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ABSTRACT

A METHOD TO DOWNSCALE SOIL MOISTURE TO FINE-RESOLUDNS USING

TOPOGRAPHIC, VEGETATION, AND SOIL DATA

Various remote-sensing and ground-based sensomdsetire available to estimate soil
moisture over large regions with spatial resolugigneater than 500 m. However, applications
such as water management and agricultural produogiguire finer resolutions (10 — 100 m grid
cells). To reach such resolutions, soil moisturesinbe downscaled using supplemental data.
Several downscaling methods use only topographtia, deut vegetation and soil characteristics
also affect fine-scale soil moisture variationsa this thesis, a downscaling model that uses
topographic, vegetation, and soil data is presentduich is called the Equilibrium Moisture
from Topography, Vegetation, and Soil (EMT+VS) moddhe EMT+VS model assumes a
steady-state water balance involving: infiltratiomeep drainage, lateral flow, and
evapotranspiration. The magnitude of each proatesach location is inferred from topographic,
vegetation, and soil characteristics. To evaltiagemodel, it is applied to three catchments with
extensive soil moisture and topographic data amdpaoed to an Empirical Orthogonal Function
(EOF) downscaling method. The primary test cataitnreeCache la Poudre, which has variable
vegetation cover. Extensive vegetation and soth daere available for this catchment.
Additional testing is performed using the Tarrawaand Nerrigundah catchments where
vegetation is relatively homogeneous and limitetll data are available for interpolation. For
Cache la Poudre, the estimated soil moisture patienprove substantially when the vegetation

and soil data are used in addition to topographia,dand the performance is similar for the



EMT+VS and EOF models. Adding spatially-interpethtsoil data to the topographic data at
Tarrawarra and Nerrigundah decreases model perfm@nand results in worse performance
than the EOF method, in which the soil data arehigitly weighted. These results suggest that

the soil data must have greater spatial detaietadeful to the EMT+VS model.
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CHAPTER 1: INTRODUCTION

The understanding of spatially varying soil moistyratterns at a catchment scale is
important for many hydrologic applications as itaskey component in the partitioning of
precipitation into infiltration, runoff, and evapanhspiration (ET). Estimates of soil moisture are
becoming more readily available at coarse to inégliate resolutions. For example, the
Advanced Microwave Scanning Radiometer (AMSR-E)les soil moisture estimates with a
60 km spatial resolution (Njoket al., 2003). The Soil Moisture and Ocean Salinity (S8)O
satellites provide soil moisture estimates at 50 davolution (Kerret al.,, 2001). Passive
microwave data from WindSat can be used to estim@itemoisture at 25 km resolution (ki
al., 2010). The Soil Moisture Active Passive (SMARjedlite will be able provide soil moisture
estimates at spatial resolutions as fine as a@utiusing 1.2 GHz L-Band radar (Entekhetbi
al., 2010). Furthermore, optical and thermal remetess,g data from MODerate resolution
Imaging Spectroradiometer (MODIS) can be used terdcale these coarse resolution estimates
to an intermediate resolution (1 km) (Merbhal., 2013). Optical and thermal remote-sensing
can also be used to estimate intermediate-resnlgtd moisture (500 m) using algorithms such
as the Surface Energy Balance Algorithm for Lan@BAL) (Bastiaanssest al., 1998; Scottt
al., 2003). Finally, intermediate-resolution soil moisture dam obtained from the Cosmic-ray
Soil Moisture Observing System (COSMOS), a grouasgell sensor that estimates soil moisture
over a 700 m diameter region when the probe igéaca few meters from the ground surface at
sea level (Zredet al., 2008).

Many applications such as water management andudtgimal production require finer

resolutions (10 — 100 m), so methods are needddlrtteer downscale soil moisture estimates.



To estimate fine-scale variations in soil moisturgh-resolution surrogate data are needed that
are strongly associated with these variations. ofjogphic data are available at the appropriate
resolutions and can be an important control on milsture. For example, Burt and Butcher
(1985) compared soil moisture values with seveagographic indices and found that a
combined index that includes plan curvature andr#i® of upslope area and slope is best
correlated with soil moisture. Brocehal. (2007) observed that soil moisture is relateddpes
elevation, specific contributing area, and distainem the drainage channel. Similar to Burt and
Butcher (1985), the strongest correlations occudwing wet conditions (Brocoat al., 2007).
Graysonet al. (1997) and Westerd al. (1999) found that the dependence of soil moisture
topography can vary through time—a property knows tamporal instability. For the
Tarrawarra catchment in Australia, lateral watervaroent controls the soil moisture patterns
during wet conditions and specific contributing aaie most closely associated with the soil
moisture patterns. During dry periods, verticaixfls control soil moisture and the potential
solar radiation index (PSRI) becomes closely assediwith the soil moisture patterns.

Several models have been developed to downscdlens@sture based on topographic
data. Wilsoret al. (2005) developed a model to generate spatiotesmhggorl moisture patterns
using empirical relationships with topographic ibtites that depend on the spatial-average soill
moisture. Their model can reproduce temporal mbtya and performs well for the locations
where it was developed, but the empirical relatgps are not expected to be widely applicable.
Busch et al. (2012) also developed an empirical downscalinghot based on Empirical
Orthogonal Function (EOF) analysis. This method akso reproduce temporal instability and
performs well at the catchments where it was depeglpbut the model is entirely empirical and

thus cannot be applied to regions that are disaimtd where it was developed (Busehal.,



2012). Coleman and Niemann (2013) proposed thelikgum Moisture from Topography
(EMT) model, which also downscales soil moisturedzhon topographic indices. This method
is more physically-based, so the relationships wWithtopographic indices are determined from
conceptual descriptions of the vadose zone prosestbis model can also reproduce temporal
instability, and it outperforms the EOF method wien soil moisture observations are available
for calibration (Werbylo and Niemann, 2014). Altigh the EMT model includes parameters
related to vegetation and soil properties, it deesconsider fine-resolution variations of these
properties if they occur.

Studies have demonstrated that fine-scale vegetatatterns can also affect catchment-
scale soil moisture patterns. For example, Pa&i€¢R002) studied soil moisture under and
between shrubs and found downslope and radial soikture gradients around the shrubs.
During precipitation events, the soil was wettetwsen shrubs than under shrubs due to
interception. During drying periods, the soil wastter under shrubs than between shrubs in
part because the canopy shaded the surface arehdedrsoil ET (Pariente, 2002). Furthermore,
vegetation shading can reduce the amount of wategkevaporated from shallow soil (Wallace
et al., 1999; Kidron and Gutschick, 2013). Similarlynl(2010) found greater soil moisture and
less soil evaporation for medium and highly shaaeshs than for weakly shaded areas. Root-
water uptake can also affect soil moisture patteasstop soil layers will dry faster with roots
than without (Wallaceet al., 1999). Dunkerley (2000) found that infiltratioates decrease
further away from a shrub stem while Chen and Wgt12) found the rate of transpiration
increases with leaf area index (LAI). Furthermorepot compensation and hydraulic
redistribution can also reduce spatial variatiomssoil moisture (Guswa, 2012). Vegetation

cover (Hupet and Vanclooster, 2002) and seasonatims in the demand for soil water by



plants (Gomez-Plazet al., 2000) can introduce temporal instability in swibisture patterns.
Similarly, Naithaniet al. (2013) found that soil moisture and vegetatioriguas are very similar
from leaf-onset to maturity but different from leafturity to senescence. Overall, the factors
influencing soil moisture are related to the presear absence of vegetation (Gomez-Pleiza
al., 2001). Vegetation leads to soil moisture pa#id¢iat are inversely related to patterns of LAI
(He et al., 2014) and is an important control under dry coods (Mascarcet al., 2010; Baroni
etal., 2013).

Spatial patterns of soil moisture also depend upoih properties including porosity
(Famigliettiet al., 1998), hydraulic conductivity (Famigliet al., 1998; Martinez Garciet al.,
2014), soil texture (primarily percent clay) (& al., 2008; Takagi and Lin, 2011), and soil
depth (Famigliettiet al., 1998; Tromp-van Meerveld and McDonnell, 2006; dgkand Lin,
2011). The influence of soil properties may beatge during wet conditions (Baroet al.,
2013) and more important relative to topography nvttee topography is flatter (Zhu and Lin,
2011). Famigliettiet al. (1998) examined the influence of both soil prépsrand topographic
attributes on soil moisture through correlationlgsia. They found under wetter conditions,
porosity and hydraulic conductivity controlled soibisture patterns, likely because both have a
large impact on water storage and movement. Uddeconditions, topography becomes more
important, and relative elevation, cosine of aspaad clay content influence soil moisture
patterns. In a regression analysis, Takagi and (RDiLl) also showed that soil moisture
variability for all soil depths considered was eiped best by: slope, curvature, topographic
wetness index, depth to bedrock, percent clay, perdentage of rock fragments. Finally,
Tromp-van Merrveld and McDonnell (2006) observedt tlifferences in soil depth caused

variations in soil moisture content, as the totatev stored in the soil changes due to soil depth.



The objective of this thesis is to generalize ttTEmodel (Coleman and Niemann,
2013) to accept fine-resolution vegetation and sddrmation if available. It is hypothesized
that including the spatial variations in vegetatiand soil characteristics will improve the
model’s ability to downscale soil moisture patteri$e generalization is called the Equilibrium
Moisture from Topography, Vegetation, and Soil (EWWS) model. The model’'s representation
of vegetation is improved by introducing its primaoles in interception, transpiration, and soil
evaporation. In addition, the structure of the elad revised to allow for both vegetation and
soil properties to vary at the fine resolution. t€et and evaluate performance of the EMT+VS
model, it was applied to the Cache la Poudre cagciiiim Colorado where detailed soil moisture
and topographic data, along with litter depth, ggnaover, and soil texture datasets were
available. This catchment has substantial spasiaations in vegetation cover. To supplement
this primary testing location, the model was algpl@d to two catchments in Australia
(Tarrawarra and Nerrigundah) where detailed soiistnce and topographic data are available
along with limited soil data. Although these cat@nts have relatively homogeneous vegetation
(and no vegetation data), they have data for soipgrties that are not available at Cache la
Poudre. Therefore, the feasibility of using intdgbed soil data can also be evaluated at these
sites.

