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ABSTRACT 

 

SNOW DEPTH MEASUREMENT VIA AUTOMATED IMAGE RECOGNITION 

 

 Seasonal snow is a significant contributor to the water supply of nearly 2 billion people in 

semi-arid regions around the world. Quantification of this resource is critical to planning sustainable 

water and food supplies in these regions. While Snow Water Equivalent (SWE) is the most common 

parameter used to estimate snow water storage, snow depth has often been used as a proxy since it is 

much simpler to measure and can be converted to SWE if density can be estimated. Depth of snow 

varies greatly at the regional, watershed, and plot scales and better quantification of this variability 

can improve water storage estimates. 

 Installation and maintenance of new snow measurement sites is typically expensive and time 

consuming, so a technology that could produce high temporal resolution snow depth data for a low 

cost would be useful. Manual reading of snow depth from graduated staffs driven into the ground 

has been used by the Natural Resources Conservation Service (NRCS) for operational and research 

purposes. The amount of data available from this method has traditionally been limited by the time-

consuming step of manually reading snow depths in images. The central objective of this research 

was to automate this process in order to reduce the time requirement and allow this technology to 

be deployed more widely. 

 Five sites were established with time lapse cameras and a set of snow depth staffs around the 

state of Colorado. Several image recognition methods were considered, and the Aggregate Channel 

Features technique was used to detect snow depths based on images of the depth staffs. At the most 

successful sites, absolute error was close to 20 cm, while at less successful sites consistent errors as 

high as 100 cm made the data unusable. The variety of site configurations examined allowed factors 
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which increased error such as forested backgrounds, close staff placement, and poor camera 

mounting, to be identified. Additional studies could take advantage of new, cloud-based image 

recognition technologies in order to allow anyone with a camera and an internet connection to 

measure snow depth automatically from pictures taken at specific locations. 
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CHAPTER 1 – INTRODUCTION 

 

1.1  Background 

 Seasonal snow is a critical component of water supply in the American West and in arid 

regions around the world. Quantification of this seasonal snow allows for forecasting of spring and 

summer water availability in these areas. In the United States, snow measurement for the purpose of 

water forecasting has been taking place for over 100 years (NRCS, 2019) and for most of this time, 

snow water equivalent (SWE) and snow depth were measured manually each month at snow course 

sites (Church, 1914; Marr, 1940). This was challenging and labor-intensive as the sites are often 

difficult to access in the winter and may be located in hazardous terrain. This combined with a desire 

for greater temporal resolution led to the introduction of the automated snow telemetry (SNOTEL) 

stations that now comprise the bulk of snow data collection. (NRCS, 2019) 

 SNOTEL stations are expensive to build and maintain with two sensors using glycol-based 

pressure transducers, which has limited their abundance and distribution. Unlike the previous snow 

courses, the SNOTEL sites measure snowpack properties at a single point, and the 

representativeness of this point data across variable terrain can be poor (Rice & Bales, 2010; 

Meromy et al., 2013; Fassnacht & Hultstrand, 2015). Gathering snow data at additional points, 

especially in areas of varying slope, aspect, and cover type, increases available data at the watershed 

scale and improves basin storage estimates (Balk & Elder, 2000). 

 

1.1.1 Snow Depth as an Indicator of Snow Water Equivalent 

 When measuring snowpack, SWE is usually considered to be the most important variable, as 

it is the amount of water stored on the landscape. Terrain features, such as slope, aspect, and 
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elevation, and vegetative cover are strongly indicative of the snow distribution across the landscape 

(Meiman, 1968 and references therein). Intensive measurements of snow depth, snow water 

equivalent, and snow density across diverse terrain can yield high confidence spatial estimates of 

snow water equivalent based on these terrain variables (Balk et al., 1998). Though snow depth is 

more variable across the landscape than other properties (Logan, 1973; López-Moreno et al., 2013), 

it is far simpler to measure than SWE or Snow Density (Peck, 1972). For this reason, many 

campaigns that gather measurements over a large area have focused on measuring snow depth (Clow 

et al., 2012).  

 Snow depth can be converted to snow water equivalent if density is known. Density 

measurements in the field require retrieving and weighing snow cores, which is time intensive 

especially over large areas. For that reason, a robust snow density model is required for estimating 

snow water equivalent from snow depth. Given sufficient data for particular sites, it is possible to 

construct a model for those sites which produces SWE estimates within the range of SWE variability 

at the plot scale of each site (Mizukami & Perica, 2008; Jonas et al., 2009). Sexstone and Fassnacht 

(2014) built a reliable snow density model for the upper Cache la Poudre watershed with two years 

of measurements distributed across varied terrain data combined with long-term measurements at a 

single point. This model provided a spatial estimate of snow density based on terrain variables and 

could be transferred to any watershed with a similar data availability. 

 

1.1.2 Remote Sensing in the Context of Snow Science 

 Snow covered area and snow covered extent are fairly straightforward to measure from orbit 

but SWE, the main input for operational water forecasting in the western US, is much harder to 

retrieve, especially in mountainous terrain (Dozier et al., 2016). SWE retrieval from passive 

microwave techniques has advanced in recent years but is still limited by inaccurate readings in deep 
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snowpacks (>1m) and snowpacks with dense, frozen layers (Clifford, 2010). In addition, large pixel 

sizes (typically 25 km) limit use in complex mountainous environments where SWE can change 

significantly on the 10m scale (López-Moreno et al., 2013). 

 The National Aeronautic and Space Administration (NASA) has developed an airborne 

remote sensing technology that uses LIDAR to measure snow depth and passive microwave to 

measure snow water equivalent at a 50 m spatial resolution and a better than 10 cm depth resolution 

(ASO, 2019). Even at this high precision, ground-based measurements are required to verify the data 

(Bair et al., 2016), and as the technology is airborne it must be flown to collect data. 

 A low-cost technology that could provide a reliable verification to data from remote sensing 

would be valuable especially in remote areas. Most water forecasting in the complex terrain of the 

mountain west rely on ground measurements rather than remotely sensed data due to the limitations 

of the latter. Improving the reliability of remote sensing in this difficult terrain requires more 

measurements on the ground to verify data products, which are limited in complex alpine terrain 

(Clifford, 2010). 

 Some emerging approaches seek to measure snow depth or snow water equivalent on the 

plot scale more efficiently than traditional manual field collection. Structure from motion is a form 

or stereoscopy in which multiple images of the same scene taken from different locations are 

digitally analyzed to produce a three-dimensional model of the scene. Unmanned aerial vehicles 

(UAV’s) fitted with cameras have been flown in complex alpine terrain before and during snow 

accumulation to retrieve snow depts with errors as low as 10 cm (Nolan et al., 2015; Vander Jagt et 

al., 2015). Synthetic Aperture Radar (SAR), a similar technique utilizing satellite observations, has 

been combined with daily satellite snow cover observations to capture 92% of snow depth variability 

observed on the ground in complex alpine environments (Rondeau-Genesse et al., 2016). A low-

impact, high temporal resolution technique uses low-cost GPS receivers placed on the ground 
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surface to measure snow water equivalent of accumulating overlying snowpack at centimeter-scale 

accuracy for snowpacks with SWE less than 80 cm (Steiner et al., 2018). 

 

1.1.3 Local-Scale Spatial Variability 

 Additional snow depth measurements can supplement historical or contemporaneous data to 

produce more robust estimates of snowpack across varying terrain. But even in small areas of 

consistent terrain snow can still vary can vary as much as 50% (Fassnacht et al., 2018, Lopez-

Moreno et al., 2011). Additional measurements taken close together (~10m) can produce estimates 

closer to the “true” snowpack properties of the plot and provide a quantification of the variability 

within that plot (Rice & Bales, 2010). 

