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ABSTRACT 

 

 

 

ELUCIDATING MOTHER TO OFFSPRING TRANSMISSION OF CHRONIC WASTING DISEASE USING A  

 

TRANSGENIC MOUSE MODEL 

 

 

 

Chronic wasting disease (CWD) is a transmissible spongiform encephalopathy (TSE), or 

prion disease, of free-ranging and farmed cervids (deer, elk and moose).  CWD is the only TSE in a 

wildlife population, which was initially discovered in a captive mule deer herd in a study shared 

between Colorado State University and University of Wyoming in 1967.  CWD is the most readily 

transmitted of all the prion diseases and since its discovery has been identified in cervid 

populations in 24 states, 2 Canadian provinces, and the Republic of Korea.  Horizontal transmission 

of prion diseases is thought to account for its exceptional transmission efficiency [2-10].   Recent 

studies published by our group provide evidence that transmission from mother to offspring may 

also be a contributing factor. 

In the work of this thesis, we employed a transgenic mouse system that expresses the cervid 

prion protein Tg(CerPrP-E226) to help elucidate the role of mother to offspring CWD transmission 

via hemochorial placentation.  Females were inoculated with known CWD-positive material and 

subsequently bred with CWD-naïve males at various timepoints post inoculation to investigate if 

maternal/vertical transmission occurs in this host, as well as to further understand how this might 

occur. We examined the likelihood of prion trafficking in utero by analysis of mother: offspring 

pairs at different timepoints in CWD-infection and gestation, in addition to looking for infectious 

prions in milk collected from CWD-positive dams.   

We have demonstrated that CWD-infected Tg(CerPrP-E226) females successfully breed and 

bear offspring irrespective to TSE disease stage. Offspring born to CWD- infected females did not 

exhibit signs of TSE disease and lacked detectible PrPres via conventional methodologies.  
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Interestingly, conversion competent prions were identified in the brains and spleens of offspring by 

highly sensitive amyloid seeding assays.  The lack of symptoms in these offspring indicates covert 

prion transmission from mother to offspring, resulting in a potential silent-carrier status.   

As for our studies to further the understanding of the mechanisms behind this transmission, 

we identified CWD-prions in reproductive and mammary tissue, and spleen of Tg(CerPrP-E226) 

mouse mothers as early as 72 days post inoculation. In addition, we found minute quantities of 

amyloid conversion material in placenta and fetal tissues from mother:offspring pairs at varying 

timepoints in CWD-infection. We were unable to detect prions in milk collected from CWD-positive 

transgenic dams, leading us to hypothesize that the route of TSE transmission to offspring is likely a 

combination of environmental exposure, and/or very low concentrations of prions breaching the 

feto-maternal interface. 
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CHAPTER ONE: 

INTRODUCTION 

 

 

 

Protein misfolding diseases 

 

Proteins are invaluable biological molecules that are responsible for the structure, function, 

and regulation of tissues and organs.  Critical to proper protein function is the three-dimensional structure, or folding, enciphered by the protein’s unique amino acid sequence.  Protein structure is 

central to protein function.  Several mechanisms are employed by the cell to aid in proper folding 

and recycling of misfolded and/or dysfunctional proteins.  Unfortunately, these mechanisms are not 

without failure, and thus protein misfolding and aggregation is the root of several neurological and 

systemic disorders.   

Protein misfolding diseases (PMDs) are the consequence of the conformational change in a protein’s structure, resulting in its aggregation and insoluble fibril deposition within tissues. The 

etiology of PMDs includes both sporadic and infectious forms.  In a recent review, comparison is 

drawn between PMDs— including Alzheimer’s, Amyotrophic Lateral Sclerosis, Parkinson’s, and Huntington’s disease, and the transmissible spongiform encephalopathy (TSE) or prion diseases 

[1].   Disease presentation depends upon the protein involved, as well as the location of its 

deposition (Table 1.1).   PMDs are a diverse group of diseases that can result in a range of disease 

outcomes including islet amyloid polypeptide buildup in the pancreas associated with diabetes 

mellitus type 2 , and amyloid-beta and tau aggregation in the brain of Alzheimer’s patients [2]. 
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Table 1.1.  Clinically relevant protein misfolding disorders, including transmissible  

spongiform encephalopathies.  

 

Adapted from Treherne and Scopes, EBR 2012 

 
 

History of prion diseases 

Human TSEs 

Kuru 

Kuru (derived from the Fore word for ǲshakeǳ) is a TSE that is believed to have affected the 

Fore tribes of Papua New Guinea since the early twentieth century. Kuru is characterized by an 

extremely long asymptomatic incubation period, which can last decades.  Carleton Gajdusek and 

colleagues began studying the disease in Papua New Guinea in 1957.  Soon after, it was realized that 

the neuropathology of the disease closely resembled scrapie, the prion disease that affects sheep 

[3].  Soon after, the brains of infected individuals were experimentally inoculated into chimpanzees, 

which succumbed to the disease no more than two years later [4].  Eventually, epidemiological data 

revealed that ritualistic cannibalism associated with Fore funeral practices was responsible for the 

transmission of Kuru [5] .   
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Creutzfeldt-Jakob disease (CJD) 

There are 4 types of Creutzfeldt-Jakob disease, characterized by the cause of prion protein 

dysfunction in the host.  Sporadic CJD (sCJD) is thought to account for the largest number of cases of 

CJD (85%) of which no cause has been found.  sCJD is commonly referred to as classical CJD [6]. 

Familial CJD (fCJD) is genetically acquired CJD, which is a result of a mutation or polymorphism in 

the genetic code for the normal cellular prion, PrPc [7] and accounts for 5–15% of CJD cases. 

Iatrogenic (iCJD) accounts for 5% of cases, and occurs when a human has acquired CJD via medical 

procedure.  For example, iCJD was found in patients who received pooled human growth hormone 

from the pituitary glands of human cadavers [8]. Perhaps the most readily recognized human prion 

disease, Variant (vCJD) is thought to be acquired by the ingestion of BSE-infected meat products, 

resulting in approximately 1% of all CJD cases [9].   

Gerstmann –Sträussler–Scheinker Syndrome 

Gerstmann–Sträussler–Scheinker syndrome (GSS) was first reported in the 1920’s in an 

Austrian family, and is an inherited prion disease.  GSS is a result of mutations in the prnp gene and 

can be recognized by its extended clinical phase (up to ten years) which includes dementia and 

chronic progressive ataxia [10]. 

Fatal familial insomnia 

Fatal familial insomnia (FFI) was previously known as thalamic dementia, due to its 

characteristic pathology, which includes neuronal loss and astrogliosis in the thalamus.  Damage to 

this area often results in sleep disturbances, muscle spasms, seizures, disrupted speech, and 

difficulty swallowing.   Another inherited prion disease, clinical onset often begins in an individual’s 
late forties or fifties, and can last for over a year until the patient succumbs to terminal disease [11].  
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Animal TSEs 

Scrapie 

Scrapie is the oldest known prion disease, dating back to at least 1732 [12].  Named for one 

of its hallmark symptoms, scrapie causes neurological deficits in sheep that causes itchiness in the 

affected animals, resulting in a patchy appearance of the skin. Additional signs include altered gait 

due to ataxia, lip smacking, and eventual weight loss and death [12].  Although scrapie does not 

appear infectious to humans, it is readily transmissible from sheep to sheep and can result in 

widespread dissemination within flocks.  Studies have shown that scrapie prions can persist in 

contaminated environments for at least 16 years [13].  Genetic selection is now the primary means 

of scrapie control [14].  

Bovine spongiform encephalopathy 

Bovine spongiform encephalopathy (BSE) is the TSE that most are familiar with. This 

disease affects cattle between the ages of 3 and 5, with an incubation period of up to 8 years.  The 

disease is characterized by lameness, incoordination, and in some cases violent or nervous behavior 

[15].  In the 1990s a BSE epidemic occurred among cows in the United Kingdom, due in part to 

feeding practices that included supplementing cattle’s diets with ovine bone meal. This resulted in 
an extremely large slaughtering of cows across the country (an estimated 4.4 million), and a 

necessary change in slaughterhouse and meat processing practices [16].   

Chronic wasting disease 

Chronic wasting disease (CWD) was first reported in a captive mule deer herd in a 

conjoined study shared between Colorado State University and University of Wyoming in 1967 

[17].  It was officially reported as a TSE in 1980, with clinical signs that include weight loss, 

polydipsia, polyphagia, as well as gait impairment.  Rocky Mountain elk [18], white-tail deer [19] 

and moose [20] have also been identified as susceptible hosts.  CWD is recognized as the most 
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readily transmitted TSE and since its discovery, has been detected in free-range and farmed cervid 

populations in 24 states, 2 Canadian provinces, and the Republic of Korea [21]. 

Cellular prion protein 

The normal cellular form of the prion protein (PrPc) is an extracellular, glycosyl-

phosphatidylinositol-(GPI)-anchored protein.  It is predominantly expressed on mammalian cells, is 

in close association with lipid rafts on cellular membranes, and can be found in the highest 

concentrations in neuronal tissue [22].  The final, processed version of PrPC consists of amino acids 

23-231 (peptide 1–22 is cleaved as signal peptide during trafficking, and peptide 232–253 is 

replaced by the GPI anchor) which contains two asparagine-linked glycosylation sites, giving rise to 

a profile containing three glycoforms (non, mono, and diglycosylated) (Figure 1.1, 1.2).  As shown in 

Figure 1.1, the N-terminus of PrPc is relatively unstructured, and contains several copper binding 

octapeptide repeats [10]. 

PrPc is synthesized in the rough endoplasmic reticulum, and is subsequently transported to 

the plasma membrane via the Golgi apparatus.  During synthesis in the endoplasmic reticulum, 

several posttranslational modifications occur to achieve the mature form of the protein.  These 

include the cleavage of an N-terminal signal peptide, addition of N-linked oligosaccharides in two 

positions, formation of a single disulfide bond, and attachment of the GPI-anchor [23]. 

 

 

 

 

 

 

 

 

Figure 1.1. Primary structure of the normal cellular prion protein. 

Aguzzi and Calella, Phys. Reviews 2009 
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Figure 1.2.  Cellular PrP vs. infectious prion. 

 

To elucidate the function of mammalian PrPc, cohorts of PrPc knockout mice have been 

monitored for phenotypic changes.  Although changes in circadian rhythm have been noted, there 

have been no reports indicating that the prion protein is essential for life [24-26].  This suggests 

that the role of PrPc in cells is inducible, or is minor. Proposed functions of PrPc include 

neuroprotection against oxidative stress, prevention and/or promotion of apoptosis, cellular 

adhesion and cell signaling [23, 27, 28].   

Establishment of prion disease 

Prion conversion and aggregation 

The mechanism of prion conversion is not well understood. It is known that the normal 

prion protein is essential to act as a substrate for conversion to PrPres[29], and that the native 
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conformation of the prion protein (PrPC) becomes misfolded, taking on the beta-pleated sheet rich 

conformation associated with prion disease (PrPres). This abnormal form, PrPres, is partially 

resistant to protease (PK)-digestion [30] and can be readily differentiated from its normal cellular 

counterpart by assays employing PK (i.e. western blot) (Figure 1.2).     

Conversion from the normal to the aberrant form of the prion protein is energetically 

unfavorable, and thus conversion from the alpha helical structure to that of a beta sheet is rare.  

This initial misfolding is either spontaneous or is aided by the addition of a ǲseedǳ of PrPres that acts 

as a template for conversion of PrPc (Figure 1.3).  In vitro evidence suggests that a higher 

concentration of misfolded seed increases the likelihood of a conversion event [31]. PrPres 

molecules aggregate with one another to form a more stable structure, called an amyloid.  Amyloids 

are defined as protein aggregates that accumulate as extracellular fibrils of 7-10 nm and have the 

ability to bind Congo red dyes and thioflavins S and T [1]. 