The outline of this thesis is as follows. The nelxapter (“Methodology”) describes how
the EMT model was revised to produce the EMT+VS ehaahd briefly describes the EOF
downscaling method. The “Application Catchments&gpter describes the three sites where the
model was tested and the fine-resolution datawleae¢ available at those catchments. Then, the
“Parameter Estimation” chapter describes the metised to calibrate the model parameters and

the field data used to constrain the allowable eangThe “Results and Discussion” chapter



describes the performance of the EMT+VS model atabplication catchments and compares it
with the EMT model and the EOF method. Finallye ti&onclusions” chapter summarizes the

main conclusions from the testing.



CHAPTER 2: METHODOLOGY

21 EMT+VS Mode Development

The EMT+VS model (like the EMT model) considers thater balance in the
hydrologically active layer, which is defined as tepth of soil (beginning at the ground
surface) through which lateral flow can potentiadlycur. In particular, it considers this layer in
the land area that is upslope from an edge ofchagli in a digital elevation model (DEM). It is
assumed that soil moisture is uniform with depthhimi the layer and that the infiltration is
balanced by deep drainage (groundwater recharg&ral flow, and ET. The equilibrium
assumption disallows hysteresis in the estimatat moisture patterns (see Coleman and

Niemann (2013) for more detail on this assumptiof)e water balance can be written as:

[FdA=[GdA+L +[EdA (1)
A A A

where F is the infiltration rateG is the deep drainage, arfl is the ET for the fine-resolution
grid cells included in the upslope area. The \deid is the lateral outflow across the edge of
the DEM cell that defines the upslope area, whicthé only location where lateral flow exits in
the control volume. The variabl& is the area that is upslope from the edge of tG®i2ell.
Infiltration F is assumed to be spatially uniform in the EMT modeterception is
known to decrease infiltration (Koza&kal., 2007). Therefore, to include a simple repredenta

of interception in the EMT+VS modek is modified to be:

F=F,(1-AV) )

where F; is the maximum infiltration ratey is the fractional vegetation cover at the location

and 4 (0< 1 <1) is the interception efficiency, a parameter tats to account for factors that



influence interception, such as the foliage holdmagacity, which depends on vegetation type.
If 2=1, then all rain that falls on the vegetated fractmf the grid cell is assumed to be

intercepted and retained by the vegetation, wheduces the infiltration rate for the cell to
F=F,(1-V). Interception has been represented in similarsviayther models. For example,

the Gridded Surface Subsurface Hydrologic Analf{§$§SHA) model diverts all rainfall to
interception until an initial capacity is met. Aftthat time, a constant fraction of the rainfall i
lost to interception, similar to Equation (2) (Dosvnand Ogden, 2004; Downet al., 2008).
The 2-layer Variable Infiltration Capacity (VIC) hyiang et al. (1994) model represents the
interception rate as a constant multiplied by #e-area index (LAI), which is very similar to
the use ofv in Equation (2).

Deep drainages in the EMT+VS model is the same as the EMT mod&gecifically, it
is assumed to occur with no capillary gradient, Gois equal to the unsaturated vertical

hydraulic conductivity, which is determined fronetG@ampbell (1974) equation. Thus,

0 14
G=K,,|— 3
[¢j 3

where K, is the saturated vertical hydraulic conductivigy,is the volumetric soil moisture in

the hydrologically active layer,¢ is the soil porosity, andy, is the vertical pore

disconnectedness index (Campbell, 1974).

Lateral flow also has the same representatiohenBMT and EMT+VS models and the
equation can be derived from two distinct perspesti(Coleman and Niemann, 2013). In one
approach, lateral flow is assumed to occur througtibe entire unsaturated hydrologically
active layer. The flow is then derived from Dagyaw, where both the Campbell (1974)

equation, which is again used to calculate unsegdraertical hydraulic conductivity, and the

8



soil anisotropy (the ratio of the horizontal to tieal saturated hydraulic conductivities) are
multiplied together to calculate the unsaturatedzontal hydraulic conductivity. The horizontal

hydraulic gradient is assumed to be a power functibthe topographic slope, and the layer
thickness is assumed to depend on the topographiatcire, which has been observed for total
soil depth (Heimsatlt al., 1999). In the second approach, the lateral flbassumed to occur

in a saturated portion of the hydrologically actlager, where the portion is determined by the
depth-averaged degree of saturation in the layBoth approaches lead to the following

expression:

Kmin

L =50(’“mi" _KjCzKS’V [gj s (4)

where d, is the thickness of the hydrologically active layenere the topographic curvature is

zero, K;, is the minimum topographic curvature for which thger is present, and is the

topographic curvature (Heimsath al., 1999). Curvature is positive for convergent tanzs
and negative for divergent locations. The variables the length of the grid-cell edge ands

the soil anisotropy. The variablg is topographic slope and (¢>1) is a parameter that
relates the horizontal hydraulic gradient to theoggraphic slope. The variablg, is the

horizontal pore disconnectedness if the lateral fl® unsaturated, but it can take smaller values
(closer to one) if the lateral flow occurs in ausated portion of the layer.

The EMT model represents ET using an approach basdttiestley and Taylor (1972),
which assumes that the aerodynamic term is a spedifaction of the radiation term in the
Penman (1948) equation. In the EMT model, theatazh term is modified to account for the
effects of topographic slope and aspect, and aEfias equal to the potential ET multiplied by a

power function of the degree of saturation to aatdar moisture limitation effects. The same

9



approach is used for the EMT+VS model, but the afl&egetation cover is also considered.

The revised equation is:

., |p 0 B o 0 Pa

where E is the average potential ET, is the PSRI (the ratio of the insolation of the

topographic surface to that of a horizontal surfaicthe same latitude and date)s the ratio of

the aerodynamic term to the radiation term (i.e. Bmiestly-Taylor coefficient minus one), and
n, u, B and B, are vegetation-related parameters. The firstsmubnd terms in the second
set of square brackets on the right side of Eqnafls) are the radiative and aerodynamic

components of the ET, respectively, in the Pennograigon.

The only new element in Equation (5) is the portiorthe first square brackets on the

right side. This term is derived by first partiting E, into potential transpiration and potential

evaporation according to fractional vegetation co¥. Many other models represent
transpiration and/or soil evaporation as functiohd Al (Liang et al., 1994; Wigmostat al.
1994; Peterdidard et al., 1997; Wallaceet al., 1999). In the transpiration termy\(), » is
introduced and represents the portion of the toagspiration that is contributed by the modeled
soil layer (i.e. the hydrologically active layer)t is expected to depend on the density of roots
present in the layer and thus the vegetation typée transpiration term increases wih
because denser vegetation is associated with nootemater uptake and transpiration (Figure

1a). It also increases with largervalues because such values indicate that a gneateon of

the transpiration is being supplied by the modédger.

10



In the soil evaporation tern(X—V )*), the exponenju is introduced because vegetation
cover can reduce soil evaporation beyond simplyeeting a portion of the ET to transpiration.
For example, canopy cover is expected to reducel wpeed and increase humidity retention
near the soil surface. Litter cover can also retaimidity near the soil surface. Ritchie (1972)
proposed a detailed model for soil evaporation Wed updated to include a shading reduction
that is calculated as a function of LAI (Wallagteal., 1999), which has some similarities to the
model used here. A¢ increases, the evaporation term decreases becrurseof the available
energy is used for transpiration (Figure 1b). Whens larger, the evaporation term is smaller
because the vegetation cover also inhibits soipesation. The overall effect of vegetation
cover is determined from the sum of the transmiraéind evaporation terms (Figure 1c).

The soil moisture is determined from the waterabeé equation using that same
approximate solution strategy that was used toimktae EMT model. See Coleman and
Niemann (2013) for an evaluation of the approxiovaiincluded in this approach. First, the
equations forF, G, L, and E from Equations (2) — (5) are substituted into Eimuma(1), and

the following expression is obtained:

1 oY . (K, -x)c oY .. 1 E oY 1 Ea (oY . (6)
Fo(l—ﬂv)—x'[Kva[EJ dA+bO[ - J?Kw[ﬂ s +ZJ;(77V+(1—V)”)7(1+”&)IP[EJ dA+Z£(;7V+(1—V)~)(l:a)[E] dA

This expression is then approximated by:

~ 0 I K. —K)C 0 7h . Ep 0 Pr Epa 0 Pa 7
Fo(l—ﬂV)—KSIV(Z) +5{ - }Zszy(Zj S+(l+a) (nV+(1—V)“)|p[E] +(1+a) (77V+(1—V)’)(Ej (7)

Finally, an explicit equation fop is determined from a weighted average of analyschitions
which are derived by assuming that each of thesemthe right side of Equation (7) dominates

the determination of soil moisture. The final estte for the soil moisture is:

11



_ W05 + W, O, + Wb +W,0,
W + W, + W + W,

0

(8)

where &, 6 , 6, and 6, are the analytical soil moisture equations if deeginage, lateral flow,
radiative ET, and aerodynamic ET dominate in Equa{i7), respectively. The variablés; ,

W_, W, and W, control the importance of),, €, &, and 6,, respectively, to the final

estimate of¢ and are determined from the actual magnitudebefdur terms in Equation (7).
The only difference between the solution stratefpeshe EMT and EMT+VS models is that
more variables are allowed to vary spatially in BMT+VS model.

