NOTE TO USERS

This reproduction is the best copy available.

.

DISSERTATION
Interaction Space Abstractions: Design
Methodologies and Tools for Autonomous Robot

Design and Modeling

Submitted by
Carl L. Kaiser

Mechanical Engineering

In partial fulfillment of the requirements
For the Degree of Doctor of Philosophy
Colorado State University
Fort Collins, Colorado
Fall 2009

UMI Number: 3400991

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if material had to be removed,
a.note will indicate the deletion.

UMI

Dissertation Publishing

UMI 3400991
Copyright 2010 by ProQuest LLC.
All rights reserved. This edition of the work is protected against
unauthorized copying under Title 17, United States Code.

ProQuest

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346
Ann Arbor, Ml 48106-1346

COLORADO STATE UNIVERSITY

August 21, 2009

We hereby recommend that the dissertation prepared under our supervision by

Carl Kaiser entitled, “Interaction Space Abstractions: Design Methodologies and Tools
for Autonomous Robot Design and Modeling” be accepted as fulfilling in part

requirements for the degree of Doctor of Philosophy.

Committee on Graduate Work

Commiftee Member - David Alciatore

roe 03747

Committee Member - Lyﬂlis Bjostead

D //
! ¥ Pa 1cl;}%tzhorn

Advisor - Wade O. Troxell

ST (tp el

Department Head - Allan Kirkpatrick

it

ABSTRACT OF DISSERTATION
Interaction Space Abstractions: Design Methodologies and

Tools for Autonomous Robot Design and Modeling

Current abstraétions, design methodologies, and design tools are useful but
inadequate for modern mobile robot design. By viewing robotics systems as an
interactive and reactive agent and environment combination, and focusing on the
interactions between the two, particularly those interactions that result in task
accomplishment, one arrives at the interaction space abstraction.

The role of abstractions, formalisms and models are discussed, with emphasis on
several specific abstractions used for robotics as well as the strengths and shortcomings
of each. The role of design methodologies is also discussed, again with emphasis on
several currently used in robotics. Finally, design tools and the use thereof are briefly
discussed.

The concept of interaction spaces as an abstraction and a formalism is developed
specifically for use in robot design. Types of elements within this formalism are
developed, defined, and described. A formal nomenclature is introduced for these
elements based on Simulink blocks. This nomenclature is used for descriptive models
and the Simulink blocks are used for predictive models.

The interaction space abstraction is combined with the concept of exploration-
based design to create a design methodology specifically adapted for use in descriptive
modeling of autonomous robots. This process is initially developed around a simple

wall-following robot, then is expanded around a multi-agent foraging system and an

il

urban search and rescue robot model, each of which demonstrates different aspects and
capabilities of interaction space modeling as a design methodology.

A design tool based on iterative simulation is developed. The three
specific examples above are used to perform quantitative simulation and the results are
discussed with emphasis on determination and quantification of factors necessary for task
accomplishment. These simulations are used to illustrate how to explore the design space

and evaluate trade offs between design parameters in a system.

Carl L. Kaiser

Department of Mechanical Engineering
Colorado State University

Fort Collins, CO 80523

Fall, 2009

v

Acknowledgements

As with any significant undertaking, this dissertation would not have happened
without the help and support of many people who are often not fully recognized. In
particular I would like to thanks the numerous friends as well as my parents without
whom I may have given in to the temptation to lay this aside unfinished. Many people
have listened sympathetically and offered both empathy and advice at times when I
needed it.

I also owe a debt to my committee and in particular, my advisor Wade Troxell,
for their advice, encouragement and teachings. This undertaking would also have been
impossible without the financial support of the Department of Mechanical Engineering

and the College of Engineering in the form of fellowships and assistantships.

Table of Contents

Table of CONENLS....ceverrrirreeerrrereerierirereeeeneeeeneees Cererrrtererbneseeeeeeraaeesraaeaarreesarasnnresans 1
Table of Figures........... ROTRN rrereest et v e Freneer e ses T
Table of Tablesc.ccoveevvniriecvennenns Creeseere e eebeeaeeaes veeeres reeteeaeeraan rveereeennneesaeeas 11
Chapter 1 — Introduction.......ccceeveenene teevesceaeens cererenene Cervoereet et saeene e nenes veeenee 12
1.1 Abstractions.........c..cuu. ceeaeteereaaeeee e st e beseesratreneobennasnantens reeetreee e sreranne 12
1.2 Abstractions for Robot Designc..ccoeervrveennnne reeereerrenreenaeeans rveerrereebeeres e 14
1.3 Interaction Spaces and Design Theories......c.ccoevivrnirineercencieneneenencecennes .15
1.5 Thesis Statement............ ereeerosneeesenteasesanentoenns cronerereneenes veeneraneane crerraeneesnaereenne .16
1.6 Synopsis............. bercaenesnonnes frteseeeneeeesieenteetean e ra st e e e saesentesanenrasnossanansoestenasanens 17
Chapter 2 — Abstractions, Methodologies, and Tools for Robot Design.........c.cce...... 19
2.1 The Role of Abstraction in Design verereererneeninasos reeaeeereenisaneeneesansaesne 19
2.1.1 Elements of Abstractionc.ceeveervereeceecrennen feeerenteesnesnesentennostecanes weeenonae 21
2.1.2 System Dynamics veerenenenennannenees veevenorenanes rerueenenaneenenestsnaeneenes vee22

2.2 Design Methodologies.......ccceenee.... cerersenissereonesnsaesennannees verenesaseenane pteereenressensnsd 3
2.2.1 Top Down and Bottom Up Design vevereneeneressaasanes ttvenvereereensenarasns 24
2.2.3 Exploration Based Designc.ccc..... ereerernentesnsennes ceeerrasnesrarrnanstonaearanseas 25
2.2.4 Behavior Based Design........ccccveeeveritenirnenceenicseecreronnnnnenns SR 27
2.2.5 Generalized Design Methodologies..........cc.ceeeucn. reresteseenass st ranensaeennesanens 29

2.3 Robotic Design Abstractions............. ceeereeeeentesn et esaeenesertesrn e bassnaeas voesreseeaareennes 29
2.3.1 Task, Environment, and Agent.......ccceeeecverreeneeences vevsaons pessrssesesssesasesassonas 31
2.3.1.1 = TEA Definitions.....c.ccccoeceeervrrierecnuenenes vreseeanernesnessrrannne terreerresreeanne w32

2.3.2 Affordances......c..ccoemnuernenne creperieene et e nneeateiseone rreereenreenns vereteeiraneeenes veennees33

1

2.3.3 Petri Nets rererereonreoeasonons veresrereessesenaessenennnsnnse reeeersoeneeneresearas teererarenans 34

2.3.4 Geometric Representations........... reeret e are e aenes ceertenaeset et ere e rsananns 34
2.3.5 Sense-Plan-Actcovvcevveeirreiininerieerreee, Ceteenraenrnrsersaannaesraanrrens verreane 35
2.3.6 Schema........ Heeeeeeeaseerabeesereireseteeeereeiatttaaareeoasteeeatateeatereebeesenntearebessnaaestanes 37
2.4 DeSign TOOLScwouroecianrreeceraeniricereereriesiiesisaenansanenes revreereenas sereesneeenens 37
2.4.1 Geometric SIMulationscecevveveenveieveeiiineenn, reeeernaneanes cereeeerreenaeeennnennns 38

Chapter 3 — Adding Structure to Interaction Spaces and Defining Notation for

Interaction Space Modelsc.ccueee. reveereeererareennans reerteentee e esesennaare s aentreesnnaasasans 40
3.1 Interaction Spaces......ccccceevevernvverecrrenirinens reeaares reeeeaneeessreasssraranresenseasnnnrasnn 40
3.2 Reactive Agent/ Reactive Environment.........ceccecveeveereercernaseenens veoenennes RSO 44
3.3 Defining and Using Interactions and Cyclesoccoerverrevrrerennnn crerereereraraeneanes 46

34 Multi-Agent Systems......cccceeevevreercierecenns reeereeees feonrersenaenneenraaass reerereeenrennnaenne .48
3.5 Understanding the Role of Information and Data Types.......ccooeeecerccreccnrenenss 50
3.5.1 Binary Data.....cccooveverirromininenionenirnenieeieeonsssonensesessnonseseosssssessessassoone 50
3.5.2 Discrete Datacc.couee.e. creeenenteaeeossneaneesteasostennaatananannseansanne ceesnenteneensentons 51
3.5.3 Continuous Dataccecceeereeereeneenrieennens reeseeeneanneenasaeentesnnssnsesnaanesnsessasnns 51
3.6 Basic Functional BIOCK.......cccciirviiieiiieniinnieiciccnenninirsceecscecnieseneenesseneas 1|
3.6.1 State BIOCKScoccovieeirienniircnneneeere e reeeurennreeeanaeesrnennenns 52
3.6.1. 1= Features.....coeveriicernieecerenieenveeecesscnasnesesnans rereeetrtee e enenenne veeeeeenee 52
3.6.1.2 — Attributesccocevrrereeennennn. rreeeeeeeereeaatosarraeesoaarestnenaseeesanre s raasaneres 53
3.6.1.3 — Properties......ccccceruenmne povonaee feeersesnaennosneesasennesnasasnenassoentatnenaenaenas .53
3.6.2 Reaction BIOCKSccccveerivneecreeniecrererenoneesonoecrorasecnnas reerearesanes reeeneosennasans 53
3.6.2.1 — Signalsc.ccveeveuenee. vererereeeeeenranne reestete s nabe e arenes et 54

3.6.2.2 — Information..........ocoevvivvevevveveerenn retentsaersaesaeassaaasaaaaeaneeaessesensaanenersies 54

3.6.2.3 — BEhaViors.....cccoerrieeeirinceniieirirciteienirecite e esnc s e e e e e re s sseas s 54
3.6.3 System Dynamic Implementation.........c.coccveveciernnerccrnennneerueccreneesenaes .55
3.6.4 Controlling Functional BIOCKS........c.cocvviniencrniicriinicnincesceceneens 56

3.7 StoChAStiC BIOCKS .. cccuiiiieeeriee ettt e ses e ae s e e e ssans e esnoenseennes 56
3.7.1 Random Number Generator BIOCKS........ccerirrieveeraimnencreeinneneeceneeneennes 57
3.7.2 Random Decision Maker BIOCK........cccoveniinicinnrininniciinenencecreceene 58
3.7.3 NOISE BIOCKS ...viveiiiveciiniciieceienreee e cntenae st sneesaesecseesmeeesessaessnesaesnnns 58

3.8 Tasks...ccoerveene. Ceeereesereasse et e are e teeeanesnnesanee e e e s s an et s s e nneaaatesentenraaantssansesnaees 59
3.8.1 Task Accomplishment for Perceptive Tasksc.cccververccereenenerccrrenruenne 59
3.8.2 Measuring Task Accomplishment in Physical Tasks.....cc.ccccoevvivevncennnne 60

Chapter 4 — Descriptive Models ..o, 61

4.1 Modeling Elementscc.ceceieroneciinirriniinieeecnmineiensecsneoneessncsnesssossenossasases 61
4.1.1 Combining Functional BIOCKSccceveveerieereevennnicrieeneennonureossesonesnoscocsessasas 61
4.1.2 Developing Pseudo Code and Meaningsc.cevvecermvecuccnce veeererentessrnanan 62

4.2 Steps in the Modeling ProCess......cceueicirecrcvnneenneinieccnenesnesseecssenconeesessosenos 63
4.2.1 Defining the Problemi......c.ccoveeiieieniirrneienrienirenienreeeroerescvonmocnssseessresnsennes 64
4.2.2 Creating Initial Cycles......ccceeereneeen. feeereetesaearae e e e rataareesateatasrasneetaenneans 65
4.2.3 Adding Additional INtEractionsc....cccoceevverccermrccrnencrerieineenversmrnecceenns 65
4.2.4 Adding Discrete Signalscccoocvvevvevninnnn feeeeteere st nsae et rgsreereseeenes 66
4.2.5 Adding Analog Signals..........ccceeeerereervencecurerocrenrenrenensosseeseersonsossossasnne .es67
4.2.6 AAding UNCETLAINLYccceeiieerreereenrceninensecseossansnsessossesassassosnocsessnsosessneesacsancs 67
4.2.7 Measuring Task Accomplishment.......c.ccocevvvninnininniicncnniie, 68

4.3 Refining the MOdel......ccouviiricieinirierice ettt aa st a e 68

4.4 Muramador Modelcoeeoeeieneeircinceesiecceieceese s aerae e s e ctes s b ra e 70
4.4.1 Defining the ProbIem.......cc.cooieeririiierinieerientecesreeeseecesoneenneesseenesnens 70
4.4.2 Creating Initial CyCIeso.coevivinrirririrerieecteeet e 71
4.4.3 Adding Additional Interactions to the Basic Model..........cc.covvirnennnnas 74
4.4.4 Adding Discrete Signalscccecoerieerieiincniiinienrreseceeseeessassessesesssasnseas 79
4.4.5 Adding Analog SignalS.......ccccoeeverieiiieriernenienesteesresesseersse e esseeeeens 85
4.4.6 Adding Uncertainty to the Model.........c.ccooniniiviinenvcanicnscnnnenccenncnenenne 88
4.4.7 Determining Task Accomplishment..........ccecereeeerenvenerienieroeresrasesescescrnens 91
4.4.8 Suggested Additions for the Muramador Modelcoceevervvrnecrininennnnns 91

4.5 Multi-Agent Foraging Modelccooveeeriieirinvcniiinceninecenienenrnennencesresessancnans 93
4.5.1 Defining the Problemi....c.ccovverereenencninicieiicciiciecnecseeenecnecneenns 94
4.5.2 Addressing the Multi-Agent ISSUEccocveveneicecirereerienennnevonioeserncereonnrnees 95
4.5.3 Foraging MOdelccoocverireercneniereniniecneenneieestesreneecasnenssssssssesessasesranss 95
4.5.4 Measuring Task AccomplisShmentccoecevreenecieencecnrenecneeniesrerseanneenes 101
4.5.5 Improvements and AddItions..........ccceererreerccrecereeneernrerenenneeseessossesnensonnes 102

4.6 Urban Search and Rescue Victim Detection Model.........c.ccoceevevveniinecacranan 102
4.6.1 Defining the Problem.......ccoovviveniariniininincnneeceneneecesnesreeressessesnes 105
4.6,2 GSVD MOdelL ...ttt crceeceries et es e saesn et eraseenenes 106
4.6.3 Measuring Task Accomplishmentcccovvervrrnceinrencnncceniennereeenienns 107
4.6.4 Additions and IMpProvements..........cccceecerccececereenreoniarceensencsnassesrersesanasees 109

4.7 PrOTOLYPING .oververomercrerriomonarernveoransssosusesasssosneessessasenossaosssossesssasrsessessssonassnsasnes 109

Chapter 5 — Predictive MOEIINgcocooveeiieiinieimenieinicencniesicenenecesteoneceeseennesecnnes 111

5.1 Developing Predictive Modelscccc.e. rerrebentareeneeeneas rerreneeraennsaene v 112

5.2 Implementing a Simulation........... cetreereeaene ettt ettt bbbt en e 112
5.2.1 Simulink Implementation of Basic Functional Block rreerreeens w113
5.2.2 Simulink Implementation of Other Blocks.................. Ceerreeenteineae e evaeans 116

5.3 Measuring and Interpreting Results.............. rrereenenrenes crereeeneseesereneasaens U A17

5.4 Muramador Simulationscc.ccecevvrrenee. vevereanaeas ceeraenes reeveresetearneseeenrans ceereeen 118

5.5 Foraging Simulations........ vrerneneenne e v ceere ettt s b e st a s ae s s 121

5.6 Victim Detection Simulations..........cccceeveeeenee eereesreresseenneasnnans reeeereesnnernes 125

5.7 Exploration Based Design with Predictive Modeling vreenrrennns verereeereens 126

5.8 Discussion on Predictive Modelingccccocceeveenevvccecrennen reeraeneesioeeenenesenns 128
5.8.1 Multi-Variate Parameterized Simulations creresreenans reeneeneeenranaees 128
5.8.2 Grounding the Simulations.......cccocevveecnenicenincennnineeas bereneestenasatennesanas 128
5.8.3 Limitations of Simulink Simulation Environment rreraeneesnenasreaneens 129
5.8.4 Comparison to Current Methods ceerneerreeaesnasereenne vererereeetsonaeones veeereoe 130

585 Computational Complexity.........ccoceenreee feesesnneranreeransresanseesrnrasssanases serneeen 130
Chapter 6 — Conclusions and Future Workcccceeveenvecenessiarenossacens treeeeenseesnreasasan 132

6.1 SUIMIMALY .eveenreriireeecnmerioneneecnesonseoesessoseseosmosecsos ceeraneesasesneasnreesneesurassanesnraonn 132

6.2 Conclusions.................. veeenunannees freentesentesraebte s et to s atseane e sstasasesennsane e neeonnesran 133
6.2.1 Interaction Spaces and Design...........cccc.... revrereeesesnenne ceetsesrenesras e 133
6.2.2 Descriptive Modeling firerereaenteeaeereeaneartenreane veeereenes vreeanenneeneenates 134
6.2.3 Predictive Modeling.............. reeetre et oo s s stretaeese s neeannaase cererrenesnnennaeane 135

6.3 Future Work.......ccoceee. feeeerrernessnseasaaasneann ceveeonnaeas reeereeeurennesnrosuresanennenseennsenn 135
6.3.1 Real Robots........ reevreenes vereeraes beeeroens creererenneaies creerereereeeans veerreereeerearessnanes 135

6.3.2 Dealing With UnitScccoeeerreereniniircrienienineisiinieseesnnescssensensestssecnesnenes 136

6.3.3 Standard Simulation Language........c.ccoeevvrierveerieccnriensecenseeennereessenseseanne 136
6.3.4 Expansion of Standard MOGUIESc..ccccevervrcrirencriniennesreneeseecneseenseononne 137
RETEIEIICES v vevenieiesiiesteesesereniesaetesaseestsacststeneeseesestanbebeneessssesbesessnensesensenuansssessensanens 138
Appendix A — Implementation and Code for the Simulink Modeling Tools 143
A.1 — Simulink Implementation of @ StOCKecovuiivevenrennrrreceienererereenececoneencs 143
A.2 Simulink Basic Functional Block Implementation........cc.coinnniccnnincinennne 148
A.3 — Simulink Uniform Random Number Generator Implementation................ 149
A.4 — Random Decision Making Block Implementationccoccecevvecerivecnnnnae 150
A.5 — Discrete Random Number Generation Block ... 152
Appendix B — Code for Simulink Modelsc.ccoovinrnnninininininininnniniinenes 154
B.1 — Muramador Modelc.ccoveeroiiiioiniiiiiiiicnniencicennernteetencecsenrennse i 154
B.2 — Multi-Agent Foraging Model.....c.cccccovvrieiiinrnrcrencnncnncenenecsssecnoneens 158
B.3 — GSVD MOGELoeivereeciniiriecienieeenentoiniosnnecnssisceneessssneesrosssossassnsosssossssasones 165
Appendix C —PowerSim Code.....ccoeninvnicinniniinnicninnaneneseencnnsnsnissessesens 176
C.1 ~ Muramador Program Listing (POWErSim)ccevevereenuereecvecnrenssrecscescesnenes 176
C.2 Foraging Program Listing (POWEISIm)........cocverniimicnnenmiinsieonncnneninens 178
C.3 Victim Detection Program Listing (POWerSim).......ccecceeerrircevenicceieninennes 184

Table of Figures

Figure 1 - ROSEN MOGE]ooovieireeoirioinieniioiiiiriniecescsre st eesvee s estes e e sssesnsessnsenses 20
Figure 2 - Types Of ADSIrACHONcovveereeciieiiicietet ettt eesestesrassesesessnaesaaseenas 21
Figure 3 - Basic System Dynamic Elementscccoccvievrvivinioennccnenensennenennens 23
Figure 4 - Top Down and Bottom Up Designcc.ccovvvenmrnneninnenineenrneeeeesienees 25
Figure 5 - Exploration Based Design.......ccevervenicecioninninicnnnienereniiesecnenacseessenseenes 26
Figure 6 - Vertical Robot Decomposition [1]......ccccvvvvvivinieninierncnrre s 28

Figure 7 - Level of Abstraction and Type of Design Process for Various Robot

ADSITACTIONS c1evereereerareeienereneeseeisenensesanseeresssassentorsessosmassosnsssanssossossssssesnansosaesssnsonss 30
Figure 8 - Task Environment and Agent Abstraction with Interaction Spaces........... 32
Figure 9 - Sense, Plan, Act AbStraCtioN......cccevverieceriiieniieeesieesreeseesesseseseenssssnesnenns 36
Figure 10 - Sense, Perceive, Plan, Act AbStraction.......c.ccecvvvenvieiirecareenneeccoonnenernennnne 36
Figure 11 - Task, Environment, and Agent Abstraction with Interaction Spaces....... 41

Figure 12 - Level of Abstraction and Top Down vs. Bottom Up Characteristics of the

Interaction Space Abstraction Relative to Other Robot Design Abstractions............. 43
Figure 13 - Quadrant abstraction of Interaction SPacesccccoverreecerreecresvaserseernesnasenas 45
Figure 14 - Interaction Space CyCles......ccccecvrnicvrcrenenenienroneanuesuecnisaseeseercoreoneareoes 47
Figure 15 - Multi-Agent Quadrant abstractioncccccoeeciiicirennninecnnnnenes 49
Figure 16 - Basic Functional BIockcccooiviiinoniiiciicinnenicncenninene 52
Figure 17 - System Dynamic Implementation of a Basic Functional Block 55
Figure 18 - Uniform Random Number Block.......cccccoeenirerninnennivencnniccenaneenioneenns 57
Figure 19 - Discrete Uniform Random Number BIocKc.oecvveiieinieenininnincncnnncenn 58
Figure 20 - Random Decision Making BIOCKcceccevvirvrrierieroviniieirirsvienrerenienne 58

7

Figure 21 - Standard Cycle AbStractionc..ccccccoviivmicnnineceinnncniinniecencenenes 62

Figure 22 — Creating an Initial Interaction Space Modelcocvvnvvviineccncnnnnccnnen 64
Figure 23 - Options to Refine the Initial model........ccccoooiviiivninncins 69
Figure 24 - Basic Cycle for the Muramador Modelcccocovivvinriccninnininicinnns 72
Figure 25 - Muramador Model with Additional Interactionscc.ccevevvevrcvrcrneenvecennns 75
Figure 26 - Muramador Model with Additional Interactionscccocoveccecviinreccnnee 77
Figure 27 - Muramador Model with Diécrete SignalS ... 80
Figure 28 - Muramador Model Additional Discrete Elements........ccccoceveninncnrienns 83
Figure 29 - Muramador Model with Analog Signals.......cc.cccecevneennncnccinnncecannns 86
Figure 30 - Full Muramador Model..........c.cevevienernenieinenieiiiioiecneeonieseensecnenns 89
Figure 31 - Foraging Robots as Implemented by Krieger and Billeter {32]................ 94
Figure 32 - Foraging Agent BIOCK.....cocoevirreireenicriniiiiicriecincccccsenienneons 96
Figure 33 - Foraging Agent Block Internal Structure........ccevcevvcrcmvninnninccinnenvnnenn 97
Figure 34 - Environmental Reaction BIocKccccccvimiecniciiniininiinininicnnciirinnnencenies 98
Figure 35 - Environmental Reaction Block Internal Structureoeeevivcviccinccnenn 98
Figure 36 - Environmental Properties BIOcKcccccccveeivenicncninniicrinvenecssinnronnennes 99
Figure 37 - Environmental Properties Internal Structure eveeneeaneennasntecresasenes 100
Figure 38 - Multi-Agent Foraging Model.........occocvvinnincnninnninniiinininicicinne 101

Figure 39 - Typical RoboCup Terrain and a Typical Victim with the Good Samaritan

I FTONE OF T eeieieniiiiecerecrecretetet e nteetee e st s s n e a s sssasenas st s e asans 104
Figure 40 - Additional Typical RoboCup Terrain with the Good Samaritan............. 104
Figure 41 - Crowd at the RoboCup Competition in 2006c.ooccevvcvvvevcininiinnnes 105
Figure 42 - GSVD Framework Model with Basic Elementc...ccccvvnviriniincennne. 107

Figure 43 - Simulink Implementation of a Basic Functional Block..............co.c.c... 113

Figure 44 - Simulink Implementation of a Basic Functional Block...........coccceeerene. 114
Figure 45 - Dialog Box t0 Set the M-flle.....ccooviviiniiverininiirecirneeeeesensneereereseeseans 114
Figure 46 - SIMUNK StOCK......cceirrieierieierinenetreneseee et reree s erne e seneneseaae 115
Figure 47 - Dialog Box to Input the Initial Value of the Stockccooeccvvveviviccinincens 115
Figure 48 - Random Decision Making Block.........ccccccovviariniiiirnninieninnieenceneniennens 116
Figure 49 - Random Decision Block Dialog BoX......cccccovviieinmiiiiinccniecnnicncnnn 116
Figure 50 - Random Number Generation BlocK.........cccoceeirirnienerinnenenconcvenccnnnens 117
Figure 51 - Discrete Uniform Random Number Generator..........c.coeeeeereicerecencnnes 117

Figure 52 - Muramador Model of the Presence of a Wall (Time Units are Arbitrary)

,,, 119
Figure 54 - Muramador Instantaneous Wall Distance (Units are Arbitrary)............. 120
Figure 55 - Average Distance from the Set Point......cocccocvvevvniinvrcrcccvnnenininnnn 121
Figure 56 - Agent Foraging Output (Units are Arbitrary)o.ceeceveerceecreerveccenconcene 122
Figure 57 - Agent Object Found Output (Units are Arbitrary).......ccceveereeceienneccnne. 122
Figure 58 - Individual Agent Energy Level.......occoooirmieninonicnnncnecenenencereenens 123
Figure 59 - Instantaneous Nest Energy Level for a Typical Power Sim Run............ 123

Figure 60 - Maximum Number of Times Steps (5000 possible) to Complete Nest
Energy Loss (0Ut 0f 20 TUNS) ceovieeriercrecireciniccirienitcnitc e snsontesssesscneesansesssosssnsonnes 124
Figure 61 - Average Nest Energy as a Function of Agent Energy Usage and the Value

of an Energy MOdUuleocovcviieeiriirnrireccecere et e 125

Figure 62 - Average Number of Victims Found Based on Environmental Noise and

SENSOT EffECtIVENESSuveevierrrrrnreneeneeeeiieieineeseriesiessossneneontensensessesseosuessasnessasassnnons 126
Figure 63 - Exploration Based Design with Predictive Modeling........o.ccccceevvvvnnnnne. 127
FIUIE 64 — SEOCK ...ueeteriericecteteriecietererent et tsreenes e senseesssnsesesses s eeestasnessesneemaoness 143
Figure 65 - S-Function Dialog Box for a Stock........ccccveeirineevnreneinnencnniennneccs 144
Figure 66 - Stock User Dialog Box for Setting the Initial Valueccccocccevivnnnce 144
Figure 67 - Stock Mask Initialization ... 145
Figure 68 - Basic Functional Block Implementation.........cccccvvevnvicivvnecrcninnnnnenne 148
Figure 69 - Uniform Random Number Generator Block Internal Structure 149
Figure 70 - Uniform Random Number Generator Block Mask Initialization 150
Figure 71 - Internal Structure of a Random Decision Making Block.....c.ccecveveneneee 151
Figure 72 - Random Decision Maker Function Dialog BoX.......ccccecvviveccnnnennnnc 151
Figure 73 - Random Decision Maker Block Mask Parameter Set Up.....cc.coceeveennncee 152

Figure 74 - Discrete Uniform Random Number Generator Block Internal Structure

,,, 152
Figure 75 - Discrete Uniform Random Block Mask Initialization........c.cocceveneenecsn 153
Figure 76 - Muramador Framework Model without Basic Modeling Agent 154
Figure 77 - PowerSim Muramador Model........ccccoeveninininncinicniecnine 176
Figure 78 - Foraging Agent PowerSim Modelccociivrnniiicnccinmincoicccnnnnnnenn 178
Figure 79 - Foraging Agent Environment PowerSim Modelc.ccooeceeiiniiiiiinas 179
Figure 80 - Left Side of the USAR PowerSim Model........ccccoeveeevioinrirncnncnccrcnnens 184
Figure 81 - Right Side of the USAR PowerSim Model..........cococcveerenvveciirnnecnnee 185

10

Table of Tables

Table 1 - Muramador Basic CYCIe.....ooeiinmrniriiiiiiiencniiieieenteeccrsie e e e sresene 74
Table 2 - Muramador 1st Set of Additional Interactions.......c..cccecerceverecenvrrnereenenen 76
Table 3 - Muramador 2nd Set of Additional Interactions..........ccccocevecveverrcvcncrirnnene. 79
Table 4 - Muramador 1st Discrete Model..........ooovirciivininiinnircncenenenn 82
Table 5 - Muramador Model Additional Discrete Elementsccoccoieuvvceccirccnnnnnnns 85
Table 6 - Muramador Model with Analog BIOCKS......ccovververccoiccieiiniinicceneicens 88
Table 7 - Muramador Model with Uncertainty.........ccccovvevereecnnivennniincnensnnennenone 91

11

Chapter 1 - Introduction

Robotics in its current form has been enabled by the digital computer.

Steady improvements in computing and other technologies such as sensors and
actuators have led to widespread use of robotics in many tasks. Other tasks have
remained relatively free of robotic involvement on any large scale; in some cases
because relatively little effort has been made, and in other cases because effective
robots have eluded deSigners despite substantial efforts.

Each robot operates within an environment; these environments can range
from carefully engineered to relatively unstructured and uncertain. Generally two
approaches exist to dealing with robots in complex environments. Where practical,
one can seek to reduce the effective complexity of the environment. This has
generally been the case with industrial robots and many research robots. In many
cases, redesigning the environment is impractical or undesirable. It is with these

cases that the remainder of this dissertation will be concerned.

1.1 Abstractions

If, as has been discussed, an environment cannot or should not be modified, it
is necessary to find a way of understanding the environment. It is also necessary to
develop an abstraction of the task if the task is significantly complex. Moreover, it is
likely that any robot capable of performing a “complex” task would itself be difficult
to understand without some tool to assist in description and understanding.

Abstraction is a generalized tool for understanding complex phenomenon.

Formally introduced in Chapter 2, abstraction can generally be thought of as a mental

12

model. Abstraction is used throughout engineering design. As examples, consider
the concept of current symbolizing a flow of electrons (in and of itself an abstraction
of a more compilicated physical reality) or the concept of enthalpy in thermodynamics,
which is actually a more abstract, and for some situations more useful, way of
expressing probabilistic movement and behavior of atoms. The behavior of the atoms
is in and of itself a simplification of the interplay of various quarks and subatomic
forces.

The examples above represent formal abstractions. It is also possible to have
informal abstractions. Informal abstractions are more internalized mental models; for
example, most children develop the abstraction that throwing a ball harder results in it
flying farther. This has nothing to do with the formalized abstraction of projectile
motion, or with the more complex abstraction of wvarious gravitational and
aerodynamic theories.

Informal abstractions are essential to everyday life. Individuals rely on
generalized mental models to anticipate the effects of their actions. Likewise, modern
engineering relies on more formal abstractions to predict behavior of the surrounding
world and thus design devices that work. Although the devices work in the real world,
it would be difficult for the engineer to deal with subatomic forces and particles while
designing a building. Abstraction allows these effects to be aggregated and dealt with
on a macroscopic scale.

Formal abstractions such as those most commonly used in engineering are
well documented and have been evaluated experimentally to reveal limitations, such

as the breakdown of Newtonian physics at speeds that are a significant fraction of the

13

speed of light. The risk of all abstractions, but especially informal abstractions, is
applying them in situations where they are invalid. To return to the abstraction of
throwing the ball, an unstated limitation of this abstraction is that the ball must leave
the hand traveling in the right direction. Most adults unconsciously add this to their
movements when throwing a ball, but watching a two-year-old quickly reminds one
that this is a refinement of earlier childhood abstractions. More formal abstractions
can also suffer from this limitation as evidenced by unexpected failures of various
devices from the Tacoma Narrows bridge to the space shuttle Columbia. In general,
the more informal the abstraction the more risk there is of applying it incorrectly or of
two individuals applying it differently.

