human. Performance is evaluated using the protein-centric F1.
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Figure 3.4. Performance comparison between CV, NA and NP in the cellular
component subontology. GOstruct, Binary SVMs and GBA are evaluated in
CV (cross-validation), NA (novel-annotation) and NP (novel-proteins) in yeast
and human. Performance is evaluated using the protein-centric F1.

The observed difference in performance between cross-validation and the NA and NP

protocols can be traced to the evolution of GO curation. It is known in the AFP community

that the process of acquiring GO annotations is highly biased, leading to a distribution of

categories that changes over time [33]. As machine learning methods rely on the assumption

that the distribution of test examples is the same as the training examples, this bias makes

the NA and NP tasks more difficult than performing well in cross-validation. Since CV mixes

annotations across time, the training and test sets are more similar in terms of the categories

annotated, and performance can therefore be expected to be higher.

In order to demonstrate the differences in the label distributions in the training set versus

the test set, we performed the following analysis. First we computed the probability (no.

of annotated proteins/ number of all proteins) of GO category i in the train and test sets

for all three setups, denoted by ptri and ptsti , respectively; in CV setup the calculation was
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performed 5 times for each fold and averaged across the five folds. The discrepancy for

category i is then defined as: |ptri −ptsti |/(ptri +ptsti ). The average discrepancy, and individual

signed discrepancy values (without the absolute value) are shown in Figures 3.5. We observe

that the average discrepancy for NA and NP is significantly higher than in the CV setup in

the three subontologies, suggesting that the label distributions between train and test sets

in NA and NP is consistently different compared to CV.
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Figure 3.5. Label distribution comparison between CV, NA and NP. First
we computed the probability (no. of annotated proteins/ no. of all proteins)
of GO category i in the train and test sets for all three setups, denoted by ptri
and ptsti , respectively; in CV setup the calculation was performed 5 times for
each fold and averaged across the five folds. The discrepancy for category i is
then defined as: |ptri − ptsti |/(ptri + ptsti ). The average discrepancy is shown in
top-left panel. The individual signed discrepancy values (without the absolute
value) are shown in the other three panels in sorted order by their magnitude
for each setup.

We hypothesise that this characteristic is at least partly responsible for the lower perfor-

mance in the NA and NP setups. To provide evidence for this hypothesis, we computed the
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correlation between AUC scores and the discrepancy values for each GO category. As illus-

trated in Figure 3.6, the AUC scores are negatively correlated with the discrepancy values,

suggesting that for GO categories which exhibit a larger difference between the train/test

probabilities the performance tends to be lower. This is more pronounced for NA than

NP, which is in agreement with our observation of lower accuracy for the NA protocol, as

discussed below.
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Figure 3.6. Pearson correlation coefficient between discrepancy of each GO
category and its individual AUC.

Another observation is that the ranking of methods on the basis of cross-validation per-

formance is not the same as that which is obtained using the other protocols. The protein-

centric F1 of binary SVMs (0.55) is higher than that of GBA (0.41) in CV in the molecular

function subontology in human, but its performance on the NA task is equal to that of GBA

(0.20) (Figure 3.2); the protein-centric F1 of binary SVMs (0.53) is very similar to that of

GBA (0.54) in CV in the molecular function subontology in yeast, but its performance in

the NP task (0.25) is much lower than that of GBA (0.37) (Figure 3.2). These observations

suggest that a ranking of methods established using cross-validation may not reflect how they
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would rank on other AFP tasks, which has implications for the design of method evaluation

in AFP.

Among the three protocols, NA yielded the lowest accuracy for all methods, i.e., the task

of predicting novel annotations for previously annotated proteins is harder than prediction

of novel annotations for unannotated proteins. There are several reasons why NA is harder

than NP. First, unlike the NP protocol, the NA evaluation protocol uses only the annotations

acquired after 2009 as the ground truth. This means that a small mistake in NA has

a relatively larger impact on accuracy than what it would in NP. Second, our intuition

suggests that in the beginning a protein is annotated with GO categories that are less

specific or easier to experimentally verify (i.e., low-hanging fruit), and as time goes on, with

the improvement of experimental assays, more specific annotations are added. We believe

this is responsible for making the NA problem harder than NP. For the GOstruct method

the difference between cross validation and NA accuracy is the most pronounced, although

it is still the best performing method.

When it comes to the NP task, we observe different trends across methods. In this task,

GOstruct performs almost equally well as in CV as can be seen in Figures 3.2-3.4, whereas all

the other methods show a much bigger decline in performance. This can be attributed to the

fact that GOstruct uses the set of all combinations of GO categories in the training set as its

set of candidate labels. As a result, it is likely that when predicting on currently unannotated

proteins those candidate labels more closely represent the GO category combinations that

are expected to be annotated in these new proteins. The two other binary classifiers, namely

binary SVMs and GBA do not leverage this information, and struggle to achieve the same
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level of performance as in CV. But still, their performance in the NP task is always better

than in the NA task.
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CHAPTER 4

GOstruct 2.0: Automated Protein Function

Prediction for Annotated Proteins

4.1. Introduction

Our results from the previous chapter demonstrate that the two AFP substasks of mak-

ing predictions on annotated proteins and previously unannotated proteins are much more

difficult than performing well in cross-validation. This suggested that the task of predict-

ing annotations for already annotated proteins could benefit from algorithms that explicitly

leverage existing annotations to better rank novel predicted annotations.

When it comes to the task of predicting for annotated proteins, there have been several

recent attempts of using only the existing annotations for making predictions. In other

words, given the labels associated with a protein, predict additional labels based only on

its existing annotations. These methods are based on singular value decomposition [91],

autoencoder neural networks [92], probabilistic latent semantic analysis [93] and Latent

Dirichlet Allocation [94]. But it goes without saying that these methods miss out on the

wealth of information available in all other types of genomic data sources such as protein-

protein interactions. Therefore, it is worth exploring how both existing annotations and other

data can be used together for this task; with methods like GOstruct and label reconciliation

methods such as described in Guan et al. [65], information on existing annotations can be

encoded in the inference procedure itself.

One of the factors that is likely affecting GOstruct performance for the NA task is the fact

that, like most other AFP methods, it is not designed to utilize a protein’s known annotations
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when making predictions for it. To address this issue we implemented improvements in

GOstruct to better handle the NA task by attempting to answer the question of how to best

incorporate existing annotations.

As mentioned before, the key component of GOstruct’s structured SVM formulation is

the compatibility function, which computes the compatibility between a given protein and

a label (i.e., a set of GO annotations). GOstruct learns by maximizing the difference (i.e.,

margin) between the compatibility score for its actual label and the second best candidate

label [22]. However, while it does allow for the possibility of mis-annotations, it does not

explicitly take into account that the existing annotations of a protein are partial, i.e., are

only a subset of its true annotations.

GOstruct 2.0 is a modification of the original structured SVM formulation that reduces

the penalty for margin violations involving examples for which the second best candidate

label is an extension of its actual label. This allows the model to be more flexible with the

candidate labels that are extensions of the actual labels. This models the process of anno-

tation whereby a protein might accumulate annotations with increasing level of specificity.

4.2. Methods

In this section we present the proposed structured SVM formulation of GOstruct 2.0. As

mentioned above, the original GOstruct formulation does not utilize the existing annotations

of a protein to improve the quality of a label that is predicted as shown by the first constraint

in structured SVM formulation of original GOstruct presented in Section 2.3.

In this work we propose a modification to the above model in order to help GOstruct

better handle the NA substask. For that purpose, we first introduce the concept of a protein-

specific label: the labels which are consistent with the existing annotations of a protein.
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Various criteria can be introduced to define consistency, the simplest of which is to select

only the combinations that contain all existing GO annotations of that protein (i.e., that

combination is an “extension” of the existing label).

The original formulation does not take into account that the existing labels may or

may not be complete. But in reality almost any existing annotation can be considered

incomplete [38]. So in order to utilize the fact that an existing label can be incomplete,

any second best candidate label that is an extension of the existing annotations should be

penalized less. In view of this, we propose to modify the original structured SVM formulation

as shown below.

min
w,ǫ1

i
,ǫ2
j

1

2
||w||22 +

C1

n

|A|
∑

i=1

ǫ1i +
C2

n

n−|A|
∑

j=1

ǫ2j

f(xi, yi)−max
y∈Yc

f(xi, y) ≥ 1− ǫ1i for i = 1, ..., n1(3)

f(xj, yj)−max
y∈Yc

f(xj, y) ≥ 1− ǫ2j for j = 1, ..., n2(4)

ǫ1i ≥ 0 for i = 1, ..., n1(5)

and ǫ2j ≥ 0 for j = 1, ..., n2(6)

where C1 and C2 (≥ C1) are user-specified parameters, ǫ1i and ǫ2j are the slack variables, n1

is number of examples for which the second best candidate label is a protein-specific label

and n2 = n − n1 and Yc is the candidate label set. These two new constraints (inequalities

3 and 4) allows the model to be more flexible towards picking second best candidate labels

that are extensions of the current label. This allows it to use the information of the existing

annotations to model the accumulation of annotations over time.
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4.3. Experimental setup

We compare the performance of GOstruct 2.0 against the original GOstruct (denoted as

1.0) with respect to the CV, NA, and NP tasks on human proteins using sequence, network,

and NLP features described in Section 3.5. Regular 5-fold cross-validation was used for

evaluating performance in the CV task. In the NA task, methods are trained using the set

of annotations acquired on or before the year 2009, and tested on the set of annotations

gathered on the same set of proteins after 2009. An annotation that was added with a new

evidence code, but present in the training set was not included in testing; similarly, we do not

include an annotation in the test set when a more specific annotation already exists in the

training set. In the NP task, methods are trained using the set of annotations acquired on

or before the year 2009, while they are tested on the annotations acquired for proteins that

were not annotated on or before 2009. We use C1 = 1 and C2 = 10 for all our experiments.

4.4. Results and Discussion

Figures 4.1, 4.2 and Tables 4.1, 4.2 show CV, NA and NP results in yeast and human

for all three GO namespaces: molecular function, biological process and cellular component.

First, as noted in section 3.7, performance for the NA task is much lower for both the species.

We observe that GOstruct 2.0 outperforms GOstruct 1.0 in the NA task in all subontologies

in human while it performs as well as or better than GOstruct 1.0 in molecular function

and biological process subontologies in yeast. This demonstrates the ability of the new

constraints to model the accumulation of annotations over time for improving performance

in the NA task especially on human data.

The largest improvement for human happens in the biological process subontology (a

jump from 0.58 to 0.71, see Figure 4.2). This observation can be attributed to the fact
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that it is by far the deepest subontology [95] as well as it being the subontology with the

highest rate of increase in the number of categories over the years [96] making biological

process annotations more incomplete than the other two, thereby providing for more room

for improvement.

In addition, we observe there is minor improvement in cross-validation in few cases for

human as well (e.g. MF and CC). However, when it comes to the NP task, a decline

in performance is observed in several cases (e.g. CC in yeast and MF in human) which

warrants further investigation for the identification of the underlying cause. This suggests

using GOstruct 2.0 only for already annotated proteins.

In general, improvement across all subontologies is shown for human on the NA task.