 

Figure 1.3.  Proposed mechanism for prion conversion [32]. 
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Routes of prion transmission  

Infectious prions are present in the tissues, bodily fluids (saliva, blood) and excreta (urine, 

feces) of animals, irrespective of overt clinical disease [13, 33-40].  Additionally, it has been shown 

that infectious prions can be transmitted horizontally from infected to naïve host by oral ingestion, 

environmental and iatrogenic exposure, and blood transfusion [41-45].  Evidence is also available 

that suggests mother to offspring transmission of prions may play a role in the spread of prions 

from one individual to another, which is the primary focus of this thesis.  The first recognition of 

maternal transmission was in sheep scrapie, and PrPres has been identified in maternal and fetal 

tissues of infected ewes and their lambs [46-51].  Evidence for maternal transmission of FSE was 

reported in 2009 when a cheetah cub born to a FSE-infected cheetah presented and was diagnosed 

with prion disease, even though she was housed in a TSE-free environment and fed TSE-free meat 

after separation from her mother post weaning [52].  In addition, a higher incidence of BSE has 

been reported in calves born to BSE-infected cows, though the methodology used at the time of 

those studies was unable to detect prions in pregnancy related tissues [53-55]. Finally, we have 

recently reported maternal transmission of CWD in experimental studies utilizing Muntjac deer 

[56] and in free-ranging elk naturally exposed to CWD [57].  

Susceptibility to prion diseases 

It is suspected that the acquisition of a TSE depends on PrPres acting as a template for PrPc 

conversion, and research has shown that amino acid sequence is a key factor in both susceptibility 

and resistance to certain prion diseases.  This has been well described in sheep, where 

polymorphisms at amino acid 136, 154 and 171 of the prnp gene seem to confer resistance or 

susceptibility to scrapie [58, 59]. Similarly, humans possessing a polymorphism at amino acid 129 

are more susceptible to variant Creutzfeldt-Jakob disease [60, 61]. These parameters, while neither 

conveying total susceptibility nor complete resistance, have also been defined in cattle for 

susceptibility to BSE, which include polymorphisms within noncoding regions of promoter 
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sequences for the prnp gene,[62, 63], and for deer (96 GS deer show less PrPres accumulation than 

96GG deer) and elk (132 MM display shorter incubation times than those with 132LM or 132LL)  in 

cases of chronic wasting disease (CWD) [64].  

It has also been established that some infectious prions are capable of crossing species 

barriers.  For example, exposure to BSE-contaminated meat products (presumably by oral 

ingestion) has been attributed to the development of variant form of Creutzfeldt-Jakob disease 

(vCJD) in humans [9], feline spongiform encephalopathy (FSE) in cats [65] and neurologic disease 

in zoo ungulates [66]. Several factors are likely responsible for the propensity of a TSE to cross the 

species barrier into a new host species.  According to recent research in the Kurt laboratory, ǲcross-

species prion transmission is influenced by (a) the sequence similarity between the cellular prion 

protein (PrPC) and the misfolded, aggregated conformer (PrPSc) and (b) the PrPSc conformationǳ 

[67]. These findings corroborate with the thought that PrPres acts as a template for prion 

conversion, but more research is needed to completely solve the question of species barriers.  

Clinical signs  

Clinical signs of TSEs include memory loss, lack of coordination, ataxia of the limbs, and 

invariably, death [1].  These signs are consistent with the distribution of the normal cellular form of 

the prion protein (PrPC), with the highest concentrations found in the central nervous system 

(CNS), particularly in neurons [68]. Although the mechanism is not completely understood, the 

accumulation of PrPres is correlated with neurotoxicity, causing characteristic clinical neurological 

features regardless of the species inflicted [69]. 

PrPres invasion and dissemination 

Two types of neuroinvasion have been hypothesized for the routes of prions invasion; 

neural and hematogenous. Neural neuroinvasion occurs when the agent travels along peripheral 

nerves until it reaches its destination, whereas hematogenous neuroinvasion involves the agent 

traveling in the blood [70].  Although TSEs can be transmitted via various routes, it has been 
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hypothesized that a majority of natural infections are acquired by ingestion of prion-laden 

materials [71, 72].  It is generally accepted that neuroinvasion involves amplification of infectious 

prions in lymphoid tissues (lymphoreticular system or LRS), followed by retrograde trafficking to 

the brain using autonomic nerves (i.e., neural neuroinvasion) [70]. Interestingly, the ability to 

locate pathogenic prions within the periphery of animals is variable. For example, CJD, scrapie and 

CWD prions can be found within the periphery of infected animals, including spleen and muscle, 

whereas BSE prions are not. BSE is limited to the central nervous system with very little lymphoid 

tissue involvement [73].  As previously mentioned, it has been established that prions are present 

in the blood of infected individuals, regardless of inoculation route [43-45, 74].  Transfusion of 

blood from prion-infected donors results in recipient infection and establishment of both neural 

and hematogenous prion transport [41-45, 74].  

Detection of prions 

In vivo bioassay 

The gold standard for detection of infectious prions is the bioassay, which involves 

inoculation of suspect tissues/bodily fluids into native hosts or transgenic mouse models over-

expressing host specific prion protein. For example, to assess CWD infectivity transgenic mice over-

expressing the elk prion protein are employed [75].  Although bioassay is a sensitive and powerful 

tool, studies are costly and time consuming.  

Conventional in vitro methodologies 

Conventional in vitro methodologies for the detection of prions are dependent upon the use 

of antibodies derived against the normal prion protein in combination with protease digestion 

permitting PrPres detection (Figure 2).  

Western blot 

Western blot analysis permits distinction between the cellular and aberrant forms of the 

prion protein; the normal cellular prion protein is ablated by PK digestion, whereas the aberrant 
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form is only partially digested, revealing a PK-resistant core of approximately 27-30 kilodaltons in 

size (Figures 1.2, 1.4) [76]. 

 

Figure 1.4.  Western blot analysis of PK-resistant material. 

Histopathology and immunohistochemistry (IHC) 

Histopathology and IHC analysis are common methods used to characterize the pathology 

caused by TSE disease and detect the biological marker associated with prions, PrPres.  IHC is 

dependent upon formic acid/PK digestion of the normal cellular prion protein and subsequent 

antibody specific detection to reveal PrPres deposition within tissues [77]. Common tissue pathology 

in the brain of TSE-infected hosts includes astrocytosis, neuronal degeneration, and widespread 

distribution of PrPres within the grey matter [78]. Example: PrPres deposition within the 

hippocampus of a Tg5037 mouse IC-inoculated with 30ul 1% CWD-positive brain homogenate 

(Figure 1.5).  The current means for diagnosis of CWD in North American cervid populations is IHC 

of lymphoid (tonsil and/or rectal) biopsies [79]. 
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Figure 1.5.  Immunohistochemical detection of PrPres. 

Inset is 4X, larger image at 40X (scale bar = 20 um).  PrPres deposits are indicated by rust color at 

locations of anti-prion antibody BAR-224 binding. 

 

Enzyme-linked immunosorbent assay (ELISA) 

Similar to western blot and IHC, ELISA relies upon PK-digestion, as well as the use of an 

antibody specific to cellular prion protein for detection. This assay can be used for antemortem 

diagnosis of prion diseases such as scrapie and CWD, but often requires a 2nd method (IHC) for 

confirmation [80]. 

Highly sensitive in vitro methodologies 

Serial protein misfolding cyclic amplification (sPMCA) 

sPMCA, developed by the Soto laboratory [81], is an established method for the detection of 

prions.  sPMCA is used when the amount of prions are below the limit of detection by conventional 

assays, and is similar to polymerase chain reaction (PCR) in that a minute quantity of material is 

amplified over several rounds, facilitating its detection.   Minute quantities of prions can be 

detected by demonstrating their ability to amplify normal cellular prion protein within a prion-
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naïve normal brain homogenate substrate (NBH).  Fluid or tissue homogenates containing minute 

quantities of prions (referred to as the seed) are added to NBH substrate and placed into a 

sonicator.  Sonication serves to break up growing amyloid fibrils, aiding in the exposure of seed to 

substrate throughout the conversion process. Several 24-hour rounds of this method can be 

performed, in each instance serially diluting the previous sample into a new source of NBH 

substrate [82].  The resultant material is analyzed by western blot for the presence of PK resistant 

prions (Figure 1.6). 

 

Figure 1.6.  Schematic representation of protein misfolding cyclic amplification. 

Adapted from Colby & Prusiner, Nature Reviews Microbiology 2011. 

 

Real-time quaking induced conversion (RT-QuIC) 

A second-generation amplification methodology, RT-QuIC, was recently developed by the 

Caughey laboratory [31].  The basis of RT-QuIC is similar to PMCA in that a prion seed is added to a 

naïve substrate, and is tested for its ability to generate conversion competent amyloid. RT-QuIC 

employs the use of a recombinant prion protein as the conversion substrate vs. animal derived PrPc 

in PMCA.  Recombinant prion protein substrate (rPrP) is readily produced in the laboratory and is 

based on host PrPc sequence, permitting questions to be asked about native host species conversion 

properties as well as those that occur across species barriers.   RT-QuIC uses a 96 well plate format 
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with shaking and a fluorescent dye Thioflavin T (ThT), which fluoresces upon its intercalation into 

growing amyloid fibrils [83]. This intercalation is detected in real-time using a BMG FLUOstar 

Fluorometer (Figure 1.7) [31].  

 

 

Introduction to this work 

Recent work in our laboratory has characterized maternal transmission of CWD in Muntjac 

deer [56], resulting in low offspring viability and clinical signs leading up to terminal clinical 

disease in offspring that survived post birth.  Interestingly, there are no confirmed cases of 

maternal transmission of the human prion disease, CJD, even though 125 children have been born 

to parents with the disease [84].  Scrapie has been highly characterized with regard to maternal 

transmission, and information gathered from those studies has led us to hypothesize that the infectious prion’s route of travel is likely through the placenta in utero and/or post birth via milk.  

In this specific study, we seek to identify whether CWD is maternally transmissible using a 

transgenic mouse model (whose placental structure is more similar to human than cervid [85]) and 

Figure 1.7.  Schematic of real-time quaking induced conversion assay. 

Shi et al.  Acta Neuropathol Commun 2013. 



 

 15 

to ascertain whether the transmission efficiency and features of the disease in offspring are similar 

to what we have previously reported.  Additionally, we aim to identify potential mechanisms by 

which this transmission may occur by collecting maternal/fetal tissues and milk from lactating, 

gravid, CWD-positive mouse mothers at different timepoints in gestation and clinical disease. 

Aim 1 

Identify whether CWD is maternally transmissible using this model and compare the 

transmission efficiency and features of the disease in offspring to what has previously been 

reported. 

Aim 2 

Characterize potential mechanisms by which this transmission may occur: either in utero, or 

through milk . 

Hypothesis 

Maternal transmission of CWD-prions occurs in the Tg mouse model, causing disease in the 

offspring.  Transmission of these prions either occurs in utero, via milk, or by both of these routes. 
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CHAPTER TWO:   

MATERNAL TRANSMISSION OF CHRONIC WASTING DISEASE RESULTS IN 

ASYMPTOMATIC CARRIERS 
 

 

 

Introduction 

 

Chronic wasting disease (CWD), the transmissible spongiform encephalopathy (TSE), or 

prion disease, of free-ranging and farmed cervids (deer, elk and moose) was first reported in a 

captive mule deer herd in a conjoined study between Colorado State University and University of 

Wyoming in 1967 [1]. CWD, the only TSE in a wildlife population, is the most readily transmitted of 

all the prion diseases and is now detected in free-range and farmed cervid populations in 24 states, 

2 Canadian provinces, and the Republic of Korea [2]. 

The presence of infectious prions in the tissues, bodily secretions/excreta (urine, saliva, 

feces and blood) in sufficient amounts to cause disease, in addition to shedding of these prions into 

the environment is thought to account for CWD’s high transmission efficiency [3-11].   Recently it 

has been recognized that transmission from mother to offspring may contribute to this facile 

spreading behavior [12, 13].  Although the mechanism of how this happens is yet completely 

understood, the extended asymptomatic TSE carrier phase, lasting years to decades, suggests that 

maternal transmission may have implications in the spread of prions.  Our work aims to identify 

whether prions are transmitted from a CWD-positive mother to her offspring via hemochorial 

placentation, and identify whether there are sufficient prions to establish disease in these offspring. 