 Plot scale variability changes based on landscape characteristics and time of year (Lopez-

Moreno et al., 2011). Generally, variability is lower during accumulation and higher during snowmelt 

(Fassnacht and Hultstrand, 2015), while its interactions with landscape variables are more 

complicated. This variability directly affects how many measurements are required in a given area to 

approximate the “true” value. Fassnacht et al. (2018) showed that most often between 3 and 5 

measurements are necessary to get within 5% of the mean snow depth. The spatial arrangement of 

measurements at a particular scale was shown to have little effect on the required number of 

measurements (Kashipazha, 2012). 

 

1.1.4 Automated Image Recognition in the Context of Snow Science 

 In the last 10 years there has been interest in utilizing rapidly advancing computer vision 

techniques to gather data from terrestrial imagery of the snowpack. Some have focused on albedo 

estimation (Corripio, 2004) while others have worked toward retrieving snow covered area (Arslan et 

al., 2017). Utilizing a time lapse camera network in the Black Forest in Germany, automated 
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techniques were used to extract albedo, and a metric of canopy interception in the surrounding trees 

(Garvelmann et al., 2012). They also attempted to use an automated method to retrieve snow depth 

from a depth staff in the image but due to inconsistent results opted to measure it by reading off the 

snow depths manually. Recently, lapse imagery has been used to quantify snow covered area and 

local-scale snow cover depletion curves in a 30-by-30-meter area of relatively shallow snowpack in 

the Spanish Sierra Nevada (Pimentel et al., 2017). 

 Time lapse imagery is useful for tracking snow accumulation but manually reading depth 

from images is a time-consuming step and thus limits use at scale. The development of a reliable 

image recognition algorithm to automate this process would allow the deployment of low-cost and 

low-impact snow depth measurement stations capable of capturing data at a high temporal 

resolution. Multiple depth indicators could be placed at each camera for little additional cost to allow 

a greater spatial resolution at the plot scale. 

   

1.2  Project Goals 

 Building on this previous work and recognizing the utility of a low-cost, off-the-shelf snow 

depth measurement technique, the research had the following objectives: 

• Qualitatively assess challenges of installation and maintenance of a time lapse camera 

network over a winter season 

• Develop a method to automatically convert images to snow depth 

• Evaluate the method’s accuracy and factors that affect it 

• Estimate the distribution of hourly depth change at several study sites in order to identify 

spuriously large or small snow depth readings 
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CHAPTER 2 – METHODS 

 

2.1 Site Selection 

Several factors were considered in choosing locations for the time lapse cameras. Safe access 

during winter was of paramount importance as was compliance with public lands use regulations. 

These requirements were met by placing the sites alongside certain previously permitted sites 

maintained by other snow science groups. In addition, distributing the sites across different regions 

in the state of Colorado hedged against the potential of a poor snow season affecting data collection 

in a single region. Five camera and snow staff measurement locations were established (Figure 2-1). 

Each location had characteristics that made equipment setup simpler. Specifically, consistent snow 

cover from November through May, no canopy cover, and a slope of less than 10% (Table 2-1). 

Three sites were located alongside Natural Resources Conservation Service (NRCS) Snow 

Telemetry (SNOTEL) stations, one was located at the Center for Snow and Avalanche Studies’ 

Swamp Angel Study Plot, and one was located alongside the Watershed Function Scientific Focus 

Area <http://watershed.lbl.gov/> near the East River in Gunnison County.  

Table 2-1: Site characteristics of snow measurement sites 
 Joe Wright Columbine Swamp 

Angel 
East River Red 

Mountain 

Elevation (m) 3085 2792 3371 2775 3414 
Slope (%) 5% 13% 8% 19% 7% 
Aspect (8 Point 
Cardinal Direction) 

NW E E NE W 

2018 Snow Cover 
(Days) 

243 191 204 122 208 
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Figure 2-1: Site locations in Colorado color-coded by collaborator group 
 

2.2 Equipment 

Each site consisted of two components: a time lapse camera and a set of snow depth staffs. 

The Stealthcam G34 12 MP camera <stealthcam.com> was selected as it had weatherproofing, long 

battery life, and high resolution for a low cost (Figure A-1). Additionally, this camera model 

maintained an internal clock and wrote metadata into the image files, simplifying subsequent sorting 

and file management. At SNOTEL sites the camera was mounted on the SNOTEL meteorological 

tower (Figure A-3) facing toward a non-forested area (Figure 2-2). At sites without a meteorological 

tower, the cameras were affixed to a 3.3m steel T-post (Figure A-1). 
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Figure 2-2: Site configuration summary, all distances are in meters. (a) The Joe Wright site was 
roughly aligned with the discontinued snow course shown in red, (b) Columbine was arranged in 
simple 5 meter grid (c) Red Mountain Pass was arranged in an “I”, as per Fassnacht et al., (2018), (d) 
the East River site was arranged in a simple plus to minimize footprint, (e) and the Red Mountain 
Pass Site was arranged in a triangle in order to best represent snow depths across the available 
cleared space. Refer to appendix B for more detailed maps. 
 

The snow depth staffs were 3.3-meter steel fenceposts painted red (RGB ~ 164, 27, 53) 

(Figure A-2) to increase contrast with the background. Each staff was driven approximately 25 cm 

into the ground. The exact depth into the soil varied based on local conditions and was recorded for 

each staff. 

 

2.3 Site Configuration 

 The staffs were installed in different configurations at each site (Figure 2-2). The 

configurations were based on local site conditions and sightlines as well as on snow depth sampling 

patterns used in previous work. The Joe Wright (Figure 2-2a) and Swamp Angel (Figure 2-2c) sites 

were arranged for comparison to previous work. At Joe Wright the staffs were arranged to roughly 

follow snow transects conducted by both the NRCS and subsequent researchers (Figure 2-2a, red 
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line). The swamp angel site was arranged to reflect a snow depth sampling strategy used to quantify 

snow depth variability at the plot scale (Fassnacht et al., 2018). The Columbine, (Figure 2-2b), East 

River (Figure 2-2d), and Red Mountain Pass (Figure 2-2e) sites were tightly constrained by available 

open space, with the Columbine site bounded by forest and a snowmobile trail, the East River site 

constrained by other experiments in the area, and the Red Mountain Pass site constrained by dense 

forest. The varying configurations allowed for evaluation of the effects of staff spacing, occlusion, 

and background characteristics on image recognition within the confined spaces. 

 The theoretical precision of snow depth readings from staffs in the image was considered 

when selecting site configurations. These values were calculated by placing objects of known size in 

front of a camera then calculating the object size in pixels. This value is the millimeters of depth per 

pixel for each snow depth staff and increases with distance from the camera (Figure 2-3). Even at 

30m theoretical precision is sub-millimeter and only exceeds the millimeter scale at a distance of 

50m. 

 

Figure 2-3: Theoretical maximum accuracy for the five staffs at the camera at the Joe Wright site 
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2.4 Site Maintenance 

During the winter, camera batteries lasted about six weeks due to low temperatures, setting a 

site visit frequency to five to six-weeks. However, all sites and many routes to reach the sites were 

located in high elevation areas where sudden weather changes could make travel extremely 

hazardous. Thus, site maintenance was undertaken when possible, with return intervals ranging from 

four weeks to six weeks. The camera batteries lost power two times before a site visit (once at Red 

Mountain and once at Swamp Angel) which created gaps in the data at those sites. 

