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WATER QUALITY ASSESSMENT WITH ROUTINE MONITORING DATA

Federal legislation in recent years has required the states to 

develop water quality management programs which include stream stan-

dards and river monitoring. Water quality data, routinely collected by 

state and federal agencies, has often been of little use in directly 

determining stream standards compliance. This problem is due to the 

discrepancy between the statistical nature of water quality sampling 

and nonstatistically expressed stream standards. However, the use of 

probability and statistical models in water quality analysis may pro-

vide useful assessments of river water quality with stream standards.

This research consists of the development and testing of five 

statistical procedures which allow river water quality to be assessed 

from available, routinely collected data. The procedures include: 1) 

probability density function modeling of water quality variables, 2) 

multiple linear regression modeling of water quality variables, 3) 

conditional probability modeling of stream standard violations given 

known river conditions, 4) a water quality index indicating changes in 

water quality, and 5) a water quality index indicating compliance/non- 

compliance of water quality variables with stream standards. The 

utility of each procedure is illustrated with a case study.

Gary M. Smillie
Department of Civil Engineering 
Colorado State University 
Fort Collins, Colorado 80523 
Spring, 1982
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Chapter 1 

INTRODUCTION

1.1 Background

Effective water quality management programs, capable of 

maintaining acceptable river water quality, are becoming more important 

as the stresses placed upon water resources increase. With the 

nation's population continuing to move westward into regions already 

critically short of water, the multiple use of water for agricultural, 

mining, recreational, and municipal uses will become widespread. The 

relatively plentiful waters of the eastern United States, which have 

been burdened for years with the wastes of cities and industry, are now 

recognized to be facing contamination from hazardous wastes. Federal, 

state, and local governments have produced legislation in response to 

environmental awareness, and large public expenditures have been made 

in the development of water quality management programs. A major 

function of the regulatory agencies, which have been established to 

manage water quality, is to monitor surface waters and evaluate water 

quality information with respect to the goals set forth by legislative 

action. It is apparent, that as we move into the twenty-first century, 

the ability of water quality management agencies to assess and predict 

the suitability of water for various uses is becoming a very critical 

concern.

The capability of management agencies, however, to make such 

evaluations has not been well developed. A fundamental problem



encountered by management has been the meaningful evalution of water 

quality samples collected from stochastic water quality processes. 

Management agencies must evaluate dynamic water quality conditions with 

samples which do not necessarily include information pertinent to 

management objectives. For example, data collected by routine moni-

toring networks, which typically sample infrequently, contain little 

information regarding the occurrence of stream standard violations. 

This results because, often, violations represent short-term episodes 

which will not be detected unless a sample happens to be collected 

precisely at the time of occurrence. If a principal management objec-

tive is the detection of stream standard violations, little information 

pertaining directly to the objective may be expected from this type of 

water quality data.

It may be possible, however, for water quality management agencies 

to make useful inferences about water quality processes from sample 

information by following examples provided by other disciplines which 

deal with stochastic systems. For example, the closely related science 

of hydrology has long considered the occurrence of floods to be a 

stochastic phenomena. Statistical procedures have been developed to 

extrapolate information regarding flood frequencies. This statisti-

cally derived information is then used as a basis for decision making. 

By recognizing the parallel between quantity and quality behavior, the 

water quality management profession could incorporate methodologies 

developed for stochastic processes into analytical procedures for the 

assessment of water quality. This analytic approach will provide 

inferences on water quality, in general, from water quality samples. 

In so doing, the information derived from the monitoring program will 

more directly relate to management goals.



1.2 Objective

The objective of this research is to develop analytical procedures 

which provide information relevant to water quality management needs 

from routinely collected data. To meet this objective, t3q)ical water 

quality management programs, consisting of river monitoring (data 

collection) and stream standards (management goals), are identified to 

provide a basis for the design of useful analytical procedures. Proce-

dures are then developed which utilize commonly available water quality 

data and provide evaluations of management goals by applying basic 

probability and statistical techniques.

The work presented in this report is limited to the initial 

development of five analytical procedures and a case study illustrating 

the applicability of each. Specifically, the five procedures consist 

of: 1) probability modeling of individual water quality constitutents

whereby a criterion is suggested for the selection of an appropriate 

probability density function based on sample coefficient of skew, 2) 

multiple linear regression modeling of individual water quality consti-

tutents based on known river conditions, 3) conditional probability 

modeling (given known river conditions) of stream standard violations, 

4) an index indicating changes in water quality using hypothesis 

testing theory, and 5) an index indicating the suitability of river 

water for specific uses as defined by stream standards.

1.3 Scope

Techniques suggested in the report are developed and tested using 

water quality data collected by the U.S. Geological Survey and by the 

states of Colorado, Oregon, Illinois, and Maryland. A statistical, 

rather than physical modeling approach was chosen due to the multidi-

mensionality and complexity of water quality processes. If a physical



modeling approach had been taken, several different models would have 

been needed to adequately simulate the various types of constituent 

behavior, i.e., point source vs. nonpoint source and conservative vs. 

nonconservative pollutants. Using the statistical approach, a more 

simple task of calibrating the same analytical models to each 

constituent was all that was necessary.

The five procedures used in this work represent only a few of many 

possible statistical approaches for the evaluation of water quality 

from routinely collected data. They were chosen to provide an example 

of how water quality management agencies may effectively utilize 

commonly available data. For this reason, procedure derivations 

presented in the report are not rigorous mathematical exercises 

intended to be universally applicable. They are, rather, simple 

descriptions of the application of basic statistical techniques into 

procedures for the evaluation of commonly available water quality data. 

References are cited in the text for more complete descriptions of the 

fundamental techniques employed by each procedure.

1.4 Definitions

Water quality is defined in this report as a general statement 

regarding the various chemical, biological, and physical characteris-

tics of river water. Water quality programs refer to efforts made by 

state and federal agencies to monitor, evaluate, and improve water 

quality. Stream standards contain criteria adopted by a state 

which define threshold levels of acceptable/nonacceptable water quality 

constituent concentrations for specific beneficial uses. Stream 

standard violations occur when the concentration of water quality 

variables exceeds designated stream standard concentrations. Water



quality constituents will be referred to as variables rather than 

parameters in this work to avoid confusion between variables and 

statistical parameters. The convention of expressing water quality 

constituents as variables is well suited for statistical analysis 

because the constituents are, indeed, the random variables modeled by 

the statistical procedures.

Water quality monitoring is defined as the collection of river 

water quality information. The most common types of water quality 

monitoring networks are fixed station/fixed frequency monitoring and 

synoptic survey monitoring. Fixed station/fixed frequency monitoring 

usually consists of an ongoing program where samples are collected at a 

relatively constant interval at a permanently located station. The 

samples are generally analyzed for several chemical constituents and a 

few biological indicators and represent a statistical sampling of 

realizations from a population. Synoptic survey monitoring, sometimes 

called intensive survey monitoring, differs from fixed station/fixed 

frequency monitoring in the time and space domain. This type of moni-

toring is commonly performed over an entire river reach for a specified 

interval. Synoptic surveys often include biologic assays and hydro- 

logic studies as well as chemical analyses.

The expression "general assessment" is used frequently in the 

report and is defined as a quantitative statement about water quality 

with respect to stream standards. General assessments of river water 

quality are suggested rather than simply determining compliance or 

noncompliance of individual samples with stream standards. The utility 

of making general assessments of water quality results from the summar-

ization of a large amount of information regarding the behavior of an



individual constituent. Assessments contain information extrapolated 

through statistical modeling which may be used as a basis of comparison 

of water quality from year to year or between different rivers. The 

use of general water quality assessments suggest a river monitoring 

emphasis of information summarization and comparison rather than stream 

standard compliance enforcement. As pointed out in following sections, 

the task of information summarization is a more suitable objective of 

routine monitoring than compliance enforcement.

1.5 Organization of Report

The concluding portion of this chapter contains a survey of 

current literature pertaining to statistical analysis of water quality 

data. Chapter 2 reviews current state stream standards and monitoring 

practices to identify the goals and the means of attaining the goals of 

state water quality programs. With this background, Chapter 3 suggests 

analytical procedures designed for typical water quality data which may 

provide assessments in accordance with state stream standards. Chapter 

4 presents an illustration of the techniques applied to the Little 

Wabash River in Illinois. In Chapter 4, the results of the analysis 

are compared to a daily record of water quality to gain insight into 

the usefulness of each procedure. Chapter 5 presents summary, conclu-

sions, and recommended areas of further research. The appendices 

present the results of two studies related to the principle topics of 

this report.

1.6 Review of Literature

Numerous papers have been published in the area of water quality 

management in recent years. Very complete reviews of literature have 

been presented in the Ph.D. dissertations of Sanders (1974) and Loftis



(1978) concerning current research and more specifically monitoring 

network design. A very good general background of water quality 

hydrology is provided by Velz (1970) and Hem (1970). The specific area 

of statistical analysis of routine water quality data has not received 

a great deal of attention in the literature. This review will present 

literature concerning the goals and problems associated with water 

quality management and the statistical analysis of water quality data.

Even before the passage of federal legislation requiring states to 

adopt stream standards, a few states including California were attempt-

ing to establish water quality criteria. Pomeroy and Orlob (1967) 

describe in a California State Water Quality Commission publication 

problems associated with limiting concentration-type stream standards, 

problems which are still being addressed today.

To the lay person who has not been faced with the 
administrative problems of enforcing standards, it may 
appear that setting a standard for a particular situation 
would be accomplished merely by stating one numerical value 
representing the extreme allowable value of that indicator. 
Several questions, however, may arise. Is the limit a 
figure that shall not be exceeded at any time, or not 
exceeded as a median, or as an average? If it is an
average, over what period of time shall the average be 
taken? If it is not to be exceeded at any time, what 
happens if it is exceeded once? What allowances are made 
for analytical errors? If the standard for a certain 
constituent is "none" how small an amount does that really 
mean?

Current stream standards documents rarely deal specifically with these

questions, rendering the standards somewhat vague and impractical.

This lack of practical definition common in stream standards prompted

Sanders and Ward (1978) to state

...it is easy to see why water quality data often plays 
little or no role in the daily operations of a water quality 
management agency.
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Minton (1980) looked at the current management structure in the 

light of the overall management objective of protecting the quality of 

receiving waters and their beneficial uses. One of his conclusions was 

that new concepts for stream standards need to be developed whereby the 

objectives of water quality management may be attained. It is pointed 

out that as standards exist today they, "often imply a deterministic 

certainty in an uncertain world." He also states that it must be 

recognized that stream standards will never be sufficient by themselves 

to protect beneficial uses. Land use activities must be understood and 

improved to achieve desired water quality levels.

A report issued by the United States General Accounting Office 

(U.S. General Accounting Office, 1981, Vol. I), was very critical of 

current monitoring efforts conducted by state and federal water quality 

data collection agencies. The report suggests that fixed station/fixed 

frequency monitoring networks cannot provide information necessary for 

relevant water quality assessments. The GAO recommends that such 

monitoring be discontinued immediately and replaced by synoptic survey 

monitoring. Synoptic survey monitoring has been performed on a very 

limited basis, according to the U.S. Geological Survey and the U.S. 

Environmental Protection Agency (U.S. General Accounting Office, 1981, 

Vol. II), due to problems associated with cost and areal extent of 

information. An excellent example of a synoptic survey may be found, 

however, in a series of Geological Survey Circulars (U.S. Geological 

Survey 1975, 1976). In this work, an extensive study of the Willamette 

River Basin in Oregon is described.

Most of the problems identified by the GAO report are legitimate, 

but the conclusion of discontinuing cost effective fixed station/fixed



frequency sampling in favor of synoptic surveys is questionable. A 

large amount of research has been devoted to the development of 

rational monitoring network design procedures and through the use of 

well designed networks and appropriate analytical techniques, general 

water quality may be evaluated with fixed station/fixed frequency data.

A Colorado State University short course manual edited by Sanders 

(1980) describes the state-of-the-art of water quality monitoring 

network design. This report outlines very specifically rational design 

procedures which enable the development of monitoring networks able to 

produce data useful for the objectives designated by water quality 

management agencies. A full range of topics are covered including 

sampling location, sampling frequency, and statistical analysis of 

water quality data. The design of a monitoring network based on 

rational considerations is a fundamental first step in acquiring the 

capability of meaningful water quality assessment.

The accurate and consistent analysis of water quality samples is 

another primary concern. Simpson (1980) describes how accuracy and 

consistency of water quality data are maintained in the United Kingdom. 

The author summarizes the principle ambition of the British program as 

follows. "The central feature of the Harmonized Monitoring Scheme is 

that the analytical results shall be of demonstrated accuracy." 

Analytical accuracy is determined by a rigorous inter-laboratory cali-

bration procedure whereby different laboratories cross-check each other 

to assure acceptably accurate sample evaluations. Included in the 

program is the specific definition of goals and a clear description of 

sampling procedures. The author points out that the operation of such 

a monitoring system is "a major undertaking" but emphasizes the need 

for accurate and reliable water quality information.
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Once water quality data is assumed to be of acceptable accuracy 

the problem becomes what analytical procedures should be selected to 

provide information from the data. Ward (1979) describes two general 

levels of data analysis. First, the most general approach is the use 

of statistics and indices for water quality assessment in time and 

space. Ponce (1980) provides an excellent summary of statistical 

procedures commonly used in water quality data evaluation. Ott (1978) 

and Landwehr (1979) present reviews of water quality indices developed 

over the past several years. Secondly, according to Ward (1979), 

specific water quality problems may prompt the use of time series 

analysis and/or physical modeling of water quality processes. Wakeford 

and Knowles (1978) also suggest the use of time series analysis and 

physical models to enhance water quality management programs. An 

extensive review of existing hydrologic and water quality models is 

provided by Cembrowicz et al. (1978).

Descriptions of logical statistical sequences for the analysis of 

water quality data are not common in the literature. Alther (1979) 

describes a statistical sequence used to evaluate a stream contaminated 

with effluent from a sewage treatment plant. Routine water quality 

data was used in the analysis. Cluster analysis was used to discern 

differences in the stream as compared to other rivers in the area. 

Decreasing pollutant concentration with increasing distance downstream 

of the effluent source was statistically shown with linear regression 

analysis. A trimmed "t" test was used to determine two populations 

with different mean concentrations of iron. The author concluded that 

the use of statistical tests "greatly facilitated the interpretation of 

the data."
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Wentz and Steele (1980) used statistical procedures to assess the 

impact of mining activity on the Yampa River system. Annual river 

temperature fluctuation was analyzed with a harmonic-analysis proce-

dure. This technique may allow the assessment of future temperature 

changes. Trends in specific conductance were identified using 

Kendall's tau nonparametric test with flow-adjusted annual means. Site 

specific relationships were developed to predict major ion concentra-

tion from specific conductance records.

Lane (1975) used linear regression analysis to disaggregate 

specific conductance into major ion concentration. The procedure used 

in this research consisted of three steps. Specific conductance is 

estimated via a relationship determined between discharge and conduc-

tivity. Next, ion proportions are estimated from the estimate of 

specific conductance. Finally, total dissolved solids concentration is 

estimated in accordance with the estimated conductivity value and ion 

concentrations are then determined. Lane (1975) also added a stochas-

tic component to the model to account for the random component of 

variable behavior.

Multiple linear regression models have been used to relate water 

quality characteristics to basin characteristics (U.S. Environmental 

Protection Agency, 1978). Generalized background levels of water 

quality were estimated by removing land use variables from the regres-

sion equation. It is concluded in the report that multiple regression 

modeling of water quality versus basin characteristics may be a useful 

screening technique to assess the effects of land use activities.