In addition to allowing for prediction, abstraction also facilitates
communication and documentation. For well over a century, the three-view
dimensioned drawing was the engineering communication tool of choice for
mechanical objects. These drawings were not physically the objects but rather
abstractions of the objects. The abstractions were not needed to design the objects,
but rather to document and communicate the form of the object. This abstraction was
only useful for communication because it was a formal abstraction with an agreed-

upon relationship to the real world.

1.2 Abstractions for Robot Design

To design a complete robotic system it is necessary to consider the task, the
environment, and the robot. Moreover, it is necessary to consider (and therefore in a
complex system, abstract) the interactions between these three elements. After

introducing some necessary concepts in Chapter 2, the remainder of this dissertation

14

will focus on the interactions between the task, the environment, and the agent; how

these interactions can be abstracted; and how those abstractions can be used.

1.3 Interaction Spaces and Design Theories

The process of developing a theory of design in a particular field is largely
related to developing correct formal abstractions and knowing when and how to apply
each one systematically so that gaps are not created. The abstractions themselves
often come from the physical sciences, but can also come from engineering practice;
for example, the behavior-based architecture for robotics proposed by Brooks {1} is
an abstraction for how to build a robot control system. Also necessary is the design
process (abstractions of how to undertake a design) for a particular field. As
discussed above, any of these abstractions can be either formal or informal or some
combination of the two. As a design theory matures, these abstractions become more
formalized. In general this process leads to more efficient and successful designs.

An interaction space is the set of all possible interactions between the robot
and the environment. [2,3] The goal of robot design is to create a system that will act
in that portion of the interaction space that will result in accomplishing the task.
Interaction spaces focus specifically on the features and reactions of the agent and
environment that trigger the desired interactions. Interaction spaces will be
developed in further detail in Chapter 2.

Interaction spaces are used to more formally abstract the process of task
accomplishment within a robotics system. The interaction space in and of itself is an
abstraction but is primarily intended to help a designer apply other existing

abstractions to a design.

15

As it currently exists, the interaction space abstraction only allows the
designer to organize the abstractions that make up the interaction space. Interaction
spaces do not currently help a designer to develop these abstractions, decide what
abstractions should be used, or help to ensure a complete overall picture of the system.
These tasks require a design process also sometimes referred to as a design
framework. Such a process or framework does not currently exist around interaction
space modeling. Much of the remainder of this dissertation will focus on developing
such a framework.

Abstractions used for documentation and communication of robot design are
common and often overlap with existing design fields; however, communication of
the interaction between the robot and the environment and the relationship of those
interactions to task accomplishment is generally not well documented in a formalized

abstraction. Interaction space modeling is intended to bridge this gap.

1.5 Thesis Statement

By viewing robotics systems as an interactive and reactive agent and
environment combination, and focusing on the interactions between the two,
particularly those interactions that result in task accomplishment, the abstraction of
interaction space models can be developed.

Interaction space modeling (based on the interaction space abstraction) can be
used inside a formal framework with both an agent and an environment state
represented, as well as agent and environment reactions. By defining interaction
cycles between these components, a designer can formalize knowledge and

assumptions about the interaction of the agent and environment as well as task

16

accomplishment. Standard functional blocks can be used to implement these models
and should be added iteratively in a bottom up fashion to help the designer implement
an exploration-based design process and provide a design methodology.

Further expansion of the concept of interaction space modeling combined with
a mathematical framework provided by system dynamics can lead to predictive
models that function as design tools. These design tools can provide both qualitative
and quantitative insight into individual requirements necessary for system level task
accomplishment.

By considering the agent and environment as equal reactive systems, and by
iteratively refining the understanding of task accomplishment as an interaction
between the two, the focus remains on the system level design instead of clever

engineering or technology.

1.6 Synopsis

Chapter Two of this dissertation focuses on the fundamentals of formalized
design. The role of abstraction is discussed, with emphasis on several specific
abstractions used for robotics as well as the strengths and shortcomings of each of
these. The role of design methodologies is also discussed, again with emphasis on
several currently used in robotics. Finally, design tools and their use are discussed
briefly.

Chapter Three of this dissertation uses the concept of interaction spaces as an
abstraction, and formally develops the abstraction specifically for use in robot design.

Types of elements within this abstraction are developed, defined, and described. A

17

standard nomenclature is introduced that is used throughout the remz_iinder of the
dissertation.

Chapter Four combines the abstraction described and developed in Chapter
Three with the concept of exploration-based design to create a design methodology
specifically adapted for use in descriptive modeling of autonomous robots. This
process is initially developed around a wall-following robot, a multi-agent foraging
system, and an urban search and rescue robot model, each of which demonstrates
different aspects and capabilities of interaction space modeling as a design
methodology.

Chapter Five takes the interaction space abstraction from Chapter Three and
the interaction space methodology from Chapter Four and creates a design tool based
on iterative simulation. The three specific examples from Chapter Four are used to
perform quantitative simulation and the results are discussed with emphasis on
determination and guantification of factors necessary for task accomplishment.

Chapter Six Reviews the new wqu presented in this dissertation, discusses the
conclusions that can be drawn from this work, and suggests future avenues of
research to capitalize on the beginning made here.

Finally, a number of appendices are provided to give implementation details
not relevant to the general discussion of interaction spaces, but necessary to replicate

or expand this work in the future.

18

Chapter 2 — Abstractions, Methodologies, and Tools
for Robot Design

When discussing design, three broad categories of formalization are available.
Design abstractions reduce the complexity of a system to a level comprehensible to a
designer and allow the designer to communicate his or her ideas to others who are
familiar with the abstraction. Design methodologies provide a process to assist the
designer in the creative process and in accounting systematically for the steps
necessary to create a functional system. Design tools provide quantitative insight into
the functionality and behavior of a system and allow for reduced physical
experimentation during the design process. Each of these formalizations is critical to

design in the modern world of limited time and resources and global competition.

2.1 The Role of Abstraction in Design

The concept of abstraction is fundamental to design. The real world is
infinitely complex, or at least so nearly infinite as to be effectively so for the purposes
of current human capabilities. By contrast, an abstract model (mental or otherwise)
of the real world is understandable, allows prediction, and often provides sufficient
correlation with reality that conclusions derived from the model are effectively
correct in the real world. The practice of design consists of the selection of an
acceptable solution to a problem from among the many possible solutions. This can
only be carried out via the development of a mental or physical model of the problem

and solution.

19

A tool for understanding abstraction is the Rosen Model [4] shown in Figure 1.
The Rosen Model, itself an abstraction, envisions the real or material world on the left
side of an imaginary line. Within the real world, events occur due to causality,
explained in other words as the normal flow of time and the laws of nature. On the
right side of the same line, the abstract world exists. Within the abstract world,
events “occur” based on execution of formal constructs; in other words, predictions
are made according to the model that defines the abstract world. To move between
the two worlds, an encoding or decoding process must take place. The encoding
process is the mental process that takes place to transform the infinite complexity of
the real world to the finite complexity of an abstraction; the decoding process is the
application of the abstraction to infer real world results. The quality of the encoding
and decoding processes represent the accuracy and precision with which predictions

made in the abstract world wili apply to the real world.

Real World

Abstract World

Material World | Model

Causality
Computation

Encode

Figure 1 - Rosen Model

20

There are several abstractions that are currently used to develop models for
autonomous systems. A brief overview of the most common, as well as those
particularly relevant to the work in the remaining portion of this dissertation, is

provided below.

2.1.1 Elements of Abstraction

In addition to abstraction, which is discussed above, it is also important to
understand the distinction between abstraction and other related concepts such as
formalisms, models, and realizations (see Figure 2). As shown in the Rosen Model,
there is an encoding process from the real world to the abstract world. In some cases
this encoding process can take the place of an informal removal of detail (here
referred to as the process of abstraction) while in other cases a formalism exists that
explicitly guides the move from the real world to the abstract world. In this case the
process of abstraction is still being applied but it is guided by the formalism. An
example of this would be the application of Newton’s Second Law to abstract the
motion of a projectile. Other less rigid formalisms are possible; the key aspect is that

they represent a clearly communicable and documented encoding.

-
Abstraction

Y

Formalism Model Construction Realization

Figure 2 - Types of Abstraction

21

A model is what is created when one or more formalisms are applied to create
an abstraction of a system. A model should be a representation of system behavior.
Models can be both descriptive (i.e., what does happen) or predictive (i.e., what the
system will do).

As shown in the Rosen Model, in order to move out of the abstract world and
back into the real world, a decoding process is needed. In engineering, this decoding
process is a multi-stage process as a system is designed and built. A physical system

that has been built is a realization of the model.

2.1.2 System Dynamics

A formalism that will be used within this dissertation is system dynamics.
System dynamics [5,6] is a feedback loop based technique for abstracting difficult-to-
quantify situations, particularly in the business and econorhic world. In particular,
system dynamics is used to model, understand, and communicate the complex
interactions of related components of a system. System dynamics models contain the
six basic elements shown in Figure 3. Stocks represent quantities and can most
generally be thought of as real numbers. Flows represent a change in a stock.
Auxiliaries are used to decompose complex logical or mathematical statements. Data
arrows indicate connections between elements of a model, and denote the
transmission of the value of one element to the other element. Constants are exactly
that and do not change throughout the simulation. Sources and sinks can be thought

of as stocks with value infinity.

22

Symbol Name

Stack

(/r\ Source! Sink
resanand~

Flow

Constant

] Data Arrow

O Auxiliary
L
F

Figure 3 - Basic System Dynamic Elements

System dynamics as a formalism tends to focus on cause and effect
relationships, and as such can be useful when considering the interaction space
abstraction discussed below. In addition, most system dynamics texts, such as those

referenced above, emphasize an iterative bottom up modeling approach.

2.2 Design Methodologies

Design is the application of an abstraction, usually through a formalism, to
create a model. From this model, predictions about the efficacy of particular
solutions are then evaluated in an attempt to determine an optimal solution. This

description, while common, does not adequately address the issue of determining

23

possible solutions. Within the field of robotics, the determining possible solutions
step is often addressed in a vague process of brainstorming or similar activities.
While these activities are indisputably useful, they are more effectively applied as
part of an overall design methodology such as the exploration based design process

discussed below.

2.2.1 Top Down and Bottom Up Design

Most design methodologies can be broadly classified as either top down, or
bottom up [1,7,8]. A bottom up design strategy involves getting the simplest possible
element of a solution working and tested. Additional elements of the solution are
then added incrementally with full testing and verification at each step. Thought is
not given to the design of later increments while a particular piece is designed. By
contrast, a top down strategy focuses on the simultaneous design of the entire system.
In theory, all aspects of a solution would be completely known prior to construction
of any element.

In practice, the top down, bottom up distinction is really a spectrum as shown
in Figure 4. Bottom up design is used principally when a field is not well understood
and when design tools and abstractions are poor, while top down design is more
common in mature fields with well-understood abstractions, methodologies, and

design tools.

24

i o Natural Progression Over Time i>

Wright Most Current - Economic .
Flyer Moble Viabiity Boeing 777

Bottom Up | Top Down
¢ Prototyping ¢ Design Tools
e Slower s Faster

Low Development Cost
Requires Deep Knowledge

« High Development Cost
Regquires Shallow Knowledge

Figure 4 - Top Down and Bottom Up Design

2.2.3 Exploration Based Design

Exploration based design (EBD) [9,10] views design as a narrowing
refinement of constraints. Initially, one starts out with all potential solutions to a
problem (a solution space). Based on understanding of constraints and criteria, a
designer is able to eliminate large portions of the solution space. Exploration through
analysis, modeling, or prototyping of remaining segments of the space is used to
further refine and quantify constraints and criteria in order to eliminate additional
solution space regions. Gradually a designer narrows in on a single solution that best
meets the constraints and criteria as they are understood.

Exploration Based Design begins with three elements: K4y, Kgm, and R;. Kgm
is designer knowledge of the domain. This includes knowledge of how to perform a
particular task; for example, that turning a doorknob and either pushing or pulling
opens an unlocked door. Ky, represents knowledge of how to design in a particular

field and can be broadly said to represent past experience of the designer plus any

25

formal methods that are to be used. R; is a set of initial requirements, often in a
qualitative form and rarely at a sufficient level of detail to begin choosing solutions.
In an EBD process, illustrated in Figure 5, a designer would then use Kgn, K¢ and
other properties to generate a better set of requirements. This would then eliminate a
portion of the solution space, allowing a more detailed refinement loop to be
subsequently implemented on the requirements. When applied in an iterative fashion

this will, in theory, lead to a design that solves the problem at hand.

identified Realization of
Needs or Needs or
Desires Desires

]

Exploration Ry
Process fem Ds
l.' Hf

Physical
Prototyping

Figure S - Exploration Based Design

26

2.2.4 Behavior Based Design

The behavior based design abstraction [11,12] seeks to define a parallel set of
behaviors (i.e., tightly coupled reactions to environmental stimuli) that together result
in emergent behavior that will lead to task accomplishment (an example from Brovoks’
seminal paper on the subject is shown in Figure 6.) Brooks, [1,7] the most visible
practitioner of behavior based design, tends to advocate that the best way to
accomplish this is through bottom up physical prototyping of successive layers of
behavior. Indeed, in many cases, the concept of behavior based design is mentally
linked directly to the concept of extensive physical prototyping and unpredictable
emergent behaviors. This is undesirable due to the inherent cost in time, materials,
and testing that is associated with design based purely on physical prototyping,
particularly when used not for debugging, but for exploration, as is the case when
emergent behavior is sought. This issue is discussed in further detail later in this

chapter.

27

{ Reason About Behavior)
of Objects J

’ﬂ‘ _{ Plan Changes to the M
8 World |
——v(Identify Obijects)—-——»

) _ A
IS ————»(Monitor Changes)——-—» C
(N U
1S m{ Build Maps }m.., Al
10| ' T
IR 0
IS —umb(Explore R
{ Wander jmmb
mm-»-(Avoid Objects }mm» |

Figure 6 - Vertical Robot Decomposition [1]

Many implementations of behavior based design exist including subsumption
[1], schema [13,14], and a host of others. In general each of these is useful in certain
cases. It is left to the broader engineering community and the individual designer to
make use of these as appropriate. In general, a design methodology should seek to

allow use of as many of the tools that have been developed as possible.

28

2.2.5 Generalized Design Methodologies

Many generalized design methodologies exist. It is beyond the scope of this
dissertation to provide a comprehensive description or explanation of these. Several
comprehensive references are available in most technical libraries. Any of these
generalized philosophies can be useful and relevant to robot design; however, in the
parlance of exploration based design, most of these are predicated on very detailed
and specific domain knowledge and extensive design knowledge within a narrow
field. Given the present absence of this knowledge in many fields with potential
robot application, these generalized methodologies are often insufficient for speedy

and successful robot development.

2.3 Robotic Design Abstractions

Design abstractions in general, and robotic design abstractions in particular,
can be classified according to both level of abstraction and the degree to which they
are applied top down or bottom up. Design abstractions applied at a high level of
abstraction are generally used for conceptual design and initial design definition
while lower levels of abstractions become more applicable as the design process
progresses. This is not a hard and fast line, but rather represents a progression.

Many robotic design abstractions have been proposed, many framed as
architectures, and others specifically as design abstractions. A representative set of

design abstractions is shown in Figure 7 and discussed below.

29

Level of
Abstraction

(s Affordances

Typical Progression of a :
Design Petri Nets .
~ Task, '
Environmert,
and Agent

Conceptual Design and
Initial Deffinition

Detailed-Design and
Implementation

Subs
umpt
ion

< Schema

Bottom Up Top Down

Figure 7 - Level of Abstraction and Type of Design Process for Various Robot Abstractions

Within the exploration based design model, design abstractions are typically a
way of capturing domain knowledge about the system. To the extent that these
abstractions have a formalized manner in which they are typically applied during
design (for example, subsumption is typically applied in a particular bottom up
fashion described by Brooks) they may also represent design knowledge.

For the purposes of the remainder of this dissertation, a robot will be
considered any designed system that reacts to its environment and which seeks to

accomplish a task.

30

2.3.1 Task, Environment, and Agent

In the Task, Environment, and Agent (TEA) abstraction (Figure 8), robotic
systems are comprised of three parts: an agent (robot), an environment in which it is
to operate, and a task or tasks that it is designed to achieve. Early robotic projects
dealt predominantly with agent design using contrived tasks and contrived
environments. Later work [15] views task, environment, and agent on equal terms,
whereby each part of the system must be based in the real world (e.g., not contrived).
Moreover each of the three elements must interact with the other two. The TEA
abstraction explicitly points out the equal, if not greater, importance of the
interactions between system elements as compared to descriptions of the elements
themselves. As shown in Figure 7, the TEA model is generally a high level
abstraction, most useful in the early stages of design. The TEA model is relatively
neutral with respect to top down or bottom up design.

Unlike most of the other abstractions discussed in this chapter, the TEA
abstraction does not lend itself to implementation and hence is not as clear cut a case
of domain knowledge about how a system works or is constructed, nor does it provide
any knowledge of how to design a system and cannot be considered design
knowledge. However, the TEA abstraction is in fact a limited form of domain

knowledge.

31

Interaction Space

Environment | A*géﬁt v

Interaction Space

Figure 8 - Task Environment and Agent Abstraction with Interaction Spaces

2.3.1.1 — TEA Definitions

¢ Task: A measurable outcome of the interaction between agent and
environment. A task must be “useful” in that it must contribute to an agent’s
purpose.

e Interaction: A cause and effect exchange between an agent and an
environment

e Agent: An independent device, consisting of one or more subsystems, that is

designed to complete specified tasks

32

e Multi-agent system: A system consisting of more than one agent that is
designed to carry out additional purposeful task(s) beyond the sum of the
capabilities of the constituent agents.

e Environment: The entire “relevant” world, excluding the agent itself, but

including other agents in a multi-agent system

2.3.2 Affordances

The theory of affordances was applied to robotics by Ford [16]. The theory of
affordances postulates that an agent is able to achieve a task because certain
invariants in the environment “afford” the robot the opportunity to accomplish that
task. For example, a chair has invariants in that it is at approximately knee height, is
able to support weight, and has a flat surface, thereby affording a person the ability to
interact with the chair by sitting on it.

The theory of affordances is a step in the right direction, but has two notable
limitations with respect to understanding the interaction of task, environment and
agent within robot design. The first is the qualification problem [17]. The second
related problem is that there is no quantification associated with this theory making it
difficult to use for prediction of real system behavior. As shown in Figure 7,
affordances are a very high level of abstraction and are typically used very early in
the design process. Moreover, since there is no formal structured method to apply
affordances, this abstraction is principally a way of capturing domain knowledge

rather than design knowledge.

33

2.3.3 Petri Nets

Petri nets, first developed by Carl Petri [18] are one form of abstraction used
to model mobile robot design. Within a Petri net, many states are defined, each of
which may be either active or inactive. For each state a set of transitions is defined
through which the state may either become active or inactive. An active state
contains a token that must be passed to another state in order to activate that state. In
some implementations, multiple tokens may be propagated from a single active state.

Current work on Petri net models of robots focus primarily on resource
allocation (i.e., memory, sensors, etc.) [19]. Limited work has been undertaken on
creating automated software generation systems based on Petri net models [20-22],
but only within significantly limited boundaries. To date the author is unaware of any
work on physical robot design using Petri nets. Petri nets are limited (with respect to
some types of robot modeling and design) primarily by the fact that they are limited
to finite state systems. As depicted in Figure 7, Petri nets are implemented at a high
degree of abstraction but are relatively neutral to top down or bottom up design. Petri
nets are inherently only a method of capturing domain knowledge, but several of the
examples referred to above have some degree of design process inherent in the
implementation, and to this extend Petri nets have been used to capture design

knowledge as well.

2.3.4 Geometric Representations

Geometric representations are those most commonly thought of in mobile
robot design [23,24]. These representations are generally applied as simulations in

which the agent and environment are explicitly modeled in a great deal of detail and

34

interactions are modeled only at the physics level if at all. Often the focus is on
making the environment generate appropriate sensor data [25]. This form of
representation works well for some things, but is generally too cumbersome for
exploration based design processes except perhaps very late in the iterative process.
As shown in Figure 7, geometric abstractions are typically applied at a very
low level of abstraction. Geometric models are almost always applied in a top down
fashion as it is necessary have a reasonably complete representation of a system
before useful predictions can be made from a geometric model. Geometric models do
not in and of themselves capture any design knowledge, but rather are only a way of

recording domain knowledge at a relatively low level of abstraction.

2.3.5 Sense-Plan-Act

The sense-plan-act process, shown in Figure 9, is one of the carliest
abstractions for dealing with robotics and dates back at least to the days of STRIPS
[26]. In general this abstraction can be described as the robot using its sensors to
gather data about the environment, subsequently developing a plan that it is believed
will result in the goal state, and then acting to a state closer to that of the goal state.
This process is then repeated indefinitely until the goal state is achieved. Since the
environment is dynamic, this plan must be regenerated either fully or in part during
every implementation of this cycle. Given the complexity of the world and the rapid
changes that are possible in most environments, computational complexity becomes a
major issue in this paradigm, particularly within the real time limitation that robots

necessarily operate under and the limitations of mobile computing that can be placed

35

on a robot. These planning systems are typically based on a geometric abstraction

though others are possible.

Sense H Plan H Act

Figure 9 - Sense, Plan, Act Abstraction

Alternatively, a perceive stage is often added as shown in Figure 10. This
cycle works the same way as the one above, with the exception that prior to planning,
the agent attempts to classify the state of the environment around it. This is often
used to select alternate planning systems in an attempt to reduce the complexity of

any single planning system.

Figure 10 - Sense, Perceive, Plan, Act Abstraction

By its nature the sense, plan, act cycle is typically a top down design
abstraction as most planning systems require significant detail to achieve a basic
functionality. For this same reason, this abstraction is typically implemented at a low
level of abstraction. Sense-Plan-Act falls firmly into the domain knowledge realm as

it is both an abstraction and an implementation.

36

2.3.6 Schema

In a general sense the schema architecture is a functional mapping from
environmental inputs to actuator outputs. Originally proposed by Ronald Arkin
[13,14], there are a number of additional works that expand on this architecture. As
with many of the abstractions presented here, this is a useful tool in implementing
certain aspects of robot control, but does not inherently provide any systematic
methodology for developing requirements or understanding the actions that will lead
to task accomplishment. As with most of the combination
implementation/abstractions, one is limited to a single technique for all problems.

Schema is one of the architectures that also serves as a design abstraction. As
shown in Figure 7, the schema abstraction is generally a very applied abstraction and
is generally applied as both a design abstraction and an implementation. The schema
abstraction was originally presented as a bottom up architecture, but has generally
been applied as both bottom wup and top down. As with other
implementation/abstractions, the schema abstraction represents primarily domain

knowledge.

2.4 Design Tools

As opposed to qualitative models, design tools are generally used to provide
quantitative predictions concerning the behavior of a system. Many design tools exist
in other engineering domains from the general (e.g., structural or thermal finite
element analysis) to the very specific (e.g., bridge design software or auto routing

systems for PCB layout).

37

Design tools typically capture some degree of design knowledge and often
automate some or all of the process of applying this knowledge. For example, a solid
modeling finite element analysis package can capture and display domain knowledge
regarding geometry, forces, stresses, deflections, and other such factors. In addition,
many of the more sophisticated packages are also capable of formal optimization of
geometry based on constraints or other such automated design processes. For the
purposes of this dissertation, a design tool will be considered any application of a
model that yields useful quantitative domain predictions regardless of the degree to

which this process is automated.

2.4.1 Geometric Simulations

The majority of robotic design tools are geometric simulation engines. These
range from proprietary simulations developed for research purposes to commercial
products such as Robot Studio [27]. The sophistication and complexity of these
models ranges from relatively simple to highly complex dynamics engines similar to
those used in video games [28]

While geometric simulation certainly has a role to play in well-defined
situations or in determining the physical ability of a particular system to accomplish a
specified task, geometric simulation requires substantial understanding of the task and
environment, and significant definition of the agent. As such it is poorly suited for
use early in the design process when significant design freedom still exists. Moreover,
the process of geometric simulation either requires a previously developed dynamics

and physics engine, with attendant assumptions that are not apparent to the designer,

38

or a significant investment of time to develop these features for the particular

application at hand.

39

Chapter 3 - Adding Structure to Interaction Spaces
and Defining Notation for interaction Space Modeis

Within the exploration based design process, abstractions and more
specifically models are often useful as a part of the exploration process. To fully
explore a design space, it is necessary to have a formal means of capturing thoughts
assumptions (i.e., domain knowledge) about the system under consideration. This
chapter will introduce the concept of interaction spaces and discuss how this
interaction fits into the task, environment, and agent model as well as the exploration
based design methodology. A number of tools and notational devices will be
introduced to help the reader follow proceeding chapters. Interaction space models

and modeling will not be introduced until Chapter 4.

3.1 interaction Spaces

As shown in Chapter 2, a traditional view of the task, environment, and agent
abstraction has each of the three corners of the triangle on equal footing. The
interaction space abstraction tends to view the agent and environment in continuous
interaction. The set of all of these interactions is the “interaction space.” If these
interactions are the “proper” interactions, the task will be accomplished. This is
shown in Figure 11.

Within the interaction space abstraction, the goal of a designer is to create an
agent that will interact with the environment in such a way as to accomplish the
task(s) at hand. A key element of carrying this out involves correctly understanding

the interactions between the agent and environment.

40

Task

| Task Accomplishment >

Environment interaction Space

Figure 11 - Task, Environment, and Agent Abstraction with Interaction Spaces

41

Interaction spaces and interaction space modeling were originally introduced
in previous work of the author. Additional information on interaction spaces is
available in [2,3]. As implemented previously, interaction spaces as an abstraction
have been limited by a lack of formal structure. Relatively few suggestions were
made for developing system models for either the agent or the environment, and only
a small and far from spanning set of standardized blocks were available. Because of
these limitations, similar to many of the other abstractions discussed, there was no
design methodology to assist the designer in developing his or her thoughts; the
emphasis was on clever modeling. As a consequence, early interaction space models
took several dozens of iterations and a significant amount of time to develop even a

simple model with limited complexity.

42

Level of
Abstraction

T i Affordances 7N

Task, = .
Environmeni,
and Agent

Typical Progression of a
Design

i irtstacting
Conceptual Design and h,fa' o

Initial D effinition

Detailed Design and ’
Implementation
[‘\..-

Geometric Models

Boftom Up Top Down

Figure 12 - Level of Abstraction and Top Down vs. Bottom Up Characteristics of the Iateraction

Space Abstraction Relative to Other Robot Design Abstractions

As shown in Figure 12, the interaction space abstraction can be implemented
at widely varying levels of abstraction. The interaction space abstraction is intended
primarily for use in the early stages of design and is not necessarily well suited to
final detailed design. The interaction space abstraction is intended to help enable top
down design although the models are built in a bottom up fashion.

Although interaction space models can be created in an ad-hoc fashion [2] to
capture domain knowledge only, this dissertation will introduce interaction spaces in

a different manner that incorporates significant design knowledge into the abstraction

43

by providing a clear process and methodology to develop models and thus explore the
design space. It should be noted that this limited addition of design knowledge, while
helpful to the designer, does not remove the responsibility for substantial design
knowledge on the part of the designer.

While interaction space modeling does not make the designer any more
intelligent or any more knowledgeable, it does provide a means of creative
exploration of the design space. By forcing explicit examination of the interactions, it
also forces the designer to think about different ways that the agent can interact with

the environment.

3.2 Reactive Agent/ Reactive Environment

The interaction space abstraction defines the agent and environment to be
equally influential in the design of a mobile robot. Interactions are explicitly shown
both from the environment to the agent and from the agent to the environment. The
quadrant abstraction shown in Figure 13 is an abstraction that can be used with the
concept of interaction spaces to make this paradigm more explicit. Separating the
state from the reaction for both the agent and the environment will become useful

later in creating a systematic modeling methodology.

44

Environment Agent
State | Reaction

Environment | agent State
Reaction |

\. <] J

Figure 13 - Quadrant abstraction of Interaction Spaces

Starting in the upper left quadrant, the environment state stores information
about the environment and, in cases where the state of the environment will change
due to anything other than actions of the agent, determines what changes are needed.
This could, for example, include the beginning of a wall or presence of a randomly
distributed object within the environment. Action is considered a state in the same
sense that position, velocity, and acceleration can all be considered states.

Moving to the right across the quadrant abstraction, the agent reaction is the
response of the agent to the state of the environment. This includes the entire process
from sensing to selecting a behavior via whatever control architecture the designer
has selected. As indicated in Figure 13, the agent may also react to the agent state in
the quadrant below, but only under certain circumstances that will be discussed in the

next two sections.

45

Similar to the environment state, the agent state stores information about the
agent and manages changes to the agent state based on agent reactions or stochastic
elements.

The environment reaction box manages changes to the environment state as a
result of agent actions. Two types of signals can be sent into the environment
reaction section. The first is actual actions from the robot that are used to affect the
environment state directly. The second are agent “perceptions”, such as whether or
not the agent believes a victim to be present. The second type is used primarily to
record task accomplishment when developing predictive models and really represents
the passing of information from the agent to a user (who is, from the point of view of
the agent, a part of the environment.) This will be discussed in more detail in the

chapter on predictive modeling.

3.3 Defining and Using Interactions and Cycles

The first step in creating an interaction space model is to define basic cycles

within the quadrant abstraction described above. As shown in Figure 14, there are

46

three basic ways in which cycles exist within the quadrant abstraction.

Environment Agent
\ State _ Reaction

NS
s

vironment Agent State
Reaction

- _/

Figure 14 - Interaction Space Cycles

The most common cycle is that where information proceeds clockwise around
the quadrant abstraction. In general, this represents actual interaction between the
agent and the environment, and between the environment and the agent. The cycles
are most easily constructed by identifying a particular task that the agent must
complete. In most cases, this means that a specific environmental state must be
achieved. Cycles are most easily constructed in the opposite direction of
implementation. Starting in the bottom left quadrant at environmental reaction, one
works counterclockwise to determine what agent state (usually actions) must be
present to evoke this reaction; continuing counterclockwise, one determines what

behavior or reaction of the agent would trigger this state, which then defines what

47

information the agent must “perceive” from the environment state, which must then
in turn be updated to reflect the environment reaction.

Individuai cycles should be as simple as possible at the early stages of
developing a model. It is not uncommon to see only four functional blocks
representing a cycle early in the process. As more cycles are added, more interaction
will be required between cycles and it will be desirable to represent earlier cycles at a
lesser level of abstraction, requiring that additional functional blocks, typically of
more complex data types, be added.

The other two types of cycles shown in Figure 14 represent internal reactions
within the agent or environment. For example, if power and consequently operation
time of an agent is to be modeled, then the remaining power is a property that should
be recorded in the agent state quadrant. There is not an interaction with the
environment per se that causes the agent to cease to function, but rather the reactions
to environmental stimuli are directly affected by the fact that the agent no longer has

sufficient power. Similar situations exist in environmental modeling.

3.4 Multi-Agent Systems

The quadrant framework described above can also be applied to multi-agent
systems as shown in Figure 15. In this case, the agent state for one agent acts as a
part of the environment for other agents who can then react to it. Similarly, to each of
the other agents, the first agent represents a part of the environment to which they can
react. Thus cycles can be defined both between agents and between the rest of the

environment and each agent.

48

B,

Environment
State

1T

| ERIN

Agent
Reaction

o Uy

q@

Environment
Reaction

4

i
!
1

T 111
V| M

Agent State

.

-

Figure 15 - Muiti-Agent Quadrant abstraction

In practice, it usually makes sense to make modular subsystems out of the

agent. In this case, there are defined inputs from the environment state and defined

outputs to the environment reaction.

portions of the environment into modular blocks. In general, those blocks that are
global in scope (ie., have the same value with respect to all agents) should be left
independent, while those blocks that are local in scope (i.e., that are different with

respect to each agent) can usually be modularized. Specific examples of this are

In many cases, it is also useful to combine

given in Chapter 4 in the Multi-Agent Foraging Model.

49

3.5 Understanding the Role of Information and Data Types

Implicit in the cycles of Figure 14 is the transfer of some type of information
both in the real world and in the abstract world. Within the context of this
dissertation, abstracted information will be represented in one of three ways. In the
same way that unifs play a vital role in the correct interpretation of engineering
calculations, data type management is critical to correct interaction space modeling
and in fact provides a qualitative measurement of the fidelity and level of abstraction
of the model. Once a cycle has been defined using information, it is essential to
decide how that information will be represented. Inputs and outputs that are
connected must operate on the same data type and format. In particular, for outputs
from the state blocks, the degree to which the information is represented realistically
largely defines the level of abstraction of the model.