 

2.4 Image Recognition 

2.4.1 Image Recognition Overview 

All image recognition and computer vision techniques have two stages: a calibration stage 

and a detection stage (Figure 2-4). In the calibration stage a database of images is prepared with the 

objects of interest in each image highlighted (Figure 2-5). The areas of interest are generally 

represented by the coordinates of the edges of a bounding polygon. This database is fed into a 

calibration protocol which produces a calibrated detector. This detector can then be applied to a set 

of images to produce a list of areas likely to contain the object which the detector was calibrated for 

(Figure 2-6).  
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Figure 2-4: General calibration and detection process for image recognition techniques 
 

 

Figure 2-5: Image with user-created bounding boxes around objects of interest. These boxes are 
used as positive examples in the calibration stage 
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Figure 2-6: Raw output of a calibrated detector applied to an image with no user-supplied bounding 
boxes 

 

2.4.2 Aggregate Channel Features 

 The Aggregate Channel Features (ACF) image recognition method (Dollar et al., 2014) was 

developed to efficiently determine the presence of faces in images (Yang et al., 2014) and is based on 

the earlier integrated channel features method (Dollar et al., 2009) as well as the Viola-Jones 

Pedestrian Detection method (Viola & Jones, 2001). The core process of ACF image recognition is a 

close examination of the image channels (here the red, green, and blue color channels) within a 

moving window of pixels. An iterative algorithm analyzes this window for features that appear 

consistently in the positive examples in the calibration dataset but are not present in areas outside 

the positive examples. These features can include high color contrast, similar pixels appearing in 
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specific spatial patterns, or dissimilar pixels appearing in a consistent arrangement. Once all the 

supplied images have been analyzed in this way, information on features that best differentiated 

positive and negative examples are stored in a detector object. This detector can then be applied to 

images without user-supplied positive examples in order to identify the target objects. 

 

2.4.3 ACF to Snow Depth 

 The ACF detector outputs a list of possible positive detections alongside a “score” assigned 

to each. This score is an estimate of the likelihood of a given detection to be an actual snow staff 

and are useful for comparing returns within a particular image but cannot be used to compare 

detection strength between different images (Figure 2-6). There can be over 100 returns from the 

algorithm for a given image but only a few that correspond to the actual snow depth staffs. 

Determining which returns to accept and which staff to assign them to is a critical component of the 

image recognition process.  

 The process chosen to accomplish this is depicted as a flowchart in Figure 2-7. First, a 

baseline bounding box for each staff was delineated manually. If either the camera or staffs moved 

significantly during the winter, additional baseline bounding boxes could be provided which would 

then be used from a specified date forward until a new set of bounding boxes was provided. 
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Figure 2-7: Process for assigning bounding boxes to individual staffs 
 

These baseline boxes were used to determine the Euclidean distance (Pythagorean 

Theorem), in pixels, from the midpoint of the top line of each bounding box (Figure 2-8a) to the 

midpoint of the top line of each baseline box (Figure 2-8b). The top line midpoint was used instead 

of the geometric center of the box because the staff’s visible length changes over the winter while 

the top of the staff remains in the same location. For each true staff location, a list of returns that 

were closest to that staff was generated. The scores associated with each return were used to sort 

these lists (Figure 2-8c) to produce the detection with the highest score in each of those lists, which 

was then selected as the final detected bounding box for that staff (Figure 2-8d). 
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Figure 2-8: Examples of key stages in the bounding box to snow depth assignment process for a 
single staff and two returns created for demonstration purposes. In an actual image detection, the 
returns would likely be partially overlapping the staff, but these are distinct to make the 
demonstration clearer. The baseline staff is in green, two example returns are in blue (a) midpoint of 
top lines, (b) finding Euclidean distance (c) selection by highest score, (d) final accepted return 
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 Once one bounding box was selected for each staff in the camera’s view, it could be 

converted to a snow depth using the following equation to convert pixel measurements to snow 

depths:  𝑑𝑠 = 𝐿0 − 𝑝𝑖𝑝0 𝐿0   𝑜𝑟   𝑑𝑠 =  𝐿0 (1 − 𝑝𝑖𝑝0) (1), 

where ds is snow depth in mm, p0 is pixel length of staff with no snow, pi is pixel length of exposed 

staff in image i, and L0 is length of exposed staff with no snow in mm. The pixel length with no 

snow would be determined from an image early or late in the season when there was no snow 

present. 

 

2.5 Data Analyses 

2.5.1 Performance Metrics 

 Two methods were considered to evaluate the accuracy of snow depth estimation. The most 

straightforward method is simply to compare the algorithm-generated snow depth with snow depths 

generated manually from those same images. An alternative method frequently used in computer 

vision research would be to compare the pixel areas of the algorithm-generated bounding boxes and 

human-determined bounding boxes (Figure 2-9). 
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Figure 2-9: A comparison of error measurement based on identified areas to error measurement 
based on staff length using demonstration data. The shaded area and red line are the human 
identified staff location while the blue area and green line are the computer identified staff location 

 
The detected areas can be drastically different while the snow depth varies by a much smaller 

margin (Figure 2-9). The central objective is to measure snow depth, not necessarily to exactly match 

the identified areas. Therefore, the measured snow depth was chosen to evaluate the accuracy of the 

image recognition process. 

 

2.5.2 Detector Calibration Process Evaluation 

 In order to examine whether it was important to calibrate detectors for specific sites with 

images only from that site, a detector was trained with default parameters for each of four sites with 

a set of 100 labelled images. Then a detector was trained using a combined dataset with 200 images 
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taken from all sites. These detectors were then tested against a set of 50 reference images from each 

site for a total of 200 images.  

 

2.5.3 Input Parameter Evaluation 

 The ACF Object Detector has a variety of parameters that can be changed in both the 

calibration and detection stages (Table 2-1). The optimal values of these parameters were found by 

performing a simple sensitivity analysis. For both calibration step variables and detection step 

variables, a collection of 200 calibration images and 200 reference images were compiled. Each of 

these sets was composed of 50 images from each of four sites (not including the East River site due 

to low snow accumulation). The images were a mix of early, middle, and late season images. The 

first set was used to train the algorithm and the second was used to evaluate the detection accuracy.  
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Table 2-1: a) Calibration and b) detection parameters examined for possible improvements in 
detection accuracy  
Parameter Description Range 
a) calibration parameters 
ObjectTrainingSize A height and width in pixels specifying the size 

that objects are resized during calibration 
 

NumStages Number of calibration stages in the iterative 
calibration process 

1-8 

NegativeSamplesFactor Specifies how many times more negative 
examples will be extracted from the image than 
supplied positive examples 

2-8 

MaxWeakLearners Number of Weak Learner objects inside the 
detector 

256-8192 

 
b) detection parameters 

NumScaleLevels How many levels of downscaling are carried out 
at the start of detection 

1-8 

WindowStride How many pixels the scanning window moves 
between detections 

1-8 

SelectStrongest Use an internal method to deal with overlapping 
bounding boxes 

True/False 

MinSize Height and width in pixels of the smallest area 
allowed to contain a positive detection 

 

MaxSize Height and width in pixels of the largest area 
allowed to contain a positive detection 

 

Threshold Parameter that can increase speed of detection at 
the cost of missing possible positives 

-1 to 1 

 

For calibration parameters, the process followed Figure 2-10. A detector was trained using 

the 200 images then tested against the 200 validation images. The absolute percent error between the 

detected depths and the manually delineated depths was recorded for each as well as the average 

elapsed time for calibrating that detector. For the detection parameters, the evaluation process 

followed Figure 2-11. A detector trained with the highest performing parameters from the previous 

step was applied to the store of images. The average absolute percent error in snow depths and the 

average time per detection were found for each parameter tested. 
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Figure 2-10: Calibration parameters evaluation process in which a detector is repeatedly trained 
while varying one parameter and applied to the validation dataset 
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Figure 2-11: Detection parameters evaluation process in which a static detector is applied to the 
validation images dataset multiple times while varying the detection parameter of interest 
 
 This parameter evaluation process was very computationally intensive, especially the training 

parameter evaluation. It was conducted on high-performance, consumer-grade desktop computers 

available in the Warner College of Natural Resources Computer Labs. The computers had Intel 

Core i7 processors with integrated graphics processing as well as 16 GB of Random Access Memory 

(RAM) and 500GB of on-system Read Only Memory (ROM). The computers are specialized to 

geostatistical processing and devices with similar capabilities are generally available where geographic 

information systems and computer aided design are used frequently. 

