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ABSTRACT 
 
 
 

UNCOVERING DETAILS OF THE ELECTRICAL PROPERTIES OF CELLS 
 
 
 

 The electrical properties of cells have long been studied by scientists across many fields, 

yet there are still major gaps in our understanding of the intrinsic properties of many types of 

cells, such as parasite eggs, as well as the detailed electrical behavior of excitable 

 cells, such as neurons. This work aims to provide insights into how these properties can be 

measured and how machine learning can be used to advance our understanding of these 

phenomena. 

 The first part of this work discusses the development of a microfluidic impedance 

cytometer for the enumeration and classification of parasite eggs isolated from fecal samples. 

Current diagnostics in parasitology rely on the manual counting of eggs, cysts, and oocysts on 

microscope slides that have been isolated from fecal samples. These methods depend on trained 

technicians with expertise in the preparation of samples and detection of parasites on these 

slides, which increases cost and turnaround times for diagnosis. This leads many farmers and 

ranchers to opt to pool fecal samples from multiple animals to save time and labor. In cattle 

herds, resistance is often due to underdosing, which can be caused by treating all animals to an 

average weight or treating by the calendar instead of targeted deworming. This blanket use of 

anthelmintics, or anti-parasitic medication, is leading to concerns about anthelmintic resistance, 

which would cause major issues in the livestock industry, as well create unforeseen ecological 

imbalances. The developed microfluidic system provides a proof-of-concept for a microfluidic 

impedance cytometer capable of measuring the impedance of parasite eggs at multiple 
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frequencies, simultaneously, as each of the eggs passes through a microfluidic channel past a 

sensing region. This region consists of parallel electrodes on the top and bottom of the channel, 

allowing for measurement of the voltage across the channel. When an egg passes through, the 

signal is interrupted, leaving a distinct profile of the electrical properties at each frequency over 

time. This system shows proof-of-concept of the impedance measurements at 500kHz and 

10MHz and provides insights for further exploration of these properties, with the eventual use of 

machine learning algorithms for discrimination of parasite eggs from debris, and differentiation 

of parasite genera. 

 The second part of this work discusses machine learning classification of neuronal 

subtypes based on features extracted from patch-clamp recordings from adult mice, using data 

acquired from publicly available databases. Classification of neuronal subtypes has been a 

continuously progressing area of neuroscience, building on advancements in our understanding 

of the morphology, physiology, and biochemistry of different neurons, and contributing to the 

accuracy and repeatability of action potential and neuronal circuit models. This work explores 

the use of k-nearest neighbors, support vector machine, decision tree, logistic regression, and 

naïve Bayes algorithms for classification of fast-spiking or regular-spiking neurons from the 

hippocampus or the primary somatosensory cortex. K-nearest neighbors shows the most accurate 

classification of these groups, using action potential width, amplitude, and onset potential as 

features (inputs into the algorithm), with the addition of a measure of rapidity (acceleration near 

action potential onset) showing major increases in classification accuracy. Of the three methods 

for measuring rapidity, inverse of the full width at half of the maximum of the second derivative 

of the membrane potential (V̈m) (IFWd2), inverse of the half width at half of the maximum of V̈m 

(IHWd2), and the slope of the phase plot (V̇m vs. Vm) near AP onset (phase slope), including the 
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phase slope measure of rapidity increased the accuracy to nearly perfect (weighted f1-score > 

0.9999). In addition, the use of phase slope and action potential width as the only features for 

classification produces measures of accuracy, weighted f1-scores, of >0.9996. The results show 

the value of rapidity in action potential dynamics, the distinct difference between rapidity in APs 

generated by hippocampal neurons relative to cortical neurons, and low standard deviations for 

rapidity values in cortical neurons (fast- and regular-spiking). These findings have potential 

implications for understanding the ion channel dynamics in action potential initiation and 

propagation, which can improve the modeling of action potentials and neuronal circuits. 
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1. Introduction  

 

 

 

Motivation  

The motivation for this work is to develop tools and for understanding the electrical 

properties of cells using machine learning with large data sets. The first part of this dissertation, 

Chapters 2 and 3, discusses work on creating an impedance cytometer to gather measurements of 

the electrical properties of parasite eggs found in fecal samples. This work aimed to gather 

impedance measurements of parasite eggs at multiple frequencies, simultaneously, in order to 

create a profile over time for each frequency, providing ample information for supervised 

machine learning analysis. A proof-of-concept device was created and tested, showing feasibility 

of acquiring this type of data. This work exposed technical challenges related to fabrication and 

repeatability of mechanical components. These challenges are discussed and may provide 

insights for future work. 

To meet the objective of using machine learning to better understand electrical properties 

of cells, the second part of this dissertation discusses work using machine learning methods to 

classify different types of neurons, grouped based on firing patterns (regular-spiking or fast-

spiking) and region of the brain (cortex or hippocampus), based on action potential (AP) profiles 

The work described shows the value of rapidity (acceleration near AP onset) in AP dynamics, the 

distinct difference between rapidity in APs generated by hippocampal neurons relative to cortical 

neurons, and the consistency of rapidity in cortical neurons (fast- and regular-spiking). These 

findings have potential implications for our understanding of ion channel dynamics in AP 
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initiation and propagation, which can improve modeling of action potentials and neuronal 

circuits.  

 Dissertation Organization  

This dissertation consists of six chapters. The first chapter is an introductory chapter 

establishing the motivation for this research and the organization of the dissertation. The second 

chapter is background and a literature review on impedance analysis of parasite eggs. The third 

chapter is a manuscript that was published in the Bioinstrumentation Journal for the 2022 Rocky 

Mountain Bioengineering Symposium. Chapter 4 is a literature review for the use of rapidity as a 

feature in AP analysis using machine learning. Chapter 5 discusses the results and conclusions 

for machine learning analysis of publicly available electrophysiology recordings from fast-

spiking and regular-spiking neurons from both the hippocampus and the cortex. Chapter 6 

contains the conclusion of this dissertation and suggested future work.   
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2. Literature review 

 

 

 

 Background 

A parasite is an organism that lives on or in another organism, known as the host, and 

survives and grows by taking nutrients from the host, typically causing harm. Many diseases in 

cattle are caused by parasites, including helminths and protozoa. Helminths are a group of 

multicellular organisms, including, but not limited to members of the platyhelminths (flatworms) 

and nematodes (roundworms). Protozoa are single-celled organisms and include sarcodonia 

(amoeba), mastigophora (flagellates, e.g., Giardia spp., Leishmania spp.), Ciliophora (ciliates), 

and sporozoa (non-motile adult stage, e.g. Plasmodium spp., Cryptosporidium spp.) (“CDC - 

Parasites,” 2022). This work will focus on helminths and protozoa, as certain species within 

these groups can be transmitted through ingestion of eggs, cysts, or oocysts from contaminated 

food and water or the environment. 

Parasitic infection often occurs upon ingestion of the egg, cyst, or oocyst stage, in which 

case the developing organism is encased in a protective shell, often allowing it to survive in 

environmental conditions (e.g., in soil or water) for extended time periods before infecting a new 

host. Infection generally occurs when these eggs, cysts, or oocysts are ingested by the host, after 

which time the parasite can continue to develop and propagate within the host. In humans, 

intestinal parasitic infections can sometimes occur by consumption of undercooked meats, by a 

fecal-oral route, which can occur via contaminated water sources or direct contact with 

contaminated fecal matter, or other mechanisms. 
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Efforts to control parasitic infection may involve treatment and testing of water sources 

and environmental samples, diagnosis, chemotherapeutic control of infections in livestock, 

alteration of management practices, and improved efforts to better understand the diverse life 

cycles of various parasites across numerous host species. Many infections can easily be treated 

using anthelmintic or antiprotozoal drugs, but challenges persist in the proper and early diagnosis 

of these infections. 

Providing parasitologists, producers, and others with improved tools for diagnosing 

parasitic infections would allow for more frequent testing and targeted treatment. 

Characterization and identification of parasite eggs in stool samples could provide a valuable 

tool for veterinary and human diagnostics, as parasitic infections are often diagnosed by 

examination of fecal samples for the presence of eggs, cysts, and oocysts. Current methods 

require costly equipment and/or trained technicians, creating barriers to frequent diagnostic 

testing. This is especially critical in cattle and other livestock operations, where parasite 

monitoring and control practices can contribute to overall herd health, reduce economic burden, 

and slow the increase in anthelminthic resistance.  

State-of-the-art 

Parasite Diagnostics- Fecal Egg Counts 

Kato-Katz thick smear. The Kato-Katz technique is commonly used in public health for 

monitoring soil-transmitted helminths in large-scale treatment programs, but is difficult to 

standardize (Levecke et al., 2011). This technique involves sieving a fecal sample through a 

mesh, smearing onto a microscope slide using a mold with a cylindrical hole, placing a 

cellophane sheet soaked in dye and glycerol solution (glycerol-malachite green or glycerol-
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methylene blue) over the sample and sandwiching for at least one hour to allow fecal matter to 

clear, then identifying and counting eggs/cysts under a microscope.  

Fecal Flotation. Fecal flotations utilize a sugar- or salt-based flotation solution with a 

specific gravity of 1.27 (which can be adjusted for different types of eggs), which allows the 

eggs/cysts to float to the top while most of the fecal debris sinks. The modified double 

centrifugation technique is performed by mixing a fecal sample with water, filtering large debris 

using a tea strainer, centrifuging to condense the sample, and pouring off the supernatant to 

prepare the sample. The sample is then mixed with the flotation solution and centrifuged with a 

cover slip on top of the tube. The cover slip is then lifted and placed directly onto a glass slide 

for analysis under a microscope (Foreyt, 1989).  

FLOTAC. The FLOTAC device is a plastic apparatus that can be filled with fecal sample 

mixed with flotation solution, loaded into a centrifuge, then examined under a microscope 

(Cringoli et al., 2010; Utzinger et al., 2008). The top part of the apparatus rotates to pull the 

floating sample from the material underneath to a counting grid where eggs can be quantified 

under the microscope. Though this simplifies the protocol, it still requires costly laboratory 

equipment and a trained technician to identify eggs.  

Mini-FLOTAC. The mini-FLOTAC is adapted from the FLOTAC method but uses 

passive flotation to float eggs from samples placed in chambers on the device. This allows the 

mini-FLOTAC to be used without a centrifuge, but still requires evaluation of images for the 

identification of eggs. 

McMasters method. For the McMasters method, a fecal sample is mixed with a salt-based 

flotation fluid with precise measurement of each for quantitative analysis (4g fecal sample with 
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26mL salt solution, depending on the protocol used). The sample is sieved to filter larger debris, 

then placed directly into the counting chambers of a standard McMasters slide for evaluation 

using a microscope. Two 150uL compartments marked with grid lines are filled with the fecal 

suspension and placed under a microscope. The eggs float to the top of the chambers, so the 

microscope can be focused on the top markings of the chamber to provide visualization of the 

appropriate plane for counting eggs, which can be converted to egg per gram counts using a 

simple conversion. The FECPAK method is similar to the McMasters method but uses larger 

sample volumes (~20g fecal), which can be helpful for detecting lower egg counts. 

Fecal Egg Count Reduction Test (FECRT). Fecal egg counts are taken from the same 

pool of animals before and after drug treatment, to determine efficacy of drug treatment. 

Depending on the drug being tested, the post-treatment samples are taken between 7 and 21 days 

after the pre-treatment sample (COMBAR, Combatting Anthelmintic Resistance in Ruminants, 

2021). The percentage reduction in fecal egg counts is  

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 = 100 ×  (1 − 𝑥̅𝑇𝑥̅0 ) 
where  𝑥̅𝑇 is the average egg count after treatment and 𝑥̅0 is the average egg count before 

treatment. Fecal egg counts should be performed using a minimum of 20g of rectal fecal sample 

per animal, from a minimum of 10 animals per group, using any of the previous egg count 

methods (COMBAR, Combatting Anthelmintic Resistance in Ruminants, 2021).  