That may be due to yeast annotations having a lower “annotation bias” compared to hu-

man [97] so that the added flexibility of the model does not help GOstruct 2.0 perform better

on yeast as much as it does for human. It is also important to note that GOstruct 2.0 is able

to produce AUCs above 0.7 for all three subontologies in human, which is clearly a major

improvement over original GOstruct (which produced undesirable values of 0.58 and 0.66 in

NA for BP and CC subontologies, respectively).
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Figure 4.1. Performance comparison between GOstruct 2.0 and original
GOstruct in CV, NA and NP for yeast. GOstruct 2.0 and original GOstruct
(denoted as 1.0) are evaluated in CV (cross-validation), NA (novel-annotation)
and NP (novel-proteins) on yeast. Performance is reported using the term-
centric AUC in molecular function (F), biological process (P) and cellular
component (C) subontologies.

Table 4.1. Performance comparison between GOstruct 2.0 and original
GOstruct in CV, NA and NP for yeast. GOstruct 2.0 and original GOstruct
(denoted as 1.0) are evaluated in CV (cross-validation), NA (novel-annotation)
and NP (novel-proteins) on yeast. Performance is reported using the term-
centric AUC in molecular function (F), biological process (P) and cellular
component (C) subontologies.

1.0 2.0
Ontology setup AUC Variance AUC Variance

CV 0.93 1.7E-04 0.93 3.0E-05
F NA 0.80 8.8E-04 0.80 9.1E-04

NP 0.91 1.6E-02 0.92 1.4E-02
CV 0.92 1.2E-04 0.92 4.0E-05

P NA 0.77 5.4E-04 0.79 6.1E-04
NP 0.89 1.6E-02 0.89 1.4E-02
CV 0.93 1.1E-05 0.93 3.1E-05

C NA 0.89 1.2E-04 0.87 1.9E-04
NP 0.92 5.4E-03 0.79 2.6E-02
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Figure 4.2. Performance comparison between GOstruct 2.0 and original
GOstruct in CV, NA and NP for human. GOstruct 2.0 and original GOstruct
(denoted as 1.0) are evaluated in CV (cross-validation), NA (novel-annotation)
and NP (novel-proteins) on human. Performance is reported using the term-
centric AUC in molecular function (F), biological process (P) and cellular
component (C) subontologies.

Table 4.2. Performance comparison between GOstruct 2.0 and original
GOstruct in CV, NA and NP for human. GOstruct 2.0 and original GOstruct
(denoted as 1.0) are evaluated in CV (cross-validation), NA (novel-annotation)
and NP (novel-proteins) on human. Performance is reported using the term-
centric AUC in molecular function (F), biological process (P) and cellular
component (C) subontologies.

1.0 2.0
Ontology setup AUC Variance AUC Variance

CV 0.88 4.2E-04 0.89 2.0E-05
F NA 0.73 1.1E-03 0.77 3.5E-04

NP 0.85 2.4E-02 0.77 2.9E-02
CV 0.89 5.8E-06 0.89 7.3E-06

P NA 0.58 1.5E-05 0.71 1.9E-04
NP 0.83 2.0E-02 0.85 1.3E-02
CV 0.85 8.1E-04 0.88 4.1E-05

C NA 0.66 4.0E-04 0.75 1.6E-04
NP 0.83 1.9E-02 0.82 1.7E-02
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CHAPTER 5

Evaluating a Variety of Text-mined Features for

Automatic Protein Function Prediction with

GOstruct

5.1. Introduction

Biomedical literature is the most up-to-date resource of biological knowledge documenting

experimental results. However, the speed of curation in to the relevant databases has not

kept up with the rate of publication [38]. On top of that there is no clear consensus in how

to use literature for best performance because there has never been an comprehensive study

evaluating the effectiveness of literature data for AFP. In CAFA1, only two teams out of

54 that submitted predictions exclusively used literature-derived features [13]. Similarly, in

CAFA2, only two teams (out of 38 that submitted predictions, excluding our team) used

literature data [27].

In this study, we conduct the first ever comprehensive evaluation on the informativeness

of literature sources and their effectiveness on the accuracy of protein function prediction.

Specifically, our collaborators developed a natural language processing (NLP) pipeline that

processes millions of biomedical literature to extract two different types of literature features,

co-occurrences of protein-GO terms as well as bag-of-words features. We compare the two

types and assess how to best combine them for achieving the highest accuracy.
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5.2. Data

Document sources. If a protein is mentioned in the vicinity of a functional category

in the literature (a co-mention) it is likely that this protein may be associated with that

function. For example, the sentence “P-glycoprotein (Pgp) and multidrug resistance protein

1 (MRP1) are members of the ATP-binding cassette (ABC) family of transporter proteins.”

shows the relationship between the protein MRP1 and the function ATP-binding. The

sentence “The microtubule-dependent motor protein Eg5 plays a critical role in spindle

assembly and maintenance in mitosis.” shows the relationship between Eg5 and mitosis.

To leverage this source of information we extracted protein-functional category co-mentions

using the natural language processing pipeline described in [50] from 13,530,032 Medline

abstracts available on 23-Oct-13 and 595,010 full-text articles available from the PubMed

Open Access Collection (PMCOA) on 06-Nov-13.

GO annotations. We obtained and prepared the GO annotations as described in the

previous chapter. The final set of annotations consisted of 13,400 human proteins (with

11,000 categories).

Text-mining pipeline. A text-mining pipeline was developed by our collaborators

(Chris Funk and Karin Verspoor at University of Denver) for extracting protein names and

functional categories from the text [50]. A detailed description of the pipeline is given in

Appendix B.

Literature features. We extracted two types of features from the text: co-mentions

which represent a knowledge-based approach and bag of words which represents a knowledge-

free approach. The co-mentions we considered are the pairs of protein names and GO terms
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that co-occur in the document within a specified span. We used two spans: sentence and

non-sentence. Sentence co-mentions only consider proteins and GO categories mentioned in

the same sentence while non-sentence co-mentions consider such pairs mentioned together

in the same paragraph or abstract, but not within the same sentence. The number of co-

mentions extracted for human proteins are given in Table 5.1.

Table 5.1. Statistics of co-mentions extracted from both Medline and PMCOA .

Span Unique proteins Unique terms Unique co-mentions Total co-mentions
sentence 12,998 15,415 1,839,360 33,199,284
non-sentence 13,513 18,713 3,725,450 196,761,554
combined 13,536 18,920 3,897,951 229,960,838

Bag-of-words features are generated by associating proteins to all words in sentences in

which this particular protein was mentioned [50]. All words were lower-cased and stop words

were removed but no type of stemming (reducing words to their root form) or lemmatization

(grouping together the different forms of a word so they can be analysed as a single item)

was applied.

With co-mention features, a protein is represented by two vectors in which the ith element

in each vector gives the number of times that protein is co-mentioned with the GO category

i within either a sentence or non-sentence span. With bag-of-words features, a protein is

represented as a vector in which the ith element gives the number of times that word was

mentioned in any sentence the protein name was found in the text.

5.3. Models

The primary AFP method we use to assess the effectiveness of the literature features

is the structured output method GOstruct [22]. As a baseline method we also utilized the
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co-mentions themselves as a classifier (i.e., the co-mentions are used as the final predictions

without any learning).

5.4. Evaluation

We use five-fold cross validation for assessing the performance. We report results using

protein-centric F1, precision, recall and term-centric AUC as described in Section 3.4.

5.5. Results and Discussion

Exploring the use of co-mention features. We used four different strategies of using co-

mention features, (1) SENT: only sentence co-mentions (2) NONS: only non-sentence co-

mentions (3) COMB: combining counts from both types of features into one feature set and

(4) BOTH: using both types of features at once but as separate feature vectors.

As illustrated in Table 5.2, the best strategy for using co-mention features is the last

method (BOTH). Intuitively, since the two types of co-mentions (sentence and non-sentence)

contain different types of information, having both at its disposal as two separate sets (as

opposed to using only one or combining them in to one) helps the classifier make better

predations.

However, against our intuition non-sentence co-mentions perform better than sentence

co-mentions because in general it can be expected that a function of a protein is usually

mentioned within the same sentence. However, previously it has been observed that function

annotations may not necessarily occur within a single sentence [98]. Although co-reference

resolution is required to relate entities across sentences, simply extracting protein-GO term

pairs mentioned across sentences (i.e., within abstracts or paragraphs) still seems to be a

useful approximation according to our results. Based on our observations, we exclusively use
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Table 5.2. Performance from co-mention features. Performance is reported
for (1) SENT: only sentence co-mentions (2) NONS: only non-sentence co-
mentions (3) COMB: combining counts from both types of features into one
feature set and (4) BOTH: using both types of features at once but as separate
feature vectors. Variance is computed on term-centric AUC.

Subont. Features F1pc Ppc Rpc AUCtc Variance
COMB 0.38 0.38 0.38 0.76 2.2E-04

F BOTH 0.39 0.30 0.53 0.77 1.9E-04
SENT 0.36 0.32 0.46 0.74 2.6E-04
NONS 0.37 0.37 0.37 0.75 1.2E-04
COMB 0.43 0.43 0.43 0.74 5.1E-05

P BOTH 0.42 0.43 0.42 0.75 6.2E-05
SENT 0.41 0.41 0.41 0.72 4.0E-05
NONS 0.43 0.43 0.42 0.74 8.0E-05
COMB 0.58 0.61 0.56 0.73 1.5E-04

C BOTH 0.59 0.59 0.59 0.74 1.3E-04
SENT 0.57 0.58 0.56 0.70 1.1E-05
NONS 0.58 0.60 0.56 0.73 3.5E-05

the last strategy (i.e., BOTH) for all our following experiments – in other words all mentions

of “co-mention features” refer to using both types of features as separate sets throughout

the rest of this chapter.

Comparison of co-mentions and bag of words features. First we look at the

performance of the baseline method for understanding how informative co-mentions are by

themselves. Table 5.3 shows performance of baseline method from combining counts between

sentence and non-sentence co-mentions. It is interesting to see that the baseline leads to very

low precision for all branches but impressive levels of recall can be observed. This shows

that we are able to recall reasonable amounts of annotations directly from text which attests

to the effectiveness of our pipeline in extracting protein names and functions. However we

are also extracting many false positive which leads to the poor precision. This suggests that

some form of filtering or classification of co-mentions would improve their quality; see section

6 on how we addressed this problem by modeling it as a relation extraction task.
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However, surprisingly, BoW features outperform co-mention features in all cases given

that it is a knowledge-free approach which uses all words associated with a protein. One main

reason could be that biomedical literature contain many other words/features informative

of a protein function other than the direct mentions. BoW features utilizes a lot more

literature because it only relies on a protein to be recognized while co-mention features

capture information only when both a protein and function is mentioned together – on

average a protein has 2,375 BoW features while there is only 385 co-mention features per

protein. Moreover, the quality of co-mention features is highly dependent on the accuracy

of the automatic GO concept recognition, which has been shown to be a challenging task

in itself [99]. As one might expect, the combination of both co-mentions and BoW features

provides the best performance for all cases suggesting that the two types of features are

complementary to each other.

Table 5.3. Performance comparison between co-mention and BoW features.
Performance is reported for (1) Baseline: using co-mentions themselves as final
predictions without any machine learning (2) Co-mentions: only co-mentions
features (3) BoW: only bag-of-words features (4) co-mentions+BoW: using
both types of features at once. Variance is computed on term-centric AUC.