 

2.6 Snow Depth Data Filtering 

 The resultant snow depths from this process had a high level of noise so the data were 

further processed to remove outliers using the SNOTEL-measured hourly depth change during 

Water Year (WY) 2018. The SNOTEL maximum positive and minimum negative hourly snow 
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depth changes were assigned as the maximum and minimum allowable hourly changes at each site. 

Only snow depths which changed by less than this amount were accepted as final measurements. 

When a time step passed without any snow measurement accepted for a particular staff, the range of 

accepted change from the previous measurement for that staff would be increased linearly based on 

the number of previous time steps lacking data. This process eliminated outliers and reduced noise 

in the final snow depth product. 

 

2.7 Joe Wright Snow Depth Data Further Evaluation 

 The depth staffs at Joe Wright were placed roughly along the snow course formerly taken at 

that site which allowed comparison of snow course data with snow depth staff readings (Figure 2-

2a). While there were no snow courses taken while the depth staffs were present, independent snow 

depth transects along the same path were carried out during water years 2006, 2007, and 2008, 

overlapping with available SNOTEL depth sensor data. Using these two data sources, a robust 

relation between Joe Wright SNOTEL depth readings and snow depths was established and applied 

to WY 2018. These expected snow depths were compared to the detected data for that year to 

determine how consistently snow distribution in that season followed the pattern previously 

observed. 
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CHAPTER 3 – RESULTS 

 

3.1 Snow Depth Data 

3.1.1 Snow Depth Change Histograms 

 To further understand the increases and decreases in snow depth over short time periods, 

the hourly snow depth change was computed for each SNOTEL site based on the sites’ hourly 

depth readings (Figure 3-1). Accumulation at all sites was most frequently 2 inches per hour, with a 

few increases as high as six inches per hour at all sites. Metamorphism at all sites most commonly 

occurred at 1 inch per hour with some time steps exhibiting metamorphism rates as high as 4 inches 

per hour. Rates this high could be due to wind redistribution since any reduction in snow depth 

before the peak SWE date was categorized as metamorphism. Melt rates were similar to 

metamorphism rates with most taking place at 1 inch per hour with a few hours having up to 5 

inches of melt. The stated precision of the SNOTEL Judd snow depth sensor <juddcom.com> is 1 

inch, but the operational accuracy is closer to 2 inches (Ryan et al., 2008). 

 



 
 

24 
 

Figure 3-1: Frequency of hourly changes in SNOTEL measured snow depth due to snowfall, melt, 
and metamorphism for three sites. The Red Mountain Pass measurements were used for error 
identification at the Swamp Angel site. The histogram bars display the fraction of hours in water 
year 2018 in which the change was observed. Zero was the most common hourly change and was 
removed. 
 
 The general pattern of snow depth change between the sites is consistent. At all sites the 

highest accumulation was 6 inches in a single hour. The greatest decreases in snow depth varied 

between sites, but the general histogram shape was the same in metamorphism and melt. The detail 

in the histogram is limited by the 1-inch advertised precision of the Judd depth sensor 

<juddcom.com>, but the data still provide useful upper and lower bounds for maximum snow 

depth change at each site. These maximum change values were used to remove outlier data points in 

the automatically detected data where snow depth changed by a greater amount in a single hour, 

effectively treating the data with a low-pass filter informed by local site conditions. This process 

removed between 50 and 90 percent of the data points accepted in the detection stage, varying by 

site and snow depth. 

 
Figure 3-2: Daily SNOTEL snow depths for water year 2018 for Joe Wright, Columbine, and Red 
Mountain Pass 
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3.1.2 Aggregate Channel Features Data 

 The raw snow depth data from the ACF detector is noisy, necessitating filtering to remove 

outliers. The maximum hourly snow depth change from the ACF detector was constrained to the 

maximum increases and decreases observed at the SNOTEL station corresponding to each site 

(Figure 3-1). This method was effective at making the data more consistent (Figure 3-3b) but 

reduced the number of data points available across the period of record (Figure 3-3a). Applying a 

moving average with a window size equal to the number of images per day (15 at Joe Wright) to the 

raw data improved accuracy (Figure 3-3c, Table 3-1) but to a smaller degree than the filter method. 

Using a moving average on the filtered data (Figure 3-3d) did not produce improvements in most 

staffs but did drastically reduce the error of one staff (Table 3-1). The most successful method of 

error filtering was applying a second-order, one-dimensional median filter to the snow depths 

filtered by maximum possible change. This provided the best results for all staffs with improvements 

as large as ten percentage points over the maximum change filter alone. 
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Figure 3-3: Joe Wright snow depths for individual staffs showing (a) manual delineation, (b) 
automated delineation with maximum allowable hourly change based on the site snow depths, (c) 
automated delineation using a moving average with a window size of 15, the number of images 
taken in a day, (d) a moving average of window size 15 applied to the filtered data, and (e) the 
filtered data after adding a third-order, one-dimensional median filter . The data gap in December 
was due to an SD card failure and the data gap in mid-April was due to staffs 1 and 2 being 
completely buried by snow. 
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Table 3-1: Mean absolute error in percent for Joe Wright by staff and error correction method 
 Staff 1 Staff 2 Staff 3 Staff 4 Staff 5 

Unfiltered 26% 49% 16% 19% 25% 

Filtered 18% 36% 13% 16% 20% 

Moving Average 22% 44% 11% 14% 21% 

Moving Average of Filtered 21% 22% 11% 17% 29% 

2nd Order Median Filter 19% 20% 9% 14% 20% 

 

 The Joe Wright results clearly show a difference in snow depths across the sampled area. 

Staffs 1, 2, and 5 are furthest from the camera and have snow depths that are between 50 and 100 

cm deeper than the closer staffs (3 and 4 in Figure 3-3). This pattern is persistent across the season 

with the furthest staffs reaching zero snow depth up to four days later than the closest staff.  

 The Columbine site (Figure 3-4) had lower snow depths (Figure 3-2) than Joe Wright (Figure 

3-3), and had multiple complete melt offs early in the season before the persistent snowpack started 

to accumulate. The Columbine camera was also mounted poorly and moved with wind, causing 

sudden changes in snow depth due to snow measurement misattribution. On February 24th the issue 

was resolved, leading to more consistent results before March 30th, when the mounting failed again. 
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Figure 3-4: Columbine Staff Depths (a) via manual delineation and (b) with automated delineation 
with error correction using maximum allowable hourly change based on the site snow depth 
histogram 
 

Red Mountain Pass and Swamp Angel were not conducive to the ACF method (Figures 3-5 

& 3-6). Even with filtering, the data are effectively unusable. For Red Mountain, this is due to the 

forested background of the image yielding poor detections (Figure A-4). Swamp Angel’s data are 

somewhat more useful later in the year when the background becomes consistently snow covered 

but are still noisy after filtering. The underlying issue at that site was the overlapping of the staffs 

from the perspective of the camera (Figure A-5). This made it difficult for the algorithm to 

differentiate staffs from each other and made the detection returns identification process less 

effective, since it relies on staffs being distant from each other in the image. 
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Figure 3-5: Red Mountain Pass staff depths (a) via manual delineation and (b) with automated 
delineation with error correction using maximum allowable hourly change based on the site snow 
depth change histogram 
 

 

Figure 3-6: Swamp Angel staff depths (a) via manual delineation and (b) with automated delineation 
with error correction using maximum allowable hourly change based on the site snow depth change 
histogram 
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3.2 Site Accuracies 

 Accuracies varied both between sites and between staffs at the same site (Table 3-2). Joe 

Wright and Columbine had the best results with average absolute errors of 19 and 23 cm, 

respectively, when compared to manual delineation. Red Mountain and Swamp Angel both had 

much higher average absolute errors of 70 and 45 cm, respectively. The errors also vary widely 

between staffs at each site with Joe Wright having the most consistent performance across all staffs 

while the others showed larger disparities. The general pattern here reflects the apparent background 

of each staff and for what fraction of the year it was snow-covered. Red Mountain Pass displayed 

high errors as well as a wide range of error. The Swamp Angel accuracies ranged widely but a few of 

the staffs, generally those furthest from each other in the images, had errors between 20 and 30 cm. 