Image processing algorithms. Image processing algorithms have been developed for 

identifying parasite egg types in microscope images of fecal samples. Though this removes the 

need for highly trained technicians to read the results, many of the current systems require a 
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microscope for imaging, pre-labeling to increase contrast for smartphone interfacing, or have low 

accuracy (compared to mini-FLOTAC) (Scare et al., 2017). 

Single-cell quantification & characterization 

Current methods for gathering data about the electrical properties of individual cells 

include patch clamping, dielectrophoresis, and electrorotation. Patch clamping involves suctioning 

the cell membrane into the end of a micropipette tip, which creates a resistive seal and allows for 

quantification of membrane capacitance(Chen et al., 2015). This method is effective but invasive 

and not suitable for high-throughput data acquisition. Dielectrophoresis uses an applied electric 

field to polarize particles in suspension and gather information on dielectrophoretic force on the 

particles, which can be used to calculate dielectric properties(Sun and Morgan, 2010). This method 

is effective in gathering electrical properties by averaging over a population of cells/particles and 

is limited in its efficiency for single-cell property characterization. Electrorotation also uses an 

applied electric field to induce a dipole on the particle. In this method, the electric field is rotating, 

which exerts torque on this induced dipole and rotates the particle(Sun and Morgan, 2010). The 

angular velocity (as a function of frequency) is used to calculate the torque, which can be used to 

generate magnitude and phase information(Chen et al., 2015; Sun and Morgan, 2010). These 

techniques are limited when it comes to high-throughput screening. Bioimpedance measurements, 

which will be discussed in the following section, have been recognized as a promising alternative 

for non-invasive high-throughput characterization of single-cell electrical properties, and has more 

recently been applied in flow cytometry. 

Flow cytometry is a technology that is used in biological research to count and characterize 

individual cell properties. Conventional flow cytometry requires pre-labeling molecules with 

fluorescent markers, which requires the ability to fluorescently label and prior knowledge of the 
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component(s) of interest. Cells are then passed single file through a detection device, which 

typically consists of a laser used to excite fluorescent molecules from the pre-labeled cells. Though 

this can be multiplexed, it has a limit to the number of fluorescent tags, requires a trained technician 

for pre-processing, operation, and data analysis, and uses costly instrumentation. 

More recently, cellular properties have been characterized using impedance readings 

measured across a channel through which cells pass one-by-one. Single-cell properties can be 

determined from these impedance readings from different frequencies of applied alternating 

current (AC) by modeling the cell as an electrical circuit (Figure 2.1) using known cellular 

properties. This concept is an extension of the Coulter Principle developed in the 1940s, which 

uses a direct current (DC) or single-frequency AC to size and count particles through impedance 

measurements.  

 

Figure 2.1 Circuit model of cell in microfluidic channel. Side view of a microfluidic channel with 
two sets of parallel electrodes, with the channel walls in blue. The diagram shows the resistance 
of the solution (Rsolution), cell membrane (Rmembrane), and intracellular fluid (RICF), and the 
membrane capacitance (Cmembrane) and double layer capacitance (Cdouble layer). 

 

The use of multiple frequencies is critical for gathering information about cell 

characteristics in addition to volume. Table 2.1 shows the range of frequencies used to measure 

cell characteristics in various MIC devices in the literature (Cheung et al., 2005). 
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Table 2.1: Cell Characteristics and Corresponding MIC probing frequencies 

Cell Characteristic Frequency 

Electrical double layer* < 100kHz 

Cell size 100kHz-1MHz 
Membrane capacitance 2-5 MHz 
ICF resistance 10-100 MHz 

*This is not a cell characteristic. The electric double layer is formed at the interface between the 

electrode and the solution from ions gathering on the surface due to chemical reactions, followed 

by another layer of oppositely-charged ions being draw over those in a diffuse layer, creating a 

charge double layer, which acts a capacitor and causes phase change in the AC signal. 

 

This concept, often called microfluidic impedance cytometry (MIC) or electrical 

impedance (or dielectric) spectroscopy, is being explored for investigating mammalian and 

bacterial cells, but has yet to be thoroughly explored for examining parasite egg counts or other 

properties, particularly from fecal samples, which are used for the diagnosis of many types of 

parasitic infections. A recent publication shows impedance measurements for Giardia and 

Cryptosporidium (oo)cysts (McGrath et al., 2017), which have thick outer shells, but are 

commonly spread through and can be sampled in water and are much smaller than many other 

common egg types. The differences in size, shape, and composition of the structural features of 

parasite eggs, including thick outer shells and diversity of inner compartments, relative to bacterial 

and mammalian cells implies that these measurement frequencies would need to be adjusted to 

detect these features. The proposed work explores the detection of parasite eggs from complex 

fecal samples using microfluidic impedance cytometry and aims to optimize frequency and other 

system parameters to better understand the utility of MIC for determining fecal egg counts in 

parasitology. 
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3. Multifrequency microfluidic impedance cytometer using a field-programmable gate array for 
parasite egg analysis1 

 

 

 

Overview 

Microfluidic impedance cytometry (MIC) has been shown to be effective in the counting 

and classification of mammalian and bacterial cells but has not been thoroughly explored for the 

identification of parasite eggs in fecal samples. This study provides preliminary evidence for 

investigating multifrequency MIC for detecting and counting parasite eggs in such complex 

samples based on impedance profiles at two frequencies: 500kHz and 10MHz. These frequencies 

are simultaneously applied to a microfluidic channel and the current through the channel is 

measured using a field-programmable gate array (FPGA) functioning as two lock-in amplifiers to 

separate the measurements by frequency. Data from multiple frequencies will allow for the 

extraction of properties relating to the egg’s structural composition, in addition to size. The 

magnitude and phase measurements for each frequency are sampled at 1kSa/s to provide an 

impedance profile over time as an egg flows past the electrodes. Impedance profiles from 70μm 

diameter glass beads, comparable in size to strongyle-type parasite eggs, have been acquired. 

These proof-of-concept results support the exploration of MIC using an FPGA for performing 

parasite egg counts, which would open the door for the development of field-deployable parasite 

diagnostic testing in place of visual analysis of samples in centralized labs.  

 

1
 J.E. Nejad, A.C. Mugdha, J.W. Wilson, A.K. McGrew, and K.L. Lear, "Multifrequency 

Microfluidic Impedance Cytometer Using a Field-Programmable Gate Array for Parasite Egg 
Analysis", Proceedings of the Rocky Mountain Bioengineering Symposium (also published in 
Biomedical Sciences Instrumentation), vol. 56, pp. 184-191, April 2020. 
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 Introduction 

Parasitic infection in cattle is often associated with decreased growth and 

productivity(Clark et al., 2014). Regular deworming is a common practice among cattle producers 

to mitigate economic loss associated with parasites(Conde et al., 2019). The widespread and 

frequent use of anthelminthic interventions (“deworming”) increases anthelminthic resistance, 

which is a growing concern among producers and veterinarians (Baiak et al., 2018; Gasbarre, 2014; 

Sutherland and Leathwick, 2011). More frequent diagnostic testing for monitoring of herds would 

allow for targeted treatment of cattle with high fecal egg counts. The efficacy of anthelminthic 

treatment is assessed via fecal egg count reduction tests (FECRT), which compare the fecal egg 

counts before, and 10-14 days after, treatment(Gasbarre, 2014). Egg counts are determined via 

isolation of parasite eggs from fecal samples using a fecal flotation technique, followed by visual 

inspection under a microscope for enumeration and categorization of eggs. The need for costly 

microscopy equipment and trained technicians typically requires cattle producers to send fecal 

samples to a central testing facility, which contributes to costs and turnaround times. Additionally, 

some current practices in parasite control programs may contribute to the development of 

anthelmintic resistance, over time; improved diagnostics could allow producers to develop more 

sustainable approaches or implement targeted deworming programs. A low-cost, compact, and 

easy-to-use diagnostic tool for counting and categorizing parasite eggs would greatly increase 

economic feasibility for cattle farmers to utilize fecal egg counts for both targeted treatment and 

testing via FECRT.  

Microfluidic devices provide a compact platform with the potential to integrate 

computerized data analysis for portable automated diagnostics. Microfluidic impedance cytometry 

(MIC) has demonstrated efficacy as a label-free method for the enumeration and classification of 
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certain types of mammalian, bacterial, and yeast cells(Chen et al., 2015; Clausen et al., 2018; Sun 

and Morgan, 2010). The utility of MIC has not yet been explored for performing fecal egg counts, 

but could provide a promising alternative to central lab testing. 

MIC is based on the Coulter principle. When an electrolytic solution is placed in a gap 

between two electrodes and a current is applied, the measured impedance between the electrodes 

is dependent on the conductivity of the solution. In the late 1940s, Wallace Coulter showed that 

when a particle suspended in an electrolytic solution passes through this gap, the change in 

impedance is proportional to the volume of the particle(Graham, 2003).The temporary impedance 

change manifests as a pulse in the voltage or current measurement, where the integrated area of 

the pulse indicates the volume of the particle. This concept is utilized in Coulter counters, where 

direct current (DC) or low-frequency alternating current (AC) is used to count and size cells and 

particles for research and medical applications. 

The use of multiple frequencies for AC impedance measurements of biological cells can 

provide information about certain aspects of the cell based on the polarization of its structural 

components. To separate the electrical properties of these components, cells must be probed at 

appropriate frequencies for the size, composition, and structure of the feature being investigated. 

Probing at multiple frequencies simultaneously reveals information about multiple aspects of the 

same cell, including size, membrane capacitance, and intracellular fluid resistance(Cheung et al., 

2005). The combination of this frequency information with impedance measured over time as the 

cell passes the sensing region provides a “profile” for each cell (Gawad et al., 2004). Based on this 

concept, multifrequency MICs have been shown to be effective in counting and categorizing 

certain types of mammalian, bacterial, and fungal (yeast) cells based on their electrical 

properties(Chen et al., 2015; Clausen et al., 2018; Sun and Morgan, 2010). More recently, MIC 
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has been used for counting and distinguishing between Giardia and Cryptosporidium 

(oo)cysts/eggs in water samples, demonstrating the utility of impedance measurements of parasite 

(oo)cysts/eggs ranging from 4-14μm (McGrath et al., 2017). Though these specific types of 

parasites spread through water, many parasite infections, including those in cattle operations, 

spread by the ingestion of fecal matter from an infected intermediate host. Additionally, many 

parasitic nematode eggs in cattle, such as strongyle-type eggs, are on the scale of 35-100μm. This 

work explores initial feasibility for the use of MIC for the enumeration of strongyle eggs through 

microfabrication of a MIC device capable of analyzing particles in this size range. This paper 

demonstrates proof-of-concept for the use of multifrequency MIC for performing fecal egg counts. 

Measurements from glass beads of comparable size to commonly found parasitic nematodes of 

cattle are presented. Device fabrication, electronics, data processing, and experimental results are 

discussed. 

Methods 

Electrode Fabrication: Lift-off Processing 

Planar electrodes were patterned onto glass microscope slides with chromium and gold in 

a standard lift-off process. Glass slides were cleaned and coated with a ~5μm layer of Shipley’s 

S1813 positive photoresist using a Laurell spin coater (3500rpm, 30s), followed by baking on a 

hot plate for 1 minute at 135oC to harden. The slides were then patterned by UV light exposure 

using a Microtech LW405C laser writer to pattern the custom electrode design. The design was 

created in AutoCAD and formatted to Caltech intermediate format (.cif) using CleWin software. 

Exposed slides were then developed in Microposit MF-319 developer to wash away photoresist in 

patterned regions, exposing glass. A 50nm layer of chromium, for adhesion to glass, and a 200nm 
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layer of gold were thermally evaporated onto the surface of the slide. Slides were then soaked and 

washed in acetone, removing the photoresist and leaving the Cr-Au electrode pattern. 

