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Abstract 

Many important decision and risk analysis problems are complicated by dependencies between 

input variables. In such cases, standard one-variable-at-a-time sensitivity analysis methods are 

typically eschewed in favor of fully probabilistic, or n-way, analysis techniques which 

simultaneously vary all n input variables and capture their interdependencies. Unfortunately, 

much of the intuition provided by one-way sensitivity analysis may not be available in fully 

probabilistic methods because it is difficult or impossible to isolate the marginal effects of the 

individual variables. In this paper, we present a dependence-adjusted approach for identifying 

and analyzing the impact of the input variables in a model through the use of probabilistic 

sensitivity analysis based on copulas. This approach provides insights about the influence of 

the input variables and the dependence relationships between the input variables. One 

contribution of this approach is that it facilitates assessment of the relative marginal influence 

of variables for the purpose of determining which variables should be modeled in applications 

where computational efficiency is a concern, such as in decision tree analysis of large scale 

problems. In addition, we also investigate the sensitivity of a model to the magnitude of 

correlations in the inputs. 
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Sensitivity Analysis of Decision Making Under Dependent 
Uncertainties Using Copulas 

1. Introduction 

Decision makers using mathematical models to make decisions are often uncertain about the 

values of one or more model input parameters. Sensitivity analysis is concerned with 

understanding how changes in the model inputs influence the outputs. The US Office for 

Management and Budget prescribes that “Sensitivity analysis is generally considered a 

minimum, necessary component of a quality risk assessment report.” (OMB Proposed Risk 

Assessment Bulletin, 2006)   

The input quantities in a decision model must be estimated using methods that range from the 

analysis of historical data to intelligent guesses. The base case values for variables are often 

not known with precision, and most common sensitivity analysis methods assume 

independence between model inputs. One of the most frequently used approaches is a one-way 

sensitivity analysis displayed in a Tornado diagram which determines the influence of each 

input variable by the degree to which the objective function changes as that variable is varied 

while all other input variables are held fixed (see discussions in Clemen and Reilly 2000; 

Saltelli and Annoni 2010; Hazen 2014). Although this approach is sometimes extended to 

simultaneously analyze two variables at a time, the obvious disadvantages are that it measures 

the influence of only one (or two) variable(s) and it assumes independence among the input 

variables. Unfortunately, inputs are often correlated in real world problems, and there are 

situations when such dependencies could affect the sensitivity analysis results.  

The need to conduct sensitivity analysis for problems with dependent input variables has led to 

the development of fully probabilistic, or n-way, methods that simultaneously vary all n 

variables in a problem. In a probabilistic sensitivity analysis, the analyst assigns probability 

distributions to uncertain input parameters and estimates the risk profile of the output due to 

these uncertainties, or alternately, the expected value of perfect information may be used as a 

sensitivity measure of robustness. 

Developments in probabilistic sensitivity analysis approaches include, among others, 

correlation-based, variance-based, expected value of perfect information (EVPI)-based, and 
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output distribution (both density and cumulative) differencing methods (c.f., Wagner 1995; 

Felli and Hazen 1998; Borgonovo and Smith 2011; Baucells and Borgonovo 2013). 

Correlation-based approaches calculate correlations between the model input and output either 

from the Pearson linear product moment correlation, or from the standardized regression 

coefficient (Saltelli and Marivoet 1990; Campolongo and Saltelli 1997). Variance-based 

approaches calculate each input variable’s contribution to the total output variance as 

sensitivity measures by holding all other inputs constant (Iman and Hora 1990). Expected 

value of information (EVPI)-based sensitivity assessments (Felli and Hazen 1998; Felli and 

Hazen 2004; Hazen 2014) such as the Javelin diagrams (Felli and Hazen 2004) report the EVPI 

of input variables. Output distribution differencing methods measure input sensitivity by 

comparing the prior (unconditional) and posterior output (conditional) distributions with and 

without the uncertainty (c.f. Borgonovo 2007; Baucells and Borgonovo 2013; Wei et al. 2014). 

We refer the interested readers to Oakley and O’Hagan (2004), Baucells and Borgonovo 

(2013) and Borgonovo (2013) for excellent reviews of these methods. 

A few important challenges exist when modeling probabilistic sensitivity analysis. First, 

dependence relationships among input variables must be included. Of the n-way approaches 

discussed above, the correlation-based, variance-based, density-based, and Javelin diagram 

methods do not handle dependence well and may require additional information, e.g., a full 

specification of input probability distributions or of utilities, as discussed in Baucells and 

Borgonovo (2013). Some recent developments in the literature (c.f. Mara and Tarantola 2012; 

Kucherenko et al. 2012; Baucells and Borgonovo 2013) show how to incorporate correlations 

in the variance-based or cumulative distribution-based methods when there is a closed form 

conditional distribution in the case of a multivariate normal distribution or under the 

assumption that only the first-order conditional moment characterizes the dependences 

between the inputs. It is challenging, however, to incorporate correlations in these methods 

when the closed form conditional distribution is not available or when the marginals are from 

different distributions. 

The second challenge in probabilistic sensitivity analysis is to identify the marginal effects of 

input variables on decisions.  The n-way methods mentioned above do provide some insights 

into the sensitivity of input variables with higher moment information (e.g., variance-based 
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methods) or averaged distribution information (e.g., density or cumulative distributions-based 

methods). However, this information may not be relevant for identifying the input variables 

that may cause the choice among decision alternatives to switch as they change over 

reasonable ranges. For instance, Baucells and Borgonovo (2013) measure how much an input 

influences the output by averaging the distance between the unconditional and the conditional 

(on that input) distributions of the output. The most influential uncertainty under the Baucells 

and Borgonovo (2013) measure will on average deviate from the CDF the most, but this 

information may not change the decision. 

Finally, a third challenge with fully probabilistic n-way methods is to present the results of an 

analysis in a manner that is as intuitive as possible.  Although the methods discussed above 

may depict the overall joint sensitivity of an output to changes in the inputs to a model, they 

may not show the impacts of changes in the individual input variables on the output of the 

model. This is because most of the fully probabilistic methods lack a graphical means for 

presenting the results. Because of this, their sensitivity analysis of dependence among the 

uncertainties may not be useful for practitioners in decision and risk analysis (cf. Kucherenko 

et al. 2012; Wei et al. 2014). One noticeable exception is the Javelin diagram developed by 

Felli and Hazen (2004) who introduce the Javelin diagram as a graphical tool to display the 

EVPI associated with individual input parameters. However, the Javelin diagram is intended to 

address the post hoc robustness of decisions to parameter estimates in the defensible stage 

(Howard 1983) after the analysis is complete (Felli and Hazen 2004), instead of being used in 

the formation stage of a decision analysis to guide model development which is the focus of 

this paper. In addition, the Javelin diagram is not designed to directly model the correlations 

between input parameters. 