Table 3-2: Average absolute error in cm for staffs at (a) Joe Wright, Columbine, and Red Mountain; 
and (b) Swamp Angel 
(a) Average Absolute Error in cm 

Site Staff 1 Staff 2 Staff 3 Staff 4 Staff 5 Average 

Joe Wright 26 22 18 24 27 23 

Columbine 23 15 31 16 9 19 

Red Mountain 107 116 34 45 50 70 

(b)  

Staff Number 1 2 3 4 5 6 7 8 9 10 

Swamp Angel 117 11 25 32 40 51 10 11 100 50 

Swamp Angel Average 45  

 

3.2.1 Site Accuracies by Time of Day 

 For the Joe Wright and Columbine, the most successful sites, snow depth measurement 

accuracies were evaluated by time of day in order to examine whether restricting times of day could 

improve image recognition. At Joe Wright error was lower in the morning before 8:15 and in the 

evening after 15:45 (Figure 3-7a). The Joe Wright site is bounded on the east and west by steep 

mountains which causes the area to be illuminated by indirect light in the mornings and evenings. 

The Columbine site errors (Figure 3-7b) are also best in times of day with more indirect light and 
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fewer shadows since that site is bounded only on the west by mountains and at a further distance 

than Joe Wright. 

 

Figure 3-7: Site error by time of day at (a) Joe Wright and (b) Columbine. Morning is defined as 
5:45-8:15, midmorning is defined as 8:15-10:45, midday is defined as 10:45-13:15, afternoon is 
defined as 13:15-15:45, and evening is defined as 15:45 to 18:15. Since the images were taken every 
30 minutes from 6:00 to 18:00 a roughly equal number of images fall into each time category. 
 

3.3 Optimal Calibration and Detection Process 

3.3.1 Calibration Image Set Size and Content 

 An important question to consider before utilizing this technology is how many images must 

be manually delineated in order to produce a reliable detector in the calibration stage. The desktop 

computers used for this analysis (Methods 2.5.3) could process a maximum of 250 calibration 

images before running out of memory. Detectors trained with subsets a 250-image dataset 
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comprised of examples from all sites maintained consistent accuracies with sets as small as 60 images 

(Figure 3-8). Restricting calibration images by time of day only changed errors by 1% and didn’t 

affect them in a consistent direction. In this application, calibrating with smaller datasets on lower 

performance computers can produce robust detectors. 

 

Figure 3-8: Calibration set size and detector performance for Joe Wright. 
 

3.3.2 Cross Calibration 

 Another important question when using this technology at multiple sites is whether 

calibrating detectors individually for each site is superior to calibrating a single detector for all sites. 

Although Columbine and Swamp Angel each performed best when calibrated using only images 

from only those sites, the detector calibrated with images from all sites was only 5 percentage points 

less accurate at those sites and was the best detector for the Joe Wright site. Training a single 

detector from all image sets reduces computation time and simplifies the detection stage when 

working with multiple sites, but at the cost of a small performance loss at certain sites. 
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Table 3-3: MAE’s in percent for detections calibrated with images from sites on the left and applied 
to the sites above. All sites performed best with a detector calibrated with an image set including all 
sites with the exception of Swamp Angel. Outside of the combined dataset, only Columbine did not 
perform best using a detector trained exclusively on images from that site. 

Mean Absolute Errors Validation Site 

Joe Wright Columbine Swamp Angel 

C
a
li

b
ra

ti
o

n
 

Im
a
g

e
 S

e
t 

Joe Wright 40% 16% 35% 

Columbine 47% 17% 23% 

Swamp Angel 61% 23% 14% 

Combined All Sites 30% 16% 19% 

 

3.3.3 Optimal Parameters for Calibration and Detection 

 A sensitivity analysis on the input parameters for the calibration and detection stages showed 

that one of four calibration parameters and five of the six detection parameters had an effect greater 

than 5 percentage points on final snow depth accuracy as measured by mean absolute error (Table 3-

4). In the calibration stage, the only variable that affected the detector accuracy was the number of 

iterative stages the detector underwent during calibration (Figure 3-9) with two or more stages 

drastically improving accuracy. In the detection stage, nearly every parameter had an effect. 
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Table 3-4: List of (a) calibration and (b) detection parameters which influenced detection accuracy 
by more than 5 percentage points of MAE with optimum ranges provided if detection accuracies 
were affected 
 Affected 

Accuracies 
Possible Range Optimum Range 

a) calibration parameters 

ObjectTrainingSize No Any  
NumStages Yes 1-8 > 2 
NegativeSamplesFactor No 2-8  
MaxWeakLearners No 256-8192  

 
b) detection parameters 

NumScaleLevels Yes 1-8 >4 
WindowStride Yes 1-8 <4 
SelectStrongest Yes True/False True (on) 
MinSize Yes Any Set to null 
MaxSize Yes Any Size of largest staff at no snow 
Threshold No -1 to 1  

 

 

Figure 3-9: Effect of number of calibration stages on detector accuracy based on the Joe Wright site 
 

Two parameters with clear and large effects on detection accuracies were activating the 

detector’s internal “select strongest” method for reconciling overlapping bounding boxes and 

increasing the number of scale levels (Figure 3-10). Lower scale levels had reduced accuracies and a 
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wider spread for all staffs in the image while the highest possible setting caused a slight increase in 

error. The “select strongest” result was much more straightforward, increasing accuracies by 

approximately 30% when in use. Detailed accuracy effects of other parameters are displayed in detail 

in Appendix C.  
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Figure 3-10: Detection parameters that affect accuracy: (a) Number of scale levels and (b) activating 
the detector’s internal method for reconciling overlapping returns. 
 

Histogram equalization of calibration images has been used to increase performance of 

image recognition algorithms (R. Fernandes, personal communication, Feb 27 2019) and was 

evaluated with the Joe Wright dataset. Histogram equalization of images had a negative effect on 

accuracy when applied to calibration and detection separately, as well as when applied to both steps 

individually (Figure 3-11). 

 

Figure 3-11: Accuracies with no histogram equalization, with histogram equalization on the 
calibration dataset only, histogram equalization on the detected images only, and with histogram 
equalization on both sets of images 
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3.4 Historical Joe Wright Snow Depth Distribution 

Joe Wright was the most successful site and showed the greatest spatial variability with 

increased snow depth at distances further from the SNOTEL snow pillow and camera. The staffs at 

this site were arranged to roughly follow the discontinued snow course which was discontinued in 

1989 (Figure 2-2a). A depth transect was measured along this snow course in water years 2006, 2007, 

and 2008 by Steven Fassnacht. These snow courses took depth measurements in 0.25 to 1 meter 

increments and could approximately be matched with the Joe Wright snow staffs present in water 

year 2018. 

The 2006-2008 measurements at the distances matching the snow depth staffs showed that 

the snow depths along the transect were linearly correlated with the SNOTEL depth measurements 

(Figure 3-12). These strong linear correlations allow a scaling factor to be found for each distance 

which can approximate snow depths at that location from the SNOTEL snow depth. Since the lines 

have intercepts of 0, multiplying the SNOTEL snow depth by the slope of the historical best fit line 

of a given distance produces an estimate of snow depth at that distance. 
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Figure 3-12: Water Year 2006-2008 transect data for each of the distances represented by a depth 
staff. Each point represents a depth reading at that distance. 
 The Joe Wright automated detection data showed snow depths increasing as distance to the 

snow pillow increased (Figure 3-2b). This pattern was roughly consistent with the WY 2006-2008 

data but the exact scaling factors at each distance were different. (Figure 3-13). 
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Figure 3-13: Joe Wright detected data at each distance plotted against snow depths estimated from 
the historically-based scaling factors (Figure 3-10) and SNOTEL depth data from WY 2018. Each 
point is an accepted detection return. 
 