 

Channel Fabrication and Assembly 

Inlet and outlet through-holes were drilled through an electrode-patterned slide using a 

diamond-coated drill bit. Flexible polymer (Tygon®) tubing was then aligned with the 1.5mm 

diameter holes and adhered directly to the side of the glass slide without electrodes. A sheet of 3M 

468 adhesive transfer tape (130μm thickness) was laser cut to create 100μm-200μm wide channels, 

as shown in Figure 3.1. Channels were aligned with the through holes and adhered perpendicular 

to the electrodes on one slide, then aligned and adhered to the opposite slide (electrodes facing the 

channel) with a widthwise offset to allow connection to electrode leads. Headers were then 

attached to the leads using silver paint for electrical continuity followed by liquid electrical tape 

for adhesion. The final fabricated MIC device is shown in Figure 3.1a. 

 

Figure 3.2 (a) Microfluidic Impedance Cytometer device (top) and laser-cut adhesive channel 

(bottom) and (b) Layers of MIC device. (a) The assembled MIC device with inlet and outlet tubing 
adhered with epoxy, electrode-patterned slides (one facing up and one facing down) forming the 
top and bottom of the channel, transparent laser-cut adhesive transfer tape between to form 
sidewalls of channel, and electrical headers for FPGA connection. Below the device is a double-
sided adhesive sheet (with paper backing) that has been laser cut to form a ~200µm wide opening 
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that is placed between the two electrode slides and creates the side walls of the microfluidic 
channel. Note: this is the current electrode pattern (b) CAD layout illustrating stacked assembly of 
down-facing electrode slide with drilled inlet and outlet holes (top), adhesive channel (middle), 
and up-facing electrode slide (bottom). 

 

Field-Programmable Gate Array 

As shown in Figure 3.2, an Altera DE2-115 field-programmable gate array (FPGA) was  used to 

apply a multifrequency (500kHz + 10MHz) sinusoidal voltage through a digital-to-analog 

converter (DAC) output channel and measure the current (using an internal current-viewing 

resistor) through two analog-to-digital converter (ADC) input channels. The DAC output was 

connected to the two top electrodes of the MIC device; the ADC channels were each connected to 

one of the two bottom electrodes, which have an edge-to-edge separation of 180 μm; and the 

ground connections for all three were connected to each other. The FPGA was programmed in 

VHDL, modified for use in this application from previous work (Wilson et al., 2015) to function 

as a multi-channel lock-in amplifier, filtering each of the ADC channel signals to separate the 

500kHz and 10MHz contributions using the individual frequencies as internal references to 

determine in-phase and quadrature components. 

The multifrequency AC signal applied through the DAC and read through the ADC 

channels is sampled at 50MSa/s and decimated (down-sampled) to 1kSa/s using a cascaded 

integrator-comb (CIC) filter to reduce processing time while maintaining a high enough sampling 

rate to maintain temporal resolution for time profiling. 

Data Acquisition  

Data was acquired using Quartus Signal Tap Logic Analyzer software and interfaced with 

a custom MATLAB script for processing, visualization and storage. In-phase and quadrature 
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components of the signal from each ADC channel at each frequency were recorded and used to 

calculate magnitude and phase changes, which were plotted in a series of figures updated in 4-

second increments during data acquisition. 

 

 

Figure 3.3 MIC system with FPGA and MATLAB Data Acquisition. The electrodes on the top of 
the MIC device channel (left) are connected to the FPGA board (light blue) DAC output and the 
bottom electrodes are each connected to one of the two ADC input channels. The numerically-
controlled oscillators (NCOs) feed into a signal mixer with the ADC signals, then are low pass 
filtered and output to the PC for real-time visualization and storage in MATLAB (using Quartus 
Prime software for data acquisition). 

 

Glass bead experiments 
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The MIC device was aligned under a microscope, attached to a syringe pump via the inlet 

tubing, and directed to a collection container via the outlet tubing. Video was recorded through a 

digital camera (Basler scout) interfaced with a microscope and connected to a PC, providing live 

display and video recording of the sensing region of the channel (Figure 3.3c) using Pylon Viewer 

software.  

The MIC electrodes were connected via headers to the DAC and ADC channels of the 

FPGA, as described above. The FPGA was connected to a PC and programmed using Quartus 

Prime software. Quartus Signal Tap Logic Analyzer and MATLAB were run in parallel for 

acquisition (Signal Tap), visualization and storage (MATLAB) of data.  

Before each experiment, normal (0.9%) saline solution (NS), having a specific gravity of 

1.0046, was used to gather baseline measurements for calibration. A 10mL syringe was loaded 

with NS, which was pumped through the device channel at 25μL/min using a syringe pump. Video 

recording was used to verify the contents of the channel and FPGA data was gathered for baseline 

measurements. Solid glass microspheres (Cospheric) ranging from 63-75μm were diluted in NS to 

a concentration of 50 beads/μl and passed through the device channel in the same manner. Video 

recordings of beads were correlated with timestamps in the acquired data for validation of signal 

correlation. 

Sample Preparation: Fecal Flotation & Egg Isolation 

Ruminant fecal samples obtained from the Colorado State University Veterinary 

Diagnostic Laboratories (CSU-VDL) were processed using a fecal flotation and egg isolation 

protocol. Fecal samples were weighed and mixed with Sheather’s sugar, a media with a specific 

gravity of 1.27, which is higher than that of eggs and generally lower than that of fecal debris 
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constituents. Samples were then placed in a centrifuge, a cover slip placed over the tube, and spun 

to expedite separation of eggs and fecal debris (Foreyt, 1989). The coverslip was then removed 

vertically and the material attached to the coverslip was moved to another vial and deionized (DI) 

water added. The vial was centrifuged, supernatant discarded, then filled again with DI water. This 

washing process was repeated three times to ensure removal of Sheather’s solution. After the final 

wash, supernatant was removed and the pellet was stored in 50μl of DI water at 4oC. Samples can 

then be diluted for testing in the MIC device. 

 Results 

The normalized impedance measurements when a glass bead suspended in normal saline 

solution passes between the electrodes in the microfluidic channel are shown in Figures 3.3a and 

3.3b. The data was smoothed using an 80-point moving average filter and normalized for each 

frequency and channel by dividing by the measured baseline impedance of the normal saline 

solution. 

Electrode set (ES) 1 represents the upstream pair of 100μm wide planar electrodes (on the 

top and bottom of the channel) and ES 2 represents the second pair, 200μm downstream, as shown 

in Figure 3.3c. The results show a sharp increase in impedance as a bead passes between a pair of 

electrodes and a smaller increase as it passes the opposite set of electrodes. 

 Discussion 

MIC measurements from glass beads show a distinct increase in impedance as the bead 

passes each electrode set, as expected. The measured change in impedance (Figures 3.3a and 3.3b) 

from ES 1 (red) show a primary peak change in impedance as the bead passes between the first set 

of electrodes, followed by a secondary peak in impedance as the bead passes ES 2. The measured 

values from ES 2 (blue) show a similar trend. The secondary peak in ES 1 is skewed to the left, 
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indicating a greater increase in impedance when the bead is passing ES 2 on the side closer to ES 

1. The secondary peak in ES 2 is skewed to the right, indicating an increase as the bead is passing 

ES 1 on the side closer to ES 2. This provides evidence that the secondary peak is due to disruption 

of the diagonal current path between the top electrode of each set to the opposing (bottom) 

electrode of the neighboring set. 

 

 

Figure 3.3 Impedance measurements and image of glass bead in MIC channel. Time profiles of 
the change in impedance from the upstream (red, set 1) and downstream (blue, set 2) electrode 
sets (each set is one electrode on the top slide and one on the bottom slide) recorded simultaneously 
at (a) 10MHz and (b) 0.5MHz from a 70μm glass bead in normal saline solution as it passes 
between electrodes in each set. Measurements were sampled at 1000 samples/second and filtered 
using a moving average of 80 points to reduce noise, then normalized to the baseline FPGA output. 
(c) Microscope image of a 70μm diameter glass bead suspended in saline solution flowing from 
left to right in the 250μm-wide MIC device channel between top and bottom electrodes (100μm 
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wide), passing electrode set 1 (left) followed by electrode set 2 (right), which are separated, edge-
to-edge, by approximately 180μm.  

The dip between the primary and secondary peaks corresponds to the bead passing an area 

with a lower density electric field. This is due to the configuration of the 100μm-wide electrodes 

spaced 300μm apart, center-to-center, on each slide and separated from the electrodes on the 

opposing slide by a 130μm-thick channel, which creates a longer current path between ES 1 

(upstream) and ES 2 (downstream) than between the electrodes in the set (directly across the 

channel).  

The integrated area under the primary peak can be used to determine the size of the bead. 

The time delay between the peaks measured from each electrode set corresponds to the time it 

takes the bead to travel through the channel from ES 1 to ES 2. The 600ms delay between the 

peaks of the traces for the two sets presented in Figure 3.3 corresponds to a velocity of 0.33 mm/s. 

This is slightly faster than the estimated average fluid velocity of 0.27 mm/s possibly due to the 

bead traveling near the center of the channel close to the peak of the parabolic fluid velocity profile. 

Individual particle velocities can be used to compensate for speed when calculating the relative 

size from integrated pulse area. This information greatly improves the accuracy of the results 

because even though the volumetric flow rate set by the syringe pump is reliable for measuring the 

volume pumped out of the syringe, inconsistencies in pressure due to the architecture of the device, 

minor deformities in channel walls, or momentary partial obstruction of flow can all lead to 

ephemeral fluctuations in the local flow rate. 

 The ability to detect ~70μm beads using this MIC device provides a proof-of-concept for 

the use of MIC to detect similarly-sized parasite eggs. Due to the structural features of many 

parasite eggs, it is likely that the impedance profiles will be significantly different from other debris 

that may be in the sample. Fecal flotations can be performed by cattle producers on-site (with a 
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centrifuge using a Double Modified Centrifugal Flotation (Foreyt, 1989) or alternative protocol 

(Cringoli et al., 2010)) yielding samples that could be used in a MIC device, with an additional 

filtration step to prevent clogging of the device channel. This would provide a cost-effective means 

for producers to more closely monitor the parasite loads on their pastures through frequent 

sampling and testing, which may greatly reduce the economic burden of parasites in the cattle 

industry and/or other areas.  

Future work will aim to utilize the MIC device for strongyle egg measurements and 

optimize frequencies and data processing algorithms for accurate classification of parasitic egg 

types.   

 Conclusion 

MIC has proven to be a valuable tool for the identification and enumeration of various types 

of cells, but there are still gaps in knowledge in the use of MIC for larger (50-100μm) structures. 

Better understanding MIC for the analysis of larger samples, such as various types of parasite eggs, 

would open doors for the use of MIC in a greater breadth of diagnostic applications. This work 

demonstrated the potential applicability of using an FPGA to function as lock-in amplifiers to 

improve sensitivity and simultaneously make multifrequency measurements from the same 

electrode set on a MIC device. Glass microspheres of ~70μm diameter suspended in saline solution 

were used to verify the function of the electronics. Measurements from 2 sets of electrodes allowed 

for the determination of the velocity of individual beads, as well as provided previously 

unpredicted cross-set impedance measurements across the diagonal plane between each top 

electrode and its neighboring bottom electrode. Applications for this work in the near future 

includes using multifrequency MIC of parasite eggs to examine internal structure and other 

characteristics for classification of different egg types.   
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Postface: Optimization of Egg Isolation with Debris Analysis  

Further experiments were performed in order to optimize the egg isolation protocol used 

for fecal sample preparation for the purpose of minimizing the amount and size of debris in the 

samples used for MIC analysis, reducing the probability of clogging the device with debris from 

the sample. Figure 3.4, below, shows strongyle eggs in a 180 µm-wide microfluidic channel 

passing a set of 100 µm-wide electrodes. The width of this channel is twice the width of the desired 

channel width of 100 µm, as it was used to determine if egg samples could pass through the channel 

height of about 130µm. It can be noted from this image that a 100 µm-wide channel would provide 

significantly less space for eggs to pass through, and excess debris would cause the channel to 

clog. 