We employed a transgenic mouse system that expresses the cervid prion protein 

Tg(CerPrP-E226) [14] to further understand the role of placentation in mother to offspring CWD 

transmission. Females were inoculated with known CWD-positive material and subsequently bred 

with CWD-naïve males at various timepoints post inoculation to investigate maternal/vertical 

transmission in an animal model with hemochorial placentation.  The resultant offspring were 
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monitored over a period of 500 days for clinical signs, after which time they were sacrificed and 

multiple tissues were analyzed for CWD-prion deposition. 

We have demonstrated that CWD-infected Tg(CerPrP-E226) females successfully breed and 

bear offspring irrespective to TSE disease stage. While offspring born to CWD-infected females did 

not exhibit signs of TSE disease and lacked detectible PrPres via conventional methodologies, 

conversion competent prions were identified in their brains and spleens by highly sensitive 

amyloid seeding assays.  Their lack of symptoms indicates covert prion transmission from mother 

to offspring, resulting in a potential silent-carrier status.  While maternal transmission of CWD in 

the transgenic mouse model does not directly reflect what is observed in the native host, the 

information gained from this work may provide insight into the potential for covert maternal 

transmission of prions in other TSEs, such as Creutzfeldt-Jakob disease. 

Background 

The transmissible spongiform encephalopathies (TSEs) or prion diseases are 

neurodegenerative disorders that are uniformly fatal, and can affect several species including cattle 

(bovine spongiform encephalopathy), sheep and goats (scrapie), domestic and nondomestic cats 

(feline spongiform encephalopathy), mink (transmissible mink encephalopathy), cervids (chronic 

wasting disease) and humans (Creutzfeldt-Jacob disease and Kuru).  Prion diseases are the result of 

the conversion of the normal cellular form of the prion protein (PrPc) into a disease-associated 

misfolded, aggregation-prone conformer (PrPres) [15]. CWD was first observed in a captive mule 

deer population in 1967 in Fort Collins, Colorado and was officially reported as a TSE in 1980 [1].  

Clinical disease signs include weight loss, polydipsia, polyphagia and gait impairment [1, 16, 17].  

The disease has since been identified in 24 states, 2 Canadian provinces, and the republic of Korea 

[2]. CWD’s rapid diffusion throughout cervid populations (CWD is now known as the most 
readily-transmissible prion disease) has sparked the curiosity of several researchers to investigate 
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mechanisms associated with the spread of this disease from one host to another. The presence of 

infectious prions has been demonstrated in tissues, bodily fluids, and excreta of CWD-positive 

animals, irrespective of clinical disease [4-11, 18]. These studies provide vast insight into the highly 

infectious nature of CWD.   We extend these studies with our current work, which aims to explore 

an additional means by which infectious prions may be acquired: maternal transmission. 

Maternal transmission (i.e., transmission from mother to offspring) has most notably been 

demonstrated in sheep scrapie, as infectious prions have been detected in maternal and fetal 

tissues harvested from scrapie-positive ewes, and are in sufficient quantity to infect and cause 

progressive clinical TSE disease in lambs born to infected ewes [19, 20].  Additional support for 

maternal transmission of prions has been documented in a cub born to a feline spongiform 

encephalopathy-infected cheetah queen.  The cub suckled on the mother (euthanized due to clinical 

TSE disease), and was subsequently held in a prion-free environment and fed a TSE-free diet.  At 

the age of 7, the cub presented with clinical signs consistent with TSE infection and was found to be 

FSE positive by histopathology upon termination.  The cub’s only known exposure to the infectious 

agent was that associated with her mother pre- and post-parturition [21]. Studies conducted using 

conventional assays with less sensitivity than current in vitro detection methodologies did not 

detect PrPres in maternal or fetal tissues harvested from Bovine spongiform encephalopathy (BSE) 

infected cattle.  Yet, epidemiological findings indicate a correlation between BSE-infected cow: calf 

pairs [22-24]. A more recent study performed in bovidized transgenic mice (BoTg) suggests that 

vertical transmission of BSE does occur in the transgenic model when females are bred at clinical 

stages in BSE infection. However, IC-inoculations of BoTg mice failed to show infectivity in milk 

collected from the BoTg mice [25].  In addition, we have recently reported that CWD maternal 

transmission can occur in experimentally-inoculated Reeves muntjac deer [12] and in free-ranging 

elk naturally-exposed to CWD [13].  
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The studies undertaken for this thesis were conducted to establish and characterize 

maternal transmission of CWD in a widely used transgenic mouse strain, Tg(CerPrP-E226)[14, 26].  

This work will further our understanding of transmission of CWD in a model with a hemochorial 

placenta, and by extension, maternal transmission for other prion diseases.  

Materials and Methods 

Study design 

Transgenic mice (TgCer(PrP-E226)) were intracranially inoculated with known CWD 

positive material, and bred at various timepoints in infection.  These dams were sacrificed at onset 

of severe terminal disease, characterized by hind limb ataxia, extreme hypersensitivity, inability to 

reach food or water, and a loss in body mass greater than 20 percent.  Their tissues were 

subsequently collected for PrPres analysis. Their offspring were monitored for 500 days or until 

onset of terminal clinical disease, followed by tissue analysis for CWD-prion deposition.  (Figure 

2.1.) 

 

Figure 2.1.  Experimental design. 
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Source of Tg(CerPrP-E226) 5037+/-   

Tg(CerPrP-E226) mice, developed by our long time collaborator Dr. Glenn Telling [26], were 

made to express the elk PrP coding sequence via site directed mutagenesis at codon 226 of the deer 

PrP gene (PRNP) via a Q to E mutation. This coding sequence was inserted into a MoPrP.Xho 

expression vector, followed by microinjection of the transgene into pronuclei of fertilized PrP 

knockout oocytes. PCR screening of genomic DNA identified three Tg(CerPrP-E226) founders: 

Tg5029, Tg5034, and Tg5037.  Each was mated to PrP knockout mice to produce hemizygous 

transgenic lines. PrP expression levels were estimated using immuno-dot blotting and western blot-

ting using the monoclonal antibody (MAb) 6H4. [14, 26] 

Genotypic confirmation of elk PRNP insert  

DNA was isolated from tail tips collected at weaning (Qiagen), and amplified using 

Polymerase Chain Reaction with the primer pair 158F TCATGGTGAAAAGCCACATAGG and 159R 

CATCCTCCTCCAGGTTTTGG [12]. 

Tg(CerPrP-E226) mouse breeding scheme:  

CWD positive IC-inoculated female mice (n=3/cohort) and CWD negative IC-inoculated 

female mice (n=3/cohort) were bred at specific timepoints (45 and 120 days post inoculation (dpi)) 

by exposure to intact naïve Tg(CerPrP-E226) male mice to assess the association of clinical disease 

status in maternal transmission of CWD. (Figure 2.1.) 

Tg(CerPrP-E226) mouse offspring cohorts:  

Offspring born to the above females were split into cohorts based on their time of 

conception post inoculation: Cohorts 1 and 2 include offspring born to CWD-positive and/or sham-

inoculated females; Cohort 1 conceived approximately 45 dpi, Cohort 2 conceived after 120 dpi. 

(Table 2.1.) 
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Table 2.1.  Cohort placement and their respective breeding data. 

 

Inoculation  

Tg(CerPrP-E226) adult female mice were inoculated via the intracranial (IC) route under 

isofluorane anesthesia with a 30 ul of 1% brain homogenate in 1X phosphate buffered saline 

(ThermoFisher Scientific) and a 2% penicillin/streptomycin (Gibco) antibiotic mixture.  The source 

of inoculum was brain material collected from previously inoculated muntjac deer that were 

confirmed positive (MJ 11/15) or negative (MJ 62/64) for CWD prions by western blot.  

Breeding practices 

Two to three Tg(CerPrP-E226) females were housed together without the presence of 

males for several weeks prior to breeding in order to stimulate the influence of pheromones and 

social factors on the estrous cycle.  By doing this, the diestrus cycle is prolonged and estrus is 

suppressed, a phenomenon known as the Whitten effect [27]. Two females were placed with one 

intact male to restart the estrus cycle at the specific breeding timepoint associated with their 

cohort.  Intact males remained with the females during pregnancy and parturition until weaning of 

the mice at 21 days post birth. 

Observation for clinical TSE signs in offspring 

Offspring born to CWD-infected and naïve Tg(CerPrP-E226) mice were weaned at 21 days 

post parturition and were monitored for 500 days.   Each mouse was weighed weekly until it was 
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determined that they were no longer actively gaining weight; at this point the mice were monitored 

weekly for the onset of TSE clinical disease and weighed monthly. Video recording was collected on 

a bi-weekly basis to compare behavior among cohorts. 

Euthanasia/tissue collection   

Animals were sacrificed upon terminal clinical disease, characterized by a 20% weight loss, 

or inability to reach water or food due to hind limb ataxia or 500 dpi.  Carbon dioxide inhalation 

was used for euthanasia procedures at a flow rate of 1.3L/min (IACUC Protocol #14-4890A.)  

Immediately upon euthanasia, blood samples were collected from the dam using cardiac puncture. 

Brain, salivary gland, tongue, heart, spleen, gastrointestinal tract, muscle, kidneys, adrenal glands, 

mammary, and reproductive tissues (uterine horns, ovaries, and vagina) were collected from dams; 

each tissue was divided, half for frozen storage and half for fixation in a periodate-lysine-

formaldehyde solution.  Fixed tissues were moved to 60% ethanol after 48 hrs. 

Analysis of tissues for CWD prions 

A battery of tissues including brain, tongue, salivary gland, heart, lung, liver, spleen, kidney, 

adrenal gland, gastrointestinal tract, bladder, ovary, uterus, vagina, and muscle were collected from 

offspring upon their sacrifice at >500 days post birth.  Tissues analyzed for PrPres deposition and/or 

amplification competent prions include brain and spleen by amplification methods described 

previously (PMCA, RT-QuIC.) 

Western blot 

Brain homogenates were made at a 10% (w/v) concentration in 1X phosphate-buffered 

saline (ThermoFisher Scientific) using a bead ruptor (Omni).  Homogenates were mixed with 

proteinase K (PK) (Invitrogen) at a final concentration of 1 mg/ml and incubated at 37°C for 30 

minutes, followed by 10 minutes at 45°C in a shaking thermomixer (Eppendorf).  Samples were 

mixed with Reducing Agent (10X)/LDS Sample Buffer (4X) (Invitrogen) at a final concentration of 
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1X, heated to 95°C for 3 minutes, then run through a NuPAGE 10% Bis-Tris gel at 135 volts for 1 

hour. Proteins were transferred to a polyvinylidene fluoride (PVDF) membrane with a Trans-Blot 

TurboTM blotting system for 7 minutes. The membrane was loaded into a pre-wetted SNAP i.d. blot 

holder (Millipore) then placed in the SNAP i.d. system (Millipore). Blocking buffer (Blocker Casein 

in TBS [Thermo Scientific] with 0.1% Tween 20) was added to the blot holder for 3 minutes 

followed by vacuum removal. Primary antibody BAR224 (Cayman Chemical) conjugated to 

horseradish peroxidase (HRP) was diluted in blocking buffer to 0.2 ug/ml and added to the blot 

holder for a 12-minute incubation. The antibody was pulled through the membrane via vacuum and 

was followed by three washes with 30 ml volumes of wash buffer (50% Blocker Casein in TBS, 50% 

1X Tris-buffered saline (TBS), 0.1% Tween 20 (Sigma) each).  Proteins were visualized by using ECL 

PlusTM (GE Healthcare) and a digital Gel-DocTM capturing chemiluminescent signals using 

ImageGaugeTM software. 