The solution strategy can be illustrated by comsid) the deep drainage term. If deep
drainage is dominant, then the other terms on itfte side of Equation (7) can be neglected,

which implies:
F(1-av) ]
G~ ¢{ : } 9)

Using this equation, the spatial-average soil moistd within a catchment (or a coarse

resolution grid cell) can be derived as follows:

F]/;’v

Yn
= 1 1- AV
6 =— [6,dA, =2 d 10
A oA AMK ] A (10)

EAY

where A is the area of the catchment or coarse grid déjuation (10) differs from the EMT

model not only because vegetation appears in theerator but also becaudt,, and ¢ are

allowed to vary withinA and thus are kept inside the integrdfy and y, are required to be

spatially-constant, which is a necessary assumpbonse the solution strategy provided by

Coleman and Niemann (2013). The term in the irtieigra compound vegetation and soil index

12



that introduces spatial variation into the soil stoie estimate, which is termed the deep

drainage index (DDI). This pattern of variatiomist present in the EMT model:

DDI= ¢(1_ al j]m (11)
Ks,v
If the spatial-average DDI is denot#g Equation (10) can be rewritten as:
0 =F"¥ (12)
Solving this equation fol;, and substituting into Equation (9) results in:
O,=6 % (13)

which is the analytical expression fé that is used in the main equation (Equation (8)).

Using an equivalent solution strategy for the ktélow term, the model represents as

dependent on a lateral flow index (LFI) accordiog t
(14)

where:

Yrn Yy Yrn
LRI = | =AY ( Agj Konin (15)
outKs, cS K min — K

n

and A is the spatial-average of the LFI. To obtain ¢hegpressions, only;, 7,, and ¢ are

required to be spatially constant, which deviatesifthe EMT model. The LFI is a compound
topographic, vegetation, and soil index, whichadtrces another pattern of variation into the
soil moisture estimates. An LFI appears in the EmM®&del, but the only spatially-varying

attributes are related to topography.

13



Similarly, the model represent§ as dependent on a radiative ET index (REI) acogrdi

to:
— REI
gR = 0 ? (16)
where:
Y5, VB, Yp
REI = ¢(1+_0‘J (i} {L\/y} (17)
E, I v +(@Q-V)

and IT is the spatial-average of the REIl. To obtain ¢hezpressions, onlyy, and 3 are

required to be spatially constant. The REI is enpound topographic, vegetation, soil, and
climatic index. A similar index appears in the EModel, but it is called the ET index (ETI)

and depends only on topographic attributes.
Finally, the model representé, as dependent on an aerodynamic ET index (AEI)

according to:

0,=0— 18
h=0-5 (18)
where:
g, 1B,
AEI = 4{1*_“] {L\/#} (19)
E,a n+(1-V)

and Q denotes the spatial-average of the AEI. To obtiai® expression, only;, and £, are

required to be spatially constant. The AEI is ampound vegetation, soil, and climatic index

that introduces spatial variation into theestimate, and it does not appear in the EMT model.

The importance oft;, €, 6, and 6, to the weighted average is calculated from the

magnitude of the associated term in Equation (Fpr example,W; is equal to the deep

14



drainage term in Equation (7) #; is used in place of (see Coleman and Niemann (2013) for

further details). In addition, any coefficientattappear inwWg , W, , Wy, and W, are cancelled

becausew;, W _, Wy, and W, appear in both the numerator and denominator obiagn (7).

From this approach, one obtains:

and the downscaling method is complete.

(20)

(21)

(22)

(23)

To implement the EMT+VS model, certain variablessirhe provided as fine-resolution

maps while other variables are single (spatiallgstant) values. The fine-resolution variables

include the topographic attributed\( S, x, and| ), the vegetation characteristics (1, 7,

and u ), soil characteristicsd, ¢, K,, &, and k,), and some climate-related characteristics

(E, and ). Although spatial variability is allowed in thewariables, the maps can also

indicate that the value is spatially constant @mustant within sub-regions). The output from the

EMT+VS model is a map op at the same fine resolution as these inputs. |Siognstant

values must be provided for parametgys 7., A, B., ¢, and@ . Although F, was assumed to

be constant, it does not appear in the final moddbte that these parameters could also be

15



specified on a coarse grid because each coarsegtidiould be downscaled independently in

the EMT+VS model. However, all downscaling is penied using single values for these

attributes, including§, in this paper.
2.2 EOF Downscaling M ethod

The EMT+VS model will be evaluated in part by carpg its results to those from an
empirical downscaling method based on EOF anal@ischet al., 2012). The EOF method
requires a calibration soil moisture dataset wibsayvations at the same collection of locations
on multiple dates. This soil moisture datasehentdecomposed into: (1) the spatial-average
soil moisture on each date, (2) time-invariant ighgtatterns of covariation (the EOFs), and (3)
expansion coefficients (ECs), which are time settes indicate the importance of each EOF to
the soil moisture pattern on each date. Togethese three components can be used to perfectly
reconstruct the space-time soil moisture datadetwever, to allow the method to be applied for
dates and locations without soil moisture obseovati Buschet al. (2012) discarded the EOFs
that are not statistically significant. Then, ttenaining EOF patterns were estimated from
stepwise multiple linear regressions against togolgic indices, and the ECs were estimated
from segmented-linear relationships with the spatv@rage soil moisture (see Busehal.,
2012 for more details). In the end, the method estimate the soil moisture pattern from a
supplied spatial-average soil moisture and fineltgen topographic data. Although Buseh
al. (2012) estimated the EOFs using only fine-resotutopographic attributes, the method can
be expanded to include fine-resolution vegetatioth@r soil characteristics if they are available.
In the present study, the EOF method is suppli¢d thie different types of fine-resolution inputs

to allow for fair comparisons to different EMT+V Soatel scenarios.
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CHAPTER 3: APPLICATION CATCHMENTS

The EMT+VS model is applied to three catchmentshvaktensive soil moisture and
topographic data available. The primary test catht is the Cache la Poudre, which was
selected because of its substantial variationsemetation cover. Extensive vegetation (litter
depth and canopy cover) data and soil texture @ata also available. Supplemental testing of
the model is performed using the Tarrawarra andriglerdah catchments. Although these
catchments have relatively homogeneous vegetatioa (o vegetation data), they have data for
soil properties that are not available at Cach®dadre including soil depth. The following
sections describe each catchment and the fineutssoldata that are available for use in the
EMT+VS model. Table 1 provides a summary charaties and available data for each
application catchment.

3.1 Cachela Poudre

The Cache la Poudre catchment is located near®R@oiorado and is in the Southern
Rockies ecoregion (Omernik, 1987; Traff, 2013). eTdatchment area is approximately 8.0 ha,
and the climate is semi-arid with 415 mm mean ahpoecipitation (Lehman and Niemann,
2008). It has aspect-dependent vegetation witbnéferous forest with sparse deciduous shrub
understory on the north-facing slope (NFS) and dland with sparse coniferous trees on the
south-facing slope (SFS) (Figure 2a). The NFS osnidated by Ponderosa Pin®irfus
ponderosa), while Douglas-fir Pseudotsuga menziesii), Rocky Mountain JuniperJ@niperous
scopulorum), and Common Juniperdyniperus communes) are also present. The dominant
understory shrub is Mountain Mahogan@e(cocarpus montanus) and Antelope Bitterbrush

(Purshia tridentate). The SFS consists primarily of Mountain Mahogaayd Antelope
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Bitterbrush shrubs with Mountain Big Sagebrushtémisia tridentate subs. vaseyana) found at
the lowest elevations. A few Ponderosa Pine anckiRMountain Juniper trees are also found
on the SFS (Lehman and Niemann, 2008).

Soil moisture data were previously collected (Gwe and Niemann, 2012) for the top 5
cm of the soil using time domain reflectometry (TD&h the 15 m grid, which is shown in
Figure 2. Soil moisture was measured on 9 dategde® April 22, 2008 and June 24, 2008, and
the spatial-average soil moisture ranged from @00.19. Only the 350 locations that were
measured on all nine dates are used in the pretsaay. Elevation data were also available on
the same 15 m grid (Figure 2b) (Lehman and Niem&@@8). The average elevation is

approximately 2195 m and total relief is approxietatl 15 m.

The vegetation cover is characterized by availditier depth (L) and canopy cover

(C.) on the 15 m grid collected and analyzed by Lehrmad Niemann (2008) in Fall 2008.

Litter depth was measured manually, and the valwaeh grid point (Figure 3a) is the average
of multiple measurements within 10 cm of the gradn. The values range from 0 to 15 cm with
an average of 3 cm. Canopy cover was determirged frhotographs that were taken vertically
upward from the ground surface at each of the gpidts. A 3.2 megapixel multispectral digital
camera (Tetracam Agriculture Digital Camera) wasdysvhich has view angles of 31.8nd
39.4. The images were analyzed using Tetracam’s Pis@tidh software. The vegetation and

sky pixels in the images were distinguished ushregred and infrared reflectances. The fraction

of the pixels that are vegetation was used @r(Figure 3b). The canopy cover values range

from 0 to 0.90 with an average value of 0.39. Nba this method for determining, differs

from LAI because LAI accounts for multiple layerfsvegetation cover and thus can have values

above one (Carlson and Ripley, 1997; Asner et2803; Naithani et al., 2013). As expected
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from Figure 3, bothL, and C. depend on the hillslope orientation. The coriefat of L, and
C. with the cosine of topographic aspect are 0.4768, respectively.

The L, and C, measurements were combined to determine the dreadtivegetation

coverV for the EMT+VS model. Both types of measurememts used because both canopy
and litter cover can intercept rainfall (GerritsdaBavenije, 2011) and reduce soil evaporation

(by increasing shading, reducing wind speed, amieasing humidity at the soil surface).

Although C, is expected to determine the portion of poterfialthat is used for transpiration,

both C, and L, are expected to be correlated with root densftyus, overall both variables are
relevant when determining .
To determinev , L is first transformed into a fractional litter cavk, (0<L;<1) by

the following equation:

_tanH
L, tan?‘( ; j (24)

where ¢ is a reference litter depti¢>0) and a calibrated parameter. This transformaigon

necessary because litter depth is not bounded toyazrel one. A hyperbolic tangent is used in
Equation (24), but other sigmoid functions prodsaailar results when used in the EMT+VS
model. Vv is then found by assuming that the canopy aret ldbver occur independently within

a fine-resolution grid cell, which implies:
V:LC+CC_LCCC (25)
Figure 3c shows as calculated by this approach. Alternative mashto estimatey from L,

and C. were considered and tend to produce similar redwdicause a strong relationship is

19



observed betweerl; and C. (L, is well described by an exponential function Gf).