 

Figure 3.4 Microscope image of strongyle eggs in a microfluidic channel device. The channel is 
made of laser-cut double-sided adhesive with a width of ~180 µm and height of ~130 µm. 
Electrodes have a width of 100 µm. Strongyle eggs are suspended in NS and samples were 
prepared using the Gold Standard method.  
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 To determine the optimal protocol to minimize channel clogging, three egg isolation 

protocols were compared. This was a collaborative effort with Jacey R. Cerda, Emily McDermott, 

and Ashley K. McGrew. The egg isolation work was performed by Jacey R. Cerda and Emily 

McDermott, and ImageJ analysis was performed by Jasmine E. Nejad. Three methods for egg 

isolation were carried out, and the protocols are described below: 

Gold Standard 

The Parasitology Section at the CSU Veterinary Diagnostic Laboratories (CSU-VDL) 

currently uses a Standard Operating Procedure for isolating strongyle eggs for the purpose of 

subsequent molecular identification. It is considered the “gold standard” for the lab, and the one 

to which we compared the other methods derived and optimized from other published protocols. 

With some modifications, we performed this method in the following manner: (1) weigh 1 g of 

sample in a weigh boat, add ~10 ml of DI water and mix thoroughly using a tongue depressor; (2) 

place 2 layers of cheesecloth in an appropriately sized plastic cup, pour the fecal sample through 

the cheesecloth, and rinse the weigh dish with DI water. (3) group corners of cheesecloth together 

and use the tongue depressor to squeeze fecal material vial, rinse the weigh dish with DI water and 

pour into tube, fill the tube to ~14-15 ml; (5) centrifuge tube for 10 minutes at 360g; (6) remove 

the tubes and decant, fill tubes half way full with Sheather’s solution (SpG 1.27) until an inverse 

meniscus forms, place a cover slip on top and centrifuge at 360 g for 10 minutes; (7) when 

centrifuge stops, remove coverslips and carefully tip over a clean 15 ml vial using DI water to 

gently rinse the coverslips, bring final volume to ~10 ml with DI water, and centrifuge for 10 

minutes at 360g; (8) when centrifuge stops, use transfer pipette to remove the supernatant, without 

disturbing the pellet, leaving 1 ml remaining in the tube, then bring final volume back to ~10ml 

and centrifuge for 10 minutes at 360 g; (9) once stopped, use the same transfer pipette to remove 
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the supernatant as in step 8, then resuspend pellet in 1 ml of water; (10) pipette two 50 µl aliquots 

onto a microscope slide, count all strongyle eggs in each aliquot, sum them, then divide by the 

number of aliquots for the average number of eggs/50 µl; (11) to determine eggs per gram; then, 

multiply by 20 which provides the total number of eggs within the 1ml and therefore, 1 g of sample. 

Sieve Method 

We based this method on Paras et al. (2018) isolation protocol with the following 

modifications: (1) mix 1 g of fecal material with 25 ml of water; (2) filter slurry through a 355 µm 

sieve and then through the fluke finder; (3) rinse bottom of fluke finder into a new beaker; (4) poor 

slurry into vacuum filtration to separate eggs from water; (5) rinse eggs from filter into 15 ml tube 

with DI water; (6) centrifuge at 360 g for 10 min; (7) aspirate water from pellet leaving ~1 mL egg 

slurry in the bottom of tube; (8) add 5 mls of Sheather’s sugar and mix; then, add Sheather’s sugar 

until inverse meniscus forms, place coverslip on tube and centrifuge for 10 minutes at 360 g; (9) 

rinse coverslip into tube, add 5-8 mls of DI water and centrifuge for 10 minutes at 360 g; (10) 

pipette supernatant off until 1 ml remains above pellet; (11) follow procedure as outlined in steps 

10 and 11 of Gold Method above. 

Salt Method 

We based this method on the Mes et al. (2007) isolation protocol with the following 

modifications: (1) measure out 1 g of fecal sample into weigh boat and mix with 25 ml of MgSO4 

solutions (1.3 SpG), homogenize with tongue depressor; (2) pour into 50 ml Falcon centrifuge tube 

and vigorously shake for 1 minute; (3) poor through metal strainer, rinse 50 mL Falcon tube with 

tap water and pour filtrate from strainer back into sample tube; (4) centrifuge for 10 minutes at 

360 g; (5) transfer supernatant to new 50 ml Falcon tube and add equal amount of DI water, rock 

tube back and forth to mix; (6) centrifuge for 10 minutes at 360 g; (7) discard supernatant using 
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pipette, and add 5 ml Sheather’s sugar media  to pellet, mix well; (8) centrifuge for 10 minutes at 

360 g; (9) pipette supernatant into 15 ml tube and at least an equal volume of DI water; (10) 

centrifuge for 10 minutes at 360g; (11) pipette supernatant off leaving 1ml of water above pellet 

(if pellet is still not well-formed, discard supernatant as described, add 5 ml DI water to further 

dilute sugar solution and centrifuge for additional 10 minutes at 360 g); (12) follow procedure as 

outlined in steps 10 and 11 of Gold Method above. 

ImageJ Quantification of Microscopic Debris 

For each of 30 samples, three methods were compared: Salt, Sieve, and Gold [Standard]. 

Ninety slides were prepared by pipetting 50 microliters of isolated eggs onto a slide and then 

covering with a 22 x 22 mm coverslip.  Nine standard images were captured per slide, by dividing 

the coverslip into a 9-square grid, for a total of 810 total digital images.  No eggs were present on 

these images as only a comparison of debris was made. 

ImageJ software (Schindelin et al., 2012) was used to process images and to determine the 

amount of debris present (size distribution and percent coverage (of coverslip) for each sample. A 

custom macro (code) was created in ImageJ to automate processing. For each slide, all nine files 

per sample were combined into one “stack” for sequential processing, combining results from all 

nine images. For each image in the stack, the “subtract background” tool was used with a rolling 

20-pixel filter. The “Find Edges” tool was then used to find the edges of objects in the image by 

determining borders with the highest contrast. It was then converted into an 8-bit image, meaning 

each pixel had 256 possible values, ranging from 0 to 255. The 8-bit image was thresholded with 

a dark background, removing all values below 43. The “de-speckle” tool was then used to remove 

background pixels, and the “Analyze Particles” tool was then used to produce results including 

information about the particles in each image over 100 pixels in size, to remove background. 
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Results were saved for each stack (slide) for each method, processing a total of 810 images from 

90 slides. Tables 3.1-3.3 show ImageJ analysis results for each of the three egg isolation protocols.   

Table 3.1 shows the percent debris coverage for each of the methods. It can be noted that 

the standard deviation for each of the methods is greater than the mean, indicating that there is a 

large distribution of values for each of these methods. The 95% confidence intervals, as well as 

the minimum and maximum values can be used to compare the different groups. It is clear from 

the higher confidence interval maximum and maximum values, the salt method produced slides 

with the greatest percentage of debris coverage, but there is also a very broad distribution of these 

values. It can be noted that the sieve method shows the least percent coverage, with the gold 

standard falling between the two others.   

 

Table 3.1: Analysis of Percent Debris Coverage 

Method N Mean 
Std 

Dev 
Std Error 

95% 

Confidence 

limits of mean 

Median Min Max 

Gold 

Standard 
30 15.22 18.74 3.42 8.22 22.22 7.59 0.42 76.46 

Sieve 30 8.25 8.37 1.53 5.12 11.38 5.05 0.86 27.13 

Salt 30 17.11 25.31 4.62 7.66 26.56 7.30 0.01 106.07 

 

 

Table 3.2: Analysis of Average Particle Size (pixels) 

Method N Mean Std Dev 
Std 

Error 

95% Confidence 

limits of mean 
Median Min Max 

Gold 

Standard 
30 796.93 466.56 85.18 622.71 971.15 698.10 268.61 2134.85 
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Sieve 30 1340.58 1016.21 185.53 961.12 1720.04 1098.65 264.26 4901.21 

Salt  30 548.43 281.99 51.48 443.13 653.73 428.65 161.50 1172.98 

 

 

Table 3.3: Analysis of Number of Particles 

Method N Mean Std Dev 
Std 

Error 

95% Confidence 

limits of mean 
Median Min Max 

Gold 

Standar

d 

30 
963.06

7 
1016.91 185.661 583.348 1342.79 560 70 3709 

Sieve 30 392 602.792 110.054 166.914 617.086 193.5 23 2483 

Salt 30 
1401.7

3 
2123.13 387.629 608.944 2194.52 498 2 8873 

 

Table 3.2 shows the average particle size for each method. It can be observed that the salt 

method produces significantly smaller particle sizes when compared to the sieve and Gold 

standard methods. Cased on the maximum particle size, the mean, and the median values, this 

method produces the smallest particles. 

Table 3.3 shows the number of particles in each slide, which can be utilized to better 

interpret the results when considered along with the particle size and percent coverage. The sieve 

method had the lowest percent debris coverage and number of particles, but it also had the 

largest particle size.  The salt method has the highest debris coverage, with a larger number of 

smaller particles. For use with the MIC device, larger particles are more likely to clog the 

channel, so even though the sieve method had a lower percent debris coverage, the smaller 

particle size is a more important factor for determining the optimal method for use with the MIC 

device, so the salt method would be recommended for future work. Additionally, these solutions 

can be diluted before loading into the device, so the percent debris can be further reduced, but 
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the particle size cannot be readily changed. It is therefore recommended that the salt method be 

used for further testing, due to the maximum and average size of particles. 

 

4. Action Potential Dynamics in Neurons - Literature Review 

 

 

 

 Machine learning methods have been used for the classification of action potentials (APs) 

for improved understanding of ion channel dynamics of neuron subtypes, modeling of neuronal 

circuits, and discrimination of neuron subtypes from patch-clamp recordings (Buccino et al., 2018; 

Ghaderi et al., 2018; Gouwens et al., 2019; Wang et al., 2022).  

Ghaderi et al., 2019 

A study by Ghaderi et al. evaluates in vivo whole-cell patch clamp recordings of APs from 

excitatory pyramidal cells and two types of inhibitory neurons in the mouse primary visual cortex 

using a discrete cosine transform to determine discriminatory features, followed by fuzzy c-mean 

clustering to determine cluster centers, then performing classification using a minimum distance 

classifier. The discrete cosine transform is used to transform the recordings from the time domain 

into the frequency domain, from which 100 coefficients are extracted as features for each spike. 

These coefficients were reduced to two principal components (90% cumulative percentage 

variance) using principal component analysis. The data was then split into 10 sets, where 9 sets 

were used for training and one for validation, repeated for a total of 10, for 10-fold cross validation. 

Fuzzy c-means clustering was used to determine clusters of data with representative centers. The 

test data was then classified into these clusters using the cluster centers in the minimum distance 
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classifier (Euclidean distance). This classification had an accuracy of 92.67 + 0.54%, precision of 

87.13 + 2.59%, and recall of 87.05 + 0.74%.  

In addition, 7 electrophysiological features are extracted from the waveform: AP threshold, 

AP duration, after hyperpolarization, rise time, fall time, rise rate, and fall rate. These features 

were evaluated in the same way as the discrete cosine transform. Two principal components were 

extracted from this feature set (90% cumulative percentage variance) and evaluated using c-means 

clustering and 10-fold cross validation. This method showed an overall accuracy of 82.29 + 1.31%. 

To assess performance on in vitro APs, data was extracted from 50 neurons from the Allen 

Cell Types Database from five neuronal subtypes: pyramidal, GABAergic parvalbumin positive, 

somatostatin positive, 5HT3a, and vasoactive intestinal peptide cells. Classification of these cells 

using one principal component and 5-fold cross validation yielded an overall accuracy of 84.13 + 

0.81%. These results show some efficacy in identification of these neuron subtypes, but there is 

much room for improvement before relying on these methods for classification. 