Immunohistochemistry 

Tissues were stored in a Periodate-Lysine-Paraformaldehyde (PLP) solution for a minimum 

of 48 hours, and switched to 60% ethanol prior to paraffin embedding. Paraffin-embedded tissues 

were cut into 6um sections and transferred to positively charged glass slides (Unifrost.) Slides were 

incubated at 37°C for one hour to remove paraffin which was followed by graded alcohol-

rehydration and a 40-minute immersion in 88% formic acid to digest cellular PrP.  The slides were 

then subjected to heat-induced epitope retrieval in a 2100-Retriever (Prestige Medical) in sodium 

citrate buffer (0.01 M sodium citrate, 0.05% Tween 20, pH 6.0) followed by incubation with 

primary antibody BAR224 (Cayman Chemical) at 1 mg/ml* and Envision+TM anti-mouse HRP 

labeled polymer (Dako) and rinsed twice with TNT (0.1M Tris (pH 7.5) + 0.15M NaCl + 0.05% 

Tween-20). Slides were incubated with AEC (3-Amino-9-Ethylcarbazole)Substrate-Chromagen 

(Dako), counterstained with hematoxylin and bluing reagent (0.1% sodium bicarbonate), and 

coverslipped with an aqueous mounting medium (Vector Laboratories) [28].   
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*In cases where detection of PrPres was not achieved using the protocol above, a Tyramide 

Signal Amplification (TSA) kit (Fisher Scientific) was used to amplify any signal potentially missed 

by the conventional IHC methodology.  This differs from the standard protocol in that a 30-minute 

PK-digestion at 1 mg/mL in a CaCl/Tris buffer was added following rehydration of the slides in 

combination with a shorter (5 min) 88% formic acid treatment.  Following addition of anti-mouse-

HRP (secondary antibody) as described above, all slides were treated with a Dinitrophenyl (DNP) 

Amplification Reagent (stock solution diluted 1:50 in amplification diluent), washed twice in TNT 

buffer, and incubated for 30 minutes in anti-DNP-HRP diluted 1:100 in TNB.  These additional steps 

are then followed by incubation with AEC and counterstained with hematoxylin and bluing reagent 

as described above. 

Preparation of normal brain homogenate (NBH) 

An 8.5% normal brain homogenate (NBH) in 0.1 M PBS buffer (pH 7.5, with 1 % Triton X-

100) was prepared from whole brains collected from naïve Tg(CerPrP-E226) mice no older than 4 

months of age.  These homogenates were then frozen at -80C, serving as a substrate for subsequent 

protein misfolding cyclic amplification (PMCA) experiments. 

Serial protein misfolding cyclic amplification (sPMCA) 

The initial round of sPMCA incorporated 30 ul of 10% tissue homogenate sample plus 50 ul 

of 8.5% w/v normal Tg(CerPrP-E226) brain homogenate (NBH) placed in individual 0.6ml thin-

walled PCR tubes (USA Scientific) containing two 2.38 mm and three 3.15 mm Teflon beads 

(McMaster-Carr). The PCR tubes were sealed with parafilm, vortexed for 6 seconds and subjected to 

one round of PMCA.  Each round of PMCA is equal to 288 cycles of sonication (Misonix) (10 seconds 

separated by 5 minute incubations) at 37°C over 24 hours. Seven total rounds of sPMCA were 

completed in duplicate per tissue by transferring 30 ul from the previous round into 50 ul fresh 

NBH (1:1.6 dilution). Standard CWD positive and negative assay controls, consisted of 10% 

homogenates made from brain harvested from Tg(CerPrP-E226) mice IC-inoculated with CWD-
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positive or negative muntjac brain.  These samples were incorporated into the first run at a 

different ratio than samples, 2 ul sample to 98 ul NBH, and subsequently treated like a sample in the 

following runs. The seventh round of sPMCA was analyzed by conventional PK digestion and 

western blot analysis as above.   

Sodium phosphotungstic acid precipitation (NaPTA)  

10 ul of a 10% (w/v) tissue homogenates were added to 90 ul of 0.1%SDS/1X PBS buffer, 

followed by a 7 ul addition of a NaPTA (Sodium phosphotungstic acid + MgCl2 6-hydrate) solution 

[29].  This mixture was incubated while shaking for 1 hour at 37°C in a thermomixer (Eppendorf), 

and spun at 14,000 x rpm for 30 minutes in a Beckman centrifuge at room temperature.  The 

resultant pellet was diluted into 10 ul of 0.1%SDS/1X PBS buffer prior to RT-QuIC analysis. 

Ethanol precipitation of brain homogenate for analysis by RT-QuIC 

A 10% (w/v) brain homogenate was added to 90 ul 100% ethanol, followed by a 5-minute 

incubation at room temperature and centrifugation at 14,000 x rpm for 5 minutes to form a pellet.  

The resulting supernatant was removed, and the pellet diluted into 100ul 1X PBS (ThermoFisher 

Scientific).  This mixture was then centrifuged at 14,000 x rpm for 5 minutes to form a pellet, and 

resuspended in 100 ul 0.1% SDS/1X PBS.  2 ul of this material was added to each well of a 96 well 

plate prior to fluorescent analysis (Hoover C et al. 2016, manuscript in preparation).   

Real-time quaking induced conversion assay (RT-QuIC) 

Recombinant truncated Syrian hamster prion protein (rPrP) containing amino acid 

sequences 90-231 was prepared as previously described [9].   RT-QuIC premixed reaction buffer 

containing 20 mM NaPO4, 1 mM ethylenediaminetetraacetic acid (EDTA), 320 mM sodium chloride 

(NaCl) was mixed with the 0.1 mg/ml rPRP, and 10 µM thioflavin T (Sigma).  95 ul of this mixture 

was added to each well of a 96-well plate. Plates were shaken in a microplate fluorometer (BMG) 

for 1 min (700 rpm, double orbital) followed by 1 min of rest for a total of 250 shake:rest cycles. 
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Fluorescence (450-nm excitation and 480-nm emission, 20 flashes/well) was recorded every 15 

min using a gain of 1,700.  

Rate calculations in RT-QuIC 

In order to determine the rate at which a given sample is able to convert rPrP, the threshold 

in which a sample is deemed positive is calculated by the following equation:  

Threshold = average baseline fluorescence + 5 X the standard deviation of baseline fluorescence 

The rate of conversion is defined by 1/time at which a positive sample crosses this threshold.  This 

was calculated for each sample and compared to negative tissue-matched controls, and statistically 

analyzed using the Mann-Whitney test. 

Results 

CWD-positive Tg(CerPrP-E226) females give birth to healthy offspring that are comparable in litter 

size and mortality to their CWD-negative cohorts. 

Although mouse breeding habits can be highly variable depending on genetic background 

and the age of the breeders [30], we found that the Tg(CerPrP-E226) females did not exhibit 

abnormal breeding behavior.  That is, we did not see a decline in successful breeding, litter size, or 

an appreciable increase in fetal mortality at time of birth (Table 2.1.)   

PrPres is readily identified in hippocampus and cerebellum of CWD-positive Tg(CerPrP-E226) females. 

To confirm successful inoculation and CWD-positive status in the dams, we assayed brain 

from each IC-inoculated female via several methods: western blot, RT-QuIC, and IHC. Using anti-PrP 

antibody (BAR-224) to locate PrPres in this area, we determined that the majority of PrPres 

deposition was located in the hippocampus and cerebellum (Figure 2.2A-F.)  We confirmed the 

presence of CWD prions using western blot analysis and RT-QuIC (Figure 2.2G, 2H.)  
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Conversion competent prions are present in the brain of offspring; detected by highly sensitive amyloid 

seeding assays. 

It has been shown that the concentration of PrPc is greatest in neuronal tissue [31] 

therefore we hypothesized that the most likely site of PrPres conversion and detection would be in 

the brain of these offspring.  Initial evaluation of these tissues by IHC revealed a lack of PrPres 

(Figure 2.3C, 3D.)  We thus concluded that prions might be below the limit of detection by 

conventional assays and further analyzed tissues by ultrasensitive amplification methods.  

Ultrasensitive amplification methodologies (PMCA or RT-QuIC ), where tissue harvested from 

prion-exposed hosts  is used as a seed to amplify conversion competent substrate (mammalian or 

recombinant PrPC, respectively) results in an increase in amyloid formation, permitting the 

detection of very low levels of amyloid or prions in the test sample.  In our study we detected PMCA 

amyloid conversion in 1/16 brains collected from offspring born to dams during early CWD 

infection, and in 1/16 brains harvested from offspring born to dams during late CWD infection 

(Figure 2.3E.) RT-QuIC revealed amyloid formation in the brains of 2/16 offspring born to dams 

during early CWD-infection, and in 8/16 offspring born to mothers exhibiting late-stage clinical 

CWD. (Figure 2.3F, 2.3G.)  
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Figure 2.2.  Confirmation of amyloid conversion activity (CWD prions) in brains of IC-

inoculated Tg(CerPrP-E226) dams. 

 

A-F) IHC staining with anti-PrP antibody BAR-224. Picture objectives are 40X with insets at 10X.    

A-C) Hippocampus.  A) Positive control. B) CWD-inoculated dam at >120dpi. C) Negative control.                     

D-F) Cerebellum.  D) Positive control. E) CWD-inoculated dam at >120dpi. F) Negative control. G) 

Western blot analysis of 10% brain homogenates from CWD-positive dams following PK digestion 

at 1 mg/ml.  H) RT-QuIC rate analysis of 0.01% brain homogenate.  Each group represents tissue 

collected from one individual. P values:  **** > 0.0001, *** > 0.001 ** > 0.01 * >0.05. 
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Figure 2.3.  Detection of amyloid conversion activity (CWD-prions) in brains of offspring.  

A-D) IHC staining does not detect CWD-prions.  Picture objectives are 40X (scale bar = 20µm) with 

insets at 4X.  A) CWD-positive control, cerebellum.  B) CWD-positive control, hippocampus.  

C) Offspring born to CWD-positive female bred at >120 dpi, cerebellum. D) Offspring born to CWD-

positive female bred at >120 dpi, hippocampus. E) Western blot of offspring brain following 7 

rounds of amplification by PMCA.  (+) indicates known positive, PMCA amplified brain material.   

F) RT-QuIC analysis of early offspring brain following etoh precipitation.  G) RT-QuIC analysis of 

late offspring brain following etoh precipitation.  

P values:  **** > 0.0001, *** > 0.001 ** > 0.01 * >0.05. 
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Offspring born to early and late stage CWD-infected mothers harbor prions in the spleen 

The lack of clinical disease in offspring born to CWD-infected dams prompted further 

exploration for prions in peripheral and lymphoid tissues.  In particular, previous studies have 

demonstrated the presence of PrPres in spleen [32, 33] tissue of asymptomatic carriers. Here we 

report that RT-QuIC analysis revealed the presence of conversion competent prions in spleen tissue 

of 2/14 offspring born during early CWD-infection and 3/11 offspring born during late CWD 

infection (Figure 2.4.) 
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Figure 2.4.  Detection of conversion competent amyloid (CWD-prions) in spleens of offspring. 

A) RT-QuIC analysis of spleens collected from offspring born to dams bred >45 dpi, following NaPTA 

precipitation of 1% homogenate.  Each group represents tissue collected from one individual. B) RT-

QuIC analysis of spleens collected from offspring born to dams bred >120 dpi, following NaPTA 

precipitation of 1% homogenate.    Each group represents tissue collected from one individual.   

P values:  **** > 0.0001, *** > 0.001 ** > 0.01 * >0.05. 
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Discussion 

Chronic wasting disease is undoubtedly one of the most difficult prion diseases to control, 

with transmission dynamics including direct dissemination from animal-to-animal, as well as 

indirect transfer via contaminated environments.  Prior to this study our laboratory demonstrated 

CWD maternal/vertical transmission in muntjac deer and a free-range elk population with 

epitheliochorial placentation.  Here we sought to establish an experimental model to further studies 

to assess the efficiency of prion maternal transmission via hemochorial placentation.   

