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ABSTRACT 
 
 
 

A METHOD TO DOWNSCALE SOIL MOISTURE TO FINE-RESOLUTIONS USING 

TOPOGRAPHIC, VEGETATION, AND SOIL DATA 
 
 
 

Various remote-sensing and ground-based sensor methods are available to estimate soil 

moisture over large regions with spatial resolutions greater than 500 m.  However, applications 

such as water management and agricultural production require finer resolutions (10 – 100 m grid 

cells).  To reach such resolutions, soil moisture must be downscaled using supplemental data.  

Several downscaling methods use only topographic data, but vegetation and soil characteristics 

also affect fine-scale soil moisture variations.  In this thesis, a downscaling model that uses 

topographic, vegetation, and soil data is presented, which is called the Equilibrium Moisture 

from Topography, Vegetation, and Soil (EMT+VS) model.  The EMT+VS model assumes a 

steady-state water balance involving: infiltration, deep drainage, lateral flow, and 

evapotranspiration.  The magnitude of each process at each location is inferred from topographic, 

vegetation, and soil characteristics.  To evaluate the model, it is applied to three catchments with 

extensive soil moisture and topographic data and compared to an Empirical Orthogonal Function 

(EOF) downscaling method.  The primary test catchment is Cache la Poudre, which has variable 

vegetation cover.  Extensive vegetation and soil data were available for this catchment.  

Additional testing is performed using the Tarrawarra and Nerrigundah catchments where 

vegetation is relatively homogeneous and limited soil data are available for interpolation.  For 

Cache la Poudre, the estimated soil moisture patterns improve substantially when the vegetation 

and soil data are used in addition to topographic data, and the performance is similar for the 
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EMT+VS and EOF models.  Adding spatially-interpolated soil data to the topographic data at 

Tarrawarra and Nerrigundah decreases model performance and results in worse performance 

than the EOF method, in which the soil data are not highly weighted.  These results suggest that 

the soil data must have greater spatial detail to be useful to the EMT+VS model. 
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CHAPTER 1: INTRODUCTION 
 
 
 

The understanding of spatially varying soil moisture patterns at a catchment scale is 

important for many hydrologic applications as it is a key component in the partitioning of 

precipitation into infiltration, runoff, and evapotranspiration (ET).  Estimates of soil moisture are 

becoming more readily available at coarse to intermediate resolutions.  For example, the 

Advanced Microwave Scanning Radiometer (AMSR-E) provides soil moisture estimates with a 

60 km spatial resolution (Njoku et al., 2003).  The Soil Moisture and Ocean Salinity (SMOS) 

satellites provide soil moisture estimates at 50 km resolution (Kerr et al., 2001).  Passive 

microwave data from WindSat can be used to estimate soil moisture at 25 km resolution (Li et 

al., 2010).  The Soil Moisture Active Passive (SMAP) satellite will be able provide soil moisture 

estimates at spatial resolutions as fine as about 10 km using 1.2 GHz L-Band radar (Entekhabi et 

al., 2010).  Furthermore, optical and thermal remote-sensing data from MODerate resolution 

Imaging Spectroradiometer (MODIS) can be used to downscale these coarse resolution estimates 

to an intermediate resolution (1 km) (Merlin et al., 2013).  Optical and thermal remote-sensing 

can also be used to estimate intermediate-resolution soil moisture (500 m) using algorithms such 

as the Surface Energy Balance Algorithm for Land (SEBAL) (Bastiaanssen et al., 1998; Scott et 

al., 2003).  Finally, intermediate-resolution soil moisture can be obtained from the Cosmic-ray 

Soil Moisture Observing System (COSMOS), a ground-based sensor that estimates soil moisture 

over a 700 m diameter region when the probe is located a few meters from the ground surface at 

sea level (Zreda et al., 2008).   

Many applications such as water management and agricultural production require finer 

resolutions (10 – 100 m), so methods are needed to further downscale soil moisture estimates.  
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To estimate fine-scale variations in soil moisture, high-resolution surrogate data are needed that 

are strongly associated with these variations.  Topographic data are available at the appropriate 

resolutions and can be an important control on soil moisture.  For example, Burt and Butcher 

(1985) compared soil moisture values with several topographic indices and found that a 

combined index that includes plan curvature and the ratio of upslope area and slope is best 

correlated with soil moisture.  Brocca et al. (2007) observed that soil moisture is related to slope, 

elevation, specific contributing area, and distance from the drainage channel.  Similar to Burt and 

Butcher (1985), the strongest correlations occurred during wet conditions (Brocca et al., 2007).  

Grayson et al. (1997) and Western et al. (1999) found that the dependence of soil moisture on 

topography can vary through time—a property known as temporal instability.  For the 

Tarrawarra catchment in Australia, lateral water movement controls the soil moisture patterns 

during wet conditions and specific contributing area is most closely associated with the soil 

moisture patterns.  During dry periods, vertical fluxes control soil moisture and the potential 

solar radiation index (PSRI) becomes closely associated with the soil moisture patterns.     

Several models have been developed to downscale soil moisture based on topographic 

data.  Wilson et al. (2005) developed a model to generate spatiotemporal soil moisture patterns 

using empirical relationships with topographic attributes that depend on the spatial-average soil 

moisture.  Their model can reproduce temporal instability and performs well for the locations 

where it was developed, but the empirical relationships are not expected to be widely applicable.  

Busch et al. (2012) also developed an empirical downscaling method based on Empirical 

Orthogonal Function (EOF) analysis.  This method can also reproduce temporal instability and 

performs well at the catchments where it was developed, but the model is entirely empirical and 

thus cannot be applied to regions that are dissimilar to where it was developed (Busch et al., 
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2012).  Coleman and Niemann (2013) proposed the Equilibrium Moisture from Topography 

(EMT) model, which also downscales soil moisture based on topographic indices.  This method 

is more physically-based, so the relationships with the topographic indices are determined from 

conceptual descriptions of the vadose zone processes.  This model can also reproduce temporal 

instability, and it outperforms the EOF method when few soil moisture observations are available 

for calibration (Werbylo and Niemann, 2014).  Although the EMT model includes parameters 

related to vegetation and soil properties, it does not consider fine-resolution variations of these 

properties if they occur. 

Studies have demonstrated that fine-scale vegetation patterns can also affect catchment-

scale soil moisture patterns.  For example, Pariente (2002) studied soil moisture under and 

between shrubs and found downslope and radial soil moisture gradients around the shrubs.  

During precipitation events, the soil was wetter between shrubs than under shrubs due to 

interception.  During drying periods, the soil was wetter under shrubs than between shrubs in 

part because the canopy shaded the surface and decreased soil ET (Pariente, 2002).  Furthermore, 

vegetation shading can reduce the amount of water being evaporated from shallow soil (Wallace 

et al., 1999; Kidron and Gutschick, 2013).   Similarly, Lin (2010) found greater soil moisture and 

less soil evaporation for medium and highly shaded areas than for weakly shaded areas.  Root-

water uptake can also affect soil moisture patterns, as top soil layers will dry faster with roots 

than without (Wallace et al., 1999).  Dunkerley (2000) found that infiltration rates decrease 

further away from a shrub stem while Chen and Wang (2012) found the rate of transpiration 

increases with leaf area index (LAI).  Furthermore, root compensation and hydraulic 

redistribution can also reduce spatial variations in soil moisture (Guswa, 2012).  Vegetation 

cover (Hupet and Vanclooster, 2002) and seasonal variations in the demand for soil water by 
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plants (Gómez-Plaza et al., 2000) can introduce temporal instability in soil moisture patterns.  

Similarly, Naithani et al. (2013) found that soil moisture and vegetation patterns are very similar 

from leaf-onset to maturity but different from leaf maturity to senescence.  Overall, the factors 

influencing soil moisture are related to the presence or absence of vegetation (Gómez-Plaza et 

al., 2001).  Vegetation leads to soil moisture patterns that are inversely related to patterns of LAI 

(He et al., 2014) and is an important control under dry conditions (Mascaro et al., 2010; Baroni 

et al., 2013). 

Spatial patterns of soil moisture also depend upon soil properties including porosity 

(Famiglietti et al., 1998), hydraulic conductivity (Famiglietti et al., 1998; Martínez García et al., 

2014), soil texture (primarily percent clay) (Xu et al., 2008; Takagi and Lin, 2011), and soil 

depth (Famiglietti et al., 1998; Tromp-van Meerveld and McDonnell, 2006; Takagi and Lin, 

2011).  The influence of soil properties may be greater during wet conditions (Baroni et al., 

2013) and more important relative to topography when the topography is flatter (Zhu and Lin, 

2011).  Famiglietti et al. (1998) examined the influence of both soil properties and topographic 

attributes on soil moisture through correlation analysis.  They found under wetter conditions, 

porosity and hydraulic conductivity controlled soil moisture patterns, likely because both have a 

large impact on water storage and movement.  Under dry conditions, topography becomes more 

important, and relative elevation, cosine of aspect, and clay content influence soil moisture 

patterns.  In a regression analysis, Takagi and Lin (2011) also showed that soil moisture 

variability for all soil depths considered was explained best by: slope, curvature, topographic 

wetness index, depth to bedrock, percent clay, and percentage of rock fragments.  Finally, 

Tromp-van Merrveld and McDonnell (2006) observed that differences in soil depth caused 

variations in soil moisture content, as the total water stored in the soil changes due to soil depth. 
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The objective of this thesis is to generalize the EMT model (Coleman and Niemann, 

2013) to accept fine-resolution vegetation and soil information if available.  It is hypothesized 

that including the spatial variations in vegetation and soil characteristics will improve the 

model’s ability to downscale soil moisture patterns.  The generalization is called the Equilibrium 

Moisture from Topography, Vegetation, and Soil (EMT+VS) model.  The model’s representation 

of vegetation is improved by introducing its primary roles in interception, transpiration, and soil 

evaporation.  In addition, the structure of the model is revised to allow for both vegetation and 

soil properties to vary at the fine resolution.  To test and evaluate performance of the EMT+VS 

model, it was applied to the Cache la Poudre catchment in Colorado where detailed soil moisture 

and topographic data, along with litter depth, canopy cover, and soil texture datasets were 

available.  This catchment has substantial spatial variations in vegetation cover.  To supplement 

this primary testing location, the model was also applied to two catchments in Australia 

(Tarrawarra and Nerrigundah) where detailed soil moisture and topographic data are available 

along with limited soil data.  Although these catchments have relatively homogeneous vegetation 

(and no vegetation data), they have data for soil properties that are not available at Cache la 

Poudre.  Therefore, the feasibility of using interpolated soil data can also be evaluated at these 

sites. 