The use of probability distributions to model the behavior of 

water quality variables has been suggested by researchers (Sherwani and
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Moreau, 1975; Sanders and Ward, 1978; and others). Sherwani and Moreau 

(1975) suggest the identification of underlying probability distribu-

tions to assist in monitoring network design. Sanders and Ward (1978) 

present the idea of stream standards based on probability distribu-

tions. The determination of a water quality variable's probability 

distribution, conditioned on known variables, was suggested by Loftis 

(1978) in his dissertation section devoted to recommended research.



CURRENT STREAM STANDARDS AND MONITORING PRACTICES

2.1 Introduction

Due to federal water quality legislation, the states have been 

required to develop water quality standards on which to base the suit-

ability of surface waters for specific uses and monitor those waters to 

ensure standards are being achieved. Because each state is responsible 

for its own standards and monitoring system, some diversity has 

developed among the fifty states. This chapter looks briefly at the 

federal legislation responsible for the current water quality manage-

ment structure, the guidelines set forth by federal regulatory agen-

cies, and the resulting stream standards and monitoring practices 

adopted by the states. The chapter is not a complete description of 

stream standards and monitoring practices but rather a general overview 

of water quality management systems practiced by the states. This 

review is provided to identify typical standards and monitoring prac-

tices, later chapters will use this information in the development of 

analytical procedures designed specifically for common management 

programs.

2.2 Background

Since the passage of the Clean Water Act, PL 89-234, in 1965, the 

states have been required by the federal government to establish water 

quality monitoring programs. According to the 1965 act, each state was 

to develop its own set of standards and monitor compliance by sampling

Chapter 2
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the surface waters of the state. When a stream was found to be out of 

compliance, legal action could be taken against the party or parties 

that were responsible for the violation. This administrative system 

proved ineffectual, however, because it was often difficult to prove in 

court who was responsible for violations. In 1972, PL 92-500, The 

Federal Water Pollution Control Act Amendments, was passed by Congress 

and emphasis changed from stream standards to effluent standards. 

States were still required to have a set of stream standards but 

enforcement of water quality goals was now carried out through the 

control of waste discharges. Stream standards served as a partial 

basis for determining effluent limitations and, therefore, remained an 

integral part of the national water pollution control system.

Passage of PL 92-500 gave the Environmental Protection Agency 

responsibility to provide guidance in water quality regulation. Under 

this guidance from EPA, the states had to develop their own water 

quality management programs which were to include stream standards and 

a water quality monitoring scheme. State programs were subject to 

approval by the EPA and, if a state did not adopt a suitable plan, the 

EPA would establish a program for the state. To assist the states the 

EPA published guidelines which describe in some detail the minimum 

requirements of an acceptable water quality program (U.S. Environmental 

Protection Agency, 1976).

2.3 Survey of Current Standards and Monitoring

2.3.1 Stream Standards

Chapter 5 of the EPA publication. Guidelines for State and 

Areawide Water Quality Management Program Development (U.S. Environ-

mental Protection Agency, 1976) enumerates the minimum contents of the 

state water quality standards document:
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1. Certification that the standards are included within state 

law;

2. Statement of general policy consistent with 40 CFR Section 

130.17;

3. Statement of applicability of water quality standards, 

including the state's mixing zone policy;

4. Definitions;

5. A listing of the use designations for all the waters of the 

state, including any site specific water quality criteria for 

specific segments;

6. Water quality criteria that define the conditions necessary 

to maintain the beneficial water use designations;

7. An antidegradation statement;

8. Specifications of statistical requirements and reference to 

analytical testing and sampling procedures to determine if 

standards are being met; and

9. A listing of outstanding national resource waters.

It is also suggested that provisions be made to deal with special flow 

conditions which include intermittent flow, low flow, high flow, and 

regulated flow.

Stream standard documents from each state, published in the 

Environment Reporter (U.S. Bureau of National Affairs, 1980), were 

reviewed and compared with the ERA guidelines. It was found that most 

standards documents are very similar in composition. Nearly all states 

have similar expressions of inclusion of stream standards in state law, 

general policy, applicability, definitions, and antidegradation. A set 

of narrative standards is commonly found which pertain to man-made
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wastes such as oil and grease. These standards generally apply to all 

waters and at all times. Most states list beneficial uses of water 

they wish to protect and have a set of specific criteria which apply to 

each use. The specific criteria are most frequently expressed as 

limiting concentrations never to be exceeded by individual water 

quality constituents. Many states reference Standard Methods for the 

Examination of Water and Waste Water, 14th Edition (American Public 

Health Association, 1975), apparently, to meet the EPA requirement of 

specifying statistical requirements and operational procedures. Most 

states define a low and/or high flow condition under which the stan-

dards do not apply. Basic differences occur among a few states in the 

wording of specific criteria and definition of critical high or low 

flow and these topics will be discussed in more detail.

2.3.1.1 Specific Criteria

Specific criteria and standards are established for each 

water quality variable considered important to a particular beneficial 

use. Specific criteria are generally written as a maximum or minimum 

concentration not to be exceeded. The level at which the standard is 

set represents the threshold concentration of the particular consti-

tuent where the suitability of the water is marginal. The determina-

tion of threshold values of water quality variable concentrations is a 

difficult task and to assist the states, the EPA has published values 

in the "Red Book" based on current scientific information (U.S. 

Environmental Protection Agency, 1977). Most states have adopted these 

EPA criteria into their stream standards.

Since water quality constituents behave as stochastic variables, 

the determination of compliance/noncompliance with limiting-concentra-

tion type stream standards is difficult. Unless samples are collected
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continuously, it can not be absolutely determined that this type of 

standard is being achieved at all times. For this reason, various 

states have established standards expressed in terms related to indi-

vidual samples or in statistical terms applying to statistics calcu-

lated from a number of samples. These standards are designed to be 

directly applicable to information contained in routinely collected 

water quality data. A few examples will be cited here.

New Mexico expresses stream standards for several variables in a 

manner which acknowledges the fact that water quality variables are 

subject to random variation. The standards pertaining to dissolved 

oxygen, pH, and temperature are expressed as numeric limits not to be 

exceeded in any single sample. These criteria are similar to those 

used by most states except for the explicit instruction that the stan-

dard applies to any single sample. Many other states may imply the 

same interpretation but often they do not clearly explain their 

meaning. New Mexico standards of total dissolved solids, sulfate, and 

chlorides are expressed as monthly average concentrations not to be 

exceeded.

Oklahoma has established stream standards at particular sampling 

locations for total dissolved solids, sulfate, and chlorides in terras 

of the historical mean and standard deviation of each variable. These 

standards are expressed such that the yearly arithmetic mean concentra-

tion is not to exceed the historical mean plus one standard deviation. 

They further state that not more than one sample in twenty may exceed 

the historical mean plus two standard deviations. Standards pertaining 

to other variables are expressed as simple limits not to be exceeded.



South Dakota stream standards allow some variation above the 

specified criteria for each constituent. The criteria for each vari-

able refer to one of three acceptable levels of variation defined in 

the standards document. The first acceptable amount of variation 

applies to most constituents including nearly all metals. These stan-

dards are to be maintained at all times. The second applies to ammonia 

and specifies that the standard is to be maintained at all times based 

on a twenty-four hour representative composite sample. Also the 

numeric value of any one grab sample may not exceed 1.75 times the 

standard. The third allowable level of variation found in South Dakota 

standards applies to total dissolved solids, sulfate, and chlorides and 

states that the standard is to be maintained at all times based on the 

average of five consecutive twenty-four hour composite samples. In 

addition the numerical value of any one sample may not exceed 2.0 times 

the standard.

Texas expresses most of its stream standards in terms of annual 

mean concentration. The standards document also states that whenever 

an unusual chemical concentration is found an investigation will be 

made to determine its cause. This policy is fairly unique among the 

states and would seem to be quite useful. Texas, as well as various 

other states, recognizes the natural diurnal variation of dissolved 

oxygen in standards applying to that variable. The Texas standards 

allow a one milligram per liter fluctuation below the D.O. criteria for 

not more than eight hours during any twenty-four hour period.

18

2.3.1.2 Flow Exception Policies

Section 5.8 of Guidelines for State and Areawide Water 

Quality Management Program Development (1976) states that water quality
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standards should protect water quality in critical high and low flow 

situations. It further indicates that effluent limitations designed to 

maintain stream standards may be based on design low and high flows. 

It follows from this statement that stream standards do not necessarily 

apply to flows beyond the design criteria. Most states, however, do 

not include a design high flow in their stream standards. This may 

result from the fact that nonpoint source pollution is primarily 

affected by high flows and these sources are not included in the 

effluent permit system (National Pollution Discharge Elimination 

System). The state of Washington is one of the few states which makes 

an explicit statement regarding high flows. The total dissolved gas 

standard does not apply to flows greater than the seven-day average 

high flow expected to occur an average of once in ten years. Louisiana 

includes a statement to the effect that standards do not apply when 

natural conditions cause exceedance. This statement may be construed 

to be a high flow statement but would appear to be difficult to imple-

ment .

Low flow statements occur more frequently in state stream 

standards. Periods of low stream flow often create problems with 

respect to point discharges due to decreased dilution capabilities of 

the receiving stream. Nonpoint source pollution is not generally a 

problem during low flow periods because of little surface runoff con-

tributing to total stream flow. A low flow design criteria commonly 

used in stream standards is the seven-day average low flow expected to 

occur an average of once in ten years (7Q10). The use of the 7Q10 

seems to result from the use of this criteria in the design of sewage 

treatment plants. Four states specify in their stream standards that
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waste discharge plants are to be designed for the 7Q10 and make no 

mention of relaxing standards during periods of critical low flow. 

Other states, numbering at least twenty-one, make the blanket statement 

that specific numeric criteria do not apply during periods of flow less 

than the 7Q10. Five states relax their standards for some but not all 

water quality variables at this same discharge. New Hampshire and 

Tennessee use a ten-day, twenty-year flow and a three day, twenty year 

flow design criteria, respectively, below which their specific stan-

dards do not apply. South Dakota uses two design discharges, the seven- 

day, twenty-five year flow for high quality waters and the seven-day, 

five-year flow for low quality waters. Texas relaxes its dissolved 

oxygen standard at the seven-day, two-year flow.

Little documentation is available in the literature regarding the 

frequency and duration of design low flows. For this reason, three 

design low flows were calculated for six rivers in the United States 

and the frequency and duration of each determined. A brief summary of 

this research may be found in Appendix A.

2.3.1.3 Data Requirements

The amount and type of data necessary to determine compliance 

with stream standards is dependent upon the manner in which the stan-

dards are expressed. Statistically based stream standards, employed by 

a few states, implicitly suggest the data requirements of these states. 

For example, standards expressed as mean annual concentrations require 

data which will provide acceptably accurate estimates of annual means, 

standards written for 24-hour composite samples require samples to be 

drawn around the clock, etc. The commonly used limiting-concentration 

type stream standard requires continuous monitoring for strict
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compliance enforcement. State stream standards documents which include 

flow exception policies require discharge measurements as well as 

quality measurements to be made.

2.3.2 Monitoring Networks

The collection of river water quality information is conducted by 

federal and state agencies with the principal responsibility belonging 

to the states. The Code of Federal Regulations (40CFR35, Subpart B, 

Appendix A) outlines the minimum components of a state water quality 

monitoring program.

1. Compliance monitoring of permit dischargers.

2. Intensive surveys of surface waters.

3. Fixed station monitoring at representative points in surface 

waters.

Quality assurance procedures are required by the code and a list of 

references is provided which contain acceptable field and laboratory 

procedures. It is recommended that the states coordinate with other 

agencies collecting water quality data within the state and integrate 

such data into the state water quality program.

Fixed station/fixed frequency data records from the four states 

cooperating with this study; Colorado, Oregon, Illinois, and Maryland 

were surveyed. The purpose of the survey was to identify common sam-

pling frequencies and to deteinnine which water quality variables are 

commonly measured and have associated stream standards. A summary of 

the survey, as of November, 1980 is presented in Table 2.1.

It was found that most monitoring programs consist of sampling 

networks collecting about 12 grab samples per year. Grab samples are 

generally taken from a convenient access point to the river and are
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analyzed for variables which are regionally important. Often states 

collect data for variables for which they have no standard and do not 

collect data for a few variables for which standards have been desig-

nated. These discrepancies may be attributed to the ease with which 

some variables may be measured and the expense associated with others. 

Surprisingly, discharge is routinely monitored by only one state, 

Illinois. Since most states include in their standards document a flow 

exception policy, flow should be measured with other variables to 

determine when standards are in effect.

The U.S. Geological Survey collects some water quality information 

as a part of its water resources data collection operation. At 

selected locations, the U.S.G.S. collects water quality data similar to 

the information collected by state agencies, specifically, fixed 

station/fixed frequency quality analyses taken approximately monthly. 

The U.S.G.S. also collects a daily record of discharge, specific 

conductance, and water temperature at certain locations.

Synoptic surveys are conducted occasionally by state and federal 

data acquisition agencies. These surveys provide detailed information 

regarding specific locations but do not account for a large portion of 

the data available to a decision-maker. For this reason, the statisti-

cal procedures developed in upcoming chapters will be designed for 

fixed station/fixed frequency water quality data rather than synoptic 

survey data.
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Table 2-1. A comparison of water quality variables for which stream 
standards have been established and for which data is

collected in four selected states.^

Water Quality 
Variable

Colorado Oregon Illinois Maryland
2

Std.^ Data Std. Data^ Std. Data Std. Data

Flow X
Alkalinity X X X
Aluminum X X

Ammonia X X X X X X
Arsenic X X X X X X
Barium X X X X X

Beryllium X X
BOD X X X
Boron X X X X X

Cadmium X X X X X X
Calcium X
Carbon dioxide X

(diss.)

Chloride X X X X X
Chlorine X X
Chlorophyll X X

Chromium X X X X X X
Coliform, fecal X X X X X X X
Coliform, total X X

COD
TOC X
Conductivity X X X

Copper X X X X X X
Cyanide X X X X X
Fluoride X X X X

Gases, total X
dissolved

Hardness X X
Iron X X X X X X

Lead X X X X X X X
Magnesium X
Manganese X X X X X X

Mercury X X X X X
Molybdenum X
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Table 2-1. (continued)

Water Quality 
Variable

Colorado Oregon Illinois Maryland
2

Std. Data Std. Data^ Std. Data Std. Data

Nickel X X X
Nitrogen, total X X X

Kjel.
Nitrogen, total X X

Nitrates X X X X
Nitrates & X X

nitrites
Nitrites X X X

Oil and grease
Oxygen, X X X X X X X X

dissolved
pH X X X X X X X X

Phenol X X X
Phosphorous X X X X X
PO^, total X

Potassium X
Residue, total X
nonfiltered

Selenium X X X X

Silica X X X
Silver X X X X
Sodium (Na, total) X X

Sodium X
(absorption)

Solids X X X
(suspended)

Solids (total X X X X X
dissolved)

Sulfate X X X X X
Sulfide X
Temperature X X X X X X

Thallium X
Turbidity X X X X X X
Zinc X X X X
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Table 2-1. (continued)

Water Quality 
Variable

Colorado Oregon Illinois Maryland

Std.^ Data Std. Data^ Std. Data Std. Data

Pesticides,
Herbicides, etc.