The initial part of this study entailed observing offspring born to dams at different 

timepoints of CWD-infection; breeding the females at 45 dpi to serve as a pre-clinical state, and 

greater than 120 dpi as a timepoint in which the dams begin to display clinical signs, with potential 

to reach near-terminal disease around the time of weaning.  Our original hypothesis was that we 

would see similar characteristics within the mother: offspring pairs as those that have been 

observed in the cervid host.  For example, we previously reported that the incidence of morbidity in 

offspring born to CWD-positive muntjac does was increased by 60% when compared to CWD-

negative animals [12].  Conversely, in the Tg(CerPrP-E226) model, nonviability was not an issue— 

1 nonviable pup was born to a CWD positive dam and 1 nonviable pup was born to the negative 

control counterpart dam.  

From previous studies, we hypothesized that we would observe clinical disease associated 

with CWD in the offspring born to CWD-positive females, particularly those born at the later 

timepoints, as prion load increases throughout infection [9].  In these studies, offspring did not 

show consistent signs of clinical TSE infection, regardless of the  prion status of their mother at the 

time of breeding.  Offspring born to early and late stage CWD-infected dams survived well past the 

time-period in which a CWD-positive individual (by some form of inoculation) would succumb to 

disease, leading us to question whether we would find prions within their tissues.  
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The current ǲgold standardǳ for detection of prions within cervid populations is IHC of post-

mortem collected brain tissue.  Our inability to detect PrPres in brain tissue of offspring by this 

method indicated that the prion load in this tissue was below the limit of detection by conventional 

means.  Thereafter, we chose to pursue prion detection in tissues via amplification methodologies, 

including PMCA and RT-QuIC.   

Subsequent analysis by PMCA revealed that amyloid seeding activity was present in brain 

tissue of 1/16 offspring from each cohort born to CWD-positive females, indicating that there was 

no difference in prion distribution across litters born at early or late timepoints in infection.  This 

was a surprising result, given our previous hypotheses correlating prion load in the dam with the 

propensity for maternal transmission.  However, in attempts to confirm our PMCA result in a more 

recently developed amyloid-seeding assay, RT-QuIC, we found that there was an appreciable 

difference between cohorts. We determined through statistical analysis of RT-QuIC reactions that 

2/16 mice born to mothers during preclinical stages of CWD-infection had significant amounts of 

conversion-competent prions in their brains, compared to 8/16 offspring born to late stage CWD-

infected mothers.  From this work we are able to make two conclusions: 1) Stage of CWD infection 

in Tg(CerPrP-E226) dams does affect the propensity of prions to be maternally transmitted and  

2) RT-QuIC is more sensitive than PMCA for the detection of trace amounts of prions associated 

with asymptomatic carriers. 

The low levels of prions within the brain of these offspring led us to question if prions might 

be replicating within other tissues prior to neural-invasion. It is well established that subclinical 

carriers of prion disease often demonstrate detectable levels of PrPres within lymphatic tissues, 

including spleen [32, 33].  Taking this into account, we assayed spleen tissue collected from the 

offspring by RT-QuIC.  We detected amyloid seeding activity in a small number of spleens collected 

from each cohort; 2/14 from offspring born to preclinical mothers, and 3/11 spleens from offspring 

born to clinical mothers.  
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The noticeable trend within this data is that prions are transmitted from mother to 

offspring in this model, resulting in very low levels of detectable prions demonstrated in brain and 

splenic tissue of the offspring.  Amplification techniques, as well as methods employed to enhance 

detection/remove potential inhibitors, i.e., NaPTA and ethanol precipitation were necessary for 

prion detection. Furthermore, offspring born to CWD-infected mothers did not display clinical signs 

associated with TSE disease. This leads us to address several important questions with regard to 

prion detection and more importantly, transmission.   

Are current techniques used to assess prion-status in natural infection sufficient to identify 

prion-positive animals?  The answer is clearly no:  Our recently published work demonstrates that 

the incidence of CWD in elk localized to Rocky Mountain National Park is comparably higher when 

the animals are tested by PMCA (79%) vs. IHC (12.9%) [13].   Had we analyzed offspring tissues in 

the current study using only the methods that are used in the field today, we would have 

overlooked prion deposition entirely.  This being the case, how many prion-exposed animals in 

native habitats that display no indication of clinical TSE disease are asymptomatic carriers that 

harbor amyloid-seeding material? Given a longer period of time would these animals begin to show 

clinical signs, or would they continue to live their lives with no observable indication of their prion 

status? And finally, and arguably most importantly, what are the implications behind this ǲsilent-

carrierǳ status?  In other words, is there potential for these animals to shed prions into the 

environment unknowingly, and are these shed prions infectious?  

These studies lead us to examine other TSEs in which there is potential for maternal 

transmission that has yet to be characterized, and/or for those in which clinical TSE signs are not 

readily apparent.  For instance, a report published in 2009 by the National Creutzfeldt-Jakob 

disease Surveillance Unit stated ǲthere have been 125 children born to parents diagnosed with 

variant Creutzfeldt-Jakob disease, and nine of these children were born to mothers who were 

symptomatic at conception, birth, or within a year of clinical onsetǳ [34].  These children (now aged 
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10-52 years old) have not, to the knowledge of the authors, progressed to clinical vCJD.   The 

extended incubation period of prion diseases, including vCJD, can last decades or even the entire 

life span of an infected host.   It is therefore not possible to diagnose all prion disease based on 

presentation of symptoms.  In fact, according the findings of this current study, the children born to 

CJD-infected mothers may never display clinical disease.   The question remains, do they harbor 

infectious prions? 

In conclusion, we have demonstrated that maternal transmission occurs, albeit at low levels, 

in the Tg(CerPrP-E266) mouse model. Identification of PrPres in these tissues required a diligent 

search aided by amplification methods that are not currently used in the diagnoses of individuals 

naturally exposed to prions.  The mechanism(s) by which prions are passaged from mother to 

offspring remains unknown, although it appears that prion load and placental structure are 

variables that affect maternal transmission efficiency of CWD.  Finally, we have observed that 

offspring born to CWD-infected dams, while lacking the development of overt TSE clinical disease, 

harbor amyloid-conversion competent prions.  This data further supports the presence of a silent 

carrier population for all prion diseases, potentially including those that affect humans. 
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CHAPTER THREE: 

PLACENTAL STRUCTURE PLAYS A KEY ROLE IN THE EFFICACY AND OUTCOME OF 

MATERNAL TRANSMISSION OF CHRONIC WASTING DISEASE 

 

 
 

Introduction 
 

Transmissible spongiform encephalopathies or prion diseases, have been characterized as 

uniformly fatal in nature, to which no cure exists.  Thus understanding transmission of these 

diseases in hopes of prevention is a widespread goal of many prion researchers.  Previous research 

has characterized numerous sources of infectious prions, as well as several potential mechanisms 

by which these sources may cause disease.  In chapter two of this work, we identified the 

occurrence of mother to offspring transmission of chronic wasting disease within a transgenic 

mouse system that expresses the cervid prion protein Tg(CerPrP-E226).  In this study, less than half 

of offspring born to CWD-positive mothers harbored amplification-competent prions in brain and 

spleen tissues, yet did not display clinical signs of disease.   This differs from what is observed in 

maternal transmission of CWD in a cervid host, such as increased morbidity, and clinical signs 

eventually leading to terminal CWD disease in Muntjac deer offspring.    The intent of this current 

study is to continue studies of CWD transmission in an animal with a hemochorial placental 

structure (as opposed to the epitheliochorial placentation of cervids) to further our understanding 

of the mechanism(s) associated with covert transmission of prions from mother to offspring.  More 

specifically, we aim to assess potential routes of maternal transmission in the Tg(CerPrP-E226) 

model.  We hypothesize that there are two routes by which maternal transmission of prions may 

occur: in utero before birth, or post birth during nursing, should prions be present in the milk of 

infected dams.  

Tg(CerPrP-E226) females were inoculated with known CWD-positive material and bred 

with CWD-naïve males at various timepoints post inoculation.  We examined:  1) CWD prion 

transmission via milk by collecting milk during the post-parturition suckling period (i.e., up to 20 
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days post birth) for PrPres analysis and 2) in utero prion transmission by harvesting gestational 

reproductive and fetal tissues from mother: offspring pairs for the evaluation of CWD prions.   

In this study, we have identified prion deposition and amyloid seeding activity in several tissues 

collected from Tg(CerPrP-E226) mouse mothers, including brain, reproductive, mammary, and 

spleen. Although we identified amyloid conversion in tissues collected in utero, which include 

placenta, fetus, and fetal sac, seeding activity was not higher than negative control conversion in 

RT-QuIC in the majority of these samples.  This suggests low levels of prions in these tissues.  We 

were unable to detect prions in milk collected from CWD-positive transgenic dams, leading us to 

hypothesize that the route of TSE transmission to offspring is likely a combination of horizontal or 

environmental exposure, and/or very low concentrations of prions breaching the feto-maternal 

interface. 

Background 

Prion diseases, or transmissible spongiform encephalopathies (TSEs) are fatal 

neurodegenerative disorders that are caused by conversion of the normal cellular form of the prion 

protein (PrPc) into a misfolded confirmer (PrPres) that is prone to aggregation, resulting in neuronal 

death.  TSEs can affect several species including sheep and goats (scrapie), domestic and 

nondomestic cats (feline spongiform encephalopathy), mink (transmissible mink encephalopathy), 

cattle (bovine spongiform encephalopathy), cervids (chronic wasting disease) and humans 

(Creutzfeldt-Jacob disease and Kuru) [1]. The prion disease of cervids, chronic wasting disease 

(CWD), was identified in a captive mule deer population in 1967 in Fort Collins, Colorado and was 

subsequently reported as a TSE in 1980 [2].  This disease is characterized by weight loss, 

polydipsia, polyphagia and gait impairment [2-4], and since its discovery, has been recognized in 24 

states, 2 Canadian provinces, and the republic of Korea [5]. 

In fact, CWD is unique compared to other TSEs in its ability to rapidly transmit from host to 

host, which has led to increased interest in elucidating routes of transmission. Current knowledge 
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of CWD-prion transmission includes the prions deposition in tissues, bodily fluids, and excreta of 

CWD-positive animals, irrespective of clinical disease [6-14], which are sufficient to spread the 

infectious protein from one host to another. In this study, we aim to understand the mechanisms 

behind maternal transmission—assessing the likelihood of in utero transmission via a hemochorial 

placenta structure, and/or post parturition via prion-contaminated milk. 

Current knowledge of maternal transmission falls within two extremes depending on the 

TSE: 1) This route has been established, and thought to impact the number of prion-positive 

individuals in a population, or 2) relatively little is known. The majority of what is known about 

maternal transmission of prion diseases has been characterized in sheep scrapie, the oldest known 

TSE.  There is ample evidence of both pre- and postnatal transmission, especially given the lamb’s 
genetic susceptibility to scrapie [15-22].  Studies dating back as far as the seventies have shown 

that prions are in sufficient quantity within the placenta to infect and cause progressive clinical TSE 

disease in lambs [23].  More recently, Timm Konold and colleagues published a study 

demonstrating infectivity in milk collected from scrapie-positive ewes, followed by several studies 

that reported vertical transmission of infectious prions in milk prior to clinical symptoms in the 

ewe[19-22].   These studies also determined that milk is most infectious when ewes also have 

lentiviral mastitis, although this is not a requirement for successful transmission [21].  

More recently, maternal transmission of feline spongiform encephalopathy (FSE) has been 

implicated in dissemination of FSE-prions.  A cheetah cub was born to an FSE-positive cheetah 

queen, who  was euthanized five weeks later due to terminal TSE disease.  This study reported that 

the newborn cub was allowed to nurse on the mother until her euthanasia, and was subsequently 

held in a prion-free environment and fed a TSE-free diet.  The cub’s only known exposure to the 
infectious agent was that associated with her mother pre and post parturition.  7 years later the cub 

began to develop clinical signs consistent with TSE infection and was found to be FSE positive by 

postmortem histopathology [24].   
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Epidemiological findings have indicated a correlation between bovine spongiform 

encephalopathy (BSE) infected cow: calf pairs, although the assays used at the time did not detect 

PrPres in maternal or fetal tissue harvested from BSE-positive cows [25-27].  However, it is important to note that these studies were conducted in the 80’s with conventional assays that have 
been shown to have less sensitivity than current in-vitro methodologies that are used today [28, 

29].  A more recent study performed in bovidized transgenic mice suggests that vertical 

transmission of BSE does occur when females are bred at late-timepoints in BSE infection. 