While essentially any data type is feasible within interaction space modeling,
the three discussed below are sufficient to create both descriptive and predictive

models and are recommended as a starting point.

3.5.1 Binary Data

As the name implies, the binary data type corresponds to either one or zero.
This can also be thought of as true or false, on or off, or any other two-state decision.
Binary data types are the simplest to use and allow the tools of digital logic to be used.

Binary data types should be used whenever possible.

50

3.5.2 Discrete Data

This choice is really an extension of the binary data type. This data type
allows any of a finite number of states to be expressed. In implementation this is
often a positive integer to distinguish between states. This data type is identical to the
Unsigned INT data type in many programming languages. An example of this is the
USAR model representing no movement, a small movement, or a large movement.
Typically this data type would not be exchanged between the agent and the

environment, but rather within the agent or the environment.

3.5.3 Continuous Data

Of the three discussed here, continucus data bears the most relation to the real
world. This data type represents any analog quantity. In practice, this data type is

most commonly implemented as a double precision float for predictive modeling.

3.6 Basic Functional Block

The cycles described in Figure 14 are actually modeled within the abstract
space using functional blocks. Each functional block represents a stage in either
generating or describing the state and reaction of both the agent and the environment.
At present, there are six main types of functional blocks, which are described below.
In addition, there are several other types of functional blocks that are used for the
stochastic elements of the model. Throughout the remainder of this dissertation, each
functional block is represented by the symbol shown in Figure 16. More information
about inputs, outputs, control of the block, and implementation are provided later in

this dissertation.

51

Bl
of Aux i
o Pux2 Stock_out b
3 A
o Aund
= Auxs

APuxG Flow_out P
oAU

e —— |

Framewod

Figure 16 - Basic Functional Block

The basic functional block is used for representing both state and reaction as
described above in the quadrant abstraction. Within each of these two categories,
each of the data types is also represented with a particular name and implementation
of the basic functional block. This yields a total of six types of basic functional

blocks, which are described below.

3.6.1 State Blocks

There are three basic state blocks, which correspond to the three basic data
types discussed in above. In general, a state is modeled by first defining features,
then defining attributes of those features, and finally assigning properties to the
attributes. However, as will be discussed in Chapter Four, this may not always be the

most judicious arrangement of these blocks, particularly early in the modeling process.

3.6.1.1— Features

Here features are defined to be objects or portions of objects that are present
in the environment. The feature aspect is defined to be only the presence or absence

of the object; all details of the feature are defined through other types of elements.

52

3.6.1.2 — Attributes

An attribute is a specific aspect of a feature that gives more detail. For
example, if a wall is present, an attribute of the wall may be color. However, an
attribute has a finite number of states, thus “blue” would be an attribute but 780.5nm
would be a property as discussed below. Attribute blocks can be implemented as
stand-alone when the corresponding feature is always present and need not be

modeled explicitly.

3.6.1.3 — Properties

A property is a measurable quantity associated with a feature or attribute. The
quantity is always continuous (or continuous within the bounds of the numerical
precision of the computational tool used) and should really be thought of as an analog
signal. In this way, a property is intended to represent the real W?)ﬂd with the highest
degree of fidelity of the state blocks represented here. Similar to an attribute, a

property may exist as a stand-alone entity when the associated features and attributes

are known to be constant.

3.6.2 Reaction Blocks

Similar to state blocks, there are three basic reaction blocks. Once again these
correspond to the basic data types discussed above. In general, most reaction models
will move from signals to information to behaviors. However, as will be discussed
below, there are times, particularly early in the modeling process, when other

arrangements might be desirable.

53

3.6.2.1 — Signals

Signals are the reaction-side equivalent of properties. The signals are what is
taken directly from the state. As such, the signal block can really be thought of as a
sensor block; however, it is possible to have a signal block in the absence of what is
traditionally thought of as a sensor (i.e., in a mechanical orientation feature of an
injection molded part). This is particularly true for modeling environmental reactions
where there will rarely be an explicit concept of “sensor” as it is traditionally

understood in the field of robotics.

3.6.2.2 — Information

An information block is intended to produce a processed finite state
representation of the agent or environment’s “perception” of state. This need not be
“perceived” in the classical artificial intelligence sense, but rather represents a choice
from among a finite number of options; for example, whether a particuiar water

molecule will go left or right at a Y-junction in a pipe.

3.6.2.3 — Behaviors

Behaviors are either explicitly active or inactive (i.e., they have a binary data
type) and are used to “decide” upon specific actions either by the agent or the
environment. Examples could include an environmental reaction when a victim is
found or an agent’s reaction when it believes that a victim is present. These blocks
are predicated on the use of a behavior based or hybrid robot control architecture.
Implementation of other control architectures may preciude the use of behavior

blocks in the agent reaction.

54

3.6.3 System Dynamic Implementation

Regardless of specific type, the basic functional block represents a single
stock and an associated flow. The flow has explicit feedback from the stock, which
among other functions, is frequently used to reset the stock to zero (see below).
Unlike some system dynamic implementations, this flow may be positive or negative.
This could be more explicitly represented as two flows (one incoming, one outgoing);

however, this is functionally simpler and mathematically equivalent.

)

Figure 17 - System Dynamic Implementation of a Basic Functional Block

Functionally, the “Aux1” through “Aux7” inputs (shown in Figure 16) feed
into the flow, and are used during each time step in calculating the flow. The
“Stock Out” function provides the value of the stock at each time step, and the
“Flow_Out” provides the value of the flow at each time step. Typically only the
“Stock_Out” output is used (particularly within the modeling framework), but the
“Flow_Out” can be useful in cases where one flow is directly dependent on another.
Additional information on the implementation of the functional block is available in

Appendix A.2 Simulink Basic Functional Block Implementation.

55

3.6.4 Controlling Functional Blocks

Functional blocks are controlled via both an initial value and quasi-continuous
control of the flow. Many strategies can be devised for control of the flow. In
general, a rule-based approach has been used with significant success for modeling
the situations encountered so far. As will be discussed later, when used for predictive
purposes, as discussed in Chapter 5, the value of the flow is determined by an m-file
allowing for the use of a wide variety of techniques, and implementation of most
control architectures.

In general, a functional block will be used in one of two ways, either
instantaneously or continuously. In an instantaneous block, the value of the flow is
always set to a new desired value minus the current value of the stock as shown in
Equation 1. In a continuous block, the previous value of the stock is retained and is

only modified by the appropriate flow value.

CURRENT VALUE = CALCULATED VALUE - PREVIOUS VALUE
Equation 1

3.7 Stochastic Blocks

In addition to the six variants of the basic functional block, several other types
of blocks are useful in adding uncertainty and variation into models. Both uniform
and discrete random number generators are discussed below as well as a random
decision-making block. In addition, various types of noise blocks are discussed.
These blocks are essentially functions that would be included within a flow in a

traditional system dynamic implementation. For the purposes of interaction space

56

modeling, the function is made explicit to help in understanding, but these blocks are
fed into the inputs of the basic agent block described above such that they still control

the rate of the flow.

3.7.1 Random Number Generator Blocks

The uniform random number generator block is a relatively straightforward
random number generator that returns a random real number between two specified
values. These blocks can be widely used, including in the generation of noise as
described below or as a way to generate continuous portions of the agent or
environment state. The representation shown in Figure 18 will be used throughout
the remainder of this dissertation to depict this type of block. Details of the
implementation of this block are given in Appendix A.3 — Simulink Uniform Random

Number Generator Implementation

RN
100 ¥

Uniform Random NMumber

Figure 18 - Uniform Random Number Block

The discrete uniform random number block returns an integer between zero
and the number of states. This block is used predominantly in discrete state models to
generate attributes for the environment or the agent. The representation shown in
Figure 19 will be used to depict this type of block in the remainder of this dissertation.
Details of the implementation of this block are given in Appendix A.5 ~ Discrete

Random Number Generation Block.

57

DR
Ty

Discrete Uniform Randon

Figure 19 - Discrete Uniform Random Number Block

3.7.2 Random Decision Maker Block

The random decision maker block (shown in Figure 20) generates a “1” at
approximately the percentage of time steps specified. For the remainder of the time
steps this block generates a zero. This block is used primarily for stochastically
determining features for the environment and agent states. The details of the
implementation of this block are given in Appendix A.4 — Random Decision Making

Block Implementation.

Random
Cecision
78 4

Handom Decision Malker

Figure 20 - Random Decision Making Block

3.7.3 Noise Blocks

Noise or uncertainty can be added to a model in many locations and is
represented by many types of functions. Noise can be used to represent various types
of error and uncertainty, from the uncertainty associated with a gear train, to the
uncertainty associated with a sensor, an A/D converter, or other elecironic device. In

addition to uncertainty, noise blocks can also be used to represent outright errors. For

58

example, when modeling communication between two agents, a noise function could
be derived to represent communication errors, perhaps due to another transmission on
the same frequency, solar radiation, or some other source.

A number of noise functions are built into Simulink. In general, these have
proven sufficient for most models; however, the possibilities are nearly limitless in
designing noise functions to match the real world as closely as possible. There are
several useful books on this topic for sensors [29], electrical and mechanical systems

[30], and numerous others.

3.8 Tasks

Tasks can be broken into two categories: perceptive tasks and physical tasks.
Perceptive tasks are those where the agent is asked to make a judgment about the
environment, while a physical task is one where the agent is asked to manipulate the
environment or its relationship to the environment in some way. Often
accomplishment of one task is dependent on a number of others, which may or may
not be of the same type. Under these circumstances it is generally sufficient to the
evaluation of the final system to measure only the final task in the appropriate
manner; however, in creating a useful design model, one should carefully observe and

measure accomplishment of individual sub-tasks.

3.8.1 Task Accomplishment for Perceptive Tasks

Perceptive task accomplishment is measured by comparing the agent state (i.e.,
what the agent “believes” to be true about the world) to the environment state (i.e.,

what is actually true within the abstract world). In descriptive models, task

59

accomplishment is difficult to measure, but the conditions of accomplishment should
be clearly stated. In this case, the quantities that should match between the agent
state and the environment state should be defined and the degree to which they shouid
be similar should be explicitly recorded as part of the requirements R,. Additional

information on quantitative measurement of tasks is given in Chapter 5.

3.8.2 Measuring Task Accomplishment in Physical Tasks

Physical task accomplishfnent is modeled and/or measured by comparing the
environment state to some desired state. This ranges from simple to complex (for
example, when it is difficult to define the desired physical state within a finite number
of variables or when domain knowledge is insufficient to fully define the desired state
of the environment). As with perceptive tasks, the quantities that must match and the
degree to which they must match should be defined in the descriptive model and

recorded as part of the requirements of the system.

60

Chapter 4 — Descriptive Models

This chapter takes the nomenclature and concepts of Chapter Three as well as
the concept of exploration based design to develop a design methodology and
modeling process that incorporates more design knowledge and narrows the field of
options that must be considered in creating a model without such guidance.

Examples of robot models are given as illustration of the process.

4.1 Modeling Elements

As was touched on in Chapter three, there are two main elements in
representing an interaction space model: the blocks (with associated connections) and

the functionality or definition of the blocks. Each of these is described below.

4.1.1 Combining Functional Blocks

The cycle shown in Figure 21 is a template abstraction by which all
interaction space cycles can be represented. These standard cycles are combined and
elaborated as described below to create interaction space models. Combination and
elaboration of this basic cycle are demonstrated by example in the muramador robot

models.

61

e .)
Environment Agent

State Reaction

(Feature Y Attribute y—s{Property }>—=({ Signal }»{ Info }»{Behavior)}
] T & [
!

!
L
|
|

i ¥
(Behavior yu{_ Info ye—{ Signal Yet+—{Propery ye—-{Afiribute Yu—{Feature)

naieh

Environment
Reaction Agent State

N J

Figure 21 - Standard Cycle Abstraction

4.1.2 Developing Pseudo Code and Meanings

In addition to the blocks of an interaction space model, it is also necessary to
define meaning for the blocks. In the descriptive modeling phase, this is done
through the use of pseudo code and a basic explanation of the meaning of the block.
As discussed in the previous chapter, each block has inputs and an output. The inputs
affect the flow in the system dynamics sense while the output is the value of the
stock. However, for simplicity the standard convention for a descriptive model shall
be to write the pseudo code as if the inputs directly affected the stocks. Each block at
every stage of the modeling process should have a pseudo code segment that defines
the output as a function of the input(s). The specific coding necessary for predictive

modeling will be discussed in Chapter 5.

62

In addition to the explicit pseudo code it is generally helpful to have a plain
language description of the intended meaning of the block. Throughout the
Muramador model below each stage of the modeling process will have a table with
each block listed as well as the pseudo code and a physical interpretation. These
aspects are just as important as the blocks themselves in developing a descriptive
mode. For the sake of brevity these tables are not given for the other models, but

executable code for each of the blocks can be found in the appendices.

4.2 Steps in the Modeling Process

In applying interaction space modeling to exploration based design, one first
needs to create an initial model. There are seven processes that are generally used to
create the initial interaction space model. In general they form a progression as
shown in Figure 22. While the progression shown represents one methodology to
creating interaction space models, others are possible. It is left to the individual

designer to make a determination as to the optimal order if different from below.

63

Add Additional
Interactions

Define the Create initigl
Problem Cycles

Signals Signals Add Uncertainty

Add Discrete Add Analog | l

Add Measurement
of Task
Accomplishment

Figure 22 — Creating an Initial Interaction Space Model

4.2.1 Defining the Probiem

As with any design process or any design exploration process, the first and
one of the most critical steps is to begin to define the problem. For the purposes of
interaction space modeling this should begin with a statement describing in plan
words what the system is intended to do.

The second and more critical part of defining the problem is to create a
bulleted list of tasks that it is desirable for the agent to achieve. These bullets should
be specific, should be as simple as possible, and if at all possible should be phrased in
a way that lends itself to asking a yes or no question about task accomplishment. It is
not necessary, or at this stage desirable, to discuss the conditions necessary within the

agent, environment, or both to bring about this task. Significant care should be taken

64

in defining this bulleted list, as it will be the basis for several subsequent steps of the

modeling process and in particular for measurement of task accomplishment.

4.2.2 Creating Initial Cycles

After the initial problem definition, the first step in creating an interaction
space model is to create initial cycles of the type shown in Figure 14. In general this
initial cycle should be composed entirely of blocks of the binary type. To start
creating initial cycles it is recommended that the designer start with a binary block to
answer the yes or no question for one of the bullets developed as part of the problem
statement. It is then recommended that the designer work counterclockwise around
the quadrant abstraction by assessing the conditions in the 1% quadrant
counterclockwise that will have an effect on the answer to the yes or no question.
These factors should also be posed as yes or no questions and the process can be

repeated around the model

4.2.3 Adding Additional interactions

The purpose of this step is to successively add additional cycles for each of
the primary bullets from the problem statement. This should be carried out
essentially in the same fashion as the previous section with the exception that there
may begin to be relationships that are defined between the cycles. All of the blocks
should generally still be of the binary type.

It is critical that the designer not attempt to capture all of the subtleties of the

system at this point but rather only look at the most significant one or two factors.

65

The goal of this step is to create a VERY highly abstracted model of the system.
Ideally there should be no more than four times the number of blocks in the model at
this stage as the number of bullets in the problem definition, although in practice this
ratio is almost never maintained. Additional detail and additional factors will be
added as needed in the next and subsequent steps. A general rule of thumb is to
identity all important interactions that are at least one order away from the task

statements from the problem definition step.

4.2.4 Adding Discrete Signals

Once a cycle has been defined for each of the bullets developed in the
problem definition phase, it will often be the case that two or more yes or no
questions will represent multiple discrete states for one variable. In this case, these
should be condensed into a discrete block and discrete values assigned to each case.
Additionally there may be cases where only a single yes or no state represents a
phenomenon but there are actually more cases that are relevant; for example, on an
oven thermostat one could ask if the temperature was right or not. In this step it
would probably make sense to expand this to have the options of way too hot, slightly
too hot, correct, slightly too cool, and way too cool. Each of these states can be
represented by one variable. Depending on the designer’s preferences for system
modeling it may be desirable to retain the binary blocks to control behaviors or in
some cases it may make sense to eliminate these. Examples of each will be given
below in the Muramador model.

The addition of discrete blocks serves three basic purposes. The first is to

reduce the complication of the model to make it easier to understand and follow. The

66

second is to allow for more options in modeling the system in order to better
represent the system. The third and less obvious purpose is to pave the way for the
addition of analog blocks in the next step. In general it is helpful to create a discrete
block for a variable before plugging in an analog block. This process will be

discussed in the next step.

4.2.5 Adding Analog Signals

The addition of analog signals removes the model from the domain of finite
state models with the limitations thereof and moves the model into the realm of
continuous models. Ideally the boundary between the agent and the environment in
both directions should generally cross with an analog signal as the real world is
analog. This may not be the most efficacious modeling method in all cases and it is
left to the designer to undertake a cross of the boundary with other than an analog
signal. The inherent risk is missing the details of how information is transferred from
agent to environment or environment to agent but it can be useful early in the process.

It is left to the discretion of the designer whether to retain the discrete and
binary blocks or to use purely analog blocks in some cycles. As with retaining the
binary blocks when adding discrete blocks, the advantage is greater representation of
the real world in the model, but this occurs at the expense of a more complex and

difficult to follow model.

4.2.6 Adding Uncertainty

This step is where, for the first time, the model begins to become a useful

representation of the real world. Stochastic blocks are added to the model to

67

represent uncertainty and variation in the real world. In general random decision
blocks will be added to features and behaviors, discrete random number blocks to
information and attribute blocks, and other types of random noise to signal and
property blocks. It is beyond the scope of this dissertation to provide specific
guidelines for adding uncertainty but several examples are given in the models

presented below.

4.2.7 Measuring Task Accomplishment

Task accomplishment is measured against the original bullets from the
problem definition. It is not always necessary to explicitly represent task
accomplishment within the model while building a descriptive model but it is
important to keep task accomplishment in mind. It can also be useful to write out a
statement of task accomplishment for each bullet of the problem definition from time
to time in the modeling process. This is demonstrated below.

When creating a predictive model, it is necessary to explicitly represent task
accomplishment within the model. In some cases this can be done through existing
elements and in others it may be necessary to add elements to make this measurement.

This is discussed in more detail in Chapter 5.

4.3 Refining the Model

Once the initial model has been created, additional steps (shown in Figure 23)
are used to create a more sophisticated model. In general this more sophisticated
model allows the designer to better understand the interactions and thus to create a

new iteration of D,. Models are built in a bottom up fashion, often with many cycles

68

of refinement and iterations of D, In other words, a very simple model is first
constructed and then is improved until the desired level of representation is achieved.
To better explain this process a model of a wall following robot has been
incrementally developed. This has the advantage of being sufficiently simple that the
process can be clearly demonstrated, but yet complicated enough that several

conditions must be simultaneously met for successful task accomplishment.

Add Discrete Add Additional
Signals Interactions

Original Interaction Space
Model

Add Analog ; Add f\flfe’_élrsausrfment

Signals Accomplishment

Add Uncertainty

Figure 23 - Options to Refine the Initial model

The steps shown in Figure 23 represent additional complexity and
sophistication that can be added to the model. As was discussed above, in the initial

model it is generally only desirable to be one step removed from the bulleted tasks

69

statements from the problem definition phase. Once the initial model is created, it is
often necessary to add additional detail. In any complex system it is likely that all

relevant system elements will not be defined within one step of the primary tasks.

4.4 Muramador Model

The Muramador [16] is a simple wall-following robot. The Muramador uses a
single distance sensor and a set point value to remain at a set distance from the wall.
As long as the Muramador is able to move along the wall, the system will continue
the wall-following behavior. When the end of a wall is reached, the Muramador will
randomly turn in a new direction and proceed either until another wall is Jreacheﬂ, ora
time threshold is exceeded. If the time threshold is exceeded, the Muramador will

once again change direction to a random new heading.

4.4.1 Defining the Problem

As discussed above, a problem statement should consist of a plain language
description and of one or more bullets that define the task in ways that are observable
and can be rephrased as yes or no guestions. A general problem statement for the

Muramador can be summarized as follows:

DESIGN A SYSTEM THAT WILL SEEK WALLS. UPON FINDING A WALL,
THE DEVICE SHOULD PROCEED ALONG THE WALL AS CLOSELY AS
POSSIBLE AT A SETPOINT DISTANCE UNTIL THE END OF THE WALL.

This statement can then be reduced to two discrete tasks:

e FIND WALLS TO FOLLOW.

@ FOLLOW THE WALL WHILE REMAINING AT THE SET POINT DISTANCE
FROM THE WALL

70

4.4.2 Creating Initial Cycles

As mentioned above, the first step in creating initial cycles is to find blocks
that provide answers to the yes or no questions. In the basic model of the Muramador
shown in Figure 24, the block near wall answers the bulleted question: is the agent
following walls (or at least in the vicinity, true following will be added later), while
the block find wall indicates that the agent has found a new wall to follow, or in this
case more specifically that the environment has reacted to the agent looking for a new

wall by having a new wall come into proximity with the agent.

71

i SBiTES
M Aux2 Stock_out
HAUx3
o Bywd
o Auxd
— Auxl HAuxb Flow_out B
e Aux2 Stock_out o Auxy
HAuxl
o Auxd Near uvall
o AuxS
A AuxG Flow_out b
oA Pax?
Wwatl
] A 1
o W Aux? Stock_out
o Aux3
» Auxd
o AuxE
Aruxb Flow_out b
o Aux? :
Not Mear Wall
Auxi Q-J
Poxll——]
Stock_out Aux2 K ‘Smckaoutﬁxg 5
Auxd X K
20 T(Auxd K
XK x5 ¢
AuxS Flow_out faxd |
4 Flow ot fuxf K qrewo m;?)
Aun? K
Find Wall Searching for Wall
Fux] L Ao jaf—
Stuckaamﬁxz < | Stock_out Aux? K
%3 K
20 Auxd K
x4 ¥ 2
wd K
Puph K Luxs
4 Flow_out Eig i d Flow_out Auxb
Aux? K
Wall Folloveed

Fallowing Wall

Figure 24 - Basic Cycle for the Muramador Model

Once the initial two binary blocks are added, the designer works
counterclockwise to add other blocks that describe the most important conditions that

affect the first two blocks. In this case, the environment state is defined by the

72

presence or absence of a wall. This in turn drives the agent into one of two reactions,

either the agent is within sensor range of a wall, or it is not. Based on this reaction,

the agent will assume one of two states, either that of following a wall, or that of

looking for a wall. This in turn drives the environment to react to the Muramador’s

attempt to follow the wall or find a wall. Finally, the environment’s reaction to the

agent will drive the environment state, /e, the presence of the wall. Additional

details including pseudo code and descriptions of each block are given in Table 1.

Block Pseudoe Code Meaning/Comments

Wall IF WALL == 1 THEN WALL | BINARY INDICATION
PRESENT OF THE PRESENCE OF
IF WALL == (0 THEN NO|A WALL IN THE
WALL PRESENT ENVIRONMENT

Near Wall IF NEAR WALL == 1 THEN | ROBOT'S REACTION IF
AGENT NEAR WALL THERE IS A WALL
IF NEAR WALL == 0 THEN | NEARBY IN THE
AGENT NOT NEAR WALL ENVIRONMENT

Not Near Wall IF NOT NEAR WALL == 1 {ROBOT’S REACTION IF
THEN NO WALL PRESENT THERE IS NOT A WALL
IF NOT NEAR WALL == 0 | NEARBY IN THE
THEN AGENT NEAR WALL ENVIRONMENT

Find Wall IF NEW WALL APPEARS THEN | ENVIRONMENT
FIND WALL = 1 REACTION TO THE
IF NO CHANCE IN WALL |ROBOT LOOKING FOR A
STATUS OR WALL | WALL
DISAPPEARS THEN FIND
WALL = 0

Searching for Wall IF ROBOT IS SEARCHING | ROBOT STATE TO LOOK
FOR WALL THEN SEARCHING | FOR A WALL CAUSED
FOR WALL = 1 BY THE ROBOT
IF ROBOT IS FOLLOWING A | REACTION OF NOT
WALL THEN SEARCHING FOR | NEAR WALL
WALL = 0

Wall Followed IF WALL HAS BEEN | ENVIRONMENT
FOLLOWED THEN WALL { REACTION TO THE
FOLLOWED = 1 ROBOT FOLLOWING THE
IF AGENT HAS NOT | WALL
FOLLOWED A WALL THEN
WALL FOLLOWED = 0

Following Walil IF ROBOT IS SEARCHING | BINARY AGENT STATE

FOR WALL THEN FOLLOWING
WALL = 0

OF FOLLOWING A WALL

73

IF ROBOT I3 FOLLOWING A
WALL THEN FOLLOWING WALL
=1

Table 1 - Muramador Basic Cycle

4.4.3 Adding Additional Interactions to the Basic Model

Once a basic model exists, additional elements should be added to more
adequately represent the interactions between the agent and the environment. The
goal at this point is not to more accurately represent the interactions added in the
previous step, but rather to add additional interactions that are important to the
functionality of the agent but were not essential to produce a minimal model. In
particular by the end of this stage every bullet from the original problem definition
should be represented. As was mentioned above, the goal here is not to have a
complete model but rather to make sure that the basic interactions that are directly
relevant to task accomplishment are at least on the model in a highly abstracted and
binary state.

Only minimal additional interactions are needed to create a basic binary
model of the Muramador; namely, it is necessary to add additional behaviors for
being too far or too close to the wall. This in turn will drive two behaviors: moving
closer to the wall, and moving farther away from the wall. These changes are shown

in Figure 25. Pseudo code and block descriptions are given in Table 2.

74

P T I—L—} 2axt __I——D- Auxt
e Aux2 Stock_out e Aux? Stock_out o Pux2 Stock _out —

of o P S A
o Auxd o Auxd o Auxd
o B p T N fuxd

NAuxb Flow_out HAuxG Flow_out p HAuxh Flow_out b
o Aux? o Aux? o Bux?

Feature_Wall Feature_Too_Far Behavior_Too_Far
o Aux 1 Auxl
L] Az Stock_out I Stock_out

AAux3 A Aux3
APoud o Auxd
] AuxS A AuxS

HAuxB Flow_out i M euxf Flow_out >
o Aux? W Aux7

Faature_Too_Close

Behavior_Too_Cloze

Auxt

Stock_out A2
Aux3
Puxd

Auxl
Fux2 Stock_out
Pux3d
Auxd
Auxh
Aux Flow_cut
Pux?

VVVVVV*
4

Behavior_No_t/all

Auxi g

Auxns
aflow_out Fuxb
Fux?

J\.?TAAAI\T

Behavior_Wall_Follow

Stock_out AuxZ
Aue3
At
Puxb
qFlow_out Auxb
Pur?

/\AAAT{

Feature_Follow_Wall

Behavior_Find _Wall

Figure 25 - Muramador Model with Additional Interactions

Auxi K

Stock_out Aux2 Pux! e
Fuxd K Stack_out Ax2 K

AUREK Y

fuxs 0 fuxd

< Flow_out - Auxf i Py
fux? K 4 Flow_out Suxb K

Pux? K

Feature_Find _Wall

Block Pseudo Code Meaning/Comments
Feature Wall IF WALL IS PRESENT | RECORDS THE
THEN FEATURE WALL = 1 | PRESENSE OF A
IF WALL IS ABSENT |WALL IN THE
THEN FEATURE WALL = 0 | ENVIRONMENT
Feature Too Far IF ROBOT IS TOO CLOSE | BINARY
THEN FEATURE TOO FAR | ENVIRONMENT
=0 PROPERTY ACTIVE

IF ROBOT IS TOO FAR
THEN FEATURE TOO FAR
=1
IF FEATURE WALL == 0
THEN FEATURE TOO FAR
= 0

IF THE ROBOT IS
TOO FAR FROM THE
WALL

Behavior Too Far

IF FEATURE TOO FAR
1 THEN BEHAVIOR TOO

ROBOT REACTION TO
BEING TOO FAR

75

FAR = 1
IF FEATURE TOO FAR ==
0 THEN BEHAVIOR TOO
FAR = 0

FROM THE WALL

Feature Too Close

IF ROBOT IS TOC CLOSE
THEN FEATURE TOO FAR
=1

IF ROBOT IS TOO FAR
THEN FEATURE TOO FAR

=0

IF FEATURE WALL == 0
THEN FEATURE TOO
CLOSE = O

BINARY
ENVIRONMENT
PROPERTY ACTIVE
IF THE ROBOT IS
TOO CLOSE TO THE
WALL

Behavior Too Close

IF FEATURE TOO CLOSE
== 1 THEN BEHAVIOR
TOO CLOSE = 1
IF FEATURE TOO CLOSE
== (0 THEN BEHAVIOR
TOO CLOSE = 0

ROBOT REACTION TO
BEING TOO CLOSE
TO THE WALL

Behavior No Wall IF FEATURE WALL == 1 | ROBOT REACTION TO
THEN BEHAVIOR NO WALL | NO WALL
=0
IF FEATURE WALL == 0
THEN BEHAVIOR NO WALL
=1
Behavior Wall Follow BEHAVIOR WALL FOLLOW | ENVIRONMENTAL
= FEATURE FOLLOW WALL | REACTION TO THE
ROBOT FOLLOWING
THE WALL
BRehavior Find Wall BEHAVIOR FIND WALL = | ENVIRONMENTAL
FEATURE FIND WALL REACTION TO THE
ROBOT FINDING A
NEW WALL TO
FOLLOW
Feature Follow Wall IF BEHAVIOR TOO CLOSE | ROBOT STATE OF
== 1 | BEHAVIOR TOO | FOLLOWING THE
FAR == 1 THEN FEATURE | WALL
FOLLOW WALL = 1
IF BEHAVIOR TOO CLOSE
== 0 && BEHAVIOR TOO
FAR == 0 THEN FEATURE
FOLLOW WALL ==
Feature Find Wall IF BEHAVIRO NO WALL | ROBOT STATE OF

== (J THEN
FIND WALL = O
IF BEHAVIOR NO WALL
== 1 && A NEW WALL IS
FOUND THEN
FIND WALL = 1

FEATURE

FEATURE

SEARCHING FCOR A
WALL

Tabie 2 - Muramador 1st Set of Additional Interactions

76

Although the model shown in Figure 25 has additional interactions over the

initial model it does not yet contain all of the key elements. The model below shown

in Figure 26 includes options for the agent to move towards or away from the wall.

The details of this model are shown in Table 3.