Aldrin/Dieldrin X X
Benzidine X X
Chlordane

Chlorophenol X
Chlorophenoxy
herbicides

DDT X X

Demeton X
Endosulfan X
Endrin X X

Guthion X
Heptachlor X
Lindane X

Malathion X
Methoxychlor X
Mi rex X

Monohydric phenol X
Parathion X
Toxaphene X X

PCB X X
2,4-D X

Radioactive X
Materials

Alpha X
Beta (gross) X X
Cesium 134 X

Cobalt X
Plutonium X
Radium X X
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Table 2-1. (continued)

Water Quality 
Variable

Colorado Oregon Illinois Maryland

Std.^ Data Std. Data^ Std. Data Std. Data

Strontium X X
Thorium X

Tritium X
Uranium X X

The standards and monitoring data noted for water quality variables 
are general and do not reflect site-specific situations in the states.

"Standards vary depending upon classification. This is a list of 
criteria that may be standards depending upon river classification.

^Oregon's Department of Environmental Quality now measures some 
selected pesticides in fish tissue as part of EPA's Basic Water Moni-
toring Program. In Oregon, data on radioactive materials are col-
lected by the Oregon State Health Division.



PROCEDURES FOR THE ANALYSIS OF WATER QUALITY DATA

3.1 Introduction

This chapter will develop five analytical procedures for the 

assessment of river water quality. The procedures are designed for low 

frequency grab sample information and daily records of certain indi-

cator variables such as flow and specific conductance. The five proce-

dures consist of probability density function modeling, multiple linear 

regression modeling, conditional probability modeling of stream stan-

dard violations, an index indicating water quality changes, and an 

index of compliance/noncompliance of samples with stream standards. 

Each procedure provides information suitable for different situations, 

and the selection of which is most appropriate for a given application 

depends upon the availability of necessary data and management 

objectives.

Assessments of river quality obtained from the procedures relate 

to limiting-concentration type stream standards. The assessments 

include the determination of the daily probability of a stream standard 

violation, the expected number of stream standard violations in a 

period of time, the estimation of constituent concentration from indi-

cator variables which are measured more often, and index values useful 

for the communcation of water quality conditions to nontechnical 

persons. The use of these assessments does not diminish the informa-

tion content of individual samples, if an individual sample is found to

Chapter 3
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be out of compliance with a stream standard, action may be taken based 

on that sample alone. Assessments provide information supplemental to 

the compliance/noncompliance of samples with standards.

In this work, reported measurements of all water quality variables 

including discharge, specific conductance, and chemical constituents 

are assumed to be representative of the entire day during which the 

sample was collected. With this assumption, assessments may be made 

regarding the daily behavior of water quality, such as the expected 

number of days per year a stream was in violation with standards. 

Without the assumption, no temporal meaning may be obtained from the 

conclusions drawn by the procedures. Conclusions drawn regarding indi-

vidual samples (by not using the assumption) are rendered somewhat 

vague since the number of samples collected per year may vary widely.

The use of the assumption is generally appropriate for water 

quality analysis. Water quality variable concentration is usually 

highly correlated to discharge and, therefore, unless discharge has 

fluctuated appreciably on the day of the sample, it is reasonable to 

expect that a sample is fairly representative of conditions on the day 

it was collected. However, variables such as dissolved oxygen, which 

exhibit diurnal fluctuations, must be treated with care because the 

assumption is obviously less valid with these variables.

3.2 Application of Probability Distributions to Water Quality
Variables

3.2.1 Background

3.2.1.1 Purpose

The purpose of this section is to develop criteria for the 

selection of probability density functions (probability distributions) 

in water quality analysis by fitting several probability distributions
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to real water quality data gathered by state agencies. A large number 

of density functions have been developed, and the selection of the most 

appropriate one for a given use is a fundamental task in the modeling 

procedure. The usefulness of modeling the behavior of a water quality 

variable with a probability distribution is that more understanding may 

be gained about the variable's movement (change in concentration with 

time) than by simply comparing individual samples with a standard. 

Five probability density functions were selected for analysis because 

of their common use in traditional hydrology. The normal, log-normal, 

gamma, Gumbel, and log-Gumbel distributions were fitted to several 

series of data and evaluated for applicability to water quality vari-

ables. A brief description of these density functions is presented in 

the next section, but the interested reader is urged to consult statis-

tical references such as Benjamin and Cornell, 1970; Mood et al., 1974; 

Haan, 1977 for a more detailed discussion.

3.2.1.2 Probability Distribution Description

The normal distribution is the most widely used probability 

function in statistics. A random variable, say x, is normally 

distributed if its density is expressed as

f (x) = ■ exp(-(x. - fj)̂ /2a^)

Jlna^

(3.1)

for -00 < X < 00

where x. = random variable 
1

p = mean value of random variable 

2
a = variance of random variable.

This distribution is symmetric about the mean value (skewness equal to 

zero) and is unbounded in both the positive and negative directions.
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The mean and variance completely define the normal distribution, the 

mean as location parameter and the variance as scale parameter. 

Unbiased estimates of the mean and variance may be calculated from the 

sample series with Equations 3.2 and 3.3.

1
N

N
I x .
i=l

1

N1
I

- ^ 2

i=l

(3.2)

(3.3)

where x = sample mean

= sample variance 

N = number of samples.

Related to the normal distribution is the log-normal probability 

density function. If the logarithms of a random variable, say y, are 

normally distributed, the random variable is said to be log-normally 

distributed. The functional form of the distribution is identical to 

that of the normal distribution (Equation 3.1) with the substitution

( 1)
’‘i = (3.4)

Using the substitution of Equation 3.4, the unbiased estimates of the 

mean and variance may be determined as before (Equations 3.2 and 3.3). 

The log-normal distribution is positively skewed and is bounded at the 

left by zero, that is, 0 < y < ».

The gamma distribution, the distribution of the sum of n 

exponentially distributed random variables, is defined as

f (x) =X

A(\x^)^  ̂exp(-\x^) 

(n-1 )! (3.5)

Either the base 10 or natural logarithm may be used.
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for X > 0

where n = 1 , 2, 3, ...

X = a distribution parameter.

If n is not an integer the gamma distribution is defined 

X(Xx.)*^  ̂exp(-r)x.)
f (x) =X T W

00

where r(r)) = J t*̂  ̂exp(-t) dt 
0

The mean and variance for the discrete case are

IJ =

a2 = iL

(3.6)

(3.7a)

(3.8a)

and for the continuous case

= n

a2 = iL

(3.7b)

(3.8b)

A notable feature of the gamma distribution is the variety of shapes it 

may take depending upon the parameters of the distribution, n and X. 

When n=l the gamma distribution reduces to the exponential 

distribution with parameter X. For other combinations of n and X 

the gamma may resemble the log-normal distribution, bounded at the left 

by zero and positively skewed; or it may be nearly S5nmmetric about the 

mean and bounded at the left by zero. From Equations 3.7b and 3.8b the 

moment estimates of the parameters of the gamma distribution may be 

determined.

X = (3.9)
a
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-2
n = ^ (3.10)

The Gumbel distribution, also known as the extreme value 

distribution and the double exponential distribution, is defined

f (x) =X

exp[±w. - exp(±w)]
(3.11)

fo r  -00 < X < oo; -»  < p < oo; « > 0 

where w. = 
1

Xi - P
(3.12)

a = a distribution parameter 

p = a distribution parameter.

It is typically used for extreme value statistics with the negative 

signs associated with maximum values (such as floods) and the positive 

signs associated with minimum values (such as low flows). The mean and 

variance of the Gumbel distribution are

(j = P + 0.577 a (maximum) 

= p - 0.577 a (minimum) 

(both)
2 2 

a  = 1.645 a

(3.13)

(3.14)

(3.15)

The coefficient of skewness is a constant 1.1396 for the Gumbel 

distribution and the moment estimators are 

a
a =

1.283

P = X - 0.45 CT (maximum) 

= X + 0.45 a (minimum)

(3.16)

(3.17)

(3.18)

If the logarithms of a random variable, say y, are Gumbel distributed, 

the random variable is said to be log-Gumbel distributed and Equations 

3.11-3.18 are applicable with the transformation
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Xi = logjo Yi (3.4)

The log-Gumbel distribution is bounded on the left by zero, 0 < y < 

and may be expected to fit highly skewed data.

3.2.1.3 Data Used in Analysis

State water quality data obtained from STÖRET were used in 

this analysis. Eight stations, two in Colorado and six in Illinois 

were selected and data records from each were reviewed. Dissolved 

oxygen and specific conductance records were found to be fairly com-

plete over the period of data collection (approximately 10 years) for 

all the stations so these variables were selected for the study. The 

data records consisted of samples taken at various sampling frequencies 

throughout the period of record but the most common frequency was 

approximately one sample per month.

The process of fitting probability density functions to these sets 

of data required three conditions to be achieved; consistency of sample 

collection and analysis, temporal stationarity of the variables, and 

temporal independence of the samples. It was assumed that over the 

period of record samples were collected from exactly the same location 

and by the same procedures and that laboratory procedures were consis-

tent because different analytical methods may yield slightly differing 

results. Inherent in the use of probability density functions is the 

requirement of process stationarity. If trending exists in the data it 

must be removed by appropriate statistical techniques before a distri-

bution may be fitted to the data. To check for stationarity, annual 

means were calculated for both variables and plotted against time for 

each station. Regression equations were determined and found to have 

slopes not significantly different than zero indicating temporal
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stationarity (Sanders, 1974). Finally, the requirement of temporal 

independence of the samples was reviewed. Research conducted by Loftis 

(1978) on daily records of water quality variables indicated relatively 

high serial correlations for short lags. The serial correlations 

generally dropped to very low values after about lag 2 0, however, 

suggesting temporal independence of samples collected at least three 

weeks apart. The water quality data used in this study, in general, 

had sampling frequencies significantly longer than three weeks 

supporting the condition of temporal independece of samples.

3.2.2 Methodology

3.2.2.1 Model Parameter Estimation

The parameters of the normal, log-normal, gamma, Gumbel, and 

log-Gumbel distributions were estimated for each data set using 

computer programs developed at Colorado State University (Salas, 1978). 

These programs utilized the method of maximum likelihood for parameter 

estimation. This procedure maximizes the likelihood function or for 

some distributions, the log-likelihood function for each distribution 

to determine optimal distribution parameters for a given data set.

3.2.2.2 "Goodness of Fit" Criteria

The "goodness of fit" of each distribution was compared to 

the fit of others with a chi-square test. For a given or hypothesized 

probability distribution, this test computes the expected number of 

occurrences of a random variable in a specified class interval. The 

number of observed occurrences in the class interval is subtracted from 

the expected number in the same class interval. This difference is 

squared and divided by the expected number. These normalized, squared 

differences are summed over the entire range of possible values of the
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random variable and the sum may be considered a measure of "goodness of 

fit".

.2

i=l
E.1

(3.19)

where X = chi-square statistic

N = number of class intervals

0 . = number of observed occurrences 1

= expected number of occurrences.

The chi-square statistic is usually compared to a critical value 

obtained from a table to determine if the distribution fits at a speci-

fied level of significance. In this study, however, the computed 

chi-square values were used primarily to compare one distribution to 

another. This work is similar to that of Sherwani and Moreau (1975) 

who have used the chi-square test to compare the fit of various distri-

butions in their work at the University of North Carolina. The number 

of class intervals used in the chi-square test should be selected by 

the user such that a minimum of five points is expected to fall within 

each interval (Benjamin and Cornell, 1970). In this study, class

intervals numbering six, seven, and eight were utilized.

3.2.3 Results

The five probability density functions used in this study were 

fitted to each data series. Chi-square "goodness of fit" statistics 

are shown in Table 3-1. A tabular summary indicating data sets "best 

fit" and "significantly fit" by the probability functions is shown in 

Table 3-2.
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Often the shape of a distribution is well indicated by data 

skewness, therefore, a criteria for the selection of a probability 

distribution to model water quality data based upon the sample coeffi-

cient of skew will be presented. The sample coefficient of skew, g, 

may be determined by Equation 3.20.

g =

N - 3
M I (x. - x)"̂  
i=l _________

(3.20)

where x.1

X =

a2 = 

N =

random variable 

sample mean (Equation (3.2)) 

sample variance (Equation (3.3)) 

number of data points.

From Table 3-2 it can be seen that none of the probability 

distributions fit at the selected level of significance (5 percent) 

when the sample coefficient of skew was greater than about 2 . 0 or less 

than about -1.0. For values of g between these limits, the normal, 

log-normal, and gamma distributions fit at the selected significance 

level more frequently than the Gumbel or log-Gumbel distributions. The 

normal and gamma distributions were most often the best fitting models, 

i.e., the model with the lowest chi-square statistic, within this range 

of skewness. The Gumbel distribution, with constant skew of 1.1396, 

appears to be the best fitting model for data sets with positive skew 

coefficients in the range of 1.0 to 2.0. Data sets with the highest 

positive coefficients of skew of the sets used in this study were best 

fit by the Gumbel rather than the distribution expected to fit well in 

this range, the log-Gumbel distribution.



Table 3-la. Chi-square statistics indicating how well various probability
distributions fit the data sets using six class intervals.

Dissolved Oxygen Conductivity

River
Location

Normal
Dist.

Log-Normal Gamma 
Dist. Dist.

Gumbel
Dist.

Log-Gumbel
Dist.

Normal
Dist.

Log-Normal
Dist.

Gamma
Dist.

Gumbel
Dist.

Log-Gumbel 
Dist.

Cache La Poudre 
near Greeley, CO 4.72* 11.03 5.98* 12.48 19.86 26.52 77.74 64.70 102.78 222.35

South Platte at 
Henderson, CO 23.23 6.06* 8 .10* 5.05* 6.97* 56.24 91.62 51.24 52.17 —

Little Wabash at 
Louisville, IL 7.39* 16.94 10.79 15.88 54.06 1.78* 9.33* 3.56* 4.22* 25.33

Chicago Ship 
Canal at 
Lockport, IL 98.27 5.82* 2.73* 14.55 12.55 6.98* 6.65* 8.28* 5.67* 12.51

Vermillion at 
Pontiac, IL 5.19* 3.06* 2 .86* 1.89* 19.78 10.04 20.27 19.00 27.59 67.68

Illinois at 
Ottawa, IL 7.00* 10.25 6.75* 8.75* 29.75 8.55* 6.77* 6.77* 13.91 16.30

Kankakee at Will 
City Line, IL 4.83* 1 0 . 0 0 1 0 . 0 0 13.96 23.39 24.84 27.02 27.02 36.04 52.22

Sangamon at 
Decatur, IL 1 1 . 0 2 6.15* 7.07* 5.54* 39.78 4.93* 8.36* 7.42* 23.91 33.24

Chi-square static less than critical value, x̂ 05,4 = 9.49.



Table 3-lb. Chi-square statistics indicating how well various probability
distributions fit the data sets using seven class intervals.

Dissolved Oxyge;n Conductivity

River
Location

Normal
Dist.

Log-Normal
Dist.

Gamma
Dist.

Gumbel
Dist.

Log-Gurabel
Dist.

Normal
Dist.

Log-Normal
Dist.

Gamma
Dist.

Gumbel 
Dist.

Log-Gumbel
Dist.

Cache La Poudre 
near Greeley, CO 12.89 7.27* 6.98* 11.59 27.02 23.10 87.89 58.18 106.78 245.61

South Platte at 
Henderson, CO 31.74 7.61* 15.10 6.06* 8.65* 64.77 91.63 49.35 46.93 - -

Little Wabash at 
Louisville, IL 10.85* 16.91 8.67* 21.76 68.55 3.16* 4.94* 4.43* 6.71* 28.56

Chicago Ship 
Canal at 
Lockport, IL 73.53 3.51* 16.39 37.69 10.99* 6.30* 6.67* 1 0 .0 2* 6.67* 8.53*

Vermillion at 
Pontiac, IL 4.44* 7.33* 4.22* 12.44 29.56 14.91 25.09 19.27 49.09 72.73

Illinois at 
Ottawa, IL 11.43 1 0.00* 8 .00* 1 0 .00* 21.71 12.06 15.47 12.40 16.49 15.81

Kankakee at Will 
City Line, IL 11.04* 8.26* 8.26* 12.43 20.78 21.67 41.93 39.09 45.49 45.49

Sangamon at 
Decatur, IL 11.65 6.78* 6.43* 6.78* 20.39 4.96* 5.67* 5.67* 19.53 29.13

LO
00

Chi-square statistic less than critical value, X qj 5 = 11.1.