However, IC-inoculations of milk into BoTg mice failed to show infectivity [30].   

Our laboratory has recently reported maternal transmission in experimentally-inoculated 

Reeves muntjac deer [31] and in free-ranging elk that are naturally-exposed to CWD [32].  In 

addition, we reported in Chapter two of this thesis that maternal transmission of CWD occurs in low 

levels using cervidized transgenic mice Tg (CerPrP-E226) [33] as an experimental model.  The aim 

of this work is to further characterize the role of maternal transmission in a transgenic host with a 

hemochorial placental structure, by analyzing tissues collected in utero at different timepoints in 

CWD-infection and gestation, as well as milk collected from CWD-positive dams.  

Materials and Methods 

Study design 

Transgenic females (TgCer(PrP-E226)) were intracranially inoculated with known CWD 

positive material, and bred to CWD-naïve males at various timepoints in infection.  Depending upon 

their respective cohorts, dams were sacrificed at different timepoints in gestation (early [post E7] 

or late [post E14]) and infection (early [45 dpi] or late [120 dpi]), or were repeatedly bred up to 

terminal clinical disease to facilitate serial milk collections ranging across various clinical stages of 

TSE disease.   In both scenarios, terminal tissues, including brain, spleen, reproductive (vagina, 

uterus, and ovaries)  and mammary tissue were collected at necropsy for analysis by ultrasensitive 

amplification/conversion assays (PMCA/RT-QuIC).  (Figure 3.1.) 
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Figure 3.1  Experimental design. 

Source of Tg(CerPrP-E226) 5037+/-   

Tg(CerPrP-E226) mice, developed by our long time collaborator Dr. Glenn Telling [34], were 

made to express the elk PrP coding sequence via site directed mutagenesis at codon 226 of the deer 

PrP gene (PRNP) via a Q to E mutation. This coding sequence was inserted into a MoPrP.Xho 

expression vector, followed by microinjection of the transgene into pronuclei of fertilized PrP 

knockout oocytes. PCR screening of genomic DNA identified three Tg(CerPrP-E226) founders: 

Tg5029, Tg5034, and Tg5037.  Each was mated to PrP knockout mice to produce hemizygous 

transgenic lines. PrP expression levels were estimated using immuno-dot blotting and Western 

blotting using the monoclonal antibody (MAb) 6H4 [33, 34]. 

Genotypic confirmation of elk PRNP insert  

DNA was isolated from tail tips collected at weaning (Qiagen), and amplified using Polymerase 

Chain Reaction with the primer pair 158F TCATGGTGAAAAGCCACATAGG and 159R 

CATCCTCCTCCAGGTTTTGG [31]. 
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Tg(CerPrP-E226) mouse breeding scheme:  

CWD positive IC-inoculated female mice and CWD negative IC-inoculated female mice were 

bred at specific timepoints (before and after 120 dpi) by exposure to intact naïve Tg(CerPrP-E226) 

males. 

Tg(CerPrP-E226) cohorts:  

IC-inoculated females were split into cohorts 1-5. Cohorts 1-4:  in utero study.  These mice 

were divided into cohorts based on time of conception post inoculation, and the week in gestation 

at which the mouse was sacrificed.  Cohort 1: n= 7 mice bred at early timepoint, average 82 dpi and 

sacrificed during the 2nd week of gestation.  Cohort 2:  n=10 mice were bred at early timepoint, an 

average of 73 dpi, and were sacrificed during the 3rd week of gestation.  Cohort 3; n= 9, bred at an 

average of 144 dpi, and sacrificed during the 2nd week of gestation, and cohort 4: n= 9 mice were 

bred at  an average of 190 dpi and sacrificed during the 3rd week of gestation. All cohorts were 

matched with negative control counterparts (Table 3.1.) Cohort 5: milk study.  N is variable, milk 

was collected from various CWD-inoculated mice and from negative mice of our breeding colony, as 

well as sham-inoculated mice. These dams were bred continuously from 45 days post inoculation 

(dpi) until they reached clinical terminal disease and thus were not split into timepoint-based 

cohorts. (Table 3.2.) 

Inoculation  

Tg(CerPrP-E226) adult female mice were IC- inoculated under isofluorane anesthesia with a 

30 ul solution composed of 1% brain homogenate in 1X phosphate buffered saline (ThermoFisher 

Scientific) and a 2% penicillin/streptomycin (Gibco) antibiotic mixture.  The source of inoculum 

was brain material collected from previously inoculated muntjac deer that were confirmed positive 

(MJ 11/15) or negative (MJ 62/64) for CWD prions using western blot.  
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Breeding practices 

Two to three Tg(CerPrP-E226) females were housed together without the presence of 

males for several weeks prior to breeding in order to stimulate the influence of pheromones and 

social factors on the estrous cycle.  This process prolongs the diestrus cycle and suppresses estrus a 

phenomenon known as the Whitten effect [35]. Two females were each placed with one male to 

restart the estrus cycle at the specific breeding time-point associated with each cohort.  Intact males 

used in the milk study remained with the females during pregnancy and parturition until weaning 

of the mice at 21 days post birth, whereas males bred with females that would be euthanized at set 

timepoints during pregnancy were removed once the timed-pregnancy was confirmed. 

Milk collection 

We collected milk at various timepoints throughout the course of CWD disease, ranging 

from 45-200 dpi.  These milk samples were collected from CWD-inoculated mice, as well as sham-

inoculated and naïve Tg(CerPrP-E226) females from our breeding colony.  Milking procedures were 

followed from our previously published methods [36], with the exception that we used isofluorane 

gas as an anesthetic instead of the ketamine/xylazine mixture described in the publication.  In 

short, we dosed the females with oxytocin (VETone), anaesthetized them using isofluorane gas, and 

manually collected milk using a P-200 pipette (Eppendorf).  

Milk optimization in RT-QuIC 

Prior to this study, our laboratory had not analyzed milk via RT-QuIC.  In order to ensure 

that the assay would behave properly in the presence of an opaque, somewhat viscous fluid, we 

surveyed naive milk in various conditions before testing milk collected from a CWD-positive animal.  

The conditions included seeding the reaction with 2 ul milk alone, or at varying ratios  (1:3, 1:1, 3:1) 

with known positive or negative brain homogenate from experimental deer and mice. (Figure 3.5 A-

C.)  All other conditions of the assay are as previously described. 
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Table 3.1.   In-utero harvest cohorts.   

Blue = sham-inoculated.  Pink = CWD-inoculated. 

 
 

 

Table 3.2. Milk collection cohort organization. 
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Euthanasia/tissue collection   

Cohorts 1-4 were sacrificed according to their placement in early or late infection/gestation 

timepoints.  Cohort 5 was sacrificed at terminal disease as characterized by a 20% weight loss, or 

inability to reach water or food due to hind limb ataxia. All mice were euthanized by carbon dioxide 

inhalation (flow rate of 1.3L/min) (IACUC Protocol #14-4890A.)  

Immediately upon euthanasia, blood samples were collected from the dam using cardiac 

puncture. Brain, salivary gland, tongue, heart, spleen, gastrointestinal tract, muscle, kidneys, 

adrenal glands, mammary, and reproductive tissues (uterine horns, ovaries, and vagina) were 

collected from each Tg(CerPrP-E226) dam.  Each tissue was divided, half for frozen storage and half 

for fixation in a periodate-lysine-formaldehyde solution.   

In utero necropsy procedures were modified slightly to avoid potential contamination of 

fetal materials.  Following sagittal sectioning of the uterine horns, a separate pair of surgical 

scissors and forceps was used to collect embryos and placentas encased in their individual yolk sacs 

and immediately transferred to a sterile surface for dissection.  Our ability to dissect these tissues 

and adequately separate them from other tissues differed across timepoints in gestation.  We were 

able to collect a more consistent set of tissues from embryos greater than E13. Overall, tissues 

include yolk sac, placenta, and whole fetuses. Half of the number of placentas and fetuses were kept 

for frozen storage, and the other half for fixation in a periodate-lysine-formaldehyde (PLP) solution. 

Fetal sacs were pooled and frozen. In cases where the total mass of an individual fetus or placenta 

was less than 0.4 grams, tissues were pooled. Fixed tissues were moved to 60% ethanol after 48 

hours in PLP.   

Analysis of tissues for CWD prions 

Tissues analyzed for PrPres deposition and/or amplification competent prions include brain, 

reproductive (ovary, vagina and uterus), mammary tissue, and spleen of Tg(CerPrP-E226) dams 
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and placenta, fetal tissue, and fetal sac from in utero by conventional and amplification methods 

described below. 

Western blot 

Brain homogenates were made at a 10% (w/v) concentration in 1X phosphate-buffered 

saline (ThermoFisher Scientific) using a bead ruptor (Omni).  Homogenates were mixed with 

proteinase K (PK) (Invitrogen) at a final concentration of 1 mg/ml and incubated at 37°C for 30 

minutes, followed by 10 minutes at 45°C in a shaking thermomixer (Eppendorf).  Samples were 

mixed with Reducing Agent (10X)/LDS Sample Buffer (4X) (Invitrogen) at a final concentration of 

1X, heated to 95°C for 3 minutes, then run through a NuPAGE 10% Bis-Tris gel at 135 volts for 1 

hour. Proteins were transferred to a polyvinylidene fluoride (PVDF) membrane with a Trans-Blot 

TurboTM blotting system for 7 minutes. The membrane was loaded into a pre-wetted SNAP i.d. blot 

holder (Millipore) then placed in the SNAP i.d. system (Millipore). Blocking buffer (Blocker Casein 

in TBS [Thermo Scientific] with 0.1% Tween 20) was added to the blot holder for 3 minutes 

followed by vacuum removal. Primary antibody BAR224 (Cayman Chemical) conjugated to 

horseradish peroxidase (HRP) was diluted in blocking buffer to 0.2 ug/ml and added to the blot 

holder for a 12-minute incubation. The antibody was pulled through the membrane via vacuum and 

was followed by three washes with 30 ml volumes of wash buffer (50% Blocker Casein in TBS, 50% 

1X Tris-buffered saline (TBS), 0.1% Tween 20 (Sigma) each).  Proteins were visualized by using ECL 

PlusTM (GE Healthcare) and a digital Gel-DocTM capturing chemiluminescent signals using 

ImageGaugeTM software. 

Immunohistochemistry 

Tissues were stored in a Periodate-Lysine-Paraformaldehyde (PLP) solution for a minimum 

of 48 hours, and switched to 60% ethanol prior to paraffin embedding. Paraffin-embedded tissues 

were cut into 6um sections and transferred to positively charged glass slides (Unifrost.) Slides were 

incubated at 37°C for one hour to remove paraffin which was followed by graded alcohol-
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rehydration and a 40-minute immersion in 88% formic acid to digest cellular PrP.  The slides were 

then subjected to heat-induced epitope retrieval in a 2100-Retriever (Prestige Medical) in sodium 

citrate buffer (0.01 M sodium citrate, 0.05% Tween 20, pH 6.0) followed by incubation with 

primary antibody BAR224 (Cayman Chemical) at 1 mg/ml* and Envision+TM anti-mouse HRP 

labeled polymer (Dako) and rinsed twice with TNT (0.1M Tris (pH 7.5) + 0.15M NaCl + 0.05% 

Tween-20). Slides were incubated with AEC (3-Amino-9-Ethylcarbazole) Substrate-Chromagen 

(Dako), counterstained with hematoxylin and bluing reagent (0.1% sodium bicarbonate), and 

coverslipped with an aqueous mounting medium (Vector Laboratories) [37].   