In this paper, we present a correlation-adjusted sensitivity analysis method based on the use of 

copulas that addresses the issues above. First, our method incorporates correlations while also 

isolating the marginal effects of each input variable. Second, our method can be used in the 

model formulation stage of decision analysis applications. It assists the decision maker with 

information on whether or not the variation of an input can produce a change in the optimal 

decision policy. Third, our method provides intuitive graphical output information to facilitate 

the interpretation of results. 
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A copula function links univariate marginal distributions with their multivariate joint 

distribution and allows flexibility in modeling different dependence relationships through the 

choice of a specific copula function. As such, copulas provide a convenient way to express 

multivariate distributions and to model dependence. For an introduction to the theory of 

copulas and their different families, the reader may refer to Nelsen (2006), Clemen and Reilly 

(1999) and Avramidis et al., (2009). Wang and Dyer (2012) provide a detailed discussion and 

examples of the calculations of the dependent uniform variables using a variety of copulas. 

Our approach results from a key observation about the properties of copulas. A copula allows a 

joint distribution of random variables to be constructed from two independent components: the 

copula and independent marginal distributions. In this structure, the co-movements of these 

marginal variables must be governed by the dependence relationships since the variables are 

“coupled together” through the copula function. In our approach, the sensitivity of an input 

variable is assessed by varying it conditioned on the base values of the other input variables. 

Therefore, the marginal sensitivity of the model output to changes in each input variable, 

including all conditional relationships with that variable, can be calculated. With this 

information, a decision maker can then determine which variables should be carefully assessed, 

and which variables can be excluded from a probabilistic analysis without a significant loss of 

accuracy or a resulting change in the decision policy.  It can also be difficult to estimate 

correlations between input variables (c.f. Bornert et al., 2009) and the proposed approach 

facilitates sensitivity analysis on correlations in decision and risk analysis problems. We 

believe that this is the first work to address this issue. 

The remainder of this paper is organized as follows: Section 2 motivates our new approach 

with a simple example that allows an analytical solution to the sensitivity analysis using a 

copula and a comparison with the standard and n-way sensitivity analysis approaches. Section 

3 provides an explanation of the copula-based approach to sensitivity analysis for more general 

problems, and shows the advantages of this new approach with an example. Section 4 provides 

a summary of the work and discusses its limitations. 
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2.  Discussion of Sensitivity Analysis Methods Using a Simple Example 

The main purpose of this paper is to provide insights about the isolated marginal influence of 

the input variables and the dependence relationships between the input variables. Therefore, we 

will compare our copula approach with the standard one-way sensitivity analysis of the inputs 

to a model where each input is implicitly assumed to be statistically independent of the other 

input variables, and the relevant model output is evaluated for the high and the low values for 

each input.  We will also compare our approach with the n-way sensitivity analysis whereby 

each input variable is specified as a probability distribution that may be correlated with other 

input distributions, and these distributions are simultaneously allowed to vary using Monte 

Carlo simulation.   

Our first example problem is a simple two asset portfolio, and we use it to demonstrate how 

dependence between input variables can affect sensitivity analysis results and to show how 

copulas can be used as an alternative method for incorporating dependency. Let 𝑋𝑋1 and 𝑋𝑋2 be 

bivariate normal random returns of the two assets, with 𝑋𝑋1 ∼ 𝑁𝑁(3%, 1%2) representing a 

relatively safe bond investment and 𝑋𝑋2 ∼ 𝑁𝑁(15%, 20%2) representing a risky investment, and 

these two investments are correlated with 𝜌𝜌 = 0.9.  Assume the investor allocates equal 

weights in the portfolio; 𝑤𝑤1 = 50% to asset 1 and 𝑤𝑤2 = 50% to asset 2. In this case, the 

portfolio return is 

 𝑋𝑋𝑃𝑃 = 𝑤𝑤1𝑋𝑋1 + 𝑤𝑤2𝑋𝑋2 = 0.5𝑋𝑋1 + 0.5𝑋𝑋2  

with mean 9.0%.  The objective of a sensitivity analysis is to determine which of these two 

investments has the most influence on the portfolio return. Intuition would suggest the variance 

of the portfolio returns should be driven by asset 2, due to its higher standard deviation of 

returns. 

Using a standard one-way sensitivity analysis where we vary 𝑋𝑋1 independently by ±3𝜎𝜎1, we 

have the following range for the portfolio return 𝑋𝑋𝑃𝑃|(𝑋𝑋2 = 𝜇𝜇2): 

{𝑤𝑤2𝜇𝜇2 + 𝑤𝑤1(𝜇𝜇1 − 3𝜎𝜎1),𝑤𝑤2𝜇𝜇2 + 𝑤𝑤1(𝜇𝜇1 + 3𝜎𝜎1)} = {7.5%, 10.5%}  

Similarly, we can calculate the range of values for the portfolio return based on variations for 

𝑋𝑋𝑃𝑃|(𝑋𝑋1 = 𝜇𝜇1). The results for minimum and maximum output values due to the change in each 
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input variable, which are summarized in Panel A in Table 1 and shown graphically with the 

bars labeled 𝑋𝑋1 (one-way) and 𝑋𝑋2 (one way) in Figure 1, indicate that the portfolio return is 

more sensitive to the changes in the return of asset 2. However, since a one-way sensitivity 

analysis does not account for correlation between the input variables, the decision maker would 

be unaware of the impact of the dependence on the sensitivity analysis that is captured by the 

copula approach. 

[Insert Table 1 Here] 

[Insert Figure 1 Here] 

The portfolio returns in this example can be represented with a bivariate normal copula where 

both marginals are normally distributed.  That is,   

𝐶𝐶𝑁𝑁(𝐹𝐹1(𝑋𝑋1),𝐹𝐹2(𝑋𝑋2)) = 𝐶𝐶𝑁𝑁(𝑢𝑢1,𝑢𝑢2)  

where 𝐹𝐹1(𝑋𝑋1) and 𝐹𝐹2(𝑋𝑋2) denote the marginal distributions of X1 and X2 respectively and CN is 

a bivariate normal copula. 