However, formulations that rely more dg, than C, slightly improve the performance of the

EMT+VS model.

The soil texture in the top 5 cm was availablerfreoil samples collected at every second
point on the 15 m grid (resulting in 86 points oBGam grid, Figure 2) (Lehman and Niemann,
2008). Fractions of coarse gravel (4.75-12.5 nfmg gravel (2-4.75 mm), coarse sand (0.6-2
mm), and fine sand (0.05-0.6 mm) were availablenfsdeve analysis. Fractions of silt (0.02-0.6
mm) and clay (<0.02 mm) were available from thendéad hydrometer method (Figure 4a-c).
A cumulative distribution function was then detemed for each grid point to determine thé"10
percentile (D10), 20 percentile (D20), and $0percentile (D50) of grain diameter. Large
spatial variations occur in the percent sand, aiit] clay, but little organization is observed in
Figure 4. However, silt is more abundant on the&sN&nd exhibits a correlation with cosine of
aspect of 0.18.

Maps of saturated hydraulic conductivity and pdsosvere determined from the soil
texture data using pedotransfer functions develdmedCosby (1984). Both functions were
developed from samples that included A horizonss@hndy loams, and topography with slopes
up to 55%. Thus, it is expected to be appropfiatehis catchment. However, the catchment
includes an abundance of very large grain sizesgzhwimight diverge from the datasets used to
develop these functions. The resulting condugtivilues range from 936 to 1845 mm/day with

an average of 1356 mm/day, and like the soil textlata, exhibit little organization (Figure 4d).

Because information for anisotropy is not availalthe conductivity values are used fidg, in

the model and a spatially-constant anisotropgy calibrated to determine the horizontal saturate
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hydraulic conductivity (see next chapter). Theuh#sg porosity values range from 0.38 to 0.41
(m*m?®) with an average of 0.39 ¢m?®) and also exhibits little spatial organizationg(fitie 4e).
32Tarrawarra

The Tarrawarra catchment is located in southernovier, Australia. It is approximately
10.5 ha in area and has a temperate climate witlean annual precipitation of 820 mm. Soll
moisture data are available on a 10 by 20 m grid1f® dates from September 27, 1995 to
November 29, 1996 (Western and Grayson, 1998). delt@ were collected using a TDR in the
top 30 cm of the soil (Westemrt al., 1999). Only the 454 locations that are availaisieall 13

dates are used for in this study. Topographic degaalso available on a 5 m grid. The required

topographical attributesS, A, x, and I,) were determined based on this DEM and then

filtered to include only the cells with soil moistumeasurements (Figure 5a).

Field-saturated hydraulic conductivity values avaikable from well permeameter tests
at 42 locations (Western and Grayson, 1998). Safrtteese locations occur within the same soil
moisture grid cells. In such cases, the obsemsatwere averaged to determine a single value for
the grid cell, which results in 32 cells with datdo obtain a complete hydraulic conductivity
map, the data were interpolated using the linezrse weighted distance (IWD) method using a
search radius of 3 points (Figure 5b). The resgltnap of conductivity exhibits higher values

on the NFS (Figure 5b). Information about anisoyres not available, so like Cache la Poudre,

the conductivity values are used fi§¢,, and: is calibrated to determine the horizontal saturate

hydraulic conductivity.
The EMT+VS model calculates the thickness of tydrdlogically active layer as a linear

function of topographic curvature, and two variablere required to determine that linear

relationship @, and x,;,). For Tarrawarra, the A horizon (20 to 35 cm dJespselected as the
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hydrologically active soil layer, as the top 30 aihsoil accounts for approximately half of
moisture storage of the soil profile (Westatnal., 1999). The thickness of the A horizon is
available at 116 points on a 20 by 40 m grid wittb an offset from the soil moisture
measurements (Western and Grayson, 1998). Theservalbons were plotted against the
curvature, and two distinct relationships are obsgrwhere the curvature is positive and

negative. Thus, this catchment was divided into soil groups based on the sign of the
curvature and distinct values @, and k,, that were estimated from the data in those two

groups.
3.3 Nerrigundah

The Nerrigundah catchment is located northwestDahgog in New South Wales,
Australia. The catchment area is approximately 6.0 ha andltesperate climate with a mean
annual precipitation of about 1000 mm (Walker, 1,9@&lkeret al., 2001). Soil moisture for
the top 15 cm is available on a 20 m grid on 12slétom August 27, 1997 to September 22,
1997. Only the 238 locations that are availablalbii2 dates are used here. Topographic data
are also available from a 20 m DEM (Figure 6a).

Saturated hydraulic conductivity and porosity arailable at 19 locations throughout the
catchment (Walker, 1999; Walkest al., 2001). Saturated hydraulic conductivities were
determined from Kozeny-Carmen, Guelph permeamatet double-ring infiltrometer tests. The
double-ring infiltrometer test data were used foMiTEVS model testing as they were most
representative of the hydrologically active layddepths to the bottom of each of the Al, A2,
B1l, and B2 horizons were also available. Porasitidetermined from bulk density
measurements, and soil texture data were avail@blall horizons. For Nerrigundah, the

hydrologically active layer is assumed to extendh#® bottom of the B1 horizon because the
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saturated hydraulic conductivity decreases suhathnfrom the Bl to the B2 horizon. The
porosity for the hydrologically active layer wastiesmted from a weighted average of the
porosities from the included horizon&imilar to Tarrawarra, when more than one condigtiv
or porosity value is available in a grid cell, thoslues were averaged, which results in 17 cells
with conductivity data and 15 cells with porositgta. To obtain complete maps, interpolations
were performed using the same method that was wgbdTarrawarra data. The interpolated
conductivity map has higher values on the uppetiggms of the NFS and SFS (Figure 6b), while

the porosity tends to be larger in the westernipormf the catchment (Figure 6c). Similar to the

other catchments, the conductivity values are udsedK, in the EMT+VS model, and is

calibrated to determine the horizontal saturatedtdwylic conductivity.
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CHAPTER 4: PARAMETER ESTIMATION

This chapter describes how the remaining varialblese estimated for the EMT+VS
model. The general procedure is as follows. Wéealue is known for a catchment, that value
is used in the model. Otherwise, the value ishcaled to maximize the average Nash Sutcliffe
Coefficient of Efficiency (NSCE) (Nash and Sutaiff1970) for all dates in the soil moisture
dataset (NSCE is equal to 1 minus the ratio oftiweared error to the variance). For a calibrated
parameter, any available observations are usecet@rrdine the allowable range. If no local
observations are available, the calibration rareyesbased on broadly applicable ranges from
Coleman and Niemann (2013) or from theoretical lhgunThe specified values and calibration

ranges for all three test catchments are providédble 2.

The climate-related variables include, and o, which were both directly specified.
The E, value for Cache la Poudre was calculated fronPitiestly-Taylor equation by Coleman
and Niemann (2013), th&, value for Tarrawarra was acquired from literat(Méestern and

Grayson, 1998), and thk, value for Nerrigunah was estimated from class A peaporation

(Walker, 1999; Walkeet al., 2001) using a pan coefficient of approximate§=0. The variable
a was set to 0.26 for all catchments under the agsamthat the Priestly-Taylor coefficient is
1.26 (Eichingeet al., 1996).

No vegetation cover data are available for Tarraavar Nerrigundah. In both cases,
photographs and available information suggest thatvegetation is relatively homogeneous
grass (Western and Grayson, 1998; Walker, 1999k&vet al., 2001). Thusy =1 is assumed

for all locations in both catchments. For all tebents, the vegetation-related parametears (
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n, u, B, and B,) were calibrated. The ET exponents and £, were calibrated within

broadly applicable ranges from Coleman and Niem@®13). The interception efficiency
and the portion of the total transpiration thatatributed by the modeled soil laygr have

theoretical lower and upper bounds at 0 and 1 wivere used to define their calibration ranges.

The soil evaporation reductiom has theoretical upper and lower bounds at 1 andlBe
reference litter depthd is required only at Cache la Poudre to transfoitterl depth

measurements into fractional litter cover. Itowathble range has a lower limit of 0.001 m to

avoid a zero occurring in its denominator and haspper limit.

Where fine-resolution datasets are unavailablestiehydraulic propertiesd, K,,, ¢,

7, 7., and¢ ) were calibrated. The porositigs for Tarrawarra are calibrated within the broad
ranges from Coleman and Niemann (2013) becauseillikalbnsity or soil texture measurements
are available. In some model scenarios for CaahBdudre and Nerrigundah, porosity is
assumed to be spatially-constant, in which caseatibration range is determined from the
ranges of@ measurements. Similarly, in tests whé€g, is assumed to be spatially-constant,
the calibration range is determined from the ramgfesonductivity values. The anisotropyis
allowed to range from 1 to 100 for all catchmeriistg, 2002). The allowable range foy at
Tarrawarra is determined from Coleman and Niem&@13) because no soil texture data are
available. The allowable ranges fgr at Cache la Poudre and Nerrigundah are deternfioed
pedotransfer functions that rely on the availablétexture data (Cosbst al., 1984). The upper
bounds fory;, are the same as those fgr at the same catchment, but the lower bound isoset

one to allow for saturated lateral flow (Colemard adiemann, 2013). The calibration also
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requires },, <7, similar to Coleman and Niemann (2013). Finallye range fore, which

relates the hydraulic gradient to the topographipes is also from Coleman and Niemann
(2013) because no catchment-specific observatima\ailable for this parameter.