 The staff at 10 meters from the snow pillow had very poor correlation with the expected 

snow depths and with the SNOTEL snow depths. The staff at 15 meters had an acceptable 

correlation and while lower than the expected snow depth (Slope = 0.78), matched well with the 

unadjusted SNOTEL depth sensor data (Slope = 1.01). The staff at 20 meters had an extremely 

poor correlation, but the best fit line still describes much of the data. The readings on this staff were 
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lower than expected from the historical estimate for that location. The staffs at 25 and 30 meters 

showed robust correlations with the estimated depth values. The 25 meter location in WY 2018 

exceeded estimates while the depths at 30m nearly exactly matched them (Slope = 1.00). 
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CHAPTER 4 – DISCUSSION 

 

 An objective of this study was to develop a robust method to automatically convert images 

of snow depth staffs into snow depth. At the best performing sites mean absolute errors were 

between 10-30cm while less successful sites had much higher errors. The time lapse photography 

and image recognition snow depths may still be useful given that snow depths can vary by as much 

as 25% over distances as short as 10 meters (Figure 3-2) (Lopez-Moreno et al., 2013; Sturm et al., 

2010; Fassnacht et al., 2018) and as much as 50% at the watershed scale based on terrain variables 

(Erxleben et al., 2002). Image recognition could be used in locations not well suited to traditional 

snow depth measurement techniques or in complex, unsafe terrain to produce a low-cost snow 

depth estimate. 

 

4.1 Snow Depth Measurement Technologies Comparison 

 The ultrasonic JUDD sensor currently installed at many SNOTEL sites measures snow 

depths via ultrasonic reflection <juddcom.com>. Currently, these sensors cost approximately $700 

and have errors on the order of 2-3 cm (Ryan et al., 2008). These sensors have a built-in temperature 

sensor to adjust the sonic travel time by the ambient temperature. The Campbell SR50A-L 

<campbellsci.com> tends to be more accurate (Ryan et al., 2008), but is more expensive and 

requires an external measurement of temperature to adjust the sonic travel time. These sonic depth 

sensors can produce inaccurate readings during snowfall events, since the falling flakes scatter and 

reflect the emitted sound. They also can be inaccurate during large temperature gradients between 

the sensor and the snow surface (Ryan et al., 2008). A laser distance sensor is now commercial 

available, which has quoted accuracies on the millimeter scale, but prices upwards of $2500 

<lufft.com>. 
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An advantage of the image recognition and snow staff technique is scalability. Taking 

additional measurements on a local scale requires only placing another depth staff, rather than an 

additional distance sensor with associated power supply and datalogger. A network of depth sensors 

can produce high spatial and temporal resolution estimates of snow depth (Rice & Bales, 2010). 

These networks can be constructed at a lower cost by having one datalogger at a central location 

receiving data wirelessly from other stations 

 The high cost of commercial depth sensors can be significantly reduced by constructing the 

sensors with mass-produced parts and open-source software. Arduino-compatible sensors 

<www.arduino.cc> have far lower costs than the prebuilt sensors discussed above (Table 4-1) and 

offer unique flexibilities in power supply and data recording. Certain low-power Arduino boards can 

switch themselves off between measurements, greatly reducing power consumption (Arduino.cc, 

2019). Additionally, constructing the sensors with identical parts means repairs can be completed at 

a lower cost by the researcher instead of the manufacturer. 
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Table 4-1: Parts breakdown and pricing for an Arduino-based snow depth measurement and 
transmitter units based on ultrasonic (a) and laser (b) ranging. The same components are usable for a 
measurement and receiver unit, with the addition of a datalogger (c). 
Part Price ($) Quantity 
(a) Ultrasonic Transmitter Unit  
HC-SR04 Ultrasonic Distance Sensor 1.50 1 
DHT22 Temperature Sensor 3.59 1 
Adafruit Rechargeable Battery Pack 7.95 1 
Weatherproof Enclosure ~20 1 
Arduino NRF24L01 Transceiver  1.09 1 
Adafruit Feather (Atmega328P) 12.50 1 
Total 34.13  
(b) Laser Depth Transmitter Unit  
TF Mini LiDAR(ToF) Laser Range Sensor 37.90 1 
Adafruit Rechargeable Battery Pack 7.95 1 
Weatherproof Enclosure ~20 1 
Arduino NRF24L01 Transceiver 1.09 1 
Adafruit Feather (Atmega328P) 12.50 1 
Total 79.44  
(c) Receiver Unit  
+ MicroSD Breakout Board 7.50 1 
+ MicroSD Card (2GB) 1.60 1 
Total +43.23  

 

The HC-SR04 ultrasonic distance sensor (Table 4-1) has quoted accuracy of 1cm, equivalent 

to the quoted accuracy of the JUDD sensor and like the JUDD sensor, the operational accuracy is 

likely lower. The transceiver unit included here has a quoted 100m range, and while this would likely 

be lower in a complex mountain environment, it is suitable for the plot scale depth variability 

measurements examined here. Although this price is much lower than commercial snow depth 

sensors, it still scales linearly with the number of sensors installed. With the time lapse camera and 

image recognition method, after an initial $100 camera, each depth staff only costs an additional $8. 

Collectively, these snow depth measurement techniques are suited to different objectives and field 

conditions.  The sensors described above need to be mounted on an arm above the snow and have 

batteries replaced individually, increasing installation and upkeep time. The image recognition 

method, while less accurate than these sensors, has the benefit of simpler installation and only 
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requiring a single electronic device in the field. In some locations, the camera images can be 

telemetered using the cellular network where transmission bandwidth is not restrictive. 

4.1.1 Spatial and Temporal Resolution 

 The precision available in laser ranging technologies may not be entirely necessary in the 

context of snow science. Water forecasts are currently made with SWE measurements with precision 

of 0.1 inch (NRCS, 2019) and snow depth measurements with operational precision of around 2 

inches (Ryan et al., 2008). For a snowpack with over a meter of depth, common in Colorado (Figure 

3-2), a variance of 1 inch corresponds to less than 3% of the total, smaller than the inherent year-to-

year variability of snow depths on the plot scale (Fassnacht & Patterson, 2013).  

Some of these technologies also provide the ability to achieve a high temporal resolution, 

such as hourly, but currently quality controlled daily snowpack data are provided by NRCS and 

monthly data are used operationally in water forecasting in the United States (NRCS, 2019). Higher 

temporal resolution data are still useful for understanding snowpack processes such as hourly change 

due to melt, metamorphism, and precipitation presented earlier (Figure 3-1). In avalanche research 

hourly snow depth has been integrated into models that offer high temporal resolution avalanche 

forecasts (Brun et al., 1989). Hourly depth data is also very important in layer-based snowpack 

modelling as the accumulation rate and density of individual snow events is crucial to understanding 

layers formed during each event and modelling their evolution (Sturm et al., 2010). 

 

4.1.2 Other Image Recognition Techniques Examined 

Prior to the selection of the Aggregate Channel Features approach, two other methods were 

examined. The first was an algorithmic approach while the second involved use of a Regional 

Convolutional Neural Network (RCNN) (Girshick et al., 2014). The algorithmic approach was 

focused on combining edge detection, relative pixel color, and additional methods in order to detect 
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the snow staffs. Edge detection and relative redness could identify staffs from images well but 

required fine tuning of parameters for each image and small, hour-to-hour changes in lighting 

required recalibration of parameters. This could take up to an hour per image and often wouldn’t 

result in the correct detection of all staffs. The Hough Transform (Duda & Hart, 1972) was also 

incorporated into this method to extract linear shapes in the images but performance was 

inconsistent. 

 The RCNN method uses a neural network architecture generally used for image 

classification and applies it to region detection. Many recent developments in computer vision have 

been based on this method (Girshick, 2015, Li et al., 2015) but using it properly requires advanced 

construction and fine-tuning of several layers of parameters. In addition to the high complexity of 

designing a neural network, its computational cost is higher than the ACF method, allowing for 

fewer images to be processed in the calibration stage using the same hardware. 