We first hold 𝑋𝑋2 at its mean value 𝜇𝜇2 (or equivalently, 𝑢𝑢2 = 𝐹𝐹2(𝜇𝜇2) = 0.5), and vary 𝑋𝑋1(or 

equivalently, 𝑢𝑢1 = 𝐹𝐹1(𝑋𝑋1)) independently. Then we can calculate the conditional uniform 

variable 

𝑢𝑢1|𝑢𝑢2 = 𝛷𝛷(𝜌𝜌𝛷𝛷−1(𝑢𝑢2) + �1 − 𝜌𝜌2𝛷𝛷−1(𝑢𝑢1)) = 𝛷𝛷(�1 − 𝜌𝜌2𝛷𝛷−1(𝑢𝑢1)).   Next, 

𝑋𝑋1|(𝑋𝑋2 = 𝜇𝜇2) = 𝐹𝐹1−1(𝑢𝑢1|𝑢𝑢2) = 𝜇𝜇1 + 𝜎𝜎1�1 − 𝜌𝜌2𝛷𝛷−1(𝑢𝑢1) = 𝜇𝜇1 + 𝜎𝜎1�1 − 𝜌𝜌2𝑧𝑧, 𝑧𝑧 ∼ 𝑁𝑁(0,1).  

Using the parameter values from our example, 𝑋𝑋1|(𝑋𝑋2 = 𝜇𝜇2) ∼ 𝑁𝑁(3%, 0.436%2) and varying 

𝑋𝑋1 by ±3𝜎𝜎1,  we can calculate the range of values for the portfolio, 𝑋𝑋𝑃𝑃|(𝑋𝑋2 = 𝜇𝜇2): 

as  

{𝑤𝑤2𝜇𝜇2 + 𝑤𝑤1 �𝜇𝜇1 − 3𝜎𝜎1�(1 − 𝜌𝜌2)� ,𝑤𝑤2𝜇𝜇2 + 𝑤𝑤1(𝜇𝜇1 + 3𝜎𝜎1�(1 − 𝜌𝜌2))} 

= {8.346%, 9.654%} 
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We similarly calculate the range of changes in the portfolio return for 𝑋𝑋2|(𝑋𝑋1 = 𝜇𝜇1) and 

summarize the results in Panel B of Table 1 and with the bars labeled 𝑋𝑋1 (copula) and 𝑋𝑋2 

(copula) in Figure 1.  Note that these same formulas for the conditional probability 

distributions of X1 and X2  can be obtained for the case of the bivariate normal distribution 

without the use of the copula, but that will not be true in the more general case that we 

introduce in the next section. 

These results show that the portfolio returns are more sensitive to variations in the returns of 

asset 2 using the copula approach, but this effect is less pronounced than in the case of the one-

way sensitivity results, as the standard one-way sensitivity analysis ignores the correlation and 

hence mistakenly exaggerates the portfolio variation. Intuitively, accounting for the strong 

positive correlation effectively places a constraint on the range of variation of the sensitivity 

variable (𝑋𝑋1 or 𝑋𝑋2) when the other variable (𝑋𝑋2 or 𝑋𝑋1, respectively) is fixed at its mean. 

We also conduct an n-way (2-way in this example) sensitivity analysis which varies both 𝑋𝑋1 

and 𝑋𝑋2 simultaneously, while also modeling the dependency. In this case, the returns for 𝑋𝑋2 are  

𝑋𝑋1|(𝑋𝑋2 = 𝑥𝑥2) ∼ 𝑁𝑁(𝜇𝜇1 + 𝜌𝜌 𝜎𝜎1
𝜎𝜎2

(𝑥𝑥2 − 𝜇𝜇2),𝜎𝜎12(1 − 𝜌𝜌2)),  

and the portfolio returns are 

𝑋𝑋𝑃𝑃|(𝑋𝑋2 = 𝑥𝑥2) = 𝑤𝑤2𝑥𝑥2 + 𝑤𝑤1𝑋𝑋1|(𝑋𝑋2 = 𝑥𝑥2).  

If we vary 𝑋𝑋1 by ±3𝜎𝜎1 while simultaneously varying 𝑋𝑋2 by ±3𝜎𝜎2, the minimum and maximum 

returns for the portfolio are: 

𝑀𝑀𝑀𝑀𝑀𝑀{𝑋𝑋𝑃𝑃|(𝑋𝑋2 = 𝑥𝑥2)} = 𝑤𝑤2(𝜇𝜇2 − 3𝜎𝜎2) + 𝑤𝑤1(𝜇𝜇1 + 𝜌𝜌 𝜎𝜎1
𝜎𝜎2

(𝜇𝜇2 − 3𝜎𝜎2 − 𝜇𝜇2) − 3𝜎𝜎1�(1 − 𝜌𝜌2)) =

−23.00%  

𝑀𝑀𝑀𝑀𝑀𝑀{𝑋𝑋𝑃𝑃|(𝑋𝑋2 = 𝑥𝑥2)} = 𝑤𝑤2(𝜇𝜇2 + 3𝜎𝜎2) + 𝑤𝑤1(𝜇𝜇1 + 𝜌𝜌
𝜎𝜎1
𝜎𝜎2

(𝜇𝜇2 + 3𝜎𝜎2 − 𝜇𝜇2) + 3𝜎𝜎1�(1 − 𝜌𝜌2))

= 41.00% 

We similarly calculate the minimum and maximum for 𝑋𝑋2|(𝑋𝑋1 = 𝑥𝑥1) and summarize the 

results in Panel C of Table 1 and graphically with the bars labeled 𝑋𝑋1 (two-way) and 𝑋𝑋2 (two-
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way) in Figure 1. These results again show that the portfolio returns are more sensitive to 

variations in the returns of asset 2, but the sensitivity to varying the returns of asset 1 is also 

now nearly as significant, due to the correlation between returns. Both stocks can appear to 

have about the same impact on the variability of the returns of the portfolio, because each is 

being simultaneously varied over its entire range, and so the impacts of one versus the other are 

more difficult to distinguish compared to the results of the copula analysis.   

In summary, the standard one-way sensitivity analysis ignores the correlation between the two 

variables; the 2-way sensitivity analysis makes it difficult to gauge the relative contributions of 

the individual variables to the variance of the portfolio. In contrast, our approach assesses the 

marginal effect of each uncertainty by varying it conditioned on the base values of the other 

input variables through the use of copula. The portfolio example above is the special case of a 

bivariate normal copula where a closed form conditional distribution is available. More 

generally, in a model with n correlated input random variables 𝑋𝑋1, 𝑋𝑋2, …., 𝑋𝑋𝑛𝑛, the sensitivity 

of 𝑋𝑋𝑖𝑖 would be determined by varying it over its conditional range of 𝑋𝑋𝑖𝑖|(𝑋𝑋∼𝑖𝑖 = 𝜇𝜇∼𝑖𝑖) as 

“implied” by the dependency while all other input variables 𝑋𝑋∼𝑖𝑖 are held fixed at their base 

values 𝜇𝜇∼𝑖𝑖. By contrast, with an n-way sensitivity analysis, the sensitivity of 𝑋𝑋𝑖𝑖 would be 

determined by varying 𝑋𝑋𝑖𝑖 while also allowing 𝑋𝑋∼𝑖𝑖  to vary fully under the specified 

correlations.   