The outline of this thesis is as follows.  The next chapter (“Methodology”) describes how 

the EMT model was revised to produce the EMT+VS model and briefly describes the EOF 

downscaling method.  The “Application Catchments” chapter describes the three sites where the 

model was tested and the fine-resolution data that were available at those catchments.  Then, the 

“Parameter Estimation” chapter describes the method used to calibrate the model parameters and 

the field data used to constrain the allowable ranges.  The “Results and Discussion” chapter 
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describes the performance of the EMT+VS model at the application catchments and compares it 

with the EMT model and the EOF method.  Finally, the “Conclusions” chapter summarizes the 

main conclusions from the testing. 
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CHAPTER 2: METHODOLOGY 
 
 
 

2.1 EMT+VS Model Development 

The EMT+VS model (like the EMT model) considers the water balance in the 

hydrologically active layer, which is defined as the depth of soil (beginning at the ground 

surface) through which lateral flow can potentially occur.  In particular, it considers this layer in 

the land area that is upslope from an edge of a grid cell in a digital elevation model (DEM).  It is 

assumed that soil moisture is uniform with depth within the layer and that the infiltration is 

balanced by deep drainage (groundwater recharge), lateral flow, and ET.  The equilibrium 

assumption disallows hysteresis in the estimated soil moisture patterns (see Coleman and 

Niemann (2013) for more detail on this assumption).  The water balance can be written as: 

  
A A A

FdA GdA L EdA= + +∫ ∫ ∫   (1) 

where F  is the infiltration rate, G  is the deep drainage, and E  is the ET for the fine-resolution 

grid cells included in the upslope area.  The variable L  is the lateral outflow across the edge of 

the DEM cell that defines the upslope area, which is the only location where lateral flow exits in 

the control volume.  The variable A  is the area that is upslope from the edge of the DEM cell. 

 Infiltration F  is assumed to be spatially uniform in the EMT model.  Interception is 

known to decrease infiltration (Kozak et al., 2007).  Therefore, to include a simple representation 

of interception in the EMT+VS model, F  is modified to be: 

 ( )0 1  F F Vλ= −   (2) 

where 0F  is the maximum infiltration rate, V  is the fractional vegetation cover at the location, 

and λ  (0 1λ≤ ≤ ) is the interception efficiency, a parameter that aims to account for factors that 
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influence interception, such as the foliage holding capacity, which depends on vegetation type.  

If 1λ = , then all rain that falls on the vegetated fraction of the grid cell is assumed to be 

intercepted and retained by the vegetation, which reduces the infiltration rate for the cell to 

0(1 )F F V= − .  Interception has been represented in similar ways in other models.  For example, 

the Gridded Surface Subsurface Hydrologic Analysis (GSSHA) model diverts all rainfall to 

interception until an initial capacity is met.  After that time, a constant fraction of the rainfall is 

lost to interception, similar to Equation (2) (Downer and Ogden, 2004; Downer et al., 2008).  

The 2-layer Variable Infiltration Capacity (VIC) by Liang et al. (1994) model represents the 

interception rate as a constant multiplied by the leaf-area index (LAI), which is very similar to 

the use of V  in Equation (2). 

 Deep drainage G  in the EMT+VS model is the same as the EMT model.  Specifically, it 

is assumed to occur with no capillary gradient, so G  is equal to the unsaturated vertical 

hydraulic conductivity, which is determined from the Campbell (1974) equation.  Thus, 

 , 
v

s vG K
γ

θ
φ

 
=  

 
  (3) 

where ,s vK  is the saturated vertical hydraulic conductivity, θ  is the volumetric soil moisture in 

the hydrologically active layer, φ  is the soil porosity, and vγ  is the vertical pore 

disconnectedness index (Campbell, 1974). 

 Lateral flow also has the same representation in the EMT and EMT+VS models and the 

equation can be derived from two distinct perspectives (Coleman and Niemann, 2013).  In one 

approach, lateral flow is assumed to occur throughout the entire unsaturated hydrologically 

active layer.  The flow is then derived from Darcy’s law, where both the Campbell (1974) 

equation, which is again used to calculate unsaturated vertical hydraulic conductivity, and the 
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soil anisotropy (the ratio of the horizontal to vertical saturated hydraulic conductivities) are 

multiplied together to calculate the unsaturated horizontal hydraulic conductivity.  The horizontal 

hydraulic gradient is assumed to be a power function of the topographic slope, and the layer 

thickness is assumed to depend on the topographic curvature, which has been observed for total 

soil depth (Heimsath et al., 1999).  In the second approach, the lateral flow is assumed to occur 

in a saturated portion of the hydrologically active layer, where the portion is determined by the 

depth-averaged degree of saturation in the layer.  Both approaches lead to the following 

expression: 

 min
0 ,

min

 
h

s vL c K S
γ

εκ κ θ
δ ι

κ φ
   −

=    
  

  (4) 

where 0δ  is the thickness of the hydrologically active layer where the topographic curvature is 

zero, minκ  is the minimum topographic curvature for which the layer is present, and κ  is the 

topographic curvature (Heimsath et al., 1999).  Curvature is positive for convergent locations 

and negative for divergent locations.  The variable c  is the length of the grid-cell edge and ι  is 

the soil anisotropy.  The variable S  is topographic slope and ε  ( 1ε ≥ ) is a parameter that 

relates the horizontal hydraulic gradient to the topographic slope.  The variable hγ  is the 

horizontal pore disconnectedness if the lateral flow is unsaturated, but it can take smaller values 

(closer to one) if the lateral flow occurs in a saturated portion of the layer. 

 The EMT model represents ET using an approach based on Priestley and Taylor (1972), 

which assumes that the aerodynamic term is a specified fraction of the radiation term in the 

Penman (1948) equation.  In the EMT model, the radiation term is modified to account for the 

effects of topographic slope and aspect, and actual ET is equal to the potential ET multiplied by a 

power function of the degree of saturation to account for moisture limitation effects.  The same 
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approach is used for the EMT+VS model, but the role of vegetation cover is also considered.  

The revised equation is:  

 (1 )
1 1

r a

p
p

I
E E V V µ

β β
θ α θ

η
α φ α φ

    
 = + − +      + +     

  (5) 

where pE  is the average potential ET, pI  is the PSRI (the ratio of the insolation of the 

topographic surface to that of a horizontal surface at the same latitude and date), α is the ratio of 

the aerodynamic term to the radiation term (i.e. the Priestly-Taylor coefficient minus one), and 

η , µ , rβ  and aβ  are vegetation-related parameters.  The first and second terms in the second 

set of square brackets on the right side of Equation (5) are the radiative and aerodynamic 

components of the ET, respectively, in the Penman equation.   

The only new element in Equation (5) is the portion in the first square brackets on the 

right side.  This term is derived by first partitioning pE  into potential transpiration and potential 

evaporation according to fractional vegetation cover V .  Many other models represent 

transpiration and/or soil evaporation as functions of LAI (Liang et al., 1994; Wigmosta et al. 

1994; Peters‐Lidard et al., 1997; Wallace et al., 1999).  In the transpiration term (Vη ), η  is 

introduced and represents the portion of the total transpiration that is contributed by the modeled 

soil layer (i.e. the hydrologically active layer).  It is expected to depend on the density of roots 

present in the layer and thus the vegetation type.  The transpiration term increases with V  

because denser vegetation is associated with more root-water uptake and transpiration (Figure 

1a).  It also increases with larger η  values because such values indicate that a greater portion of 

the transpiration is being supplied by the modeled layer. 
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In the soil evaporation term ((1 )V µ− ), the exponent µ  is introduced because vegetation 

cover can reduce soil evaporation beyond simply redirecting a portion of the ET to transpiration.  

For example, canopy cover is expected to reduce wind speed and increase humidity retention 

near the soil surface.  Litter cover can also retain humidity near the soil surface.  Ritchie (1972) 

proposed a detailed model for soil evaporation that was updated to include a shading reduction 

that is calculated as a function of LAI (Wallace et al., 1999), which has some similarities to the 

model used here.  As V  increases, the evaporation term decreases because more of the available 

energy is used for transpiration (Figure 1b).  When µ  is larger, the evaporation term is smaller 

because the vegetation cover also inhibits soil evaporation.  The overall effect of vegetation 

cover is determined from the sum of the transpiration and evaporation terms (Figure 1c).  

 The soil moisture is determined from the water balance equation using that same 

approximate solution strategy that was used to obtain the EMT model.  See Coleman and 

Niemann (2013) for an evaluation of the approximations included in this approach.  First, the 

equations for F , G , L , and E  from Equations (2) – (5) are substituted into Equation (1), and 

the following expression is obtained: 

 ( )
( ) ( )

min
0 , 0 ,

min

1 1
) )

1
1  ( (1 ) ( (1 )

1 1

v h r a

p p
s v s v p

A A A

E Ec
F V K dA K S V V I dA V V dA

A A A A

γ
ε µ

β
µ

γ βακ κθ θ θ θ
λ δ ι η η

φ κ φ α φ α φ
        −

− = + + + − + + −        + +        
∫ ∫ ∫

 (6) 

This expression is then approximated by: 

 ( )
( ) ( )

min
0 , 0 ,

min

1  ( (1 ) ( (1 )
1 1

) )
v h r a

p p
s v s v p

E Ec
F V K K S V V I V V

A

γ γ

µ µ

β β

ε ακ κθ θ θ θ
λ δ ι η η

φ κ φ α φ α φ
        −

− = + + + − + + −        + +        
 (7) 

Finally, an explicit equation for θ  is determined from a weighted average of analytical solutions 

which are derived by assuming that each of the terms on the right side of Equation (7) dominates 

the determination of soil moisture.  The final estimate for the soil moisture is: 
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 G G L L R R A A

G L R A

w w w w

w w w w

θ θ θ θ
θ

+ + +
=

+ + +
  (8) 

where Gθ , Lθ , Rθ , and Aθ  are the analytical soil moisture equations if deep drainage, lateral flow, 

radiative ET, and aerodynamic ET dominate in Equation (7), respectively.  The variables Gw , 

Lw , Rw , and Aw  control the importance of Gθ , Lθ , Rθ , and Aθ , respectively, to the final 

estimate of θ  and are determined from the actual magnitudes of the four terms in Equation (7).  

The only difference between the solution strategies for the EMT and EMT+VS models is that 

more variables are allowed to vary spatially in the EMT+VS model. 