Subont. Features F1pc Ppc Rpc AUCtc Variance
Baseline 0.06 0.04 0.32 0.68 1.4E-04

F Co-mentions 0.38 0.34 0.45 0.76 1.0E-04
BoW 0.39 0.38 0.41 0.77 2.8E-05
co-mentions+BoW 0.41 0.35 0.49 0.79 8.2E-05
Baseline 0.15 0.10 0.31 0.61 2.1E-04

P Co-mentions 0.43 0.43 0.43 0.75 8.8E-05
BoW 0.46 0.47 0.45 0.77 1.1E-04
co-mentions+BoW 0.46 0.43 0.51 0.78 1.2E-04
Baseline 0.07 0.04 0.32 0.64 6.3E-05

C Co-mentions 0.59 0.58 0.60 0.75 1.8E-04
BoW 0.61 0.59 0.62 0.76 2.9E-05
co-mentions+BoW 0.61 0.59 0.62 0.77 6.7E-05
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Literature versus other data. In order to identify the informativeness of liter-

ature features among other popular data sources used for protein function prediction, we

conducted several ablation studies where we provided a single source of data at a time and

the combination of all sets of features to GOstruct using human proteins. Table 5.4 shows

five-fold cross-validation results in human for all three subontologies. Our results show that

even though literature data provides much better performance than sequence data there is

definitely room for improvement.

Table 5.4. Performance comparison of literature features to others. Perfor-
mance is measured using the term-centric AUC measure. Results are shown
for each source of data: Trans/Loc (transmembrane and localization signals);
homology; functional association data; literature mining data; and the model
that combines all features together.

Subontology Features AUCtc Variance
Trans/Loc 0.68 1.6E-04
homolgy 0.85 2.9E-05

F network 0.88 1.7E-05
literature 0.77 1.9E-04
combined 0.89 4.2E-04
Trans/Loc 0.64 1.6E-04
homolgy 0.84 3.7E-05

P network 0.86 1.7E-05
literature 0.75 7.5E-05
combined 0.88 5.8E-06
Trans/Loc 0.69 6.7E-05
homolgy 0.81 5.3E-05

C network 0.84 1.5E-05
literature 0.75 1.3E-04
combined 0.86 8.1E-04

Validating false positives. Due to various factors such as slowness of the curation

process, the Gene Ontology database is incomplete [38]. This leads to performance estimates

that underestimate the true performance of a classifier [100] because the set of GO anno-

tations we considered as the gold standard does not fully represent all the functions that

should be associated with the currently annotated genes. To explore this issue, we randomly
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selected several predictions made by GOstruct which were considered false positives accord-

ing to the current gold standard and looked for evidence in the current biomedical literature

that can be used as evidence for those predictions.

For example, protein GCNT1 (Q02742) was predicted to be involved with carbohydrate

metabolic process (GO:0006959). In PMID:23646466 we find “Genes related to carbohy-

drate metabolism include PPP1R3C, B3GNT1, and GCNT1...”. Similarly, protein CERS2

(Q96G23) was predicted to play a role in ceramide biosynthetic process (GO:0046513). In

PMID:22144673 we see “...CerS2, which uses C22-CoA for ceramide synthesis...”. These

examples suggest that it is very likely the performance of literature features are underes-

timated. But even more importantly, these examples clearly shows how literature features

can be used not only as input features but also as means of validating predictions – this

further boosts the importance of literature features since other features cannot be used for

validation in this way.
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CHAPTER 6

Extracting protein-GO relations from biomedical

text using graph kernels

6.1. Introduction

As mentioned in the previous chapter, the performance of the baseline method which

uses co-mentions themselves as the final predictions (i.e. without any learning) suggested

that the text mining pipeline is able to extract useful co-mentions but includes high number

of false positives. A filter or a classifier that could identify “good” co-mentions can be used

in place of an AFP method, and can be used by annotators to significantly speed up the

curation process. In addition, this can be used to provide much higher quality co-mentions

as input to AFP methods, which would likely lead to better predictions. In view of this,

we propose to develop a co-mention classifier that can be used as a filter to identify “good”

co-mentions.

We define the problem of co-mention classification as the task of classifying whether a

given co-mention of a protein and a function suggests a functional relationship between the

two entities according to the context surrounding them (Figure 6.1 depicts a positive co-

mention according to this definition). Therefore this can also be identified as the task of

extracting protein-function relations from text. In this work we formulate this as a supervised

learning problem as described below.

6.2. Methods

Problem definition. We formulate this problem as a classification task as follows.

Given a context C = w1w2..e1..w3..e2..wn−1wn composed of words wi and the two entities e1
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Figure 6.1. An example co-mention. The protein and the function are high-
lighted in orange and green, respectively. This is a positive example of a
protein-function relation since the meaning of the sentence conveys that “Rg5”
is associated with “mitosis”.

and e2, we define a mapping fR(·) as:

fR(T (C)) =



















1 if e1and e2 are related according to R

0 otherwise,

where T (C) is a structured representation of the context, e1 and e2 are the entities repre-

senting the protein and R is the relation that represents the protein-function relationship

between the two. An example is considered a positive example if the meaning of the context

suggests that the protein mentioned has this function.

In this work, the context C is a single sentence (i.e., the sentence containing the mentions

of the two entities). Figure 6.1 depicts a sentence which is labeled as a positive example

(i.e., fR = 1) because it provides evidence for the functional relationship between the two

entities Eg5 (protein) and mitosis (function). We model this problem as a supervised learning

problem and use a binary SVM as the classifier for learning fR. The PyML1 package is used

for implementing the SVM functionality.

The random walk kernel based method. Here we propose a novel co-mention

classification method based on random walk kernels [101]. In this method, we represent

contexts (i.e., sentences) as labeled graphs in which nodes represent words and edges represent

1http://pyml.sourceforge.net
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dependencies between words (i.e., the structured representation of context is a graph). Then

we use the random walk kernel for measuring the similarity between labeled graphs which

computes similarity by calculating the number of matching walks between the given pair of

graphs [101].

Pre-processing and generation of labeled graphs. For generating the labeled graphs, we

first preprocess the context C in two ways. We use the Stanford parser [1] for generating

the typed dependency graph in which nodes are words and directed edges are dependencies

between words. There are 52 types of dependencies used by the Stanford parser (Figure 6.2

shows the typed dependency graph generated for the sentence in Figure 6.1).

Figure 6.2. An example typed dependency graph. This is generated for the
sentence in Figure 6.1 using the Stanford parser [1].

We then represent the context as an undirected graph in which nodes represent the words.

A node in the labeled graph has two attributes, a type and a label. The type attribute can

take the values of P : protein, F : function and O: other. The label attribute holds the actual

lexical (string) value of the word represented by the node. Then, for each directed edge in

the Stanford dependency graph, we add an undirected edge between the two corresponding

nodes to this undirected graph. We also add an undirected edge between consecutive words

within the context if there isn’t an edge already present previous step. An undirected edge of

this graph has only one attribute, a label; it holds the Stanford dependency type associated
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Figure 6.3. An example labeled graph. This is generated for the sentence in
Figure 6.1. The nodes representing the protein and the function entities are
in orange and green colors, respectively.

with the dependency edge between the two words represented by the two nodes. Figure 6.3

depicts the labeled graph generated for the sentence in Figure 6.1.

Formulation of the random walk kernel. For measuring the similarity between these la-

beled graphs we use a random walk kernel (RWK) [102]. The random walk kernel counts

the number of matching labeled walks (of up to length l) between the two given labeled

graphs. The intuition behind this is the fact that a higher number of matched walks be-

tween the graphs implies more similarity between the corresponding contexts. Kernel values

are normalized using cosine normalization.

Suppose the labeled graph G is composed of nodes v ∈ V and edges e ∈ E. Given two

labeled graphs G1 and G2, the random walk kernel is defined as,

kgraph(G1, G2) =



















∑

w1∈G1

∑

w2∈G2
kwalk(w1, w2) if w1, w2 begin/end with a node of type P or F

0 otherwise
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where the kernel between two walks is denoted by kwalk. Note that walks not containing

at least one of the entities (i.e., protein/function) are ignored. The reason for considering

only the paths that go through the nodes containing the two entities is because it has been

shown that the paths between the two entities contain the most informative features for

other relation extraction tasks [103].

kwalk is defined using a kernel between steps (kstep) as,

kwalk(walk1, walk2) =
n−1
∏

i=1

kstep((vi, vi+1), (wi, wi+1))

where n is the length of the walk and (vi, vi+1) and (wi, wi+1) are the edges belonging to

walk1 and walk2, respectively. kstep is defined as,

kstep((vi, vi+1), (wi, wi+1)) = knode(vi, wi) · knode(vi+1, wi+1) · kedge((vi, vi+1), (wi, wi+1))

where knode and kedge are node and edge kernels, respectively. Those two kernels are defined

as,

Knode(vi, wi) =



















E1(vi) · E1(wi) if type(vi) == type(wi)

0 otherwise

kedge((vi, vi+1), (wi, wi+1)) = E2(vi, vi+1) · E2(wi, wi+1)

where E1 and E2 are word and edge embeddings (see below). When the type attributes of

the two nodes do not match they are considered completely dissimilar (i.e., a value of zero);

this is for ensuring that the entities (protein or function) are not considered similar to other

nodes (even if the literal values of the correspond words may be similar).
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Word embeddings. Word embeddings are vector representations of words [104]. They

map words to lower (relative to vocabulary size) dimensional vectors. The intuition is that a

pair of words that appear more frequently together are likely to have a similar meaning. We

also generate edge embeddings using an analogous process. Again, the intuition is that two

typed dependencies that connect to a common word many times are likely to be semantically

more similar than others. If the actual word was used instead of word embeddings there

will be too few matches (and sometimes none at all) when computing the node kernel. The

same reasoning is applicable to using edge embeddings. By using the above definitions for

node/edge kernels we capture the meaning of the contexts; the walk kernel for two walks with

semantically more similar words and edges (even though the words or edge types do not match

exactly) will have a higher value. In other words, through these definitions of node/edge

kernels we have adapted the random walk kernel to the domain of (protein-function) relation

extraction.

In this work we use Word2vec [105] as the word embedding generation method. The

intuition behind Word2vec is that the words with similar distributional properties (i.e., that

co-occur regularly) tend to share some aspect of semantic meaning. Or in other words “a

word can be characterized by the company it keeps” [106]. To this end, Word2vec learns

the probability of a context word occurring given a target word using a large corpus of text.

As the model converges, lower dimensional continuous-space vector representations of target

words are produced; the vectors for two words that are semantically similar are located closer

in this lower dimensional space compared to that of two random words. It uses a simplified

version of a feed forward neural network with back-propagation using stochastic gradient

descent for learning the model [105].
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Node and edge kernels. As mentioned above, the random walk kernel computes similarity

between two graphs using node and edge kernels that in turn compute the similarities between

the pairs of nodes/edges that make up the corresponding walks. We use the following three

different node kernels: (a) elm - exact match between node labels (b) pos - similarity between

part-of-speech (POS) tags such as Noun, Verb etc. and (c) w2v - word embedding similarity.

We also use the following four edge kernels: (a) elm - exact match between edge labels (b)

plm - partial label match between edge labels (e.g. nsubj and nsubjpass are considered

partially similar) (c) w2v - edge embedding similarity and (d) con - uses an edge kernel that

is always equal to 1.

Computation of the random walk kernel. As mentioned above the random walk kernel

computes the similarity between two given graphs by calculating the similarity between all

common walks that goes through the two entity nodes. The approach used for computing

the kernels is through the use of a direct product graph [102]. The direct product graph

G1×G2 of two labeled graphs G1 = (V,E) and G2 = (W,F ) is defined as the graph (V×, E×)

with

V×(G1 ×G2) = {(v1, w1) ∈ V ×W : (type(v1) = type(w1))}

E×(G1 ×G2) = {((v1, w1), (v2, w2)) ∈ V 2(G1 ×G2) :

(v1, w2) ∈ E ∧ (w1, w2) ∈ F ∧ (type(v1, v2) = type(w1, w2))}.