The EMT+VS model calculates the thickness of th@rblpgically active layer using two

variables ¢, and k;,). No soil or horizon depths are available at @ahPoudre, so the,
value and the calibration range fer;, proposed by Coleman and Niemann (2013) were used.

For Tarrawarra and Nerrigundah, in tests whéyand x,, are assumed to be spatially-constant,
a linear regression was performed with the avaslatdta to estimate the layer thickness as a
function of curvature. d,, which is the thickness where curvature is zemjld be reliably
estimated for both catchments because multipleresasens have curvature values close to zero.
Due to the large number of data points and widgeaf x values available at Tarrawarra,,
could be also reliably estimated from the regresdine. However, the regression line at
Nerrigundah must be extrapolated to estimgjg, so k;;, was instead calibrated within the

same broad range as Cache la Poudre.
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CHAPER 5: RESULTS AND DISCUSSION

This chapter describes the results when the EMT+M&Iel is applied to the test
catchments and compares those results to bothMAerodel and the EOF method proposed by
Buschet al. (2012). To apply the EOF method, the same dodle®f topographic attributes that
were used by Buscht al. (2012) are considered. For Cache la Poudre,itiee depth and
canopy cover data are supplied to the EOF methadc&ses when vegetation data are
considered. Similarly, percent sand, percent gidrcent clay, D10, D20, D50, saturated

hydraulic conductivity, and porosity are suppliedthe EOF method when soil properties are
considered. For Tarrawarra, the fine-resolutiondeativity, and), and ;, values are supplied

to the method when soil variables are considerdedally, for Nerrigundah, the fine-resolution
conductivity and porosity values are supplied ®itethod when soil variables are considered.
5.1 Cachela Poudre

The EMT+VS model is first applied to Cache la Peudtra 15 m resolution by including

the fine-resolution vegetation data along with thpographic data that is already used in the

EMT model. In this scenarid,, is calibrated rather than using the data from3@en grid.

Calibrated parameters and spatially-constant viesafor this test can be seen in Table 3.
Figure 7 shows examples of the observed and dowetssail moisture patterns for Cache la
Poudre. The date was selected because the obgmattedh is typical for the dataset. The top
row shows the results when only fine-resolutionogmaphic data are used for downscaling, and
the bottom row shows the results when both fineltg®n topographic and vegetation data are
used. The observed soil moisture pattern (FigajeeXhibits wetter conditions on the NFS than

the SFS, and the western part of the catchmeneigemwthan the eastern part of the catchment.
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Substantial local variations in soil moisture alsabserved. When only topographic data are
used, the downscaled pattern from the EOF methigui(@ 7b) is more realistic than the pattern
from the EMT model (Figure 7c) because it bettpresents the wetter conditions in the western
part of the catchment. Both downscaled patterisbéXdess spatial variation than the observed
soil moisture pattern. When both topographic aegetation data are included, the pattern from

the EOF method (Figure 7e) remains nearly unchangée EOF method with topography data

downscales primarily withl, while the EOF method with topography and vegetatio

downscales withl , and both vegetation data. Becaulse and vegetation data are highly

correlated, little change between the two casegpected. In contrast, the soil moisture pattern
from the EMT+VS model (Figure 7f) is substantiadlifferent than the pattern from the EMT
model (Figure 7c¢), and it is more realistic becatisaptures the wetter conditions in the western
part of the catchment and it captures some ofdhal lvariability (speckle) in the soil moisture,
with the greatest improvement seen on the SFS.

The top half of Table 4 (15 m grid) quantifies theerage performance of the
downscaling methods for this scenario. The NS©Bt{ mean square error (RMSE), and mean
relative error (MRE) were calculated for each diatdhe dataset, and the table provides the
average values for these metrics. The resultsircorthat the example shown in Figure 7 is
representative of the dataset. Specifically, wioaty topographic data are used, the EOF
method outperforms the EMT model. When topogramnd vegetation data are used, the
EMT+VS model outperforms both the EOF method arel EMT model. For example, when
only topographic data are used in the EMT model #élverage NSCE is 0.080. When
topographic and vegetation data are used in the BATmodel, the average NSCE is 0.134.

This improvement suggests that vegetation playsgaifeant role in determining the soail
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moisture patterns at this catchment and that th@B¥& model captures some of that role. The
improvement in performance of the EMT+VS modellie EOF method also suggests that the
representation of vegetation in EMT+VS model igdrethan the linear dependence assumption
of the EOF method.

As seen from NSCE results, the EMT+VS model is tead fully capture the observed
patterns. Although the theoretical maximum NSCRieas 1, results from Busatt al. (2012)
suggest that a likely maximum possible NSCE whes italculated in this way is about 0.60
because the remaining variation in soil moistur@skts is uncorrelated noise (i.e. the EOFs are
not statistically significant patterns of variatjonAs seen from Table 4, the EMT+VS model
performance remains well below this estimated maxmperformance and this variation might
be largely due to measurement errors. SimilaHg, RMSE value for the EMT+VS model is
about 0.030, which is a little larger than measwaetrerrors that are commonly reported for
TDR data, approximately 0.01 (Hignett and EvetQ®0 The MRE values are high, greater than
0.4, because the observed soil moisture valuesfame low compared to estimated soil moisture
values. Thus, the errors are large relative toetlsesall numbers.

Some of the estimation error is likely inheritedrfr assumptions and simplifications
used to derive the EMT model. First, the equilibtriassumption means that the model can
produce only one soil moisture pattern for a gigeatial-average soil moisture. However, the
observed soil moisture patterns can exhibit difiees when the spatial-average soil moisture is
nearly identical. Second, the approximations Hratused to produce an explicit soil moisture
equation produce some distortions in the estimatat moisture patterns (see Coleman and
Niemann, 2012). Third, the process representat@ms conceptual, assume constant soil

moisture with depth, and infer hydraulic propertfesm topographic attributes. Fourth, the
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values of model inputs and parameters may includes For examplefE, was also treated as

constant in time based on previous EMT model tgstind the equilibrium assumption. The
variable « was also assumed to be the same for all catchpimrttsome research suggests that
this value might change with climate (Crisgal., 2012).

Other errors are introduced by the simplified reprgation of vegetation in the EMT+VS
model. The model does not include a permaneningilpoint, which could introduce errors in
the soil moisture patterns for very dry conditionfhe model assumes that a fixed portion of
transpiration occurs from the hydrologically actlager, but this portion likely varies depending
upon the availability of moisture at different dept The vegetation cover and vegetation
parameters are all treated as constant through smany changes with season are neglected. In
addition, the vegetation parameters are considspatially constant even though the type of
vegetation varies spatially in the catchment.

Finally, some error is inherent in comparing EMT+¥8&imates to TDR measurements
due to differences in their spatial scales. Thd&TiDeasures soil moisture over a range of a few
centimeters, while the EMT+VS model estimates smisture patterns at the resolution of the
supplied fine-resolution datasets (15 m in thisgas

NSCE can also be calculated by considering theeeggiace-time dataset at once. When
calculated in this manner, the NSCE evaluates tetiad and temporal variation that is
reproduced by the application of the downscalinghme. When calculated in this way, the
NSCE is 0.788 for the EMT+VS model. The method/esy effective at capturing temporal
variability in part because the spatial-averagémoisture is provided as an input. Nonetheless,
the high value indicates that estimates from theTEMS model are accurate enough to be useful

for a variety of applications.
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The EMT+VS model’'s ability to reproduce the statist properties of the soil moisture
patterns can also be evaluated. The spatial-ageiageproduced due to the mathematical
structure of the model. Thus, the bias on eacle datzero. Table 5 shows the average,
maximum, and minimum standard deviations for theeobed and estimated patterns of all dates
in the dataset. Overall, the EMT+VS patterns haneh smaller standard deviations than the
observed patterns and slightly smaller values th@nEOF estimates. However, the standard
deviation for the EMT+VS model is more realistiaththe EMT model.

Additional tests were run to determine the partcuble of vegetation that is responsible
for the improved performance of the EMT+VS moddatige to the EMT model. First, the
influence of interception was evaluated by modifythe EMT+VS model to only include the
interception term. This test produced an avera@CH that is nearly the same as the EMT
model. Because the observed soil moisture pattarasrelatively dry, interception is not
expected to play a large role. The importanceoof-water uptake (and transpiration) was then

determined by examining the calibratedvalue. This value is 0.06, meaning only 6% of the

transpiration is derived from the hydrologicallytiae layer. This low value is expected because
the layer is selected to be very small (5 cm) aachbse the vegetation is primarily shrubs and
trees. Together these results suggest that thectied of soil evaporation (due to increased
shading and humidity and reduced wind speed) igittoeinant mechanism by which vegetation
affects soil moisture at the Cache la Poudre. ifm@ortance of soil evaporation at shallow
depths has also been observed for another semshanitland (Kurc and Small, 2004). These
results also imply that the representations ofrggetion and transpiration in the EMT+VS

model are not well tested based on this catchment.
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Figure 8 shows the weights that are used in the eguation to estimate for the EMT

and EMT+VS models for this scenario. Weights agéinéd as the importance of each process

(e.x. Wy ) divided by the sum of importance terms for albgesses. Both models suggest that

lateral flow plays little role in determining th@ik moisture patterns across the rangeé_bf

values in the dataset, which describes a catchmigntrelatively dry soils. However, the EMT

model exhibits an increase in the lateral flow v¢ifpr very low @ values. That behavior is
not realistic because transmission of water in $b#& becomes more efficient as the soll
approaches saturation, and lateral flow is generalhsidered to be more important under wet
rather than dry conditions (Graysehal., 1997; Westerret al., 1999). In contrast, the lateral
flow weight in the EMT+VS model is always zero, waiiis more realistic for this dataset. The
EMT+VS model has smaller values of the radiative ®&ight and larger values of the
aerodynamic ET weight than the EMT model. The otidu in the radiative ET weight suggests
that some of the soil moisture variation that wésibaited to variations of insolation (i.e.
radiative ET) in the EMT model is now being exp&inalso by variations in vegetation cover,
which affect both the radiative and aerodynamic EBecause the vegetation cover is highly
dependent on hillslope orientation, vegetation atavns could easily be misinterpreted as

insolation variations in a model that only consgdtapography. Both models suggest that deep

drainage dominates wheth becomes large.