7
™
X
A
b
b
E

fuxi ~—L—p Auxl Auxi
Auxl Stock_out] ’—p Auxd Stock_out ——r——b;: Aux2 Stock_out
Aux3 P Fux3 3 Aux3 g 2
FAund o Auxd HAuxd o Bux2 Stock _out
Auxd Luxh o AuxG S aux3 -
AuxB Flow_out p AuxG Flow _out p MAuxf Flow_out b F s
Aux? N Aux? o Aux? o Auxs
Feature_Wall Feature_Too_Far Behavior_Teo_Far i gig Flow_out p
- afatisl Auxt Behavior_MNo_Wall
-] Aux2 Stock_out ﬂ Aux2 Stock_out
L3 Pund MAuxd
> Auxd Afuxd
M Auxh Auxd
NAuxB Flow_out i »AuxG Flow out p Auxi
o Aux? HAUXT Stock_out Aux2 K
Aun3 K
Feature_Too_Close Behavior_Too_Close Purd K
Fuxd K
4 Flow_out Auxfi |
Auxi e Aux? K
o Stock_out gig E Feature_ove_Father
Auxd Auxi
Auxs Stock_out Aux2 Aux] g—
Flow_out Auxf K Aux3 Stock_out Aux2 K
ﬁ Aun? K Pund K Aux3
Auxd K Aurd K
Bahavior_Wall_Fanrher 4 Flow_owt Auxb K Puwd i
Ay i o Flow_out AuxB
AuxT K

Behavior_Wall_Closer

Feature_hiove_Closer

Behavior_Find _uall

Figure 26 - Muramador Model with Additional Interactions

Auxi K Aux jgg—
Stock_out Aux2 (W Stock_out Aux2 ¥
Furl ¥ A3
Fuxd Fuxd
Pud K Auxd
qFlow_out Auxf K < Flow_out Auxf [
Pux £ Au? K

Feature_Find _Wall

Bleck Pseudo Code Meaning/Comment |

Feature Wall IF WALL IS PRESENT | RECORDS THE
THEN FEATURE WALL = 1 | PRESENSE OF A
IF WALL IS ABSENT | WALL IN THE
THEN FEATURE WALL = 0 | ENVIRONMENT

77

Feature Too Far

IF ROBOT IS TOO CLOSE
THEN FEATURE TOO FAR
= 0
IF ROBOT IS TOO FAR
THEN FEATURE TOO FAR
= 1
IF FEATURE WALL == (
THEN FEATURE TOO FAR
= 0

BINARY
ENVIRONMENT
PROPERTY ACTIVE
IF THE ROBOT 1IS
TCO FAR FROM THE
WALL

Feature Too Close

IF ROBOT IS TOO CLOSE
THEN FEATURE TOO FAR
=1

IF ROBOT IS TOO FAR
THEN FEATURE TOO FAR
= 0

IF FEATURE WALL == 0
THEN FEATURE TOO
CLOSE = 0

BINARY
ENVIRONMENT
PROPERTY ACTIVE
IF THE ROBOT IS
TOO CLOSE TO THE
WALL

Behavior Too Far

IF FEATURE TOO FAR ==
1 THEN BEHAVIOR TOO
FAR = 1
IF FEATURE TOO FAR ==
0 THEN BEHAVIOR TOO
FAR = 0

ROBOT REACTION TO
BEING TOO FAR
FROM THE WALL

Behavior Too Close

IF FEATURE TOO CLOSE
== 1 THEN BEHAVIOR
TOO CLOSE = 1
IF FEATURE TOO CLOSE
== (0 THEN BEHAVIOR
TOO CLOSE = 0

ROBOT REACTION TO
BEING TOO CLOSE
TO THE WALL

Behavior No Wall IF FEATURE WALL == 1 { ROBOT REACTION TO
THEN BEHAVIOR NO WALL [NO WALL
= 0
IF FEATURE WALL == 0
THEN BEHAVIOR NO WALL
= 1
Feature Move Farther FEATURE MOVE FURTHER | ROBOT STATE OF

= BEHAVIOR TOO CLOSE

MOVING AWAY FROM
THE WALL

Feature Move Closer FEATURE MOVE CLOSER = ROBOT STATE OoF
BEHAVIOR TOO FAR MOVING TOWARDS
THE WALL
Feature Find Wall FEATURE FIND WALL = | ROBOT STATE OF
BEHAVIOR NO WALL SEARCHING FOR A
NEW WALL '
Behavior Wall Closer BEHAVIOR WALIL CLOSER | ENVIRONMENT
= FEATURE MOVE CLOSER { REACTION TO THE
ROBOT MOVING
CLOSER
Behavior Wall Farther BEHAVIOR WALL FURTHER | ENVIRONMENT

= FEATURE MOVE

REACTION TO THE

78

FURTHER ROBOT MOVING AWAY

Behavior Find Wall BEHAVIOR FIND WALL = | ENVIRONMENT
FEATURE FIND WALL REACTION TO THE
ROBOT SEARCHING

FOR A WALL

Table 3 - Muramador 2nd Set of Additiopal Interactions

The model above contains the key elements for both of the bullets identified
in the problem definition phase. Specifically there are elements identified that can
change the answer to the yes or no question posed by the problem definition bullets
and these elements are formed into logically consistent cycles. It is not necessary at
this point to worry about second order effects such as what causes a wall to start or
what causes a wall to end. It is sufficient for the moment that it is idenﬁiﬁ@d that
these are important interactions in the system. The next step is to add discrete signals

to the model in order to improve the fidelity of the model.

4.4.4 Adding Discrete Signals

Once the first order interactions relative to the initial problem definition are
included in the model as described above, it is generally time to begin to add non-
binary elements. The first step in this process is to add discrete elements. Within the
Muramador model shown in Figure 27, the attribute distance and the info distance
blocks have been added. As mentioned previously, the boundary between agent and
environment or environment and agent should always be crossed with the same data
type on each side of the boundary. The distance blocks added below now have three
specific states: too close, too far, and no wall. For modeling purposes these three
states are assigned a number arbitrarily which then represents that state within the

model. The pseudo code and descriptions for these blocks are given in Table 4.

79

Although the same physical system can be represented by N binary blocks
where N is the number of states, the discrete block cleans up the model and makes it
more manageable. In addition the discrete blocks are usually the first step on the way

to adding continuous blocks as will be discussed in the next section.

A fux r*LLpAnn Aux .
-;; gig Stock_out] Aux2 Stock_owt -rb). Aux? Stock_out 4 ¥ fux? Stock _out
Suxd =] A3 o Aux3 HAuxd L 21
4 A Auxd o A A Pud
o AuxS o fuxs M AuxS T | Auxz Stock_out 1
; gj’:g Flow_out [» Auxt Flow_out b HAux6 Flow_out il MAuxb Flow _out b ;ﬁ:i
Qﬁux? HAux? HAaT Jauxs
Feature_Wall Adtribute_Distance Info_Distance Behavior_Too_Far ;ﬁ:g Fiow_out -
s STl Behavior_Ne_Wall
HAux2 Stock_out
HAuxd
o Purd
N fuxs
Fund
g Flow ot b srock_outfuxz f
y ﬂuxi
- Auxd K
Behavior_Too_Close s
4 Flow_out Aux
Saxt g Aux? i
1 mock_omgig f, Feature_hiove_Farther
Auxd Faxl
Auxs H Stock_out Aux2 <‘_l Vg -G—J
qFlow_out Auxb K Aux3 ¥ Stock_out Aux2 K
Fux? K Auxd £ Pux3 K
Auxs K Aund i
Behavior_Wall_Father qFlow_ou Auxd xS |
Aux? K qFlow_out Auxd X
Aun? K
Behavior_Wall_Closer
Feature_Move_Closer
fuxt K Puxl o
Stock_out AuxZ [« Stook_out Aux2 i
Aux3 K Auxd
Auxd i Fuxd K
Aund K Pund K
qFlow_mg AuxB K o Flow_out AuxB
AURT K Aux? K
Behavior_Find _Wall Feature_Find _Wall
Figure 27 - Muramador Mode! with Discrete Signals
Block Pseudo Code Meaning/Comment
Feature Wall IF WALL IS PRESENT [RECORDS THE
THEN FEATURE WALL = | PRESENSE OF A WALL
1 IN THE ENVIRONMENT
IF WALL IS ABSENT
THEN FEATURE WALL =
0

80

Attribute Distance IF ROBOT IS TOO | FINITE STATE
CLOSE THEN | DESCRIPTION OF THE
ATTRIBUTE DISTANCE | DISTANCE OF THE
=1 ROBOT FROM THE WALL
IF ROBOT IS TOO FAR
THEN ATTRIBUTE
DISTANCE = 2
IF NO WALL Is
PRESENT THEN
ATTRIBUTE DISTANCE
= 0

Info Distance INFO DISTANCE = | ROBOT REACTION TO
ATTRIBUTE DISTANCE THE DISTANCE FROM

THE WALL
Behavior Too Far IF INFO DISTANCE == | ROBOT REACTION TO

2 THEN BEHAVIOR TOO

FAR = 1

IF INFO DISTANCE ==
1 | OR INFO
DISTANCE == (THEN

BEHAVIOR TOO FAR =
0

BEING TOO FAR FROM
THE WALL

Behavior Too Close

IF INFO DISTANCE ==
1 THEN BEHAVIOR TOO
CLOSE =1

IF INFO DISTANCE ==

ROBOT REACTION TO
BEING TOO CLOSE TO
THE WALL

2 | OR INFO
DISTANCE == (0 THEN
BEHAVIOR TOO CLOSE
=0
Behavior No Wall IF FEATURE WALL =={ ROBOT REACTION TO
1 THEN BEHAVIOR NO | NO WALL
WALL = 0
IF FEATURE WALL ==
0 THEN BEHAVIOR NO
WALL = 1
Feature Move Further FEATURE MOVE | ROBOT STATE OF
FURTHER = BEHAVIOR | MOVING AWAY FROM
TOO CLOSE THE WALL
Feature Move Closer FEATURE MOVE CLOSER | ROBOT STATE OF

= BEHAVIOR TOO FAR

MOVING TOWARDS THE
WALL

Feature Find Wall FEATURE FIND WALL = | ROBOT STATE OF
BEHAVIOR NO WALL SEARCHING FOR A NEW
WALL
Behavior Wall Closer BEHAVIOR WALL | ENVIRONMENT
CLOSER = FEATURE | REACTION TO THE
MOVE CLOSER ROBOT MOVING CLOSER
Behavior Wall Further BEHAVIOR WALL | ENVIRONMENT
FURTHER = FEATURE | REACTION TO THE

MOVE FURTHER

ROBOT MOVING AWAY

81

Behavior Find Wall

BEHAVIOR FIND WALL
= FEATURE FIND WALL

ENVIRONMENT
REACTION TO THE
ROBOT SEARCHING FOR
A WALL

Tabie 4 - Muramador 1st Discrete Model

In addition to the discrete blocks shown in Figure 27, it also makes sense and

simplifies the model to create discrete blocks for the direction of the Muramador and

also for the change in the direction of the Muramador within the environment. These

changes are shown in Figure 28 with the corresponding pseudo code and block

descriptions in Table 5.

82

Behavior_Wali_Farther

Auxd
L Stock_out Aux2

o Auxl J—J"L» At Suxd] Aux 1
] A2 Stock_out ﬁ\uiE Stock out _j"; AJ:E Stock out |4 JjFuxd Stock_out
o — |y e R puxs
b fuxd b Pund 5 Pund A Auxd * Auxt
MW Auns i T runs PonE N Auns N Aun2 Stock_out b~
o Auxl Flow_owt py HAuxd Flow owt p M Aux3
L ouxr ;.auxa Flow_out L» ;zzg Flow_out § Srun? 2uxd
t Watl B ([
Feature_Wal : . . ehavior_Too_Far A6 Flow_out p
Attribute_Distance Info_Distance Jouxz
L—fie{ Auix 1
HFux? Stock_out ly Behavior_No_Wfall
HAux2
o A
o Auxs
Auxt Flow_out b
AT
Behaviar_Too_Close
Aul jl—
Stock_out Aux?
Aux3
Puxd K
Fuxd K
qFlow_out Auxi K
- Aux] il
Aux? b Stock_out Aux2
Behavior_Wall_Closer i]uii §
Auxi Fuxs K Auxt :]\—
L sroek_out Auxz l& Flow_out g:g g Smck__outf;.:u;g :
s Auxa K
2uxs K Info_Direction Auxs K
< Flow_out Auxb i 4 Flow_out ﬁzg 2
Aun? i

Adtribute_Direction

Auxt

ECTR
Puxd
Puxd
qFlow_ouwt Luxd
Fun?

!\}\A!\A‘I\

Behavior_Find _Wal

Figure 28 - Muramador Model Additional Discrete Elements

Stock _out Aux2
Fun3
Aund
Auxd
| Flow_out Auxf
fan?

Feature_Find _Wall

AA!\E\(\;‘\T

Block Pseudo Code Meaning/Comment

Feature Wall IF WALL IS PRESENT | RECORDS THE
THEN FEATURE WALL = | PRESENSE OF A WALL
1 IN THE ENVIRONMENT
IF WALL IS ABSENT
THEN FEATURE WALL =
0

Attribute Distance IF ROBOT IS TOO | FINITE STATE
CLOSE THEN | DESCRIPTION OF THE
ATTRIBUTE DISTANCE | DISTANCE OF THE
=1 ROBOT FROM THE WALL
IF ROBOT IS TOO FAR
THEN ATTRIBUTE

DISTANCE = 2

83

IFr NO WALL IS5

PRESENT THEN
ATTRIBUTE DISTANCE
= 0

Info Distance

INFO DISTANCE =
ATTRIBUTE DISTANCE

ROBOT REACTION TO
THE DISTANCE FROM
THE WALL

Behavior Too Far

IF INFO DISTANCE ==
2 THEN BEHAVIOR TOO

FAR = 1

IF INFO DISTANCE ==
1 I OR INFO
DISTANCE == (0 THEN

BEHAVIOR TOO FAR =
0

ROBOT REACTION TO
BEING TOO FAR FROM
THE WALL

Behavior Too Close

IF INFO DISTANCE ==
1 THEN BEHAVIOR TOO
CLOSE = 1

IF INFO DISTANCE ==
2 | OR INFO
DISTANCE == (THEN
BEHAVIOR TOO CLOSE
=0

ROBOT REACTION TO
BEING TOO CLOSE TO
THE WALL

Behavior No Wall IF FEATURE WALL == | ROBOT REACTION TO
1 THEN BEHAVIOR NO | NO WALL
WALL = 0
IF FEATURE WALL ==
0 THEN BEHAVIOR NO
WALL = 1

Attribute Direction IF BEHAVIOR TOO FAR | AGENT STATE
== 1 THEN ATTRIBUTE | REFLECTING WHETHER
DIRECTION = 1 THE AGENT IS MOVING
IF BEHAVIOR TOO | TOWARDS OR AWAY
CLOSE == 1 THEN| FROM THE WALL
ATTRIBUTE DIRECTION
=2

Feature Find Wall FEATURE FIND WALL = | ROBOT STATE OF

BEHAVIOR NO WALL

SEARCHING FOR A NEW
WALL

Info Direction

INFO DIRECTION =
ATTRIBUTE DIRECTION

REPRESENTS THE
ENVIRONMENT

REACTION TO THE
ROBOT MOVING

TOWARDS CR AWAY
FROM THE WALL

Behavior Find Wall

IF FEATURE FIND
WALL == 1 && A NEW
WALL APPEARS THEN
BEHAVIOR FIND WALL
= 1 ELSE BEHAVIOR
FIND WALL = 0§

ENVIRONMENT
REACTION TO THE
ROBOT SEARCHING FOR
A WALL

84

Behavior Wall Further IF INFO DIRECTION | ENVIRONMENT
== 1 THEN BEHAVIOR | REACTION TO THE
WALL FURTHER = 1 ROBOT MOVING AWAY
IF INFO DIRECTION
== 2 THEN BEHAVIOR
WALL FURTHER = 0

Behavior Wall Closer IF INFO DIRECTION | ENVIRONMENT
==] THEN BEHAVIOR | REACTION TO THE
WALL CLOSER = 0 ROBOT MOVING CLOSER

IF INFO DIRECTION
== 2 THEN BEHAVIOR
WALL CLOSER = 1

Table 5 - Muramador Model Additional Discrete Elements

4.4.5 Adding Analog Signals

The addition of analog elements to the model, shown in Figure 29, represents
the transition to a quantitative model. This model now has the first order interactions
necessary for the two task bullets from the problem definition phase. As can be seen
below the discrete blocks in the environment model as well as the attribute direction
block have been directly replaced with continuous elements representing the distance
from the agent to the wall and the change in distance that the agent seeks to carry out
respectively. The agent reaction has added the signal distance block, but for
illustrative purposes the info distance and relevant behaviors for moving closer or
farther from the wall have been retained. It is left to the discretion of the designer
when it is appropriate to keep this detail and when it should be bypassed. In case of
doubt it is recommended that the additional detail be kept. The relevant pseudo code

and descriptions for this model are defined in Table 6.

85

HAuxt Auxt J_’
'b; g;g Stock_out r—'E mg stock_out |7 ﬁi; Stock_out {4 il x:é Stock_oustd 3| xﬂ Stock_sut
fuxd Jama o P o L] 20x
o Auxs Fuxs iy Yo Poves 2unz Stock_out (1
fueh Flou_outp \ éuxh Flou ok Bt Yops Flouw_outp | SAug Flow owt | JRuxd Flow ow b J5%3
N Aux? q Aux’? b Py
Feature_Walt Property_Distaneq g7yl pistance Info_Distance | Behavior_Too_Far x:g Flow_out p
25 ey tock_out |_Behavior No_Wal
. Auxd
fax Range Auxd
Auxd
#uxB Flow_out p
NAux?
Behavior_Too Close
M'F Stock ﬁ‘}&# 15
Stock_outﬂu:Z o _omAu:\?
Fuxd k Aaxd 11 SP
Auxt Auxd K Auxs gt
L—{ Stock_out Aux2 Auxs 4 Flow_out 2uxB K L—td 01
Aux3 4 Flow_out Auxb AanT K
Auxd E Pux? Kp
Auxd K Property_Course
4 Flow_out fuxb K Signal_Lateral _Move At b
Aux? ad
Stock_out AuxZ
Sehavior_Find _Wall ot
Auxs
QFlow_out AuxG i
Bux? K
Feature_Find _Wall
Figure 29 - Muramador Model with Analog Signals
Block Pseudo Code Meaning/Comment
Feature Wall IF WALL IS PRESENT | RECORDS THE
THEN FEATURE WALL =] PRESENSE OF A WALL
1 IN THE ENVIRONMENT
IF WALL IS ABSENT
THEN FEATURE WALL =
0
Propeny Distance IF FEATUE WALL = 1| RECORDS THE
THEN PROPERTY | DISTANCE BETWEEN
DISTANCE (N) = | THE AGENT AND THE
PROPERTY DISTANCE | WALL
{(N-1) + SIGNAL
LATERAL MOVE (N)
ELSE PROPERTY
DISTANCE = 0
Signal Distance IF PROPERTY | ESSENTIALLY THE
DISTANCE == (0 THEN | DISTANCE SENSOR
STIGNAL DISTANCE = | QUTPUT FROM THE
MAX RANGE ELSE | AGENT
SIGNAL DISTANCE =
PROPERTY DISTANCE
Max Range CONSTANT = 25 DESCRIBES THE
MAXIMUM RANGE OF
THE SENSOR

86

Info Distance

IF SGINAL DISTANCE
== 0 THEN INFO
DISTANCE = 0
IF SIGNAL DISTANCE
>= SP THEN INFO
DISTANCE = 1
IF SIGNAL DISTANCE
< SP THEN INFO
DISTANCE = 2

REPRESENTS THE
AGENT’S DECISION OF
WHICH DIRECTION TO
MOVE

Behavior Too Far

IF SIGNAL DISTANCE
== 1 THEN BEHAVIOR
TOO FAR = 1 ELSE
BEHAVIOR TOO FAR =
0

ROBOT REACTION TO
BEING TOO FAR FROM
THE WALL

Behavior Too Close

IF SIGNAL DISTANCE
== 2 THEN BEHAVIOR
TOO FAR = 1 ELSE
BEHAVIOR TOO FAR =
0

ROBOT REACTION TO
BEING TOO CLOSE TO
THE WALL

Behavior No Wall IF SIGNAL DISTANCE | ROBOT REACTION TO
== (THEN BEHAVIOR | NO WALL
TOO FAR = 1 ELSE
BEHAVIOR TOO FAR =
0
IF BEHAVIOR TOO FAR | DETERMINES THE

Property Course

== 1 THEN PROPERTY
COURSE = (SP-SIGNAL
DISTANCE) *KP

ELSEIF BEHAVIOR TOO

AMOUNT THAT THE
AGENT WILL MOVE
TOWARDS OR AWAY
FROM THE WALL

CLOSE == 1 THEN
PROPERTY COURSE =
{SP-SIGNAL
DISTANCE) *KP
ELSE PROPERTY
COURSE = 0
SP CONSTANT = 15 DEFINES THE DESIRED
DISTANCE OF THE
AGENT FROM THE WALL
KP CONSTANT = 0.01 PROPORTIIONALITY
CONSTANT FOR THE
PROPORTIONAL
‘ CONTROL SYSTEM
Feature Find Wall FEATURE FIND WALL = | ROROT STATE OF
BEHAVIOR NO WALL SEARCHING FOR A NEW
WALL
Signa} Lateral Move SIGNAL LATERAL MOVE | ENVIRONMENT
= PROPERTY COURSE REACTION TO THE
ROBROT MOVING
LATERALLY AFFECTS

THE DISTANCE TO THE
WALL

87

Behavior Find Wall

IF FEATURE FIND
WALL == 1 && A NEW
WALL APPEARS THEN
BEHAVIOR FIND WALL
= 1 ELSE BEHAVIOR
FIND WALL = O

ENVIRONMENT
REACTION TO THE
ROBOT SEARCHING FOR
A WALL

Table 6 - Muramador Model with Analog Blocks

4.4.6 Adding Uncertainty to the Model

This step adds the features that control the beginning and end of walls. The

end of a wall is modeled as a part of the environment state and is based on a standard

random decision block as described in Chapter 3. The beginning of a wall is modeled

as an environmental reaction to the agent state behavior of looking for a wall. This is

also modeled as a standard random decision block, but is only activated if the agent is

looking for a wall. This is shown in Figure 30, which represents the full Muramador

model as implemented for this dissertation. The relevant pseudo code and block

descriptions are given in Table 7.

88

Puxt rl.——pkm t b
Aux Au Auxl
Random i“‘:g Siock_owt ﬁ:ﬂ Stock_out mﬁuxz Stock_out |#] Aux2 Stock_ound Aux2 Stock_out
isi 2 fued A3 03
Decision Aucd Auxd ot Yo At
s e x x fod Pz ook _out |1
1 Aaus Faxs A -
>$zg Flow_out p gﬁg Flow_out Py Flow_out p Auxt Flow_out Aun@ Flow_owt p gxi
Au? Aux? 2un? Tt
Feature_watl Propery_Distans ; : : MAoxh Flow_out
T End Signal Distance Info_Distance | Behavior_Too_Far Aux? f
Auxl "
28 faxz Stack_owt Behavior No_WVall
Aux3
Max Range Auxd
Auxs
AusB Flow_out b
Fax?
Behavior_Too_Close
Auxt dJ
Auxt 1 Stook_out Auxk :——J_p-_ 15
Stock_out Aux2 Aux3
Aund Auxd ﬁ SP
Auxt il Auxdt Auxd
L Stock_out Aux2 Auxs 4 Flow_put Aux® L1l o1
A3 4 Flow_out Aux Pux?
Auxd Fux? Kp
Fux Fioperty_Course
4 Flow_out Auxf Signai_Lateral_Move Suxt b
suxi Stock_out Aux2 K
Behavior_Find _Wall Random Aok
Decigion Puxs k&
-l 2 4Flow_out Auxf
Aux?
Feature_Find _Wail
Meve Wall
Figure 30 - Full Muramador Model
Block Pseudo Code Meaning/Comment
Feature Wall IF BEHAVIOR FIND [RECORDS THE
WALL == 1 THEN | PRESENSE OF A WALL
FEATURE WALL = 1| IN THE ENVIRONMENT

ELSEIF WALL END
1 THEN FEATURE WALL

= 0
ELSE FEATURE WALL
(N) = FEATURE WALL
(N-1)

Property Distance IF FEATUE WALL = 1| RECORDS THE
THEN PROPERTY | DISTANCE BETWEEN
DISTANCE (N) = | THE AGENT AND THE
PROPERTY DISTANCE | WALL
(N-1) + SIGNAL
LATERAL MOVE (N)
ELSE PROPERTY
DISTANCE = 0

Signal Distance IF PROPERTY | ESSENTIALLY THE
DISTANCE == (0 THEN | DISTANCE SENSOR
SIGNAL DISTANCE = | OUTPUT FROM THE
MAX RANGE ELSE | AGENT
SIGNAL DISTANCE =
PROPERTY DISTANCE

Max Range CONSTANT = 25 DESCRIBES THE

MAXIMUM RANGE OF

89

THE SENSOR

Info Distance

IF SGINAL DISTANCE
== 0 THEN INFO
DISTANCE = O
IF SIGNAL DISTANCE
>= SP THEN INFO
DISTANCE = 1
IF SIGNAL DISTANCE
< SP THEN INFO
DISTANCE = 2

REPRESENTS THE
AGENT’S DECISION OF
WHICH DIRECTION TO
MOVE

Behavior Too Far

IF SIGNAL DISTANCE
== 1 THEN BEHAVIOR
TOO FAR = 1 ELSE
BEHAVIOR TOO FAR =
0

ROBOT REACTION TO
BEING TOO FAR FROM
THE WALL

Behavior Too Close

IF SIGNAL DISTANCE
== 2 THEN BEHAVIOR
TOO FAR = 1 ELSE
BEHAVIOR TOO FAR =
0

ROBOT REACTION TO
BEING TOO CLCSE TO
THE WALL

Behavior No Wall IF SIGNAL DISTANCE | ROBOT REACTION TO
== (0 THEN BEHAVIOR | NO WALL
TOO FAR = 1 ELSE
BEHAVIOR TOO FAR =
0
IF BEHAVIOR TOO FAR | DETERMINES THE

Property Course

== 1 THEN PROPERTY
COURSE = (SP-SIGNAL
DISTANCE) *KP

ELSEIF BEHAVIOR TOO

AMOUNT THAT THE
AGENT WILL MOVE
TOWARDS OR RAWAY
FROM THE WALL

CLOSE == 1 THEN
PROPERTY COURSE =
(SP-SIGNAL
DISTANCE) *KP
ELSE PROPERTY
COURSE = 0
SP CONSTANT = 15 DEFINES THE DESIRED
DISTANCE CF THE
AGENT FROM THE WALL
KP CONSTANT = 0.01 PROPORTIIONALITY
CONSTANT FOR THE
PROPORTIONAL
CONTROL SYSTEM
Feature Find Wall FEATURE FIND WALL = | ROBOT STATE OF
BEHAVIOR NO WALL SEARCHING FOR A NEW
WALL
Signal Lateral Move SIGNAL LATERAL MOVE |{ ENVIRONMENT
= PROPERTY COURSE REACTION TO THE
ROBOT MOVING
LATERALLY AFFECTS

THE DISTANCE TO THE

90

WALL

Behavior Find Wall IF FEATURE FIND | ENVIRONMENT
WALL == 1 && NEW | REACTION TO THE
WALL == 1 THEN | ROBOT SEARCHING FOR
BEHAVIOR FIND WALL | A WALL
= 1 ELSE BEHAVIOR
FIND WALL = 0

Wall End WALL END = 1 2% OF | ENVIRONMENT END OF
TIME STEPS AT A WALL AS A RESULT
RANDOM OF THE AGENT
ELSE WALL END = 0 FOLLOWING IT TO THE

END

New Wall WALL END = 1 1% OF | ENVIRONMENT
TIME STEPS AT | BEGINNING OF A WALL
RANDOM IN RESPONSE TO

ELSE WALL END = 0

AGENT LOOKING FOR A
WALL

Table 7 - Muramador Model with Uncertainty

4.4.7 Determining Task Accomplishment

As discussed above, the two tasks identified for the Muramador are:

e FIND WALLS TO FOLLOW
¢ FOLLOW THE WALL WHILE REMAINING AT THE SET POINT DISTANCE

FROM THE WALL

Both of these are physical tasks. The first task can be assessed by observing

the “feature wall block™. In this particular model, the process of finding walls is

relatively unaddressed, and this is reflected in the assessment of the accomplishment

of that task. The second task is more carefully modeled, and hence assessment of

task accomplishment is correspondingly easier. In this case, the value of the block

“property distance” can be compared to the desired set point.

4.4.8 Suggested Additions for the Muramador Modei

The Muramador model above represents the most important interactions and

only those interactions that are within one step of the bulleted task accomplishment

91

statements from the problem definition phase. There are a significant number of
additions that could be made. For example, the model currently deals with only
straight lines. The incorporation of internal and external corners into the model will
bring it into much better alignment with typical manmade environments. Another
example is the addition of provisions for hitting a wall. Currently the model is
limited to situations where this does not occur.

These limitations are not inherently flaws in the model, but rather represent
differing levels of abstraction. These features, along with others that are desired, can
be added as additional cycles in the exploration based design process if they are
needed. This process is discussed in section 4.3 Refining the Model.

As additional elements are defined, the fidelity of the model increases and the
level of abstraction decreases; that is, the model incorporates more and more of the
complexity of how the designer sees the real world. Note that the complexity added
to the model only represents how the designer sees the world and not the actual state
of the world. This is true of all design processes and is the reason that no modeling
method or design process can eliminate the need for real world testing.

As with any other modeling or design process, a critical aspect of the use of
the process is determining when it is good enough. Although it would be nice to have
a hard and fast rule, as with any other process the engineer must ultimately exercise
judgment by considering the ramifications of failure, the tradeoff between modeling

and testing, and the available resources for completion of the project.

92

4.5 Multi-Agent Foraging Model

Understanding self-organization among multi-entity and multi-agent systems
is a significant field of study within biological and robotic systems. An example of
this involves understanding how insect colonies such as ants and bees are able to
organize insects of the worker castes apparently without centralized control, and
presumably without a cognitive understanding on the part of each individual insect of
the dynamics of properly running a nest or allocation of tasks amongst the insects. A
popular emerging theory among a variety of insects involves variable thresholds [31].
In such a system, each individual worker is aware of certain tangible and observable
properties of the collective, for example stored food or refuse within the nest or hive.
Each individual within the colony will have a slightly different threshold for action to
correct each particular property. For example, if stored food levels drop slightly,
those individuals with a high sensitivity to lack of food will immediately begin to
look for food. As stored food levels continue to drop, more and more individuals will
become involved in the task of searching for food as each individual’s threshold is
progressively exceeded. In this way, a negative feedback loop is effectively formed
that attempts to keep the food level of the colony as close as possible to a set point
determined by the collective thresholds of the individuals that make up the colony.

Roboticists have become interested in this system both in an attempt to
understand nature and as a possible solution technique for control of complex multi-
agent systems. One such project [32] has successfully used a variable threshold
technique to get a group of robots to self-organize to sustain a collective energy

supply by searching for energy modules within the environment. This experiment is

93

sufficiently complex and well defined to serve as a good model to test a multi-agent
system interaction space model. Figure 31 shows Krieger and Billeter’s

implementation of the muiti-agent foraging system.

Figure 31 - Foraging Robots as Implemented by Krieger and Billeter [32]

4.5.1 Defining the Problem

A problem statement for the multi-agent foraging model can be summarized

as follows:

KEEP SUFFICIENT ENERGY IN THE NEST BY COLLECTING AND RETURNING
ENERGY MODULES FROM THE SURROUNDING ENVIRONMENT

This problem statement can in turn be broken down into a series of tasks:

SENSE THE NEST ENERGY LEVEL AND FORAGE WHEN NEEDED
FORAGE FOR AND LOCATE ENERGY MODULES

RETURN THE ENERGY MODULES TO THE NEST

MAINTAIN THE ENERGY LEVEL OF INDIVIDUAL AGENTS

94

MAINTAIN THE ENERGY LEVEL OF THE NEST

4.5.2 Addressing the Muiti-Agent issue

As discussed in Chapter 3, in a multi-agent system, there is a single
representation of the environment and its reactions, while each agent has its
properties and reactions represented separately from other agents. This has both the
advantage and the disadvantage that the information exchanged between the
environment and the agent must be standardized. This is a disadvantage in that it
limits the freedom to design custom agents, but is an advantage in the sense that the
designer must carefully consider and formalize this interface, which should aid both
in system understanding and in eventual agent construction.

In the event that the agents are similar or identical, it makes sense to
modularize portions of the subsystem. Modularization of the agent is a natural
extension of the multi-agent modeling concept shown in Figure 15. Beyond the
modularization of the agent, it also is helpful to modularize those portions of the
environment that must interact separately with each agent. The specific
implementation of the modularization for the foraging model is discussed and shown

in the next section.