 The solution strategy can be illustrated by considering the deep drainage term.  If deep 

drainage is dominant, then the other terms on the right side of Equation (7) can be neglected, 

which implies: 

 
( )

1

0

,

1
v

G
s v

F V

K

γ
λ

θ φ
 −

=  
  

  (9) 

Using this equation, the spatial-average soil moisture θ  within a catchment (or a coarse 

resolution grid cell) can be derived as follows: 

 

1
1

0

,

1 1
v

v

c c

G c c
c c s vA A

F V
dA dA

A A K

γ
γ λ

θ θ φ
 −

= =   
 

∫ ∫   (10) 

where cA  is the area of the catchment or coarse grid cell.  Equation (10) differs from the EMT 

model not only because vegetation appears in the numerator but also because ,s vK  and φ  are 

allowed to vary within cA  and thus are kept inside the integral.  0F  and vγ  are required to be 

spatially-constant, which is a necessary assumption to use the solution strategy provided by 

Coleman and Niemann (2013).  The term in the integral is a compound vegetation and soil index 
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that introduces spatial variation into the soil moisture estimate, which is termed the deep 

drainage index (DDI).  This pattern of variation is not present in the EMT model: 

 

1

,

1
DDI 

v

s v

V

K

γ
λ

φ
 −

≡   
 

  (11) 

If the spatial-average DDI is denoted Ψ, Equation (10) can be rewritten as: 

 1
0

vF γθ = Ψ   (12) 

Solving this equation for 0F  and substituting into Equation (9) results in: 

 
DDI

Gθ θ=
Ψ

  (13) 

which is the analytical expression for Gθ  that is used in the main equation (Equation (8)). 

Using an equivalent solution strategy for the lateral flow term, the model represents Lθ  as 

dependent on a lateral flow index (LFI) according to: 

 
LFI

Lθ θ=
Λ

  (14) 

where:   

 

1 11

min

0 ,v min

1
LFI

h hh

s

V A

K cS

γ γγ

ε

λ
δ κ κι

κ
φ
   −  ≡       −    

  (15) 

and Λ  is the spatial-average of the LFI.  To obtain these expressions, only 0F , hγ , and ε  are 

required to be spatially constant, which deviates from the EMT model.  The LFI is a compound 

topographic, vegetation, and soil index, which introduces another pattern of variation into the 

soil moisture estimates.  An LFI appears in the EMT model, but the only spatially-varying 

attributes are related to topography.   
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Similarly, the model represents Rθ  as dependent on a radiative ET index (REI) according 

to: 

 
REI

Rθ θ=
Π

  (16) 

where: 

 

1 1 1
1 1 1

REI
(1 )

r r r

p p

V

E I V V

β β

µ

β

α λ
φ

η

     + −
≡          + −    

  (17) 

and Π  is the spatial-average of the REI.  To obtain these expressions, only 0F  and rβ  are 

required to be spatially constant.  The REI is a compound topographic, vegetation, soil, and 

climatic index.  A similar index appears in the EMT model, but it is called the ET index (ETI) 

and depends only on topographic attributes.   

Finally, the model represents Aθ  as dependent on an aerodynamic ET index (AEI) 

according to: 

 
AEI

Aθ θ=
Ω

  (18) 

where: 

 

1/ 1/
1 1

AEI
(1 )

a a

p

V

E V V µ

β β
α λ

φ
α η

   + −
≡      + −  

  (19) 

and Ω  denotes the spatial-average of the AEI.  To obtain this expression, only 0F  and aβ  are 

required to be spatially constant.  The AEI is a compound vegetation, soil, and climatic index 

that introduces spatial variation into the θ  estimate, and it does not appear in the EMT model.   

The importance of Gθ , Lθ , Rθ , and Aθ  to the weighted average is calculated from the 

magnitude of the associated term in Equation (7).  For example, Gw  is equal to the deep 
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drainage term in Equation (7) if Gθ  is used in place of θ  (see Coleman and Niemann (2013) for 

further details).  In addition, any coefficients that appear in Gw , Lw , Rw , and Aw  are cancelled 

because Gw , Lw , Rw , and Aw  appear in both the numerator and denominator of Equation (7).  

From this approach, one obtains: 
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  (20) 
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  (23) 

and the downscaling method is complete. 

To implement the EMT+VS model, certain variables must be provided as fine-resolution 

maps while other variables are single (spatially-constant) values.  The fine-resolution variables 

include the topographic attributes (A , S , κ , and pI ), the vegetation characteristics (V ,λ , η , 

and µ ), soil characteristics (φ , ι , ,s vK , 0δ , and minκ ), and some climate-related characteristics    

( pE  and α ).  Although spatial variability is allowed in these variables, the maps can also 

indicate that the value is spatially constant (or constant within sub-regions).  The output from the 

EMT+VS model is a map of θ  at the same fine resolution as these inputs.  Single constant 

values must be provided for parameters vγ , hγ , rβ , aβ , ε , and θ .  Although 0F  was assumed to 

be constant, it does not appear in the final model.  Note that these parameters could also be 
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specified on a coarse grid because each coarse grid cell would be downscaled independently in 

the EMT+VS model.  However, all downscaling is performed using single values for these 

attributes, including θ , in this paper. 

2.2 EOF Downscaling Method 

 The EMT+VS model will be evaluated in part by comparing its results to those from an 

empirical downscaling method based on EOF analysis (Busch et al., 2012).  The EOF method 

requires a calibration soil moisture dataset with observations at the same collection of locations 

on multiple dates.  This soil moisture dataset is then decomposed into:  (1) the spatial-average 

soil moisture on each date, (2) time-invariant spatial patterns of covariation (the EOFs), and (3) 

expansion coefficients (ECs), which are time series that indicate the importance of each EOF to 

the soil moisture pattern on each date.  Together, these three components can be used to perfectly 

reconstruct the space-time soil moisture dataset.  However, to allow the method to be applied for 

dates and locations without soil moisture observations, Busch et al. (2012) discarded the EOFs 

that are not statistically significant.  Then, the remaining EOF patterns were estimated from 

stepwise multiple linear regressions against topographic indices, and the ECs were estimated 

from segmented-linear relationships with the spatial-average soil moisture (see Busch et al., 

2012 for more details).  In the end, the method can estimate the soil moisture pattern from a 

supplied spatial-average soil moisture and fine-resolution topographic data.  Although Busch et 

al. (2012) estimated the EOFs using only fine-resolution topographic attributes, the method can 

be expanded to include fine-resolution vegetation and/or soil characteristics if they are available.  

In the present study, the EOF method is supplied with the different types of fine-resolution inputs 

to allow for fair comparisons to different EMT+VS model scenarios.   
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CHAPTER 3: APPLICATION CATCHMENTS 
 
 
 

 The EMT+VS model is applied to three catchments with extensive soil moisture and 

topographic data available.  The primary test catchment is the Cache la Poudre, which was 

selected because of its substantial variations in vegetation cover.  Extensive vegetation (litter 

depth and canopy cover) data and soil texture data were also available.  Supplemental testing of 

the model is performed using the Tarrawarra and Nerrigundah catchments.  Although these 

catchments have relatively homogeneous vegetation (and no vegetation data), they have data for 

soil properties that are not available at Cache la Poudre including soil depth.  The following 

sections describe each catchment and the fine-resolution data that are available for use in the 

EMT+VS model.  Table 1 provides a summary characteristics and available data for each 

application catchment. 

3.1 Cache la Poudre 

The Cache la Poudre catchment is located near Rustic, Colorado and is in the Southern 

Rockies ecoregion (Omernik, 1987; Traff, 2013).  The catchment area is approximately 8.0 ha, 

and the climate is semi-arid with 415 mm mean annual precipitation (Lehman and Niemann, 

2008).  It has aspect-dependent vegetation with a coniferous forest with sparse deciduous shrub 

understory on the north-facing slope (NFS) and shrubland with sparse coniferous trees on the 

south-facing slope (SFS) (Figure 2a).  The NFS is dominated by Ponderosa Pine (Pinus 

ponderosa), while Douglas-fir (Pseudotsuga menziesii), Rocky Mountain Juniper (Juniperous 

scopulorum), and Common Juniper (Juniperus communes) are also present.  The dominant 

understory shrub is Mountain Mahogany (Cercocarpus montanus) and Antelope Bitterbrush 

(Purshia tridentate).  The SFS consists primarily of Mountain Mahogany and Antelope 
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Bitterbrush shrubs with Mountain Big Sagebrush (Artemisia tridentate subs. vaseyana) found at 

the lowest elevations.  A few Ponderosa Pine and Rocky Mountain Juniper trees are also found 

on the SFS (Lehman and Niemann, 2008).   

 Soil moisture data were previously collected (Coleman and Niemann, 2012) for the top 5 

cm of the soil using time domain reflectometry (TDR) on the 15 m grid, which is shown in 

Figure 2.  Soil moisture was measured on 9 dates between April 22, 2008 and June 24, 2008, and 

the spatial-average soil moisture ranged from 0.04 to 0.19.  Only the 350 locations that were 

measured on all nine dates are used in the present study.  Elevation data were also available on 

the same 15 m grid (Figure 2b) (Lehman and Niemann, 2008).  The average elevation is 

approximately 2195 m and total relief is approximately 115 m.   

The vegetation cover is characterized by available litter depth ( dL ) and canopy cover       

( cC ) on the 15 m grid collected and analyzed by Lehman and Niemann (2008) in Fall 2008.  

Litter depth was measured manually, and the value at each grid point (Figure 3a) is the average 

of multiple measurements within 10 cm of the grid point.  The values range from 0 to 15 cm with 

an average of 3 cm.  Canopy cover was determined from photographs that were taken vertically 

upward from the ground surface at each of the grid points.  A 3.2 megapixel multispectral digital 

camera (Tetracam Agriculture Digital Camera) was used, which has view angles of 31.6o and 

39.4o.  The images were analyzed using Tetracam’s PixelWrench software.  The vegetation and 

sky pixels in the images were distinguished using the red and infrared reflectances.  The fraction 

of the pixels that are vegetation was used for cC  (Figure 3b).  The canopy cover values range 

from 0 to 0.90 with an average value of 0.39.  Note that this method for determining cC  differs 

from LAI because LAI accounts for multiple layers of vegetation cover and thus can have values 

above one (Carlson and Ripley, 1997; Asner et al., 2003; Naithani et al., 2013).  As expected 
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from Figure 3, both dL  and cC  depend on the hillslope orientation.  The correlations of dL  and 

cC  with the cosine of topographic aspect are 0.47 and 0.62, respectively. 

  The dL  and cC  measurements were combined to determine the fractional vegetation 

cover V  for the EMT+VS model.  Both types of measurements are used because both canopy 

and litter cover can intercept rainfall (Gerrits and Savenije, 2011) and reduce soil evaporation 

(by increasing shading, reducing wind speed, and increasing humidity at the soil surface).  