Table 3-lc. Chi-square statistics indicating how well various probability
distributions fit the data sets using eight class intervals.

Dissolved Oxygen Conductivity '

River
Location

Normal
Dist.

Log-Normal
Dist.

Gamma
Dist.

Gumbel
Dist.

Log-Gumbel
Dist.

Normal
Dist.

Log-Normal
Dist.

Gamma
Dist.

Gumbel
Dist.

Log-Gumbel
Dist.

Cache La Poudre 
near Greeley, CO 13.62 13.78 9.24* 16.38 20.43 30.12 85.47 63.11 117.66 250.71

South Platte at 
Henderson, CO 26.39 13.18 17.24 9.55* 12.16* 67.20 112.58 57.49 54.65

Little Wabash at 
Louisville, IL 10.09* 22.64 10.09* 22.09 58.09 4.00* 5.14* 3.71* 5.14* 31.14

Chicago Ship 
Canal at 
Lockport, IL 90.75 6.25* 22.14 53.35 15.83 6.60* 5.77* 2.42* 4.51* 17.91

Vermillion at 
Pontiac, IL 1 2.0 0* 9.50* 7.50* 17.25 25.50 17.55 30.45 31.27 37.00 27.49

Illinois at 
Ottawa, IL 1 0.21* 13.11 1 0.86* 13.11 24.04 16.77 19.83 19.06 23.66 27.49

Kankakee at Will 
City Line, IL 10.35* 14.26 13.48 20.91 17.39 25.20 31.60 33.20 60.00 76.80

Sangamon at 
Decatur, IL 10.13* 9.35* 7.78* 15.80 25.59 3.20* 16.00 12.80 20.40 46.80

u>
VO

Chi-square statistic less than critical value, X qj g = 12.6.



Table 3-2. Summary of sample coefficients of skew and probability distribution fit
information for data sets used in the study.

River Variable

Sample
Coefficient

of
Skew

Number of Significant Fitŝ ^̂ f 2)Number of Best Fitŝ  '

Normal
log- 
No rmal Gamma Gumbel

log-
Gumbel Normal

log- 
No rma1 Gamma Gumbel

log-
Gumbel

Vermillion Conductivity -1.704 0 0 0 0 0 3 0 0 0 0

Cache La Poudre Conductivity -1.541 0 0 0 0 0 3 0 0 0 0

Kankakee Conductivity -1.240 0 0 0 0 0 3 0 0 0 0

Sangamon Conductivity -.735 3 2 2 0 0 3 0 0 0 0

Little Wabash D.O. -.231 3 0 2 0 0 1%(3) 0 1̂ (3) 0 0

Vermillion D.O. -.021 3 3 3 1 0 0 0 2 1 0

Sangamon D.O. .004 1 3 3 2 0 0 0 2 1 0

Illinois D.O. .057 2 1 3 2 0 1 0 2 0 0

Cache La Poudre D.O. .060 1 1 3 0 0 1 0 2 0 0

Little Wabash Conductivity .200 3 3 3 3 0 1 0 2 0 0

Illinois Conductivity .231 1 1 1 0 0 2 (̂3) (̂3) 0 0

Kankakee D.O. .454 3 1 1 0 0 2 5̂ (3) (̂3) 0 0

Chicago Ship Canal Conductivity 1.184 3 3 3 3 1 1 0 1 1 0

South Platte D.O. 1.832 0 2 1 3 3 0 0 0 3 0

Chicago Ship Canal D.O. 1.918 0 3 1 0 1 0 2 1 0 0

South Platte Conductivity 6.514 0 0 0 0 0 0 0 1 2 0

(1) The chi-square statistic was calculated for 6, 7, and 8 class intervals, the number of significant fits indicates how many times, out of 
3, the distribution fit at the 10% significance level.

(2) Number of times out of 3 that the distribution had smallest chi-square statistic.
(3) Two models fit equally well.

.C-
O
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Water quality data sets with negative coefficients of skew are not 

uncommon. Many variables are inversely proportional to flow, which is 

often positively skewed making the distribution of the variable nega-

tively skewed. In this study, the normal distribution was the best 

fitting model for data sets with negative coefficients of skew even 

though the skewness of the normal distribution is zero. This may be 

explained by the fact that all of the other distributions used in this 

study are positively skewed so consequently they fit these data sets 

less well than the normal distribution. It should also be noted that 

even though the normal distribution was the best fitting model for 

negatively skewed data sets, it did not fit at the significance level 

for data sets with skewness coefficients more negative than -0.735.

The gamma distribution appears to be the most flexible 

distribution in terms of fitting data sets of differing coefficients of 

skew. This result may be explained by the large number of shapes this 

distribution may take on, depending upon the values of its parameters. 

The gamma distribution commonly fit significantly well, the data sets 

with a range of skew from -0.735 to 1.918. It was most often the best 

fitting model over the same range and often fit slightly better than 

the log-normal distribution when the log-normal fit relatively well. 

This result suggests the gamma distribution may be most appropriate for 

the data sets that are commonly modeled with the log-normal distribu-

tion, i.e., data sets with moderately positive skewness.

Table 3-3 presents a simple criteria for the selection of a 

probability distribution to model water quality variables (of those 

used in this study) based on sample coefficient of skew.
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Table 3-3. Criteria for probability model selection.

Sample Coefficient of Skew Recommended Probability Model

< -1 . 0 None
-1 . 0  - 0 . 1 Normal

0 . 1 - 1 . 0 Gamma
1 . 0 - 2 . 0 Gumbel
2 . 0 < None

3.2.4 Discussion

3.2.4.1 Applications

This section will present possible uses of probability 

distributions in water quality management. The methods described in 

the following paragraphs will be illustrated in further detail in the 

case study presented in Chapter 4.

The most obvious use of probability modeling in water quality 

management is the assessment of the daily probability of a water 

quality variable being in violation of a standard. The violation 

probability may be determined by integrating the selected probability 

density function over values of the variable from the standard to 

infinity in the case of a maximum-limit standard (Eq. 3.21a) and from 

minus infinity to the standard in the case of a minimum-limit standard 

(Eq. 3.21b).

00

P[V] = / fjj(x) dx 
s

(3.21a)

P[V] = / f (x) dx 
- 0 0 ^

(3.21b)

where P[V] = daily probability of stream standard violation for 
variable x
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s = stream standard for variable x 

f^(x) = probability density function of variable x.

A stream standard expressed as a limiting concentration not to be 

exceeded by an average daily probability greater than a specified value 

could be directly enforced with routine water quality data. A similar 

approach would be a standard expressed as a limiting concentration not 

to be exceeded on more than a specified number of days per year. An 

estimate of the expected number of days per year the variable is in 

violation of the standard may be obtained by multiplying the daily 

violation probability by 365.

E[V] = P[V] X 365

where E[V] = expected number of violations in one year.

(3.22)

These approaches do not take into account the effects of high or low 

runoff or changes in the water quality system due to man-made or 

natural alterations but do provide a simple approach by which water 

quality may be assessed with respect to limiting-concentration type 

stream standards.

A more detailed approach which does incorporate the effect of 

discharge is the development of probability models conditioned on high 

or low flows. With sufficient records, data may be partitioned into 

subsets of known conditions such as above average and below average 

discharge and probability distributions may be fitted to each subset. 

For this case, the expected number of days, in a given year, a variable 

is in violation with the standard may be determined as follows.

E[V] = P[V̂ ] X N + P[Vg] X N’ (3.23)
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where PIV^I

p [Vb 1

N =

V  =

daily probability of stream standard violation for
variable x on days with high flow

daily probability of stream standard violation for
variable x on days with low flow

number of days in a particular year with above average 
flow

number of days in a particular year with below average 
flow.

This technique may also be used by conditioning on variables other than 

flow, for example, specific conductance (if a daily record of conduc-

tivity is available).

The detection of a change in the water quality system is often a 

difficult task. Probability modeling may provide a means for the 

detection of such changes. The probability of collecting a sample with 

a certain concentration or a group of n samples with associated 

concentrations may be determined from either the lumped distribution or 

a set of partitioned data distributions.

P[Y] = P[C.]“ (3.24)

where P[Y] = probability of collecting n consecutive random samples 
above a specified concentration.

P[C.] = daily violation probability associated with the 
specified concentration (C^)

n = number of samples

= a specified concentration.

For example, the probability, P[Y], of getting three consecutive 

random samples greater than one standard deviation above the mean from 

a normal distribution may be determined.

P[C.] = 0.1587

n = 3
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P[Y] = (0.1587)'

= .0040 or about 1 time in 250.

It can be seen that the occurrence of three samples having 

concentration greater than the mean plus one standard deviation is very 

unlikely and perhaps a change in the system has caused these high 

concentrations.

Another approach to detecting changes in water quality variable 

behavior and determining more precisely the violation probability for a 

given year is the fitting of probability distributions to annual data. 

Routine monitoring stations typically collect data on a monthly basis 

resulting in only 12 samples per year. The techniques described in 

preceeding paragraphs are applicable to such yearly data, but the 

accuracy of sample statistics calculated from small annual samples is 

obviously poorer than from larger samples (an analysis of the expected 

accuracy of annual statistical parameters based on various sampling 

frequencies is included in Appendix B). Since probability distribution 

parameters are often determined from sample statistics, less confidence 

may be placed in annual distributions than in distributions determined 

from larger samples. However, changes in water quality may be esti-

mated by statistically determining if different annual sample series 

come from the same population.

An argument against the use of probability distributions in water 

quality management has been that many of the analyses may not be 

performed until a relatively large number of samples have been col-

lected. By the time sufficient samples are collected, perhaps a year 

or several years, statistical conclusions drawn from the data describe 

"past history" and thus may not be used to enforce stream standards.
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It has been widely recognized, however, that stream standards cannot 

practicably be enforced by stream monitoring anyway. For this reason, 

emphasis of compliance monitoring has been changed from stream stan-

dards to effluent discharge permits. The use of probability modeling 

may not aid in directly enforcing limiting-concentration type stream 

standards but will provide a rational method by which general river 

water quality may be assessed. A method to evaluate violation prob-

abilities on a more timely basis will be presented in following 

sections.

3.2.4.2 Summary

Based on the limited results of this study, it appears that 

three distributions, the normal, gamma, and Gumbel may adequately model 

water quality data with sample coefficients of skew in the range of 

-1.0 to 2.0. More research is needed, however, to substantiate this 

finding and to determine probability distributions which model nega-

tively skewed data more accurately. The normal distribution may be 

expected to fit data sets acceptably well for values of skewness 

moderately negative and near zero, the gamma distribution for values of 

skewness moderately positive, and the Gumbel distribution for values of 

skewness highly positive.

3.3 Regression Analysis of Water Quality Variables

3.3.1 Background

This section presents the use of multiple linear regression 

modeling in water quality management. The use of this type of modeling 

allows the estimation of water quality variable concentration from 

known conditions such as discharge, specific conductance, and water 

temperature. These estimates may be made daily, provided daily
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measurements of indicator variables are made, and give management 

agencies information regarding the likely concentration of important 

variables on days when no direct samples are collected. This informa-

tion may be used to enhance an agency's ability to evaluate and manage 

river water quality.

Effective multiple regression modeling requires strong cross-

correlation between indicator variables and the unknown variables of 

interest. Researchers in water quality hydrology have shown concentra-

tions of inorganic constituents often change with associated changes in 

stream discharge and specific conductance. Studies by Lane (1975), 

Sherwani and Moreau (1975), Durum (1953), and others have shown that 

concentrations of inorganic variables are inversely proportional to 

streamflow. This relationship occurs because of dilution of highly 

mineralized ground water flow by surface runoff during periods of high 

flows. Other research, Gunnerson (1967), Ledbetter and Gloyna (1964), 

has shown estimates of concentrations of major ions may be obtained 

from total dissolved solids concentrations or by specific conductance 

measurements. Temperature, while not as important as an indicator of 

ion concentration as discharge and specific conductance, probably 

relates to ion concentration somewhat because of higher soluability of 

inorganics in warmer water.

The U.S. Geologic Survey collects a daily record of flow, 

conductivity, and temperature at selected stream sites as a part of its 

routine monitoring of surface waters. At some locations complete water 

quality analyses similar to those collected by state agencies are 

performed approximately once a month. Data collected at two such 

locations in the western United States, the Henrys Fork near Linwood,



Utah, and the Gunnison River near Grand Junction, Colorado, were used 

to develop multiple linear regression models to estimate various ion 

concentrations at these sites.

3.3.2 Methodology

The Biomedical Computer Programs, BMD02R, Stepwise Regression 

program available on the Colorado State University computer system was 

used in the regressions. The multiple linear regression model may be 

expressed as follows

48

Y = 1 p. X. + p
1 ^n+ 11=1

(3.25)

where Y is the dependent variable, x^ are independent variables, 

P^ are regression coefficients determined by minimizing the sum of 

squared errors, and n is the number of independent variables. The BMD 

program uses a stepwise procedure in which the most important indepen-

dent variable is initially included and the lesser important variables 

are added to the regression sequentially. Importance of independent 

variables is determined by comparison of the correlation coefficient of 

each independent variable taken separately with the dependent variable. 

Regressions were performed using three independent variables and the 

following transformations

^ 2  * 2  ^3 ’‘3
( 3 . 26 )

:^ +  P 2  ¿ n x 2  +  P 3  ¿ n x ^  +  p ^ ( 3 . 27 )

X i  +  P 2  X 2  +  P 3  X 3  +  p ^ ( 3 . 28 )

£ n X j  +  P 2  ¿ n x 2  +  V 3  £ n x 3  +  P ^ ( 3 . 29 )

where Y = an estimate of water quality variable Y 

Xj = discharge in cfs
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= specific conductance in [jmhos/cm at 25°C 

= temperature in or °C

2
The squared correlation coefficients, r , were calculated for each 

variable and transformation and are presented in the regression 

summaries (Table 3-4).

3.3.3 Results

The water quality variables boron and sulfate at the Henrys Fork 

location were found to fit the multiple linear regression model quite 

well with correlation coefficients of 0.9169 and 0.9310 respectively. 

Simulated records of these variables based on historical records of 

flow, conductivity, and temperature for the water year 1971 are shown 

in Figures 3-1 and 3-2. These simulated time series represent average 

responses of boron and sulfate and may not accurately indicate extreme 

events resulting from spills, very low flows, floods, etc. The data 

used in the model calibration, however, incorporated a large range of 

flows and water quality concentrations and should accurately predict 

concentrations within the range used in the calibration. No particular 

form of the model, i.e., log-log, log-linear, linear-log, or linear- 

linear, seemed to fit consistently better than any other form but the 

HMD program is relatively inexpensive to run so analysis of all possi-

bilities is not an expensive procedure. Of the three independent vari-

ables, flow was generally the most important followed by conductivity 

and temperature.

3.3.4 Discussion

3.3.4.1 Applications

Multivariate regression modeling may be used to provide 

information when samples are not directly taken. This information may



Table 3-4. Summary of correlation coefficients, r ,  obtained with the multiple linear regression model.