4.5.3 Foraging Model

As mentioned in the previous section, much of the multi-agent foraging model
is modularized. Figure 32 shows the block that is used for each agent, while Figure
33 shows the internal structure of the agent block. This block accounts for both the

agent reactions (which have inputs from the environment properties on the left side of

95

the block) and the agent properties (which have outputs to the environment reactions
on the right side of the block). Code for this model is given in Appendix B.2 — Multi-
Agent Foraging Model. The specific development steps of this model do not
substantially add to the understanding of the modeling process and hence are not

included. For a detailed walk through of the functionality of a similar model, please

see [2]
»| Signal Nest Energy Feature in Nest p
Featurs Returning »
* Info Ensrgy Found Feature Foraging p
Feature Engrgy On Board p
| Signal Nest Distance Property Agent Energy b

Foraging_Agent

Figure 32 - Foraging Agent Block

96

D, BRI] LA
. 5] Aux2 Stack_out w2 Stodk oyt
Signal Mest Energy -y Sawa
Auzd Ausd
) Ak AuwxS
info Ensrgy Found N Aud Flow out Aus Flow,_cut
Aurl HAwy
{3y . roprpe ;
) ;1| Signal_Nest_Energy Info_ Energy | Behave_Stay_In_Nest
Signal Nest Distance 1
Auxl Auxl J{; Aux1 —k Auxi La——fpef A1
Aus? Stod out Pl A2 Stock_out Aux2 Stodk_ ot 14 a2 Stock_out Aux? Stock_ cut -
Aux3 Aux3 2 Aux3 2 Auxd Auxd
Auzd Auxd Auxd Auxd o Auxd
A Auxs o Aws 3| Auxs o Auxb 3 AuxS
Auxé Fiow_ outp HA®BB Flow_cut Auxg Flow_cut S A Flow_out Auxd Flow out
Aux? AuxT L g N AT A AuxT
rbute_Energy Bohave_Leave_Nest Hohave Foragind Behave_Found Bohave_Returning
Lo A1 r—n-) Al p~Po| Aux
2ux2 Stock_out Aux2 Steek_cut L—F HAwZ Stock, out
Auxd Awd Amd
Auxd A Aued A Auxd
A Auxs Auxs Aws
Aux6 Flow, cut Auxg Flwout HAwB Flow_out
Aux? Auxd AT
Signat_Nest_Distance Info_Al_Nest Bohave_Arve_Nest
7 | Auxd P Auxt
1 P a2 swoai ourd] r; A2 Stock_cut
Feature In Nost A Aux3 30 Auxd
Auzd A Auxg
T Auxs . AwE
- Auxg Flow_cut Enargy_Minimum AmE Flow_cut
Feature Returning Al Auxy
u__]’a) Signal_Agend_Energy infe_Sulficiant_Agant_Enorgy
Feature Foraging B
3 Ay Auxt
. U] Stodk_out Auwx2 ﬁl—— Stodk_out Aux2 [0
Featurs Enargy On Board A3 A3k
Mxé 4 m:g Kk
Y I
C.Em/ Flow, cut A i Auxt 6 QFlow_out Auxb K
Property Agent Energy A X Stook_out iwig - Aurf
UK.
Featurg_in_MNog l— Auxd Feature_Retuming
AumS |
GFlowowt Auxb K
" Aum Auw? S0 Auxd
Stodk_out Aux2 out A2
23 [Festuss_Energy. On_Board Aux?
Aud Auxd
Auxl AuxS
4 Flow_cut Ausg qFize_out Audk
Pax7 Aux?
Proparty_Agent_Energy Energy Use Rats Featire_Foraging

Figure 33 - Foraging Agent Block Internal Structure

Similar to the agent block above, the environment reaction block has been

modularized and is shown in Figure 34 while the internal structure of this block is

shown in Figure 35. The left hand side of this block provides the inputs from the

agent properties, while the right hand side provides outputs to the environment

properties.

97

http://lnyLSufficierrt.Agerit.BW

Feature In Nest

J Feature Returning

| Fealure Foraging

& Prope ty Agent Ensngy

7| Feature Energy on Board

Signat Use Nest Energy
Signal Agent Energy
Behave Foraging
Behave Returning »
Behave Encrgy on Board §

Environment Reaction

Figure 34 - Environmental Reaction Block

1
Signat Use Nest Enerngy

Signal_Use Nest_Energy

Siock_out Aux2 |

Flcw _out AuxS

Auxi
Auxld
Auxa {1
Auxd

Auxy

Auxt

Stoek_out Aux2

ALX3
Arxd
Auxs

4 Flow_ow AuxB

A7

FAA & i e

Infa_in_Mest

Signalge Eﬁergy

3

Fxd

Stoek_out Aux2

Aax3d
FARCE
AuxS

4 Flow ou A

A7

Signal_Env_Agen,_Erengy

Beheve Foraging

ALl

Stock_out Aux2

Alxd
Aund
A

4 Flow_our Auxb

Ax?

ﬂr\‘l\r‘!r\l\‘

|

Featare In Nest

Property Agent Energy

|

AR A AN A

Behave_Env_Fcraging

Bohave Rotuming

Auxi
Stoek_out Aux2

Axd
Axd
ALx5

4Flow_ou Auxd

A1 %7

A L ey

Behave_Env_Returming

S

Behave Enengy on Bosrd

Behave_Env_Enegry_on_Boarnd

g Tevy ont A i

At

3tock oul Aw2K

Apd §

A7 €

Figure 35 - Environmental Reaction Block Internal Structure

98

Featurs srag‘ng

2
Feature Returring

Featurs Eergj' on Doand

In addition to the agent and the environment reactions that should usually be
modularized for a multi-agent model, it will often be helpful to modularize certain
aspects of the environment properties. This is generally used when the environment
properties section is being used to model a relationship between an individual agent
and the environment, such as the presence of an energy module at the location of a
particular agent or the distance of a particular agent from the nest. While these values
are conveniently modeled as a part of the environment properties, they are clearly
different for each agent.

The block for that portion of the environment properties that has been
modularized is shown in Figure 36, while the internal structure of that block is shown
in Figure 37, The left hand side of this block accepts inputs from the environment
reaction blocks as described above, while the right hand side feeds the input section

(i.e., the agent reactions section) of the agent block as described above.

K

Ainfo Foraging Afiributs Energy Moduls |

N info Returning Property Nest Distance b

Environment Siate

Figure 36 - Environmental Properties Block

99

Auxt

] Pl 2ix2 Stock _out
L)

info Foraging) Aund Alftribute Energy Module

N xS

N Auxt Flow_out

5 A AUXT

Movement_Rand Property_Nest_Distance

| o Auxt
gig%%‘; o Aux2 Stock_out
‘ A ama

3

0.001 Auxd
A AuxS
A AuxB Flow_oputp
A AT

Energy_Present poature_Energy Module

b
}
i
!

Info Returning Property Nest Distance

Figure 37 - Environmental Properties Internal Structure

The complete Multi-Agent Foraging model is shown below in Figure 38. The
Mux and Demux blocks are used to reduce the number of traces that must be routed.
Functionally Simulink uses a Mux block to convert a set of individual numbers into a
vector or numbers of the same type with the order determined by the order of the
graphical connection. The Demux block is the reverse. Note that despite the
modularization, the basic cycle requirements of the framework are still preserved.

For simplicity this model uses only three agents, although the results shown in
the next chapter on predictive modeling are obtained using a five-agent model that is
implemented in a different tool. Code for the model shown above can be found in
Appendix B.2 — Multi-Agent Foraging Model.

Modularization is usually best accomplished by creating a model of the
desired complexity with only a single agent of any particular type, then replicating
that agent an appropriate number of times. Any additional interactions between the

various agents can then be added.

100

b il Arpr .
1 A2 Stocs_ot | 5griet Nest Energy Feauure In Nes:
Recharge_Scaler P 2‘&3 Feature Ratuming
3 ﬁ,";g Flow o b irfo Eneray Found Feature Forazing
1 Mesture Cnorgy On Doare B
Preperty. Nect_Energy B Sgncl NestCistenss o a et Enongs
W irvo Moraging Adtrisute Criergy Modul Foraging Agent_1
| iImo Ketuming Property Nest Dishince
Envionment_State_1 §—#| Sigral hest Energy Featura inNost
Feature Hetuming
1 7o Foraging Attnaute Energy Moduls L I Energy Found “eaurs Forsgirg
—+B Yo Retuining Property Nest Distance Foature Snogy On Board »
Envionment State 2 L Sioral N USRS s e

Foraging Agers 2

~+W] bru Paaging Atlisute Ersngy Mudub

-+ v Retuming Property Nest Distance ;
E 9 T Sgnel Nest Erergy Feature In Hes:
nvionment_State_

A4

f eoture Retuming

Irfo Energy Found Featurs Forajing

& Feature Energy On Boarc
—$} Sgnet Nest Cistance

Prepory Agord Enorgy

E Foragng, Agent 3
SIg1al USe Nest ENSrgy Featire 1 NEST[@
4 Sigal agant Faargy Foatra Rat iming (-
Behavs Faraging Faclure Foaging
Behave Reurmng Froperty Agert Enerny

Rebave Enargy nn Brgrd Feeth it Enargy nn B (o
Environment_Reaction_1

L—— Signal Use Nest Energy Feature In Nest
4 Sigral Agent Exercy Feaiura Retiming
—1 Budroave Fuaging Foutw e Fuigingg
Batave Rewrnng Froperty Agent Enengy
r Beohave Energy on Board Fegture Energy on Boand
1] Environment_Reaction_2
L(E(‘ L Signal Use Nest Ensrgy Feature In Nest]
A < Sighal Agost Enorgy Foaturo Ratuming
Behave Faraging Festure Foaging
et Behavg Resurn ng Froperty &gent Energy
| Behave Enorgy on Bosrd Feauro Energy on Board

Erviranmeant_Resdinn_3
Figure 38 - Multi-Agent Foraging Model

4.5.4 Measuring Task Accomplishment

While defining the problem a list of five discrete tasks was developed:
1. SENSE THE NEST ENERGY LEVEL AND FORAGE WHEN NEEDED
2. FORAGE FOR AND LOCATE ENERGY MODULES
3. RETURN THE ENERGY MODULES TO THE NEST
4. MAINTAIN THE ENERGY LEVEL OF INDIVIDUAL AGENTS
5. MAINTAIN THE ENERGY LEVEL OF THE NEST

In measuring task accomplishment, one must now examine the model and find

places to answer the questions above. Question 1 can be answered by looking at the

101

behave forage block of each agent as a function of the property nest energy block.
Question 2 can be answered by observing the behave energy found block for each
agent. Question 3 can be answered by looking for positive edges on the property nest
energy block. Question 4, can be measured by observing the property agent energy
block for each agent. Question 5 can be answered by monitoring the property nest
energy block. In most cases, there are a number of other ways to accomplish the same
result. It is left to the designer’s discretion to select adequate monitoring methods

given the relative importance of constraints and features.

4.5.5 improvements and Additions

There are many opportunities for improvement and more detailed modeling in
this system. In particular, the search and detection modality for the agents is not well

modeled,

4.6 Urban Search and Rescue Victim Defection Mode/f

The RoboCup Urban Search and Rescue (USAR) competition is an event
within the international Robocup competition [33]. This competition and the
numerous subcompetitions within it are intended to advance the state of robotics in a
number of different fields to near human abilities by 2050. Specifically the RoboCup
USAR competition has the stated aim:

“When disaster happens, minimize risk to search and rescue personnel, while
increasing victim survival rates, by fielding teams of collaborative robots which can:
Autonomously negotiate compromised and collapsed structures

Find victims and ascertain their conditions

Produce practical maps of their locations
Deliver sustenance and communications

® @ e ¢

102

e Identify hazards

s Emplace sensors (acoustic, thermal, hazmat, seismic, eic,...)

e Provide structural shoring

...allowing human rescuers to quickly locate and extract victims.” [33]

Within the competition, victims are simulated using five life signs: form, heat,
movement, sound, and carbon dioxide emissions. Within the rules [34] of the
competition, three life signs are defined as constituting a victim. Additionally, a
determination of the state of the victim (fully conscious, semi-conscious, Or
unconscious) may be made based on the magnitude of the life sign. For example, a
large movement such as an arm motion is to be categorized as a fully conscious
victim, while smaller movements such as a twitching finger or a gently moving head
should be interpreted as semi-conscious. A simulated victim with no movement at all,
but that still satisfies the criteria of three life signs is assumed to be unconscious.

The arena of the competition varies significantly from smooth, relatively
featureless terrain, to significantly obstacled and unstable terrain. Typical examples
of terrain and simulated victims can be seen in Figure 39 and Figure 40. In addition,
various false life signs are placed within the arena either through intention or
circumstance. For example, these competitions are public, and often well attended
events (see Figure 41). It is unavoidable that human life signs can be picked up from
outside the arena. In addition, simulated items representing confounded

environmental features such as a mostly-smothered fire are placed in the arena to

generate heat signatures or other types of false life signs.

103

Figure 40 - Additional Typical ReboCup Terrain with the Good Samaritan

104

Figure 41 - Crowd at the RoboCup Competition in 2006

The Good Samaritan [35] pictured in Figure 39 and Figure 40 was a Colorado
State University robot designed to compete in the RoboCup Rescue competition. The
following models are highly abstracted models of this design problem and focus on
the victim detection and classification aspects of this system. This model is used

principally to demonstrate perceptive task modeling.

4.6.1 Defining the Problem

In this case, the problem has previously been well defined as described by the
competition organizers. However, it is still up to the designer to break this problem
statement into more specific tasks. The list below is incomplete and is focused
predominantly on the victim detection aspect of the problem, as is the model itself.

Indentation denotes a child relationship to the parent task.

MOVE ABOUT THE ENVIRONMENT AND SEARCH FOR VICTIMS
DETECT VICTIM LIFE SIGNS

DETECT HEAT

DETECT MOVEMENT

DETECT SOUND

DETECT CARBON DIOXIDE

DETECT FORM

105

DETERMINE VICTIM STATE
DISTINGUISH BETWEEN LARGE AND SMALL MOVEMENTS
DISTINGUISH BETWEEN LOUD AND QUIET NOISES

4.6.2 GSVD Model

The model for the Good Samaritan victim detectionis shown below in Figure
42. The significant difference between this model and the models presented
previously is the presence of perceptual tasks. This is discussed further in the section
on measuring task accomplishment. Beyond the illustration of a perceptual task, this
model is intended principally to illustrate that it is possible to model significantly
complex tasks with relatively simple models. Full development of this model is not
shown, but additional details are available in Appendix B.3 — GSVD Model.

Despite the relative complexity of the problem and the simplicity of the model,
this model still provides both qualitative and quantitative insight that is useful to a
designer. Qualitatively, the interactions that lead to task accomplishment are made
explicit, and further exploration based design cycles can result in a more sophisticated
model that is more accurate. Quantitatively, predictive modeling can yield additional

insight. Please see Chapter 5 for more information.

106

D s I"_" L o (84 wact
AR ST, 1ai i E MMGC.J o A Yk cwig {302 Sec. o f
LA and : 203 oo
an b4 {bood
Jans P S 12as
tal o L)
;ﬁlﬂ ik | ::ﬁ LA i :&g Fov.mi m LX)
PRaioro oo i am T e Btava_toarat
P 1) By ol 3
Heod mtas = - - S e L+ YUY
fiz i i e
ka8 { bt 4] dazk
S P, g BE SO P fonod Foarmsl
M Rand L P el - Axpi
& Bl £63 =3 TR Brbare_Fnd
o (]] 2
s
p { o
3 et
o wol:
o dasit
|
o

; fanm
e i
tmms e A
sl Reed .
Ao ’

v enaat Wﬂ}- MR, Bprien U

lofecs
Jhol Do

AoZ
o feaze)
e

Bidrora Romck, Yoovdn

Figure 42 - GSVD Framework Model with Basic Element

4.6.3 Measuring Task Accomplishment

As always, to assess task accomplishment, one should return to the problem

statement and the original list of tasks:
MOVE ABOUT THE ENVIRONMENT AND SEARCH FOR VICTIMS

DETECT VICTIM LIFE SIGNS
DETECT HEAT

107

DETECT MOVEMENT
DETECT SOUND
DETECT CARBON DIOXIDE
DETECT FORM
DETERMINE VICTIM STATE
DISTINGUISH BETWEEN LARGE AND SMALL MOVEMENTS
DISTINGUISH BETWEEN LOUD AND QUIET NOISES

This problem as stated contains the physical task of moving about the
environment plus a number of perceptual tasks. The physical task is relatively poorly
modeled as it appears here, and as such determination of task accomplishment is
limited to recording the value of the “property searched terrain” block.

Perceptual task accomplishment is relatively explicitly modeled in the manner
described in Chapter Three by comparing the agent state (i.e., what the agent believes
about the world) with the environment state (i.e., reality within the abstracted world).
For each of the life signs, as well as the magnitude of the life signs, there is a portion
of the agent state that defines what the agent believes to be true about the
environment. This can be directly compared with the respective blocks in the
environment state to measure the accuracy of the perception of the agent.

For the higher level perceptual tasks of determining the presence of a victim
and determining the state of the victim, the process is exactly the same, and once
again explicit blocks exist for both the agent’s belief of the state of the environment
and the actual state of the environment.

As with the other models, the conditions necessary for task accomplishment
are made explicit within the descriptive model, but can only be measured within the
predictive model. Measurements of task accomplishment will be discussed in

additional detail in Chapter Five.

108

4.6.4 Additions and Improvements

It is recognized that this model represents a very simplified abstraction of the
actual RoboCup USAR competition, let alone an actual USAR situation. In addition,
the movement inherent in the model is not particularly representative of the Good
Samaritan itself. However, this model can still be used to understand the
subproblems and, as will be shown in Chapter Five, even draw some quantitative
conclusions.

Many improvements to the model can be added as additional exploration
based design iterations. As mentioned, the current representation of the terrain is
very limited. Other significant areas for improvement include better representation
and quantification of life signs, and explicit representation and modeling of the search
process (to allow for accidental and intentional repeated search and the possibility of
getting lost or disoriented as frequently happens even with human operators let alone

under autonomous control [36].

4.7 Prototyping

The exploration based design process makes explicit the need for prototyping.
Interaction space modeling can and eventually should incorporate prototyping. As
models become more sophisticated, the possibility of a mistake in the model or an
incorrect assumption on the part of the modeler becomes more probable. Creating
and building prototypes at appropriate points during the design/modeling process is
important in creating a correct model. As with any prototyping process, it is possible
to prototype the entire system, or one or more subsystems. Prototypes should be only

as complex as necessary to validate the portion of the model in question. Eventually

109

the system as a whole will have to be prototyped as it will be necessary to check the

entire model.

110

Chapter 5 - Predictive Modeling

Modeling efforts up to this point in this dissertation have been focused on
descriptive modeling (i.e., capturing the domain knowledge that the designer
possesses and applying the design knowledge inherent in the modeling process). In
descriptive modeling the primary task is to help the designer understand the
qualitative interactions that govern system response. Even where continuous or more
complex data types are employed, the purpose is predominantly to allow the designer
to explicitly represent the data that will later be available rather than to explicitly
represent any quantitative aspect of the system. By contrast, predictive modeling is
intended to provide quantitative insight into the system behavior. This requires that
the decode portion of the Rosen model be applied. If used successfully, predictive
modeling will allow the designer to explore the real world design space within the
abstract world and qualitatively refine Ry,

Predictive modeling is accomplished using the same models previously
developed during the descriptive modeling phase by implementing these models in a
numerical computing language (e.g., Simulink) and iteratively simulating. Over a
large number of iterations, the ability of the system to accomplish specific tasks can
be correlated to system variables such as sensor accuracy, environmental parameters,
physical characteristics of the agent, different control strategies, or other aspects of
the model that can be changed. It is important to note that because much of a typical
model, particularly the environment, relies heavily on stochastic elements, that single

simulations have no meaning; trends must be looked at over a statistically significant

111

number of trials. A collection of ideas for rigorous implementation of this concept

can be found in [37]

5.1 Developing Predictive Models

Predictive models are generally developed in the same fashion as descriptive
models. The first step in developing a predictive model is the development of a good
descriptive model. The major difference is in the rigor of the governing equations
that must be developed. While descriptive models are best implemented with pseudo
code or even verbal descriptions, predictive models require the generation of formal
code to control the flows within the basic functional blocks (details on this code can
be found in Appendix A — Implementation and Code for the Simulink Modeling
Tools). It is important when writing this code to follow good debugging and
incremental development practices. In general the predictive model should start with
a basic functional model that should be adapted to predictive modeling and
incrementally improved from there. An attempt to jump from a sophisticated

descriptive model to a sophisticated predictive model is generally difficult.

5.2 implementing a Simulation

As was mentioned in Chapter Two, the original predictive interaction space
simulations were implemented in a system dynamics programming environment
called PowerSim. Due to the limitations of this language new models have been
developed in Simulink. This chapter relies interchangeably on simulation results
from both new models and old models, but ties the measurement of task

accomplishment explicitly to the new framework and to the design methodology

112

developed in Chapter Three and Chapter Four. Code and implementation of alternate
models is given in Appendix C — PowerSim Code and B.1 — Muramador Model.
Moving forward, it is expected that it will be advantageous to implement all
simulations in Simulink; however some current limitations will have to be overcome.
These are discussed below in the section on the limitations of the current Simulink

implementation.

5.2.1 Simulink implementation of Basic Functional Block

A Simulink block has been created for the basic functional block. This block,
shown in Figure 43, contains seven inputs labeled “Aux1” through “Aux7” which are
used to bring data into the block. Other blocks whose states need to be known are

connected to these inputs in a standard data flow fashion.

e
o Puxi
| AuxZ Stock_out
j - 1)
pE T
Puns
Puxf Flow_out o
Auxf

K4

Syl Tt S

Framewsork

Figure 43 - Simulink Implementation of 2 Basic Functional Block

Figure 44 shows the internal implementation of the basic functional block in
Simulink, Here the seven inputs as well as a feedback from the current value of the
stock are combined into a single data stream. This data stream is sent into an m-file
block which functions as a flow. Double clicking on the m-file block brings up a

dialog box as shown in Figure 45 that allows the user to enter the file name. This file

113

written by the designer takes the inputs and reduces them to a singe output value that

represents the flow into or out of the stock.

MATLAB . Stoek
Function

(1)

Stod_out

Flow_ou

B

alo iz 2 &b o iNor;nai "3

MATLAB

Blodk Perammeters: mifile

—MATLAB Fen

dimensions' and 'Collapse 2-D results te 1-D".
l Examples: sin, sinfu), foofuf1}, ul2})

 Pass the input values to a MATLAB function for evaluation. The function
must return a single value having the dimensions specified by 'Output

Bk

— Parameters

Function
mtile

MATLAR function:

&

St i son

+

Output signal type: gautn

L S

Do yeaghts o U0

Cancel Help

Figure 45 - Dialog Box to Set the M-file

114

The stock, which stores the value of the functional block and represents the
actual state or reaction, is implemented as a custom S function [38]. The code for the
S-function can be found in A.1 — Simulink Implementation of a Stock. The initial
value of the stock must be set for each basic functional block. Double clicking on a

stock will open a dialog box, shown in Figure 47, where the initial value can be set.

Stock

Etodk

Figure 46 - Simulink Stock

Temoks

DEES §RE < PES®| > o]

§

5

Hlodk Paraneters Stealk "

'~ Stack fmask] flink)

1

3

This block functions as a standard system dynamic stock. Multiple f
independent quartities can be tracked using vector inputs and vector %
outpits. The initial values must be specified as a vector in the block !
interface window. The number of states tracked is dependent on the i
!

length of the initial value vector. L swmew .
>
~ Patameters j Pra— Stodc_out
Initiat Value Vector
] ';i

i Flow_out

| oK a Cancel § Help i Apply 3

I

Figure 47 - Dialog Box to Input the Initial Value of the Stock

115

5.2.2 Simulink Implementation of Other Blocks

There are a number of additional blocks that are used for simulation of
uncertainty and stochastic properties of the environment or agent. These are
discussed generally in Chapter Four. The most common auxiliary block is the
random decision maker shown in Figure 48. This block uses a random number
generator in comparison to a threshold value entered by the user as shown in Figure
49, The output will be true (equal to one) at the specified percentage of time steps.
In particular, this can used to represent random events in the agent or environment,
for example, the presence of a new wall in the Muramador model. Additional details

on this block can be found in Appendix B —

Random Decision haker

Figure 48 - Randem Decision Making Bleck

1 = Subsystem [mask] {ink) :
1 1 Random Decision Maker. Accepts an input that is the % of time the [Bandom
11 output will be true on average. § Decision
- g 75 3
+ Parameters |
| %Tre ;
] 3?5 e Random Decision hiaker
0K ? Cancel j Help g Sl

Figure 49 - Random Decision Block Dialog Box

116

The uniform random number (Figure 50) and the discrete uniform random
number (Figure 51) blocks are also used frequently in modeling uncertainty and
decisions. In particular, the discrete uniform random number generation block can be
used to make discrete decisions in the same way the random decision maker block is
used to make binary decisions. More details on these blocks can be found in A.4 —

Random Decision Making Block Implementation.

Uniform Random Humber

Figure 50 - Random Number Generation Block

DRHN

Discrete Uniform Random

Figure 51 - Discrete Uniform Random Number Generator

A number of standard blocks for generating noise and other stochastic signals
are available within Simulink. It is beyond the scope of this dissertation to attempt a
full introduction to the capabilities of Simulink, but additional information is

available in [39].

5.3 Measuring and Interpreting Resuits

Assessment of task accomplishment is discussed extensively in Chapter Four;

however, as has been previously mentioned, predictive modeling and numeric

117

simulation opens the possibility of quantitative measurement of task accomplishment.
This can include either measuring the frequency of task accomplishment as defined
by some binary criteria, or measuring the quality of task accomplishment (e.g., the
average deviation of the Muramador from the set point distance).

In addition to measuring task accomplishment under a fixed set of conditions,
it is also possible to parameterize one or more of the system variables and observe the
frequency or quality of task accomplishment that results. Such parameterizations can
provide valuable insights into system requirements R; and can subsequently lead to
refinements of the model resulting in additional iterations of the exploration based

design process and the ability to further quantitatively model task accomplishment.

5.4 Miuramador Simulations

As presented in Chapter Four, the tasks for the Muramador are:

e FIND WALLS TO FOLLOW

© REMAIN AT THE SET POINT DISTANCE FROM THE WALL

As both of these are physical rather than perceptual tasks, task accomplishment is
measured by observation of the environment state relative to some desired state. In
Chapter Four, it was discussed that the first task can be measured by observing the
“feature wall” block in the model. Typical results from this are shown in Figure 52.
Alternatively one could measure the accumulated time that the Muramador spends

near a wall as shown in Figure 53.

118

1.0
0.8+

0.6+

Mall

0.9

0.24

D-D € 4 Li 1
g 500 1,000 14500 2000 2500

Time

Figure 52 - Muramador Model of the Presence of a Wall (Time Units are Arbitrary)

0 : : : $ 4
4] 200 400 600 800 1.000

Figure 53 - Muramader Cumulative Wall Time (Units are Arbitrary but Consistent)

The second task, that of maintaining a particular distance from the wall, is
more accurately modeled here and hence more realistic results are available. The
distance of the robot from the set point can be measured directly, for example, as
shown in Figure 54. However, as discussed above, due to the stochastic nature of the
models and the consequent need for multiple runs and average values, this is valid as

qualitative information (i.e., the shape) only.

119

-

Wall Distance
5

B +. ' & n
¥ 18 =t L

Q 200 400 500 200 1,000
Time

Figure 54 - Muramador Instantaneous Wall Distance (Units are Arbitrary)

In order to obtain quantitative information, multiple runs were conducted and
averaged with variation in the control constant parameter. Results from this are
shown in Figure 55. From this plot it can be seen that at very low values of the
control constant, the average deviation is nearly equal to the difference between the
set point and the maximum range of the sensor, while at very low values, the average
deviation drops to essentially zero. Although not shown on this plot, at just a slightly
higher value, the system becomes unstable and exponentially greater distances are
reached. This is consistent with standard control theory, and in fact for this relatively
simple system that could have been predicted without interaction space modeling.
However, instabilities will be revealed even in very complex systems with significant

uncertainty and randomness, albeit perhaps less clearly than shown here.

120

Average Distance From Set Point
7 - - ey . S

6 .
5+ B

«©

Q

54r -

K]

Q

1o

o

<
2r N
1+ .
0 4 l]-3 JJ‘1-2 : l1 0
10 10 10 10 10

Kp

Figure 55 - Average Distance from the Set Point

5.8 Foraging Simulations

As was discussed in Chapter 4, the tasks to be accomplished by the system
are:

1. SENSE THE NEST ENERGY LEVEL AND FORAGE WHEN NEEDED

2. FORAGE FOR AND LOCATE ENERGY MODULES

3. RETURN THE ENERGY MODULES TO THE NEST

4. MAINTAIN THE ENERGY LEVEL OF INDIVIDUAL AGENTS

5. MAINTAIN THE ENERGY LEVEL OF THE NEST

Task one can be observed by watching the behave foraging block of an individual
agent. This can be seen in Figure 56. Task two can be measured by observation of
when an agent does or does not have an object. An example of this can be seen in

Figure 57. This plot can also be used to see the accomplishment of Task three as a

121

negative edge represents dropping off an energy module. Task four is observed by
monitoring the agent energy block in the agent state. An example is shown in Figure
58. Task five is a straightforward look at the nest energy level block. An example is

given in Figure 59

1.0-

0.8

1

|
= 0.6

0.4+

Foragin

0.2-

0.0 ; } : ;
0 2000 4000 6000 8000 10,000

Time

Figure 56 - Agent Foraging Gutput (Units are Arbitrary)

1.0+ | ul
0.8

|
==
—
N

0.6~

Object 1

0.4+

0.2+

0.0 ¢ ; ; i v
0 2,000 4000 6,000 8000 10,000]

Time

Figure 57 - Agent Object Found Qutput (Units are Arbitrary)

122

o

x> 90

-

! 804

o

g T4

Ll

| 60

[]

2 504

D:] ';' ¥ 1 | ;
i 2000 4000 6000 8000 10,000 §

Time

Figure S8 - Individual Agent Energy Level

100
@i
ER 01 W ﬂ\
= B0
k]
Lﬁﬂ 40-
o 204
=
i s 5 ; # 4
0 2000 4000 6000 8,000 10,000
Time

Figure 59 - Instantaneous Nest Energy Level for a Typical Power Sim Run

A more useful method of measuring task accomplishment is to repeat the
simulation a statistically valid number of times and average the results. While this
technique can predict the nest energy for a particular set of parameters, often to a
designer the variation of task accomplishment due to the variation of more than one

parameter is more interesting. This concept is illustrated in Figure 60, which

123

represents the simulation time that elapses before the nest energy drops to zero as a
function of both the energy usage of an individual agent and the value of each packet
of energy that is found and returned to the nest. Figure 61 shows the average nest
energy level as a function of the same two parameters. In both cases the trend is what
would be expected logically; however, here it is possible to quantify these

interactions.

Time to Zero Nest Energy

6000
so00l
000t
2000
2000~ |

1000

Agent Energy ’ Value of Energy
Usage 0.08 Packet

Figure 60 - Maximum Number of Times Steps (5000 possible) to Complete Nest Energy Loss (out

of 26 runs)

124

80—

60~
50
40—

30—}
60

0 . 002 003 004 005

006 go7 008 go9 0
Agent Energy Usage Value of Energy Module

Figure 61 - Average Nest Energy as a Function of Agent Energy Usage and the Value of an

Energy Module

5.6 Victim Detection Simulations

Detailed results of the victim detection simulations are not presented here, as
little new work has been done on this topic for this dissertation. This is a result of the
simulation environment limitation discussed above. Additional information is
available in [2]. Figure 62 shows a typical example of information that can be
obtained from analysis of the simulation results for the Good Samaritan Victim
Detection Model. The results below are included as an example of a perceptual task

as discussed in Chapter 4.

125

Victims Found by Noise Level

20 ——

18 4= it

16
- 14 - :
£ 4 —o50% Sensor Effectiveness
h —o—80% Sensor Effectiveness
"E’ 10 90% Sensor Effectiveness
§ 8 —¢—-99% Sensor Effectiveness
> 8

4

2

0 AR S]n - K . et 5

0 200 400 600 800
Noise Occurances Per Channel

Figure 62 - Average Number of Victims Found Based on Environmental Noise and Semsor

Effectiveness

5.7 Exploration Based Design with Predictive Modeling

The predictive modeling process fits into the exploration based design within
the prototyping loop (see Figure 63.) The predictive modeling as with other
simulations will reduce the prototyping needs in quantifying performance. As
discussed in the next section it is still necessary to conduct prototyping activities;
however, the emphasis can shift (at least early in the design phase) to validating
assumptions and specific portions of the model rather than validating overall system
response. This allows, in general, for smaller scale more contained experiments to be
conducted at a lower level of sophistication than a full system model. In general this

should reduce cost, cycle time or both.

126

Identified
Needs or
Desires

Realization of
Needs or
Desires

A

Kdm and Kdn]

Design

'

Exploration
Process

Dn

}

Predictive
Modeling

i

Physical
Prototyping to
Confirm
Assumptions

System Level
Physical

Prototyping
Less Frequently

Figure 63 - Exploration Based Design with Predictive Modeling

127

5.8 Discussion on Predictive Modeling

Several topics related to predictive modeling bear further reflection but are not
specifically applicable to the models above. Each of these topics is discussed briefly
below and should be considered by the designer in the context of a specific model

when implementing these techniques.

5.8.1 Multi-Variate Parameterized Simulations

In the preceding three sections, results have been presented from both single
simulations and from compiled averages of many trials. Additionally parameterized
results have been shown where either one or two key variables in the system are
presented over a plausible range of values for either one or two variables. It should
be recognized that there is no theoretical limit to the number of values that can be
parameterized, particularly with the ability to script large batches of Simulink
executions. However, pré@ﬁ@aﬂ limits can arise due to computation requirements of

an inherently combinatorial problem.