Although cC  is expected to determine the portion of potential ET that is used for transpiration, 

both cC  and dL  are expected to be correlated with root density.  Thus, overall both variables are 

relevant when determining V . 

To determine V , dL  is first transformed into a fractional litter cover cL  (0 1cL≤ ≤ ) by 

the following equation: 

 tanh d
c

L
L

ζ
 

=  
 

  (24) 

where ζ  is a reference litter depth ( 0ζ > ) and a calibrated parameter.  This transformation is 

necessary because litter depth is not bounded by zero and one.  A hyperbolic tangent is used in 

Equation (24), but other sigmoid functions produce similar results when used in the EMT+VS 

model.  V  is then found by assuming that the canopy and litter cover occur independently within 

a fine-resolution grid cell, which implies: 

  c c c cV L C L C−= +   (25) 

Figure 3c shows V  as calculated by this approach.  Alternative methods to estimate V  from cL  

and cC  were considered and tend to produce similar results because a strong relationship is 
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observed between dL  and cC  ( dL  is well described by an exponential function of cC ).  

However, formulations that rely more on dL  than cC  slightly improve the performance of the 

EMT+VS model. 

 The soil texture in the top 5 cm was available from soil samples collected at every second 

point on the 15 m grid (resulting in 86 points on a 30 m grid, Figure 2) (Lehman and Niemann, 

2008).  Fractions of coarse gravel (4.75-12.5 mm), fine gravel (2-4.75 mm), coarse sand (0.6-2 

mm), and fine sand (0.05-0.6 mm) were available from sieve analysis.  Fractions of silt (0.02-0.6 

mm) and clay (<0.02 mm) were available from the standard hydrometer method (Figure 4a-c).   

A cumulative distribution function was then determined for each grid point to determine the 10th 

percentile (D10), 20th percentile (D20), and 50th percentile (D50) of grain diameter.  Large 

spatial variations occur in the percent sand, silt, and clay, but little organization is observed in 

Figure 4.  However, silt is more abundant on the NFS, and exhibits a correlation with cosine of 

aspect of 0.18.   

Maps of saturated hydraulic conductivity and porosity were determined from the soil 

texture data using pedotransfer functions developed by Cosby (1984).  Both functions were 

developed from samples that included A horizon soils, sandy loams, and topography with slopes 

up to 55%.  Thus, it is expected to be appropriate for this catchment.  However, the catchment 

includes an abundance of very large grain sizes, which might diverge from the datasets used to 

develop these functions.  The resulting conductivity values range from 936 to 1845 mm/day with 

an average of 1356 mm/day, and like the soil texture data, exhibit little organization (Figure 4d).  

Because information for anisotropy is not available, the conductivity values are used for ,s vK  in 

the model and a spatially-constant anisotropy ι  is calibrated to determine the horizontal saturated 
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hydraulic conductivity (see next chapter).  The resulting porosity values range from 0.38 to 0.41 

(m3/m3) with an average of 0.39 (m3/m3) and also exhibits little spatial organization (Figure 4e).    

3.2 Tarrawarra 

 The Tarrawarra catchment is located in southern Victoria, Australia.  It is approximately 

10.5 ha in area and has a temperate climate with a mean annual precipitation of 820 mm.  Soil 

moisture data are available on a 10 by 20 m grid for 13 dates from September 27, 1995 to 

November 29, 1996 (Western and Grayson, 1998).  The data were collected using a TDR in the 

top 30 cm of the soil (Western et al., 1999).  Only the 454 locations that are available on all 13 

dates are used for in this study.  Topographic data are also available on a 5 m grid.  The required 

topographical attributes (S , A , κ , and pI ) were determined based on this DEM and then 

filtered to include only the cells with soil moisture measurements (Figure 5a).     

Field-saturated hydraulic conductivity values are available from well permeameter tests 

at 42 locations (Western and Grayson, 1998).  Some of these locations occur within the same soil 

moisture grid cells.  In such cases, the observations were averaged to determine a single value for 

the grid cell, which results in 32 cells with data.  To obtain a complete hydraulic conductivity 

map, the data were interpolated using the linear inverse weighted distance (IWD) method using a 

search radius of 3 points (Figure 5b).  The resulting map of conductivity exhibits higher values 

on the NFS (Figure 5b).  Information about anisotropy is not available, so like Cache la Poudre, 

the conductivity values are used for ,s vK , and ι  is calibrated to determine the horizontal saturated 

hydraulic conductivity.  

 The EMT+VS model calculates the thickness of the hydrologically active layer as a linear 

function of topographic curvature, and two variables are required to determine that linear 

relationship ( 0δ  and minκ ).  For Tarrawarra, the A horizon (20 to 35 cm deep) is selected as the 
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hydrologically active soil layer, as the top 30 cm of soil accounts for approximately half of 

moisture storage of the soil profile (Western et al., 1999).  The thickness of the A horizon is 

available at 116 points on a 20 by 40 m grid with a 5 m offset from the soil moisture 

measurements (Western and Grayson, 1998).  These observations were plotted against the 

curvature, and two distinct relationships are observed where the curvature is positive and 

negative.  Thus, this catchment was divided into two soil groups based on the sign of the 

curvature and distinct values of 0δ  and minκ  that were estimated from the data in those two 

groups.   

3.3 Nerrigundah 

 The Nerrigundah catchment is located northwest of Dungog in New South Wales, 

Australia.   The catchment area is approximately 6.0 ha and has a temperate climate with a mean 

annual precipitation of about 1000 mm (Walker, 1999; Walker et al., 2001).  Soil moisture for 

the top 15 cm is available on a 20 m grid on 12 dates from August 27, 1997 to September 22, 

1997.  Only the 238 locations that are available on all 12 dates are used here.  Topographic data 

are also available from a 20 m DEM (Figure 6a).     

Saturated hydraulic conductivity and porosity are available at 19 locations throughout the 

catchment (Walker, 1999; Walker et al., 2001).  Saturated hydraulic conductivities were 

determined from Kozeny-Carmen, Guelph permeameter, and double-ring infiltrometer tests.  The 

double-ring infiltrometer test data were used for EMT+VS model testing as they were most 

representative of the hydrologically active layer.  Depths to the bottom of each of the A1, A2, 

B1, and B2 horizons were also available.  Porosities, determined from bulk density 

measurements, and soil texture data were available for all horizons.  For Nerrigundah, the 

hydrologically active layer is assumed to extend to the bottom of the B1 horizon because the 
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saturated hydraulic conductivity decreases substantially from the B1 to the B2 horizon.  The 

porosity for the hydrologically active layer was estimated from a weighted average of the 

porosities from the included horizons.  Similar to Tarrawarra, when more than one conductivity 

or porosity value is available in a grid cell, those values were averaged, which results in 17 cells 

with conductivity data and 15 cells with porosity data.  To obtain complete maps, interpolations 

were performed using the same method that was used with Tarrawarra data.  The interpolated 

conductivity map has higher values on the upper portions of the NFS and SFS (Figure 6b), while 

the porosity tends to be larger in the western portion of the catchment (Figure 6c).  Similar to the 

other catchments, the conductivity values are used for ,s vK  in the EMT+VS model, and ι  is 

calibrated to determine the horizontal saturated hydraulic conductivity.  
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CHAPTER 4: PARAMETER ESTIMATION 
 
 
 

This chapter describes how the remaining variables were estimated for the EMT+VS 

model.  The general procedure is as follows.  When a value is known for a catchment, that value 

is used in the model.  Otherwise, the value is calibrated to maximize the average Nash Sutcliffe 

Coefficient of Efficiency (NSCE) (Nash and Sutcliffe, 1970) for all dates in the soil moisture 

dataset (NSCE is equal to 1 minus the ratio of the squared error to the variance).  For a calibrated 

parameter, any available observations are used to determine the allowable range.  If no local 

observations are available, the calibration ranges are based on broadly applicable ranges from 

Coleman and Niemann (2013) or from theoretical bounds.  The specified values and calibration 

ranges for all three test catchments are provided in Table 2.    

The climate-related variables include pE  and α , which were both directly specified.  

The pE  value for Cache la Poudre was calculated from the Priestly-Taylor equation by Coleman 

and Niemann (2013), the pE  value for Tarrawarra was acquired from literature (Western and 

Grayson, 1998), and the pE  value for Nerrigunah was estimated from class A pan evaporation 

(Walker, 1999; Walker et al., 2001) using a pan coefficient of approximately 0.65.  The variable 

α  was set to 0.26 for all catchments under the assumption that the Priestly-Taylor coefficient is 

1.26 (Eichinger et al., 1996). 

No vegetation cover data are available for Tarrawarra or Nerrigundah.  In both cases, 

photographs and available information suggest that the vegetation is relatively homogeneous 

grass (Western and Grayson, 1998; Walker, 1999; Walker et al., 2001).  Thus, 1V =  is assumed 

for all locations in both catchments.  For all catchments, the vegetation-related parameters (λ ,  
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η , µ , rβ , and aβ ) were calibrated.  The ET exponents rβ  and aβ  were calibrated within 

broadly applicable ranges from Coleman and Niemann (2013).  The interception efficiency λ  

and the portion of the total transpiration that is contributed by the modeled soil layer η  have 

theoretical lower and upper bounds at 0 and 1 which were used to define their calibration ranges.  

The soil evaporation reduction µ  has theoretical upper and lower bounds at 1 and 3.  The 

reference litter depth ζ  is required only at Cache la Poudre to transform litter depth 

measurements into fractional litter cover.  Its allowable range has a lower limit of 0.001 m to 

avoid a zero occurring in its denominator and has no upper limit.   

Where fine-resolution datasets are unavailable, the soil hydraulic properties (φ , ,s vK , ι , 

hγ , vγ , and ε ) were calibrated.  The porosities φ  for Tarrawarra are calibrated within the broad 

ranges from Coleman and Niemann (2013) because no bulk density or soil texture measurements 

are available.  In some model scenarios for Cache la Poudre and Nerrigundah, porosity φ  is 

assumed to be spatially-constant, in which case its calibration range is determined from the 

ranges of φ  measurements.  Similarly, in tests where ,s vK  is assumed to be spatially-constant, 

the calibration range is determined from the ranges of conductivity values.  The anisotropy ι  is 

allowed to range from 1 to 100 for all catchments (Fitts, 2002).  The allowable range for vγ  at 

Tarrawarra is determined from Coleman and Niemann (2013) because no soil texture data are 

available.  The allowable ranges for vγ  at Cache la Poudre and Nerrigundah are determined from 

pedotransfer functions that rely on the available soil texture data (Cosby et al., 1984).  The upper 

bounds for hγ  are the same as those for vγ  at the same catchment, but the lower bound is set to 

one to allow for saturated lateral flow (Coleman and Niemann, 2013).  The calibration also 
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requires h vγ γ<  similar to Coleman and Niemann (2013).  Finally, the range for ε , which 

relates the hydraulic gradient to the topographic slope, is also from Coleman and Niemann 

(2013) because no catchment-specific observations are available for this parameter. 