Based on this direct product graph, the random walk kernel is defined as,

Kgraph(G1, G2) =
∑

i=p,f

V×
∑

j=1

[

l
∑

n=0

λnAn
×

]

ij
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where A× denotes the adjacency matrix of the direct product graph G×, p and f are the

indexes of the two nodes representing the entities, l is maximum length of walks considered

and λ is the decay factor (parameter which gives relatively lower significance to longer walks).

6.2.1. Other approaches. For the purpose of comparison we also implement several

other approaches: (a) bag-of-words methods (b) word embedding kernel based methods and

(c) graphlet kernel based methods.

Bag-of-words methods. In particular, we use three bag-of-words methods, (1) BoW:

regular bag-of-words features (2) BoWr: bag-of-words features generated from three non-

overlapping regions separated by the two entities (i.e., before, between, after) and (3) BoWn:

bag-of-words features generated within a neighborhood of the two entities (window size =

3). Features are normalized using L1 normalization. We use a Gaussian kernel with the

bag-of-words features.

Word embedding kernel based methods. Given N -dimensional (N = size of the vocab-

ulary) vectors a and b representing the contexts of two co-mentions, the word embedding

kernel is defined as,

Kwe(a, b) =
N
∑

i

N
∑

j

si,jaibj

where similarity si,j between words is defined using their word embedding vectors as,

si,j = E1(wordi) · E1(wordj).

The intuition behind using word embedding kernel is to accommodate the relative simi-

larities between features (i.e., words) in contrast to bag-of-words approach in which features

are considered orthogonal dimensions (i.e., only exact match between words is considered).
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This form of similarity measure is also referred to as the soft similarity and has been used

effectively for the task of automated question answering by utilizing the Levenshtein distance

between words [107] as the underlying similarity measure [108].

We implement three variants that use the word embedding kernel, (1) kernel defined

on all words of the context (2) kernel defined on words from three non-overlapping regions

separated by the two entities (i.e., before, between and after) and (3) kernel defined on words

within a neighborhood of the two entities (window size = 3). We use Word2vec [105] for

generating the word embeddings as discussed earlier. The kernel is normalized using cosine

normalization.

Graphlet kernel based methods. Graphlet kernels compute similarity between two graphs

by counting the number of common graphlets (subgraphs of k nodes) between them [109].

In terms of graphlet kernel methods, each sentence is represented by an undirected labeled

graph in which nodes represent words and edges represent Stanford dependencies between

words. Each node has a label property. Node labels are P (Protein), F (Function) or O

(other). In particular, we use the two following variants, (1) Standard Graphlet Kernel (SGK)

computes the number of common graphlets of size 3,4,5 and (2) Edit Distance Graphlet

Kernel (EDK) [110] computes the number of common graphlets of size 3,4,5 with 1-vertex

label mismatch and 1-edge indels allowed. Kernels are normalized using cosine normalization.

These kernels are implemented using the Graphlet Kernel Framework package [110].

6.2.2. Data. In this study our data are composed of manually annotated co-mentions.

These datasets were annotated by a human annotator utilizing the pipeline described else-

where [50]. Each example (i.e., co-mention) is composed of the two entities (i.e., protein and

the function), the context surrounding the two entities and the class label. The class label

63



Table 6.1. Co-mention datasets. The column titled ‘categories’ shows either
the number of categories (for the MIXED dataset) or the name of the GO
category (rest of the datasets) and ‘ont’ is the subontology of the GO category.
The column ‘depth’ is the depth of the GO category. The columns ‘examples’,
‘pos’,‘%pos’ and ‘proteins’ show the number of examples, number of positive
examples, percentage of positive examples, and number of unique proteins
associated with co-mentions, respectively.

dataset categories ont. depth examples pos %pos proteins
MIXED 539 categories N/A N/A 1460 222 15% 1052
DRUGB drug-binding MF 3 202 88 44% 118
REGST reg. of signal transduction BP 5 214 101 47% 160
TRMTR transmembrane transporters MF 7 357 157 44% 231

is positive if the context suggests the protein is associated with the function and negative

otherwise. Specifically, there are four datasets (1) MIXED: randomly selected co-mentions

covering a variety of GO categories (2) DRUGB: co-mentions specific to the “drug binding”

category (GO:0008144, molecular function subontology) (3) REGST: co-mentions specific

to the “regulation of signal transduction” category (GO:0009966, biological process subon-

tology) and (4) TRMTR: co-mentions specific to the “transmembrane transporter activity”

category (GO:0022857, molecular function subontology). See Table 6.1 for the statistics on

these datasets.

6.3. Experimental setup

Performance of above methods were evaluated through a customized nested cross-validation

procedure (folds = 5) which also ensures that examples pertaining to the same protein are

not split across train/test folds. This is to negate the bias that may be introduced by hav-

ing co-mentions associated with the same protein across train/test folds which may make it

unduly easier for the classifier to make better predictions. The parameter values used with

the bag-of-words methods are: (1) C: 0.1, 1, 10, 100, 1000 and (2) γ: 0.00001, 0.0001, 0.001,

0.01, 0.1, 1, 10. The parameter values used with the word embedding kernel based methods
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are 0.1, 1, 10, 100, 1000 (C). The parameter values used with the random walk kernel based

methods are (1) l: 5, 10 (2) λ: 0.1, 0.5, 0.9 and (3) k : 1, 5. The parameter values used

with the graphlet kernel methods are 0.1, 1, 10, 100, 1000 (C). In terms of Word2Vec we

used values of 300, 10, 100 and 1e-5 for the embedding size, window size, min count and

max cutoff, respectively.

6.4. Results and Discussion

Performance across datasets. The best area under the ROC curves (AUCs) ob-

served for the MIXED and DRUGB dataset are above 70% while for REGST and TRMTR

show AUCs above 80% (see Tables 6.2 - 6.5). This suggests that our protein-function relation

extraction approach shows high promise as a method for complementing bio-curators. It is

interesting to note that the two datasets associated with deeper GO categories (i.e., REGST

and TRMTR) exhibit higher performance than DRUGB (labeled with a relatively shallow

GO category) and the MIXED (labeled with multiple GO categories). It is understandable

that most methods would have relatively lower performance on the MIXED dataset due to

having co-mentions labeled with many GO categories. On the other hand, it is also not

that surprising to observe that majority of methods perform worse on DRUGB dataset in

general (Table 6.3). Performance of GOstruct on these individual GO categories in human

(Table 6.7) suggest that drug binding category tends to be associated with relatively lower

accuracy levels than the other two GO categories considered in this study.

Comparison of methods. In terms of overall comparison of performance among meth-

ods, the word embedding methods are the best performers; these methods produce the best

performance for all datasets except DRUGB for which bag-of-words methods are the bet-

ter performers (see Table 6.3). However, the performance of random walk kernel based
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Table 6.2. Performance comparison on the MIXED dataset. Methods com-
pared are (a) bag-of-words methods: BoW (regular bag-of-words features),
BoWr (bag-of-words features in three separate regions defined by the two en-
tities) and BoWn (bag-of-words features in the neighbourhood of the two en-
tities, window size = 3) (b) word embedding methods: WoE (embeddings of
all words), WoEr (embeddings of words in three separate regions defined by
the two entities) and WoEn (embeddings of words in the neighbourhood of
the two entities, window size = 3) (c) random walk kernel methods: denoted
as RWK(node kernel, edge kernel) where elm, plm, pos, w2v, none, represent
exact label match, partial label match, POS tag similarity, word embedding
similarity and constant kernel in which value is always equal to 1 (d) graphlet
kernel methods: GK(sgk) and GK(edk) represent the standard graphlet ker-
nel and edit distance based graphlet kernel, respectively. Results are reported
using area under the ROC curve (AUC), F1, Precision (P), and Recall (R).
Variance is computed on AUC.

Method AUC F1 P R Variance
BoW 0.65 0.26 0.19 0.41 4.0E-04
BoWr 0.62 0.18 0.13 0.29 6.5E-04
BoWn 0.60 0.18 0.21 0.16 4.8E-04
WoE 0.73 0.40 0.28 0.70 2.9E-04
WoEr 0.73 0.39 0.28 0.62 5.3E-04
WoEn 0.60 0.22 0.16 0.37 3.0E-04
RWK(elm, elm) 0.65 0.30 0.32 0.29 5.1E-04
RWK(elm, plm) 0.65 0.30 0.32 0.29 5.1E-04
RWK(elm, con) 0.65 0.28 0.29 0.27 4.2E-04
RWK(pos, elm) 0.60 0.32 0.26 0.43 6.3E-04
RWK(pos, plm) 0.60 0.32 0.26 0.42 6.3E-04
RWK(pos, con) 0.58 0.26 0.19 0.38 5.4E-04
RWK(w2v, elm) 0.69 0.35 0.36 0.34 5.0E-04
RWK(w2v, plm) 0.69 0.35 0.36 0.33 5.0E-04
RWK(w2v, con) 0.71 0.39 0.37 0.42 3.2E-04
RWK(w2v, w2v) 0.70 0.35 0.35 0.36 4.9E-04
GK(sgk) 0.60 0.28 0.20 0.50 5.2E-04
GK(edk) 0.61 0.30 0.21 0.49 5.3E-04

methods are comparable to that of word embedding kernel based methods on the MIXED

dataset (in terms of AUC); on top of that, they provide the highest precision for the same

dataset (see Table 6.2). Not only that, they consistently produce the best precision values

for DRUGB dataset as well (see Table 6.3). Graphlet kernel based methods seem to be the

lowest performing methods across all the datasets except DRUGB.
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Table 6.3. Performance comparison on the DRUGB dataset. Please refer to
Table 6.2 for an explanation of column headers.

Method AUC F1 P R Variance
BoW 0.53 0.48 0.37 0.71 2.1E-03
BoWr 0.70 0.45 0.35 0.64 1.1E-03
BoWn 0.59 0.46 0.40 0.53 2.5E-03
WoE 0.58 0.42 0.33 0.56 2.5E-03
WoEr 0.57 0.46 0.43 0.49 1.7E-03
WoEn 0.63 0.50 0.45 0.55 1.8E-03
RWK(elm, elm) 0.56 0.47 0.45 0.50 1.9E-03
RWK(elm, plm) 0.56 0.47 0.45 0.50 1.9E-03
RWK(elm, con) 0.62 0.49 0.42 0.57 1.6E-03
RWK(pos, elm) 0.60 0.47 0.47 0.47 2.1E-03
RWK(pos, plm) 0.61 0.47 0.47 0.47 2.1E-03
RWK(pos, con) 0.60 0.43 0.41 0.44 2.1E-03
RWK(w2v, elm) 0.59 0.50 0.51 0.49 1.7E-03
RWK(w2v, plm) 0.58 0.50 0.51 0.49 1.8E-03
RWK(w2v, con) 0.61 0.46 0.47 0.46 1.6E-03
RWK(w2v, w2v) 0.59 0.51 0.48 0.54 1.7E-03
GK(sgk) 0.67 0.54 0.49 0.59 1.6E-03
GK(edk) 0.66 0.55 0.51 0.61 1.5E-03

Table 6.4. Performance comparison on the REGST dataset. Please refer to
Table 6.2 for an explanation of column headers.