Wang et al., 2022 

 Wang et al. use a convolutional neural network for the classification of neurons according 

to their genetic label or general type (excitatory or inhibitory) (Wang et al., 2022). Their work aims 

to be able to discriminate neuronal types based on electrophysiological recordings alone for the 

interpretation of experimental data. This study points out the lack of established features for the 

separation of neuron types and the continuous nature of these spike recordings, lacking clear 

definition for each AP. The method used in this study is a convolutional neural network with 3 

subnetworks. The raw time series data is fed into the first subnetwork, which extracts the real and 

imaginary components of the Fourier coefficients (fast Fourier transform) and feeds them into the 

second and third subnetworks.  
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The researchers attempted to classify five neuronal subtypes, resulting in a test set accuracy of 

88.76% for discrimination of 5 genetic neuron types (excitatory, parvalbumin, somatostatin, 

neuron-derived neurotrophic factor, and vasoactive intestinal peptide cells), with 98.28% accuracy 

of more general classification between excitatory neurons and inhibitory. Though this shows 

promise for classification, there is still a need for greater accuracy to be able to use this reliably 

for the development of neuronal circuits. 

These works demonstrate the continuing need for improved classification algorithms for 

more reliable discrimination of neuron types and more robust models. Accurate modeling will not 

only improve classification for use in experimental research, but also, can provide insights into the 

difference in ion channel physiology between different neuronal subtypes. 

Sodium Channel Activation 

The rapid initiation of APs deviating from the Hodgkin Huxley model (Hodgkin and 

Huxley, 1952) has been an area of interest for many researchers in the neurosciences, as it has 

potential implications for our understanding of ion channel dynamics, particularly the physiology 

of sodium channel activation (Dixon et al., 2022; Huang et al., 2012; Ilin et al., 2013; Naundorf 

et al., 2006; Telenczuk et al., 2017; Teleńczuk et al., 2015; Venkatesan et al., 2014). These 

works propose various mechanisms for rapid activation of sodium channels, including 

cooperative gating, clustering, and back-propagation of the AP into the soma. Sodium channel 

cooperativity suggests that the activation of a sodium channel will increase the rate of activation 

of nearby sodium channels, accelerating the depolarization of the membrane. Studies suggest that 

clustering of sodium channels plays a role in this, with groups of sodium channels activating 

together (Dixon et al., 2022). It has been found that the alpha subunits of sodium channels 

dimerize with each other, assembling and gating together as a dimer (Clatot et al., 2017). These 
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recent findings suggest AP initiation dynamics that differ from the widely accepted Hodgkin 

Huxley model, leading to questions about how these mechanisms effect neuronal membrane 

potential during APs, and if these mechanisms are consistent across subtypes. 

The following chapter aims to improve classification methods for neuronal APs from 

multiple subtypes, as well as increase understanding of membrane potential dynamics during AP 

initiation. Classification results and analysis are presented to show alternative methodology and 

improvement to classification, as well as insights into potential implications for our 

understanding of ion channel dynamics, particularly in sodium channel activation. 
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5. Addition of a rapidity feature in machine learning action potential analysis improves 
classification of neuron types2 

 

 

 

Highlights 

- The addition of any measure of action potential rapidity, which qualifies acceleration of 

the action potential near onset, increases ability to discriminate between action potentials 

generated by regular- and fast-spiking neurons from the hippocampus and the cortex (fast-

spiking interneurons and regular-spiking pyramidal neurons from the CA1 region of the 

hippocampus, and fast-spiking and regular-spiking cortical pyramidal neurons from L2/L3 

of the primary somatosensory cortex) 

- Addition of the phase slope rapidity measure to the classical action potential attributes 

(width, amplitude, and onset potential) as features in a k-nearest neighbors classifier 

produces nearly perfect (f1-score >0.9987) classification of APs generated by cortical and 

hippocampal regular and fast spiking neurons. 

- Phase slope rapidity and action potential width are sufficient to classify nearly all action 

potentials into regular- or fast-spiking, hippocampal or cortical, where width largely 

discriminates spiking speed and phase slope discriminates brain region. 

- Phase slope rapidity is significantly higher in hippocampal neurons than in cortical 

neurons, for both regular- and fast-spiking neurons, suggesting distinct differences in the 

 

2
 This chapter contains contents that closely corresponds to a manuscript to be co-authored by 

Jasmine E. Nejad, Ahmed A. Aldohbeyb, and Kevin L. Lear that will be submitted to a peer-
reviewed journal. 



33 

 

physiology of sodium channel activation in neurons in the hippocampus relative to the 

cortex. 

 

 Introduction 

Classification of neuron types is a continuously developing area of neuroscience, drawing 

from advancements in our understanding of the morphology, physiology, and biochemistry of 

neurons. Understanding differences in action potential (AP) behavior in different neurons provides 

information for researchers to further subdivide neuron types, creating more accurate and more 

repeatable models for neuronal circuits. Recent work has shown machine learning models to be an 

effective tool for neuron classification (Armañanzas and Ascoli, 2015; Ghaderi et al., 2018; Wang 

et al., 2022). In addition to automated classification of neuron types, developing these models 

using features that optimize the ability to discriminate between neuron types can provide insight 

into the electrophysiological differences in neuron types in different brain regions, allowing for 

more accurate modeling of APs and neuronal circuits, more specific understanding of ion channel 

behavior during AP initiation and propagation in different types of neurons, and greater 

understanding of the physiological and cognitive functions of different neurons. 

The Hodgkin and Huxley (HH) model of APs assumes sodium ion channels, transporting 

only sodium ions, and potassium ion channels, transporting only potassium ions, are responsible 

for the voltage fluctuations observed during an AP (Hodgkin and Huxley, 1952). Though this 

model has provided a foundational basis for AP modeling, later studies show that there is more 

complexity to the ion channels present on the cell membranes of different types of neurons (Bean, 

2007; Naundorf et al., 2006). Studies have described and measured a “kink” at AP onset, which 

has also been measured as “rapidity” of AP onset, which qualifies the acceleration of AP onset, 
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which differs from the HH model, indicating that this feature of APs can be different in neurons 

from different brain regions (Aldohbeyb et al., 2021; Gutkin and Ermentrout, 2006; Naundorf et 

al., 2006). 

To understand the importance of the rapidity feature in APs in different regions of the brain, 

a standard method for measurement should be used. This work investigates the utility of three 

different methods of rapidity measurement in the discrimination of fast-spiking (FS) and regular-

spiking (RS) neurons from the hippocampus and the cortex. Using two open-source databases for 

current-clamp AP recordings, five different supervised machine learning methods, k-nearest 

neighbors (kNN), decision tree, support vector machine (SVM), logistic regression, and naïve 

Bayes, were used to discriminate between cortical fast-spiking (cFS) neurons, hippocampal fast-

spiking (hFS) neurons, cortical regular-spiking (cRS) neurons, and hippocampal regular-spiking 

(hRS) neurons. The classically used feature set (classical features) of AP onset potential, AP width, 

and AP amplitude was used as the baseline set of features for classification. The impact of adding 

rapidity to these features was analyzed using one of three measures of rapidity: inverse of the full 

width at half maximum of the second derivative (IFWd2), inverse of half of the width at half 

maximum of the second derivative (IHWd2), or phase slope measurement, taken as the slope of 

the phase plot (change in membrane potential vs membrane potential) at a set criterion level 

(10mV/ms for all measurements in this paper). KNN was found to be the most accurate classifier, 

based on weighted f1-scores, though classification results from all five classifiers indicate that the 

addition of any of these measures of rapidity significantly increases the accuracy of classification, 

and that the addition of the phase slope measure of rapidity results in nearly perfect accuracy (knn 

weighted f1-score > 0.999773). These results indicate that the phase slope measure of rapidity is 
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an important feature in AP classification and should be considered as a critical component for AP 

models. 

 

Materials and Methods 

Action Potential Recordings 

Data Source for Raw Action Potential Recordings 

Electrophysiological recordings of APs from adult mice were obtained from two databases. 

Cortical data from the somatosensory cortex were obtained from the Gigascience database and 

hippocampal data were obtained from the CRCNS database. Data for cortical neuron recordings, 

along with detailed experimental protocols for collection of these recordings, can be found in da 

Silva Lantyer et al. (da Silva Lantyer et al., 2018). This data was collected from pyramidal regular-

spiking (RS) neurons (n = 27) and fast-spiking (FS) neurons (n = 7) in the L2/3 layers of the 

primary somatosensory cortex in adult mice. Data from hippocampal CA1 neurons, along with 

experimental protocols, can be found in Lee et al. (Lee et al., 2014). The recordings analyzed from 

this set are from 17 RS pyramidal neurons and 6 FS interneurons.  

AP selection 

Each database file contains AP recordings from one neuron, gathered as one continuous 

recording of membrane potential over time (Vm) in response to a pulsed current stimulus. APs 

were identified using the criteria previously described (Aldohbeyb et al., 2021). In brief, APs 

included in this analysis must have come from a current step that contained at least 2 APs and must 

have an inter-spike interval of at least 30ms for RS neurons and at least 12ms for FS neurons. With 

these criteria, there were a total of 3733 APs from 6 cFS neurons, 3966 APs from 27 cRS neurons, 

888 APs from 6 hFS neurons, and 2637 APs from 17 hRS neurons. 
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Interpolation 

For calculation of rapidity features, an interpolation function was used to interpolate 

discrete time series data to Δt = 1 µs. For calculation of IFWd2 and IHWd2, MATLAB’s spline 

function was used, which interpolates using a cubic spline function between points. The spline 

function creates dips between points which, for phase slope measurements, drastically increases 

standard deviation between measurements from spikes in the same spike train. To avoid this issue, 

MATLAB’s pchip function was used for phase slope measurements, which uses a cubic Hermite 

interpolating polynomial in piecewise fashion, preserving shape and respecting monotonicity.  

 Data Features 

Defining Classical Features 

The three “classical” features used in AP analysis are width, onset potential, and amplitude. 

For this analysis, AP onset potential was determined to be the voltage at which the first derivative 

of the membrane voltage vs. time plot (V̇m) equals 10mV/ms, as defined by Naundorf et 

al.(Naundorf et al., 2006). The AP amplitude was taken as the difference between the onset voltage 

and the peak voltage. AP width was measured as the full width at half of the AP amplitude.  

Defining Rapidity Features 

Two of the rapidity measurements were generated using the second derivative of 

membrane voltage vs. time (V̈m), as previously described (Aldohbeyb et al., 2021). IHWd2 was 

calculated as the inverse of half of the width at half of the maximum of V̈m. IFWd2 was calculated 

as the inverse of the full width at half of the maximum of V̈m. The third rapidity measure, phase 

slope, was measured as the slope of the phase plot (V̇m vs. Vm) at AP onset (Telenczuk et al., 2017).  
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Classification Algorithms (Classifiers) 

Five different classification algorithms were tested on this data set: kNN, decision tree, 

SVM, logistic regression, and naïve Bayes. Classification was performed in python using Jupyter 

Notebook, using the scikit-learn package. All data was standardized using the StandardScaler 

function from the sci-kit learn package prior to classification. For kNN, KNeighborsClassifier was 

used with k=3. For SVM, svm.svc (C-support vector) was used as the classifier with the one-

versus-one decision function shape. For logistic regression, the maximum number of iterations for 

convergence was set to 10,000. For all classifiers, 4 feature sets were used. Classical Only contains 

the classical features of AP onset, AP width, and AP amplitude. The other three sets contain the 

classical features in addition to one measure of rapidity: Classical + IFWd2, Classical + IHWd2, 

or Classical + phase slope.   