The patterns of variation that are used to estintia¢esoil moisture in the EMT and
EMT+VS models are shown in Figure 9. The DDI, whis not present in the EMT model,
depends on vegetation cover because of vegetatiol€sin interception. The DDI has larger
values on the SFS where the vegetation is spafsehweduces interception. Thus, under wet

conditions when deep drainage dominates, the EMTrd8el produces patterns that are wetter
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on the SFS than NFS, while the EMT model produacafomm soil moisture. The LFI also
depends on vegetation cover, but this index maieRects the valley configuration and is
similar to the LFI in the EMT model. Recall thaetLFI is not used in the EMT+VS model
because, =0. The REI pattern in the EMT+VS model is analogtushe ETI pattern in the
EMT model. Both patterns have higher values on NS because that slope receives less
insolation (, is lower). However, the REI also incorporatesdihg and retention of humidity
by vegetation, which introduces more local vari@piin the REI pattern than the ETI pattern.
The fourth pattern of variation in the EMT+VS modelthe AEI, which is not present in the
EMT model and depends only on the vegetation colteslso has larger values on the NFS and

the western portion of the catchment where the tadiga cover is thicker, and it will tend to

promote higher soil moisture on that slope undgrodnditions when it is important.

The next two scenarios evaluate the EMT+VS moded&s of fine-resolutiorK,, and ¢

data. For the second scenario, the EMT+VS modappdied at a 30 m resolution where both
fine-resolution vegetation and solK(,) data are available. Calibrated parameters aatiadly-
constant variables for this test can be seen ineT@b Figure 10 compares the downscaled soil

moisture pattern to the observed pattern for amg@kadate. The top row of Figure 10 uses only

topographic and vegetation data, and these pategegroduced using the same approach that
was used for the 15 m grid. The middle row shdwesresults wherK,, data are added to the
downscaling methods. The results of the EOF meti@hge slightly with the addition of the

soil data (comparing Figure 10b to 10e), but theults of the EMT+VS model are nearly

identical in both cases. Most soil moisture patiein this dataset represent dry conditions and

are controlled by the REI and AEI, which do not elegp on K ,,. Thus, available soil
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information is only beneficial for wet conditionshen deep drainage is important. Although a

wetter day @ = 0.15) is shown (Figure 10), the catchment id stiatively dry and therefore
vegetation plays a larger role in determining smiisture patterns.

The bottom half of Table 4 (30 m grid) evaluates tiverage performance of the
EMT+VS model when only topography, both topograpnd vegetation, and topography,
vegetation, and soil data are used. The additibriin@-resolution vegetation data in the

downscaling method improves the average performamo#ar to what was observed at the 15
m resolution. However, including th&,, data as well makes very little difference in the
EMT+VS model performance. This insensitivity panticcurs because only two dates are wet
enough @ = 0.19) for deep drainage and this, to be important. Thus, the performance on

most dates is unchanged. When the soil data ateded, the performance of the EMT+VS
model is again below that of the EOF method. Te®sult might suggest that the simplified
representations of the hydrologic processes inBME+VS model makes it difficult for it to
benefit from detailed representations of the smbpprties. It might also indicate that some roles

of soil variability are not being captured in thtME+tVS model (for example, by use of the
simplified Campbell equation). The use of a peatwfer function to estimat&,, is also
expected to introduce errors, but the EOF methanlilghalso be sensitive to these errors. It
should be noted that one fewer parametgr, ] is calibrated when the soil data are provided in
the EMT+VS model. In contrast, the EOF method icw@s to calibrate its dependence on the
provided spatial pattern. Whel,, data are included in the EMT+VS model, the spaoe-t

NSCE is 0.805, which indicates good overall perfance.
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The final scenario at Cache la Poudre applied tM&@£/S model at a 30 m resolution

where fine-resolution vegetation and sdf{( and ¢) data are available. The bottom row of
Figure 10 shows results when bdf, and ¢ data are added to the downscaling methods. The

results of the EOF method are identical betweenstiiecases as the EOF chooses not dise
data. The EMT+VS model between soil cases shows gpid cells as being estimated slightly
wetter wheng data are included which correspond to areas dfdnig values, suggesting is

being correctly estimated at the catchment andomipg soil moisture estimation.

The last two rows of Table 4 evaluates the perfoceaof the EMT+VS model when

topography, vegetation, soiK(,, and ¢) data are used. The addition of both soil da&sdmwt

change EOF method performance from when dfly data are used. When the soil data are

included in the EMT+VS model, the space-time spane- NSCE of 0.807. These slight
increases in performance suggest that when pordatgyare included, they can improve the soil
moisture estimates. Again, neither the EMT+VS niaddEOF method produce the variance of
observed conditions as seen in Table 5.

S.2Tarrawarra

At Tarrawarra, the EMT+VS model’s use of fine-regmn data for bothK,, and the
soil depth parameters){ and x.,,) is evaluated. The first application of the moieludes the
fine-resolutionK, data. The top row in Figure 11 shows example dwated patterns that are

produced when only topographic data are used, lamdniddle row shows the results when the

K,, data are included. Calibrated parameters andafipatonstant variables for this test can be

seen in Table 7. The observed soil moisture pafteilgures 11a) has valley bottoms that are
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wetter than the hillslopes. In addition, the NBSliier than the SFS. When only fine-resolution

topographic data are used in the EOF method (Figiibg, the downscaled pattern exhibits these
same features. The EMT model also exhibits thees@mdencies (Figure 11c), but the range of
soil moisture values, particularly in dry areaglsd catchment, is less than what is produced by

the EOF method. Both of the downscaled pattercis tlae local variations in the observed soll
moisture pattern. When th§,, data are added to the EOF method (Figure 11cydhescaled
pattern appears almost unchanged. The EOF metheslube theK,, data, but they have very

little effect on the results. The soil moisturdtpa produced by the EMT+VS model reflects

the variations inK, that are shown in Figure 5b. In particular, lomasg with largerK,, values

are slightly drier in the downscaled pattern, atgyatthat can be seen in the observed soil

moisture pattern. This occurs because the EMT+\W8eahuses theK,, data to produce the

DDI and LFI patterns and both deep drainage aretdhflow are of greater importance than
radiative ET.

Table 8 quantifies the average performance ofetliesvnscaling methods when applied

to all dates in the Tarrawarra dataset. WhenKhe data are included in the EOF method, the

performance remains almost unchanged from the wdé®® only topographic data are used.

When theK,, data are included in the EMT+VS model, the perfamoe decreases. In both

cases, the results suggest that the interpolKtgddata are not reliable. The EOF method uses

only attributes that are correlated with the EGdesthe similarity of the results suggests that the

interpolatedK,, data do not have a strong linear relationshipnéoEOFs. The EMT+VS model

must use the suppliek;, map. If those data are not reliable, then thdop@rance will be
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poorer than calibrating a singl;, value (i.e. applying the EMT model). It is alsospible that
both the EOF and EMT+VS models have errors in timeadel structures that make them
incapable of using theK,, data. However, given the substantial differenbesveen the
structures of the two models, this cause is unjikel

Next, the EMT+VS model is applied using both theeipolated K,, map and the maps

for the soil parameters, and x;,. For both the EOF method and EMT+VS model, inicigd
this additional data does not substantially aftbet downscaled soil moisture patterns (bottom
row of Figure 11). The EOF method chooses nothise), and x,,, data. In particular, Figure
11e and 11h are identical, and Figures 11f andadelivery similar. The performance metrics in
Table 8 suggest that the average performance filbelates is also nearly unchanged for the
EMT+VS model. Thus, the EMT+VS model performs szene when the calibrated values of
0, and k., are replaced with the patterns determined frora.dat

5.3 Nerrigundah

At Nerrigundah, the EMT+VS model's use of fine-resion K, and ¢ data is

evaluated. The model is first applied when only time-resolutionK,, data are included and

uses the same topographic data as the EMT modglireF12 shows the downscaled patterns for
an example date. Calibrated parameters and dpat@istant variables for Nerrigundah tests
can be seen in Table 9. The observed soil moigiattern exhibits wetter conditions on the SFS
than the NFS in the eastern half of the catchm&mu(e 12a). The western half of the

catchment is generally drier than the easterndfalie catchment and exhibits little dependence
on hillslope orientation. When only topographid¢adare used in the EOF method (Figure 12b)
and the EMT model (Figure 12c), the downscaledepastalso exhibit the wetter conditions for

37



the SFS than the NFS, but the difference betweene#stern and western halves is of the

catchment is not as pronounced for the EOF methddisanot reproduced for the EMT model.

When theK,, data are added to the EOF method (Figure 12efed+VS model (Figure 12f),

the downscaled patterns more closely resembleeifieres of the interpolateld,, pattern. For

the EOF method, two drier spots are modeled onettgtern portion of the catchment, which

correspond to higher areas df,,, while a wetter region on the west half of thechatent is
modeled, which correspond to region of low€r, (Figure 6b). The EMT+VS model models

the drier region on the south portion of the eastalf of the catchment, but less of thi&,,

pattern can be seen as compared to the EOF metiteé EMT+VS pattern is controlled

primarily by both REI and DDI, with the importanoéradiative ET being about 1.5 times larger

than that of deep drainage. Because DDI is depegraféK,,, the downscaling patterns reflect
some of theK, pattern. But because the importance of radiafVewhich is independent of

K,.. is greater than that of deep drainage, not athefK, pattern can be seen in soil moisture

patterns. The performance metrics in Table 10 shonvincrease in average performance from

when topography alone is used to when both toptgrapd K, are used. This indicates that

addition of fine-resolutioK,, data into the EMT+VS model can be beneficial.