The EMT+VS model calculates the thickness of the hydrologically active layer using two 

variables ( 0δ  and minκ ).  No soil or horizon depths are available at Cache la Poudre, so the 0δ  

value and the calibration range for minκ  proposed by Coleman and Niemann (2013) were used.  

For Tarrawarra and Nerrigundah, in tests where 0δ  and minκ  are assumed to be spatially-constant, 

a linear regression was performed with the available data to estimate the layer thickness as a 

function of curvature.  0δ , which is the thickness where curvature is zero, could be reliably 

estimated for both catchments because multiple observations have curvature values close to zero.  

Due to the large number of data points and wide range of κ  values available at Tarrawarra, minκ  

could be also reliably estimated from the regression line.  However, the regression line at 

Nerrigundah must be extrapolated to estimate minκ , so minκ  was instead calibrated within the 

same broad range as Cache la Poudre.   
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CHAPER 5: RESULTS AND DISCUSSION 
 
 
 

This chapter describes the results when the EMT+VS model is applied to the test 

catchments and compares those results to both the EMT model and the EOF method proposed by 

Busch et al. (2012).  To apply the EOF method, the same collection of topographic attributes that 

were used by Busch et al. (2012) are considered.  For Cache la Poudre, the litter depth and 

canopy cover data are supplied to the EOF method for cases when vegetation data are 

considered.  Similarly, percent sand, percent silt, percent clay, D10, D20, D50, saturated 

hydraulic conductivity, and porosity are supplied to the EOF method when soil properties are 

considered.  For Tarrawarra, the fine-resolution conductivity, and 0δ  and minκ  values are supplied 

to the method when soil variables are considered.  Finally, for Nerrigundah, the fine-resolution 

conductivity and porosity values are supplied to the method when soil variables are considered. 

5.1 Cache la Poudre 

The EMT+VS model is first applied to Cache la Poudre at a 15 m resolution by including 

the fine-resolution vegetation data along with the topographic data that is already used in the 

EMT model.  In this scenario, ,s vK  is calibrated rather than using the data from the 30 m grid.  

Calibrated parameters and spatially-constant variables for this test can be seen in Table 3.   

Figure 7 shows examples of the observed and downscaled soil moisture patterns for Cache la 

Poudre.  The date was selected because the observed pattern is typical for the dataset.  The top 

row shows the results when only fine-resolution topographic data are used for downscaling, and 

the bottom row shows the results when both fine-resolution topographic and vegetation data are 

used.  The observed soil moisture pattern (Figure 7a) exhibits wetter conditions on the NFS than 

the SFS, and the western part of the catchment is wetter than the eastern part of the catchment.  
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Substantial local variations in soil moisture are also observed.  When only topographic data are 

used, the downscaled pattern from the EOF method (Figure 7b) is more realistic than the pattern 

from the EMT model (Figure 7c) because it better represents the wetter conditions in the western 

part of the catchment.  Both downscaled patterns exhibit less spatial variation than the observed 

soil moisture pattern.  When both topographic and vegetation data are included, the pattern from 

the EOF method (Figure 7e) remains nearly unchanged.  The EOF method with topography data 

downscales primarily with pI  while the EOF method with topography and vegetation 

downscales with pI  and both vegetation data.  Because pI  and vegetation data are highly 

correlated, little change between the two cases is expected.  In contrast, the soil moisture pattern 

from the EMT+VS model (Figure 7f) is substantially different than the pattern from the EMT 

model (Figure 7c), and it is more realistic because it captures the wetter conditions in the western 

part of the catchment and it captures some of the local variability (speckle) in the soil moisture, 

with the greatest improvement seen on the SFS. 

The top half of Table 4 (15 m grid) quantifies the average performance of the 

downscaling methods for this scenario.  The NSCE, root mean square error (RMSE), and mean 

relative error (MRE) were calculated for each date in the dataset, and the table provides the 

average values for these metrics.  The results confirm that the example shown in Figure 7 is 

representative of the dataset.  Specifically, when only topographic data are used, the EOF 

method outperforms the EMT model.  When topographic and vegetation data are used, the 

EMT+VS model outperforms both the EOF method and the EMT model.  For example, when 

only topographic data are used in the EMT model the average NSCE is 0.080.  When 

topographic and vegetation data are used in the EMT+VS model, the average NSCE is 0.134.  

This improvement suggests that vegetation plays a significant role in determining the soil 
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moisture patterns at this catchment and that the EMT+VS model captures some of that role.  The 

improvement in performance of the EMT+VS model to the EOF method also suggests that the 

representation of vegetation in EMT+VS model is better than the linear dependence assumption 

of the EOF method.   

As seen from NSCE results, the EMT+VS model is unable to fully capture the observed 

patterns.  Although the theoretical maximum NSCE value is 1, results from Busch et al. (2012) 

suggest that a likely maximum possible NSCE when it is calculated in this way is about 0.60 

because the remaining variation in soil moisture datasets is uncorrelated noise (i.e. the EOFs are 

not statistically significant patterns of variation).  As seen from Table 4, the EMT+VS model 

performance remains well below this estimated maximum performance and this variation might 

be largely due to measurement errors.  Similarly, the RMSE value for the EMT+VS model is 

about 0.030, which is a little larger than measurement errors that are commonly reported for 

TDR data, approximately 0.01 (Hignett and Evett, 2008).  The MRE values are high, greater than 

0.4, because the observed soil moisture values are often low compared to estimated soil moisture 

values. Thus, the errors are large relative to these small numbers.   

Some of the estimation error is likely inherited from assumptions and simplifications 

used to derive the EMT model.  First, the equilibrium assumption means that the model can 

produce only one soil moisture pattern for a given spatial-average soil moisture.  However, the 

observed soil moisture patterns can exhibit differences when the spatial-average soil moisture is 

nearly identical.  Second, the approximations that are used to produce an explicit soil moisture 

equation produce some distortions in the estimated soil moisture patterns (see Coleman and 

Niemann, 2012).  Third, the process representations are conceptual, assume constant soil 

moisture with depth, and infer hydraulic properties from topographic attributes.  Fourth, the 
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values of model inputs and parameters may include errors.  For example, pE  was also treated as 

constant in time based on previous EMT model testing and the equilibrium assumption.  The 

variable α  was also assumed to be the same for all catchments, but some research suggests that 

this value might change with climate (Cristea et al., 2012). 

Other errors are introduced by the simplified representation of vegetation in the EMT+VS 

model.  The model does not include a permanent wilting point, which could introduce errors in 

the soil moisture patterns for very dry conditions.  The model assumes that a fixed portion of 

transpiration occurs from the hydrologically active layer, but this portion likely varies depending 

upon the availability of moisture at different depths.  The vegetation cover and vegetation 

parameters are all treated as constant through time, so any changes with season are neglected.  In 

addition, the vegetation parameters are considered spatially constant even though the type of 

vegetation varies spatially in the catchment.   

Finally, some error is inherent in comparing EMT+VS estimates to TDR measurements 

due to differences in their spatial scales.  The TDR measures soil moisture over a range of a few 

centimeters, while the EMT+VS model estimates soil moisture patterns at the resolution of the 

supplied fine-resolution datasets (15 m in this case).   

NSCE can also be calculated by considering the entire space-time dataset at once.  When 

calculated in this manner, the NSCE evaluates the spatial and temporal variation that is 

reproduced by the application of the downscaling method.  When calculated in this way, the 

NSCE is 0.788 for the EMT+VS model.  The method is very effective at capturing temporal 

variability in part because the spatial-average soil moisture is provided as an input.  Nonetheless, 

the high value indicates that estimates from the EMT+VS model are accurate enough to be useful 

for a variety of applications.   
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The EMT+VS model’s ability to reproduce the statistical properties of the soil moisture 

patterns can also be evaluated.  The spatial-average is reproduced due to the mathematical 

structure of the model.  Thus, the bias on each date is zero.  Table 5 shows the average, 

maximum, and minimum standard deviations for the observed and estimated patterns of all dates 

in the dataset.  Overall, the EMT+VS patterns have much smaller standard deviations than the 

observed patterns and slightly smaller values than the EOF estimates.  However, the standard 

deviation for the EMT+VS model is more realistic than the EMT model.   

Additional tests were run to determine the particular role of vegetation that is responsible 

for the improved performance of the EMT+VS model relative to the EMT model.  First, the 

influence of interception was evaluated by modifying the EMT+VS model to only include the 

interception term.  This test produced an average NSCE that is nearly the same as the EMT 

model.  Because the observed soil moisture patterns are relatively dry, interception is not 

expected to play a large role.  The importance of root-water uptake (and transpiration) was then 

determined by examining the calibrated η  value.  This value is 0.06, meaning only 6% of the 

transpiration is derived from the hydrologically active layer.  This low value is expected because 

the layer is selected to be very small (5 cm) and because the vegetation is primarily shrubs and 

trees.  Together these results suggest that the reduction of soil evaporation (due to increased 

shading and humidity and reduced wind speed) is the dominant mechanism by which vegetation 

affects soil moisture at the Cache la Poudre.  The importance of soil evaporation at shallow 

depths has also been observed for another semi-arid shrubland (Kurc and Small, 2004).  These 

results also imply that the representations of interception and transpiration in the EMT+VS 

model are not well tested based on this catchment.   
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Figure 8 shows the weights that are used in the main equation to estimate θ  for the EMT 

and EMT+VS models for this scenario.  Weights are defined as the importance of each process 

(e.x. Gw ) divided by the sum of importance terms for all processes.  Both models suggest that 

lateral flow plays little role in determining the soil moisture patterns across the range of θ  

values in the dataset, which describes a catchment with relatively dry soils.  However, the EMT 

model exhibits an increase in the lateral flow weight for very low θ  values.  That behavior is 

not realistic because transmission of water in the soil becomes more efficient as the soil 

approaches saturation, and lateral flow is generally considered to be more important under wet 

rather than dry conditions (Grayson et al., 1997; Western et al., 1999).  In contrast, the lateral 

flow weight in the EMT+VS model is always zero, which is more realistic for this dataset.  The 

EMT+VS model has smaller values of the radiative ET weight and larger values of the 

aerodynamic ET weight than the EMT model.  The reduction in the radiative ET weight suggests 

that some of the soil moisture variation that was attributed to variations of insolation (i.e. 

radiative ET) in the EMT model is now being explained also by variations in vegetation cover, 

which affect both the radiative and aerodynamic ET.  Because the vegetation cover is highly 

dependent on hillslope orientation, vegetation variations could easily be misinterpreted as 

insolation variations in a model that only considers topography.  Both models suggest that deep 

drainage dominates when θ  becomes large. 