 Results & Discussion 

 F1-scores for classifiers 

Weighted F1 scores were used as the metric for evaluating each classification. Weighted 

scores are calculated by calculating the average f1-scores for each class, then using the number of 

instances of that class as a weight. F1-scores account for both precision and recall, and are  

The weighted f1-scores for each classifier and each feature set are shown in Figure 5.1. F1-

scores were computed by taking the average value (number of AP’s mislabeled) for each neuron 

class weighted by support (total number of APs per neuron type), averaged over 50 randomized 

repeats of stratified 5-fold cross validation. Weighted scoring and the use of stratified sets (each 

set contains the same proportion of each neuron type) account for the imbalance in the number of 

APs from each neuron type.  
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Figure 5.1: Heatmap of weighted average f1-scores for 50 repeats for each classifier (columns) 

using each feature set (rows) for stratified 5-fold cross-validation. Darker cells indicate higher f1-
scores. Features: (Classical) classical features of AP width, AP Amplitude, AP onset. (Classical + 
IFWd2) Classical features plus rapidity feature measured using the inverse of the second derivative 
taken over the full width at half of the maximum voltage value. (Classical + IHWd2) Classical 
features plus rapidity feature measured using the inverse of the second derivative taken over half 
of the width at half of the maximum voltage value.  (Classical + PS) Classical features plus phase 
slope measure for rapidity. 
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Figure 5.2: Log-scale f1-score bar chart: log10(1-f1Score) values for each classifier and each 

feature set. kNN is k-nearest neighbors classifier (k=3) and SVM is support vector machine 
classifier. Classical indicates the use of classical features only (AP width, AP amplitude, AP onset 
potential). FWHM (full width at half maximum), HWHM (half width at half maximum), and Phase 
Slope indicate the addition of these rapidity measures. Larger values indicate greater f1-scores and 
greater precision and recall. Values plotted as |log10(1-f1Score)| to better visualize differences. 

 

The absolute value of the log10(1-f1-score) is shown in Figure 5.2 for visualization of trends 

across feature sets and classifiers. The same trends can be seen across all five algorithms, showing 

classical features plus phase slope rapidity to have the highest f1-score for each classifier, followed 

by IFWd2, IHWd2, then classical features alone as the lowest f1-score for each classifier. These 

results indicate that the addition of any measure of rapidity to the classical feature set increases 

classification accuracy. This is expected, as more information is being added to the model, though 

the addition of features with little or no influence on discrimination of these neuron types (adding 

little to no information to the model) would lead to overfitting and a lower f1-score. Since all 

measures of rapidity increased f1-scores across all classifiers, rapidity adds information to the 

model that is not present in the classical features, as well as information that is useful in 
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discrimination of the neuron types in this data. Of these rapidity measures, the addition of the phase 

slope measurement to the classical feature set shows the highest f1-scores. Since the phase slope 

measure of rapidity shows the greatest improvement in classification performance, this rapidity 

measure was used for further evaluation. Since the kNN classifier showed the highest f1-scores 

for all the feature sets, and all the classifiers showed similar trends across feature sets, kNN was 

used as the classifier for comparison of feature sets in further analysis. 

Confusion Matrices 

The confusion matrices for the classical features alone, and classical features plus a 

measure of rapidity (IHWd2, IFWd2, Phase Slope), can be seen in Figure 5.3. The results show 

that classical features alone always classified cFS neurons correctly, and nearly always classified 

hFS neurons correctly, indicating that these features are sufficient for the discrimination of fast-

spiking neurons. The decreased ability to discriminate regular-spiking neurons (~92%), indicates 

that the classical features are not as distinctly different between cortical and hippocampal regular-

spiking neurons. The results from the addition of any measure of rapidity add significant value to 

the classification algorithm, increasing the accuracy of classification of regular-spiking neurons to 

>99%, without reducing ability to discriminate fast-spiking neurons. In particular, phase slope 

showed the most accurate results of all feature sets, indicating that phase slope measurements 

provide critical information about regular-spiking neurons that is distinct between neurons in the 

hippocampus and those in the cortex. 
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Figure 5.3: Confusion matrices of classical features and classical features plus rapidity (IFWd2, 

IHWd2, or Phase Slope) reporting classification using the k-nearest neighbors classifier (k=3) 

with 5-fold cross-validation repeated 50 times for classification of APs generated by fast-spiking 

(FS) or regular-spiking (RS) neurons from the cortex (c) or the hippocampus (h). True neuron 
class for each AP is represented by the row, and the class predicted by the classifier is shown by 
the column, with the yellow cells indicating correct classification (predicted class = true class). 
Green shows FS and white shows RS. Top values are normalized for each row and bottom values 
are average total counts (for one repeat) over 50 repeats. Features used in each set: (Top left) 
Classical features alone (AP amplitude, AP width, AP onset potential). (Top right) Classical 
features plus rapidity feature measured as the inverse of the full width measured at half of the 
maximum of the second derivate of voltage vs. time plot (IFWd2). (Bottom left) Classical features 
plus rapidity feature measured as the inverse of the full width measured at half of the maximum of 
the second derivate of voltage vs. time plot (IHWd2). (Bottom right) Classical features plus Phase 
Slope rapidity measure, measured as the slope of the phase plot at a set criterion level.  

  

Figure 5.4 shows confusion matrices for kNN using phase slope only, width only, and 

width + phase slope as the feature sets. Using width alone, hFS is classified correctly 100% of the 

time, meaning that AP width is distinctly different in these neurons relative to the other groups. 

Width alone shows some efficacy in discriminating FS neurons from RS neurons but is less 
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effective in discriminating between hippocampal and cortical RS neurons. Using only phase slope 

values, there is confusion between FS and RS neurons within the same brain region, but phase 

slope shows greater ability to discriminate cortical vs hippocampal neurons. Looking at the top 

two confusion matrices in Figure 5.4, it can be observed that the two confusion matrices 

complement each other in that where one shows higher confusion, the other shows greater 

accuracy. The weighted f1-scores for these feature sets are 0.796338 + 0.007408 for width alone 

and 0.620103 + 0.008524 for phase slope alone. The bottom confusion matrix in Figure 5.4 shows 

normalized values and average counts per repeat using phase slope and AP width values as 

features, which shows a drastic increase in classification, having a weighted f1-score of 0.999636 

+ 0.000382. This is only slightly lower than the f1-score of 0.999941 + 0.000168 for Classical + 

Phase Slope for kNN, and much higher than 0.954783 + 0.003913 for the classical feature set 

alone, suggesting that phase slope is a far more important feature for classification of these neuron 

types than AP amplitude or AP onset, and that phase slope has more distinct information in 

comparison to width. These results suggest that the information contained in phase slope and AP 

width explains the majority of the differences between APs generated by cortical FS, cortical RS, 

hippocampal FS, and hippocampal RS neurons. 
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Figure 5.4: Confusion matrices heatmap using phase slope only, width only, and phase slope + 

width as features using the k-nearest neighbors classifier (k=3) with 5-fold cross-validation 

repeated 50 times for classification of fast-spiking (FS) or regular-spiking (RS) neurons from the 

cortex (c) or the hippocampus (h). True neuron class for each AP is represented by the row, and 
the class predicted by the classifier is shown by the column. Top values are normalized (total per 
row equals 1.0) and bottom values are average total counts (for one repeat) over 50 repeats. 
Features used in each set are shown in the top left corner cell. Diagonal cells (top left to bottom 
right) represent correct classifications. Heatmap shows darker cells for normalized values closer 
to 1.0. 

Depolarization of the membrane that initiates the AP is caused by the activation of voltage-

gated sodium channels that open in response to changes in membrane potential. Since rapidity is 

quantified as the maximum acceleration of the depolarization phase, it can be attributed to the rate 

of sodium channel activation. This can be thought of as how many new channels are being 

activated, assuming channels that have already been activated have a constant rate of ion transport 

relative to the membrane potential. This can also be visualized as a phase plot (V̇m vs. Vm), where 
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the phase slope values are derived from. When the peak of the AP is reached, sodium channels 

begin to deactivate and potassium channels begin to activate, starting repolarization. The width of 

the AP can generally be attributed to the rate of potassium channel activation during repolarization. 

Using these interpretations, we can see that using phase slope rapidity and AP width for 

classification closely parallels classification of neurons by the rate of increase in sodium channel 

activation, i.e. abruptness, during depolarization and the rate of potassium channel activation 

during repolarization, respectively (Figure 5.5). 
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Figure 5.5: Scatter plots of each rapidity feature vs. AP width. Colors show APs from cortical 
fast-spiking (cFS), hippocampal fast-spiking (hFS), hippocampal regular-spiking (hRS), and 
cortical regular spiking (cRS). 

Figure 5.5 shows a scatter plot of phase slope vs. AP width, where the four different neuron 

types are shown in different colors. It can be observed that hippocampal neurons show higher 

phase slope values compared to cortical neurons, for both RS and FS neurons. This suggests that 

hippocampal neurons, which have higher rapidity, have higher rates of increase in sodium channel 

activation when compared to cortical neurons. Recent work has hypothesized sodium channel 

cooperativity in some neurons that increases the rapidity relative to the Hodgkin-Huxley model, 

which may be responsible for the difference in dynamics of hippocampal and cortical neuron APs 

observed in this set. It would be useful to investigate sodium channel cooperativity in the 

hippocampus, and if data supporting that is different than in the cortex. In addition, FS neurons 
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show narrower APs, which suggests with faster potassium channel activation. There is little 

correlation between the rapidity and AP width values.  

It can also be noted from Figure 5.5 that cortical neurons show a narrower range (lower 

standard deviation) of phase slope values than hippocampal neurons, suggesting that rapidity is 

consistent across FS and RS cortical neurons. This consistency suggests that this parameter is 

distinctly defined in cortical neurons, which may have implications for understanding the 

dynamics of sodium channel activation, both in cortical neurons and other regions of the brain by 

comparison. 

Conclusions 

AP rapidity is a valuable feature in machine learning algorithms for discriminating 

neuronal subtypes. This analysis suggests that including rapidity in machine learning algorithms 

greatly improves overall classification accuracy of these models. RS neurons are better 

discriminated by phase slope than other rapidity measures. The phase slope measure of rapidity 

shows the greatest ability to discriminate cortical from hippocampal neurons, with highly 

consistent values across subtypes of cortical neurons.  

The results of this study indicate that machine learning is a highly effective tool for the 

classification of neuronal subtypes, and that the addition of rapidity to the classical parameters of 

AP width, AP amplitude, and AP onset greatly improves accuracy, with the majority of the 

classification capability in the rapidity and AP width features. Future work exploring these features 

in a greater number of neuronal subtypes may provide further insights into ion channel dynamics 

and differences among different neuron types. 
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6. Conclusions 

 

MIC Device 

Conclusions 

Microfluidic Impedance Cytometry (MIC) has previously been shown as an effective tool 

for the classification and quantification of bacterial, yeast, and mammalian cells. This work 

provides a proof-of-concept for the use of MIC for parasite eggs, cysts, and oocysts on the scale 

of 50-100 µm in diameter. Improved understanding of MIC for the analysis of relatively large 

samples, such as various types of parasite eggs, would open doors for the use of MIC in a greater 

breadth of diagnostic applications. This work demonstrates the potential applicability of using an 

FPGA to function as lock-in amplifiers to improve sensitivity and simultaneously make 

multifrequency measurements from the same electrode set on a MIC device. The FPGA 

potentially provides a low-cost and customizable platform for numerous research applications. 

Measurements from 2 sets of electrodes allowed for the determination of the velocity of 

individual beads, as well as provided previously undescribed cross-set impedance measurements 

across the diagonal plane between each top electrode and its neighboring bottom electrode. The 

channel and electrode dimensions used for this work provide a foundation for future research 

using parasite egg samples. The FPGA setup provides a customizable platform for 

multifrequency measurements and optimization of frequencies. 

 Based on the ImageJ analysis of the salt, sieve, and gold standard methods, it was also 

concluded that the salt-based method resulted in smaller particle size, which is more ideal for use 

in microfluidic channels. Though the salt method had a greater number of particles and larger 

percentage of small particles, this method had significantly smaller particles. It is advised to use 
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this method when preparing samples for use with microfluidic devices to prevent clogging of the 

microchannel. 

Suggested Future Work 

Future applications for this work include multifrequency MIC of parasite eggs to examine 

internal structure for classification of different egg types. The use of laser-cut pressure-sensitive 

adhesive as the channel sidewalls between two electrode-patterned glass slides provides a low-

cost method for fabrication, though there are inherent drawbacks. The rough edges of the channel 

sidewalls can increase clogging of the channel. It is advised to use laser-cut channels with 

optimized egg isolation protocols for rapid prototyping and reduced clogging of channels. In 

addition, the FPGA setup provides customizable frequencies and configurations. Based on the 

results from this research, the next suggested steps would be to test this device using egg isolation 

samples of strongyle eggs with the FPGA set up as two lock-in amplifiers. Future work can 

examine a broader range of egg types and frequencies. It is advised to optimize frequencies for 

one egg type, then begin at those frequencies when testing new egg types. The data collected from 

these different frequencies and different egg types can then be used to train a machine learning 

algorithm, such as k-nearest neighbors, with various combinations of frequencies as features, 

which can be used to determine the optimal frequencies for discriminating each egg type in a 

sample containing different combinations of egg types. 