Next we will present the general case of the copula approach where the conditional distribution 

may not be mathematically tractable. 

 

3.  The Copula Approach for the General Case  

3.1 The Eagle Airlines Example  

We motivate our discussion using a familiar problem from the literature, the Eagle Airline 

example (Reilly, 2000; Clemen and Reilly, 1999, 2000), which involves multiple correlated 

uncertainties. This example has been used in several instances in the decision and risk analysis 

literature (Clemen and Reilly 2000; Reilly, 2000; Clemen and Reilly, 1999; Wang and Dyer, 

2012; and Montiel and Bickel, 2012). 
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In this hypothetical decision analysis problem, Dick Carothers, the owner of Eagle Airlines, is 

deciding whether to invest his profits of $52,000 in a money market fund which is expected to 

deliver an 8% return or to expand his fleet with the purchase of a second-hand aircraft; 

hereafter we refer to these alternatives as “Money Market” and “Expand”. The annual profit for 

the latter alternative would be the total annual revenues minus the total annual cost: 

Profit = Total Revenue - Total Cost 

where, 

Total Revenue = Charter Ratio × Hours Flown × Charter Price + (1 - Charter Ratio)  × 

Hours Flown × Capacity × Number of Seats × Price Level 

Total Cost = Hours Flown × Operating Cost + Insurance + Purchase Price × Percentage 

Financed × Interest Rate 

Charter Price=3.25× Price Level, and Number of Seats = 5. 

Sensitivity analyses are typically based on the specification of a base or reference case and of a 

range of values (bounds) for each input to an analytical model. These values may be obtained 

from historical data, analytical forecasts, or subjective judgments. Table 2 provides the 

estimated base case values, reasonable upper (90𝑡𝑡ℎ percentile) and lower (10𝑡𝑡ℎpercentile) 

bounds, and break-even values for the input variables, where we interpret “break-even” for this 

example to be a value of an input which results in the corresponding value of Profit = 0 given 

the remaining inputs are at their base values. 

[Insert Table 2 Here] 

The “Base” column in Table 2 provides Carothers’ initial estimates regarding the 10 input 

variables. We can use these base values to estimate an annual profit of $9,975, which is $5,775 

more than the estimate of $4,200 ($52,000 × 8%) for the money market investment. The 

deterministic model therefore indicates that Carothers should expand his fleet. However, some 

of the inputs are highly uncertain and could lower the profit below the $4,200 benchmark. 
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3.2 The General Copula-Based Sensitivity Approach 

Consider a random vector 𝑋𝑋 = (𝑋𝑋1, . . . ,𝑋𝑋𝑛𝑛) with 𝐹𝐹𝑖𝑖(𝑋𝑋𝑖𝑖) denoting the marginal distribution of 

each 𝑋𝑋𝑖𝑖. Sklar (1959) showed that the joint distribution 𝐹𝐹(𝑋𝑋) can be expressed as a copula 

function 𝐶𝐶 associated with the 𝐹𝐹𝑖𝑖(𝑋𝑋𝑖𝑖), i.e.,  

𝐹𝐹(𝑋𝑋) = 𝐹𝐹(𝑋𝑋1, … ,𝑋𝑋𝑛𝑛) = 𝐶𝐶(𝐹𝐹1(𝑋𝑋1), … ,𝐹𝐹𝑛𝑛(𝑋𝑋𝑛𝑛)).  

The copula function 𝐶𝐶 is itself a distribution function for uniform random variables since the 

marginal cumulative distribution functions (CDFs) are standard uniform distributions, i.e.,  

𝐶𝐶(𝑢𝑢1, … ,𝑢𝑢𝑛𝑛) = 𝐹𝐹(𝐹𝐹1−1(𝑢𝑢1), … ,𝐹𝐹𝑛𝑛−1(𝑢𝑢𝑛𝑛)).  

An important property of copula functions is that they allow the separation of the marginal 

distributions from the dependence structure; the dependence structure among the random 

variables is independent of the choice of the marginal distributions. This facilitates the 

modeling of dependent multivariate uncertainties by using the marginal distributions 𝐹𝐹𝑖𝑖(𝑋𝑋𝑖𝑖) 

and the copula function in a Monte Carlo simulation (e.g., Embrechts et al., 1999; Kousky and 

Cooke, 2009; Cherubini et al., 2004; Biller, 2009; Kucherenko et al. 2012; Wei et al. 2014) or a 

decision tree (Clemen and Reilly, 1999; Wang and Dyer, 2012; Wang, Dyer and Butler, 2015; 

Wang, Dyer and Hahn 2015) to generate multivariate joint distributions and their discrete 

approximations. 

In what follows, we outline the main concepts of the procedure for our proposed copula based 

approach to dependent sensitivity analysis. We then illustrate these concepts by applying them 

to the Eagle Airlines example. 

Step 1 - Define the Payoff Functions  

This first step is common to all approaches to sensitivity analysis. Suppose the decision maker 

has assessed each marginal distribution function 𝐹𝐹𝑖𝑖(𝑋𝑋𝑖𝑖) and must select an alternative 𝑎𝑎𝑗𝑗 from a 

set of j = 1,…,m feasible alternatives. The value 𝑣𝑣(𝑎𝑎𝑗𝑗) of each alternative is a function of the 

ultimate true state of nature, which is random multivariate vector 𝑋𝑋 = (𝑋𝑋1, . . . ,𝑋𝑋𝑛𝑛) with joint 

distribution 

𝐹𝐹(𝑋𝑋) = 𝐹𝐹(𝑋𝑋1, … ,𝑋𝑋𝑛𝑛) = 𝐶𝐶(𝐹𝐹1(𝑋𝑋1), … ,𝐹𝐹𝑛𝑛(𝑋𝑋𝑛𝑛)).  
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Note that the investment payoff 𝑣𝑣 is a function f of the uncertainties,  

𝑣𝑣(𝑎𝑎𝑗𝑗) = 𝑓𝑓𝑖𝑖(𝑋𝑋1, … ,𝑋𝑋𝑛𝑛)  

and the decision maker is assumed to choose the optimal alternative that maximizes the 

investment payoff. Without loss of generality, let 𝑎𝑎0 be the optimal alternative under the base 

values of 𝑋𝑋𝑖𝑖’s, 𝐵𝐵 = (𝜇𝜇1, . . . , 𝜇𝜇𝑛𝑛)𝑇𝑇. 