5.8.2 Grounding the Simulations

The reader may or may not have noticed that all of the results above are
presented without units. The primary reason for this is that the numbers at this point
are arbitrary. While they do have relative meaning, the system model is not explicitly
grounded in well-defined units; nor have the subcomponents of the simulation been
validated by physical means. As with any model it is only valid after and to the
degree that it has been tesied. Both of these topics will be discussed in the next

chapter.

128

5.8.3 Limitations of Simulink Simulation Environment

Due to limitations in the previous programming language that was used to
implement interaction space simulations, a new set of tools was developed in
Simulink for predictive interaction space models. Unfortunately, it has so far not
been possible to get Simulink to update the elements in the model in an appropriate
manner. Simulink solves the blocks based on the value of the predecessors during the
previous time step for the entire model. Thus it takes information up to N time steps
for propagate around the cycles in the model where N is the length of the longest
cycle in the model.

Since much of predictive interaction space modeling relies on the comparison
of information that has made a complete cycle to information at the starting point
(particularly when measuring task accomplishment), this creates unmanageable
models for any significantly complex system. The Muramador model is able to be
implemented in Simulink because there are not time critical comparisons within the
model, but more complex models such as the GSVD and the multi-agent foraging
model require that blocks be computed with present time step values for the
predecessors where possible. Consequently predictive models have not been fully
developed for the GSVD and the multi-agent foraging system within the new
framework.

The GSVD and multi-agent foraging systems have both been previously
implemented in another language called Powersim[39]. These models predate the
framework that has been developed in this dissertation, but are the basis from which

the framework was inductively derived. Results from simulations run on these

129

models are discussed above interchangeable with Simulink results to better illustrate
the value of predictive interaction space modeling. Complete programs for these
simulations can be found in Appendix C — PowerSim Code and a complete

description of the development of these models is available in [2]

5.8.4 Comparison to Current Methods

The primary change in the predictive modeling process from previous work is
the additional rigor of the basis descriptive model imposed by the framework and the
design methodology described in Chapter Three and Chapter Four. This rigor is
additionally useful that the formal definition of task accomplishment allows for more
focused assessment of task accomplishment.

In addition, the introduction of the new simulation environment will remove
significant limitation imposed by older systems, particularly related to multi-
dimensional data and complex functions. In addition, the implementation of standard
block types, particularly for stochastic elements, provides significantly more structure
to the development of predictive models compared to previous methods.

Compared to the work presented in [2], the implementation and interpretation
of simulation results has not changed dramatically. The introduction of multi-variate
parameterizations and the explicit connection between the tasks in the problem

statement are the primary new points.

5.8.5 Computational Complexity

As implemented, the predictive models will increase in computational

complexity as a high order polynomial in N function where N is the number of

130

elements used in the model. This complexity further increases linearly with the
number of time steps, and linearly with the number of trials. Although N is relatively
small in the models shown, each basic modeling element requires a large number of
computations and consequently computation of even a two-parameter design analysis
takes significant time.

This problem can be somewhat alleviated by more efficient coding. In
particular, the use of pass-through elements adds a substantial number of
computations to any simulation. By relaxing the rules of the framework, insight is
lost in the descriptive model, but efficiency can be gained in the predictive model.
The development of a computationally simple pass-through element could alleviate
this issue.

No attempt has been made to develop efficient code, even for repetitively used
elements like stocks; however, this problem is inherent in this and most other
simulation methods. As computers have become more powerful this problem has
been somewhat alleviated and for this method, reasonable systems can be simulated

within a few hours at most with current technology.

131

Chapter 6 — Conclusions and Future Work

This chapter outlines the contributions and conclusions of this dissertation.
Future work that either must or may be carried out to develop interaction spaces and
interaction space modeling from the infant stage in which they presently exist to

proven design theories is also discussed.

6.1 Summary

The core value of this dissertation is the development of a design abstraction,
a formalism to go with it, and a design methodology (exploration based design) for
the modeling, description, and design of autonomous robots. Interaction space
modeling represents an abstraction that is capable of using most of the other design
abstractions for robotics (e.g., subsumption, voting, schema, etc.) but still provides
the designer with a framework in which to creatively explore the design space.
Additionally, the melding of the interaction space abstraction with the exploration
based design methodology provides a formalism specific to autonomous robots.
While this in no way relieves the designer of the need for creativity, solid technical
skills, and both design and domain knowledge, it does provide a framework in which
to work and decompose a problem. It also forces an explicit consideration of the
interactions that drive task accomplishment, potentially leading the designer to
solutions that were not previously considered.

Additionally, predictive modeling (i.e., simulation) has been transformed from
an ad hoc simulation to the rudiments of a design tool through the creation and

implementation of standard blocks and the development of these blocks in Simulink.

132

6.2 Conclusions

Interaction spaces as a design abstraction and interaction space modeling as a
design methodology continue to need significant development to be fully vetted for
autonomous robot design; however, when used in conjunction with other standard
engineering skills, they can provide a valuable way to gain insight into a system and
arrive at a design that accounts for a systems-level view. By taking the agent and
environment into equal consideration, and explicitly refining conditions for task
accomplishment iteratively, emphasis remains on the system design rather than on
technology or clever kludges.

Interactions space modeling has both the advantage and the limitation of
freeing the designer from focus on geometry, sensors, actuators and structures and
allowing a focus on good system level design, This allows for a creative exploration
of the design space early in the design process and can assist the designer in finding

solutions that would have been missed had the focus been on technology.

6.2.1 interaction Spaces and Design

An interaction space as preciously introduced in [2] and further developed in
this dissertation is the set of all possible interactions between the agent and the
environment. Specific interactions lead to task accomplishment. The goal of a
designer is to create a system that causes these interactions to occur.

One way of thinking about a design process is as an exploration. All possible
solutions constitute the design space. Constraints and requirements are used

iteratively to successively narrow the design space. The exploration based design

133

process, along with the interaction space specific process described in this dissertation,

provide systematic guidance to the designer.

6.2.2 Descriptive Modeling

The nomenclature and methodology, particularly the quadrant abstraction and
the cycle abstraction, presented in this dissertation can be used to develop descriptive
models. A descriptive model captures and communicates the domain knowledge that
the designer possesses. Specifically, this information is captured in a form that makes
explicit the required interactions between the agent and the environment.

The process of developing this model also helps the designer to explore the
solution space systematically and iteratively. In particular, the process of writing and
modifying the pseudo code at each step provides a concrete means of forcing the
designer to consider ail of the information that plays a role in any given reaction and
the reactions that affect any given state. Doing this via the process described in this
dissertation and returning to a “complete” model after each iteration of the
exploration based design process makes this task more approachable than a blank
page approach and restricts the designer’s ability as well as unintentional propensity
to mentally hand wave over any particular aspect of the design.

In addition, the benefits internal to a single designer, descriptive interaction
space models also provide a way of communicating interactions and the abstraction of
interactions. If interactions are critical in designing robotic systems, it is necessary to

have a clear means of communicating one’s understanding of these interactions.

134

6.2.3 Predictive Modeling

Predictive interaction space modeling provides a means of quantifying the
design requirements. In particular, parameterization of one or more design
parameters can be varied across a feasible range and task accomplishment can be
measured within the model. This provides a relatively rapid means of exploring the
design space compared with physical prototyping. In addition to the design
requirements, predictive modeling also changes the nature of needed prototypes early
in the design process. Specifically, prototypes early in the design process are
intended to confirm assumptions, abstractions, encoding, and decoding rathef than

full system prototypes.

6.3 Future Work

Suggestions for improvement of specific models have been presented
throughout this dissertation in the same section as the mode! itself; however there are
several suggestions for future work that span the full scope of Interaction Space
Modeling. These include additional work with real robots, standardization and
implementation of a better simulation language and a better graphical tool for
representing descriptive models, and development of additional blocks or classes of

blocks.

6.3.1 Real Robots

While the descriptive modeling process is relatively well grounded in that it is
internally logical, the predictive modeling process needs significant additional work

to verify both the process and individual models. In the general sense of the process,

135

no predictive modeling process can be fully vetted without quantitative comparison to
real robots. While several models have been qualitatively compared to published real
world results, this comparison has been retroactive in that models were developed
that relate to existing systems. There has been no physical verification that either the
descriptive or the predictive modeling process will yield information about systems
that do not yet exist.

In addition to the general validation of the predictive modeling process, it will
always be necessary to validate any specific predictive model with real world data.
This can be done partially through validation of various blocks or subsystem models;
however, the need for prototyping, testing and appropriate refinement of the model

will always be necessary before considering a design to be finished.

6.3.2 Dealing with Units

In dealing with real robots, it will also be necessary to address the concern of
units. At present, units are largely ignored; however, a fully quantified analysis of a
system necessarily requires that units be attached to the system. It is recommended
that the units be recorded explicitly for every signal (i.e., every connection between
two blocks), but that no specific attempt be made to carry units symbolically within a

simulation language. Such units could be displayed as text above each connection.

6.3.3 Standard Simulation Language

In some manner, the limitation on simulation of perceptual tasks must be
overcome. Simulink has been a useful simulation language, as has PowerSim;

however, neither system is really compatible with the full framework described in this

136

dissertation. The primary limitation of Simulink (i.e., the induced lag in the system
that is relative to the path length) may be possible to overcome, possibly through the
creation of a discrete delay function that would use old data based on path length.
There are also a large number of computation engines built into Simulink, and it is
possible that one of these will work as is. This could make Simulink a good choice.
Powersim is very limited in its ability to compute complex functions, to use history,
to store and represent data, and to make drop-in subsystems.

In the event that Simulink is not acceptable, it may become necessary to
develop a modeling and simulation tool in a lower level language such as C or C++.
In particular, the object-oriented nature of C++ would lend itself very well to
implementation with this framework, in that each of the 6 basic types of blocks could

be represented by a class with individual blocks representing objects.

6.3.4 Expansion of Standard Modules

Although the modules presented in this document are believed to represent a
sufficient set to model the vast majority of situations, there are likely situations where
these blocks will turn out to be insufficient. In addition, it is very likely that other
types of blocks can be found that will improve modeling efficiency or clarity. It is

likely that most such blocks would be specific to a particular domain.

137

References

1. R. Brooks, 1986: “A Robust Layered Control System for a Mobile Robot,”
IEEE Journal of Robotics and Automation, April, pp. 14 — 23.

2. C. Kaiser, Interaction Space Constructs and Modeling for Application in
Robot Design, MS Thesis, Colorado State University, May 2006.

3. C. Kaiser, M. Conboy, W. Troxell. “Interaction Spaces for Urban Search and
Rescue Robots”, Proceedings of the 1st Joint Emergency Preparedness and
Response/Robotics & Remote Systems Topical Meeting, Salt Lake City, UT,
February 11-16, 2006, pgs. 252-257.

4. R. Rosen, 1991: Life Itself: A Comprehensive Inquiry Into the Nature, Origin
and Fabrication of Life, Columbia University Press, New York, New York.

5. J. Forrester, 1961: Industrial Dynamics, The M.LT. Press Cambridge,
Massachusetts.

6. J. Sterman, 2000: Business Dynamics: Systems Thinking and Modeling for a
Complex World, McGraw-Hill Higher Education.

7. R. Brooks, 1986: “Achieving Artificial Intelligence Through Building Robots,”
M.LT. Artificial Intelligence Laboratory, A.I. Memo 899.

8. J. H. Connell, 1990: Minimalist Mobile Robotics, Academic Press, Inc.

9. T. Smithers, W. Troxell: “Design is Intelligent Behaviour, but What’s the
Formalism™ Artificial Intelligence for Engineering Design, Analysis, and

Manufacturing, v. 2, i. 4 pp. 89 — 98.

138

10.

1.

12.

13.

14.

15.

16.

17.

T. Smithers: “Design as Exploration: Puzzle-Making and Puzzle-Solving”
Presented at AI in Design 1992, Workshop on Searhc-based and Exploration-
based models of Design, Engineering Design Research Center, CMU,
Pittsburg, June 1992.

V. Braitenberg, 1986: Vehicles: Experiments in Synthetic Psychology, MIT
Press, Boston, Massachusetts. |

P. Maes, 1993 “Behavior Based Artificial Intelligence,” Proceedings of the
Second Internation Conference on Simpulation of Adaptive Behacior, pp.Il-
317 -1-323.

R. Arkin, 1987: “Motor Schema Based Navigation for a Mobile Robot: An
approach to Programming by Behavior,” Proceedings of the IEEE conference
on Robotics and Automation, Raliegh, North Carolina USA pp. 264 — 271.

R. Arkin, 1989: “Motor Schema-Based Mobile Robot Navigation,”
International Journal of Robotics Research, v.8, n. 4 pp. 92 — 112.

U. Nehmzow, 2003: “Mobile Robotics: A Practical Approach,” Springer
Verlag.

P. Ford: Description of a Robot, Environment and Task System Using the
Theory of Affordances, M.S. Thesis, Colorado State University, Department of
Mechanical Engineering, February, 1996.

R. Brooks, 1991: “Intelligence Without Representation”, Artificial
Intelligence Journal v. 47, pp 139-160. Reprinted in Cambrian Intelligence,

The MIT Press, Cambridge Massachusetts, 1999.

139

18.

19.

20.

21.

22.

23,

24.

25.

26.

27.

C. A. Petri, “Kommunikation mit Automaten,” Bonn: Institude fur
Intrumentelle Mathematik 1962. Engiish translation, “Communication with
Automata,” New York, Griffiss Air Force Base. Tech Rep RADC-TR-65-377
vol. 1, suppl. 1 1966.

M. Caccia, et. AL, 2005: “Execution Control of Robotic Tasks: a Petri Net-
Based Approach,” Control Engineering Practice, v. 13 pp. 959 — 971.

1. Rosell; 2004: “Assembly and Task Planning Using Petri Nets: A Survey,”
Proc. Instn Mech. Engrs V. 218 part B.

L. Montano, et. AL, 2000: “Using the Time Petri Net Formalism for
Specification Validation and Code Generation in Robot Control Applications,”
The International Journal of Robotics Research,v. 19 n. 1 pp. 59 — 76.

W. Zhang, 1989: “Representation of Assembly and Automatic Robot Planning
by Petri Net,” IEEE Transactions on Systems, Man, and Cybernetics v. 19 n. 2.
R. Brooks, "From Earwigs to Humans", Robotics and Autonomous Systems,
Vol. 20, Nos. 2-4, June 1997, pp. 291-304.

D. Ryan, Robotic Simulation, CRC Press, Boca Raton, Florida, USA, 1993.

M. Adams: Sensor Modelling, Design and Data Processing for Autonomous
Navigation, World Scientific Publishing Co. Pte. Ltd, Singapore 912805, 1999.
R. Fikes, N, Nilsson, 1971: “STRIPS: A New Approach to the Application of
Theorem Proving to Problem Solving,” Artificial Intelligence v.2 pp. 189-208.
ABB Robot Studio Web Page

http://www.abb.com/product/seitn327/78b236cae7e605dc1256f1e002a892¢.a

spx, accessed January 23, 2009.

140

http://www.a1bb.com/iproduct/seitp327/78fb236cae7e605dc

28.

29.

30.

31.

32.

33.

34.

35.

36.

RoboCup Rescue Virtual Robot Competition @ Web Page

http://www.robocuprescue.org/wiki/index.php?title=VR General Information

accessed January 23, 2009.

M. Adams: Sensor Modelling, Design and Data Processing for Autonomous
Navigation, World Scientific Publishing Co, Pte. Ltd, Singapore 912805, 1999.
W. J. Palm: Modeling Analysis and Control of Dynamic Systems, John Wiley
and Sons, In¢, New York, 2000.

E. Bonabeau, er. Al., 1998: “Fixed Response Thresholds and the Division of
Labor in Insect Societies”, Bulletin of Mathematical Biology, v.60 pp 753-807.
M. J. Krieger, J. B. Billeter, 2000: “The call of duty: Self-organized task
allocation in a population of up to twelve mobile robots,” Robotics and

Autonomous Systems v.30 pp.65-84.

RoboCup Rescue Robot League Website
hitp://www.isd.mel.nist.sov/projects/USAR/competitions.htm accessed
January 23, 2009.

RoboCup Rescu Robo League Rules http:/robotarenas.nist.gov/rules.itm

Accessed May 3, 2009.

M. Conboy, C. Kaiser, W. Troxell, “A Variable Geometry Tracked Robot for
Urban Search and Rescue”, Proceedings of Sharing Solutions for Hazardous
Environments, Salt Lake, UT, February 2006.

R. Murphy, 2004: “Human-Robot Interaction in Rescue Robotics” IEEE
Transactions on Systems, Man and Cybernetics — Part C: Applications and

Reviews, v.34, May 2004.

141

http://www.robocuprescue.org/%5e
http://www.isd.mel.nist.gov/proiects/USAR/competitions.htm
http://robotarenas.nist.gov/mles.htm

37. G. Calariore, F. Dabbene: Propabalistic and Randomized Methods for Design
Under Unvertainty, Springer-Verlag, London, 2006 .

38. “Writing S-functions”, Mathworks, inc. 1998.

39. Simulink User’s Manual,

http://www.mathworks.com/access/helpdesk/help/toolbox/simulink/index him

12/access/helpdesk/help/toolbox/simulink/ accessed May 3, 2009.

40. Powersim Web Page hitp://www.powersim.com/ accessed February, 2006.

142

http://www.matfaworiaxQm/acce%5e
http://www.powersim.com/

Appendix A - Implementation and Code for the

Simulink Modeiing Toois

This appendix contains the code necessary to replicate the Simulink blocks

used to run simulations, Code from earlier sections is used in later sections.

A.1 - Simulink Implementation of a Stock

For thee purposes of this document, a stock is implemented by a Simulink S-
function and represented by the block shown in Figure 64. This block is built by
filling in the S-function dialog box as shown in Figure 65 and by implementing code
for “Stock.m” as shown below.

When used for predictive modeling, the initial value of the stock can be set by
the user by setting the dialog box as shown in Figure 66. This block can be used to
track multiple values at once, in which case the value of “Initial Value Vector can be
set as a vector using standard vector notation for Matlab. In this case, the input and
output will have vector values as well, with the output being the same dimension as

the input. This must also match the dimension of the initial value vector.

Slozk

Stock

Figure 64 ~ Stock

143

| S-Funclion -

User-definable block. Biocks may be written in M, C. Fortran or Ada and
| must conform to S-function standards. tx.u and flag are automatically

pazsed to the S-function by Simulink. “Extra" parameters may be
specified in the 'S-function parameters’ field. ‘ ‘

| - Parameters
S-function hame:

Stack

S-function parameters:

i

oK

L i

Cancel Help Apoly]

Figure 65 - S-Function Dialog Box for a Stock

U@@ﬁ@ @éﬁﬂéﬁﬁﬁ@[ﬁéﬁés S[E@@B@
;;Stock [mask] e ot -

. This block functions as a standard system dynamic stock. Multiple

| mdependent quantities can be tracked using vector mputs and vector
" outputs. The initial values must be specified as a vector in the block

4 interface window. The number of states racked is dependsnt on the

 length of the initial value vector.

{

 ~ Parameters -———-— S o
Initial V alue Yector

|

oK Cancel Help

a8
T
3
wE

Figure 66 - Stock User Dialog Box for Setting the Initial Value

144

-

Mesls Edfter: §‘mwaﬁmﬁ@sgﬂﬁﬁmﬁm

jcon j Initialization % Dor:umentalion‘i

Mask ype: | Stock ,
Prompt Type Variable
Add |l Tndcied Velve Veswsz. o - edit. o

7 L fl<<end of parameter list>>
Deete {1 ‘

oo % I

B

Prompt: J Initial Value Vector Control type:

Variable: | #i Assignment:
Popug stings j
Initialization commands:
oK '. Cancel Unmask 3 Help Apply

Figure 67 - Stock Mask Initialization

FUNCTION [SYS,X0,STR,TS] = STOCK(T,X,U,FLAG,XI)
$STOCK - A BLOCK FOR A SYSTEM DYNAMIC STOCK.

3VECTOR INPUTS ARE TREATED ELEMENTWISE
CONFIGURATION WILL MATCH INPUT CONFIGURATION

SWITCH FLAG,

292990 9

S99 9920800

o
oo

220002000

o

-
0 noe G

() o0 o° ovP

= ¥ o0 g oo

145

AND

OUTPUT

CASE 3,

32%%5%%%%%535%3%%%%
% UNUSED FLAGS %
525235505585 %%%
CASE { 1, 4, 8}
SYS=[]; %UNUSED FLAGS
$RETL555%2595%5%%%%
% UNEXPECTED FLAGS %
3P332%35535%%%%%%%%%
OTHERWISE
ERROR (['UNHANDLED FLAG = °,NUM2STR(FLAG)]):
END

e
o
Z
lw]
[7]
3
O
Q
=

% MDLINITIALIZESIZES
‘% RETURN THE SIZES, INITIAL CONDITIONS, AND SAMPLE TIMES FOR
THE S~-FUNCTION.

FUNCTION [S5YS,X0,STR,TS]=MDLINITIALIZESIZES (U,XTI)

oe

$INITTALIZATION OF SIZES. INPUTS, OUTPUTS, AND DISCRETE
STATES ARE SET TO THE INPUT WIDTH

oe

il

LU LENGTH (U) ;
IXT = LENGTH(XI):;
% IF (LU > LXI)
XI = [XI;ZEROS (LU - ILXI,1)1:
END

oo

oo

$SHOULD STILL ADD ERROR HANDLING HERE FOR CASE OF TOO LONG AN
XI

SIZES = SIMSIZES;

SIZES.NUMCONTSTATES = 0;

SIZES.NUMDISCSTATES = LXI;

146

it

SIZES.NUMOUTPUTS
SIZES.NUMINPUTS ILXI;
SIZES.DIRFEEDTHROUGH 0;
SIZES.NUMSAMPLETIMES = 1;
NEEDED

LXI;

il

oe

SYS = SIMSIZES(SIZES);

INITIALIZE THE INITIAL CONDITIONS
0 = XI;

STR IS ALWAYS AN EMPTY MATRIX

o0 A o X o o° o°

STR = [];

oe

ov

INITIALIZE THE ARRAY OF SAMPLE TIMES

oe

TS = [0 O]:

% END MDLINITIALIZESIZES

AT LEAST ONE SAMPLE TIME

IS

% MDLDERIVATIVES
% RETURN THE DERIVATIVES FOR THE CONTINUOUS STATES.

g= = == ==

% MDLUPDATE

% HANDLE DISCRETE STATE UPDATES, SAMPLE TIME HITS, AND MAJOR

FUNCTION SYS=MDLUPDATE(T,X,U)

SYS = ¥X+U;

END MDLUPDATE

oe

o
§
1
|

MDLOUTPUTS

o0

147

% RETURN THE BLOCK OUTPUTS.

FUNCTION SYS=MDLOUTPUTS (T, X,U)
SYS = X;

% END MDLOUTPUTS

X

A.2 Simulink Basic Functional Block Implementation

The basic functional block used throughout this dissertation is shown in

Figure 68.

Stock
MATLAE L . e] =
Function g il
- Stock_out
mfile Stack
. 2
Flow_out:

Figure 68 - Basic Functional Block Implementation

148

A.3 ~ Simulink Uniform Random Number Generator

Implementation

The internal structure of the Uniform Random Number Generator is shown in
Figure 69. The Matlab function block uses the code shown below in

“uniform_random.m”. The mask initialization for this block is shown in Figure 70.

mitt

Min

MATLAB | __ms ™
Function ’

Random Number Géen

Mex |

| kdax

Figure 69 - Uniform Random Number Generator Block Internal Structure

3UNIFORM_RANDOM.M

FUNCTION RESULT=UNIFORM RANDOM (U)

$THIS IS BLOCK TO GENERATE A UNIFORM RANDOM NUMBER BETWEEN A
$MIN AND A MAX INPUT

$AUX1 = MIN

3AUX2 = MAX

MIN = U(1):

MAX = U(2);

RESULT = RANDOM('UNIFORM',MIN,MAX,1,1);

$END UNIFORM_ RANDOM

149

Mesik Editer: System Dymamies,_BbrargUnionm B.. Ni=

leon ‘} Initiafization ! Documentation |

Mask type: a
~ Prompt -~ Type Variable
VBes < e E ST e ;@;@g—
Min edit nir

<Lend of parameter list>>

Deown ; 3 wo T
Prompt: } Max Control type:
Yariable: imax " Assignment;
Fopup st §

oK Cancel | Unmask | Help ‘ Apply

e]

Figure 70 - Uniform Random Number Generator Block Mask Enitialization

A.4 - Random Decision Making Block Implementation

Figure 71 shows the internal structure of the random decision making block.

The Matlab function is implemented as shown in Figure 72. The code for the uniform

random function is given in A.5 — Discrete Random Number Generation Block as it is

used in multiple locations. The mask for the random decision maker block is the

same as that in A.3 — Simulink Uniform Random Number Generator.

150

!

0 Constant U1} >ui2)
YTy - Cutput
Rdin Fen
MATLAB
Function
100 ¢ MATLAB Fen
Max
Figure 71 - Internal Structure of a Random Decision Making Block
Block Pavarmelerss MATLABFen -~ [

~MATLAB Fon—

Pass the input values ta a MATLAB function for evaluation. The function
must return a single value having the dimensions specified by 'Output
| | dimengions' and ‘Collapse 2-D results to 1-D",

Examples: sin, sinfu], foolul1), u(2))

- Parameters
MATLAB function:

guniform_random[u]

Qutput dimensions:

Outp gl e futo -

- W Collapse 2-D results to 1-D

oK Cancel | Help Spply

Figure 72 - Random Decision Maker Functien Dialeg Box

151

]

PV el Edttor: System_Dynemies_BbraryiRandam Do.. {o

lcon % Initialization j Documentation i
Mask fype:. i]
Prompt Type Variable

B Tedit - .mes

~, l<<end of parameter list>>

™, 3
Dy i]

ik

Prompt. | %True Control type:

Wariable: ! petcent_true Assignment:

Popus g 3

Initialization commands:

oK Cancel | Unmask Help | Apply |

Figure 73 - Random Decision Maker Block Mask Parameter Set Up

A.5 — Discrete Random Number Generation Block

The internal structure of the discrete random number generator block is shown
in Figure 74. The matlab function block uses the code shown below for

“discrete_uniform_random.m”. The mask initialization dialog is shown in Figure 75.

.‘Gﬁ, ™7

Num_States L_’ MATLAB ——@
1 1

Function A
Random Mumber Gen

Figure 74 - Discrete Uniform Random Number Generator Block Internal Structure

152

$DISCRETE_UNIFORM RANDOM.M
FUNCTION RESULT=DISCRETE_UNIFORM_ RANDOM (U)

$THIS IS BLOCK TO GENERATE A INTEGER UNIFORM RANDOM NUMBER
BETWEEN O AND THE

$NUMBER OF STATES

$AUX1 = NUM_STATES

NUM_STATES = U(1);

RESULT = RANDOM('DISCRETE UNIFORM',NUM_STATES,1,1);

$END UNIFORM_ RANDOM

P e . ——— e ——
[ditors Syt Dynamfes_ibrangDiserete U.. (o)= %]

can g Initialization 5 Documentation q

Mask type: :i
Prompt Type Yariable

Add ||@wh Seaves . edde - Wwl
<<end of parameter lists>

Do, '% <
Pramipt: i Num_States Control type:
Variable: zNum__States Assignment:

o o
FIRRIAZR 0 IRy i h %

Initialization commands:

oK % Cancel 3 Unmaskj Help j B Apply

Figure 75 - Discrete Uniform Random Block Mask Initialization

153

Appendix B — Code for Simulink Models

This appendix contains the equations and code for the framework modesl
from Chapter Four (or occasionally equivalent models). This code is a necessary part
of the models, but in some cases is not fully debugged due to the issues presented in

Chapter Five regarding the timing of the calculation of various blocks.

B.1 —~ Muramador Model

Note that the Actual Simulink Model for the Muramador that is used for simulations
in this Disseration is actually slightly different from the one shown in Figure 30 and
is shown below in Error! Reference source not found.. This model is substantially
the same as the one shown above with the exception that the basic modeling agent

had not yet been developed, but it does follow the framework.