Method AUC F1 P R Variance
BoW 0.74 0.44 0.63 0.34 7.3E-04
BoWr 0.80 0.54 0.68 0.44 8.1E-04
BoWn 0.78 0.47 0.66 0.36 8.9E-04
WoE 0.71 0.60 0.64 0.56 1.3E-03
WoEr 0.74 0.62 0.67 0.57 8.6E-04
WoEn 0.84 0.71 0.72 0.70 1.7E-03
RWK(elm, elm) 0.76 0.69 0.59 0.82 1.7E-03
RWK(elm, plm) 0.76 0.69 0.59 0.82 1.7E-03
RWK(elm, con) 0.76 0.69 0.59 0.81 1.5E-03
RWK(pos, elm) 0.74 0.68 0.57 0.83 1.1E-03
RWK(pos, plm) 0.74 0.68 0.58 0.84 1.1E-03
RWK(pos, con) 0.72 0.68 0.61 0.76 1.2E-03
RWK(w2v, elm) 0.76 0.69 0.57 0.86 1.4E-03
RWK(w2v, plm) 0.76 0.68 0.57 0.86 1.4E-03
RWK(w2v, con) 0.77 0.69 0.59 0.84 1.4E-03
RWK(w2v, w2v) 0.76 0.69 0.57 0.86 1.5E-03
GK(sgk) 0.71 0.63 0.65 0.60 8.0E-04
GK(edk) 0.71 0.63 0.63 0.62 1.1E-03
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Table 6.5. Performance comparison on TRMTR dataset. Please refer to
Table 6.2 for an explanation of column headers.

Method AUC F1 P R Variance
BoW 0.64 0.49 0.43 0.58 1.3E-03
BoWr 0.79 0.65 0.61 0.69 4.9E-04
BoWn 0.71 0.56 0.57 0.55 8.2E-04
WoE 0.65 0.49 0.49 0.50 9.4E-04
WoEr 0.80 0.65 0.63 0.68 6.6E-04
WoEn 0.81 0.68 0.62 0.74 7.8E-04
RWK(elm, elm) 0.79 0.64 0.61 0.67 8.0E-04
RWK(elm, plm) 0.79 0.64 0.61 0.67 8.1E-04
RWK(elm, con) 0.78 0.64 0.62 0.66 8.1E-04
RWK(pos, elm) 0.71 0.56 0.58 0.55 6.9E-04
RWK(pos, plm) 0.71 0.56 0.58 0.55 6.6E-04
RWK(pos, con) 0.65 0.51 0.47 0.56 6.1E-04
RWK(w2v, elm) 0.80 0.67 0.64 0.69 8.2E-04
RWK(w2v, plm) 0.80 0.66 0.64 0.69 8.1E-04
RWK(w2v, con) 0.79 0.65 0.62 0.68 7.0E-04
RWK(w2v, w2v) 0.80 0.67 0.64 0.71 7.4E-04
GK(sgk) 0.62 0.48 0.45 0.51 5.3E-04
GK(edk) 0.65 0.50 0.47 0.54 5.6E-04

Bag-of-words and word embedding kernel based methods. In general, word

embedding kernel based methods outperform the bag-of-words methods across all datasets

except DRUGB. This demonstrates that the soft similarity between words is better for

protein-function relation extraction than exact similarity and that Word2vec is able to gener-

ate high quality word embeddings that accurately capture the underlying semantics. Among

all word embedding methods, the variant that uses the words in the vicinity of the two

entities (i.e., WoEn) is the best performer for all datasets except MIXED.

Node kernels and edge kernels. The random walk kernel based methods that

use word embedding similarity as the node/edge kernels (i.e., w2v kernel) provide the best

performance among all RWK methods across all data sets. This suggests that the usage of

semantic similarity is more effective than exact word matching or syntactical similarity (i.e.,

POS tags) for the task of protein-function relation extraction.
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Random walk kernels vs. graphlet kernels. For all datasets except DRUGB,

the random walk kernel methods clearly outperform the graphlet kernel methods, demon-

strating that the similarity between walks may be more informative than graph isomorphism

for the task of protein-function relation extraction. There is no apparent difference between

the performance of the standard graphlet kernels (sdk) and the edit distance graph kernels

(edk) for any of the datasets.

Overall results. In order to further assess the effectiveness of the performance of

proposed relation extraction methods we compared their best performances in the three

co-mention datasets labeled with a single GO categories (DRUGB: drug binding, REGST:

regulation of signal transduction and TRMTR: transmembrane transporter activity) against

the performance of GOstruct on those same GO categories for human data (Tables 6.6 and

6.7). First, it is important to note that these results are not directly comparable because (1)

co-mention datasets are associated with multiple species (see Table 6.6 for the proportion

of human proteins in these datasets) and (2) GOstruct is provided with all annotations

belonging to many GO categories as input. However, it is still encouraging to observe

that relation extraction methods are able to produce comparable levels of accuracy not just

to GOstruct that uses sentence-level literature data but to GOstruct that uses all data

sources (for human). This is especially impressive because the relation extraction methods

use only the knowledge of the individual GO categories as opposed to GOstruct which

uses all annotations as mentioned above. On top of that, the predictions made by the

relation extraction methods can be combined with their corresponding co-mentions so that

the end-user (preferably a bio-curator) is able to first prioritize a set of co-mentions with

best scores and then can validate them using the associated co-mentions. Our relation
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Table 6.6. Overall best AUCs for single GO category datasets. %human
shows the percentage of human proteins in each dataset.

dataset % human overall best AUC
DRUGB 58% 0.70
REGST 43% 0.84
TRMTR 30% 0.81

Table 6.7. Performance of GOstruct on individual GO categories in human.
Performance is reported using AUC for the GO categories associated with
DRUGB, REGST and TRMTR datasets. The ‘all-data’ and ‘lit-sent’ columns
show results when using all data sources (i.e., homology, sequence, functional
association and text mining features) and only sentence-level co-mentions as
input to GOstruct, respectively.

GO category all data lit-sent
drug binding 0.72 0.67
regulation of signal transduction 0.85 0.71
transmembrane transporter activity 0.96 0.83

extraction methods produce precision and recall values in the range of 0.5 - 0.6 for the

REGST and TRMTR datasets while producing precision and recall levels of 0.4 - 0.5 and 0.3

- 0.4 for the DRUGB and MIXED datasets, respectively. This is clearly below the reported

accuracy levels for state-of-the-art protein-protein interaction relation extraction systems

where values in the range of 0.7 - 0.8 have been reported [111]. However as described

above, extraction of protein-function relations is a much harder problem than extracting

protein-protein interactions due to the complex nature of sentences that provide evidence

for functional relationships between a protein and a functional category.
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CHAPTER 7

PHENOstruct: Prediction of Human Phenotype

Ontology Terms Using Heterogeneous Data Sources

7.1. Introduction

The human phenotype ontology (HPO) is a standardized vocabulary that describes

the phenotype abnormalities encountered in human diseases [8]. It was populated using

databases of human genes and genetic disorders such as OMIM: Online Mendelian Inheri-

tance in Man [112], Orphanet [113] and DECIPHER: DatabasE of Chromosomal Imbalance

and Phenotype in Humans using Ensembl Resources [114], and was later expanded using

literature curation. The hierarchical structure of the HPO is very similar to that of the

Gene Ontology (GO) [7], and it too has the structure of a directed acyclic graph (DAG); like

GO, more general terms are found at the top, and term specificity increases from the root

to the leaves. This implies the “true-path rule”: whenever a gene is annotated with a given

term, that implies all its ancestor terms.

The organ abnormality, mode of inheritance and onset and clinical course subontologies

are composed of ∼10000, 25, and 30 terms respectively. Throughout this paper, the organ

abnormality, the mode of inheritance and the onset and clinical course subontologies will

be referred to as the Organ subontology, Inheritance subontology and Onset subontology,

respectively.

The HPO web site1 provides gene-disease-HPO annotations that can be used for research

involving human diseases. Over 50,000 annotations of hereditary diseases are available at

1human-phenotype-ontology.org
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Figure 7.1. HPO annotations. a) general format of annotations: genes are
annotated with a set of phenotype terms based on their known relationships
with diseases b) an example annotation: the amyloid precursor protein (APP)
gene is associated with Alzheimer’s disease and cerebroarterial amyloidosis.
Therefore, the APP gene is annotated with the set of HPO terms (Organ in
orange, Inheritance in green) associated with these disease.

the moment. Specifically, the genes are annotated with a set of phenotype terms based on

their known relationships with diseases (Fig. 7.1).

Currently, only a small fraction (∼3000) of human protein coding genes are known to

be associated with hereditary diseases, and only those genes have HPO annotations at the

moment. But researchers believe that there are many other disease-causing genes in the

human genome and estimate that another 5000 genes can be associated with phenotypes.

However, experimentally finding disease-causing genes is a highly resource consuming and

difficult task [10]. Therefore, it is important to explore the feasibility of developing compu-

tational methods for predicting gene-HPO associations. While there is a plethora of compu-

tational approaches for the related task of prediction of gene-disease associations [47], only

one other computational method that directly predict gene-HPO term associations exists at

this time [48].
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We define the HPO prediction problem as directly predicting the complete set of HPO

terms for a given gene. This problem is a hierarchical multilabel classification (HMC) prob-

lem [28], as a given gene can be annotated with multiple labels, and the set of labels have a

hierarchy associated with them.

Instead of decomposing the problem into multiple single label problems and applying

independent binary classifiers for each label separately, we use a single classifier that learns

a direct mapping from inputs to the space of hierarchically consistent labelings. Specifically,

motivated by the success in modeling the GO term prediction problem using a structured

prediction framework [22, 32], we demonstrate the effectiveness of this strategy for HPO term

prediction using the same methodology framework [31]. Furthermore, we explore a variety

of data sources that are informative for HPO term prediction, including text features.

7.2. Methods

7.2.1. Data. Our models are provided with feature vectors and HPO annotations. La-

beled data was created by using annotations available from the HPO web site. Each gene

was characterized by a collection of features: PPI and other functional association data

(co-expression, co-occurrence, etc.) from BioGRID 3.2.106, STRING 9.1 and GeneMANIA

3.1.2; experimentally derived Gene Ontology annotations; sequence-based features that cap-

ture transmembrane and localization features described in [22]. Finally, an NLP pipeline

was utilized to characterize genes by same-sentence word occurrences extracted from the

biomedical literature, yielding a bag-of-words (BoW) representation for each gene, as de-

scribed in [50]. Appendix C describes data in more detail.

7.2.2. Models. PHENOstruct is a computational method that directly predicts relevant

HPO terms for a given gene. We compare PHENOstruct against a) binary support vector
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machines (SVMs) and b) a state-of-the-art HMC method based on decision tree ensembles

(Clus-HMC-Ens). In this section we describe PHENOstruct and the two baseline methods.

In addition, we assessed the performance of: c) an indirect method that first predicts disease

terms for a gene using a structured model and then maps them to HPO terms and d) a

method that predicts OMIM disease terms using a nearest-neighbour approach, PhenoPPI-

Orth [115]; we then map the OMIM terms to HPO terms. Methods a, b and c were provided

the same set of data that was provided to PHENOstruct. For the method PhenoPPIOrth,

we downloaded the pre-computed predictions from its website2.

PHENOstruct. PHENOstruct takes features that describe a set of genes and the HPO

annotations associated with those genes as input for training the model (Fig. 7.2). Once

the model is learned, it can predict a set of hierarchically consistent HPO terms for a given

test gene. More specifically, PHENOstruct learns a compatibility function that models

the association between a given input and a structured output [31]. Let X be the input

space where genes are represented and let Y be the space of labels. The set of HPO terms

associated with a given gene is collectively refereed to as its (structured) label. Y represents

each HPO subontology in a vector space where component i represents term i. Given a

training set {(xi, yi)}
n
i=1 where xiǫX and yiǫY , the compatibility function f : X ×Y → R

maps the input-output pairs to a score. The output label ŷ for an unseen input x can then

be obtained by using the argmax operator as ŷ = argmaxy∈Yc
f(x, y) where Yc ⊂ Y is the

set of all candidate labels. In this work we use the combinations of all terms in the training

set as the set of candidate labels Yc.