Next, the EOF method and EMT+VS model are appliéemwboth the fine-resolution

K,, and ¢ datasets are provided. For the example dateE@f method produces an identical
pattern (Figure 12h) to the case when only finelg®on topographic andK,, data were

included (Figure 12e). The similarity suggestd tha ¢ data are not strongly associated with

38



the EOFs. However, when th¢ data are added to the EMT+VS model (Figure 12§ t
downscaled pattern differs from the previous c&sgufe 12f). The EMT+VS model must use
the ¢ data in all four of its indices. As a result, sml drier patches now occur, the most

obvious one being located on the center edge oS, as seen in Figure 12i. Although these
patches do not precisely align with dry patchethenobserved pattern, the observed pattern does

have dry patches at similar locations. This resulfjgests that the EMT+VS model might be
capturing variations in soil moisture that are tue variations, but that the interpolatg¢dmap

does not correctly identify the configuration obse variations.

Table 10 shows that the average performance oE@ie method is unchanged from the
previous case because titedata are not used. This result suggests thahtbgolated¢ data

are likely unreliable or that the empirical struetwof the EOF model is not capable of using

these data. Table 10 also shows that the avef@mance of the EMT+VS model decreases

when theg map is included. Even though the soil moistunéatians that are produced by the
¢ variations appear realistic in Figure 12, inclufithese variations produces worse overall

performance. Because neither model benefits freenafi theg map, it is likely that this map is

unreliable.
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CHAPTER 6: CONCLUSIONS

This thesis aimed to generalize the EMT modelllmnait to accept fine-resolution data
for vegetation and soil properties based on theothgsis that the consideration of spatial
variations in vegetation and soil characteristicaild improve the model’s ability to downscale
soil moisture patterns. Based on this study, ¢hlewing conclusions can be made:

1. The new EMT+VS model is successful at capturing esahthe effects of vegetation
cover on the soil moisture patterns at the Cacheoladre catchment. When vegetation
cover is included in the EMT+VS model, its performoa is better than that of the EMT
model, which uses only topographic variations tavdgcale. In addition, the EMT+VS
model outperforms the EOF method when both methar@s provided with similar
information, which suggests that the representadifovegetation in the EMT+VS model
is superior to linear regressions that are use¢dare OF method.

2. Fine-resolution variations in vegetation cover ptagubstantial role in determining the
soil moisture patterns at Cache la Poudre. Whervégetation cover data are added to
the EMT+VS model, the average NSCE increases frof80 to 0.134. In this
catchment, the vegetation cover varies dramatidadiijwveen forests on the NFS and
shrublands on the SFS. Vegetation is expectethiogpsmaller role in catchments where
it is more homogeneous.

3. The main mechanism by which vegetation influences oisture at the Cache la
Poudre catchment is the associated reduction Iregaporation. Vegetation can reduce
evaporation by shading the surface, reducing thedwspeed near the surface, and

reducing the humidity gradient. When intercepti®meglected in the EMT+VS model,
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the model performance is nearly unchanged. Bedateseeption and root-water uptake

do not play a large role in the Cache la Poudras#di further testing is needed to

evaluate their representations in the EMT+VS model.

4. Fine-resolution variations in saturated hydraubmauctivity and porosity play a much
smaller role in determining the Cache la Poudrémoisture patterns. The addition of
fine-resolution saturated hydraulic conductivitydgmorosity data does not significantly
improve the performance of EMT+VS model or the E@Ethod in this catchment.
Hydraulic conductivity affects the deep drainagel dateral flow processes, which are
determined to not be important when the EMT or EM$+models are applied to the
Cache la Poudre dataset. The small improvemeperformance is mainly due to the
inclusion of the porosity data.

5. The EMT+VS model performance is sensitive to thality of the fine-resolution soll
data. The EOF method can disregard data that @rdeipful for predicting the soil
moisture patterns, but the EMT+VS model must uspplsed soil data. For the
Tarawarra and Nerrigundah catchments, the sparte fda soil characteristics were
interpolated using IWD to produce fine-resolutioaps, but the use of those maps in the
EMT+VS model generally produced similar or worsef@enance than using calibrated
constant values for those characteristics.

Overall, the results suggest that the use of fesslution vegetation data is a promising
direction for improving soil moisture downscalingethods, particularly for catchments where
vegetation cover exhibits substantial variationig. addition, they suggest that the EMT+VS
model can efficiently use such vegetation dataweier, further research is needed to determine

whether remotely-sensed measures of vegetationr ceweh as LAl are beneficial in the
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EMT+VS model. Also, new datasets are needed terae whether the representations of
interception and transpiration are reliable. Imtcast, the results suggest that the use of fine-
resolution soil information for downscaling is mgmoblematic. Throughout this study, the use
of fine-resolution maps for soil properties usualggraded the performance of the EMT+VS
model and did not change the performance for thé BE@thod. In the case of Cache la Poudre,
the available soil properties were not importantthe soil moisture patterns. For the other
catchments, the available data were too sparse tgséful in the downscaling methods. While
spatial variations in soil properties are knownb&® important in determining soil moisture
variations in some cases, high quality data foreppate soil properties are needed to improve

the performance of the downscaling methods.
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TABLES

Table 1. Summary of characteristics and data for the trestdatchments.

Catchment Cache la Poudre Tarrawarra Nerrigundah
Area (ha) 8.0 10.5 6.0
Annual
Precipitation (mm) 415 820 1000
Soil Moisture
Measurement Dates 9 13 12
Soil Moisture
Measurement Depth 5 30 15
(cm)
Soil Moisture
Sampling Grid (m) 15 10x20 20
Topographic
Sampling Grid (m) 15 S 20
Vegetation Data Litter depth, canopy N/A N/A
cover

Saturated hydraulic Saturated hydraulic

Soil Data Solil texture conductivity, soil conductivity,

depth porosity, soil depth
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Table 2. Upper and lower calibration ranges for model pat@rs and spatially-constant

variables at all three test catchments.

Poudre Tarrawarra Nerrigundah
Parameter
Lower Upper| Lower Upper Lower Upper
E, (mm/day)| 2.4 2.4 2.3 2.3 2.8 2.8
a 0.26 0.26 0.26 0.26 0.26 0.26
B 0.2 5 0.2 5 0.2 5
B 0.2 5 0.2 5 0.2 5
n 0 1 0 1 0 1
A 0 1 0 1 0 1
u 1 3 1 3 1 3
¢ (m) 0.001 N/A N/A N/A N/A N/A
¢ (Mmmd) 0.38 041 0.25 0.70| 041 056
K,y (mm/day)| 936 1845 17 3355 36 2592
l 1 100 1 100 1 100
A 1.0 13.0 1.0 25.0 1.0 17.3
Yy 9.2 13.0 4.0 25.0 10.9 17.3
0, (m) 0.05 0.05 0.23 0.23 0.25 0.25
K. (1/m) | -1E+06 -0.0560| -0.0267 -0.0267| -1E+06 -0.0056
£ 1 3 1 3 1 3
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Table 3. Model parameters and spatially-constant variatlde€ache la Poudre tests on a 15 m

grid. All parameters other than climate parameteescalibrated.

EMT+VS:
Parameter EMT Topography and
Vegetation
E, (mm/day) 2.4 2.4
a 0.26 0.26
B 5.0 4.5
B, 4.8 3.0
n N/A 0.06
A N/A 0.83
I N/A 1.85
¢ (m) N/A 0.03
¢ (mimd) 0.38 0.41
K, (mm/day) 941 941
l 1 5
7 4.3 9.2
Y 12.1 13.0
0, (m) 0.05 0.05
K (1/m) -0.056 -15.136
£ 2.38 3.00
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Table 4. Measures of model performance when the downscatiodels are applied to Cache la
Poudre. The scenarios represent the fine-resalatza included in the tested model. The top
half of the table represents topography and veigetatata on a 15 m grid while the bottom half
of the table represents topography, vegetation saild data on a 30 m grid. The NSCE, RMSE,
and MRE are calculated separately for each of tday® in the dataset and then the averages,

maximums, and minimums are determined from the=rbfit dates.

. . NSCE RMSE MRE
Grid Scenario Model Avg.  Max. Min. Avg. Avg.
Topography EMT 0.080 0.183 -0.027 0.031 0.453
5m EOF 0.116 0.288 -0.050 0.030 0.438
Topography and EMT+VS | 0.134 0.375 -0.099 0.030 0.434
Vegetation EOF 0.129 0.320 -0.070 0.030 0.434
Topography EMT 0.099 0.227 0.015 0.030 0.485
EOF 0.172 0.399 -0.030 0.028 0.448
Topography and EMT+VS | 0.187 0.498 -0.089 0.029 0.463
Vegetation EOF 0.190 0.405 0.008 0.028 0.453
30 m Topography, EMT+VS | 0.189 0488 -0.08] 0028 0.458
Veg., and Soil K,) EOF 0.226 0.391 0.05 0.027 0.437
Topography, EMT+VS | 0.196 0.495 -0.08( 0.028 0.457
Veg., and Soil K, and¢) EOF 0.226 0.391 0.05 0.027 0.437
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Table 5. Measures of standard deviations when the dowmggatiodels are applied to Cache la

Poudre. The scenarios represent the observedtimorsdor fine-resolution data included in the

tested model. The top half of the table represemsgraphy and vegetation data on a 15 m grid

while the bottom half of the table represents topphy, vegetation, and soils data on a 30 m

grid. The standard deviations are calculated saglgrfor each of the 9 days in the dataset and

then the averages, maximums, and minimums arendigied from the different dates.

. . St. Dev.
Grid Scenario Model Avg. Max. Min.