At l_ -
Stock Al Auxt Aux*
A2 —_— Smek Stock Steck
Auy Deedabn 1 Al ES) rd Destor (i v s Destration t
Aud s At g s
oo Festum_v/all s Procerty._Distance m Signal_Cistence b 2&? rfomaton_Wa
4 ﬁ‘é‘a’; Saurss Anc Saures 1 Aug Source § ® Auxy Sourerd
SNkS A S0 Aan@ Sz AvxB !
Fostre_WalLAR Froperty. Distance_AD Signal-distanos S8 o Wall SR
Max_Rangs
Random
Dacigion L
1 - Aant
e Steok T ; Stock
bore Sieek » ‘;‘ﬁ Dsstiraion 2 ¢ g :'S Detinaton f———iy)
Destnaton 3 Aand
Pl Ans Rahmsnr_Wall ket Baharor.NoWsl
Reaction_Wall Yans e At Sour:a-b{-al
a8 o] :
Souws =] . 2 SirkS
Ss Beravior. Wall_SR
Reaction Well 3R
Ragdom N
P e « v o ook s« A
2 e Destinatic 0) Jestnation
3} Aux
3 Ao Reacior NGWall P2 Auxs
T — - -
Rerd Wal Fnd 0% =] m Pt
Sink! ke
Froadion_NoNaILER % Fation WalLBR Adfion NcWal SR

Figure 76 - Muramador Framework Model without Basic Modeling Agent

$SMURA_ACTION NOWALL SR.M

FUNCTION RESULT=MURA ACTION NOWALL_SR(U)
$CONTROL CODE FOR THE NOWALL ACTION BLOCK
$AUX1 = ACTION NOWALL

154

http://AQtic.-uNoWt.il
file:///otion_WalLSR

3 1 = LOOKING FOR A NEW WALL

% 0 = NOT LOOKING FOR A NEW WALL
$AUX2 = BEHAVIOR NOWALL

$AUX3 = RAND WALL FIND

ACTION NOWALL = U(1);

BEHAVIOR NOWALL = U(2):

RESULT = BEHAVIOR NOWALL - ACTION NOWALL;
$END MURA ACTION NOWALL_ SR.M

f

i

\eJ

$MURA_ACTION WALL SR.M

FUNCTION RESULT=MURA ACTION WALL_SR(U)
$CONTROL CODE FOR THE WALL ACTION BLOCK
$SAUX1 = ACTION WALL

3 DISTANCE ROBOT TRIES TO MOVE
$AUX2 = BEHAVIOR WALL

$AUX3 = WALL_SP

$AUX4 = KP

3AUXS = SIGNAL DISTANCE
ACTION _WALL = U(1):;
BEHAVIOR WALL = U(2);
WALL_SP = U(3);
KP = U(4);
SIGNAL DISTANCE = U(5);
IF BEHAVIOR WALL ==

IF SIGNAL DISTANCE <= WALL SP

RESULT = (SIGNAL DISTANCE - WALL SP)*KP - ACTION WALL;

ELSE
RESULT = ~-(SIGNAL DISTANCE - WALL_SP) *KP
ACTION WALL;
END
ELSE
RESULT = -ACTION WALL;

END
$END MURA ACTION WALL SR.M

$MURA BEHAVIOR NOWALL SR.M
FUNCTION RESULT=MURA BEHAVIOR NOWALL_SR(U)
$CONTROL CODE FOR THE NO WALL BEHAVIOR BLOCK
$AUX1 = NOWALL BEHAVIOR
0 = INACTIVE
1 = ACTIVE
$AUX2 = INFORMATION WALL
NOWALL BEHAVIOR = U(1);
INFORMATION WALL = U(2);
IF INFORMATION WALL ==
RESULT = 0 - NOWALL BEHAVIOR;
ELSE
RESULT = 1 - NOWALL BEHAVIOR;
END
$END MURA_NOWALL_ BEHAVIOR SR

Qe

oo

$MURA BEHAVIOR WALL SR.M
155

FUNCTION RESULT=MURA_ BEHAVIOR WALL_ SR (U)
$CONTROL CODE FOR THE WALL BEHAVIOR BLOCK
$AUX1 = WALL BEHAVIOR

0 = INACTIVE

1 = ACTIVE

$AUX2 = INFORMATION WALL

WALL_BEHAVIOR = U(1);

INFORMATION WALL = U(2);

RESULT = INFORMATION WALL - WALL BEHAVIOR
$SEND MURA WALL BEHAVIOR SR

oL

oe

SMURA_FEATURE WALL_AD.M
FUNCTION RESULT=MURA FEATURE WALL AD(U)
$CONTROL CODE FOR THE WALL FEATURE
$AUX1 = FEATURE_WALL

1 = WALL

0 = NO WALL

$AUX2 = RAND WALL END

$AUX3 = REACTION NOWALL

FEATURE_WALL = U(1);
RAND WALL END = U(2);
REACTION NOWALL = U(3
IF ((FEATURE WALL ==

oe

oe

)
1) & (RAND WALL END == 1))

RESULT = -1;

ELSEIF ((FEATURE WALL == () & (REACTION NOWALL == 1))
RESULT = 1;

ELSE
RESULT = 0;

END
$END MURA FEATURE WALI, AD

$MURA_INFORMATION WALL SR.M
FUNCTION RESULT=MURA_ INFORMATION WALL SR (U)
$CONTROL CODE FOR THE WALL INFORMATION BLOCK
$AUX1 = INFORMATION WALL
3 0 = NO WALL
1 = WALL
$AUX2 = SIGNAL_ DISTANCE
$AUX3 = MAX_RANGE
INFORMATION WALL = U(1);
SIGNAL DISTANCE = U(2);
MAX RANGE = U(3);
IF (SIGNAL DISTANCE ~= MAX RANGE);
RESULT = 1 - INFORMATION WALL;
ELSE
RESULT = 0 - INFORMATTION WALL;
END
SEND MURA SIGNAL_DISTANCE SR

o

$MURA_ PROPERTY DISTANCE_AD.M
FUNCTION RESULT=MURA_ PROPERTY DISTANCE_AD (U)
3CONTROL CODE FOR THE DISTANCE PROPERTY

156

i

3AUX1 PROPERTY DISTANCE

$AUX2 = FEATURE WALL
$AUX3 = REACTION WALL
$AUX4 = REACTION NOWALL

PROPERTY DISTANCE = U(1);
FEATURE_WALL = U(2);
REACTION WALL = U(3);
REACTION NOWALL = U(4);
TF REACTION NOWALL == 1 & FEATURE WALL ==
RESULT = 24.9 - PROPERTY DISTANCE
ELSE
IF (FEATURE WALL == 1);
RESULT = REACTION WALL;
ELSE
RESULT = ~PROPERTY DISTANCE
END
END
$SEND MURA PROPERTY DISTANCE AD

$MURA REACTION NOWALL SR.M

FUNCTION RESULT=MURA REACTION NOWALL_ SR (U)
$CONTROL CODE FOR THE NOWALL REACTION BLOCK
$AUX1 = REACTION NOWALL

2 1 = FOUND NEW WALL

0 = NO NEW WALL

$AUX2 = ACTION NOWALL

SAUX3 = RAND WALL_ FIND

REACTION NOWALL = U(1);

ACTION NOWALL = U(2);

RAND WALL FIND = U(3);

o0 o
it

il

IF RAND WALL FIND == 1 & ACTION_NOWALL ==]
RESULT = 1 - REACTION NOWALL;

ELSE
RESULT = —-REACTION NOWALL;

END

$END MURA REACTION NOWALL SR.M

$MURA_REACTION WALL_SR.M
FUNCTION RESULT=MURA REACTION WALL_SR(U)
$CONTROL CODE FOR THE WALL REACTION BLOCK
$AUX1 = REACTION WALL

3 DISTANCE ROBOT ACTUALLY MOVES
$AUX2 = ACTION WALL

REACTION WALL = U(1);

ACTION WALL = U(2);

RESULT = ACTION WALL - REACTION WALL;
$END MURA REACTION WALL SR.M

$MURA_SIGNAL_ DISTANCE_SR.M
FUNCTION RESULT=MURA_SIGNAL DISTANCE_SR(U)
$CONTROL CODE FOR THE DISTANCE SIGNAL
$AUX1 = SIGNAL_DISTANCE

157

$AUX2 = PROPERTY DISTANCE
$AUX3 = MAX_ RANGE

SIGNAL DISTANCE = U(1);
PROPERTY DISTANCE = U(2);
MAX_RANGE = U(3):

it

IF (PROPERTY DISTANCE ~= 0);

RESULT = PROPERTY DISTANCE - SIGNAL_ DISTANCE;
ELSE

RESULT = -SIGNAL DISTANCE + MAX RANGE;
END

SEND MURA_SIGNAL DISTANCE SR

B.2 - Multi-Agent Foraging Model

$FORAGE ATTRIBUTE_ENERGY.M
FUNCTION RESULT=FORAGE ATTRIBUTE ENERGY (U)
$AUX8 = FEEDBACK FROM STOCK
$AUX1 = ENERGY FOUND
$AUX2 = BEHAVE FORAGING
ENERGY FOUND = U(1l);
BEHAVE FORAGING = U(2);
STOCK = U(8):
IF BEHAVE FORAGING ==
RESULT = ENERGY FOUND - STOCK;
ELSE
RESULT = O0;
END
$END FORAGE_ATTRIBUTE ENERGY

$FORAGE_BEHAVE ARRIVE NEST.M

FUNCTION RESULT=FORAGE BEHAVE ARRIVE_ NEST (U)
$AUX8 = FEEDBACK FROM STOCK

$AUX1 = INFO AT NEST

$AUX2 = BEHAVE RETURNING

INFO_AT NEST = U(1);

BEHAVE_RETURNING = U(2);

STOCK = U(8);

il

it

IF BEHAVE RETURNING == 1 && INFO_AT NEST == 1
RESULT = 1;

ELSE
RESUTL = —-STOCK;

END

$END FORAGE BEHAVE ARRIVE NEST

$FORAGE_BEHAVE ENV_ENERGY ON BOARD.M
FUNCTION RESULT=BEHAVE ENV_ENERGY ON_BOARD (U)
$AUX8 = FEEDBACK FROM STOCK

$AUX1 = FEATURE ENERGY ON BOARD

ENERGY ON_BOARD = U(1);

STOCK = U(8);

RESULT = ENERGY ON_BOARD - STOCK;

158

$END FORAGE BEHAVE ENV_ENERGY ON_BOARD

$FORAGE BEHAVE_ENV_FORAGING.M
FUNCTION RESULT=FORAGE BEHAVE ENV_FORAGING (U)
$AUX8 = FEEDBACK FROM STOCK

$AUX1 = FEATURE FORAGING

FEATURE_FORAGING = U(1);

STOCK = U(8);

RESULT = FEATURE FORAGING - STOCK;

$END FORAGE BEHAVE ENV_FORAGING

$FORAGE_PROPERTY NEST ENERGY.M

FUNCTION RESULT=FORAGE PROPERTY NEST_ ENERGY (U)
$AUX8 = FEEDBACK FROM STOCK

$AUX1 = RECHARGE SCALER

$AUX2 = AGENT USE

$AUX3 = NATIVE USE

RECHARGE_SCALER = U(1);

AGENT USE = U(2);

NATIVE USE = U(3);

STOCK = U(8):
RESULT = FEATURE RETURNING - STOCK;
$END FORAGE PROPERTY NEST ENERGY

it

il

$FORAGE BEHAVE FORAGING.M
FUNCTION RESULT=FORAGE_BEHAVE FORAGING (U)
3AUX8 FEEDBACK FROM STOCK
$AUX1 BEHAVE LEAVE NEST
$AUX2 = BEHAVE FOUND
BEHAVE_LEAVE_NEST = U(1);
BEHAVE_FOUND = U(2);
STOCK = U(8):
IF BEHAVE LEAVE NEST == 1
RESULT = 1;
ELSEIF BEHAVE FOUND ==
RESULT = =~1;
ELSE
RESULT = 0:
END
$END FORAGE_ BEHAVE FORAGING

it

fi

$FORAGE_BEHAVE_FOUND.M
FUNCTION RESULT=FORAGE BEHAVE_FOUND (U)

3AUX8 = FEEDBACK FROM STOCK
%AUX1 = BEHAVE FORAGING
3AUX2 = INFO ENERGY

BEHAVE FORAGING = U(1l);

INFO ENERGY = U(2);

STOCK = U(8):

IF BEHAVE FORAGING == 1 && INFO_ENERGY ==
RESULT = 1 - STOCK;

ELSE

159

RESULT = 0 - STOCK;
END
$END FORAGE_BEHAVE FOUND

$FORAGE_BEHAVE LEAVE NEST.M
FUNCTION RESULT=FORAGE BEHAVE_LEAVE NEST (U)
$AUX8 = FEEDBACK FROM STOCK

$AUX1 = INFO SUFFICIENT ENERGY

$SAUX2 = INFO AT NEST

INFO SUFFICIENT ENERGY = U(1);

INFO_AT NEST = U(2);

i

i

STOCK = U(8);

IF INFC_SUFFICIENT ENERGY == 0 && INFO AT NEST == 1
RESULT = 1 - STOCK:;

ELSE
RESULT = -STOCK;

END

$END FORAGE_BEHAVE LEAVE NEST

$FORAGE_BEHAVE RETURNING.M
FUNCTION RESULT=FORAGE_ BEHAVE RETURNING (U)

$AUX8 = FEEDBACK FROM STOCK
$AUX1 = BEHAVE FOUND

$AUX2 = BEHAVE ARRIVE NEST
$AUX3 = INFO SUFFICIENT ENERGY

$AUX4 = BEHAVE FORAGING
BEHAVE_FOUND = U(1);
BEHAVE_ARRIVE NEST = U(2);
INFO_SUFFICIENT ENERGY = U(3);
BEHAVE_FORAGING = U(4);

STOCK = U(8);

IF (BEHAVE FOUND == | INFO_SUFFICIENT _ENERGY == 0) && BEHAVE
FORAGING ==
RESULT = 1;
ELSEIF BEHAVE_ARRIVE_NEST ==
RESULT = ~1;
ELSE
RESULT = O0;
END

$END FORAGE BEHAVE RETURNING

$FORAGE _BEHAVE STAY IN NEST.M
FUNCTION RESULT=FORAGE BEHAVE STAY IN NEST (U)
$AUX8 = FEEDBACK FROM STOCK

$AUX1 = INFO SUFFICIENT ENERGY
INFO_SUFFICIENT ENERGY = U(1);

STOCK = U(8);

RESULT = INFO SUFFICIENT ENERGY - STOCK;

SEND FORAGE BEHAVE STAY IN NEST

$FORAGE_FEATURE_ ENERGY MODULE.M
FUNCTION RESULT=BEHAVE FEATURE ENERGY MODULE (U)

160

$AUX8 = FEEDBACK FROM STOCK

%AUX1 = RANDOM DECISION

RANDOM = U(1);

STOCK = U(8);

RESULT = RANDOM - STOCK;

%END FORAGE_FEATURE ENERGY MODULE

$FORAGE_FEATURE ENERGY ON_BOARD.M
FUNCTION RESULT=FORAGE FEATURE ENERGY ON_BOARD (U)

$AUX8 = FEEDBACK FROM STOCK
$AUX1 = BEHAVE FOUND
$AUX2 = BEHAVE ARRIVE NEST

BEHAVE_FOUND = U(1);
BEHAVE ARRIVE _NEST = U(2);
STOCK = U(8);
IF BEHAVE_ARRIVE NEST =
RESULT = -STOCK;
ELSEIF BEHAVE FOUND ==
RESULT = 1;
ELSE
RESULT = 0;
END
$END FORAGE_FEATURE_ENERGY ON_BOARD

il

1,

$FORAGE FEATURE_FORAGING.M

FUNCTION RESULT=FORAGE FEATURE_ FORAGING (U)
3AUX8 = FEEDBACK FROM STOCK

$AUX1 = BEHAVE FORAGING

BEHAVE_FORAGING = U(1);

STOCK = U(8);

RESULT = BEHAVE FORAGING - STOCK;

$SEND FORAGE_ FEATURE FORAGING

$FORAGE_FEATURE_IN NEST.M

FUNCTION RESULT=FORAGE_FEATURE IN NEST (U)
$AUX8 = FEEDBACK FROM STOCK

$AUX1 = FEATURE AT NEST

FEATURE AT NEST = U(1);

STOCK = U(8);

RESULT = FEATURE AT NEST - STOCK;

$END FORAGE FEATURE IN NEST

%FORAGE_FEATURE_RETURNING.M

FUNCTION RESULT=FORAGE FEATURE RETURNING (U)
$AUX8 = FEEDBACK FROM STOCK

$AUX1 = BEHAVE RETURNING

BEHAVE _RETURNING = U(1);

STOCK = U{(8);

RESULT = BEHAVE RETURNING - STOCK;

$END FORAGE_FEATURE_RETURNING

$FORAGE_INFO AT NEST.M
161

FUNCTION RESULT=FORAGE_ INFO AT NEST (U)
$AUX8 = FEEDBACK FROM STOCK
$AUX1 = SIGNAL NEST DISTANCE
SIGNAL NEST DISTANCE = U(1);
STOCK = U(8);
IF SIGNAL NEST DISTANCE ==
RESULT = 1 - STOCK;
ELSE
RESULT = -STOCK;
END
$SEND FORAGE INFO AT NEST

$FORAGE_INFO_ENERGY.M
FUNCTION RESULT=FORAGE_INFO ENERGY (U)

$AUX8 = FEEDBACK FROM STOCK
3AUX1 = ATTRIBUTE ENERGY PRESENT
$AUX2 = BEHAVE FORAGING

ATTRIBUTE_ENERGY PRESENT = U(1);
BEHAVE_FORAGING = U(2);
STOCK = U(8);
IF BEHAVE FORAGING ==
RESULT = ATTRIBUTE ENERGY PRESENT;
ELSE
RESUTL = 0;
END
$SEND FORAGE INFO ENERGY

$FORAGE_INFO IN NEST.M

FUNCTION RESULT=FORAGE_ INFO IN NEST (U)
$AUX8 = FEEDBACK FROM STOCK

SAUX1 = FEATURE IN NEST

FEATURE_IN NEST = U(1);

STOCK = U(8);

RESULT = FEATURE_IN NEST - STOCK;

$SEND FORAGE INFO IN NEST

$FORAGE_INFO_SUFFICIENT AGENT ENERGY.M
FUNCTION RESULT=INFO_SUFFICIENT AGENT ENERGY (U)
$AUX8 = FEEDBACK FROM STOCK
$AUX1 = SIGNAL AGENT ENERGY
$AUX2 = ENERGY MINIMUM
SIGNAL AGENT ENERGY = U(1);
ENERGY MINIMUM = U(2);
STOCK = U(8);
IF SIGNAL AGENT ENERGY < ENERGY MINIMUM
RESULT = 0;
ELSE
RESULT = 1 - STOCK;
END
$SEND FORAGE INFO SUFFICIENT AGENT ENERGY

ft

it

$FORAGE_INFO SUFFICIENT ENERGY.M
162

FUNCTION RESULT=FORAGE_INFO SUFFICIENT_ENERGY (U)

$AUX8 = FEEDBACK FROM STOCK
$AUX1 = SIGNAL NEST ENERGY
%AUX2 = ENERGY THRESHOLD

SIGNAL_NEST_ENERGY = U(1l);

ENERGY THRESHOLD = U(2);

STOCK = U(8);

IF SIGNAL_NEST ENERGY >= ENERGY_ THRESHOLD
RESULT = 1 - STOCK;

ELSE
RESULT = 0 -~ STOCK;

END

SEND FORAGE INFO SUFFICIENT ENERGY

$FORAGE_PROPERTY AGENT ENERGY.M

FUNCTION RESULT=FORAGE PRCPERTY AGENT ENERGY (U)
$AUX8 = FEEDBACK FROM STOCK

$AUX1 = ENERGY USE RATE

$AUXZ = BEHAVE FORAGING
$AUX3 = BEHAVE RETURNING
$AUX4 = BEHAVE ARRIVE NEST

ENERGY USE_RATE = U(1):
BEHAVE_FORAGING = U(2)
BEHAVE RETURNING = U(3
BEHAVE_ARRIVE NEST = U
STOCK = U(8);
IF BEHAVE ARRIVE NEST ==

RETULT = 100 - STOCK;
ELSE

RESULT = (1 + BEHAVE FORAGING + BEHAVE RETURNING)
ENERGY USE_RATE
END
$END FORAGE PROPERTY AGENT ENERGY

) 5
(4);

$FORAGE_PROPERTY NEST DISTANCE.M
FUNCTION RESULT=BEHAVE PROPERTY NEST DISTANCE (U)
$AUX8 = FEEDBACK FROM STOCK
$AUX1 = MOVEMENT RANDOMIZATION
SAUX2 = INFO FORAGING
$SAUX3 = INFO RETURNING
MOVEMENT RAND = U(1);
INFO_FORAGING = U(2);
INFO_RETURNING = U(3);
STOCK = U(8);
IF INFO FORAGING ==
RESULT = MOVEMENT RAND;
ELSEIF INFO RETURNING ==
RESULT = - 1;
ELSE
RESULT
END
$SEND FORAGE PROPERTY NEST DISTANCE

163

1l

f

]

il

0;

i

$FORAGE_SIGNAL AGENT_ ENERGY.M

FUNCTION RESULT=FORAGE_SIGNAL AGENT ENERGY (U)
$AUX8 = FEEDBACK FROM STOCK

3AUX1 = PROPERTY AGENT ENERGY

PROPERTY_ AGENT_ENERGY = U (1)

STOCK = U(8);

RESULT = PROPERTY AGENT_ENERGY - STOCK;

$END FORAGE SIGNAL_ AGENT_ENERGY

$FORAGE_SIGNAL ENV_AGENT ENERGY.M

FUNCTION RESULT=FORAGE_SIGNAL ENV_AGENT ENERGY (U)
$AUX8 = FEEDBACK FROM STOCK

$AUX1 = PROPERTY AGENT ENERGY
PROPERTY AGENT ENERGY = U(1);

STOCK = U(8);

RESULT = PROPERTY AGENT ENERGY - STOCK;

$SEND FORAGE SIGNAL ENV_ AGENT ENERGY

$FORAGE_SIGNAL NEST DISTANCE.M
FUNCTION RESULT=FORAGE_SIGNAL NEST DISTANCE (U)
$AUX8 = FEEDBACK FROM STOCK

$AUX1 = PROPERTY NEST DISTANCE
PROPERTY NEST DISTANCE = U(1);

STOCK = U(8);

RESULT = PROPERTY NEST DISTANCE ~ STOCK;

$END FORAGE SIGNAL NEST DISTANCE

$FORAGE SIGNAL NEST ENERGY.M
FUNCTION RESULT=FORAGE_SIGNAL_ NEST_ENERGY (U)
%AUX8 = FEEDBACK FROM STOCK

$AUX1 = ATTRIBUTE STATE
PROPERTY NEST ENERGY= U(1l);

STOCK = U(8);

RESULT = PROPERTY NEST ENERGY - STOCK;

SEND FORAGE_SIGNAL NEST ENERGY

$FORAGE_SIGNAL USE NEST_ENERGY.M
FUNCTION RESULT=FORAGE_SIGNAL USE_NEST_ENERGY (U)
$AUX8 = FEEDBACK FROM STOCK
$AUX1 = INFO IN NEST
$AUX2 = PROPERTY AGENT ENERGY
INFO IN NEST = U(1);
PROPERTY AGENT ENERGY = U(2);
STOCK = U(8);
IF INFO_IN_NEST ==
RESULT = 100 - PROPERTY AGENT ENERGY -~ STOCK
ELSE
RESULT = -STOCK;
END
SEND FORAGE SIGNAL USE NEST_ ENERGY

i

t

164

B.3 - GSVD Model

$GSVD_ATTRIBUTE MOTION.M
FUNCTION RESULT=GSVD_ATTRIBUTE_ MOTION(U)
3AUX8 = FEEDBACK FROM STOCK
3AUX1 = ATTRIBUTE_STATE
ATTRIBUTE_STATE= U(1l);
STOCK = U(8):;
IF ATTRIBUTE_ STATE == | ATTRIBUTE STATE ==
RESULT = 0 - STOCK;
ELSEIF ATTRIBUTE STATE ==
RESULT = 1 ~ STOCK;
ELSE
RESULT = 2 - STOCK;
END
$END GSVD_ATTRIBUTE MOTION

$GSVD_ATTRIBUTE SOUND.M
FUNCTION RESULT=GSVD ATTRIBUTE_SOUND (U)
$AUX8 = FEEDBACK FROM STOCK
$AUX1 = ATTRIBUTE STATE
ATTRIBUTE_STATE= U(1);
STOCK = U(8):
IF ATTRIBUTE STATE == O | ATTRIBUTE_STATE ==
RESULT = 0 - STOCK;
ELSEIF ATTRIBUTE_STATE ==
RESULT = 1 - STOCK;
ELSE
RESULT = 2 - STOCK;
END
SEND GSVD ATTRIBUTE_ SOUND

$GSVD_ATTRIBUTE STATE.M
FUNCTION RESULT=GSVD ATTRIBUTE_STATE (U)
$AUX8 = FEEDBACK FROM STOCK
$SAUX1 = FEATURE VICTIM
$AUX2 = RANDOM
FEATURE_VICTIM= U(1);
RANDOM = U(2);
STOCK = U(8);
IF FEATURE VICTIM ~= 0
RESULT = RANDOM - STOCK;
ELSE
RESULT = 0 - STOCK;
END
$END GSVD ATTRIBUTE STATE

fi

$GSVD_BEHAVE_FOUND.M
FUNCTION RESULT=GSVD_BEHAVE_FOUND (U)
SAUX8 = FEEDBACK FROM STOCK

3AUX1 = INFO_VICTIM

165

INFO_VICTIM = U(1);

STOCK = U(8);

RESULT = INFO_VICTIM - STOCK:;
SEND GSVD_BEHAVE FOUND

$GSVD_BEHAVE FOUND CORRECT.M
FUNCTION RESULT=GSVD_BEHAVE_FOUND_CORRECT (U)
$AUX8 = FEEDBACK FROM STOCK
$AUX1 = INFO_FIND
$SAUX2 = FEATURE VICTIM
INFO FIND = U(1
FEATURE_VICTIM
STOCK = U(8);
IF (INFO FIND == 1) & (FEATURE VICTIM == 1)
RESULT = 1 - STOCK;
ELSE
RESULT = 0 - STOCK;
END
$END GSVD_BEHAVE FOUND_ CORRECT

I

Il

.
14

U(2):

o~

$GSVD_BEHAVE FOUND WRONG.M

FUNCTION RESULT=GSVD BEHAVE FOUND_ WRONG (U)

$AUX8 = FEEDBACK FROM STOCK

$AUX1 = INFO_FIND

$AUX2 = FEATURE VICTIM

INFO_FIND = U(1);

FEATURE VICTIM = U(2);

STOCK = U(8);

IF INFO _FIND == 1 & FEATURE VICTIM == 0
RESULT = 1 - STOCK;

ELSE
RESULT

END

$SEND GSVD BEHAVE FOUND WRONG

il

i

0 -~ STOCK:

$GSVD_BEHAVE_MISSED.M
FUNCTION RESULT=GSVD_BEHAVE MISSED (U)

$AUX8 = FEEDBACK FROM STOCK
$AUX1 = INFO_FIND
$AUX2 = FEATURE VICTIM

INFO_FIND = U(1);
FEATURE_VICTIM =
STOCK = U(8);
IF INFO_FIND == 0 & FEATURE_VICTIM ==
RESULT = 1 - STOCK;
ELSE
RESULT = 0 - STOCK;
END
$END GSVD_BEHAVE MISSED

U(z2);

$GSVD_BEHAVE_RESEARCH.M
FUNCTION RESULT=GSVD_BEHAVE_RESEARCH (U)

166

il

$AUX8 = FEEDBACK FROM STOCK

$AUX1 = INFO UNEXPLORED TERRAIN

INFO UNEXPLORED TERRAIN = U(1);

STOCK = U(8):

RESULT = 1 - INFO_UNEXPLORED TERRAIN - STOCK;
$END GSVD_BEHAVE_RESEARCH

$GSVD_BEHAVE RESET_ TERRAIN.M

FUNCTION RESULT=GSVD BEHAVE RESET TERRAIN (U)
$AUX8 = FEEDBACK FROM STOCK

$AUX1 = INFO RESET

INFO RESET = U(1):

STOCK = U(8);

RESULT = INFO RESET - STOCK;

$END GSVD_BEHAVE_RESET TERRAIN

$GSVD_BEHAVE SEARCH.M
FUNCTION RESULT=GSVD BEHAVE SEARCH (U)
$AUX8 = FEEDBACK FROM STOCK

$AUX1 = INFO VICTIM

INFO VICTIM = U(1);

STOCK = U(8);

RESULT = 1 - INFO VICTIM - STOCK;
$END GSVD_BEHAVE SEARCH

$GSVD_FEATURE_COZ.M

FUNCTION RESULT=GSVD_ FEATURE_COZ (U)
3AUX8 = FEEDBACK FROM STOCK

$AUX1 = ATTRIBUTE_ STATE

ATTRIBUTE _STATE= U(l);

STOCK = U(8);

IF ATTRIBUTE STATE ~= 0
RESULT = 1 - STOCK;
ELSE
RESULT = 0 -~ STOCK:
END

$END GSVD_FEATURE_CO2

$GSVD_FEATURE_EXPLORING.M
FUNCTION RESULT=GSVD FEATURE EXPLORING (U)
$AUX8 = FEEDBACK FROM STOCK

$AUX1 = BEHAVE_SEARCH

BEHAVE SEARCH = U(1);

STOCK = U(8);

RESULT = BEHAVE SEARCH - STOCK;

$END GSVD_FEATURE EXPLORING

$GSVD_FEATURE FIND.M

FUNCTION RESULT=GSVD_FEATURE_ FIND (U)
$AUX8 = FEEDBACK FROM STOCK

%AUX1 = BEHAVE FOUND

BEHAVE FOUND = U(1l);

167

STOCK = U(8);
RESULT = BEHAVE FOUND - STOCK;
$END GSVD_FEATURE_ FIND

$GSVD_FEATURE FORM.M
FUNCTION RESULT=GSVD FEATURE_FORM (U)
$AUX8 = FEEDBACK FROM STOCK
$AUX1 = ATTRIBUTE STATE
ATTRIBUTE_STATE= U(1);
STOCK = U(8);
IF ATTRIBUTE_ STATE ~= 0
RESULT = 1 - STOCK;
ELSE
RESULT = 0 - STOCK;
END
$END GSVD_FEATURE_FORM

$GSVD_FEATURE HEAT.M

FUNCTION RESULT=GSVD_FEATURE_ HEAT (U)
3AUX8 = FEEDBACK FROM STOCK

$AUX1 = ATTRIBUTE_STATE

ATTRIBUTE STATE= U(1);

STOCK = U(8):

IF ATTRIBUTE STATE ~= 0
RESULT = 1 - STOCK;
ELSE
RESULT = 0 - STOCK;
END

$END GSVD_FEATURE HEAT

$GSVD_FEATURE HEAT.M
FUNCTION RESULT=GSVD_FEATURE_ HEAT (U)
$AUX8 = FEEDBACK FROM STOCK
$AUX1 = ATTRIBUTE_STATE
ATTRIBUTE STATE= U(1):
STOCK = U(8):
IF ATTRIBUTE_STATE ~= 0
RESULT = 1 - STOCK;
ELSE
RESULT = 0 - STOCK:
END
3END GSVD_FEATURE HEAT

%GSVD_FEATURE RESEARCH.M

FUNCTION RESULT=GSVD_FEATURE_RESEARCH (U)
$AUX8 = FEEDBACK FROM STOCK

$AUX1 = BEHAVE RESEARCH

BEHAVE RESEARCH = U(1);

STOCK = U(8);

RESULT = BEHAVE RESEARCH - STOCK;

$END GSVD_FEATURE RESEARCH

168

%GSVD_FEATURE _UNEXPLORED TER.M

FUNCTION RESULT=GSVD_FEATURE_UNEXPLORED TER (U)

$AUX8 = FEEDBACK FROM STOCK
$AUX1 = PROPERTY UNEXPLORED TERRAIN
UNEXPLORED TERRAIN = U(1);
THRESHOLD = U(2);
STOCK = U(8);
IF UNEXPLORED TERRAIN < THRESHOLD
RESULT = 0 - STOCK;
ELSE
RESULT = 1 - STOCK:
END
$END GSVD_FEATURE UNEXPLORED TER.M

$GSVD_FEATURE_UNEXPLORED_ TERRAIN.M

FUNCTION RESULT=GSVD_FEATURE UNEXPLORED TERRAIN (U}

$AUX8 = FEEDBACK FROM STOCK
$AUX1 = PROPERTY UNEXPLORED TERRAIN
UNEXPLORED TERRAIN = U(1l);
THRESHOLD = U(2);
STOCK = U(8);
IF UNEXPLORED TERRAIN < THRESHOLD
RESULT = 0 - STOCK;
ELSE
RESULT = 1 - STOCK;
END
$END GSVD_FEATURE UNEXPLORED TERRAIN

$MURA SIGNAL DISTANCE SR.M
FUNCTION RESULT=GSVD FEATURE_VICTIM(U)
$AUX8 = FEEDBACK FROM STOCK
$AUX1 = REMAINING VICTIM DENSITY
$AUX2 = TERRAIN EXPLORATION RATE
$AUX3 = RANDOM NUMBER GENERATOR
VICTIM DENSITY = U(1);
EXPLORATION RATE = U(2);
RAND = U(3);
STOCK = U(8);
IF (VICTIM DENSITY * EXPLORATION RATE)
RESULT = 1 - STOCK;
ELSE
RESULT = 0 - STOCK;
END
$SEND GSVD_SIGNAL DISTANCE SR

i

> RAND;

$GSVD_INFO_CO2.M

FUNCTION RESULT=GSVD_ INFO_CO2 (U)
$AUX8 = FEEDBACK FROM STOCK
$AUX1 = INFO CO2

INFO_CO2 = U(1);

STOCK = U(8);

RESULT = INFO CO2 - STOCK;

169

J

$END GSVD_INFO_CO2

$GSVD_INFO_FIND.M
FUNCTION RESULT=GSVD_INFO_FIND(U)
$AUX8 = FEEDBACK FROM STOCK
$AUX1 = FEATURE_FIND
FEATURE_FIND = U(1);

STOCK = U(8);

RESULT = FEATURE_FIND - STOCK;
$END GSVD_INFO FIND

$GSVD_INFO_FORM.M
FUNCTION RESULT=GSVD_ INFO FORM(U)
$AUX8 = FEEDBACK FROM STOCK
$AUX1 = INFO_FORM

INFO FORM = U(1);

STOCK = U(8);

RESULT = INFO FORM - STOCK;

$END GSVD_INFO_FORM

$GSVD_INFO_ HEAT.M

FUNCTION RESULT=GSVD_INFO HEAT (U)
$AUX8 = FEEDBACK FROM STOCK
$AUX1 = INFO_HEAT

INFO_HEAT = U(1);

STOCK = U(8);

RESULT = INFO_HEAT - STOCK;

$END GSVD_INFO HEAT

$GSVD_INFO_MOTION.M
FUNCTION RESULT=GSVD_INFO MOTION (U)
$AUX8 = FEEDBACK FROM STOCK

$SAUX1 = INFO_SOUND

INFO MOTION = U(1);

STOCK = U(8);

RESULT = INFO MOTION - STOCK;

$SEND GSVD_INFO MOTION

$GSVD_INFO RESEARCH.M

FUNCTION RESULT=GSVD_INFO RESEARCH (U)
$AUX8 = FEEDBACK FROM STOCK

$AUX1 = FEATURE RESEARCH
FEATURE_RESEARCH = U(1);

STOCK = U(8):

RESULT = FEATURE RESEARCH - STOCK;
$END GSVD_INFO RESEARCH

$GSVD_INFO_MOTION.M
FUNCTION RESULT=GSVD_ INFO SOUND (U)
$AUX8 = FEEDBACK FROM STOCK

$AUX1 = INFO_SOUND

INFO_SOUND = U(1);

170

STOCK = U(8):
RESULT = INFO_SOUND - STOCK:;
$END GSVD_INFO MOTION

$MURA SIGNAL DISTANCE SR.M
FUNCTION RESULT=GSVD_ INFO_ STATE (U)
RESULT = 0;