 Neuron classification 

 Conclusions 

 The neuron classification work shows that kNN is the best classifier for this data set, though 

decision tree and SVM classifiers show promising results as well and should not be discounted 

when analyzing other data sets. The classification results show that AP rapidity is a valuable 

feature in machine learning algorithms for discriminating neuronal subtypes. The addition of any 
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measure of rapidity (IFWd2, IHWd2, or phase slope) to the classical feature set (AP width, AP 

amplitude, AP onset potential) greatly improves classification, with weighted f1-scores using the 

kNN classifier increasing from 0.954783 + 0.003913 for classical features only, to 0.998035 + 

0.000097 for IFWd2, 0.997330 + 0.001115 for IHWd2, and 0.999941 + 0.000168 for phase slope. 

These results show that the rapidity feature adds information to the model that is not contained in 

the classical features and should be considered as a valuable attribute for future models. 

 Of the rapidity measures, phase slope showed the most accurate results for all of the 

classifiers, with nearly perfect classification (weighted f1-score of 0.999941 + 0.000168) when 

used as a kNN feature along with the classical features. Using phase slope and width alone as kNN 

features produced a weighted f1-score of 0.999636 + 0.000382. This shows that the addition of 

AP amplitude and onset potential do not provide substantial additional information for 

classification. In addition, comparing the weighted f1-score of classical features alone (0.954783 

+ 0.003913) to the weighted f1-score of phase slope + width (0.999636 + 0.000382), effectively 

replacing AP amplitude and onset potential with phase slope, shows that phase slope is more 

valuable for classification that both of these parameters combined. These conclusions suggest that 

the differences in APs generated by RS or FS cortical or hippocampal cells are more distinct based 

on phase slope and width, which may translate to differences in ion channel dynamics in these cell 

types and regions. Further exploration of classification using phase slope and width alone could 

provide insights into these dynamics in these types of cells as well as in other neuronal subtypes. 

 The weighted f1-scores in this work show large improvements from previous work 

(Ghaderi et al., 2018; Wang et al., 2022). Ghaderi et al. showed classification accuracy of 82.29 + 

1.31% using in vivo recordings of 3 neuronal subtypes and 84.13 + 0.81% accuracy in in vitro 

recordings of 5 neuronal subtypes using discrete cosine transform, principal component analysis, 
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and c-means clustering. Wang et al. showed 88.76% accuracy for discrimination of 5 neuron 

subtypes using a convolutional neural network. The results from this work show drastically greater 

classification of 4 neuronal subtypes, with f1-scores for classical features and rapidity, and for AP 

width and phase slope, exceeding 0.999. Classical features plus any measure of rapidity also 

produced weighted f1-scores > 0.99, which is still far greater than the results from previous studies. 

These findings suggest that rapidity, most notably phase slope, is an important feature for 

classification and the use of phase slope and width as kNN features produces more reliable and 

accurate results when compared to using two principal components from frequency domain 

transforms. 

 Suggested Future Work 

The analysis of this dataset and the conclusions drawn open the door for further validation 

and expansion upon these results. Due to the limited dataset, this work was confined to four types 

of neurons, from two regions of the brain. These groups were chosen based of firing frequency 

(regular-spiking or fast-spiking) and brain region (hippocampus or cortex), though some of these 

neurons could be further sub-categorized. Future analysis on these subcategories could reveal 

underlying trends. These analyses would benefit from the inclusion of additional data from each 

of the subsets, as numbers of these subtypes contained in the set used in this work are insufficient 

to make strong generalizations. The addition of data from different sources would be beneficial to 

account for possible experimental biases and provide further validation for the trends observed 

between cortical and hippocampal data, which came from two different repositories. 

Another experiment for further validation would be to perform knn analysis of the same 

feature sets using a different data (from different databases) with the same neuronal subtypes and 
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compare trends from this work to validate findings. Knn analysis could also be performed using 

the same feature sets, using data from additional different neuronal subtypes. 

Based on the width vs. phase slope plots, further analysis tracing AP number within each 

spike train (multi-AP response to single stimulus/excitation pulse) and within each recording (all 

APs from one neuron over all pulses) could provide insights into single neuron behavior over time. 

Analysis could include adding data columns/features that include the AP number within the 

recording and the AP number within the spike train. These could then be plotted to show APs from 

certain points in the recording or the spike train. For example, the first spikes from each spike train 

could be compared to each other, reducing potential drift caused by “tiring” of the neuron.  



52 

 

References 

 
 
 

Aldohbeyb, A.A., Vigh, J., Lear, K.L., 2021. New methods for quantifying rapidity of action 
potential onset differentiate neuron types. PLOS ONE 16, e0247242. 
https://doi.org/10.1371/journal.pone.0247242 

Armañanzas, R., Ascoli, G.A., 2015. Towards Automatic Classification of Neurons. Trends 
Neurosci. 38, 307–318. https://doi.org/10.1016/j.tins.2015.02.004 

Baiak, B.H.B., Lehnen, C.R., da Rocha, R.A., 2018. Anthelmintic resistance in cattle: A 
systematic review and meta-analysis. Livest. Sci. 217, 127–135. 
https://doi.org/10.1016/j.livsci.2018.09.022 

Bean, B.P., 2007. The action potential in mammalian central neurons. Nat. Rev. Neurosci. 8, 
451–465. https://doi.org/10.1038/nrn2148 

Buccino, A.P., Ness, T.V., Einevoll, G.T., Cauwenberghs, G., Hafliger, P.D., 2018. A Deep 
Learning Approach for the Classification of Neuronal Cell Types. Annu. Int. Conf. IEEE 
Eng. Med. Biol. Soc. IEEE Eng. Med. Biol. Soc. Annu. Int. Conf. 2018, 999–1002. 
https://doi.org/10.1109/EMBC.2018.8512498 

CDC - Parasites [WWW Document], 2022. URL https://www.cdc.gov/parasites/index.html 
(accessed 8.21.21). 

Chen, J., Xue, C., Zhao, Y., Chen, D., Wu, M.-H., Wang, J., 2015. Microfluidic Impedance Flow 
Cytometry Enabling High-Throughput Single-Cell Electrical Property Characterization. 
Int. J. Mol. Sci. 16, 9804–9830. https://doi.org/10.3390/ijms16059804 

Cheung, K., Gawad, S., Renaud, P., 2005. Impedance spectroscopy flow cytometry: On-chip 
label-free cell differentiation. Cytometry A 65A, 124–132. 
https://doi.org/10.1002/cyto.a.20141 

Clark, C.A., Gunn, P.J., Dedrickson, J., Sorenson, J., 2014. Effects of Internal Parasite Infection 
at Feedlot Arrival on Performance and Carcass Characteristics in Beef Steers (No. 
5087608). Iowa State University, Digital Repository, Ames. 
https://doi.org/10.31274/ans_air-180814-1146 

Clatot, J., Hoshi, M., Wan, X., Liu, H., Jain, A., Shinlapawittayatorn, K., Marionneau, C., Ficker, 
E., Ha, T., Deschênes, I., 2017. Voltage-gated sodium channels assemble and gate as 
dimers. Nat. Commun. 8, 2077. https://doi.org/10.1038/s41467-017-02262-0 

Clausen, C.H., Dimaki, M., Bertelsen, C.V., Skands, G.E., Rodriguez-Trujillo, R., Thomsen, 
J.D., Svendsen, W.E., 2018. Bacteria Detection and Differentiation Using Impedance 
Flow Cytometry. Sensors 18, 3496. https://doi.org/10.3390/s18103496 

COMBAR, Combatting Anthelmintic Resistance in Ruminants, 2021. Faecal egg count 
reduction test (FECRT) protocol Gastrointestinal nematodes - CATTLE. 

Conde, M.H., Heckler, R.P., Borges, D.G.L., Onselen, V.J.V., Brumatti, R.C., Borges, F. de A., 
2019. Economic analysis of strategic control program (5, 8, 11) for gastrointestinal 
nematodes in grazing beef cattle during the growing phase in Central Brazil. Semina 
Ciênc. Agrár. 40, 2309. https://doi.org/10.5433/1679-0359.2019v40n5Supl1p2309 

Cringoli, G., Rinaldi, L., Maurelli, M.P., Utzinger, J., 2010. FLOTAC: new multivalent 
techniques for qualitative and quantitative copromicroscopic diagnosis of parasites in 
animals and humans. Nat. Protoc. 5, 503–515. https://doi.org/10.1038/nprot.2009.235 



53 

 

da Silva Lantyer, A., Calcini, N., Bijlsma, A., Kole, K., Emmelkamp, M., Peeters, M., Scheenen, 
W.J.J., Zeldenrust, F., Celikel, T., 2018. A databank for intracellular electrophysiological 
mapping of the adult somatosensory cortex. GigaScience 7. 
https://doi.org/10.1093/gigascience/giy147 

Dixon, R.E., Navedo, M.F., Binder, M.D., Santana, L.F., 2022. Mechanisms and physiological 
implications of cooperative gating of clustered ion channels. Physiol. Rev. 
https://doi.org/10.1152/physrev.00022.2021 

Foreyt, W.J., 1989. Diagnostic Parasitology. Vet. Clin. North Am. Small Anim. Pract. 19, 979–
1000. https://doi.org/10.1016/S0195-5616(89)50107-4 

Gasbarre, L.C., 2014. Anthelmintic resistance in cattle nematodes in the US. Vet. Parasitol. 204, 
3–11. https://doi.org/10.1016/j.vetpar.2014.03.017 

Gawad, S., Cheung, K., Seger, U., Bertsch, A., Renaud, P., 2004. Dielectric spectroscopy in a 
micromachined flow cytometer: theoretical and practical considerations. Lab. Chip 4, 
241. https://doi.org/10.1039/b313761a 

Ghaderi, P., Marateb, H.R., Safari, M.-S., 2018. Electrophysiological Profiling of Neocortical 
Neural Subtypes: A Semi-Supervised Method Applied to in vivo Whole-Cell Patch-
Clamp Data. Front. Neurosci. 12. 