Henrys Fork near Linwood, Utah

Dependent-Independent 
Variable Variable Fe NO3 B pH Na HCO3 SO4

Linear-Linear ,0758 .5032 .9169 .2746 .8145 .4375 .9056
Linear-Ln X X .8447 X .8673 .4340 .8878
Ln-Linear X X .8969 X .8344 .5597 .9310
Ln-Ln X X .8506 X .8790 .5582 .9254

Gunnison River near Grand Junction, Colorado

Dependent-Independent 
Variable Variable SiO^ Na K HC03 PO, Ca+Mg SO4 B Cl FI NO3 TDS

Linear-Linear .2341 .9751 .3871 .9649 .7701 .9547 .9945 .2667 .7497 .7920 .8380 .4818
Linear-Log .2389 .9731 .4126 .9716 .6611 .9306 .9673 .2859 .7782 .7270 .7093 .3867
Ln-Linear .1991 .9875 .5144 .9730 .4871 .9682 .9930 .2431 .8582 .6860 .7747 .3127
Ln-Ln .2198 .9828 .5298 .9783 .3563 .9685 .9978 .3209 .8974 .6690 .7060 .1911

Ln
O

model not calculated.



Figure 3-1. Multiple linear regression generation of boron concentration 
for Henry's Fork River near Linwood, Utah, water year 1971.
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Figure 3-2. Multiple linear regression generation of sulfate concentration
for Henry's Fork River near Linwood, Utah, water year 1971.
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then be used to indicate periods of time when samples should be 

collected. Also, if strong correlations are found, the number of 

samples collected per year and/or the number of variables analyzed may 

be reduced. Determination of seasonal and annual mean concentrations 

may be made by averaging daily model estimates and may provide more 

accuracy than the averaging of relatively small samples. In general, 

however, the annual variance should not be calculated from regression 

estimates. Other information available from regression modeling

includes estimation of the magnitude and duration of violation events.

3.3.4.2 Summary

The usefulness of regression modeling involves the 

utilization of more available information than an individual water 

quality sample. At stream sites where daily flow, conductivity and 

temperature data and periodic comprehensive surveys are made, daily 

time series of water quality variables may be generated. These time 

series allow further assessment of the range of magnitude, percentage 

of time in violation, and duration of water quality violations. The 

usefulness of the model is contingent, of course, on obtaining an 

acceptable fit with historic data. The regression parameters fitted to 

historic data should, when possible, be recalculated periodically 

utilizing subsequent monitoring information to keep the model current 

with respect to ion concentration as a function of the independent 

variables.

3.4 Conditional Probability Distributions of Water Quality Variables

3.4.1 Background

3.4.1.1 General Comments

The use of conditional probability distributions in water 

quality management was suggested in Section 3.2.4.1. This section will



propose a more detailed methodology for the determination of 

conditional probability distributions for water quality variables. In 

the preceeding discussion, the partitioning of data into groups associ-

ated with another variable, one with a more complete record, was intro-

duced to gain a better understanding of a variable's range of concen-

tration over a period of time. The procedure developed in this section 

will perform the same function by combining the regression technique of 

Section 3.3 and the lumped data distribution technique described in 

Section 3.2. Data used in this analysis are the same records as used 

in the regression discussion.

3.4.1.2 Model Derivation

Cross correlations between water quality variables are the 

basis for the development of multivariate regression models. These 

cross correlations, however, do not explain the total variance of water 

quality variables as evidenced by correlation coefficients less than 

unity found in Section 3.3. Part of a variable's total variance may be 

attributed to random behavior not linked to other variables through 

cross correlation. The lower the total correlation coefficient, the 

greater the proportion of total variance not explained by the regres-

sion model. The deterministic variance component, the variance of the 

regression model, is necessarily less than the total variance. To 

incorporate the total variance into the multiple linear regression 

model, a random component, e, must be added to Equation 3.25.

54

n
Y = I p. X. + p ,- + e . - 1 '̂ n+l1=1

(3.30)

Y = observed value of a water quality variable
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where 8 = an independent noise term.

This expression may be combined with Equation 3.25

Y = Y + 8 (3.31)

and with

Z = Y - Y (3.32)

to obtain

Z = 8 . (3.33)

The expected value of the residual series, Z, is zero due to the

parameter estimation procedure used in the calibration of the multiple

regression model. The variance of Z is generally not equal to zero

2
and is expressed, . By Equation 3.33 is can be seen that 8 has

2
mean zero and variance equal to . If the residual series is

assumed to follow the normal distribution, 8 may now be expressed 

£ = i (3.34)

where 4 = white noise term N(0,l) 

and Equation 3.30 may be rewritten

Y = I p. X. + P + a 4 •1 "̂ n+l z ^1=1
(3.35)

The variance of a sum of random variables, say V = W + Z, may be 

determined by

VAR[V] = VAR[W] + VAR[Z] - 2 C0V[WZ] (3.36)

where VAR = variance

COV = covariance.
A

Therefore, since Y and 8 are independnet, their covariance is equal to

zero, and the total variance of Y is equal to the sum of the variance

 ̂ 2 
of the deterministic component, Y, and the random component .



3.4.2 Methodology

The probability of a stream standard violation given values of 

discharge, conductivity, and water temperature may be directly assessed 

with knowledge of the residual variance. Combining Equations 3.33 and 

3.34 yields
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Z = o^i .

Now, define the magnitude of the residual, z, as

A

z = S - Y

(3.37)

(3.38)

where z = magnitude of residual

S = stream standard concentration
A

Y = regression estimate of Y concentration.

By rearranging Equation 3.37 it can be seen that a residual, Z, of 

magnitude z, requires a white noise term of

i = (3.39)

The probability of obtaining a white noise term at least this large may 

be found in a cumulative standard normal table. This probability is 

the conditional probability of a stream standard violation given values 

of discharge, conductivity, and water temperature. If the covariances 

between the dependent variable and the independent variables are zero, 

it can be seen the model of Equation 3.35 reduces to an unconditioned 

normal distribution.

The assumption of residual series normality is not a requirement 

of the procedure. Other distributions which allow the random variable 

to take on both positive and negative values may be used providing the 

cumulative probability of the critical standard deviate may be
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evaluated. The normal distribution was used in this work because of 

the ease of using cumulative standard normal deviate tables and because 

the normal distribution fit the residual series quite well. The 

"goodness of fit" of this model may be determined by testing the resi-

dual series for normality and independence with the other variables.

3.4.3 Results

The probabilities of stream standard violations conditioned 

on historic discharge, conductivity, and temperature records for the 

water year 1971 for the Henrys Fork River near Linwood, Utah are shown 

in Figures 3-3 and 3-4. A further illustration of this procedure is 

included in Chapter 4.

3.4.4 Discussion

3.4.4.1 Applications

Possible uses of conditional probabilities in water quality 

management include all of the possible uses of unconditioned probabil-

ity models suggested in Section 3.2. The probability of a stream 

standard violation may be estimated on a daily basis and contribute 

timely information assisting in the decision of when sampling should be 

undertaken. The expected number of days per year or month in violation 

may be obtained by summing the conditional probabilities for each day.

N
E[V] = I P[Vlxj, X2 , X3 ] (3.40)

i=l

where E[V] = expected number of days in violation of stream 
standard

P[V|Xj, X2 , X3 ] = conditional probability of violation of
stream standard, given discharge, conductivity, and 
temperature.

N = number of days in interval.
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Figure 3-3. Probability of boron stream standard violation for 
Henry's Fork River near Linwood, Utah, water year 1971.
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Figure 3-4. Probability of sulfate stream standard violation for
Henry's Fork River near Linwood, Utah, water year 1971.
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The detection of a change in the water quality system may be made by 

assessing the probability of collecting one or more samples equal to or 

greater than specified concentrations (Equation 3.24).

3.4.4.2 Summary

The procedure presented to estimate the conditional 

probability of a stream standard violation is simply the superimposi-

tion of a probability distribution on the residuals of a regression 

model. In the lumped data distribution procedure described in Section 

3.2, an entire series of independent water quality data were used to 

determine a probability distribution which would accurately model the 

behavior of a water quality variable. The information obtained from 

this type of analysis is the daily probability of a stream standard 

violation without regard to season, flow, conductivity, temperature, 

etc. The regression analysis of Section 3.3 defined the deterministic 

relationships between variables but did not account for a random or 

stochastic component. The conditional probability approach combines 

these techniques to provide a maximum amount of information.

The use of conditional probabilities allows the timely 

determination of water quality characteristics. Since discharge, 

conductivity, and temperature are easily monitored continuously, an 

assessment of water quality can be made virtually every day during 

critical periods. The use of discharge, conductivity, and temperature 

is suggested because these variables are currently monitored daily at 

many sampling locations, other variables such as pH and dissolved 

oxygen may also be monitored continuously and may further improve the 

regression model.
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3.5 Water Quality Indexing

3.5.1 Background

3.5.1.1 General Comments

The communication of general water quality conditions and the 

effect of public expenditures on the improvement of water quality is an 

important aspect of water quality management. There is general agree-

ment among water quality professionals that present descriptive tech-

niques are not adequate and a need exists for a uniform and objective 

communication procedure (Thomas, 1976). Water quality indices have 

been suggested by numerous researchers to provide such a procedure. 

Indices previously developed include an index based on eight physical 

and chemical characteristics of water, Horton (1965), indices designed 

for specific beneficial uses, Stoner (1978), an index based upon the 

collective opinion of professionals. Brown et al. (1970) and others. 

Most indexing procedures consist of finding a weighted average or 

geometric mean of values assigned to the concentrations of the water 

quality variables included in the index.

3.5.1.2 Purpose

The purpose of this section is to present two indices, an 

index to reflect changes in water quality and an index to relate water 

quality data to stream standards. According to Harkins (1974), a water 

quality index should summarize water quality concisely and objectively 

and should inform administrators clearly of water quality trends. The 

first index presented here will provide a means of indicating changes 

in water quality by utilizing the conditional probability model of 

Section 3.4 and the second will provide a quasi-objective means of 

rating water quality based on established stream standards.



3.5.2 Methodology

3.5.2.1 Water Quality Change Index

A regression model calibrated with several years of 

background, fixed station/fixed frequency water quality data may be 

used as the basis for indexing changes in water quality variables. It 

is first necessary to calculate the residual series from samples col-

lected over a specified interval of time, for example, one year.
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where

Z. = Y. - Y.
I l l

= residual of sample

(3.41)

Y^ = regression estimate of sample concentration 

Y^ = measured sample concentration 

i = sample counter.

A new variable, U, may be determined as the sum of the residuals.

U = I Z. 
i=l ^

where n = number of samples collected in a year. 

Now define V as

v = -M_

(3.42)

viTi|
(3.43)

where a„ = residual variance of model calibration as determined in 
Section 3.4.2.

If the residual series is assumed to be normally distributed and 

stationary, V can be shown to be normally distributed with mean zero 

and variance unity. With these assumptions, the cumulative probability 

of V, (denoted P) may be found in a cumulative standard normal deviate 

table. The index proposed here is the cumulative probability of V 

minus 0.5 and multipled by 100.
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Index = (P - 0.5) x 100 (3.44)

This index contains values from -50 to 50 where positive values suggest 

improving quality and negative values suggest degrading water quality. 

If no change has occurred in the water quality system, index values can 

be shown to be uniformly distributed over the range -50 to 50 (Mood 

et al., 1974, p. 202).

H3q)othesis testing theory may now be used to make inferences 

regarding water quality changes from index values. A detailed discus-

sion of hypothesis testing will not be presented here but the inter-

ested reader may consult the references cited in Section 3.2.1.1. 

Simply stated, in hypothesis testing one specifies the probability, a, 

of rejecting the null hypothesis when in fact it should have been 

accepted. This type of error is commonly referred to as a Type I error.

Applying this approach to the water quality change index requires 

the null hypothesis to be specified as an unchanged system and the 

alternative hypothesis as a changed system. The user must then specify 

a, the probability of incorrectly assessing water quality as changed, 

i.e., degraded or improved, when in fact it is unchanged. It is now 

necessary to find the critical values of the index, denoted ±(|), where 

water quality will be described as improved or degraded with the given 

significance level, a. Since index values are uniformly distributed, 

critical index values may be determined

(3.45)

where 0 = critical index values

a = chosen significance level expressed as a percentage. 

Table 3-5 presents criteria for evaluating index values with the chosen 

significance level, a.

<}> = ±(50 - |)
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Table 3-5. Water quality change index evaluation.

Row Index Value Assessment

1 -50 to -(j) Degraded water quality

2 -(j) to (|) Unchanged water quality

3 (]) to 50 Improved water quality

To illustrate this method, assume that a has been specified to 

be 10 percent. By Equation 3.45, the critical values of the index are 

-45 and +45. Using Table 3-5 it can be seen that calculated index 

values greater than or equal to +45 indicate improved water quality 

and index values less than or equal to -45 indicate degraded water 

quality. Furthermore, an assessment of improved or degraded water 

quality will be incorrectly made, when in fact the quality is 

unchanged, 10 percent of the time. The probability of correctly 

assessing water quality as changed is uncertain as it depends upon the 

magnitude of the change.

3.5.2.2 Stream Standard Compliance Index

Water quality is a multivariate system, and to determine 

compliance/noncompliance of a river with stream standards it is neces-

sary to compare each individual constituent with the associated stan-

dard. The purpose of this section is to present a water quality index 

which expresses, in a single number, river compliance or noncompliance 

with stream standards. This work is similar to the index proposed by 

Stoner (1978) which is based upon variables and critical concentrations 

defined for specified beneficial uses in state stream standards 

documents.



As discussed in Chapter 2, most states have stream standards 

expressed as limiting concentrations not to be exceeded for variables 

important to specific uses. The index proposed in this section assigns 

water quality values from zero to 100 linearly as variable concentra-

tion varies from the stream standard to zero. For variable concentra-

tions greater than the standard, the water quality value is specified 

as a constant zero. For standards expressed as a minimum value not to 

be exceeded, such as dissolved oxygen, this relationship is reversed, 

and for a two sided standard, such as pH, the water quality value 

function takes on a triangular shape. The linear relationship between 

concentration and water quality value is assumed for simplicity but 

other functions may be used for certain variables where justified. 

Beneficial aspects of small concentrations of certain variables are 

overlooked by this procedure but the capability of the index to indi-

cate stream standard compliance is not hindered. The index of stream 

standard compliance is
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n  ̂,
Index = ( n WQV.) (3.46)

i=l

where WQV = water quality value for variable i

n = number of variables included in stream standard for 
specific use.

This index contains values from 0 to 100 with nonzero values indicating 

compliance with stream standards. An index value of zero indicates 

that at least one variable is equal to or above its stream standard and 

the river is therefore out of compliance. Larger positive values are 

generally associated with waters of better quality.



The stream standards compliance index may be used with individual 

samples, regression estimates, or with average values calculated over 

some interval by any of the procedures suggested in preceeding sec-

tions. Probability distributions of either the lumped data or parti-

tioned data varieties may be fitted to index values since the index 

value is a random variable. Regression modeling and the determination 

of conditional probabilities of stream standards noncompliance may also 

be performed. Daily estimates of stream standards compliance index 

values may be obtained by utilizing variable concentration estimates 

from multivariate regression models. The daily probability of an index 

value of zero may be obtained from the conditional probabilities of 

violation for each variable.
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where

P =

P =

P. = 
1

n =

1 - 7t (1 - P.) 
i=l

(3.47)

probability of index value of zero given flow, 
conductivity, and temperature

conditional violation probability of variable i 

number of variables.

By observing the probability of stream standard violations on a 

frequent basis, a management agency may be able to monitor rivers 

intensively during periods of likely violations.