The construction of the multivariate decision analysis model requires an initial assumption 

about the dependence relationships among the uncertainties, such as independence or assessed 

dependence measurements. For instance, when the dependence structure is modeled with 

normal copulas, which can be fully captured by the correlation matrix  

𝛴𝛴𝑖𝑖𝑖𝑖 = (𝜌𝜌𝑖𝑖𝑖𝑖)𝑖𝑖,𝑗𝑗=1𝑛𝑛   

the expected value of each alternative is a function of the correlations.  Table 3 provides the 

correlation matrix for the Eagle Airlines example. 

Step 2 - Model Dependence using Copulas 

We next exploit the independence of the marginal distributions of the input variables under a 

copula structure to analyze the impact of the dependence structure through the following 

process: 

1. Simulate independent variables 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛 based on the given marginal distributions. As 

copulas separate the marginals and their dependence, we can simulate independent 

marginals using a Monte Carlo approach and include the dependence relationships in the 

following steps. 

2. Find the independent uniform variables 𝑢𝑢𝑖𝑖 using the CDF for each of the simulated 

marginal variables: 𝑢𝑢𝑖𝑖 = 𝐹𝐹𝑖𝑖(𝑋𝑋𝑖𝑖). 

3. Construct the dependent uniform variables 𝑢𝑢′𝑖𝑖. Since copulas are independent of the 

choice of the marginal distributions, we first specify the joint distribution of the 

underlying copula with uniform variables, and then combine it with the marginal 

distributions in the next step. Specifically, similar to the portfolio example, we recursively 

compute the dependent uniform variables 



12 
 

 𝑢𝑢′𝑖𝑖 = 𝑢𝑢𝑖𝑖|(𝑢𝑢∼𝑖𝑖 = 𝐹𝐹𝑖𝑖(𝜇𝜇∼𝑖𝑖)),  

where 𝑢𝑢∼𝑖𝑖 denotes the vector of all factors but 𝑢𝑢𝑖𝑖, and 𝜇𝜇∼𝑖𝑖 denotes the corresponding base 

value vector. 

4. Point-to-point inverse marginal transformation. After the calculation of the dependent 

uniform variables 𝑢𝑢′𝑖𝑖, we transform them to obtain the discrete approximations of the 

original uncertainties. The conditional 𝑋𝑋𝑖𝑖|(𝑋𝑋∼𝑖𝑖 = 𝜇𝜇∼𝑖𝑖) are obtained by applying the 

inverse of the target marginal distribution function for each realization of 𝑢𝑢′𝑖𝑖, 

𝑋𝑋𝑖𝑖 = 𝐹𝐹𝑖𝑖−1(𝑢𝑢′𝑖𝑖). 

For the Eagle Airlines example, following Clemen and Reilly (1999) and Wang and Dyer 

(2012), we use a normal copula as our modeling framework because its flexibility and 

analytical tractability fit the needs of the dependence modeling problem, and also because it 

facilitates the comparison of our results to the literature. As further justification for this 

approach, Montiel and Bickel (2012, 2013) show that a normal copula model provides a good 

representation of the joint distribution from a large collection of sampled joint distributions that 

match the assessed correlations. However, we also note that the choice of the copula is left to 

the modeler and this general framework could accommodate a t-copula or an Archimedean 

copula-based decision model which might, for example, better model tail dependence when 

extreme events are expected to coexist in an application.   

A multivariate normal copula function 𝐶𝐶𝑁𝑁 is derived from a multivariate normal cumulative 

distribution function 𝛷𝛷𝛴𝛴𝑍𝑍  with mean zero and correlation matrix 𝛴𝛴𝑍𝑍 by transforming the 

marginals by the inverse of the standard normal distribution function 𝛷𝛷, given by: 

𝐶𝐶𝑁𝑁(𝑢𝑢1, … ,𝑢𝑢𝑛𝑛) = 𝛷𝛷𝛴𝛴𝑍𝑍(𝛷𝛷−1(𝑢𝑢1),𝛷𝛷−1(𝑢𝑢2), … ,𝛷𝛷−1(𝑢𝑢𝑛𝑛)), or equivalently, 

𝐶𝐶𝑁𝑁(𝐹𝐹1(𝑋𝑋1), … ,𝐹𝐹𝑛𝑛(𝑋𝑋𝑛𝑛)) = 𝛷𝛷𝛴𝛴𝑍𝑍(𝛷𝛷−1(𝐹𝐹1(𝑋𝑋1)), … ,𝛷𝛷−1(𝐹𝐹𝑛𝑛(𝑋𝑋𝑛𝑛))). 

The construction of the normal copula-based conditional uniform variable 𝑢𝑢′𝑛𝑛 using the 

marginal and assessed correlations follows the procedure discussed in Wang and Dyer (2012): 

𝑢𝑢′𝑛𝑛 = 𝛷𝛷(𝐴𝐴𝑛𝑛1𝛷𝛷−1(𝑢𝑢1) + ⋯+ 𝐴𝐴𝑛𝑛(𝑛𝑛−1)𝛷𝛷−1(𝑢𝑢𝑛𝑛−1) + 𝐴𝐴𝑛𝑛(𝑛𝑛)𝛷𝛷−1(𝑢𝑢𝑛𝑛)) 
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where 𝐴𝐴𝑖𝑖𝑖𝑖 is the element of the Cholesky factorization that decomposes the covariance matrix 

𝛴𝛴 as 𝛴𝛴 = 𝐴𝐴𝐴𝐴𝑇𝑇 to give the lower triangular matrix 𝐴𝐴 = (𝐴𝐴𝑖𝑖𝑖𝑖)𝑖𝑖,𝑗𝑗=1𝑛𝑛 . 

Step 3 - Determine the Influential Variables 

As discussed in Step 2, all marginals are first independently simulated, with the dependence 

between variables incorporated via the unconditional and conditional uniform variables. Then, 

we perform a one-way sensitivity analysis on the model by varying the assumed outcome of 

one marginal and holding the other independent marginals constant at their base values. More 

specifically, a correlation-adjusted one-way sensitivity analysis measures the amount by which 

the objective function 𝑣𝑣�𝑎𝑎𝑗𝑗� changes or “swings” as the input variable is varied from its 

conditional low to its conditional high value, while all the other variables are fixed at their base 

values, as described in Step 2, reflecting the underlying dependence with the use of copulas. 