The patterns of variation that are used to estimate the soil moisture in the EMT and 

EMT+VS models are shown in Figure 9.  The DDI, which is not present in the EMT model, 

depends on vegetation cover because of vegetation’s role in interception.  The DDI has larger 

values on the SFS where the vegetation is sparse, which reduces interception.  Thus, under wet 

conditions when deep drainage dominates, the EMT+VS model produces patterns that are wetter 
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on the SFS than NFS, while the EMT model produces uniform soil moisture.  The LFI also 

depends on vegetation cover, but this index mainly reflects the valley configuration and is 

similar to the LFI in the EMT model.  Recall that the LFI is not used in the EMT+VS model 

because 0Lw = .  The REI pattern in the EMT+VS model is analogous to the ETI pattern in the 

EMT model.  Both patterns have higher values on the NFS because that slope receives less 

insolation ( pI  is lower).  However, the REI also incorporates shading and retention of humidity 

by vegetation, which introduces more local variability in the REI pattern than the ETI pattern.  

The fourth pattern of variation in the EMT+VS model is the AEI, which is not present in the 

EMT model and depends only on the vegetation cover.  It also has larger values on the NFS and 

the western portion of the catchment where the vegetation cover is thicker, and it will tend to 

promote higher soil moisture on that slope under dry conditions when it is important. 

The next two scenarios evaluate the EMT+VS model’s use of fine-resolution ,s vK  and φ  

data.  For the second scenario, the EMT+VS model is applied at a 30 m resolution where both 

fine-resolution vegetation and soil (,s vK ) data are available.  Calibrated parameters and spatially-

constant variables for this test can be seen in Table 6.  Figure 10 compares the downscaled soil 

moisture pattern to the observed pattern for an example date.  The top row of Figure 10 uses only 

topographic and vegetation data, and these patterns are produced using the same approach that 

was used for the 15 m grid.  The middle row shows the results when ,s vK  data are added to the 

downscaling methods.  The results of the EOF method change slightly with the addition of the 

soil data (comparing Figure 10b to 10e), but the results of the EMT+VS model are nearly 

identical in both cases.  Most soil moisture patterns in this dataset represent dry conditions and 

are controlled by the REI and AEI, which do not depend on ,s vK .  Thus, available soil 
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information is only beneficial for wet conditions when deep drainage is important.  Although a 

wetter day (θ = 0.15) is shown (Figure 10), the catchment is still relatively dry and therefore 

vegetation plays a larger role in determining soil moisture patterns. 

The bottom half of Table 4 (30 m grid) evaluates the average performance of the 

EMT+VS model when only topography, both topography and vegetation, and topography, 

vegetation, and soil data are used.  The addition of fine-resolution vegetation data in the 

downscaling method improves the average performance similar to what was observed at the 15 

m resolution.  However, including the ,s vK  data as well makes very little difference in the 

EMT+VS model performance.  This insensitivity partly occurs because only two dates are wet 

enough (θ = 0.19) for deep drainage and thus ,s vK  to be important.  Thus, the performance on 

most dates is unchanged.  When the soil data are included, the performance of the EMT+VS 

model is again below that of the EOF method.  This result might suggest that the simplified 

representations of the hydrologic processes in the EMT+VS model makes it difficult for it to 

benefit from detailed representations of the soil properties.  It might also indicate that some roles 

of soil variability are not being captured in the EMT+VS model (for example, by use of the 

simplified Campbell equation).  The use of a pedotransfer function to estimate ,s vK  is also 

expected to introduce errors, but the EOF method should also be sensitive to these errors.  It 

should be noted that one fewer parameter (,s vK ) is calibrated when the soil data are provided in 

the EMT+VS model.  In contrast, the EOF method continues to calibrate its dependence on the 

provided spatial pattern.  When ,s vK  data are included in the EMT+VS model, the space-time 

NSCE is 0.805, which indicates good overall performance.     



 
 

35 
 

The final scenario at Cache la Poudre applied the EMT+VS model at a 30 m resolution 

where fine-resolution vegetation and soil (,s vK  and φ ) data are available.  The bottom row of 

Figure 10 shows results when both ,s vK  and φ  data are added to the downscaling methods.  The 

results of the EOF method are identical between the soil cases as the EOF chooses not use φ  

data.  The EMT+VS model between soil cases shows some grid cells as being estimated slightly 

wetter when φ  data are included which correspond to areas of higher φ  values, suggesting φ  is 

being correctly estimated at the catchment and improving soil moisture estimation. 

The last two rows of Table 4 evaluates the performance of the EMT+VS model when 

topography, vegetation, soil (,s vK , and φ ) data are used.  The addition of both soil data does not 

change EOF method performance from when only ,s vK  data are used.  When the soil data are 

included in the EMT+VS model, the space-time space-time NSCE of 0.807.  These slight 

increases in performance suggest that when porosity data are included, they can improve the soil 

moisture estimates.  Again, neither the EMT+VS model or EOF method produce the variance of 

observed conditions as seen in Table 5.  

5.2 Tarrawarra 

At Tarrawarra, the EMT+VS model’s use of fine-resolution data for both ,s vK  and the 

soil depth parameters (0δ  and minκ ) is evaluated.  The first application of the model includes the 

fine-resolution ,s vK  data.  The top row in Figure 11 shows example downscaled patterns that are 

produced when only topographic data are used, and the middle row shows the results when the 

,s vK  data are included.  Calibrated parameters and spatially-constant variables for this test can be 

seen in Table 7.  The observed soil moisture pattern (Figures 11a) has valley bottoms that are 
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wetter than the hillslopes.  In addition, the NFS is drier than the SFS.  When only fine-resolution 

topographic data are used in the EOF method (Figure 11b), the downscaled pattern exhibits these 

same features.  The EMT model also exhibits the same tendencies (Figure 11c), but the range of 

soil moisture values, particularly in dry areas of the catchment, is less than what is produced by 

the EOF method.  Both of the downscaled patterns lack the local variations in the observed soil 

moisture pattern.  When the ,s vK  data are added to the EOF method (Figure 11c), the downscaled 

pattern appears almost unchanged.  The EOF method does use the ,s vK  data, but they have very 

little effect on the results.  The soil moisture pattern produced by the EMT+VS model reflects 

the variations in ,s vK  that are shown in Figure 5b.  In particular, locations with larger ,s vK  values 

are slightly drier in the downscaled pattern, a pattern that can be seen in the observed soil 

moisture pattern.  This occurs because the EMT+VS model uses the ,s vK  data to produce the 

DDI and LFI patterns and both deep drainage and lateral flow are of greater importance than 

radiative ET.   

 Table 8 quantifies the average performance of these downscaling methods when applied 

to all dates in the Tarrawarra dataset.  When the ,s vK  data are included in the EOF method, the 

performance remains almost unchanged from the case when only topographic data are used.  

When the ,s vK  data are included in the EMT+VS model, the performance decreases.  In both 

cases, the results suggest that the interpolated ,s vK  data are not reliable.  The EOF method uses 

only attributes that are correlated with the EOFs, so the similarity of the results suggests that the 

interpolated ,s vK  data do not have a strong linear relationship to the EOFs.  The EMT+VS model 

must use the supplied ,s vK  map.  If those data are not reliable, then the performance will be 
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poorer than calibrating a single ,s vK  value (i.e. applying the EMT model).  It is also possible that 

both the EOF and EMT+VS models have errors in their model structures that make them 

incapable of using the ,s vK  data.  However, given the substantial differences between the 

structures of the two models, this cause is unlikely. 

 Next, the EMT+VS model is applied using both the interpolated  ,s vK  map and the maps 

for the soil parameters 0δ  and minκ .  For both the EOF method and EMT+VS model, including 

this additional data does not substantially affect the downscaled soil moisture patterns (bottom 

row of Figure 11).  The EOF method chooses not use the 0δ  and minκ  data.  In particular, Figure 

11e and 11h are identical, and Figures 11f and 11i are very similar.  The performance metrics in 

Table 8 suggest that the average performance from all dates is also nearly unchanged for the 

EMT+VS model.  Thus, the EMT+VS model performs the same when the calibrated values of 

0δ  and minκ  are replaced with the patterns determined from data.  

5.3 Nerrigundah  

At Nerrigundah, the EMT+VS model’s use of fine-resolution ,s vK  and φ  data is 

evaluated.  The model is first applied when only the fine-resolution ,s vK  data are included and 

uses the same topographic data as the EMT model.  Figure 12 shows the downscaled patterns for 

an example date.  Calibrated parameters and spatially-constant variables for Nerrigundah tests 

can be seen in Table 9.  The observed soil moisture pattern exhibits wetter conditions on the SFS 

than the NFS in the eastern half of the catchment (Figure 12a).  The western half of the 

catchment is generally drier than the eastern half of the catchment and exhibits little dependence 

on hillslope orientation.  When only topographic data are used in the EOF method (Figure 12b) 

and the EMT model (Figure 12c), the downscaled patterns also exhibit the wetter conditions for 
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the SFS than the NFS, but the difference between the eastern and western halves is of the 

catchment is not as pronounced for the EOF method and is not reproduced for the EMT model.  

When the ,s vK  data are added to the EOF method (Figure 12e) and EMT+VS model (Figure 12f), 

the downscaled patterns more closely resemble the features of the interpolated ,s vK  pattern.  For 

the EOF method, two drier spots are modeled on the eastern portion of the catchment, which 

correspond to higher areas of  ,s vK , while a wetter region on the west half of the catchment is 

modeled, which correspond to region of lower ,s vK  (Figure 6b).  The EMT+VS model models 

the drier region on the south portion of the eastern half of the catchment, but less of the  ,s vK  

pattern can be seen as compared to the EOF method.  The EMT+VS pattern is controlled 

primarily by both REI and DDI, with the importance of radiative ET being about 1.5 times larger 

than that of deep drainage.  Because DDI is dependent on ,s vK , the downscaling patterns reflect 

some of the ,s vK  pattern.  But because the importance of radiative ET, which is independent of 

,s vK , is greater than that of deep drainage, not all of the ,s vK  pattern can be seen in soil moisture 

patterns.  The performance metrics in Table 10 show an increase in average performance from 

when topography alone is used to when both topography and ,s vK  are used.  This indicates that 

addition of fine-resolution ,s vK  data into the EMT+VS model can be beneficial.  