In order to obtain correct classification the compatibility value of the true label (correct

set of HPO annotations) of an input needs to be higher than that of any other candidate label

2http://jjwanglab.org/PhenoPPIOrth/download
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Figure 7.2. Overview of PHENOstruct. PHENOstruct takes the set of fea-
ture vectors and HPO annotations associated with each gene as input for
training. Once trained, it can predict a set of hierarchically consistent HPO
terms for a given test gene.
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Figure 7.3. Visual interpretation of the structured prediction framework.
The compatibility function, which is the key component of the structured
prediction framework, measures compatibility between a given input and a
structured output. The compatibility function of the true label (correct set of
HPO annotations) is required to be higher than that of any other label. and
the difference between these two scores (margin) is maximized.

(Fig. 7.3). PHENOstruct uses structured SVM (SSVM) training where this is used as a (soft)

constraint; it tries to maximize the margin, or the difference between the compatibility value

for the actual label and the compatibility for the next best candidate [31]. In the structured-

output setting, kernels correspond to dot products in the joint input-output feature space,

and they are functions of both inputs and outputs. PHENOstruct uses a joint kernel that is

the product of the input-space and the output-space kernels:

K((x1, y1), (x2, y2)) = KX (x1, x2)KY(y1, y2).
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The motivation for this form is that two input/output pairs are considered similar if they

are similar in both their input space features and their labels. The output space kernel, for

which we use a linear kernel between label vectors, captures similarity of the annotations

associated with two genes. The input space kernel combines several sources of data by the

addition of multiple input-space kernels, one for each data source. Each kernel is normalized

according to

Knorm(z1, z2) = K(z1, z2)/
√

K(z1, z1)K(z2, z2)

before being used with the joint input-output kernel. The Strut library3 with default pa-

rameter settings was used for the implementation of PHENOstruct.

Binary SVMs. As a baseline method we trained a collection of binary SVMs, each trained

on a single HPO term. Binary SVMs were trained using the PyML4 machine learning library

with default parameter settings. We used linear kernels for each set of input space features.

Clus-HMC-Ens. Clus-HMC-Ens is a state-of-the-art HMC method based on decision tree

ensembles which has been shown to be very effective for GO term prediction [69]. In our

study, we provide exactly the same set of features used with PHENOStruct as input to

Clus-HMC-Ens and use parameter settings that provided the best performance for GO term

prediction5. The number of bags used was 50 for the Inheritance and Onset subontologies;

10 bags were used for the Organ subontology because of the large running times for this

subontology.

3http://sourceforge.net/projects/strut/
4http://pyml.sourceforge.net
5http://dtai.cs.kuleuven.be/clus/hmc-ens/
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7.2.3. Evaluation. Classifier performance was estimated using five-fold cross-validation.

Since typically scientists/biologists are interested in knowing the set of genes/proteins as-

sociated with a certain HPO term, we primarily use a term-centric measure for presenting

results. Term-centric measures average performance across terms as opposed to protein-

centric measures which average performance across proteins as described elsewhere [13].

More specifically, we use the term-centric AUC (area under the receiver operating curve),

which is computed by averaging the AUCs across HPO terms. PHENOstruct assigns a confi-

dence score to each predicted HPO term, which is computed using the compatibility function

as described elsewhere [32]. The onset and clinical course subontology includes terms such

as pace of progression, age of onset and onset which are only used for grouping terms. We

ignore these grouping terms when computing performance.

7.3. Results and Discussion

7.3.1. PHENOstruct performance. As illustrated in Table 7.1, PHENOstruct sig-

nificantly outperforms Clus-HMC-Ens and the binary SVMs in the Organ and Onset sub-

ontologies. This suggests that modeling the HPO prediction problem as a structured pre-

diction problem is highly effective. It is interesting to note that the biggest improvement

of PHENOstruct over binary SVMs is seen in the Organ subontology. Given its very large

number of terms, as well as the deep hierarchy, this further confirms the value of the struc-

tured approach. PHENOstruct outperforms binary SVMs in the Inheritance and Onset

subontologies but to a lesser extent than in the Organ subontology because they are far

less complex than the Organ subontology. We note that the two methods that first predict

OMIM terms, which are then mapped to HPO terms performed poorly (see details in the

supplementary material). It is also interesting to see that Clus-HMC-Ens performs worse
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Table 7.1. PHENOstruct vs. other methods. Performance across the three
HPO subontologies for PHENOstruct, binary SVMs and Clus-HMC-Ens mea-
sured using the macro AUC.

Subont. # categories Method AUC
Binary SVMs 0.66

Organ 1,796 Clus-HMC-Ens 0.65
PHENOstruct 0.73

Binary SVMs 0.72
Inheritance 12 Clus-HMC-Ens 0.73

PHENOstruct 0.74

Binary SVMs 0.62
Onset 23 Clus-HMC-Ens 0.58

PHENOstruct 0.64

than binary SVMs with respect to macro AUC (Table 7.1) but performs slightly better than

binary SVMs according to protein-centric F-max (Table S3).

PHENOstruct’s average AUC for the Organ and Inheritance subontologies are 0.73 and

0.74, respectively. Even though the Organ subontology is a far more complex subontology

than the Inheritance subontology (with thousands of terms and 13 levels as opposed to tens

of terms and only 3 levels) they show similar performance. The Onset subontology is the

hardest to predict accurately, with an average AUC of 0.64. Only six Onset subontology

terms have individual AUCs above 0.7 (Table 7.3).

Even though PHENOstruct outperforms the baseline methods, there is much room for

improvement, especially in the Onset subontology. The small number of annotated genes in

this subontology (Table C.1) makes it difficult to train an effective model while the incomplete

nature of the current gold standard used for evaluation tends to underestimate performance

of classifiers [100]. See Section 7.3.3 for a detailed analysis of false positives.

In general, Organ subontology terms with few annotations show a mix of both high

and low performance as illustrated in Fig. 7.4. This suggests that PHENOstruct is not

necessarily affected by the frequency of the terms. But, terms with more annotations tend
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Figure 7.4. Performance of PHENOstruct in the Organ subontology. Per-
formance for each term is displayed using AUC against its frequency. The
average AUC for the Organ subontology is 0.73.
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Figure 7.5. Example of experimental and predicted annotations. a) experi-
mental annotation of protein P43681 b) PHENOstruct’s prediction for P43681
(protein-centric precision and recall for this individual protein is 1.0 and 0.62,
respectively).

to show moderate performance. See Fig. 7.5 for an example of experimental and predicted

annotations (Organ subontology) for a protein.

It is interesting to note that “polygenic inheritance” and its parent term “mulifactorial

inheritance” have the lowest number of annotations as well as the lowest individual AUCs

in the Inheritance subontology (see Table 7.2). These two are the terms with the lowest

AUC with binary SVMs as well (data not shown). It is not surprising that these two terms
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have lower accuracy because each describes inheritance patterns that depend on a mixture

of determinants. Moreover, the diseases inherited in this manner – termed complex diseases

– are not as well characterized and annotated compared to Mendelian/single gene diseases.

On the other hand, the mitochondrial inheritance term has an exceptional AUC of 0.98. It

is also the term with the highest AUC with the binary SVMs as well (data not shown). The

human mitochondrial DNA was the first significant part of the human genome to be fully

sequenced, two decades before the completion of the human genome project [116]. Due to

this, and the relative ease of sequencing the mitochondrial genome [117], diseases caused by

mutations in the human mitochondrial DNA have been reported very early [118, 119]. It is

likely that this well-studied nature of the mitochondrial DNA leads to the high performance

of the mitochondrial inheritance term.

All experiments were performed on Linux running machines with 8 cores (64-bit, 3.3GHz)

and 8GB memory. Combined running times for performing five-fold cross-validation for all

three subontologies are: binary SVMs: 55 hours, Clus-HMC-Ens: 825 hours and PHENOs-

truct: 90 hours.

7.3.2. Effectiveness of individual data sources. We performed the following set

of experiments in order to identify the most effective data sources for HPO prediction using

PHENOstruct. First, to identify the individual effectiveness of each source, we performed a

series of experiments in which we provided features generated from a single source of data

at a time as input to PHENOstruct. Then to understand how much each data source is

contributing to the overall performance we conducted leave-one-source-out experiments.

In all three subontologies, network data is the most informative individual data source as

illustrated in Fig. 7.6. Moreover, it is by far the main contributor to the overall performance
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Table 7.2. Performance of PHENOstruct in the Inheritance subontology.
The macro AUC for the Inheritance subontology is 0.74. Terms are displayed
in ascending order of frequency.

Idntifier Name Freq. Depth AUC
HP:0001426 Multifactorial inheritance 15 1 0.54
HP:0010982 Polygenic inheritance 15 2 0.54
HP:0001427 Mitochondrial inheritance 41 1 0.98
HP:0003745 Sporadic 52 1 0.61
HP:0001428 Somatic mutation 61 1 0.76
HP:0001423 X-linked dominant inheritance 62 3 0.83
HP:0001419 X-linked recessive inheritance 111 3 0.77
HP:0001425 Heterogeneous 148 1 0.69
HP:0010985 Gonosomal inheritance 198 1 0.80
HP:0001417 X-linked inheritance 198 2 0.80
HP:0000006 Autosomal dominant inheritance 1096 1 0.78
HP:0000007 Autosomal recessive inheritance 1665 1 0.73

Table 7.3. Performance of PHENOstruct in the Onset subontology. The
macro AUC for the Onset subontology is 0.64. Terms are displayed in ascend-
ing order of frequency.

Identifier Name Freq. Depth AUC
HP:0003584 Late onset 11 4 0.70
HP:0003811 Neonatal death 14 2 0.54
HP:0001699 Sudden death 14 2 0.50
HP:0003680 Nonprogressive disorder 15 2 0.82
HP:0003826 Stillbirth 21 2 0.67
HP:0003819 Death in childhood 23 2 0.65
HP:0003623 Neonatal onset 23 3 0.64
HP:0003678 Rapidly progressive 33 2 0.50
HP:0011463 Childhood onset 41 3 0.62
HP:0001522 Death in infancy 44 2 0.70
HP:0003829 Incomplete penetrance 58 2 0.61
HP:0003621 Juvenile onset 90 3 0.70
HP:0003677 Slow progression 95 2 0.62
HP:0003581 Adult onset 98 3 0.71
HP:0011420 Death 111 1 0.61
HP:0003828 Variable expressivity 132 2 0.66
HP:0003577 Congenital onset 135 3 0.60
HP:0003676 Progressive disorder 141 2 0.70
HP:0003593 Infantile onset 245 3 0.66
HP:0003812 Phenotypic variability 310 1 0.65
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both in the Organ and Inheritance subontologies (Fig. 7.7). This is intuitive because if two

genes/proteins are known to be interacting and/or active in the same pathways it leads to

association with the same/similar diseases/phenotypes.

Although the genetic variant features provide the lowest performance in the Organ and

Onset subontologies, leaving out variant data hurts the overall performance noticeably in

all three subontologies as can be seen in Fig. 7.7. This suggests that variant data are very

useful especially as a complementary dataset to the others. Moreover, we found that variant

data are very effective for predicting cancer-related terms in the Organ subontology (data

not shown).