The notion that we can conduct a one-way sensitivity where only one variable is perturbed, yet 

still capture the dependence between variables is valid because all marginal distributions are 

independent in the copulas-framework. 

To illustrate this step, we start with the independent marginal variables and work in a 

spreadsheet with a standard add-in such as @Risk or Crystal Ball to implement the copula-

based dependence analysis. Consistent with the assumption in Clemen and Reilly (2000) and 

Reilly (2000) and for the purpose of comparison, we model each marginal variable as a 

Triangular distribution with the low, mostly likely and high values given in Table 2. Using the 

copula-based procedure yields the copula tornado diagram shown in Figure 2, in which we 

identify three influential variables: Price Level, Hours Flown and Operating Cost. 

3.3  A Comparison with the Standard and n-Way Sensitivity Analysis Approaches 

A standard one-way sensitivity analysis can be performed on 𝑣𝑣 = Profit - $4,200 assuming all 

input variables are independent. The resulting tornado diagram shown in Reilly (2000) 

indicates that there are four input variables (Price Level, Hours Flown, Capacity and Operating 

Cost) that would be considered influential; i.e., they have the potential to change the decision 

policy. These variables each have possible realized values that could reduce the profit from 

Expand to a level below $4,200, the point at which the function v becomes negative, and 

therefore Money Market would be the recommended alternative. For example, holding all 
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other variables at the base values and assuming independence, a decrease in the value of 

Capacity will eventually result in a negative value of v. 

Table 2 reports the break-even decision-switching points for the nine input variables. For 

instance, the 47% break-even point for Capacity indicates that a small variation (3%) from the 

base value will change the recommendation from Expand to Money Market. Thus, a variable 

can also be defined as influential if the break-even point is within the considered range of the 

variable. When the breakeven point for a variable is outside of this range, the variable is not 

considered influential. This is the case for the breakeven point for Percentage Financed at 97% 

which is well above the upper bound of 50%. 

While this analysis is simple and easy to implement, a standard one-way sensitivity analysis 

relies on the independence assumption among the variables. Unfortunately, the independence 

assumption is often invalid in reality. For instance, it is reasonable to assume a negative 

correlation between the Price Level and the demand (Hours Flown and Capacity) according to 

basic microeconomics theory, and a positive correlation between Capacity and Operating Cost 

based on business practice. 

To conduct an n-way probabilistic sensitivity analysis, many decision analysts rely on 

professional software applications for off-the shelf model building and for examining the 

sensitivity of dependent inputs in decision models. We will use the popular Excel Add-in 

@RISK to illustrate this approach here. When there are correlations in the decision model, 

@Risk first simulates independent random variables and then “adjusts the ranking and 

associating of samples within each iteration to yield the defined Spearman rank order 

correlation values”. With the rank-adjusted simulated data that have the desired Spearman rank 

order correlations in Table 1, @Risk then calculates the output as a function of the correlated 

uncertainties.   Next, it sorts each uncertainty into 10 bins in the default setting, and calculates 

the associated mean of the output in each bin for each uncertainty. Finally, @Risk reports the 

minimum and maximum of the 10 bins’ outputs to draw the tornado chart to indicate a ranking 

of variables by sensitivity. The “Tornado - Change in Output Mean” sensitivity analysis 

conducted by @Risk is essentially an n-way sensitivity analysis in which all inputs are varied 

at the same time.  
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There are several drawbacks to this approach. First, it is limited to the use of Spearman rank 

order correlations and is not designed for other dependence measures, such as Pearson product 

moment correlations, Kendall’s Tau rank order correlations, or tail dependencies. Second, as it 

simulates all uncertainties simultaneously, the Tornado chart reflects the overall impact of all 

uncertainties and all correlations, and does not reveal the marginal impact of each uncertainty 

or correlation. As a result, some of the influential uncertainties and/or influential dependence 

relationships may be disguised by the joint influence of groups of the original variables, which 

can make it challenging for the decision analyst to interpret the results, and more importantly, 

to use them to design a parsimonious model. Third, it takes the assessed correlations as inputs 

and is not developed to examine the potential impact from correlation measurement errors. 

For the Eagle Airline problem, the @Risk sensitivity tornado output identifies only two 

influential variables (Hours Flown and Capacity) that could lead to a change in the 

recommended investment (Figure 3). These results are different from the results of our copula-

based sensitivity analysis. The reason for these differences is the simultaneous modeling of all 

uncertainties in the @RISK approach, which means that the resulting sensitivities are joint, 

rather than marginal, as discussed above. Because the “Tornado - Change in Output Mean” 

sensitivity analysis provides joint sensitivities, it is also sensitive to the choice of the original 

group of variables. For instance, if we replace the distribution of the non-influential uncertainty 

Insurance with its deterministic base value and rerun this analysis, only Hours Flown remains 

as an influential variable. 

[Insert Figure 3 Here] 

To summarize these results, the standard sensitivity analysis approach would not provide 

results that reflect dependence relationships in the problem. The n-way provides all-

encompassing sensitivity results, albeit with a lack of information about marginal sensitivities 

for each variable.  

3.4  Discussion 

We notice some significant differences in the results from the standard independent and n-way 

analyses compared to those from the analyses discussed in Section 3.2 for the copula-based 

approach: (i) only three influential variables are identified in the copula-based approach 
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compared to four from the standard sensitivity analysis (which also identifies Capacity as 

influential); (ii) while the ranking of variables in the tornado diagram of the standard 

sensitivity analysis indicated that Capacity caused the largest swing in the value of the 

objective function, followed by Price Level, Operating Cost, and Hours Flown, the ranking 

shown in Figure 2 is different, beginning with Price Level as the variable that caused the 

largest swing in the objective function value, followed by Hours Flown and Operating Cost; 

(iii) Capacity is not an influential variable, but it has the fourth longest bar and could become 

an influential variable when correlation assessment errors are included in the analysis; (iv) 

Charter Ratio is unlikely to be an influential variable, as it ranks in the bottom half of the list; 

(v) the order of Percentage Finance, Interest Rate and Purchase Price stay the same at the 

bottom of the tornado diagram and these are confirmed to be non-influential variables; and (vi) 

the worst case scenario in Figure 2 is associated with low Hours Flown (objective function 

value ≈ -$5,000), as compared to the worst case scenario in the standard sensitivity analysis, 

which is associated with low Capacity (objective function value ≈  -$15,000). The worst case 

scenarios for the other two influential variables are also significantly smaller in magnitude than 

the standard sensitivity analysis case. 