Next, the EOF method and EMT+VS model are applied when both the fine-resolution 

,s vK  and φ  datasets are provided.  For the example date, the EOF method produces an identical 

pattern (Figure 12h) to the case when only fine-resolution topographic and ,s vK  data were 

included (Figure 12e).  The similarity suggests that the φ  data are not strongly associated with 
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the EOFs.  However, when the φ  data are added to the EMT+VS model (Figure 12i), the 

downscaled pattern differs from the previous case (Figure 12f).  The EMT+VS model must use 

the φ  data in all four of its indices.  As a result, several drier patches now occur, the most 

obvious one being located on the center edge of the SFS, as seen in Figure 12i.  Although these 

patches do not precisely align with dry patches in the observed pattern, the observed pattern does 

have dry patches at similar locations.  This result suggests that the EMT+VS model might be 

capturing variations in soil moisture that are due to φ  variations, but that the interpolated φ  map 

does not correctly identify the configuration of those variations. 

Table 10 shows that the average performance of the EOF method is unchanged from the 

previous case because the φ  data are not used.  This result suggests that the interpolated φ  data 

are likely unreliable or that the empirical structure of the EOF model is not capable of using 

these data.  Table 10 also shows that the average performance of the EMT+VS model decreases 

when the φ  map is included.  Even though the soil moisture variations that are produced by the 

φ  variations appear realistic in Figure 12, including these variations produces worse overall 

performance.  Because neither model benefits from use of the φ  map, it is likely that this map is 

unreliable.    
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CHAPTER 6: CONCLUSIONS 
 
 
 

 This thesis aimed to generalize the EMT model to allow it to accept fine-resolution data 

for vegetation and soil properties based on the hypothesis that the consideration of spatial 

variations in vegetation and soil characteristics would improve the model’s ability to downscale 

soil moisture patterns.  Based on this study, the following conclusions can be made: 

1. The new EMT+VS model is successful at capturing some of the effects of vegetation 

cover on the soil moisture patterns at the Cache la Poudre catchment.  When vegetation 

cover is included in the EMT+VS model, its performance is better than that of the EMT 

model, which uses only topographic variations to downscale.  In addition, the EMT+VS 

model outperforms the EOF method when both methods are provided with similar 

information, which suggests that the representation of vegetation in the EMT+VS model 

is superior to linear regressions that are used in the EOF method.   

2. Fine-resolution variations in vegetation cover play a substantial role in determining the 

soil moisture patterns at Cache la Poudre.  When the vegetation cover data are added to 

the EMT+VS model, the average NSCE increases from 0.080 to 0.134.  In this 

catchment, the vegetation cover varies dramatically between forests on the NFS and 

shrublands on the SFS.  Vegetation is expected to play a smaller role in catchments where 

it is more homogeneous. 

3. The main mechanism by which vegetation influences soil moisture at the Cache la 

Poudre catchment is the associated reduction in soil evaporation.  Vegetation can reduce 

evaporation by shading the surface, reducing the wind speed near the surface, and 

reducing the humidity gradient.  When interception is neglected in the EMT+VS model, 
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the model performance is nearly unchanged.  Because interception and root-water uptake 

do not play a large role in the Cache la Poudre dataset, further testing is needed to 

evaluate their representations in the EMT+VS model. 

4. Fine-resolution variations in saturated hydraulic conductivity and porosity play a much 

smaller role in determining the Cache la Poudre soil moisture patterns.  The addition of 

fine-resolution saturated hydraulic conductivity and porosity data does not significantly 

improve the performance of EMT+VS model or the EOF method in this catchment.  

Hydraulic conductivity affects the deep drainage and lateral flow processes, which are 

determined to not be important when the EMT or EMT+VS models are applied to the 

Cache la Poudre dataset.  The small improvement in performance is mainly due to the 

inclusion of the porosity data.      

5. The EMT+VS model performance is sensitive to the quality of the fine-resolution soil 

data.  The EOF method can disregard data that are not helpful for predicting the soil 

moisture patterns, but the EMT+VS model must use supplied soil data.  For the 

Tarawarra and Nerrigundah catchments, the sparse data for soil characteristics were 

interpolated using IWD to produce fine-resolution maps, but the use of those maps in the 

EMT+VS model generally produced similar or worse performance than using calibrated 

constant values for those characteristics. 

Overall, the results suggest that the use of fine-resolution vegetation data is a promising 

direction for improving soil moisture downscaling methods, particularly for catchments where 

vegetation cover exhibits substantial variations.  In addition, they suggest that the EMT+VS 

model can efficiently use such vegetation data.  However, further research is needed to determine 

whether remotely-sensed measures of vegetation cover such as LAI are beneficial in the 
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EMT+VS model.  Also, new datasets are needed to determine whether the representations of 

interception and transpiration are reliable.  In contrast, the results suggest that the use of fine-

resolution soil information for downscaling is more problematic.  Throughout this study, the use 

of fine-resolution maps for soil properties usually degraded the performance of the EMT+VS 

model and did not change the performance for the EOF method.  In the case of Cache la Poudre, 

the available soil properties were not important to the soil moisture patterns.  For the other 

catchments, the available data were too sparse to be useful in the downscaling methods.  While 

spatial variations in soil properties are known to be important in determining soil moisture 

variations in some cases, high quality data for appropriate soil properties are needed to improve 

the performance of the downscaling methods.  
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TABLES 
 
 
 

Table 1. Summary of characteristics and data for the three test catchments. 

Catchment Cache la Poudre Tarrawarra Nerrigundah 
Area (ha) 8.0 10.5 6.0 

Annual 
Precipitation (mm) 

415 820 1000 

Soil Moisture 
Measurement Dates 

9 13 12 

Soil Moisture 
Measurement Depth 
(cm) 

5 30 15 

Soil Moisture 
Sampling Grid (m) 

15 10 x 20 20 

Topographic 
Sampling Grid (m) 

15 5 20 

Vegetation Data 
Litter depth, canopy 

cover 
N/A N/A 

Soil Data Soil texture 
Saturated hydraulic 
conductivity, soil 

depth 

Saturated hydraulic 
conductivity, 

porosity, soil depth 
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Table 2. Upper and lower calibration ranges for model parameters and spatially-constant 

variables at all three test catchments. 

Parameter 
Poudre Tarrawarra Nerrigundah 

Lower Upper Lower Upper Lower Upper 

pE  (mm/day) 2.4 2.4 2.3 2.3 2.8 2.8 

α  0.26 0.26 0.26 0.26 0.26 0.26 

rβ  0.2 5 0.2 5 0.2 5 

aβ  0.2 5 0.2 5 0.2 5 
η  0 1 0 1 0 1 
λ  0 1 0 1 0 1 
µ  1 3 1 3 1 3 

ζ  (m) 0.001 N/A N/A N/A N/A N/A 

φ  (m3/m3) 0.38 0.41 0.25 0.70 0.41 0.56 

,s vK  (mm/day) 936 1845 17 3355 36 2592 

ι  1 100 1 100 1 100 

hγ  1.0 13.0 1.0 25.0 1.0 17.3 

vγ  9.2 13.0 4.0 25.0 10.9 17.3 

0δ  (m) 0.05 0.05 0.23 0.23 0.25 0.25 

minκ  (1/m) -1E+06 -0.0560 -0.0267 -0.0267 -1E+06 -0.0056 

ε  1 3 1 3 1 3 
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Table 3. Model parameters and spatially-constant variables for Cache la Poudre tests on a 15 m 

grid.  All parameters other than climate parameters are calibrated.   

Parameter EMT 
EMT+VS: 

Topography and 
Vegetation 

pE  (mm/day) 2.4 2.4 

α  0.26 0.26 

rβ  5.0 4.5 

aβ  4.8 3.0 
η  N/A 0.06 
λ  N/A 0.83 
µ  N/A 1.85 

ζ  (m) N/A 0.03 

φ  (m3/m3) 0.38 0.41 

,s vK  (mm/day) 941 941 

ι  1 5 

hγ  4.3 9.2 

vγ  12.1 13.0 

0δ  (m) 0.05 0.05 

minκ  (1/m) -0.056 -15.136 

ε  2.38 3.00 
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Table 4. Measures of model performance when the downscaling models are applied to Cache la 

Poudre.  The scenarios represent the fine-resolution data included in the tested model.  The top 

half of the table represents topography and vegetation data on a 15 m grid while the bottom half 

of the table represents topography, vegetation, and soils data on a 30 m grid.  The NSCE, RMSE, 

and MRE are calculated separately for each of the 9 days in the dataset and then the averages, 

maximums, and minimums are determined from the different dates.  

Grid Scenario Model 
NSCE RMSE MRE 

Avg. Max. Min. Avg. Avg. 

15 m 
Topography 

EMT 0.080 0.183 -0.027 0.031 0.453 
EOF 0.116 0.288 -0.050 0.030 0.438 

Topography and 
Vegetation 

EMT+VS 0.134 0.375 -0.099 0.030 0.434 
EOF 0.129 0.320 -0.070 0.030 0.434 

30 m 

Topography 
EMT 0.099 0.227 0.015 0.030 0.485 
EOF 0.172 0.399 -0.030 0.028 0.448 

Topography and 
Vegetation 

EMT+VS 0.187 0.498 -0.089 0.029 0.463 
EOF 0.190 0.405 0.008 0.028 0.453 

Topography, 
Veg., and Soil ( ,s vK ) 

EMT+VS 0.189 0.488 -0.081 0.028 0.458 

EOF 0.226 0.391 0.050 0.027 0.437 
Topography, 

Veg., and Soil ( ,s vK  and φ ) 
EMT+VS 0.196 0.495 -0.080 0.028 0.457 

EOF 0.226 0.391 0.050 0.027 0.437 
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Table 5. Measures of standard deviations when the downscaling models are applied to Cache la 

Poudre.  The scenarios represent the observed conditions or fine-resolution data included in the 

tested model.  The top half of the table represents topography and vegetation data on a 15 m grid 

while the bottom half of the table represents topography, vegetation, and soils data on a 30 m 

grid.  The standard deviations are calculated separately for each of the 9 days in the dataset and 

then the averages, maximums, and minimums are determined from the different dates. 

Grid Scenario Model 
St. Dev. 

Avg. Max. Min. 