3.5.3 Discussion

Stream standards represent society's wish to maintain waters of 

suitable quality for specific beneficial uses. It is the responsibil-

ity of water quality management agencies to determine compliance or 

noncompliance of rivers with stream standards and to assess changes in 

water quality. It is also the responsibility of management to
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communicate these findings to legislators and the public in a manner 

that is understandable to the lay person. The use of water quality 

indices may provide such capability.

3.6 Summary

Water quality standards as used by most states are expressed as 

limiting concentrations not to be exceeded. Water quality is, however, 

a stochastic process and there is always a probability that a standard 

is being violated even though average conditions may be acceptable. 

Data collected by fixed station/fixed frequency monitoring networks 

contain little information regarding when such violations occur. 

Indeed, unless a sample is collected at precisely the time a violation 

is occurring, it will go undetected. By incorporating water quality 

data into the calibration of statistical models, the relative frequen-

cies of violations may be assessed even if they are not directly 

detected. Also, statistical models may allow the timely identification 

of periods of time when samples should be collected by utilizing avail-

able information regarding current river conditions. Statistical 

models provide additional information which may be used to assist 

management agencies in the operation of monitoring networks, general 

assessment of water quality, and communication of water quality to the 

public.

The most basic procedure discussed in the chapter is the use of 

lumped data probability distributions. These distributions may be used 

to determine the daily probability of a stream standard violation and 

the expected number of violations in a period of time. Since flow and 

a few other variables are measured more frequently than most water 

quality variables, the partitioning of data sets into groups associated
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with these variables is suggested for a more detailed determination of 

the probability of a violation at a certain time. These techniques 

require temporally independent data such as the data most often col-

lected by routine fixed station/fixed frequency monitoring networks.

Multiple linear regression modeling and conditional probability 

modeling of stream standard violations require frequent measurement of 

indicator variables such as discharge, specific conductance, and water 

temperature. Multiple linear regression modeling allows the determina-

tion of the deterministic component of a variable's change in time 

based on the correlation structure of the variable with indicator 

variables. This technique is useful in the determination of annual and 

seasonal means, the likely range of concentration, and the identifica-

tion of critical monitoring periods. The conditional probability 

technique is a combination of probability distribution modeling and 

regression analysis. This method may be used in the evaluation of 

daily probabilities of stream standard violations which are useful in 

determining the expected number of stream standard violations in a 

period of time and helpful in the operation of monitoring programs.

The two water quality indices presented allow stream standard 

compliance or noncompliance and water quality changes to be communi-

cated to the general public in a simple, concise manner. The water 

quality change index uses the conditional probability technique as a 

basis from which changes may be quantitatively assessed. The stream 

standards compliance index simply communicates compliance/noncompliance 

of river water with stream standards and may be used with probability 

distribution models, multivariate regression models, or conditional 

probability models to provide further information helpful to management 

agencies.



ILLUSTRATION OF STATISTICAL PROCEDURES:
A CASE STUDY - THE LITTLE WABASH RIVER NEAR LOUISVILLE, ILLINOIS

4.1 Introduction

4.1.1 Background Information

This chapter will present an illustration of many of the 

methodologies suggested in Chapter 3. The analyses will be made using 

data collected by routine monitoring networks operated by the U.S. 

Geological Survey for the Little Wabash River near Louisville, 

Illinois. The results of the analyses will be compared to a daily 

record of water quality variables collected during the water year 1977 

by the Illinois State Water Survey. In this manner, some of the advan-

tages and disadvantages of the various statistical techniques may be 

assessed. The work presented in this chapter is limited to an analysis 

of one year for four variables and broad generalizations may not be 

drawn based on this study alone.

The chapter is organized to follow the order the material is 

presented in Chapter 3 and most of the procedures are referenced from 

sections in that chapter. Each statistical procedure is briefly 

described and the data used in the analysis is identified. The results 

are siunmarized briefly and intermediate and final computations are 

presented in tables. Where appropriate, figures depicting the results 

are included. A brief summary for each procedure describes the rela-

tive merits and weaknesses of each analysis as indicated by the case 

study.

Chapter 4



70

4.1.2 Data

Data sets used in the chapter are referred to in Table 4-1 which 

summarizes the contents of each set. U.S. Geological Survey records of 

chemical analyses collected approximately monthly at the Louisville 

station from 1970 to 1978, data set 1, are the principal data used in 

the statistical model calibration procedures. Data sets 2a and 2b are 

subsets of data set 1 associated with low and high flows respectively. 

Samples collected during flows of 250 cfs or less are included in data 

set 2a and other samples are included in data set 2b. The partitioning 

threshold of 250 cfs was chosen to split the data into groups with 

about one-third of the samples associated with high flows. This was 

done to provide more samples and thus better definition for low flow 

conditions when water quality is often most critical. U.S. Geological 

Survey daily records of discharge, specific conductance, and water 

temperature for water year 1977, data set 3, are used in the data 

generation models. The Illinois State Water Survey collected a daily 

record of water quality variables for the water year 1977, data set 4, 

and these data were used to compare the results of the analyses made 

with U.S. Geological Survey data. A sample of 12 days were arbitrarily 

selected from the Illinois data, the 15th day of each month for the 

year, to provide a typical state water quality record for the partic-

ular year, data set 5 (Table 4-2). Data collected by the U.S. Geologi-

cal Survey would have been better suited for this purpose but no 

monthly chemical analyses were made by the agency in 1977. Field and 

laboratory procedures were assumed to be consistent for state and 

federal data for purposes of this work.
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Table 4-1. Data used in case study.

Data
Set Agency

Period of 
Record

Number of
Samples Frequency Variables

1 U.S.G.S. 1970-78 79 Monthly Aik, Hardness, Mn,
TDS

2a U.S.G.S. 1970-78 45 Monthly Aik, Hardness, Mn,
TDS

2b U.S.G.S. 1970-78 25 Monthly Aik, Hardness, Mn,
TDS

3 U.S.G.S. 1976-77 271 Daily Flow,, Conductivity,
Temperature

4 Illinois State 1976-77 365 Daily Aik, Hardness, Mn,
TDS

5 Illinois State 1976-77 12 Monthly Aik, Hardness, Mn,
TDS

Table 4-2. Data Set 5.

Alkalinity Hardness Mn TDS
Date (mg/1 ) (mg/1 ) (ppb) (mg/1 )

Oct. 15, 1976 108 142 450 198
Nov. 15 142 196 510 —
Dec. 15 254 286 230 —
Jan. 15, 1977 282 328 490 —
Feb. 15 44 94 380 197
Mar. 15 92 144 300 237
Apr. 15 216 298 280 415
May 15 200 246 250 360
June 15 256 282 650 369
July 15 120 140 490 214
Aug. 15 190 216 720 331
Sep. 15 92 124 270 220

Mean 166.33 209.50 418.33 282.33
Standard Deviation 77.12 80.06 160.90 85.52
Coefficient of Skew .036 .054 .585 .435



The water quality variables alkalinity, total hardness, manganese, 

and total dissolved solids (residue at 180°C) were selected for analy-

sis. These variables were collected by both state and federal agencies 

and had fairly complete records at the Louisville location. Each of 

these variables have standards suggested in the "Red Book" (EPA, 1976) 

which were used to represent typical stream standards.

4.2 Probability Distribution Analysis

4.2.1 Modeling Procedure

The determination of probability distributions to model the 

behavior of water quality variables begins with the calculation of 

sample statistics. The sample mean, standard deviation, and coeffi-

cient of skew were calculated for data sets 1, 2a, 2b, and 5 and are 

presented with selected models in Table 4-3. Model selection was based 

on the coefficient of skew criteria suggested in Table 3-3. For sim-

plicity, distribution parameters were calculated using the method of 

moment estimators provided with the probability distribution descrip-

tion of Section 3.2.2 and are shown in Table 4-4. The parameter, p, of 

the Gumbel distribution was calculated using Equation 3.17 since the 

four variables used in the analysis have standards expressed as maximum 

concentrations not to be exceeded. If the Gumbel distribution were to 

be used to model a variable with a standard expressed as a minimum 

concentration not to be exceeded. Equation 3.18 should be used.

The daily probability of a stream standard violation may be 

directly estimated using the probability distributions determined for 

data sets 1 and 5 by using Equation 3.21a
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00
P[V] = f fjj(x) dx 

s
(3.21a)
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Table 4-3. Sample statistics for data used in case study.

Variable Standard
Data
Set n X a

A,
g

Selected
Distribution

Alkalinity 300 mg/SL 1 55 155.09 58.08 .1 0 Normal
2a 32 179.50 52.79 -.28 Normal
2b 23 121.13 hi.11 .68 Gamma
5 12 166.33 77.12 .04 Normal

Hardness 300 mg/£ 1 55 215.64 69.68 -.03 Normal
2a 32 236.59 67.08 -.35 Normal
2b 23 186.48 63.64 .35 Gamma
5 12 209.50 80.06 .05 Normal

Manganese 1000 ppb 1 66 263.73 201.14 1.37 Gumbel
2a 42 319.88 213.57 1.29 Gumbel
2b 24 165.46 131.10 .54 Gamma
5 12 418.33 160.90 .59 Gamma

TDS 500 mg/£ 1 56 323.29 94.69 .2 1 Gamma
2a 40 340.83 95.50 - . 0 1 Normal
2b 16 279.44 69.11 . 1 1 Gamma
5 9 282.33 85.52 .44 Gamma



Table 4-4. Parameters used in probability distribution modeling of case study data.

Variable Data Set Distribution
A A

a X
A

n
A

a

Alkalinity 1 Normal 155.09 58.80 - - - - —

2a Normal 179.50 52.79 — — — - -

2b Gamma - - — 0.0531 6 .43 — —

5 Normal 166.33 77.12 - - — — - -

Hardness 1 Normal 215.64 69.68 _ — — . . -

2a Normal 236.59 67.08 — - - - - - -

2b Gamma - - - - 0.0460 8.59 - - - -

5 Normal 209.50 80.06 - - - - - - - -

Manganese 1 Gumbel — - - — — 156.77 173.22
2a Gumbel — — — - - 166.46 223.78
2b Gamma - - - - 0.0096 1.59 - - - -

5 Gamma - - - - 0.0162 6.76 — - -

TDS 1 Gamma — — 0.0361 1 1 .6 6 » .

2a Normal 340.83 95.50 — - - - - - -

2b Gamma — — 0.0585 16.35 — - -

5 Gamma — — 0.0386 10.90 - -
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For the distributions used in this work, however, evaluating the 

exceedence probability of a stream standard with the cumulative 

distribution is a more simple task.

P[V] = 1 - F^(s) (4.1)

where F (s) = cumulative probability distribution evaluated at the 
stream standard, s.

The cumulative distribution of the normal may be evaluated by finding 

the cumulative probability of the standard normal deviate, Z, in a 

table.

Z = (4.2)

where Z = standard normal deviate 
s = stream standard
p = population mean (sample mean may be substituted as an 

approximation)
a = population standard deviation (sample standard deviation 

may be substituted as an approximation).

The cumulative gamma distribution may be evaluated using a chi-square

table. Enter the table with

V = 2n (4.3)

and = 2Xs (4.4)

where v = degrees of freedom 

2
X = chi-square value 

n = gamma distribution parameter 

X = gamma distribution parameter 

s = stream standard concentration.

The cumulative Gumbel distribution for maximum values is expressed

F^(s) = exp[-exp(-w)] (4.5)

and for minimum values



76

F^(x) = 1 - exp[-exp(w)]

, ' ‘ i  -  P
where w = ------

(4.6)

(3.12)

These distributions may be evaluated at a stream standard by substitut-

ing the stream standard concentration for x^ in Equation 3.12.

The estimation of the daily probability of a stream standard 

violation using flow-partitioned data, data sets 2a and 2b, may be 

accomplished in a manner similar to the unpartitioned case. It is 

first necessary to evaluate the cumulative distributions for each data 

subset and determine the exceedence probability of the standard as 

described above. The daily probability of a violation may then be 

determined as

P[V] = (^- ^ )  P^iV] + (g) P^[V] (4.7)

where N = total number of days in interval

n = number of days with flows above partitioning value 

P [V] = violation probability for low flows 

P^[V] = violation probability for high flows.

The daily probability of a stream standard violation for a 

particular variable is an indication of the water quality with respect 

to the variable. Another indication of water quality is the expected 

number of days the river is in violation with a stream standard. This 

may be estimated by multiplying the daily violation probability by the 

number of days in the interval. The daily probability of a stream 

standard violation, the expected number of violations, and the actual 

number of Violations for the variables used in this analysis for the 

Little Wabash River near Louisville, Illinois, water year 1977, are 

summarized in Table 4-5.



Table 4-5. Comparison of expected number of violations and observed number of violations.

Variable

No. of 
Days of

Historic Record

Actual 
No. of 

Violations

Expected 
No. of 

Violations

Daily
Violation
Probability

Probability
Model

Alkalinity 365 18 2.30 .0063 1
365 18 3.61 .0099 2
365 18 15.15 .0415 3
271 18 0 0 4
271 18 6.18 .0228 5

Hardness 365 69 41.25 .1130 1
365 69 56.36 .1544 2
365 69 47.16 .1292 3
271 69 57 .2103 4
271 69 60.77 .2242 5

Manganese 365 26 1 .8 6 .0051 1
365 26 2.92 .0080 2
365 26 1.06 .0029 3
271 25 0 0 4
271 25 21.87 .0807 5

Total Dissolved 246 0 10.97 .0446 1
Solids 246 0 10.95 .0445 2

246 0 3.62 .0147 3
230 0 0 0 4
230 0 0 0 5

1) Lumped data probability distribution
2) Flow-conditioned probability distribution
3) Annual sample probability distribution
4) Multipe linear regression
5) M.L.R.-conditioned distribution.
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4.2.2 Results

In general, the best estimate of the expected number of stream 

standard violations was obtained (of the three probability distribution 

models) by the flow-conditioned distributions and the annual sample 

distributions. In Table 4-5 it may be seen that these two methods

generally had better agreement with the observed number of violations 

than the lumped data distributions. This result may be expected 

because the flow-conditioned and annual sample distributions utilized 

information from the year in question and the lumped data distributions 

do not. All three methods underestimated the number of violations for 

alkalinity, hardness, and manganese and overestimated for total dis-

solved solids. The sample data when compared individually with stream 

standards detected no violations for alkalinity, hardness, or total 

dissolved solids and only one violation of hardness. The probability 

of violation is greater for low flow distributions than for high flow 

distributions for all variables.

The probabilities of obtaining the sample series for each 

variable, data set 5, from the distributions determined for the lumped 

data, data set 1 , were estimated utilizing the procedure suggested in 

Section 3.2.4.1. The maximum and minimum values of each variable in 

the sample set were identified and the cumulative probability and 

exceedence probability were computed respectively. The probability of 

all samples being less than the maximum and greater than the minimum 

concentrations of the samples may be obtained by substituting the 

cumulative probability and exceedence probability into Equation 3.24.

(4.8)

(4.9)

P[X = max] = (F (X ))^ 
max X max

P[X . = min] = (1 - F (X . ))"
min  ̂ X min"̂ '
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where P[X = max] = probability that the maximum of a random series
is equal to or less than observed maximum.

P[X . = min] = probability that the minimum of a random series
is equal to or less than observed minimum.

F (x) = cumulative distribution evaluated at X
X

n = number of samples.

The results of this analysis for the Little Wabash River are summarized 

in Table 4-6, and indicate the samples collected for alkalinity, hard-

ness, and TDS were not unlikely samples to be drawn from their respec-

tive distributions. The sample series of manganese concentrations, 

with a minimum value of 230 ppb, however, could be expected to be drawn 

from the lumped data distribution of manganese less than one time in a 

thousand suggesting a likely change in the behavior of this variable.