$END GSVD_SIGNAL DISTANCE SR

$GSVD_INFO UNEXPLORED TERRAIN.M

FUNCTION RESULT=GSVD INFO UNEXPLORED TERRAIN (U)
$AUX8 = FEEDBACK FROM STOCK

SAUX1 = SIGNAL_UNEXPLORED TERRRAIN
SIGNAL_UNEXPLORED TERRAIN= U(1);

STOCK = U(8);

RESULT = SIGNAL_UNEXPLORED TERRAIN - STOCK;
$END GSVD_INFO UNESPLORED TERRAIN

$GSVD_INFO_VICTIM.M

FUNCTION RESULT=GSVD INFO VICTIM(U)

$AUX8 = FEEDBACK FROM STOCK

$AUX1 = INFO_VICTIM

INFO_FORM = U(1);

INFO _CO2 = U(2);

INFO_HEAT = U(3):

INFO_MOTION = U(4);;

INFO_SOUND = U(5);

STOCK = U(8)s

COUNT = 0;

IF INFO FORM ==
COUNT = COUNT + 1;

END

IF INFO CO2 ==
COUNT = COUNT + 1;

END

IF INFO_HEAT ==
COUNT = COUNT

END

IF INFO MOTION == 1
COUNT = COUNT +

+

i;

| INFO MOTION == 2
1;

END

IF INFO_SOUND == | INFO_SOUND == 2
COUNT = COUNT + 1;

END

IF COUNT >= 3

RESULT = 1 - STOCK;
ELSE

RESULT = 0 - STOCK;
END
3END GSVD_INFO _VICTIM

$GSVD_PROPERTY_ EXPLORATION RATE.M
171

FUNCTION RESULT=GSVD_ PROPERTY EXPLORATION RATE (U)
$AUX8 = FEEDBACK FROM STOCK
$AUX1 = SIGNAL TERRAIN DIFFICULTY
FEATURE_EXPLORING = U(1);
MAX RATE = U(2);
SIGNAL TERAIN DIFFICULTY = U(3);
STOCK = U(8);
IF FEATURE_EXPLORING
RESULT = (1 - SIGNAL TERRAIN DIFFICULTY)*MAX RATE - STOCK;
ELSE
RESULT = 0 - STOCK;
END
$END GSVD_PROPERTY EXPLORATION RATE

$GSVD_PROPERTY REMAINING VICTIM DENSITY.M
FUNCTION RESULT=GSVD_PROPERTY REMAINING VICTIM DENSITY (U)

$AUX8 = FEEDBACK FROM STOCK
$AUX1 = UNEXPLORED_TERRAIN
3AUX2 = UNPASSED VICTIMS

UNEXPLORED TERRAIN = U(1);

UNPASSED VICTIMS = U(2);

STOCK = U(8)»

RESULT = UNPASSED VICTIMS/UNEXPLORED TERRAIN - STOCK;
$END GSVD_ PROPERTY REMAINING_ VICTIM DENSITY

$GSVD_PROPERTY TERRAIN DIF.M
FUNCTION RESULT=GSVD_ PROPERTY TERRAIN DIF (U)
$AUX8 = FEEDBACK FROM STOCK
$AUX1 = INFO_UNEXPLORED TERRAIN
RANDOM = U (1)
STOCK = U(8);
IF (RANDOM + STOCK) > 1
RESULT = 1 - STOCK;
ELSEIF (RANDOM + STOCK) < 0
RESULT = 0 - STOCK;
ELSE
RESULT = RANDOM;
END
$END GSVD_PROPERTY TERRAIN DIF.M

$GSVD_PROPERTY TERRAIN DIFFICULTY.M
FUNCTION RESULT=GSVD_PROPERTY TERRAIN DIFFICULTY (U)
%AUX8 = FEEDBACK FROM STOCK
$AUX1 = INFO UNEXPLORED TERRAIN
RANDOM = U(1);
STOCK = U(8);
IF (RANDOM + STOCK) > 1

"RESULT = 1 -~ STOCK;
ELSEIF (RANDOM + STOCK) < 0

RESULT = 0 - STOCK;
ELSE

RESULT = RANDOM;

172

END
$SEND GSVD_PROPERTY TERRAIN DIFFICULTY

$GSVD_PROPERTY UNEXPLORED TER.M
FUNCTION RESULT=GSVD_PROPERTY_ UNEXPLORED TER (U)
$AUX8 = FEEDBACK FROM STOCK
$AUX1 = BEHAVE TERRAIN RESET
$AUX2 = SIGNAL TERRAIN EXPLORATION
TERRAIN RESET = U(1);
TERRAIN EXPLORATION = U(2);
STOCK = U(8);
IF TERRAIN RESET ==
RESULT = 100 - STOCK;
ELSE
RESULT = -TERRAIN EXPLORATION
END
$END GSVD_PROPERTY UNEXPLORED TER.M

i

fi

$GSVD_PROPERTY UNFOUND VICTIMS.M

FUNCTION RESULT=GSVD_ PROPERTY_ UNFOUND VICTIMS (U)
$AUX8 = FEEDBACK FROM STOCK

$AUX1 = FIND CORRECT

FIND _CORRECT = U(1l);

STOCK = U(8):

IF STOCK ==
RESULT = 0;

ELSEIF FIND_CORRECT ==
RESULT = -1;

ELSE
RESULT = 0;

END

$END GSVD_PROPERTY_ UNFOUND_VICTIMS

$GSVD_PROPERTY UNPASSED VICTIMS.M
FUNCTION RESULT=GSVD PROPERTY_ UNPASSED VICTIMS (U)
$AUX8 = FEEDBACK FROM STOCK
$AUX1 = RESET TERRAIN
$AUX2 MISSED
$AUX3 = FIND_CORRECT
$AUX4 UNFOUND_ VICTIMS
RESET TERRAIN = U(1);
MISSED = U(2);
FIND_CORRECT = U(3);
UNFOUND VICTIMS = U(4);
STOCK = U(8);
IF RESET TERRAIN ==
RESULT = UNFOUND_VICTIMS - STOCK;
ELSEIF MISSED == | FIND CORRECT ==]
RESULT = - 1;
ELSE
RESULT = 0:
END

!

f

173

$END GSVD_PROPERTY UNPASSED VICTIMS

$GSVD_PROPERTY VICTIM DENSITY.M
FUNCTION RESULT=GSVD_PROPERTY VICTIM DENSITY (U)

$AUX8 = FEEDBACK FROM STOCK
$AUX1 = UNEXPLORED TERRAIN
$AUX2 = UNPASSED VICTIMS

UNEXPLORED_TERRAIN = U(1);

UNPASSED VICTIMS = U(2);

STOCK = U({(8);

RESULT = UNPASSED VICTIMS/UNEXPLORED TERRAIN - STOCK;
SRESULT = 0;

SEND GSVD_PROPERTY VICTIM DENSITY

$GSVD_SIGNAL_CO2.M

FUNCTION RESULT=GSVD_SIGNAL CO2 (U)
$AUX8 = FEEDBACK FROM STOCK

$AUX1 = FEATURE_CO2

FEATURE_CO2 = U(1);

STOCK = U(8);

RESULT = FEATURE CO2 - STOCK;
$END GSVD_SIGNAL_CO2

$GSVD_SIGNAL EXPLORATION RATE.M
FUNCTION RESULT=GSVD SIGNAL EXPLORATION RATE (U)
$AUX8 = FEEDBACK FROM STOCK

$AUX1 = PROPERTY EXPLORATION RATE

PROPERTY EXPLORATION RATE = U(1);

STOCK = U(8);

RESULT = PROPERTY EXPLORATION RATE - STOCK;
$END GSVD SIGNAL EXPLORATION RATE

$GSVD_SIGNAL FORM.M

FUNCTION RESULT=GSVD_ SIGNAL FORM (U)
$AUX8 = FEEDBACK FROM STOCK

$AUX1 = FEATURE_FORM

FEATURE_FORM = U(1);

STOCK = U(8);

RESULT = FEATURE FORM - STOCK;

$SEND GSVD_SIGNAL_ FORM)

$GSVD_SIGNAL HEAT.M

FUNCTION RESULT=GSVD_SIGNAL HEAT (U)
$AUX8 = FEEDBACK FROM STOCK

$AUX]1 = FEATURE HEAT

FEATURE_HEAT = U(1);

STOCK = U(8);

RESULT = FEATURE_HEAT - STOCK;

$END GSVD_SIGNAL_ HEAT

$GSVD_SIGNAL MOTION.M
FUNCTION RESULT=GSVD_SIGNAL MOTION (U)

174

it

$AUX8 = FEEDBACK FROM STOCK
$AUX1 = FEATURE_MOTION

FEATURE _MOTION = U(1);

STOCK = U(8);

RESULT = FEATURE MOTION - STOCK;
$END GSVD_SIGNAL MOTION

It

$GSVD_SIGNAL_ SOUND.M
FUNCTION RESULT=GSVD_SIGNAL_SOUND (U)
$AUX8 = FEEDBACK FROM STOCK

$AUX1 = FEATURE_SOUND

FEATURE_SOUND = U(1);

STOCK = U(8);

RESULT = FEATURE_SOUND - STOCK;

$END GSVD_SIGNAL SOUND

$FORAGE_SIGNAL_USE_NEST_ ENERGY.M
FUNCTION RESULT=FORAGE_SIGNAL USE_NEST_ ENERGY (U)
SAUX8 = FEEDBACK FROM STOCK
$AUX1 = INFO IN NEST
$AUX2 = PROPERTY AGENT ENERGY
INFO_IN NEST = U(1);
PROPERTY AGENT ENERGY = U(2);
STOCK = U(8);
IF INFO_IN NEST ==
RESULT = 100 - PROPERTY AGENT ENERGY - STOCK
ELSE
RESULT = -STOCK;
END
$END FORAGE SIGNAL USE NEST ENERGY

H

i

$GSVD_SIGNAL TERRAIN DIFFICULTY.M

FUNCTION RESULT=GSVD_ SIGNAL_ TERRAIN DIFFICULTY (U)
$AUX8 = FEEDBACK FROM STOCK

$AUX1 = SIGNAL TERRAIN DIFFICULTY

SIGNAL TERRAIN DIFFICULTY = U(1l);

STOCK = U(8);

RESULT = SIGNAL_TERRAIN DIFFICULTY - STOCK;

%END GSVD_SIGNAL TERRAIN DIFFICULTY

$GSVD_SIGNAL UNEXPLORED TERRAIN.M
FUNCTION RESULT=GSVD_SIGNAL UNEXPLORED TERRAIN (U)
SAUX8 = FEEDBACK FROM STOCK

$AUX1 = FEATURE UNEXPLORED TERRRAIN

FEATURE UNEXPLORED TERRAIN= U (1);

STOCK = U(8);

RESULT = FEATURE_UNEXPLORED TERRAIN - STOCK;

$END GSVD_SIGNAL UNEXPLORED TERRAIN

175

Appendix C -~ PowerSim Code

This appendix contains the original PowerSim simulations originally

developed for [2]. Some of these models were reused for some of the results in

Chapter Five, as such the code and models are presented here for completeness.

C.1 - Muramador Program Listing (PowerSim)

iy el
&) ‘ ». Rand_1 ™ =
i o
Wa“.D ‘ Rand 2 Wall_Prob A _End . -] Length
_Denlity Wall_Rate

= X

New_WWall

sensor_error_direction

O

wdlT_sengor_max_range

&

Wall_Sersor,_Error

Figure 77 - PowerSim Muramador Model

176

wall_time

Wiatl_Sensor_Ervor_fuizx

-

COO0OOO0 D0O00O00O0G O0d O O

Wall
1

+di*Wali_Change
Wall_Distance
i 10
cXp +di*Wall_Distance_Rate
Wall_Length
0
%D +di*Wall_Rate
wall_time
0
= +dt*Rate_5
Rate_5
= IF(Wall = 1,1.00
Wall_Change
== |[F{Wall = 1 AND Wall_End = 1,-1.IF{Wall = 0 AND New_Wall = 1,1.0))
Wall_Distance_Rate
== [F{Wall_Change=1,wall_sensor_max_range-5,IF(Wall_Change=-1,-Wall_Distance, IF{Wall=1,-
Robot_Movement_Rate, D))}
Wall_Rate
== [F{Wall = 1,1,-Wall_Length)
New_YWall
== [F{Rand_2<Wall_Density,1,0}
Rand_1
= RANDOM
Rand_2
= RANDOM
Robot_Movement_Rate
== |E(Wall_Sensor<Roboi_sp.-{Wall_Sensor-Rabot_sp)*Kp,(Wall_Sensor-Robot_sp)'Kp)
sensof_emor_direction
= RANDOM
Wall_End
= |F{Rand_1< Wall_Prob,1,0)
Wall_Sensor
== IF(Wall = 1,IF(Wall_Distance<wall_sensor_max_range,lF(sensor_error_direction < .5, Wall_Distance-

Walk_Sensor_Esror,Wall_ Distance+Wali_Sensor_Error), wall_sensor_max_range),wall_sensor_max_range}

Wali_Sensor_Error

= Wall_Sensor_Error_Max*RANDOM
K

= 02

Robot_sp

= 10

Wall_Density

= 04

Wail_Prob

== {05
Wall_Sensor_Error_Max
= 5
wall_sensor_max_rangs
= 25

177

C.2 Foraging Program Listing (PowerSim)

&

]

:

i

f} b

! Nest_Energy_Threshold 1
1 -~ Y TR
)

)

1

1

t

i

Lepve_Mest 1

——d] =
A Returning) n_pest.i
~, o Z

t

Figure 78 - Foraging Agent PowerSim Model

178

/_} A Lo DQ Inherent_Nest_Uisage

y = Nest_Energy_Level
’ Collected_Bpergy Expendéd_Energy ’

Value_of_item

Recharge_Scaler

Figure 79 - Foraging Agent Environment PowerSim Model

179

C

-

O

7
i
|

==
.
1
[

If
i

0O O 0O O o

Foraging_1

0

XD +dt"Leave_Nest_1
-dt*Return_fo_Nesi_1

Foraging_2

R

2P dt*Return_to_Nest_2
+dt*Leave_Nest_2

Foraging_3

0

= <dtr*Return_to_Nest_3
~dt*Leave_Nest 3

Foraging_4

o

b di*Refurn_to_Nest_4
~dt*Leave_Nest 4

Foraging_5

0

P +dt*Leave_Nesi 5
-dt*Return fo Nest 5

in_nest_1

i

D +dt*At_nest_1
di'lLeave_Nest_1

In_riest 2

+dt*At_nest_3
-dt*Leave_Nest_3

> +dt"Al_nest_4

M*Leave Nest 4

in_nest_5

g

XD +dt*At_nest 5
-*Leave_Nest 5

Nest_Dietance_1

[o

&) ~di"Movement_1

Nest_Distance_2

0

=P ~dt*Movement_2

Nest_Distance_3

g
XD ~dt*Movement_3
Nest_Distance_4

ifiT] O

g[) +dt*Movement_4

Nest_Distance_5

0

%P ~di*Movement 5

Nest_Energy_Level

100

&) dr*Expended_Energy
+dt*Collected, Energy

Object_1

g
ZD +drObject_Move_1

180

E:] Qbject 2
0
&b +dt*Object_Move_2
| Object 3
f 0
ot +dt*Object_Move_3
Object_4
0
2P +dt*Object_Move_4

]
] Object 5
]
]

o
e +dt*Object_Move 5
Returning_1
0
&b di*At_nest_1
+dt*Return_to_Nest_1
Returning_2
Y] O
%{3\ -dt*Af_nest_2
+dt*Retum_to_Nest_2
Returning_3
0
D -di*At nest 3
+dt*Return_io_Nesi_3
Returning_4
1 O
-At*At_nest_4
+dt*Return_io_Nest_4
Returning_5
0
~Ji"At_nest_5
+dt*Return_to_Nest 5
Robot_Energy_Level_1
[T} 100
&) -di*Robot_Energy Usage_1
+dt*Robot_Recharge_1
| Robot_Energy_Lsvel_2
100
2ED -di*Robot_Energy_Usage_2
+dt*Robot_Recharge_2
Robot_Energy_Level_3
[T 100
2D di*Robot_Energy_Usage_3
_ +dt*Robot_Recharge_3
[1 Robot_Energy_Level_4
100
% -dt*Robot_Energy_Usage_4
+dt*Robot_Recharge_4
] Robot_Energy_Level 5
100
P +dt*Robot_Recharge_5
«i{*Robot_Energy_Usuage_5
> At_nest_1
= |F(Nest_Distance_1 = 0 AND Returning_1 = 1,1,0}
P At_nest_2
= [F{Nest_Distance_2 = 0 AND Returning_2 = 1,1,0}
At_nest_3
= IF{Nest_Distance_3 = 0 AND Returning_3 = 1,1,0)
At _nest_4
= IF{Nest_Distance_4 = 0 AND Returning_4 = 1,1,0)

181

% At_nest_5

== [F{Nast_Distanze_§ = (0 AND Returning_5 = 1,1,0)
¥ Collected Energy

= MINiErergy_Transfzr*Value_of_item, 100 - Nesi_Energy_Levsl)
=¥ BExpended_Encrgy

= Robhot_Racharge+inherent_Nest Usage_Rate
e x Leave_Nast 1

= [F{in_nesl_1 = 1 AND Nest_Energy_Relay < Nesl_Energy_Thrashold_1, 1,0}
¥ Leave_Nast_2

= [F{in_nest_2 = 1 AND Nest_Energy_Relay < Nest_Energy_Thrashcld_2,1,0}

v |.eave_Nast_3 : ‘

= {F{n nest J =1 AND Nest Enerqy Relay < Nesi{ Enercy Thrashold 3,1.0)
-‘-O-S' Leave _Nszst_4

== |F{in_nest_4 = 1 AND Nect_Energy_Relay < Nest_Energy_Thrashcld_4,1,0)
> Leave_Nest_5

= [F{n_nest 5 = 1 AND Nast_Energy_Relay < Nest_Energy._Thrashald_5,1.0)
R Movement_t

== [F{Foraging_1=1.Randomness_Threshcld,iF(Rotuming_1 = 1,MAX(-1,-Ncst_Distance_1),0))
=¥ Movement 2

= IF{Fomaging_z=1,Randomness_Thresheld, IF{Retuming_2 = 1,MAX{-1,-Nest_Distance_2),01})
=% Movement 3

== [F{Foraging_J=1,Randomness_Threshold, iF(Retuming_3 = 1,MAX(-1,-Mest_Distance_3),0)}
=O=5- Movement_4

== [F{Foraging_4=1,Randomness_Threshacld, IF{Returning_4 = 1, MAX(-1,-Mest_Distance_4),0);
(e Movement_5

== |F{Foraging_5=1Ramdomness_Tlreshold,IF(Relurning_5 = 1, MAX({-1,-Nesi_Distance_5),0);
= % Object_Move_1

= |F{Find_Determine_1 = 1,1 IF(At_nest_1 = 1 AND Objeci_1 = 1,-1,0})
=} Object_Mave_2

= [F{Find Determine 2= 1,1JF{At nest 2 = 1 AND Object 2= 1.-1.0})
"O*" Qbjeci_Move_G

= |F(Find_Detorminc_3 = 1,1IF(At_nest_3 = 1 AMD Objcci_3 = 1,-1,0))
B Ohject_Move_4

= {[F{Find_Determine_4 = 1,1.IF(ALnesi_4 = 1 AND Objeci_4 = 1,-1.0))
o Objeci_Move_5

= [F{Find_Determine_5 = 1,1 IF{Al_nesi_5 = 1 AND Objeci_5=1,-1.03)
~{_F> Return_to_Nesi_1

= [F{Foraging_1 = 1 AND {Find_Deatermine_1 = 1 OR Rabot_Erergy_|avel_1 < 50).1,0)
o % Rewrn to Nest 2

== |[F{Foraging_2 = 1 AND {Find_Determine_2 = 1 OR Robot_Energy,_Level_2 < 50),1,0)

turn_to_Nest_3

== [F(Foraging_3 = 1 AND {Find_Dstermine_3 = 1 OR Robot_Erergy_Level_3 < 50).1,0)
(O Rewrn_to_Nest_4

= [F(Foraginy_4 = 1 AND {Find_Delerming_s = 1 OR Robol_Energy_Level_4 < 501.1,0)
=©r:- Roturn_to_Nesz 5

= [F{Foraging_& = 1 AND {Find_Determine_& = 1 OR Robot_Erergy_Level_5 < §0).1,0)
=R Robat_Energy_Usage_1

= [F{Foraging 1=10R Raturning 1 = 1,Robot energy Usage Rate ()
«{ 5 Robot_Energy_Usage_2

= [F({Foraging_2 = 1 OR Raturning_2 = 1,Robot_cncrgy_Usage_Rate 0)
=y Robet_Energy_tsage 3

== [F{Foraging_3 = 1 OR Raturning_3 = 1.Robol_energy_Usage_Rate.0)
EO:- Robot_Energy_Usage_4

== [F{Foraging_4 = 1 OR Returning_4 = 1,Robot_energy_Usage_Rate,0)
~r» Robot_Energy_Usage_5

= F{Foraging_5 = 1 OR Raturning_5 = 1, Robol_anergy_Usage_Rate ()
= Robot_Recharge_1

== F{ln_nest_1 = 1,100-Robot_Energy_Level 1.0}
(% Robot_Recharge_2

= iF{in_nest_2 = 1,100-Robol_Energy_Level _2,0}

182

e{_% Robot_Recharge_3
== IF{in_nesi_3 = 1,100-Robot_Energy_Leve!_3,0)
¥ Robot_Recharge_4
== {F(in_nest_4 = 1,100-Robot_Energy_Level_4.0}
“@ Robot_Recharge_5
= IF{in_nest_5 = 1,100-Robot_Energy_tevel_ 5,0}
{0 Energy_Transfer
= [F{Objsct_Move_1 = -1,1,0}+IF(Object_Move_2 = -1,1,0)+IF{QObject_Move_23 = -1,1,0+HIF{Object_Move_4 =
1,1.0)+HIF(Object_Move_5 = -1,1,0)
Find_Determine_1 .
= [F{RANDCM<Probability_of Find AND Foraging_1 = 1,1.0)
Find_Determine_2
= [F{RANDOM<Probability_of Find AND Foraging_2 = 1,1.0)
Find_Determine_3
= JF{RANDOM<Probability_of_Find AND Foraging_3 = 1,1.0)
Find_Determine_4
= JF{RANDOM<Probability_of_Find AND Foraging_4 = 1.1.0}
Find_Determine_5
= IF{RANDOM<Probability_of_Find AND Foraging 5 = 1,1.0)
Nest_Energy_Relay
== Nest_Energy_Level
Robot_Recharge
== Recharge_Scaler*(Robot_Recharge_1+Robot_Recharge_2+Robot_Recharge_3+Robot_Recharge_d+
Robot_Recharge_5)
inherent_Nesi_Usage_Rate
= 03
Nest_Energy_Threshold_1
= 101
Nest_Energy_Threshold 2
= 85
Nest_Energy_Threshold_3
= 70
Nest_Energy Threshold_4
= 55
Nest_Energy_Threshold &
= 5&
Probability_of_Find
= 0006
Randomness_Threshold
= .33
Recharge_Scaler
= 25
Robot_energy._Usage_Rate
= 005
Value_of_item:

=2 2

COOO OO O OO0OOO0 OO0

183

http://NestJE.nergyJL.eveI

C.3 Victim Detection Program Listing (PowerSim)

I wny Laseumoinm

Form da sy Loy

======

i

Fezromt Lieady ot ange AUNANREREREE S S

. ser Gipesrtly Tiedd
Terman Moot LRy © 7. et

Figure 80 - Left Side of the USAR PowerSim Model

184

£

Y et Seandiivg
e

O R

w Wr3msE

teenl 2
fealy e
e N
Pomas Hanax .
' Fomm s Lt Plos: §ydudndy
Fode: Uand fewa: Usdradom § ndsdcdy :
N

Figure 81 - Right Side of the USAR PowerSim Model

185

D Correct_State_Estimations

°
=5 +gt*Correct_States_Rate
Explored_Terrain

i 1

ekt +diEffectiv_Terrain_Exploration_Rate
False_State_Estimations

0

e®&) +dt*False_States_Rate
False_Victim_Detections

M o

=%p +dt*False_Victim_Dection_Rate
Found_Victims

_
=%p +di*Victim_Discovery_Rate
Missed Victims
4]
+dt*Missed_Victims_Rate
Power

% 100
-dt*Power_Consumption
Terrain_Difficulty_Rating
1
=P +dt*Terrain_Difficulty_Adjustment
Time_to_Power_Loss
[o
e +di*Power_Sensor
Unexplored_Terrain
09
%) -dt*Effectiv_Terrain_Exploration_Rale
Unfound_Victims
20
2D -d* Victim_Discovery_Rate
Victims_not_passed
Unfound_Victims
X .t Victim_Pass_rate
Victims_Passed
g
=2Xp +dt*Victim_Pass_rate
x Gorrect_States_Rate
) = [F{Arbitrator=1,State_Comparator,0)
Effectiv_Terrain_Exploration_Rate
= [F(Power_left=1,IF(Reset=1,-Explored_Terrain.(Native_Movemeni_Rate/T errain_Difficulty_Rating)},0)
¥ False_States_Rate
= {F(State _Comparator=0,1,0}
=(_» False_Victim_Dection_Rate
= False_Victim_Found
> Missed_Victims_Rate
== {F{Victim_Present=1 AND Victim_Found = 0,1.0}
=¥ Power_Gonsumption
= [F{Power<0.QF{Effectiv_Terrain_Exploration_Rate>0,Peower_Consumption_Ratio*
Effectiv_Terrain_Exploration_Rate+Victim_Found_Power_Usage*Arbitrator,0))
Power_Sensor
= [F{Power=0,1,0}
O Terrain_Difficulty_Adjustment
= {F{Terrain_Difficulty_Rating<1,ABS(Terrain_Adjustment_Level),IF(Terain_Difficulty_Rating>50,-ABS
{Terrain_Adjustment_Level), Terrain_Adjustment_Level))
=2 Victim_Discovery_Rate
= [F{Power_left = 1, IF(Victim_Found=1,1,0).0)
= Victim_Pass_rate
== [F{Reset=1,-{Viclims_Passed-Found_Victims),Victim_Present)

o oooooooaoao

O

186

OO0 OO0 OO0 O

O

O O

OO0OO0OCOOO0O0OOOCOO

Arbitrator

= [F{Power<D,0 IF{{CO2_Sensor+Haat_Sensor+Motion_Digitizer+Reflection_Sensor+Noise_Digitizer>
Sensor_Number_Threshhold}, 1,0))

co2

== [F{Victim_Stale>0,1,IF(Rand_4<False_CO2_Probability*Terrain_Exploration_Rate_Relay,1,0))

CO2_Sensor

= [F{CO2=1 AND CO2_Detection_Probability > Rand_9,1,IF{C0O2 = 0 AND Faise_COZ_Deiection_P’robabﬂts)f >
Rand_9,1,0))

False_Victim_Found

== [F{{Arbitrator=1 AND Victim_Present=0},1,0)

Heat

= [FVictim_State>0,1,IF{Rand_»5<False_Heat_Probability* Terrain_Exploration_Rate_Relay,1,0})

Heal_Sensor

= [F{Heai=1 AND Heat_Detection_Probability > Rand_10.1.IF{Heat = 0 AND False_Heat_Dstection_Probability >
Rand_10,1,0)

Motion_Digitizer

= §F{Motion_Sensor>D,1.0)

Motion_Sensor

= [IF{Movement=1 AND Small_Motion_Detection_Prcbability > Rand_14,1,iF{Movement = 2 AND
Large _Motion_Deatection_Probability > Rand_ 14,1,IF(False_Large_Motion_Detection_Probability >
Rand_14.2 IF(False_Small_Motion_Detection_Probability > Rand_14,1,00)

Movement

= IF{Victim_8tate=1,2.IF(Victim_State=2,1,IF(Victim_State=3, 0.IF(Rand_7<Terrain_Exploration_Rate_Relay”
False_Large_WMovement_Probability, 2, JF(Rand_7<Termrain_Exploration_Rate_Relay*
False_Small_Movement_Probability, 1.01)))

Noise

= [F(Victim_State=1,2 IF{Victim_State=2,1,IF(Viclim_State=3,0,IF(Rand_8<Terrain_Exploration_Rate_Relay*
False_Loud_Noise_Probability, 2, IF{Rand_8<Terrain_Exploration_Rate_Relay”
False_Quiell_Noise_Probabiiity, 1,00))

Noise_Digitizer

== [F({Noise_Sensoer>0.1,0)

Noise_Sensor

= [F{Noise=1 AND Quiet_Noise_Detection_Probability > Rand_13,1.IF(Noise = 2 AND
Loud_NMoise_Detection_Probabifity > Rand_13,1,1F(Faise_Loud_Noise_Dstection_Probability =
Rand_13,2 IF(False_Quist_Noise_Detection_Probability > Rand_13,1.0)}))

Power_leR

= [F{Power<0, 0, 1)

Rand

= RANDCM

Rand_10

== RANDOM

Rand_11

== RANDOM

Rand_13

== RANDOM

Rand_14

== RANDOM

Rand_2

= RANDOM(0.2)

Rand_4

= RANDOM

Rand_5

== RANDOM

Rand_6

== RANDOM

Rand_7

= RANDOM

Rand_8

= RANDOM

187

PO OO OO0 OCOLOO0O000Q0O00C OCOOOOC OO

Rand_2

= RANDOM

Reflection_Sensor

= |F{Reflective=1 AND Reflection_Detection_Probability > Rand_11.1.IF(Reflactive = 0 AND
False_Reflection_Detection_Probability > Rand_11,1,0})

Reflective

== {F{Victim_State>0, 1 JF(Rand_6<Faise_Reflective_Probability*Terrain_Exploration_Rate_Relay, 1.0))

Remaining_ Victim_Densily

== {Victims_not_passed-Unfindable_Victims}/(Unexplored_Terrain-unexplorable_terrain)

Reset

= [F{{Unexplored_Termrain-unexplorable_terrainy<Re_ssarch_cutoff, 1,0}

State_Comparator

= iF{State_Estimator=Victim_State, 1,0)

State_Estimator

= [F{Arbitrator = 1,IF (Motion_Sensor=2 OR Noise_Sensor=2,1,IF(Motion_Sensor=1 OR Noise_Bensor = 1,2,3}}
0

Terrain_Adjustment_Level

== RANDOM(-Terrain_Variability_Constant, Terrain_Variability_Constant)

Terrain_Exploration_Rate_Relay

== Effectiv_Terrain_Exploration_Rate

Victim_Found

== |F{{Arbitrator=1 AND Victim_Present=1),1,0)

Victim_Present

== |F{Terrain_Exploration_Rate_Relay*Remaining_Victim_Density>Rand, 1,0}

Victim_State

&= IF{Victim_Present=1,Victim_State_Generation,()

Victim_State_Generation

=z INT{RANDOM(1,3.5989))

CO2_Detection_Probability

= 9

Falge _C02_Detection_Probabilty

%;s:zz:ozjmbabamy
F:ise?_,Heat_Detection__Probabiﬁty
F;si;%eai_mcbabmty
;’ééséz_&.arge_hﬁoﬁon_ﬂete clion_Probability
l;;so.a?;_arge‘ Movement_Probability
E;sf_Lcud_Noise_Deﬁedian__Probabimy
F;aalsé{_);.wd__t\!oise_f’:rcbabimy
I?ézlsg_nuiet_ Noise_Detection_Probability
= .01

False_Quietl_Noise_Probability
t;a_lsez_ReﬂectiQn_Detemian*Pmbabiﬁﬁy
!;—z:ﬂsi:?eﬂective_!?robabiiity

I;;Isez-_Smal I_Motion_Detection_Probability
;;sé?;malI_Movemem__Probabizmy
I;;aiQDetecﬁon_ Probability

= 9

188

http://Terrairt.AdjustrnentJ.evei

COC OO OO OO0 OOOD

Large_Motion_Detection_Probability
= 9
Loud_Moise_Detection_Probability
= 8

Mative_Movement_Rate

= 1

Powsr_Consumption_Ratio

== 2
Quiet_Noise_Detection_Probability
= 9

Re_search_culoff

= 2
Reflection_Detection_Probability
= 9
Sensor_Number_Threshhold

== 2
Small_Motion_Detection_Probability
= 9
Terrain_Variability_Constant

== 2

unexplorable_terrain

= 15

Unfindable_Viclims

== INT{NITRand_2)*{INIT({Unfound_Victims})"INIT(unexplorable_terrain}/100)
Victim_Found_Power_Usage

== .2

189