*In cases where detection of PrPres was not achieved using the protocol above, a Tyramide 

Signal Amplification (TSA) kit (Fisher Scientific) was used to enhance signal potentially missed by 

the conventional IHC methodology.  This differs from the standard protocol in that a 30-minute PK-

digestion at 1 mg/mL in a CaCl/Tris buffer was added following rehydration of the slides in 

combination with a shorter (5 min) 88% formic acid treatment.  Following addition of anti-mouse-

HRP (secondary antibody) as described above, all slides were treated with a Dinitrophenyl (DNP) 

Amplification Reagent (stock solution diluted 1:50 in amplification diluent), washed twice in TNT 

buffer, and incubated for 30 minutes in anti-DNP-HRP diluted 1:100 in TNB.  These additional steps 

are then followed by incubation with AEC and counterstained with hematoxylin and bluing reagent 

as described above. 

Preparation of normal brain homogenate (NBH) 

An 8.5% normal brain homogenate (NBH) in 0.1 M PBS buffer (pH 7.5, with 1 % Triton X-

100) was prepared from whole brains collected from naïve Tg(CerPrP-E226) mice no older than 4 

months of age.  These homogenates were then frozen at -80C, serving as a substrate for protein 

misfolding cyclic amplification (PMCA) experiments. 
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Serial protein misfolding cyclic amplification (sPMCA) 

The initial round of sPMCA incorporated 30 ul of 10% tissue homogenate sample plus 50 ul 

of 8.5% w/v normal Tg(CerPrP-E226) brain homogenate (NBH) placed in individual 0.6ml thin-

walled PCR tubes (USA Scientific) containing two 2.38 mm and three 3.15 mm Teflon beads 

(McMaster-Carr). The PCR tubes were sealed with parafilm, vortexed for 6 seconds and subjected to 

one round of PMCA.  Each round of PMCA is equal to 288 cycles of sonication (Misonix) (10 seconds 

separated by 5 minute incubations) at 37°C over 24 hours. Seven total rounds of sPMCA were 

completed in duplicate per tissue by transferring 30 ul from the previous round into 50 ul fresh 

NBH (1:1.6 dilution). Standard CWD positive and negative assay controls, consisted of 10% 

homogenates made from brain harvested from Tg(CerPrP-E226) mice IC-inoculated with CWD-

positive or negative muntjac brain.  These samples were incorporated into the first run at a 

different ratio than samples, 2 ul sample to 98 ul NBH, and subsequently treated like a sample in the 

following runs. The seventh round of sPMCA was analyzed by conventional PK digestion and 

western blot analysis as above.   

Sodium phosphotungstic acid precipitation (NaPTA)  

10% (w/v) tissue homogenates were added to 90ul of 0.1%SDS/1X PBS buffer, followed by 

a 7ul addition of a NaPTA (Sodium phosphotungstic acid + MgCl2 6-hydrate) solution [38].  This 

mixture was incubated while shaking for 1 hour at 37°C in a thermomixer (Eppendorf), and spun at 

14,000 x rpm for 30 minutes in a Beckman centrifuge at room temperature.  The resultant pellet 

was diluted into 10 ul of 0.1%SDS/1X PBS buffer prior to RT-QuIC analysis. 

Ethanol precipitation 

10 ul of undiluted milk was added to 90 ul 100% ethanol, followed by a 5-minute incubation 

at room temperature and centrifugation at 14,000 x rpm for 5 minutes to form a pellet.  The 

resulting supernatant was removed, and the pellet diluted into 100ul 1X PBS (ThermoFisher 
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Scientific).  This mixture was then centrifuged at 14,000 x rpm for 5 minutes to form a pellet, and 

resuspended in 100 ul 0.1% SDS/1X PBS (Hoover C. et al. 2016, manuscript in preparation).   

Real-time quaking induced conversion assay (RT-QuIC) 

Recombinant truncated Syrian hamster prion protein (rPrP) containing amino acid 

sequences 90-231 was prepared as previously described [9].   RT-QuIC premixed reaction buffer 

containing 20 mM NaPO4, 1 mM ethylenediaminetetraacetic acid (EDTA), 320 mM sodium chloride 

(NaCl) was mixed with the 0.1 mg/ml rPRP, and 10 µM thioflavin T (Sigma).  95 ul of this mixture 

was added to each well of a 96-well plate.  Plates were shaken in a microplate fluorometer (BMG) 

for 1 min (700 rpm, double orbital) followed by 1 min of rest. Fluorescence (450-nm excitation and 

480-nm emission, 20 flashes/well) was recorded every 15 min using a gain of 1,700.  

Rate calculations in RT-QuIC 

In order to determine the rate at which a given sample is able to convert rPrP, the threshold 

in which a sample is deemed positive is calculated by the following equation:  

Threshold = average baseline fluorescence + 5 X the standard deviation of baseline fluorescence 

The rate of conversion is defined by 1/time at which a positive sample crosses this threshold.  When 

possible, we took this a step further, normalizing samples to a plate control. This extra method is 

used in order to account for any differences caused by tissues being tested across several plates, 

fluorometers, and recombinant protein batches. Finally, either the raw rate or normalized rate was 

calculated for each sample and statistically compared to negative tissue-matched controls (when 

available) using the Mann-Whitney test. 

Results 

Clinical status of Tg(CerPrP-E226) females does not affect breeding patterns. 

We bred Tg(CerPrP-E226) at both early and late timepoints associated with CWD infection, 

and regardless of clinical disease progression, the mice had no problems establishing normal 

pregnancies. 
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In addition to CWD prions being localized to the brain of IC-inoculated Tg(CerPrP-E226) dams, 

conversion competent prions are also found in their spleens. 

Dams were inoculated through the intracranial route with a 1.0% homogenate of brain 

collected from muntjac deer (MJ 11/15) confirmed CWD-positive by western blot [31].  We 

detected amyloid seeding activity as early as 72 dpi in mice from Cohort 2, by RT-QuIC (Figure 3.2.)  

While it is possible that those prions are from the original inoculum, we were also able to identify 

conversion-competent prions in the spleens of the same females, indicating uptake of prions by 

peripheral lymphatic tissue.   (Figure 3.3.) 

  

Figure 3.2. Detection of amyloid conversion activity (CWD prions) in brains of IC-inoculated 

dams as early as 72 days post inoculation. 

Each group indicates a sample taken from one individual animal.  P values:  **** > 0.0001, *** > 

0.001 ** > 0.01 * >0.05. 
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Figure 3.3. Detection of amyloid seeding activity (CWD prions) in spleens of IC-inoculated 

dams as early as 72 days post inoculation. 

RT-QuIC rates of conversion in 1.0% spleen homogenates collected in dams as early as 72 dpi.  Each 

group indicates a sample taken from one individual animal. P values:  **** > 0.0001, *** > 0.001 ** > 

0.01 * >0.05. 

PrPres detected in reproductive and mammary tissue of IC-inoculated dams via amyloid seeding assays. 

 

We and others have shown that amplification methods such as PMCA and RT-QuIC are more 

sensitive in detecting minute quantities of prions; therefore, our inability to detect PrPres in 

reproductive or mammary tissues by conventional methodologies led us to analyze them using 

these highly sensitive amplification assays.  We identified amplification competent prions in 

reproductive tissue by PMCA (Figure 3.4A) and RT-QuIC (Figure 3.4B and C).  We also identified 

amyloid conversion activity by PMCA in mammary tissue (Figure 3.4A) but this particular tissue 

displayed high rates of spontaneous conversion in RT-QuIC (data not shown), complicating final 

analysis. 
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Figure 3.4. Detection of amyloid-conversion (CWD prions) in reproductive and mammary 

tissue collected from CWD-positive dams at various timepoints post inoculation.  

A) Western blot following 7 rounds of PMCA (+) denotes PMCA-amplified positive control. R=repro. 

M=mammary. B) RT-QuIC following NaPTA precipitation in reproductive tissues collected from 

dams as early as 72 dpi.  C) RT-QuIC rates of conversion following NaPTA precipitation in 

reproductive tissues collected at  > 120 dpi.  P values:  **** > 0.0001, *** > 0.001 ** > 0.01 * >0.05. 
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Conversion competent (CWD prions) were not found in the milk of CWD-infected  cervidized mice. 

We analyzed milk that was collected from mice at various timepoints in clinical infection, 

from approximately 45 to 190 dpi. Because we hypothesized that prion load would increase over 

time [9], we elected to first analyze milk collected at periods of time when the dams demonstrated 

overt clinical TSE disease.  We previously demonstrated that milk collected from negative control 

mice neither inhibited or caused spontaneous conversion in the RT-QuIC assay. (Figure 3.5.) 

Undiluted milk collected from CWD-infected dams  did not elicit seeding activity. (Figure 3.6A.)  To 

enrich prion content in milk samples we  preprocessed milk samples by PTA (phosphotungstic 

acid) precipitation [9, 10]. (Figure 3.6B), sodium phosphotungstic acid treatment (NaPTA) (Figure 

3.6C.) and ethanol precipitation. From these experiments we determined that milk does not harbor 

amplification/conversion competent prions. 
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Figure 3.5.  Optimization of milk for RT-QuIC. 

A) Seed behavior in RT-QuIC, including milk.  B) Varying ratios of sham-inoculated brain spiked into milk collected from sham-inoculated 

dams.  Negative milk does not illicit spontaneous conversion in the presence of brain material.  C) Varying ratios of CWD-inoculated brain 

spiked into milk collected from sham-inoculated dams.  Negative milk does not inhibit the RT-QuIC reaction.
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Figure 3.6.  Lack of amyloid conversion activity (CWD prions) in milk collected from CWD-positive dams. 

A) Undiluted milk added to the RT-QuIC reaction does not elicit amyloid seeding behavior.  B) Neither NaPTA nor PTA precipitation 

changes the amyloid seeding capacity of milk collected from CWD-positive dams.   

C) Ethanol precipitation of milk results in amyloid seeding of all samples, including negative controls. 
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Limited amyloid seeding activity is detected in tissues collected in utero at various timepoints in CWD 

infection and gestation. 

Our previous work with amyloid seeding reactions led us to the conclusion that RT-QuIC is 

more sensitive than PMCA.  Due to this finding, we evaluated tissues collected from in utero using 

RT-QuIC only. We detected amyloid seeding activity in fetal tissues harvested from 1/29 dams at 

>120 day post infection during the 2nd week of gestation (Figure 3.7).    

Placental tissue displayed lower amyloid seeding capacity than fetal tissue.  One tissue 

collected out of 21 tested had a statistically significant rate of amyloid conversion compared to the 

negative control (in some cases placenta was pooled if necessary to make a 10% homogenate.) This 

placenta was collected from a different dam than that of the offspring that showed positive seeding 

activity. (Figure 3.8.) 

We also analyzed pooled fetal sac tissue collected from in utero harvests.  The majority of 

this tissue was collected from pregnancies in the 3rd week of gestation.   Amyloid seeding activity 

seen was not higher than negative control conversion (Figure 3.9).
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Figure 3.7. Limited amyloid conversion activity (CWD prions) in fetal tissue collected from CWD-positive dams. 

A-B) Fetal tissues collected at late-timepoints in CWD infection, 2nd and 3rd week gestation, respectively. 1/17 tissues were determined 

statistically significant from the negative control. C-D) Fetal tissues collected less than 120 dpi, 2nd and 3rd week gestation, respectively.  

P values:  **** > 0.0001, *** > 0.001 ** > 0.01 * >0.05. 
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Figure 3.8.  Low levels of amyloid conversion (CWD prions) in placental tissue collected from CWD-positive dams.  

A) RT-QuIC analysis following NaPTA precipitation of placental tissue collected from dams at late-timepoints in CWD-infection. B) RT-

QuIC analysis following NaPTA precipitation of placental tissue collected at early-timepoints in infection.  1/10 tissues tested was 

determined statistically significant from the negative control.  P values:  **** > 0.0001, *** > 0.001 ** > 0.01 * >0.05. 
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Figure 3.9.  Absence of amyloid conversion activity in fetal sac collected from CWD-positive dams.  