Gouwens, N.W., Sorensen, S.A., Berg, J., Lee, C., Jarsky, T., Ting, J., Sunkin, S.M., Feng, D., 
Anastassiou, C.A., Barkan, E., Bickley, K., Blesie, N., Braun, T., Brouner, K., Budzillo, 
A., Caldejon, S., Casper, T., Castelli, D., Chong, P., Crichton, K., Cuhaciyan, C., Daigle, 
T.L., Dalley, R., Dee, N., Desta, T., Ding, S.-L., Dingman, S., Doperalski, A., Dotson, 
N., Egdorf, T., Fisher, M., de Frates, R.A., Garren, E., Garwood, M., Gary, A., 
Gaudreault, N., Godfrey, K., Gorham, M., Gu, H., Habel, C., Hadley, K., Harrington, J., 
Harris, J.A., Henry, A., Hill, D., Josephsen, S., Kebede, S., Kim, L., Kroll, M., Lee, B., 
Lemon, T., Link, K.E., Liu, X., Long, B., Mann, R., McGraw, M., Mihalas, S., Mukora, 
A., Murphy, G.J., Ng, Lindsay, Ngo, K., Nguyen, T.N., Nicovich, P.R., Oldre, A., Park, 
D., Parry, S., Perkins, J., Potekhina, L., Reid, D., Robertson, M., Sandman, D., 
Schroedter, M., Slaughterbeck, C., Soler-Llavina, G., Sulc, J., Szafer, A., Tasic, B., 
Taskin, N., Teeter, C., Thatra, N., Tung, H., Wakeman, W., Williams, G., Young, R., 
Zhou, Z., Farrell, C., Peng, H., Hawrylycz, M.J., Lein, E., Ng, Lydia, Arkhipov, A., 
Bernard, A., Phillips, J.W., Zeng, H., Koch, C., 2019. Classification of 
electrophysiological and morphological neuron types in the mouse visual cortex. Nat. 
Neurosci. 22, 1182–1195. https://doi.org/10.1038/s41593-019-0417-0 

Graham, M., 2003. The Coulter principle: foundation of an industry. J. Assoc. Lab. Autom. 8, 
72–81. https://doi.org/10.1016/S1535-5535(03)00023-6 

Gutkin, B., Ermentrout, G.B., 2006. Spikes too kinky in the cortex? Nature 440, 999–1000. 
https://doi.org/10.1038/440999a 

Hodgkin, A.L., Huxley, A.F., 1952. A quantitative description of membrane current and its 
application to conduction and excitation in nerve. J. Physiol. 117, 500–544. 
https://doi.org/10.1113/jphysiol.1952.sp004764 

Huang, M., Volgushev, M., Wolf, F., 2012. A Small Fraction of Strongly Cooperative Sodium 
Channels Boosts Neuronal Encoding of High Frequencies. PLOS ONE 7, e37629. 
https://doi.org/10.1371/journal.pone.0037629 

Ilin, V., Malyshev, A., Wolf, F., Volgushev, M., 2013. Fast computations in cortical ensembles 
require rapid initiation of action potentials. J. Neurosci. Off. J. Soc. Neurosci. 33, 2281–
2292. https://doi.org/10.1523/JNEUROSCI.0771-12.2013 



54 

 

Lee, S.-H., Marchionni, I., Bezaire, M., Varga, C., Danielson, N., Lovett-Barron, M., Losonczy, 
A., Soltesz, I., 2014. Parvalbumin-Positive Basket Cells Differentiate among 
Hippocampal Pyramidal Cells. Neuron 82, 1129–1144. 
https://doi.org/10.1016/j.neuron.2014.03.034 

Levecke, B., Behnke, J.M., Ajjampur, S.S.R., Albonico, M., Ame, S.M., Charlier, J., Geiger, 
S.M., Hoa, N.T.V., Kamwa Ngassam, R.I., Kotze, A.C., McCarthy, J.S., Montresor, A., 
Periago, M.V., Roy, S., Tchuem Tchuenté, L.-A., Thach, D.T.C., Vercruysse, J., 2011. A 
Comparison of the Sensitivity and Fecal Egg Counts of the McMaster Egg Counting and 
Kato-Katz Thick Smear Methods for Soil-Transmitted Helminths. PLoS Negl. Trop. Dis. 
5, e1201. https://doi.org/10.1371/journal.pntd.0001201 

McGrath, J.S., Honrado, C., Spencer, D., Horton, B., Bridle, H.L., Morgan, H., 2017. Analysis of 
Parasitic Protozoa at the Single-cell Level using Microfluidic Impedance Cytometry. Sci. 
Rep. 7, 2601. https://doi.org/10.1038/s41598-017-02715-y 

Naundorf, B., Wolf, F., Volgushev, M., 2006. Unique features of action potential initiation in 
cortical neurons. Nature 440, 1060–1063. https://doi.org/10.1038/nature04610 

Parasites [WWW Document], 2018. . Cent. Dis. Control Prev. URL 
https://www.cdc.gov/parasites/index.html 

Scare, J.A., Slusarewicz, P., Noel, M.L., Wielgus, K.M., Nielsen, M.K., 2017. Evaluation of 
accuracy and precision of a smartphone based automated parasite egg counting system in 
comparison to the McMaster and Mini-FLOTAC methods. Vet. Parasitol. 247, 85–92. 
https://doi.org/10.1016/j.vetpar.2017.10.005 

Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, 
S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.-Y., White, D.J., Hartenstein, V., 
Eliceiri, K., Tomancak, P., Cardona, A., 2012. Fiji: an open-source platform for 
biological-image analysis. Nat. Methods 9, 676–682. https://doi.org/10.1038/nmeth.2019 

Sun, T., Morgan, H., 2010. Single-cell microfluidic impedance cytometry: a review. Microfluid. 
Nanofluidics 8, 423–443. https://doi.org/10.1007/s10404-010-0580-9 

Sutherland, I.A., Leathwick, D.M., 2011. Anthelmintic resistance in nematode parasites of cattle: 
a global issue? Trends Parasitol. 27, 176–181. https://doi.org/10.1016/j.pt.2010.11.008 

Telenczuk, M., Fontaine, B., Brette, R., 2017. The basis of sharp spike onset in standard 
biophysical models. PLOS ONE 12, e0175362. 
https://doi.org/10.1371/journal.pone.0175362 

Teleńczuk, M.T., Stimberg, M., Brette, R., 2015. Origin of the kink of somatic action potentials. 
BMC Neurosci. 16, O8. https://doi.org/10.1186/1471-2202-16-S1-O8 

Utzinger, J., Rinaldi, L., Lohourignon, L.K., Rohner, F., Zimmermann, M.B., Tschannen, A.B., 
N’Goran, E.K., Cringoli, G., 2008. FLOTAC: a new sensitive technique for the diagnosis 
of hookworm infections in humans. Trans. R. Soc. Trop. Med. Hyg. 102, 84–90. 
https://doi.org/10.1016/j.trstmh.2007.09.009 

Venkatesan, K., Liu, Y., Goldfarb, M., 2014. Fast-onset long-term open-state block of sodium 
channels by A-type FHFs mediates classical spike accommodation in hippocampal 
pyramidal neurons. J. Neurosci. Off. J. Soc. Neurosci. 34, 16126–16139. 
https://doi.org/10.1523/JNEUROSCI.1271-14.2014 

Wang, R., Han, S.M., Gajowa, M., Liu, C., 2022. NEOCORTICAL CELL TYPE 
CLASSIFICATION FROM ELECTROPHYSIOLOGY RECORDINGS USING DEEP 
NEU- RAL NETWORKS 11. 



55 

 

Wilson, J.W., Park, J.K., Warren, W.S., Fischer, M.C., 2015. Flexible digital signal processing 
architecture for narrowband and spread-spectrum lock-in detection in multiphoton 
microscopy and time-resolved spectroscopy. Rev. Sci. Instrum. 86, 033707. 
https://doi.org/10.1063/1.4916261 

 

 

  



56 

 

Appendices 

 

 

 

Appendix A: Correlation Matrix Data Mining for AP Analysis  

The correlation matrix, above, shows highly correlated (|coefficient| > 0.5) values in bold 

and highly uncorrelated values highlighted in yellow. To determine the best features to use for 

discrimination of the neuronal subtypes (labels), it is beneficial to look at features that are highly 

correlated with labels, as well as feature combinations that are highly uncorrelated, as these 

features will provide different information. 

It can be noted that the AP Width is highly correlated with both of the cortical neuron 

subtypes, and that the rapidity features are highly correlated with the hippocampal subtypes. 

Given that the phase slope rapidity measure shows higher correlation with hRS that the second 

derivative methods show with hFS, it can be hypothesized that using AP Width alongside phase 

slope will show an accurate classification of cRS, cFS, and hRS neuronal subtypes. Additionally, 

the values with low correlation, shown in yellow, indicate that these parameters do not contain 

similar information, and therefore these combinations of features should be examined further. 
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Table A1: Correlation Matrix of AP Features and Neuron Labels 

 

  

 AP Onset 

(mV) 

AP Ampl

itude (m

V) 

AP Width 

(ms) 

IFWd2 (1

/ms) 

IHWd2 (1

/ms) 

Phase Slo

pe (1/ms) 

hRS hFS cRS cFS 

AP Onset 

(mV) 

1.000000 -0.179263 0.513569 -0.122950 -0.084237 -0.022614 0.104203 -0.013822    -0.405257  0.314817   

AP Ampli

tude (mV

) 

-0.179263 1.000000 0.265098 -0.005700 -0.057265 0.284538  0.301751 -0.350373    -0.334552  0.259959   

AP Widt

h (ms) 

0.513569 0.265098 1.000000 -0.422154 -0.371015 -0.063992  0.245197 -0.451130    -0.625536  0.653815   

IFWd2 (1

/ms) 

-0.122950 -0.005700 -0.422154 1.000000 0.974980 0.657809  0.408668  0.730461    -0.279003 -0.499940   

IHWd2 (

1/ms) 

-0.084237 -0.057265 -0.371015 0.974980 1.000000 0.607583 0.344635 0.746148    -0.307642 -0.423777   

Phase Slo

pe (1/ms) 

-0.022614 0.284538 -0.063992 0.657809 0.607583 1.000000 0.791930 0.187719    -0.379792 -0.434055   

hRS 0.104203 0.301751 0.245197 0.408668 0.344635 0.791930  1.000000 -0.162429    -0.391195 -0.409640   

hFS -0.013822 -0.350373 -0.451130 0.730461 0.746148 0.187719 -0.162429  1.000000    -0.206914 -0.216670   

cRS -0.405257 -0.334552 -0.625536 -0.279003 -0.307642 -0.379792 -0.391195 -0.206914    1.000000 -0.521828   

cFS 0.314817 0.259959 0.653815 -0.499940 -0.423777 -0.434055 -0.409640 -0.216670    -0.521828  1.000000   
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Appendix B: Optimization of k in k-nearest neighbors 

To optimize the value of k for k-nearest neighbors, the k value was varied from 1 to 20, 

and scored using the macro f1-score value. Though k=1 had the highest value for both of the 

second derivative methods, using a k value of 1 will likely lead to over-fitting, so this value was 

discarded. A k value of 3 was used for all of the feature sets, as it showed the highest score for 

the classical set and the classical + phase slope sets, and the second highest for both of the 

second derivative sets. It can be noted that the f-score also increases from k=4 to k=5, but not as 

high as k=3, so k=5 may also be considered, as it may provide better classification in a larger 

data set. Though these observations show which values of k are more optimal, it can be generally 

noted that classification is not highly influenced by the k-value. 
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Table B1: Macro f1-scores for k-nearest neighbors analysis with varying k values 

k Classical IFWd2 IHWd2 Phase Slope 

1 0.9594265653368446 0.9985386534528324 0.9978119630977189 0.9999968442292546 

2 0.9539307062910506 0.9980792738321675 0.9973098508850365 0.9999804986293266 

3 0.960284232667355 0.9984026000850953 0.9976082303272201 0.9999804986293266 

4 0.957820965162337 0.997845630247469 0.9970266447224381 0.9998973058915985 

5 0.9599826093575993 0.9979062266860939 0.9970837314798103 0.9998973058915985 

6 0.9583179407184949 0.9974418384467153 0.9966093808000911 0.9997400029221285 

7 0.9592617257122577 0.9975059699891113 0.9965860161928725 0.9997374022017117 

8 0.9581903844840218 0.9970353721598713 0.995942797672789 0.9997244017895464 

9 0.958874577324262 0.9970686818760285 0.9959918863363453 0.9997179002334355 

10 0.9579337724497187 0.9966168111898546 0.9952892905165065 0.9997033220322998 

11 0.9574997918716593 0.9966770171389433 0.9953339331673015 0.9996866998415769 

12 0.9565788943504465 0.9961206855365383 0.9945731419979397 0.9996656198921589 

13 0.9562570747391858 0.9961163608138078 0.9946459036984274 0.9996242963516847 

14 0.9554891548284886 0.9954344519865181 0.9939097853887744 0.9996227194427082 

15 0.9551184871292957 0.9954591257422676 0.9939369875270373 0.9995488932009764 

16 0.9545340454951238 0.9948943883440639 0.9931820420988513 0.9995553945978423 

17 0.954268725706808 0.9949028913877809 0.9932891674357583 0.9995111901681774 

18 0.9537234803766633 0.9944537660756894 0.9924954970424671 0.9995018132894312 

19 0.9532273337457968 0.9945367155127692 0.9926779180306046 0.9994511068037785 

20 0.9527767501853689 0.9940518752074602 0.9918531156179827 0.9994476707459171 
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*Co-first authors 
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