 Compared to these two approaches, the Aggregate Channel Features method is generalized, 

flexible, and computationally inexpensive. While its accuracy varied by time of day (Figure 3-7) it 

was able to detect staffs in diverse lighting conditions and without manual tuning of parameters. It 

also was able to ingest double to triple time images in the calibration stage than RCNN given the 

same computing power. 

 

4.2 Snow Depth Variability 

 At the Joe Wright site, snow depths varied by as much as 50cm over distances of 5m (Figure 

3-3) and this variability had a consistent pattern through multiple snow seasons (Figure 3-11). Snow 

depth variability can be high at local scales (Lopez-Moreno et al., 2013; Sturm et al., 2010; Fassnacht 

et al., 2018) and is usually caused by snow distribution factors such as canopy cover, wind, and solar 

radiation (Liston & Sturm, 1998). The consistency of the snow depth pattern at the Joe Wright site 



 
 

46 
 

within a snow season (intra-annual variability) and between different snow seasons (inter-annual 

variability) (Fassnacht et al., 2018) suggests that the cause is specific to that site and is consistently 

present through the snow season (Sturm et al, 2010). By contrast, at the Columbine site, variability 

was much lower, with measurements across 20 meters varying by less than 10cm throughout WY 

2018 (Figure 3-4).  

The consistent snow depth pattern at Joe Wright is likely due to snow transport and 

deposition at the site from along the nearby road and from Cameron Pass just to the south (Figure 

4-1b) which was observed at multiple points in the winter during fieldwork. While the Columbine 

site is located in a similarly sized clearing to Joe Wright, there is a small area of mixed lodgepole pine 

and spruce-fir forest between the road and the SNOTEL site (Figure 4-1a). These sites are similar in 

slope, aspect, and vegetative cover, but vary greatly in snow depth and snow depth variability 

(Figures 3-2 & 3-3). Low-cost methods that capture snow depth discrepancies in areas with similar 

landscape characteristics can improve basin-wide snowpack storage estimates by providing a better 

estimate of variability (Balk & Elder, 2000). 

 

Figure 4-1: True color satellite image of the (a) Columbine and (b) Joe Wright showing proximity 
and orientation of roads and forests 
 

4.3 Snow Measurement via Terrestrial Photography 

 Previous studies on image recognition for snow science have focused on measurement of 

albedo (Corripio, 2004) and snow covered area (Arslan et al., 2017). These projects deployed time  
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lapse camera networks and used automated methods to convert images to data but the approach 

differed the project presented here. Rather than using machine learning, they manually identified 

regions of interest in the images from each camera. The average pixel colors in these regions were 

evaluated against a plate of known color in the scene to estimate albedo (Corripio, 2004). Snow 

covered area was retrieved by classifying each pixel as snow or non-snow (Arslan et al., 2017). 

 These area of interest based approaches are less applicable to snow depth retrieval because 

the apparent size of the staff in the image is not constant. Additionally, issues arising from shadows 

moving across the scene through each day are reduced by choosing regions of interest in the image 

with consistent lighting. The known color plate placed in the scene also allows for a baseline light 

condition to be established for each image, simplifying the snow presence determination.   

Snow surface roughness has also been retrieved automatically from images (Manninen, 

2012). These were not time lapse images at a particular site but rather photographs of a purpose-

built snow roughness board placed partially into the snow at locations of interest. This board had 

two stripes of checkerboard markings around its edge which allowed for an algorithm tuned to 

locate small areas with high contrast to recognize the board’s location and orientation automatically 

in 99% of cases. Without the checkerboard markings, initial image analysis required manual cropping 

of each photograph (Fassnacht et al., 2009). Once these were known, the snow surface could be 

identified and its roughness estimated. The success of this automated technique suggests that 

distinctive and high contrast patterns could help improve detection accuracy of snow depth staffs. 

 Garvelmann et al. (2012) set out to measure snow depth, albedo, and canopy interception at 

a network of 45 time lapse cameras. They reduced the cost of the cameras by using low-cost digital 

cameras mounted inside purpose-built housing. These cameras and housings had issues with snow 

buildup and occasional hardware failures due to low temperatures and moisture, but most cameras 

functioned through the winter. The same process used in previous studies was used to retrieve 
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albedo and an automated snow pixel identifying method was used to estimate canopy interception 

based on manually defined regions of interest positioned in the background tree canopy. They 

attempted to use the same snow pixel identification process to differentiate snow depth staffs placed 

in the cameras’ field of view from the background but had inconsistent results and high errors. They 

manually delineated snow depths for their final assessment. 

 Another group (Pimentel et al., 2017) used snow depth staffs and a time lapse camera to 

produce a Snow Accumulation/Depletion Curve (ADC) relating snow covered area to snow depth. 

Using the techniques similar to Arslan et al. (2017) and Garvelmann et al. (2012) they sorted pixels 

in the plot into snow and non-snow and computed snow covered area over the plot. They also used 

a red-painted depth staff to find snow depth at a key point in the plot by applying the same snow 

pixel differentiation algorithm. The application of this algorithm was simplified by specifying a small 

area of interest and by placing the staff so that the background was entirely snow covered even at 

low snow depths. 

 In the context of previous methods, this research is the first time that image recognition and 

machine learning have been applied to snow depth measurement from terrestrial imagery. This 

technique has accuracies within 10-20cm in ideal conditions (Table 3-2). Operationally, unlike the 

techniques based on classifying pixels previously used to determine albedo and snow covered area, it 

does not require a baseline color reference to be placed in the image or an area of interest to be 

defined by the user. 

 

4.4 Recommendations 

 Operating a network of varied sites across the state of Colorado during the winter of 2017-

2018 allowed the challenges associated with establishing and maintaining these sites to be examined. 

There are a number of recommendations that should be followed when setting up and maintaining 
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future sites, as well as when processing images in order to achieve best results. In addition, there are 

additional resources that future researchers could utilize to improve upon this technique. 

 

4.4.1 Site Setup Recommendations 

 The installed site hardware worked as intended with the snow depth stakes remaining 

upright and the cameras working through a season in cold, wet, and windy conditions. Although the 

physical sites performed well, certain aspects of their configuration interfered with the image 

recognition process. The most straightforward impediment to image recognition was snow staffs 

occluding each other. The Swamp Angel site had low accuracies because the staffs were placed too 

closely and overlapped each other (Figure 5-1a). Other sites such as Columbine with more widely 

placed staffs were more successful (Figure 5-1b). 

 

Figure 4-2: (a) Overlapping staffs at Swamp Angel and (b) separate staffs at Columbine 
 
 Staff accuracy was strongly affected by the staffs’ apparent backgrounds with snow-covered 

backgrounds yielding higher accuracies than those with forested backgrounds. This is due to the 

near constant color of the snow having a high contrast with the red staffs in all lighting conditions 

whereas the grays and browns of the forest background were quite similar to the staff red, especially 
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when the staffs are in shade (Figure 4-3). This is also the reason accuracies were higher when the 

snowpack was deeper, as a deeper snowpack made many staff backgrounds more uniformly colored. 

 

Figure 4-3: Color comparison between dense forest background (upper left & upper right) and three 
snow staffs (lower right, middle left, lower left) demonstrating similarities in forest background 
colors and the wide range of colors found in the foreground staffs  
 

4.4.2 Site Equipment Recommendations  

Placing the staffs and camera to maximize the amount of snow-covered background is 

straightforward when working with a sloping or expansive site. When faced with a confined or flat 

site, this can be more difficult. At Columbine and Joe Wright, there were expansive open areas 

(Figure 2-2b, 2-2a) that allowed the furthest staffs to be placed at least 10m from the nearest 
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forested area. At Red Mountain Pass, the forest edge was less than 2 meters from the furthest line of 

staffs, causing a larger fraction of the background to be forested (Figure 2-2e). 