Observed 0.031 0.039 0.020

Topography EMT 0.008 0.013 0.005

15m EOF 0.010 0.016  0.006

Topography and EMT+VS| 0.010 0.019 0.005

Vegetation EOF 0.011 0.016 0.006
Observed 0.031 0.039 0.021

Topography EMT 0.009 0.015 0.005

EOF 0.012 0.017 0.008

Topography and EMT+VS| 0.012 0.019 0.005

30 m Vegetation EOF 0.014 0.018 0.009

Topography, EMT+VS | 0.012 0.020 0.004

Veg., and Soil K,,) EOF 0.015 0.020  0.009

Topography, EMT+VS | 0.012 0.021 0.006

Veg., and Soil K, and ¢) EOF | 0.015 0.020 0.009
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Table 6. Model parameters and spatially-constant variatfde€ache la Poudre tests on a 30 m

grid. All parameters other than climate parameteescalibrated.

EMTAVS: EMT+VS: EMT+VS:
Parameter EMT Topography and J:g??g:%pg)é’” \'/Fg)g?f)grn%pg%”
Vegetation (K.,) (K., and )
E, (mm/day) 2.4 2.4 2.4 2.4
a 0.26 0.26 0.26 0.26
yis 5.0 5.0 5.0 5.0
i 4.7 3.8 3.8 3.7
n N/A 0.13 0.12 0.12
A N/A 0.07 0.17 0.17
H N/A 1.00 1.00 1.00
< (m) N/A 0.01 0.01 0.01
¢ (Mmmd) 0.39 0.41 0.41 N/A
K,v (mm/day) 936 943 N/A N/A
! 1 1 1 1
7 4.6 4.1 4.3 4.4
7, 11.9 12.2 12.6 12.9
3, (m) 0.05 0.05 0.05 0.05
K. (1/m) -0.056 -1391.569 -0.056 -0.056
£ 1.22 2.98 3.00 2.72
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Table 7. Model parameters and spatially-constant variatde3 arrawarra tests on a 10 by 20 m

grid. All parameters other than climate parameseescalibrated.

EMT+VS:
EMT+VS: Topography,
Parameter EMT Topography and V€g., and Soil
Soil (K.,) (K andd, /
Krvin)
E, (mm/day) 2.3 2.3 2.3
a 0.26 0.26 0.26
A 3.6 4.3 4.3
B 5.0 5.0 5.0
n N/A 0.00 0.00
A N/A 0.38 0.67
H N/A 1.43 1.83
¢ (m) N/A N/A N/A
¢ (mimd) 0.70 0.70 0.70
K., (mm/day) 459 N/A N/A
! 64 100 100
i 6.9 16.5 16.6
%, 14.1 25.0 25.0
8, (m) 0.23 0.23 N/A
K. (1/m) -0.027 -0.027 N/A
P 1 1 1
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Table 8. Measures of model performance when the downscatmoglels are applied to

Tarrawarra. The scenarios represent the fine-wésal data included in the tested model. The

NSCE, RMSE, and MRE are calculated separatelydoh ef the 13 days in the dataset and then

the averages, maximums, and minimums are deternfiiosdthe different dates.

Scenario Model NSCE . RMSE|  MRE
Avg. Max. Min. Avg. Avg.

Topography EMT 0.290 0.562 0.045| 0.028 0.064
EOF 0.350  0.655 0.068| 0.02f 0.061
Topography and EMT+VS | 0.256 0.550 -0.026 0.029 0.066
Soil (K,,) EOF 0.356  0.662 0.077| 0.02f 0.061
Topography and EMT+VS| 0.258 0.555 -0.027 0.029 0.066
Soil (K, and 6, / ) EOF 0.356  0.662 0.077| 0.02f 0.061
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Table 9. Model parameters and spatially-constant variafe®Nerrigudah tests on a 20 m grid.

All parameters other than climate parameters dilerated.

EMT+VS: TE';)"(EZEW
Parameter EMT Topography ang Veg., and Soil
Soil (K,,) (K, and§)
E, (mm/day) 2.8 2.8 2.8
a 0.26 0.26 0.26
B 1.6 1.1 1.1
B, 5.0 5.0 5.0
n N/A 0.00 1.00
A N/A 0.43 0.36
H N/A 2.79 1.65
¢ (m) N/A N/A N/A
¢ (mimd) 0.47 0.555 N/A
K,, (mm/day) 69 N/A N/A
z 100 14 36
A 4.7 5.0 4.8
%, 17.3 10.9 10.9
8, (m) 0.25 0.25 0.25
K., (1/m) -45561.777 -0.043 -0.016
£ 1 1 1
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Table 10. Measures of model performance when the downscaimglels are applied to

Nerrigundah. The attributes represent the finelté®n data included in the tested model. The

NSCE, RMSE, and MRE are calculated separatelydoh ef the 12 days in the dataset and then

the averages, maximums, and minimums are deternfiiosdthe different dates.

Scenarios Model NSCE . RMSE|  MRE
Avg. Max. Min. Avg. Avg.

Topography EMT 0.182  0.222 0.143| 0.048 0.165
EOF 0.274  0.326 0.087| 0.0456 0.155

Topography and EMT+VS | 0.218 0.281 0.088 0.047 0.161
Soil (K,,) EOF 0.288  0.345 0.171| 0.045 0.151
Topography and EMT+VS | 0.115 0.282 -0.022 0.050 0.170
Soil (K,, and ¢) EOF 0.288  0.345 0.171| 0.0456 0.151
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Figure 1. (a) Transpiration term, (b) evaporation term, goyl sum of transpiration and

evaporation terms in the EMT+VS model’s ET equaptoited as a function of vegetation cover

V . Part (c) also shows the portion of the sum ihabntributed by the transpiration term.
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Figure 2. The primary test catchment, Cache la Poudre, $ajnland 30 m sampling grids

overlaid on aerial photo, and (b) sampling gridsrtaid on catchment topography.
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Figure 3. Vegetation data collected at the Cache la Poudteh@eent with (a) representing litter

depth measurements (m); (b) representing fractiaaalopy cover; and (c) representing the

calculated fractional vegetation covéf,=L.+C.—L.C., where the calibrated reference depth

¢ =0.03 m for the case when EMT+VS model is rurhwinly topographic and vegetation data.
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Figure 4. (a) Sand, (b) silt, and (c) clay fractions determirirom soil texture measurements at

Cache la Poudre catchment. (d) Saturated hydraadimductivity and (e) porosity were

calculated using pedotransfer functions from Cqli§g4) using (a) and (c).
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Figure 5. Supplemental test catchment, Tarrawarra, (a)rsoikture sampling grid overlaid on
the catchment topography and (b) saturated hydrazdinductivity measurement locations

overlaid on the interpolated conductivity map.
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Figure 6. Supplemental test catchment, Nerrigundah, (a)msoisture sampling grid overlaid on
the catchment topography, (b) saturated hydraulic cotidty measurement locations overlaid
on the interpolated conductivity map, and (c) piyomeasurement locations overlaid on the

interpolated porosity map.
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Figure 7. Testing of the vegetation component of the EMT+#W&del at Cache la Poudre. The

first column shows the soil moisture pattern tisadbserved at Cache la Poudre on June 12, 2008
with intermediate conditions, the second columnwshdhe soil moisture patterns that are
downscaled by the EOF method, and the third colshows the soil moisture patterns that are
downscaled by the (c) EMT and (f) EMT+VS modelsn the top row, only fine-scale

topographic information is used. In the bottom rdaeth fine-scale topographic and vegetation

information are used. All patterns are on a 15ri. g
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Figure 8. Calibrated weights for the Cache la Poudre catcitrag a function of spatial-average
soil moisture with dashed lines representing theTEModel and solid lines representing the
EMT+VS model. The x-axis is positioned slightlyldog zero to better show weights that are

Zero.
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Figure 9. Comparison of indices of EMT model and EMT+VS mlod€he first column shows

the calibrated patterns of variation that are usedownscale soil moisture in the EMT model,
and the second column shows the calibrated pattdraariation that are used in the EMT+VS
model. Deep drainage and aerodynamic ET produatga#lp constant soil moisture in the EMT
model, so only two patterns are used. The ind&ata@ to radiative ET in the EMT model is

termed ETI while it is termed REI in the EMT+VS nabd All patterns are on a 15 m grid.
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Observed Soil Moisture EOF Method EMT+VS Model
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Figure 10. Testing of the vegetation and soil components ef EMT+VS model at Cache la

Topography, Veg.,
and Soil (K and ¢

Poudre. The first column shows the soil moistuattgun that is observed at Cache la Poudre on
June 9, 2008 with wet conditions, the second colsmows the soil moisture patterns that are
downscaled by the EOF method, and the third colshows the soil moisture patterns that are
downscaled by the EMT+VS model. In the top rowefscale topographic and vegetation

information are used. In the middle row, fine-scébpographic, vegetation, and soK()
information are used. In the bottom row, fine-scpographic, vegetation, and sdi( and

@) information are used. All patterns are on a 3@rid.
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Observed Soil Moisture EOF Method EMT and EMT+VS Models
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Figure 11. Testing of the soil components of the EMT+VS mnloateTarrawarra. The first

column shows the soil moisture pattern that is otesk at Tarrawarra on September 27, 1995
with intermediate conditions, the second columnwshdhe soil moisture patterns that are
downscaled by the EOF method, and the third colshrows the soil moisture patterns that are

downscaled by the EMT and EMT+VS models. In the tow, fine-scale topographic

information is used. In the middle row, fine-scéd@ographic and soilK,,) information are

used. In the bottom row, fine-scale topographid aail (K,, and &, / x,;,) information are

used. All patterns are on a 10 by 20 m grid.
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Figure 12. Testing of the soil components of the EMT+VS moaeNerrigundah. The first
column shows the soil moisture pattern that is nlekat Nerrigundah on September 12, 1997
with intermediate conditions, the second columnwshdhe soil moisture patterns that are
downscaled by the EOF method, and the third colshows the soil moisture patterns that are

downscaled by the EMT and EMT+VS models. In the tow, fine-scale topographic

information is used. In the middle row, fine-scadpographic and soilK,,) information are
used. In the bottom row, fine-scale topographit swil (K., and ¢) information are used. All

patterns are on a 20 m grid.
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