4.2.3 Summary

The lumped data distribution method, probably, most accurately 

describes the average behavior of water quality variables of the prob-

ability models suggested in Chapter 3 because it incorporates all 

samples regardless of conditions existing at the time of sampling. 

However, as seen from the results of the Little Wabash River study, 

this technique may not be expected to produce accurate indications of 

water quality in any one particular year. The lumped data distribution 

may serve as an overall indication of water quality and may be used 

with annual sample data to indicate extreme water quality events. The 

flow-conditioned probability distribution method utilizes partitioned 

samples collected at monitoring locations and may be expected to yield 

better estimates of violation probability on a yearly basis than the 

lumped data distribution. Annual sample data, as shown in the case 

study, may not be expected to directly detect stream standard



Table 4-6. Probability of randomly collecting samples with the maximum and minimum
values found in data set 5.

Variable
Number of 
Samples

Maximum
Concentration

(mg/£)

Minimum
Concentration

(mg/2 )

Probability of 
all Samples 
less than 
Maximum

Probability of 
all Samples 
greater than 
Minimum

Alkalinity 12 282 44 .840 .712

Hardness 12 328 94 .518 .610

Manganese 12 0.51 0.23 .247 .000

Total Dissolved 
Solids

9 415 197 .204 .504

00
o
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violations. Annual samples may provide useful information when used 

with probability distributions, however, to estimate the frequency of 

violations and to detect unusually high or low sample concentrations.

4.3 Multiple Linear Regression Analysis

4.3.1 Modeling Procedure

Multiple linear regression models were developed for the Little 

Wabash River near Louisville, Illinois using U.S. Geological Survey 

data. Models were developed to predict daily concentrations of alka-

linity, hardness, manganese, and total dissolved solids based on daily 

records of discharge, specific conductance, and water temperature. 

Data used in the calibration procedure included daily average flow, 

conductivity, and temperature (data set 3) and grab samples of the four 

predicted variables (data set 1). The BMD02R stepwise regression 

computer program was used to determine the parameters of the models.

This program also calculates the total squared correlation coefficient, 

2
r , of the model which was used to determine the best fitting trans-

formation of Equations 3.26-3.29. A summary of best fitting transform-

ations, model correlation coefficients, and model parameters for the 

Little Wabash River near Louisville, Illinois is found in Table 4-7.

4.3.2 Results

Data generations of daily concentrations of alkalinity, hardness, 

manganese, and total dissolved solids were made for the water year 1977 

and compared with actual daily records collected by the Illinois State 

Water Survey (Figure 4-1 to 4-4). The hardness data generation was 

found to be shifted up significantly from actual observations and this 

discrepancy is thought to be due to differing analytical procedures 

used by the state and federal agencies responsible for the data



Table 4-7. Multiple linear regression model parameters calculated from data set 1.

Y
1*1 P3

Transformation 
of Y

Transformation 
of X ’s

2
r

Alkalinity -.00747 .27686 1.50465 -.89111 None None .7371

Hardness -.00400 .37868 -.17609 27.09279 None None .9191

Manganese -.27866 .37223 -.52241 2.79824 Log 10 Log 10 .3944

Total Dissolved 
Solids

.00187 .87158 -.01652 .16279 Log 10 Log 10 .9544

Y = + P2X2 + P3X3 + P4

where = discharge (or log 10 discharge) (cfs)

X2 = specific conductance (or log 10 specific conductance) (pmhos/cm at 25®C)

X^ = water temperature (or log 10 water temperature) (°C for no transformation and °F for 
log 10 transformation)

00
hO
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Figure 4-1. Multiple linear regression generation of alkalinity concentration for
the Little Wabash River near Louisville, Illinois, water year 1977.
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Figure 4-2. Multiple linear regression generation of hardness concentration for
the Little Wabash River near Louisville, Illinois, water year 1977.
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Figure 4-3. Multiple linear regression generation of manganese concentration for
the Little VVabash River near Louisville, Illinois, water year 1977.
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Figure 4-4. Multiple linear regression generation of total dissolved solids concentration for
the Little Wabash River near Louisville, Illinois, water year 1977.



The number of days regression estimates are above a stream 

standard is a method of determining the expected number of stream 

standard violations in an interval of time, a summary of the expected 

number and actual number of violations for the data used in this analy-

sis is found in Table 4-5. Mean concentration determined by averaging 

daily model estimates and averaging the sample data of data set 5 are 

compared to observed annual mean concentrations of alkalinity, hard-

ness, manganese, and total dissolved solids in Table 4-8. It can be 

seen that annual mean concentrations were consistently estimated most 

accurately by averaging regression estimates.

Table 4-8. Annual mean concentration estimates.
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Sample Data 
(Data Set 5)

Regression
Estimates

Actual
Observations

Alkalinity 166.33 mg/£ 190.33 192.51

Hardness 209.50 mg/£ 264.92 243.39

Manganese 418.33 ppb 429.16 744.98

Total Dissolved 
Solids

282.33 mg/£ 343.71 346.47

4.3.3 Summary

Multiple linear regression modeling may be used to simulate water 

quality variable records based upon daily records of discharge, 

specific conductance, and water temperature. As seen in the analysis 

of the Little Wabash River, the model indicates periods of time when 

stream standard violations are likely to be occurring. If a principal 

objective of a water quality monitoring program is the detection of 

violations, regression modeling may provide current information 

regarding when samples should be collected. As a general indication of
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water quality with respect to a stream standard, the expected number of 

violations occurring in an interval may be estimated with a multi-

variate regression model. The indication of extreme events due to 

spills, accidents, etc. may not be accurately simulated by a regression 

model unless conductivity values respond substantially to the event. 

However, the model may be expected to partially respond to such events 

and indicate the need to monitor even if simulated values are 

significantly lower than actual concentrations. Estimates of mean 

annual concentration, more accurate than from annual sample data, may 

be obtained by averaging regression model estimates.

4.4 Conditional Probability Analysis

4.4.1 Modeling Procedure

Conditional probability models based on multivariate regression 

models were developed for alkalinity, hardness, manganese, and total 

dissolved solids for the Little Wabash River near Louisville, Illinois. 

The multiple linear regression models developed in Section 4.3 serve as 

the basis for the following work. The residual series was calculated 

by Equation 3.32 for each model with the data used in the calibration 

procedure and the residual means and variances were determined. For 

the conditional probability model of Equation 3.35 to be valid, the 

residual series must be normally distributed and independent. The 

normality requirement was tested using the chi-square "goodness of fit" 

criteria with six class intervals at the 10 percent significance level. 

Independence was checked by comparing the correlation coefficients 

between the residual series and other variables with the 95 percent 

probability limits of independent correlation coefficients (Jenkins and 

Watt, 1969).
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r' = ±
Vn

( A . 10)

where r' = probability limits 

N = number of samples.

The hypothesis that r = 0 is accepted if the calculated correlation 

coefficient falls within the limits of Equation 4.10. A summary of 

residual statistics is found in Table 4-9.

4.4.2 Results

The hypothesis of residual series normality, tested with the 

chi-square "goodness of fit" criteria, was accepted for each residual 

series at the 10 percent significance level. The test of residual 

independence was accepted for each variable except observed concentra-

tion, Y. Independence with this variable is not a model requirement 

and the effect of dependence is accounted for in the noise variance 

term, | a^, of Equation 3.35. It is desirable, however, to remove 

this dependence, if possible, by utilizing transformations other than 

those used in this work (Equations 3-26 to 3.29) and/or a nonlinear 

modeling approach. The effect of removing all variable dependence is 

to minimize the residual variance and thus best define the process. 

The scope of this research did not allow the assessment of alternative 

modeling procedures.

The daily probabilities of stream standard violations for the four 

variables used in this analysis are plotted in Figure 4-5 to 4-8. The 

expected number of violations for each variable were calculated by sum-

ming daily violations probabilities and are shown in Table 4-5. It can 

be seen that of the procedures used in this case study, the expected 

number of violations were generally best estimated by the conditional



Table 4-9. Normality and independence check of residuals for conditional probability model.

Variable N Z d (i) v2
^3,.10

Accept/
Reject
Normality

r Independence 
Interval 

+r' -r'

Accept/
Reject

IndependenceQ u T Y Y

Alkalinity 55 0 29.782 4.02 6.3 Accept 0 0 0 .513 0 . 264 -. 264 Accept^^^

Hardness 55 0 19.820 .31 6.3 Accept 0 0 0 .284 0 .265 -.264 A .(2)Accept

Manganese 64 0 .302 5.19 6.3 Accept 0 0 0 .778 0 .245 -.245 Accept^^^

Total
Dissolved 56 0 .028 3.36 6.3 Accept 0 0 0 .214 0 .262 .262 Accept
Solids

(1)

(2)
Calculated chi-square statistc.

Independence accepted between residual series and all other variables except actual 
concentration, Y.

VO
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Figure 4-5. Probability of alkalinity stream standard violation for the
Little Wabash River near Louisville, Illinois, water year 1977.
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iiigure 4-b. Probability of hardness violation for the Little
Wabash River near Louisville, Illinois, water year 1977.



Figure 4-7. Probability of manganese violation for the Little Wabash
River near Louisville, Illinois, water year 1977.
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Figure 4-8. Probability of total dissolved solids violation for the Little Wabash
River near Louisville, Illinois, water year 1977.
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probability method. This may be expected due to the utilization of 

both information regarding conditions in the Little Wabash River during 

the year of the analysis and information regarding the historical 

behavior of each variable.

4.4.3 Summary

The conditional probability analysis of the Little Wabash River 

near Louisville, Illinois for the water year 1977 indicated periods of 

stream standard violations or near violations with relatively high 

violation probability. The conditional probability model was found to 

fit alkalinity, hardness, manganese, and total dissolved solids records 

acceptably well with the exception of residual series dependence with 

observed variable concentration. This problem is not critical to model 

performance. The expected number of stream standard violations were 

generally better estimated using this approach over other methods 

suggested in this report.

4.5 Water Quality Index Analysis

4.5.1 Change Detection Index

4.5.1.1 Procedure

The change detection water quality index presented in 3.5.2.1 

was utilized with the conditional probability models developed in the 

previous section and a set of typical annual samples, data set 5, for 

the Little Wabash River. Residual series were calculated for each 

variable from regression model estimates and observed values as shown 

in Equation 3.41. A new variable, U, was calculated from each series 

as the sum of residuals. Since the residual series of each variable 

were shown to be normally distributed by the chi-square test of 

Section 4.4, the variables, U, are also normally distributed and may be 

standardized by Equation 3.43.
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Table 4-10. Change detection index values for the Little Wabash 
River near Louisville, Illinois, water year 1977.

Sample
Number

Alkalinity
Residual

Hardness
Residual

Manganese
Residual

(log)

TDS
Residual

(log)

1 32.27 46.94 -.0430 .0513
2 13.13 35.60 .0405 —
3 -38.67 33.52 .4822 --
4 -21.56 56.55 .2775 —
5 35.56 48.24 -.5053 .0455
6 25.48 21.77 -.4279 .0132
7 1.12 -17.83 -.1240 -.0136
8 -20.63 -38.73 -.0281 -.0437
9 -32.38 -1.33 -.2966 .0365

U = I Z. 
1

-5.68 184.73 -.6247 .0892

29.78 19.82 .302 .028

268.04 178.38 2.718 .168

16.37 13.36 1.649 .410

WQI -13.68 50.00 -14.80 8.71

4.5.1.2 Results

Change detection index values calculated for the four 

variables are shown in Table 4-10. Using the critiera suggested in 

Table 3.5, only one variable, hardness, indicated a change at the 10 

percent significance level. This result is probably attributable to 

differing laboratory or sampling procedures used by the state and 

federal data collection agencies and not to a change in hardness con-

centration behavior. Observed alkalinity and manganese concentrations 

were somewhat higher than would have been expected, as indicated by 

negative index values, suggesting the possibility of degrading water 

quality with respect to these variables. Observed total dissolved 

solids concentrations were somewhat lower than would have been expected
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indicating possible improving water quality with respect to this 

variable. Index values for alkalinity, manganese, and total dissolved 

solids were close enough to zero, however, to not clearly indicate 

improving or degrading water quality. The manganese violation event 

was not well indicated by the index because samples were not collected 

during the period of highest concentrations.

4.5.2 Stream Standards Compliance Index

4.5.2.1 Procedure

The stream standards compliance water quality index presented 

in Chapter 3 was calculated for each individual sample of data set 5 

and the annual mean concentration for each variable as determined by 

averaging regression model estimates. Water quality values for the 

index were calculated using the linear relationship suggested in 

Section 3.5.2.2 and stream standards obtained from the Red Book (EPA, 

1976). The stream standards used in this analysis are shown in 

Table 4-3. For convenience, the index was computed using a contrived 

set of variables consisting of those used in previous analyses. In 

actual practice the index would be calculated using all variables 

included in a state stream standards document corresponding to the 

beneficial uses designated for the particular river reach.

4.5.2.2 Results

The stream standards compliance index was computed for each 

sample in data set 5 and the annual mean concentration estimations 

based on regression model predictions and are shown in Table 4-11. The 

Little Wabash River was out of compliance one time out of 12 samples 

and was in compliance on an annual basis. Of the 11 monthly samples in 

compliance, index values ranged from 12.3 to 68.5 and averaged 41.75



99

Table 4-11. Stream standards compliance index values for the Little 
Wabash River near Louisville, Illinois, water year 1977.

Sample 1 2  3 4 5 6 7 8 9 10 11
Annual 

12 mean

WQI 57.8 44.7* 17.7* 0* 68.5 60.4 12.3 30.3 16.9 55.3 31.4 63.9 29.55

''Calculated with only three variables because of missing data.

indicating water quality generally suitable for the designated river 

use. The index was also calculated on a daily basis using daily 

regression model predictions of alkalinity, hardness, manganese, and 

total dissolved solids as shown in Figure 4-9. The daily probability 

of an index value of zero was calculated according to the procedure 

suggested in Section 3.5.2.2 and is shown in Figure 4-10.

4.5.3 Summary

The results of the Little Wabash River change detection index 

analysis indicated no significant changes associated with alkalinity, 

manganese, or total dissolved solids concentrations. Significantly 

lower concentrations of hardness, evidenced by an index value of 50.00, 

were thought to be due to data aquisition inconsistencies. Data incor-

porated into the use of this index must be of consistent quality for 

meaningful analysis. The short-term pollution event of manganese was 

not well indicated by the index due to poorly timed sampling.

The results of the stream standard compliance index indicated the 

Little Wabash River was generally in compliance in water year 1977 with 

the artificial management system used for illustrative purposes in this 

analysis. As shown in the preceeding work, the index may be used with 

regression models and conditional probability models to generate daily 

information assisting in the allocation of monitoring resources.
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Figure 4-9. Multiple linear regression generation of stream standard compliance
index values for the Little Wabash River near Louisville, Illinois,
water year 1977.



Figure 4-10. Probability of stream standard compliance index value equal to 
zero for the Little Vabash River near Louisville, Illinois, 
water year 1977.



Chapter 5

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

5.1 Summary and Conclusions

Since the mid-1960's public concern over the quality of the 

environment has prompted remedial legislation at all levels of govern-

ment. River water quality has been the focus of much environmental 

attention and considerable amounts of public money have been spent in 

attempting to assess and improve river quality. The federal government 

has required the states to promulgate stream standards, to determine 

compliance or noncompliance of surface waters with standards, and to 

assess improving or degrading water quality. Enforcement of acceptable 

water quality has been changed from in-stream monitoring to effluent 

permit monitoring due to the difficulty of determining parties respon-

sible for violations by monitoring river conditions. Stream standards 

and monitoring remain an important aspect of state water quality man-

agement, however, in the assessment of the success of water quality 

efforts.