The difference between the standard sensitivity analysis that assumes independence between 

the inputs and our proposed approach provides additional insights that are intuitively consistent 

with the inputs. For example, Capacity is positively correlated with Hours Flown (0.5) and 

Operating Cost (0.25), and also negatively correlated with Price Level (-0.25) and Charter 

Ratio (-0.25); therefore, when the capacity is low, the hours flown and the operating cost are 

also expected to be low, and at the same time, the price level is expected to be high. This can 

be viewed as a natural hedge embedded in the business and if it is not taken into consideration, 

the impact of Capacity is overstated. Once we take into account the hedge resulting from the 

dependence structure, the impact of Capacity no longer has as much impact on the Profit. 

Similarly, Price Level is negatively correlated with Hours Flown (-0.5) and Capacity (-0.25), 

and positively correlated with Charter Ratio (0.25), so when the price level is low, the hours 

flown and capacity are expected to increase which would offset the impact of a price reduction. 

As a result, the range of impact of Price Level considering the correlations is significantly 

narrower than the corresponding range of impact of Price Level indicated by the standard 

sensitivity analysis. 
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Note that while we focus on the directional change sensitivity measure used in copula tornado 

diagrams in this paper for our illustration, our proposed framework can also apply the 

probabilistic sensitivity analysis measures to determine the influential variables in a 

straightforward manner. Our probabilistic sensitivity analysis measure can be obtained as a by-

product of the Monte Carlo simulation from step 2. For instance, with the simulated inputs and 

output, we can assess the correlation-based sensitivity analysis in Figure 4 (which also 

identifies the same most influential variables in the same order) to determine the influential 

inputs that would lead to the greatest expected modification in the output distribution. 

[Insert Figure 4 Here] 

3.5  Determining the Influential Correlations and Extensions 

In addition to supporting a sensitivity analysis of the input variables, the copula approach can 

also be used to find the influential correlations whose values determine the recommended 

alternative within a reasonable range (e.g., the estimated range of error in the estimate of the 

correlation coefficient). If the correlations are assessed from historical data, there is a literature 

on the appropriate confidence intervals for Pearson’s product moment correlations (Boomsma, 

1977; Kraemer, 1980) and for rank order correlations such as Spearman’s rank order 

correlations (Fieller et al., 1957; Choi, 1977; Iman and Conover 1982). If the correlations are 

assessed by an expert, Clemen and Reilly (1999) and Clemen et al. (2000) discuss different 

subjective correlation assessment methods for estimating the probability of concordance and 

conditional fractiles, and report that the average absolute error is 0.195 for experienced 

individuals and 0.254 for inexperienced individuals. These studies also find that even though 

the decision makers may not provide accurate point estimates for correlations, they are 

reasonably capable of providing upper and lower bounds for their estimates. This information 

can be used as a range of correlation variance for the sensitivity analysis of dependence, given 

the standard constraint that the correlation matrix is a valid correlation matrix (positive semi-

definite). 

As with the input variables, we define an influential correlation between variables as one 

which, when varied within specified limits, will lead to a change in the recommended 

alternative. This information can help the decision maker determine whether it is worthwhile to 
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formally reassess 𝜌𝜌𝑖𝑖,𝑗𝑗 to increase the accuracy of the estimated base value of v and the 

associated decision policy. 

We continue using the Eagle airlines example (Clemen and Reilly, 1999), and explore the 

range of possible perturbations of each non-zero correlation. Following Clemen et al. (2000) 

and Clemen and Reilly (1999), we perturb these correlations by ±0.25, which is approximately 

the average mean absolute deviation for experts’ assessment errors. When this change would 

lead to an invalid correlation matrix, we used the largest perturbation that would maintain a 

positive semi-definite correlation matrix. We then performed a one-way sensitivity analysis on 

each nonzero correlation using these lower and upper bounds while keeping the remaining 

correlations at their initial values. 

Again, since copulas separate the marginal distributions and the dependence structure, the 

correlations are independent of the marginals. Thus, in this one-way sensitivity analysis, the 

independent marginals are kept constant at their base values, while the correlated marginals co-

move according to the perturbations of the correlations. 

Assessing the impact of correlations with this one-way sensitivity analysis, it is clear that no 

correlations are influential when considered separately. The copula tornado diagram in Figure 

5 shows that: (1) no perturbation of any single correlation will change the recommended 

alternative when the marginals are kept constant at their base values; (2) the correlation 

between Charter Ratio and Operating Cost has the largest impact on the outcome; (3) the 

correlation between two non-influential variables, Insurance and Percentage Finance, has the 

smallest impact; (4) the correlation between two influential variables, Hours and Price Level, 

has the second smallest impact, which indicates that the recommended alternative is robust to 

small perturbations of the correlation between these two variables; and (5) the correlations not 

shown, such as the correlation between Interest and Percentage Financed, are not ranked in the 

top ten and hence do not have significant impacts on the value of the alternative. 

A tornado-diagram analysis of the correlations may provide considerable insights, although 

they are limited to impacts resulting from changing only one correlation at a time. We also note 

that although none of the correlations were influential in terms of affecting the decision policy 

in this example, the changes in correlation might be of interest if the analyst wishes to 



19 
 

investigate the variance of a performance measure. In addition, we compute how much 

variation of each correlation input would be needed to lead to a different recommended 

alternative. For instance, the most influential correlation between Ratio and OpCost has to be 

changed from 0.25 to -0.48 to make the decision switch.  

[Insert Figure 5 Here] 

This method can be extended to an n-way sensitivity analysis to examine the combined impact 

of multiple uncertainties and/or correlations. For instance, the decision maker can vary each 

pair of correlations while keeping the remaining correlations constant: a two-way sensitivity. 

For example, if we want to examine the first two non-influential variables Capacity and 

Insurance, we might want to determine whether or not a perturbation of the related correlation 

and the range of the marginals could lead to a change in the recommended alternative. 

Capacity in particular was very close to being influential, so we want to know if variations in 

one of its correlations could cause it to become an influential variable. 

We again use a Copula tornado diagram for the difference between expected profits for the two 

alternatives as an indicator of sensitivity. The output for a series of sensitivity analyses where 

two inputs are varied simultaneously is provided in Figure 6 and Figure 7. Each bar represents 

a different pair of inputs as specified in the y-axis labels.  For instance, Figure 6 shows a series 

of sensitivity analyses between Capacity and its nonzero correlations, and between different 

pairs of Capacity’s correlations with other uncertainties. We find that Capacity would become 

influential if its non-zero correlations are perturbed within reasonable ranges, but that all the 

combinations of two related non-zero correlations of Capacity are not influential. 

[Insert Figure 6 Here] 

Similarly, if we conduct sensitivity analysis for Insurance and its two non-zero correlations, the 

output shown in Figure 7 confirms that Insurance is not an influential variable. While not 

shown here, we also confirmed that Charter Ratio is not an influential variable with a two-way 

sensitivity analysis for Charter Ratio and its three related correlations. 