It is very encouraging to see that the literature data with a simple BoW representation

by itself is very informative (Fig. 7.6) and leaving out literature features shows considerable

performance drop in the other two subontologies (Fig. 7.7). In an analysis of the structured

SVM weight vector, we found that the majority of the most important tokens extracted from

literature consists of names of proteins, genes and diseases (data not shwon).

We also considered an alternative representation where a gene is represented by a vector

in which the element i gives the number of times the word i occurred in the same sentence

with that particular gene/protein divided by the total number of unique genes/proteins that

word co-occurred with. This representation is analogous to the TFIDF (term frequency ∗

inverse document frequency) representation typically used in information retrieval and text

mining [120]. However, these features led to slight deterioration of performance in all three

subontologies (data not shown).

Although Gene Ontology features provide the second best individual performance both in

the Organ and Onset subontologies (Fig. 7.6), their contribution to the overall performance
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Figure 7.6. Performance of PHENOstruct with individual data sources. Re-
sults are shown for each source of data: network (functional association data);
Gene Ontology annotations; literature mining data; genetic variants and the
model that combines all features together.

is very minimal (Fig. 7.7). In fact leaving out GO features increases the overall performance.

The incompleteness of Gene Ontology annotations may have contributed towards this.

Finally, the combination of all the features provides higher performance than individual

feature sets in all three subontologies as can be seen in Fig. 7.6. However, leaving out GO

features in the Inheritance and Onset subontologies, led to improved performance, suggesting

that not all sources contribute to the overall performance. This shows that the selection of

data sources must be performed carefully in order to find the optimal combination of sources

for each subontology.

7.3.3. Validating false positives. Like other biological ontologies, the HPO is in-

complete due to various factors such as slowness of the curation process [38]. In other words,

the set of HPO annotations we considered as the gold standard does not fully represent

all the phenotypes that should be associated with the currently annotated genes; this leads
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Figure 7.7. Performance of PHENOstruct in leave-one-source-out experi-
ments (measured by the % change in macro AUC by leaving out a single
selected source relative to its macro AUC obtained using all data sources; neg-
ative % change means the performance dropped after leaving out the particular
source of data).

to performance estimates that underestimate the true performance of a classifier [100]. To

explore this issue, we selected 25 predictions made by PHENOstruct which were considered

false positives according to the current gold standard and looked for evidence in the current

biomedical literature that can be used as evidence for those predictions. For 14 of those

predictions we were able to find supporting evidence. The details of the complete validation

process are given in the supplementary material.
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CHAPTER 8

Conclusion

In this work we successfully addressed the following three of the most important chal-

lenges in large-scale automated protein function prediction (1) GO term prediction for anno-

tated proteins (2) Biomedical literature mining for GO term prediction and (3) HPO term

prediction. Here we summarize the major contributions of our work. First, we conducted the

first comprehensive study on different evaluation protocols for protein function prediction.

Findings of this study has implications for the design of computational experiments in the

area of AFP and provide useful insight for the understanding and design of future CAFA

competitions. Based on these findings, we developed GOstruct 2.0 by introducing several

improvements that help the model make use of existing annotations; GOstruct 2.0 performs

significantly better on the task of protein function prediction for already annotated proteins.

Secondly, we conducted the first comprehensive evaluation of how to utilize biomedical liter-

ature for improving protein function prediction. Furthermore, we developed a novel method

based on graph kernels for automatically extracting protein-function relations from Biomedi-

cal text; This method will help GO curators make the curation process efficient significantly.

Finally, we investigated the problem of HPO term prediction and developed PHENOstruct

which can predict a set of HPO terms for a given protein. This study introduced several data

sources specifically informative of HPO prediction such as variation data which is different

from data sources traditionally informative of GO prediction. This information will be very

helpful for the practitioners developing new methods for this relatively unexplored area.
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8.1. Open Problems

Several issues related to all three projects on which we focused in this work remain

to be solved. The proposed improvements in GOstruct 2.0 did not work as well on yeast

data; an extensive model selection procedure for selecting the optimal pair of C parameters

with respect to the newly introduced constraints might be required. Although the proposed

improvements for GOstruct 2.0 were not designed towards contributing to the increased

classifier accuracy in the task of making predictions for unannotated proteins, a decline of

the performance in some cases was observed. Further investigation is required to identify

the underlying causes of this effect, which can help GOstruct perform better on unannotated

proteins.

The novel protein-function relation extraction methods proposed in this work use single

sentences as the context. However, often the functional relationships between a protein and

a functional category is described across sentences; in our earlier studies we assessed inter-

sentential co-mentions to be as valuable as their intra-sentential counterparts [50]. Therefore,

techniques for expanding the currently proposed methods to incorporate multi-sentence con-

texts or sophisticated approaches dedicated for inter-sentence extraction of protein-function

relations are required. Another aspect worth exploring is developing semi-supervised learn-

ing techniques for incorporating the large corpus of unannotated co-mentions for boosting

performance. Furthermore, collaborative work with the bio-curators is required to incorpo-

rates these proposed methods in to their actual curation pipelines so that we can assess their

practical usability. A related issue is the scalability of our random walk kernel methods;

further work is required for proposing sophisticated kernels suitable for the large corpora

encountered in biomedical text mining.

86



Although PHENOstruct outperformed the baseline methods, there is considerable room

for improvement in all three subontologies. HPO is a relatively new ontology that will likely

see substantial growth in the coming years, which will help in improving the accuracy of

computational methods that contribute to its expansion. This makes it an important re-

quirement to continuously monitor the evolution of HPO at regular intervals and understand

the patterns of expansion. It is important to note that improvements proposed for the struc-

tured output framework in terms of GO term prediction for annotated proteins in chapter 4

are directly applicable to PHENOstruct as well. While some boost in performance can likely

be obtained using those improvements, its performance will also improve as the number of

HPO annotations increases.

There are several other ways in which our work on HPO term prediction can be extended.

For the literature data we used a simple bag-of-words representation. An alternative, is to

try and extract gene-HPO term co-mentions directly; in the context of GO term prediction

we have found that both approaches lead to similar overall performance [50]. However, co-

mentions have the added value that they are easy to verify by a human curator. And the

natural next step following the extraction of protein-HPO co-mentions would be to explore

the feasibility of utilizing a co-mention classifier similar to the methods we applied for GO

co-mention prediction. m Another source of information that can be utilized is semantic

similarity of HPO terms to other phenotypic ontologies such the mammalian phenotype

ontology, which is currently used for annotating the rat genome [121]. Finally, exploring

the effectiveness of combining all three subontologies, as opposed to treating them as three

independent subontologies as we have done here, is also worth exploring.
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[81] K. Fundel, R. Küffner, and R. Zimmer, “Relexrelation extraction using dependency

parse trees,” Bioinformatics, vol. 23, no. 3, pp. 365–371, 2007.

[82] J. Hakenberg, C. Plake, U. Leser, H. Kirsch, and D. Rebholz-Schuhmann, “Lll05 chal-

lenge: Genic interaction extraction-identification of language patterns based on alignment

and finite state automata,” in Proceedings of the 4th Learning Language in Logic workshop

(LLL05), pp. 38–45, Citeseer, 2005.

[83] J. G. Caporaso, W. A. Baumgartner Jr, D. A. Randolph, K. B. Cohen, and L. Hunter,

“Rapid pattern development for concept recognition systems: application to point muta-

tions,” Journal of Bioinformatics and Computational Biology, vol. 5, no. 06, pp. 1233–1259,

2007.

[84] Y. Peng, M. Torii, C. H. Wu, and K. Vijay-Shanker, “A generalizable NLP frame-

work for fast development of pattern-based biomedical relation extraction systems,” BMC

bioinformatics, vol. 15, no. 1, p. 1, 2014.

[85] N. Kambhatla, “Combining lexical, syntactic, and semantic features with maximum

entropy models for information extraction,” in The Companion Volume to the Proceedings of

42nd Annual Meeting of the Association for Computational Linguistics, (Barcelona, Spain),

pp. 178–181, Association for Computational Linguistics, July 2004.

[86] M. Miwa, R. Sætre, Y. Miyao, and J. Tsujii, “A rich feature vector for protein-protein

interaction extraction from multiple corpora,” in Proceedings of the Conference on Empirical

98



Methods in Natural Language Processing, vol. 1, pp. 121–130, Association for Computational

Linguistics, 2009.

[87] K. Raja, S. Subramani, and J. Natarajan, “PPInterFindera mining tool for extracting

causal relations on human proteins from literature,” Database (Oxford), vol. 1, pp. 52–62,

2013.

[88] A. Goffeau, B. Barrell, H. Bussey, R. Davis, B. Dujon, H. Feldmann, F. Galibert,

J. Hoheisel, C. Jacq, M. Johnston, et al., “Life with 6000 genes,” Science, vol. 274, no. 5287,

pp. 546–567, 1996.

[89] T. Liljefors, P. Krogsgaard-Larsen, and U. Madsen, Textbook of drug design and dis-

covery. CRC Press, 2002.

[90] J. Gillis and P. Pavlidis, ““Guilt by Association” is the Exception Rather Than the

Rule in Gene Networks,” PLoS Computational Biology, vol. 8, no. 3, 2012.

[91] D. Chicco, M. Tagliasacchi, and M. Masseroli, “Genomic annotation prediction based

on integrated information,” in Computational Intelligence Methods for Bioinformatics and

Biostatistics (E. Biganzoli, A. Vellido, F. Ambrogi, and R. Tagliaferri, eds.), vol. 7548 of

Lecture Notes in Computer Science, pp. 238–252, Springer Berlin Heidelberg, 2012.

[92] D. Chicco, P. Sadowski, and P. Baldi, “Deep autoencoder neural networks for gene

ontology annotation predictions,” in Proceedings of the 5th ACM Conference on Bioinfor-

matics, Computational Biology, and Health Informatics, BCB ’14, (New York, NY, USA),

pp. 533–540, ACM, 2014.

[93] M. Masseroli, D. Chicco, and P. Pinoli, “Probabilistic latent semantic analysis for pre-

diction of gene ontology annotations,” in Proceedings of the International Joint Conference

on Neural Networks (IJCNN), pp. 1–8, June 2012.

99



[94] P. Pinoli, D. Chicco, and M. Masseroli, “Latent Dirichlet allocation based on Gibbs

sampling for gene function prediction,” in Proceedings of the IEEE Conference on Compu-

tational Intelligence in Bioinformatics and Computational Biology, pp. 1–8, May 2014.

[95] O. Dameron, C. Bettembourg, and N. Le Meur, “Measuring the evolution of ontology

complexity: the gene ontology case study,” PLoS One, vol. 8, no. 10, p. e75993, 2013.

[96] G. O. Consortium et al., “Gene ontology consortium: going forward,” Nucleic acids

research, vol. 43, no. D1, pp. D1049–D1056, 2015.

[97] J. Gillis and P. Pavlidis, “Assessing identity, redundancy and confounds in gene ontol-

ogy annotations over time,” Bioinformatics, 2013.

[98] M. Bada, D. Sitnikov, J. A. Blake, and L. E. Hunter, “Occurrence of gene ontology,

protein ontology, and ncbi taxonomy concepts in text toward automatic gene ontology an-

notation of genes and gene products,” BioLink–an ISMB Special Interest Group. Berlin,

Germany: Proceedings of BioLINK SIG, vol. 2013, pp. 13–19, 2013.