At sites with limited open space, placing the camera at a higher angle above the staffs (Figure 

4-2) can reduce the forested fraction of the background. This was difficult to perform at the 

SNOTEL sites since the camera mount on the meteorological tower was temporary and climbing on 

the tower to a sufficient height would have been dangerous. Utilizing a more robust commercial 

camera mount rather than the fabric strap used in this first season would allow the camera to be 

placed at a higher angle looking down at the site, increasing the amount of snow in the background 

of each of the staffs. 

 

Figure 4-4: Cameras mounted at (a) staff height and at a (b) higher angle, demonstrating that the 
field of view of the camera at a higher placement will include a larger area of snow and a smaller area 
of vegetation in the background. 
 

The steel fencepost staffs worked well in this application, remaining upright despite frequent 

high winds, surface water flow, and soil frost heaving. However, each staff weighs over 7 kilograms, 

limiting the distance they can be carried. Their 3-meter length is necessary for peak snow 

accumulation at many high elevation Colorado sites (Appendix D) but also makes handling 

cumbersome and vehicle transport difficult. Several alternative staff materials were considered and 

utilizing bamboo or plastic pipes is recommended. They may move more than the steel fenceposts 

but are far lighter and could be split into smaller sections to be assembled on site, which would 
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improve portability. The lighter plastic pipes or bamboo could be attached to a piece of rebar driven 

into the ground, requiring less hardware and heavy lifting than pounding the fenceposts into the 

ground. 

The red color of the staffs differentiated them from the background sufficiently to enable 

consistent detections of staff presence in images even if the staff dimensions weren’t highly accurate 

(Table 3-2). Another investigation into snow depth via automated image recognition (R. Fernandes, 

personal communication, Feb 27 2019) painted red and black squares on their staffs instead of 

keeping a constant color and saw increased accuracy. A study on snow surface roughness was able to 

automatically determine that parameter from images using a purpose-built image recognition 

program and used a pattern of light and dark squares around the board’s edges to make the board 

easier to detect (Manninen et al, 2012). Unique patterns in the scene are also simpler to recognize for 

computer vision algorithms which could reduce false detections and improve snow depth data. 

 

4.4.3 Image Recognition Recommendations 

If this method were deployed operationally, some of the steps that were done manually in 

this research could be automated. The detector performs best when snow is present and in this work 

the dates of snow appearance and disappearance were manually found. Choosing an area of interest 

on the ground and finding its albedo relative to the image could determine whether snow is present 

and decide whether to use the detector or set all snow depths to zero. Additionally, if strong trends 

were observed in accuracies by time of day, images could be filtered to only make detections in 

images within a certain time range. 

One of the limitations of this investigation was the use of desktop computers for detector 

calibration and evaluation. This allows the technique to be easily and inexpensively reproduced but 

limits the size of calibration sets and image processing speed. High-performance computing could 
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greatly increase the speed and accuracy of this technique, but supercomputers have been expensive 

and technically challenging to operate. Recently, technology companies such as Google, Amazon, 

and others have introduced low-cost, user-friendly, cloud-based high-performance computation 

services, many of which are optimized for deep learning and image recognition (Hale, 2018). Using 

these services would allow detector calibration and image processing to be done from any device 

with an internet connection. 

In addition to these cloud-based solutions, there are a variety of purpose-built, proprietary 

image recognition software packages that could likely increase detection accuracy and speed over the 

Matlab implementation of Aggregate Channel Features technique used in this work. There are also 

generalized pretrained detectors which can be specialized to a target object with a small number of 

additional calibration images. These pretrained detectors can achieve higher accuracies but at a much 

higher computational cost especially when applied to large, high resolution images. 
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CHAPTER 5 – CONCLUSION 

 

 The pilot study conducted during the winter of 2017-2018 is a first step in the use of image 

recognition for snow depth estimation. The resultant data had high error but provided information 

on factors that could be controlled in the physical site setup and later image processing in order to 

minimize error. Operation of camera sites across the state of Colorado additionally provided 

important insight into best practices for future studies. The technology at this stage could be used 

operationally in areas poorly suited to current measurement techniques where a rough estimate of 

snow depth is needed. 

 The raw data returned from the automated detection protocol had mean error as high as 

70cm, necessitating a robust process of error identification. Though error identification lowered 

mean error to around 20cm it eliminated data points and made data availability for a specific time 

step uncertain. More advanced and computationally intensive image recognition algorithms could be 

more successful in accurately identifying staffs thereby increasing accuracy and data 

representativeness across the period of record. 

Maintenance of the camera sites consisted of only changing batteries and an SD card while 

installation required no power tools or specialized equipment. Only one staff across all sites visibly 

moved despite most sites being subjected to surface flow and frost heaving during the winter. This 

simplicity, reliability, and lack of moving parts make this technology an option for snow depth 

measurement in remote areas and designated wilderness areas. 

 The most exciting future possibility based on this work is utilization of cloud-based image 

recognition services. These could provide more accurate detectors, faster image processing, and 

allow any device with an internet connection to convert images into snow depths. A cloud-based 

solution would also open this technology to the public, allowing images of specific locations or 
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landmarks to be converted to snow depths, providing valuable data in areas that are not well 

represented in current measurement networks. 

 In its present state this method can provide snow depth data with absolute errors as low as 

20cm on a properly arranged site. And while this study does provide guidelines for error 

minimization in both site setup and data processing, the most exciting next steps involve moving the 

image recognition to cloud-based services. Not only would this improve accuracies and reduce 

computer hardware requirements for the user, it would open the possibility of snow depth retrieval 

from images taken in remote areas by the anyone, rather than only from time lapse cameras installed 

at dedicated sites. 
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APPENDICES 

 

Appendix A: Miscellaneous Figures 

 

Figure A-1: Stealthcam time lapse game camera used at all sites 

 

Figure A-2: Steel T posts used as snow staffs and as mounting points at sites without  
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Figure A-3: Camera mounted on a SNOTEL meteorological tower at Joe Wright. A similar setup 
was used at Columbine and Red Mountain Pass 
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Figure A-4: View from the Red Mountain Pass camera, note the high percentage of forested 
background 
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Figure A-5: View from the Swamp Angel camera, note the close placement of staffs 
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Figure A-6: Full time of day errors for Joe Wright 
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Figure A-7: Full time of day errors for Columbine  
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Appendix B: Site Configurations 

 

 
Figure B-1: Joe Wright site map, light blue symbols are staffs, dark blue are cameras, path of WY 
2006 – WY 2008 transects shown in red 
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Figure B-2: Columbine site map, light blue symbols are staffs, dark blue are cameras 
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Figure B-3: Swamp Angel site map, light blue symbols are staffs, dark blue are cameras 
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Figure B-4: East River site map, light blue symbols are staffs, dark blue are cameras 
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Figure B-5: Red Mountain pass site map, light blue symbols are staffs, dark blue are cameras 
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Appendix C: Full Sensitivity Analysis Results 

 Sensitivity analysis results not shown in the results section with results that can be well 

visualized. 

 
Figure C-1: How many times more negative samples are used in the calibration process than positive 
samples 
 
 

 
Figure C-2: Window Stride, how many pixels the searching window moves between analyzing 
groups of pixels 
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Figure C-3: Threshold, a parameter that controls how many positive returns are rejected within the 
detection protocol 
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Appendix D: SNOTEL Depth Data WY 2009 – WY 2018 

 

 
Figure D-1: Joe Wright SNOTEL depth data for WY 2009 – 2018 with the median snow depth for 
the period in blue 
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Figure D-2: Columbine SNOTEL depth data for WY 2009 – 2018 with the median snow depth for 
the period in blue 
 

 
Figure D-3: Red Mountain Pass SNOTEL depth data for WY 2009 – 2018 with the median snow 
depth for the period in blue 
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