States have typically incorporated stream standards which include 

narrative standards, specific numeric criteria, and low flow stream 

standard exemption policies. The narrative standards generally apply 

to all surface waters and define critical levels of man-made pollutants 

such as oil and grease. Numerical criteria are established for vari-

ables considered important for designated beneficial uses assigned to 

each river reach in the state. Specific criteria are generally
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expressed as limiting concentrations not to be exceeded by the various 

constituents at any time except during critical low flows. The criti-

cal low flow criteria most often used by states is the seven day-ten 

year low flow.

River water quality is monitored by both federal and state 

agencies with the principal responsibility belonging to states. 

l3T)ical monitoring networks consist of fixed station/fixed frequency 

sampling locations where numerous water quality variables are analyzed 

on approximately a monthly basis. Often variables are monitored for 

which no standard is specified and vice-versa. Intensive surveys are 

conducted to obtain detailed information regarding water quality at a 

specific location and time. Field and laboratory procedures for the 

aquisition of water quality information are referenced by federal 

guidelines.

The information provided by routine water quality monitoring 

networks is often of little use in determining overall compliance with 

limiting-concentration type stream standards and is often difficult to 

evaluate for trends. Water quality variables fluctuate in concentra-

tion in response to many factors and single point in time measurements 

convey little direct information regarding stream standard compliance. 

For this reason, many researchers in the field of water quality hydrol-

ogy have suggested a change in emphasis of stream monitoring from the 

fixed station/fixed frequency approach to synoptic surveys. Synoptic 

surveys are expensive to conduct and yield information pertaining only 

to the specific location of the study and for these reasons have not 

been widely used.

Routinely collected water quality data, however, may be evaluated 

with respect to stream standards through the application of probability
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and statistical methods. The use of these methods is necessary for the 

meaningful evaluation of water quality because of the statistical 

nature of sampling. Water quality samples represent a series of reali-

zations taken from a population and to make inferences regarding the 

population, the random behavior of water quality must be recognized and 

dealt with by appropriate analytical procedures. Many probability and 

statistical procedures are available for water quality evaluation and 

the purpose of this study was to illustrate the application of several 

such techniques.

Five probability and statistical procedures were chosen for the 

study: (1) probability distribution modeling of water quality vari-

ables, (2) multiple linear regression modeling, (3) conditional prob-

ability modeling of stream standard violations given current river 

conditions, (4) an index indicating changes in water quality, and (5) 

an index indicating compliance/noncompliance of water quality with 

stream standards. Each procedure is developed in the text and tested 

with a case study. The procedures have different data requirements, 

require different assumptions, and provide information suitable for 

different management needs.

The determination of probability distributions which model the 

behavior of water quality variables is a statistical technique which 

provides an estimate of the frequency of stream standard violations. 

The selection of a probability model to use in a given application may 

be made based on the coefficient of skew of the sample series. Distri-

butions may be determined for data consisting of temporally independent 

samples collected during various conditions and represent the average 

behavior of a variable. Partitioning data into groups associated with



differing conditions, such as high and low flow, allows a more accurate 

estimate of violation probability to be made for a specific period of 

time. The use of probability distribution models provides an overall 

assessment of water quality but does not provide information pertaining 

to when violations occur or the magnitude of violation events.

Multivariate regression models may predict water quality variable 

concentrations based on easily measured factors which affect water 

quality such as discharge, specific conductance, and temperature. 

These models may also serve as the basis for determining the probabili-

ties of stream standard violations given current river conditions. 

Knowledge of when violations are likely to be occurring allows a man-

agement agency to optimize the utility of its monitoring resources. 

Conditional probabilities based on regression model estimates may also 

be used in conjunction with recently collected samples to assess 

changes in overall water quality.

The communication of water quality to the public in an easily 

understandable manner is an important task for water quality management 

agencies. The reporting of changes in water quality and compliance or 

noncompliance of rivers with stream standards is necessary to keep the 

public informed as to the effectiveness of public expenditures in the 

area of water quality improvement. The indices proposed in this study 

may provide simple, concise descriptive techniques suitable for this 

purpose.
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5.2 Recommendations

5.2.1 General Comments

Water quality management objectives need to be clearly defined for 

the rational design of effective water quality management programs.
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The selection of analytical procedures to use in the evaluation of 

water quality data depends on the objectives of the monitoring program. 

Data collection networks should be designed for the aquisition of data 

relevant to objectives and suitable for the probability and statistical 

procedures used in analysis. A combination of daily measurements of a 

few indicator variables, monthly measurements of all variables included 

in stream standards, and occasional intensive surveys conducted in 

response to suspected critical conditions should provide management 

with necessary information for the assessment of water quality. Due to 

the several monitoring programs at both the state and federal levels, 

it is not necessary for any one program to collect all the data. 

Coordination of monitoring efforts could greatly enhance the use of all 

data.

5.2.2 Future Research

The research conducted in this project is by no means complete. 

Further research is needed to more fully develop the procedures sug-

gested in the report, to develop additional procedures, and to more 

fully assess the capabilities of probability and statistical modeling 

of routinely collected water quality data. Probability distribution 

modeling of negatively skewed data should be analyzed more appropri-

ately than by the procedures used in this work. Both the transforma-

tion of data, for example, Y = 1/x, and the use of negatively skewed 

distributions should be evaluated. Also, criteria other than the 

sample coefficient of skew could be developed as a basis of probability 

model selection. This may be desirable because the coefficient of skew 

is often poorly estimated from sample data (Appendix B).
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The multiple linear regression model used in this work is not 

necessarily the best model for the generation of water quality informa-

tion from known river conditions. Other models should be evaluated for 

usefulness for this purpose. The indicator variables discharge, 

specific conductance, and water temperature were used in the regression 

models because they are often measured on a daily basis. Other vari-

ables may prove to be very useful indicators of important water quality 

constituents and should also be measured on a daily basis to provide 

more accurate regression estimates. A study to determine such vari-

ables is needed.

The "change detection" water quality index presented in this 

report may be made more useful by incorporating more than one year of 

index values into an assessment. Subtle changes in water quality may 

require the utilization of several years of change detection index 

values and modification of the hypothesis testing algorithm of Section

3.5.2.1 to incorporate n years of index values. Also, it would be 

interesting to use the index on a control system which could be 

programmed into the computer. The sensitivity of the index could then 

be assessed by creating changes in the control system of differing 

magnitudes.
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Appendix A

FREQUENCY AND DURATION OF DESIGN LOW FLOWS 

A. 1 Introduction

River water quality standards as written in the regulations of 

many states are not applicable during periods of very low flow. The 

selection of a design low flow, below which stream standards do not 

apply is an important practical aspect of a state's water quality 

management effort. Both frequency and duration of historical low flows 

are important considerations in the selection of appropriate design 

criteria. The purpose of this work is to determine the magnitude, 

frequency and average duration of three design low flows for several 

rivers in order to gain some understanding of how restrictive these 

design criteria are. Six streams located in the United States (Table 

A-1) in which daily flow data were readily available at Colorado State 

University were selected for the study. The streams have different 

watershed areas and characteristics and are located in various climatic 

and hydrologic regimes. The design critiera selected for analysis are 

the seven day-ten year low flow (7Q10), seven day-five year low flow 

(7Q5), and seven day-two year low flow (7Q2).

A.2 Methodology

The series of annual minimum 7 day flows were fitted to the two 

parameter log-normal distribution for each river by determining the 

sample mean and standard deviation. The n year recurrence flow was 

calculated with the following equation:



Table A-1. Stations used in design low flow analysis.

Area Period of Mean Daily Flow (cfs) 7-day Low Flow (cfs)
Station (sq. mi) Record Std. Dev. (cfs) 10 year 5 year 2 year

Tioga River near 1,370 1921-60 1,379 34 41 62
Erwins, New York 2,778

McKenzie River at 345 1924-60 1,638 836 882 977
McKenzie Bridge, Oregon 774

Boise River near 830 1921-60 1,173 209 228 270
Twin Springs, Idaho 1,459 M

Madison River near 419 1924-60 459 250 270 319
hO

West Yellowstone, Montana 191

Oconto River near 678 1921-60 544 173 190 228
Gillett, Wisconsin 441

Merced River at 321 1921-60 596 7 9 16
Pohono Bridge, California 979
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logjp Qn = X - K(S)

where = discharge of recurrence interval n years

X = mean logjQ of annual low flows

1 ""
= - I log,„ X. X. = 7-day low flow for year
n . 1 '’10 1 1 •' ^1=1

S = standard deviation of log^^ annual low flows

= (los,o X, - X)̂
1 =  1_____________________

n - 1

n = number of years of record 

K = normal distribution constant.

Values for K were taken from a cumulative standard normal deviate 

table and correspond to a cumulative probability of 90 percent for the 

ten-year flow, 80 percent for the five-year flow, and 50 percent for 

the two-year flow.

A.3 Results

The results of the study are tabulated in Table A-2. It was found 

that flows equal to or less than the 7Q10 occurred between 0.25 and 1 

percent of the days for the six rivers used in the study. The average 

frequency of occurrence was 0.52 percent, the average frequency of 

years with at least one event (day with Q < design Q) was 20.5 percent. 

Flows equal to or less than the 7Q5 occurred between 0.42 and 3.12 

percent of the days with an average frequency of occurrence of 1.39 

percent, an average duration of 7.5 days, and 29.5 percent of the years 

had at least one event. The 7Q2 criteria was achieved between 3.39 and 

9.00 percent of the days for the six rivers with an average frequency



Table A-2. Results of design low flow analysis.

7Q10 7Q5 7Q2

Event
Percent 
Years with

Average
Duration Event

Percent 
Years with

Average
Duration Event

Percent 
Years with

Average
Duration

Frequency at Least of Events Frequency at Least of Events Frequency at Least of Events
Station (% days) One Event (days) (% days) One Event (days) (% days) One Event (days)

Tioga
River 0.42 17.5 3.8 0.92 32.5 5.4 3.58 67.5 8.2

McKenzie
River 0.27 16.2 3.7 3.12 27.0 14.1 8.89 56.8 27.3

Boise
River 0.57 40.0 2.9 1.40 50.0 4.1 5.66 80.0 6.3

Madison
River 0.97 21.6 6.9 1.23 24.3 7.9 9.00 54.1 10.0

Oconto
River 0.60 22.5 6.7 1.34 32.5 8.5 6.62 70.0 9.9

Merced
River 0.33 5.0 4.8 0.42 10.0 5.2 3.39 40.0 22.3

Average 0.52 20.5 4.8 1.39 29.5 7.5 6.12 61.5 14.0
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of occurrence of 6.12 percent, an average duration of 14.0 days, and

61.5 percent of the years had at least one event.

A.4 Summary

From the results it is evident that the commonly used design 

flow, 7Q10, is quite restrictive because standards will be in effect

99.5 percent of days. At the same time, it is apparent that if an 

event occurs there is a high probability that it will persist for 

several days. Design flows of smaller return period are less restric-

tive in terms of frequency and tend to persist for longer periods.
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EXPECTED ACCURACY OF ANNUAL STATISTICS CALCULATED FROM 
VARIOUS SAMPLING FREQUENCIES

B.1 Background

Most water quality data is collected from fixed station/fixed 

frequency monitoring networks. This data is often used for calculation 

of annual sample statistics from which water quality is assessed. 

Accuracy of sample statistics is a function of two factors, the 

variance of the process and the number of samples collected. Variables 

which have high variances require many samples to accurately estimate 

the population mean and variables with small variances require few. 

The purpose of this work is to indicate the average error which may be 

expected with the calculation of sample mean, standard deviation, and 

coefficient of skew from water quality samples collected at various 

sampling frequencies.

B.2 Methodology

Water quality records taken on a daily basis at ten Illinois 

monitoring locations for eight variables, in water year 1977, were used 

in the analysis. The population statistical parameters mean, standard 

deviation, and coefficient of skew were determined for each variable at 

each station. Representative samples of 36, 30, 24, 18, 12 and 6 per 

year were extracted from the daily records and sample statistical 

parameters were calculated. The percent error of sample statistics 

with population statistics were calculated and the average absolute

Appendix B



117

value of these errors determined. Average absolute values of error 

percentage are shown with average coefficient of variation in Table B-1 

for each variable.

B.3 Results

Figures B-1, B-2, and B-3 show the average error percentages for 

all data sets, average coefficient of variation 0.67, and for the 

variables with highest and lowest average coefficients of variation, 

1.22 and 0.18 respectively, plotted versus sampling frequency. As 

expected, the greatest average errors are associated with data sets 

with greatest coefficient of variation and smallest average errors with 

data sets with small coefficient of variation. It can be seen that 

errors generally expected for sample estimates of skew are quite large, 

this presents problems in identifying appropriate probability distribu-

tions to model annual data. Average errors in samples means calculated 

from the commonly used 12 per year frequency ranged from 9.10 percent 

to 21.68 percent.

B.4 Conclusions

The errors associated with sample statistics based on a few 

samples per year are sufficiently large to cause seriously inaccurate 

conclusions to be drawn regarding water quality. For this reason, 

judgements made based on annual samples should be corroborated when 

possible by other means. Statistical models incorporating correlation 

between variables and/or intensive surveys should be used to substanti-

ate results of annual samples before important water quality decisions 

are made.



Table B-1. Average absolute value of error percentage between sample and population
statistics for water quality variables.

Average 
Coefficient 
of Variation

36 Samples/year 30 Samples/year 24 Samples/year 18 Samples/year 12 Samples/year 6 Samples/)ear

Variable X 3 8 X 9 8 X a 8 X a 8 X 0 i X 0 8

P04 1 . 1 2 9.90 24.48 45.94 9.83 25.34 45.60 11.52 27.48 49.29 13.99 29.59 54.56 15.07 32.63 61.87 21.52 40.66 76.40

Na 0.40 2.24 6.37 48.81 2.00 6.71 50.98 2.87 8.64 54.43 3.30 11.21 66.00 4.61 15.37 77.37 6.78 21.74 104.22

TOC 0.37 2.56 19.29 54.45 3.93 21.59 70.91 4.81 24.48 70.59 4.82 25.62 80.90 6.45 30.57 97.33 9.07 37.23 128.05

Hardness 0.18 1.00 8.09 39.27 0.88 9.39 41.00 1.37 10.72 56.18 1.47 12.91 60.96 2 . 3 7 15.44 82.17 3.55 21.90 188.87

Ammonia
Nitrogen

1.12 5.21 11.06 20.27 5.94 11.22 20.29 6.42 12.37 21.91 8.27 14.30 25.90 11.29 19.40 31.75 20.36 32.68 48.33

NOj 0.89 3.80 12.12 30.45 5.19 13.49 33.12 5.84 14.30 34.50 9.26 18.60 39.14 8.90 18.24 44.20 18.08 28.80 68.38

TDS 0.19 1.08 9.15 193.46 0.84 11.24 219.43 1.40 12.68 286.98 1.50 15.25 246.62 2.43 18.90 387.89 3.37 26.10 399.08

Fe 1.22 9.83 26.94 35.38 11.41 29.81 38.84 16.43 35.99 44.24 17.43 38.56 48.75 21.68 45.53 59.05 29.84 54.33 73.42

Average 0.67 4.45 14.69 58.50 5.00 16.10 65.02 6.33 18.33 77.27 7.51 20.76 77.85 9.10 24.51 105.20 14.07 32.93 135.84

!-•
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Figure B-1. Average absolute value of sample mean error percentage.
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Figure B-2. Average absolute value of sample standard deviation error percentage.
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Figure B-3. Average absolute value of sample coefficient of skew error percentage.