[Insert Figure 7 Here] 
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Discussion and Conclusion 

The recommendations of decision models are sensitive to our assessments of inputs, including 

uncertainty and dependence. In general, sensitivity analysis is a source of guidance in modeling 

a decision problem, and it can also contribute to the specification of a model by assessing the 

individual contribution of a variable and determining whether to include it as a stochastic or 

deterministic input in the model. It also can provide context throughout the decision analysis 

process by providing information on the robustness of a model’s recommendations, and it can 

help validate an economic model in the presence of uncertainty. Also, to the extent that the 

outcomes of a sensitivity analysis indicate the range of possible values for the objective 

function, users of the model can assess the upside and downside risks associated with 

alternative scenarios. 

In comparison to the standard sensitivity analysis process, which mainly focuses on identifying 

the most influential individual uncertainties assuming independence, the copula approach also 

addresses sensitivity to dependence relationships between uncertainties. By using copulas to 

capture the dependence structure among uncertainties, we present a systematic and efficient 

procedure for performing sensitivity analysis to dependence in multivariate decision and risk 

analysis. In comparison to fully probabilistic, or n-way, sensitivity analysis techniques, our 

copula-based approach retains some of the practical advantages of standard one-way sensitivity 

analysis, especially the capability of isolating the marginal sensitivity to input variables, in an 

intuitive graphical interface while including the effect of dependencies. 

We should note that there can be some disadvantages to using correlations to model 

dependencies among input variables. First, correlations are restricted in the type of relationship 

they can model. For example, Pearson’s correlation assumes linearity and Spearman’s 

correlation assumes monotonicity. Second, the correlation matrix must be positive definite 

otherwise it must be modified in some way (c.f. Rousseeuw and Molenberghs, 1994; Olkin, 

1981; Lurie and Goldberg, 1998). Third, there are other dependence structures that may not be 

fully reflected by correlations. However, our proposed approach is flexible and does not rely 

on specific copula forms or correlations as the measure of dependence. As a result, this 

procedure can be used for a wide variety of problems (c.f. Chen et al. 2011; Mutha et al. 2015) 
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to convey enhanced managerial insights not available through the standard sensitivity analysis 

when the optimal decision is sensitive to the dependence relationships. 

In summary, the analysis of the Eagle Airlines example demonstrates how the copula-based 

sensitivity analysis enhances the existing methods. In particular, even when this method 

identifies the same set of influential variables, it conveys additional insights beyond the 

standard sensitivity methods. The copula approach provides decision analysts with a more 

complete description of the relative influence of variables and their correlations, information 

which can be helpful in risk analysis and in evaluating the range of possible scenarios.  
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Table 1: Results of sensitivity analyses (ρ = 0.9) 
 

 

  

Min Base Max Min Base Max Min Base Max
Vary X 1  independently, 
holding X 2 at  µ 2 0.00% 3.00% 6.00% 15.00% 15.00% 15.00% 7.50% 9.00% 10.50%

Vary X 2  independently, 
holding X 1  at µ 1 3.00% 3.00% 3.00% -45.00% 15.00% 75.00% -21.00% 9.00% 39.00%

Vary X 1  conditionally , 

holding X 2  at µ 2 1.69% 3.00% 4.31% 15.00% 15.00% 15.00% 8.35% 9.00% 9.65%

Vary X 2  conditionally , 

holding X 1  at µ 1 3.00% 3.00% 3.00% -11.15% 15.00% 41.15% -4.08% 9.00% 22.08%

Vary X 1  conditionally , 

varying X 2  in its entire range -1.01% 3.00% 7.01% -45.00% 15.00% 75.00% -23.00% 9.00% 41.00%

Vary X 2  conditionally , 

varying X 1  in its entire range 0.00% 3.00% 6.00% -65.15% 15.00% 95.15% -32.58% 9.00% 50.58%

Portfolio ReturnPanel Description Note Uncertainty X1 Uncertainty X2

Panel A: Standard one-
way sensitivity analysis

Wrong independent 
assumption. 

Panel B: Correlation-
adjusted one-way 
sensitivity analysis

Fixed the wrong 
independent 
assumption of 
standard one-way 
sensitivity analysis. 

Panel C: 2-way 
sensitivity analysis

Overall impact, not 
the isolated 
marginal impact of 
each uncertainty.
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Table 2:  Range of Input Variables and Estimated Standard Deviation 

 

Variable Xi Low Base High Estimated SD StDev Break Even Point 

Charter Ratio 45% 50% 70% 9.26% 40% 
Capacity 40% 50% 60% 7.41% 47% 
Price Level $ 95 $ 100 $ 108 $ 4.81 $ 97 
Hours Flown 500 800 1000   185 664 
Operating 

 
$ 230 $ 245 $ 260 $ 11.11 $ 252 

Percentage Financed 30% 40% 50% 7.41% 97% 
Interest Rate 10.50% 11.50% 13% 0.93% 28.00% 
Insurance $18,00

 
$20,00
 

$25,00
 

$ 2,593 $25,77
 Purchase Price $85,00

 
$87,50
 

$90,00
 

$ 1,852 $213,04
   Source: Reilly (2000) 
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Table  3:  Correlation Matrix for Eagle  Airlines 

 

 Hours  PriceL  Cap  Ratio  OpCost  Insur  %Fin  Inter  PurPr  
Hours  1          
PriceL  -0.5  1         
Cap  0.5  -0.25  1        
Ratio  0.25  0.25  -0.25  1       
OpCost  0  0  0.25  0.25  1      
Insur  0.25  0  0  0  0  1     
%Fin  0  0  0  0  0.25  0.25  1    
Inter  0  0  0  0  0  0  -0.5  1   
PurPr  0  0  0  0  0  0  0.75  -0.25  1  

 

 

  



29 
 

Figure 1 – Tornado Diagram for Different Sensitivity Methods 
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Figure 2: Copula Tornado Diagram: One-way Sensitivity for Uncertainties, including 
Dependence 
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Figure 3:  Tornado Chart from @RISK for Eagle Airlines Problem 
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Figure 4: Rank Order Correlation Chart for Eagle Airlines Problem 
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Figure 5:  Copula Tornado Diagram: One-way Sensitivity Analysis for Correlations 
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Figure 6: Copula Tornado Diagram: Sensitivity Analysis for Capital and its 
Related Correlations 
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Figure 7: Copula Tornado Diagram: Sensitivity Analysis for Insurance and its 
Related Correlations 
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