15 m 

Observed   0.031 0.039 0.020 

Topography 
EMT 0.008 0.013 0.005 
EOF 0.010 0.016 0.006 

Topography and 
Vegetation 

EMT+VS 0.010 0.019 0.005 
EOF 0.011 0.016 0.006 

30 m 

Observed   0.031 0.039 0.021 

Topography 
EMT 0.009 0.015 0.005 
EOF 0.012 0.017 0.008 

Topography and 
Vegetation 

EMT+VS 0.012 0.019 0.005 
EOF 0.014 0.018 0.009 

Topography, 
Veg., and Soil ( ,s vK ) 

EMT+VS 0.012 0.020 0.004 

EOF 0.015 0.020 0.009 
Topography, 

Veg., and Soil ( ,s vK  and φ ) 
EMT+VS 0.012 0.021 0.006 

EOF 0.015 0.020 0.009 
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Table 6. Model parameters and spatially-constant variables for Cache la Poudre tests on a 30 m 

grid.  All parameters other than climate parameters are calibrated.   

Parameter EMT 
EMT+VS: 

Topography and 
Vegetation 

EMT+VS: 
Topography, 

Veg., and Soil 
( ,s vK )  

EMT+VS: 
Topography, 

Veg., and Soil  
( ,s vK  and φ ) 

pE  (mm/day) 2.4 2.4 2.4 2.4 

α  0.26 0.26 0.26 0.26 

rβ  5.0 5.0 5.0 5.0 

aβ  4.7 3.8 3.8 3.7 
η  N/A 0.13 0.12 0.12 
λ  N/A 0.07 0.17 0.17 
µ  N/A 1.00 1.00 1.00 

ζ  (m) N/A 0.01 0.01 0.01 

φ  (m3/m3) 0.39 0.41 0.41 N/A 

,s vK  (mm/day) 936 943 N/A N/A 

ι  1 1 1 1 

hγ  4.6 4.1 4.3 4.4 

vγ  11.9 12.2 12.6 12.9 

0δ  (m) 0.05 0.05 0.05 0.05 

minκ  (1/m) -0.056 -1391.569 -0.056 -0.056 

ε  1.22 2.98 3.00 2.72 
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Table 7. Model parameters and spatially-constant variables for Tarrawarra tests on a 10 by 20 m 

grid.  All parameters other than climate parameters are calibrated.    

Parameter EMT 
EMT+VS: 

Topography and 
Soil ( ,s vK )  

EMT+VS: 
Topography, 

Veg., and Soil 
 ( ,s vK  and 0δ  / 

minκ ) 

pE  (mm/day) 2.3 2.3 2.3 

α  0.26 0.26 0.26 

rβ  3.6 4.3 4.3 

aβ  5.0 5.0 5.0 

η  N/A 0.00 0.00 

λ  N/A 0.38 0.67 
µ  N/A 1.43 1.83 

ζ  (m) N/A N/A  N/A 

φ  (m3/m3) 0.70 0.70 0.70 

,s vK  (mm/day) 459 N/A N/A 

ι  64 100 100 

hγ  6.9 16.5 16.6 

vγ  14.1 25.0 25.0 

0δ  (m) 0.23 0.23 N/A 

minκ  (1/m) -0.027 -0.027 N/A 

ε  1 1 1 
 
 
  



 
 

50 
 

Table 8. Measures of model performance when the downscaling models are applied to 

Tarrawarra.  The scenarios represent the fine-resolution data included in the tested model.  The 

NSCE, RMSE, and MRE are calculated separately for each of the 13 days in the dataset and then 

the averages, maximums, and minimums are determined from the different dates.  

Scenario Model 
NSCE RMSE MRE 

Avg. Max. Min. Avg. Avg. 

Topography 
EMT 0.290 0.562 0.045 0.028 0.064 
EOF 0.350 0.655 0.068 0.027 0.061 

Topography and 
Soil ( ,s vK ) 

EMT+VS 0.256 0.550 -0.026 0.029 0.066 

EOF 0.356 0.662 0.077 0.027 0.061 
Topography and 

Soil ( ,s vK  and 0δ  / minκ ) 
EMT+VS 0.258 0.555 -0.027 0.029 0.066 

EOF 0.356 0.662 0.077 0.027 0.061 
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Table 9. Model parameters and spatially-constant variables for Nerrigudah tests on a 20 m grid.  

All parameters other than climate parameters are calibrated.   

Parameter EMT 
EMT+VS: 

Topography and 
Soil ( ,s vK ) 

EMT+VS: 
Topography, 

Veg., and Soil  
( ,s vK  and φ ) 

pE  (mm/day) 2.8 2.8 2.8 

α  0.26 0.26 0.26 

rβ  1.6 1.1 1.1 

aβ  5.0 5.0 5.0 
η  N/A 0.00 1.00 
λ  N/A 0.43 0.36 
µ  N/A 2.79 1.65 

ζ  (m) N/A N/A N/A 

φ  (m3/m3) 0.47 0.555 N/A 

,s vK  (mm/day) 69 N/A N/A 

ι  100 14 36 

hγ  4.7 5.0 4.8 

vγ  17.3 10.9 10.9 

0δ  (m) 0.25 0.25 0.25 

minκ  (1/m) -45561.777 -0.043 -0.016 

ε  1 1 1 
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Table 10. Measures of model performance when the downscaling models are applied to 

Nerrigundah.  The attributes represent the fine-resolution data included in the tested model.  The 

NSCE, RMSE, and MRE are calculated separately for each of the 12 days in the dataset and then 

the averages, maximums, and minimums are determined from the different dates.   

Scenarios Model 
NSCE RMSE MRE 

Avg. Max. Min. Avg. Avg. 

Topography 
EMT 0.182 0.222 0.143 0.048 0.165 
EOF 0.274 0.326 0.087 0.045 0.155 

Topography and 
Soil ( ,s vK ) 

EMT+VS 0.218 0.281 0.088 0.047 0.161 

EOF 0.288 0.345 0.171 0.045 0.151 
Topography and 
Soil ( ,s vK  and φ ) 

EMT+VS 0.115 0.282 -0.022 0.050 0.170 

EOF 0.288 0.345 0.171 0.045 0.151 
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FIGURES 
 
 
 

 
Figure 1. (a) Transpiration term, (b) evaporation term, and (c) sum of transpiration and 

evaporation terms in the EMT+VS model’s ET equation plotted as a function of vegetation cover 

V .  Part (c) also shows the portion of the sum that is contributed by the transpiration term.   
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Figure 2. The primary test catchment, Cache la Poudre, (a) 15 m and 30 m sampling grids 

overlaid on aerial photo, and (b) sampling grids overlaid on catchment topography. 
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Figure 3. Vegetation data collected at the Cache la Poudre Catchment with (a) representing litter 

depth measurements (m); (b) representing fractional canopy cover; and (c) representing the 

calculated fractional vegetation cover,  c c c cV L C L C−= + , where the calibrated reference depth 

ζ  = 0.03 m for the case when EMT+VS model is run with only topographic and vegetation data. 
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Figure 4. (a) Sand, (b) silt, and (c) clay fractions determined from soil texture measurements at 

Cache la Poudre catchment.  (d) Saturated hydraulic conductivity and (e) porosity were 

calculated using pedotransfer functions from Cobsy (1984) using (a) and (c). 
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Figure 5. Supplemental test catchment, Tarrawarra, (a) soil moisture sampling grid overlaid on 

the catchment topography and (b) saturated hydraulic conductivity measurement locations 

overlaid on the interpolated conductivity map.  
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Figure 6. Supplemental test catchment, Nerrigundah, (a) soil moisture sampling grid overlaid on 

the catchment topography, (b) saturated hydraulic conductivity measurement locations overlaid 

on the interpolated conductivity map, and (c) porosity measurement locations overlaid on the 

interpolated porosity map. 
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Figure 7. Testing of the vegetation component of the EMT+VS model at Cache la Poudre.  The 

first column shows the soil moisture pattern that is observed at Cache la Poudre on June 12, 2008 

with intermediate conditions, the second column shows the soil moisture patterns that are 

downscaled by the EOF method, and the third column shows the soil moisture patterns that are 

downscaled by the (c) EMT and (f) EMT+VS models.  In the top row, only fine-scale 

topographic information is used.  In the bottom row, both fine-scale topographic and vegetation 

information are used.  All patterns are on a 15 m grid.  
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Figure 8. Calibrated weights for the Cache la Poudre catchment as a function of spatial-average 

soil moisture with dashed lines representing the EMT model and solid lines representing the 

EMT+VS model.  The x-axis is positioned slightly below zero to better show weights that are 

zero.  
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Figure 9. Comparison of indices of EMT model and EMT+VS model.  The first column shows 

the calibrated patterns of variation that are used to downscale soil moisture in the EMT model, 

and the second column shows the calibrated patterns of variation that are used in the EMT+VS 

model.  Deep drainage and aerodynamic ET produce spatially constant soil moisture in the EMT 

model, so only two patterns are used.  The index related to radiative ET in the EMT model is 

termed ETI while it is termed REI in the EMT+VS model.  All patterns are on a 15 m grid.  
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Figure 10.  Testing of the vegetation and soil components of the EMT+VS model at Cache la 

Poudre.  The first column shows the soil moisture pattern that is observed at Cache la Poudre on 

June 9, 2008 with wet conditions, the second column shows the soil moisture patterns that are 

downscaled by the EOF method, and the third column shows the soil moisture patterns that are 

downscaled by the EMT+VS model.  In the top row, fine-scale topographic and vegetation 

information are used.  In the middle row, fine-scale topographic, vegetation, and soil (,s vK ) 

information are used.  In the bottom row, fine-scale topographic, vegetation, and soil (,s vK  and 

φ ) information are used.  All patterns are on a 30 m grid.    
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Figure 11.  Testing of the soil components of the EMT+VS model at Tarrawarra.  The first 

column shows the soil moisture pattern that is observed at Tarrawarra on September 27, 1995 

with intermediate conditions, the second column shows the soil moisture patterns that are 

downscaled by the EOF method, and the third column shows the soil moisture patterns that are 

downscaled by the EMT and EMT+VS models.  In the top row, fine-scale topographic 

information is used.  In the middle row, fine-scale topographic and soil ( ,s vK ) information are 

used.  In the bottom row, fine-scale topographic and soil ( ,s vK  and 0δ  / minκ ) information are 

used.  All patterns are on a 10 by 20 m grid.   
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Figure 12.  Testing of the soil components of the EMT+VS model at Nerrigundah.   The first 

column shows the soil moisture pattern that is observed at Nerrigundah on September 12, 1997  

with intermediate conditions, the second column shows the soil moisture patterns that are 

downscaled by the EOF method, and the third column shows the soil moisture patterns that are 

downscaled by the EMT and EMT+VS models.  In the top row, fine-scale topographic 

information is used.  In the middle row, fine-scale topographic and soil ( ,s vK ) information are 

used.  In the bottom row, fine-scale topographic and soil ( ,s vK  and φ ) information are used.  All 

patterns are on a 20 m grid. 
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