[99] Y. Mao, K. Van Auken, D. Li, C. N. Arighi, P. McQuilton, G. T. Hayman, S. Tweedie,

M. L. Schaeffer, S. J. F. Laulederkind, S.-J. Wang, J. Gobeill, P. Ruch, A. T. Luu, J.-j.

Kim, J.-H. Chiang, Y.-D. Chen, C.-J. Yang, H. Liu, D. Zhu, Y. Li, H. Yu, E. Emadzadeh,

G. Gonzalez, J.-M. Chen, H.-J. Dai, and Z. Lu, “Overview of the gene ontology task at

BioCreative IV,” Database, vol. 1, pp. 14–28, 2014.

[100] C. Huttenhower, M. A. Hibbs, C. L. Myers, A. A. Caudy, D. C. Hess, and O. G. Troy-

anskaya, “The impact of incomplete knowledge on evaluation: an experimental benchmark

for protein function prediction,” Bioinformatics, vol. 25, no. 18, pp. 2404–2410, 2009.

[101] K. M. Borgwardt, C. S. Ong, S. Schönauer, S. Vishwanathan, A. J. Smola, and H.-P.

Kriegel, “Protein function prediction via graph kernels,” Bioinformatics, vol. 21, no. suppl

100



1, pp. i47–i56, 2005.
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APPENDIX A

Data for GO term prediction

Each method was trained/tested using the same set of features and labels, prepared as

described below.

A.1. GO annotations

We extracted GO annotations from the Gene Ontology web site1 and Uniprot-goa2. We

ignored the root categories of the three subontologies. We also ignored the category “protein-

binding” according to what was done in the CAFA1 challenge [13]. This category is a

very general category (i.e in level 2) and there is a reasonable fraction of proteins which is

annotated with this term as its most specific term which leads to unusually high performance

with methods that only cater to prevalence bias [122, 123]. We excluded all annotations that

were obtained by computational methods and also did not include GO annotations with

evidence codes that suggest the annotation was derived from an interaction assay (i.e., only

EXP, IDA, IMP, IGI, IEP and TAS evidence codes were included). We also removed GO

categories that were not annotated to 10 or more proteins.

A.2. Trans/Loc

We generated three sets of features using amino acid sequence properties: localization

features, transmembrane features and low complexity features described elsewhere [32]. In-

formation about protein localization can be informative of their associated functions due to

the fact that many biological processes are known to be localized to certain cellular compart-

ments [57]. We used the localization signals computed from the WOLF PSORT program [58]

1http://www.geneontology.org/
2http://www.ebi.ac.uk/GOA
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as localization features. The number of transmembrane domains (the segments which are

fully of partly located within the cell membrane) a protein has can be informative of func-

tion. For example, transmembrane proteins are known to be associated with functions that

involve transport of various molecules. We used TMHMM [124] to predict the number of

transmembrane domains of each protein and this number was associated with an indicator

variable. Low complexity regions in the amino acid sequence of a protein are known to have

an effect on protein function [125]. We used a sliding window approach (window length

= 20) to identify the region with the lowest number of distinct amino acids and used the

composition of that region as the representation of that region.

A.3. Homology

Homology can be loosely defined as shared ancestry and it is measured through sequence

or structure similarity. Homology provides valuable information on function because it in-

dicates the closeness to a common ancestor. Homology to other annotated proteins in other

species was captured using an approach similar to GOtcha scores, as suggested in [24], and

also used successfully by Radivojac’s team in the first CAFA competition [13]. Each protein

is characterized by a feature vector where the jth feature is a confidence score that the

protein is similar to proteins that are annotated with the jth GO category. Let Sj be the

set of all sequences annotated with GO category j and let e(s, s′) be the e-value reported by

BLAST+ [53] for the alignment of sequences s and s′ when querying s against the database

containing s′. We define the e-max score for protein s and GO category j as:

e-maxj(s) = maxs′∈Sj
(−log(e(s, s′)/10)).

This is a simpler version of GOtcha scores, observed to perform slightly better in preliminary

experiments. The e-max scores efficiently integrate evidence for a given GO category across
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multiple species, and a protein is represented as a vector of variables where component j

provides the e-max-score for GO category j. When running BLAST+ we used psiblast with

1 iteration on a database composed of all annotated sequences from every species except the

target species. For example, when running BLAST+ for computing e-max-scores for yeast,

the query consisted of all annotated yeast sequences while the database was composed of the

annotated sequences from rest of the species. This approach ensures that annotations of the

test sequences are not leveraged by the classifier during the training phase. Additionally, we

filtered out low complexity regions using the built-in SEG filter.

A.4. Network

In order to perform its function, a protein usually interacts with one or more other

proteins. This means that looking at the functions of the interacting partners of a protein

can provide valuable hints about the functions of that particular protein. We extracted

protein-protein interactions and other functional association network data (protein-protein

interactions, co-expression, protein co-occurrence, etc.) from BioGRID 3.2.106 [36], STRING

9.1 [60] and GeneMANIA 3.1.2 3 in two species: human and yeast. The BioGRID database

provides protein-protein interaction networks acquired from physical and genetic interaction

experiments. STRING provides networks based on several different evidence channels (co-

expression, co-occurrence, fusion, neighborhood, genetic interactions, physical interactions,

etc.). For a given type of functional association data we combined edges from the two

databases by taking the union of interactions from BioGRID and STRING and represented

each gene by a vector of variables, where component i indicates if the corresponding protein

interacts with protein i in the combined network. The GeneMANIA website provides a

3http://pages.genemania.org/data/
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large number of protein-protein interaction and association networks generated using several

types of evidence: co-expression, co-localization, genetic interactions, physical interactions

and predicted interactions. A gene is represented by a vector of variables for each network,

where component i indicates if the corresponding protein interacts with protein i.

A.5. Literature

If a protein name is mentioned in the close vicinity of a functional category in the lit-

erature (a co-mention) it is likely that this protein may be associated with that function.

To leverage this source of information we extracted protein-functional category co-mentions

using the natural language processing pipeline described in [50] from all Medline abstracts

available on 23-Oct-13 and full-text articles available from the PubMed Open Access Col-

lection (PMCOA) on 06-Nov-13.

The co-mentions we considered are the pairs of protein name and GO category mentioned

in the document within a specified span. We used two spans: sentence and non-sentence.

Sentence co-mentions only consider proteins and GO categories mentioned in the same sen-

tence while non-sentence co-mentions consider such pairs mentioned together in the same

paragraph or abstract, but not within the same sentence.

We provided the abstracts and full-text documents (one paragraph at a time) as input to

our text mining pipeline. It detected protein entities in the given text and mapped them to

UniProt identifiers through a specially constructed dictionary. This dictionary consists of all

yeast and human target proteins from CAFA2. Similarly, another dictionary based on Gene

Ontology categories available on 13-Nov-13 is used to recognize GO categories in the text.

Finally the pipeline outputs the protein names and GO categories along with the counts of

how often they appear together within the sentence or non-sentence spans.
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A protein is represented by two vectors in which the ith element in each vector gives the

number of times that protein is co-mentioned with the GO category i within either a sentence

or non-sentence span. The vectors are concatenated to form the overall representation.
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APPENDIX B

Text-mining pipeline

The text-mining pipeline was developed using Apache UIMA version 2.41. It is used to

extract two types of literature features, co-mentions and bag of words. We provided the

abstracts and full-text documents (one paragraph at a time) as input to our text min-

ing pipeline. It detects protein entities in the given text using a LingPipe trained on

CRAFT [126] and maps them to UniProt identifiers through a specially constructed dic-

tionary. This dictionary consists of all human target proteins from CAFA2.

Next, mentions of GO categories in the text are identified by using a state-of-the-art

concept recognition system for GO term recognition which uses ConceptMapper [127]. We

used a GO term dictionary based on Gene Ontology categories available on 13-Nov-13 as

input to ConceptMapper system. The dictionary simply uses GO terms and their synonyms

available from GO web site, as well as many additional synonyms generated through a

manually generated set of rules by looking at the variation between terms and their annotated

examples in the corpus.

1http://uima-framework.sourceforge.net/
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APPENDIX C

Data for HPO term prediction

Each gene/protein was characterized by several sets of features generated using four data

sources: Network, GO, literature and variants, which are described below. We used the

UniProt ID mapping service1 for mapping genes to proteins.

C.1. HPO annotations

Gene-HPO annotations were downloaded from the HPO website. We ignored the global

root term (“ALL”) and root terms of the three subontologies. We also removed terms

that were not annotated to 10 or more genes. Then we mapped the genes to proteins and

generated corresponding protein-HPO annotations (see Table C.1).

Table C.1. Number of genes, unique terms and annotations. The “unique
terms” column provides both the number of terms and the number of leaf
terms; the “annotations” column provides the number of annotations, as well
as their number when expanded using the true-path rule.

Subontology Annotated genes Unique terms Annotations
Organ 2,768 1,796/1,337 213,000/60,000
Inheritance 2,668 12/10 3,600/3,300
Onset 926 23/20 1,700/1,400k

C.2. Network

We extracted protein-protein interactions and other functional association network data

(i.e., co-expression, co-occurrence, etc.) from BioGRID 3.2.106 [36], STRING 9.1 [60] and

GeneMANIA 3.1.2 2 databases.

1http://www.uniprot.org/mapping/
2http://pages.genemania.org/data/
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The BioGRID database provides protein-protein interaction networks acquired from

physical and genetic interaction experiments. STRING provides networks based on sev-

eral different evidence channels (co-expression, co-occurrence, fusion, neighborhood, genetic

interactions, physical interactions, etc.). We combined edges from the two databases by tak-

ing the union of interactions from BioGRID and STRING and represented each gene by a

vector of variables, where component i indicates if the corresponding protein interacts with

protein i in the combined network.

The GeneMANIA website provides a large number of protein-protein interaction/asso-

ciation networks generated using several types of evidence: co-expression, co-localization,

genetic interactions, physical interactions and predicted interactions. A gene is represented

by a vector of variables for each network, where component i indicates if the corresponding

protein interacts with protein i with respect to that particular network.

C.3. GO

We extracted Gene Ontology [7] annotations from the Gene Ontology web site3 and

Uniprot-goa4. We excluded all annotations that were obtained by computational methods.

A gene is represented as a vector of indicator variables in which variable i is 1 if it is annotated

with GO term i.

C.4. Literature

We used two different sources for generating literature features: abstracts extracted from

Medline on 10-23-13 and full-text articles extracted from PubMed Open Access Collection

(PMCOA) on 11-06-13. A natural language processing pipeline was utilized to characterize

3http://www.geneontology.org/
4http://www.ebi.ac.uk/GOA
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genes/proteins by same-sentence word occurrences extracted from these sources, forming a

bag-of-words representation for each gene [50]. First, all words were lower-cased and stop

words were removed. Then they were further filtered to keep only the low frequency words

(i.e., words that are present only in less than 1% of the proteins in the data). A gene is

represented by a vector in which the element i gives the number of times the word i occurred

in the same sentence with that gene/protein.

C.5. Variants

We extracted all the disease variants in the human genome and their associated diseases

from UniProt5. This data provides variants that have been found in patients and the disease-

association is reported in literature. We also extracted gene-disease associations from the

HPO website. This data associates a protein with diseases that are known to occur when the

associated gene is mutated. To generate features from this data, we first extracted for each

protein pi its set of associated diseases (Di) from the protein-disease associations. Then we

retrieved the set of disease variants (Vi) associated with all diseases in Di from the UniProt

disease variants data. Finally, each gene was represented by a vector in which element j

indicates if the variant j is in Vi .

5http://www.uniprot.org/docs/humsavar
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