A) RT-QuIC rate analysis following NaPTA precipitation of fetal sac collected at late timepoints in CWD-infection.  B) RT-QuIC rate analysis 

following NaPTA precipitation of fetal sac collected at early-timepoints in CWD-infection. 
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Discussion 

A notable characteristic of chronic wasting disease is its high transmission efficiency in 

nature.  Being the only prion disease in a wildlife population, efforts to control its spread have been 

sought.  Before prevention will be successful, it is necessary to further understand how the disease 

is spread from one susceptible individual to another.  Recent work has reported maternal/vertical 

transmission of CWD under experimental conditions —analysis of experimentally-inoculated 

muntjac indicated that transmission of prions occurs in utero, as demonstrated by PMCA amyloid 

seeding activity in tissues of unborn fawns [31].  Similarly, a study conducted to analyze cow: calf 

pairs in elk localized to Rocky Mountain National Park not only reported in utero transmission, but 

indicated that the incidence of CWD in this area may be much higher than previously thought, 

emphasizing the importance to identify the route by which maternal transmission is occurring [32]. 

Here we sought to establish an experimental model to further studies to assess the 

efficiency of prion maternal transmission via a hemochorial placental structure, as well as to assess 

the likelihood of prion transmission post birth through milk.   

Previous work implicating infectious milk as a potential route by which scrapie is spread to 

lambs from their scrapie-positive mothers led us to assess the likelihood of this occurring in CWD. 

We opted to analyze milk collected from CWD-positive females at timepoints spanning the duration 

of CWD disease.  In this study we were unable to identify prions in milk.  There are several 

explanations as to why this may be, including 1) Aberrant prion conversion requires normal 

cellular prion protein substrate for conversion [39].   The level of PrPc expression in mammary 

tissues of Tg(CerPrP-E226) compared to wild type mice is currently unknown. If PrPc is in minute 

levels within this tissue, this may explain why PrPres is not passed to offspring in milk.  2) The mice 

in our studies did not experience lentiviral mastitis, which is thought to contribute to the infectious 

potential of prions in milk due to their lymphoreticular association[19, 20, 22].  PrPres identified in 

scrapie-infected mammary tissue was localized using IHC, and in our hands PrPres is below the limit 
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of detection by this method.  Therefore, minute levels of prions without lentiviral infection to 

exacerbate the prion load may not be sufficient to cause disease.   

Our original hypothesis with regard to in utero transmission of prions is that the infectious 

proteins are transported to the fetus through the placenta.  We hypothesized that placental 

trafficking of prions would be associated with fetal-derived, highly mobile trophoblast cells that 

make up part of the placenta, and are responsible for nutrient and waste exchange between the 

mother and fetus [40]. Prions have been identified feto-maternal interface of scrapie-positive ewes 

[15], specifically localized to trophoblast cells, [41] and placental tissue has been shown to be 

infectious [23].  The trophoblasts’ role in nutrient delivery requires their ability to invade tight 

junctions between cells to travel through the maternal-fetal interface.  In hemochorial placental 

structure there is a direct bathing of fetal chorionic epithelium in maternal blood [40] and it has 

been well established that prions are present in blood of TSE infected humans and animals [11, 13, 

42-46].  Therefore, it may be possible that prion infected blood cells are  phagocytized by and travel 

with trophoblasts where they are delivered to the fetus. That being said, the probability of this 

occurrence may be dependent on the disease status of the mother, i.e., prion load in her blood, and 

whether the fetus is genetically susceptible to prion disease.  

One of the goals of this study was to identify similarities/differences in maternal 

transmission via use of a mouse model as opposed to the native host. Maternal/vertical 

transmission has been identified in ruminants containing epitheliochorial placentation, such as 

deer, elk, and sheep.  We originally hypothesized that hemochorial placentation of mice, which 

contains less layers of epithelium (three total) and direct bathing in blood, vs. ruminant 

epitheliochorial placentation (six total layers) with less direct contact to maternal blood, would 

provide a more efficient environment for transmission of prions across the feto-maternal interface. 

The results of this current study indicate that changing a variable such as placental structure 
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significantly lowers the probability of maternal transmission; therefore this research does not 

support our hypothesis.   

While we were surprised by this result, what we have found in mice corroborates with what 

is known so far in other species with hemochorial placentation, i.e., humans.  For instance a study 

published in 2010 identified PrPres in ovary and uterus in a woman who died of terminal variant 

Creutzfeldt-Jakob disease (CJD) [47].  Similar to what we show in this report, this discovery relied 

on techniques to increase detection of PrPres (NaPTA precipitation.)  Additionally, a bioassay study 

published in 1992 identified infectious prions in placental tissue and colostrum from a CJD-positive 

woman with clinical signs through the duration of her pregnancy [48].  In both of these studies, 

there were low levels of infectivity carried within pregnancy-related tissues, much like we have 

shown in this work.   

There are several aspects that may explain this.  According to ǲHost Defense and Tolerance: 

Unique Challenges in the Placentaǳ a layer of the placenta called the syncytium (possessed by both 

humans and mice) that protects the unborn fetus from pathogens [49].   In general, vertically 

transmitted human pathogens have found some way to evade this syncytium and/or breach it in 

some way.  For example, the histopathology of Plasmodium falciparum, the causative agent of 

malaria shows syncytiotrophoblast degradation [50]. This leads us to believe that perhaps the prion 

protein is reaching offspring via some other route.  Additionally, it is possible that the short 

gestation in mouse negatively impacts the potential for maternal transmission of prions.  The 

murine placenta is not fully developed until day 10 of pregnancy [51], and gestation is only 19-21 

days, providing very little exposure time to the prion pathogen if the prion were indeed capable of 

breaching the protective placental barrier.  

In summary, we have identified prions in brain, reproductive, mammary, and spleen tissue 

collected from experimentally inoculated Tg(CerPrP-E226) dams.  It appears that milk does not 

carry infectious prions, and most of the tissues collected in utero did not exhibit seeding activity 
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higher than that of negative control conversion.  This indicates that prions are likely in low levels in 

these tissues.  However, our previous work shown in Chapter two provides proof that repeated 

exposure to low levels of prions over time may contribute to the number of asymptomatic, silent-

carriers of prions within a given population.  Whether these silent carriers are capable of shedding 

prions, thus further perpetuating the cycle of prion transmission, remains to be seen.  The facile 

transmission of CWD would indicate that this is a definite possibility. 
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CHAPTER FOUR: 
MILK COLLECTION METHODS FOR MICE AND REEVES’ MUNTJAC DEER1 

 

 

 

Introduction  

Animal models are commonly used throughout research laboratories to accomplish what 

would normally be considered impractical in a pathogen’s native host.  Milk collection from animals 

allows scientists the opportunity to study many aspects of reproduction including vertical 

transmission, passive immunity, mammary gland biology, and lactation. Obtaining adequate 

volumes of milk for these studies is a challenging task, especially from small animal models. Here 

we illustrate an inexpensive and facile method for milk collection in mice and Reeves’ muntjac deer 

that does not require specialized equipment or extensive training.  This particular method requires 

two researchers: one to express the milk and to stabilize the animal, and one to collect the milk in 

an appropriate container from either a Muntjac or mouse model.  The mouse model also requires 

the use of a P-200 pipetman and corresponding pipette tips.  While this method is low cost and 

relatively easy to perform, researchers should be advised that anesthetizing the animal is required 

for optimal milk collection. 

Background 

Animal models provide insight into disease pathology that cannot be gained by in vitro 

analysis.   To provide the most efficacious results, it is important to use an animal model that is 

closely related to the disease and species of interest.  For example, the Reeves’ muntjac (Muntiacus 

reevesi), a small Asian deer [1, 2], and transgenic mice expressing the cervid prion protein 

(CerTgPrP) are useful animal models for cervid species [3].  Both species are polyestrous, allowing 

year-round breeding, and therefore a consistent source for pregnancy-related tissues and fluids to 

                                                           
1
 Kassandra Willingham, Erin McNulty, Kelly Anderson, Jeanette Hayes-Klug, and Candace 

Mathiason.  Milk Collection Methods for Mice and Reeves’ Muntjac Deer, in Journal of Visual 

Experiments. 2014. 
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study specific mechanisms in cervid biology. Studies of milk have a vast array of applications that 

are more simply (and inexpensively) accomplished in animal models than in humans. Researchers 

could investigate milk and colostrum as a potential source of 1) infectious disease transmission, 2) 

immunoglobulins transferred from mother to offspring in the development of passive immunity [4] 

and 3) lactoferrin, a protein found in human breast milk involved in passive immunity that 

researchers are currently attempting to commercially produce [5]. 

Collecting a substantial amount of milk from small animals can prove to be a difficult task. 

Rodgers proposed an approach to collect milk from rats [6], which was subsequently used in mice. 

DePeters and Hovey proposed two methods for milk collection, one using a manually-generated 

vacuum produced by a rubber pipette bulb attached to a Pasteur pipette, and a second requiring the 

construction of a milking unit, which is then attached to a vacuum source (such as a faucet) to 

harvest mouse milk [7].  Here we propose a simple, low cost method for collecting milk from both mice and Reeves’ muntjac deer, which requires only readily available laboratory equipment and 

basic technical skills.  Our method yields sufficient volumes of milk for various applications. 

Materials and Methods 

Mouse 

Separation of the dam from offspring  

1.1.1 Select the dam to be milked.  Choose a dam with a litter of 4 or more pups that is 8-12 

days post parturition to provide maximal milk collection— although collection is possible at any 

time point post parturition up to 21 days. 

1.1.2 Separate the dam from her litter at least 2 hours before milking.  

Note: Should one desire to milk more than one dam in a given time period, it is acceptable to house 

the separated dams in the same cage with adequate food and water supply. 
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Administration of oxytocin, anesthesia and eye lubricant 

1.2.1 Administer  2 IU/ kg of oxytocin intraperitoneally (IP). Oxytocin is a hormone that acts 

on the mammary glands of lactating females to stimulate the release of milk. Oxytocin can be 

acquired from a veterinarian.  

1.2.2 Administer an anesthetic mixture containing 80-100 mg/kg ketamine in combination 

with 5-10 mg/kg xylazine IP.  For example, a 10 ml stock anesthetic mixture could be prepared in 

advance for mice weighing approximately 30 g and would include 0.1 ml xylazine, 8.9 ml H2O, and 

1.0 ml ketamine.  0.25 ml total anesthetic will sedate a mouse of this size for approximately 20-30 

minutes, which should provide adequate time for milk collection. 

Note: To determine that the animal has been successfully anesthetized, gently place her on her 

stomach on a solid surface; she should not be moving her feet or attempting to rise to her feet if she 

is fully anesthetized.  In the case of a mouse not being fully anesthetized with the original dosage, 

the researcher may administer another ¼ or ½ of the original dose of the anesthetic mixture 

depending on the size of the mouse and/or level of sedation that the mouse has already achieved.  

However, this could increase the chance of an adverse reaction to anesthesia, and also may result in 

the mouse being more deeply anesthetized and/or anesthetized for a longer period of time.   

Note: If milking more than one dam, it is necessary to stagger oxytocin and anesthetic injections 

due to the short half-life of oxytocin and sedation times for ketamine and xylazine.   

1.2.3 Apply a small amount of eye lubricant to the corner of each eye and spread to prevent the mouse’s eyes from drying out while under anesthesia. 
Milk collection  

Note: The milk collection is most easily performed with two researchers: one researcher to hold the 

anesthetized mouse while manually expressing the milk (referred to as R1,) and one researcher to 

collect the milk (R2.) This method can also be performed with one person, if the mouse is secured 

on a flat surface to avoid harm. 
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1.3.1 R2 should be equipped with sterile alcohol prep pads, a P-200 pipetman, a clean 

pipette tip for each mouse, and a container to hold the milk, such as a 1.5 ml eppendorf tube or a 1.2 

ml cryovial.  

1.3.2 As the oxytocin begins to take effect, milk letdown will become visible in the mouse’s 
mammary area (see Figure 4.1A). R1: Unwrap a sterile alcohol prep pad and gently wipe the 

mammary area of the mouse to clean the area prior to milking.  Manually express milk from the teat 

by using the thumb and forefinger to gently massage and squeeze the mammary tissue in an 

upward motion until a visible bead of milk begins to form at the base of the teat.  

1.3.3 R2: Press the P-200 pipetman plunger to its first stop to release air out of the pipette 

tip and prepare for milk collection. 

1.3.4 R2: Position the pipette tip at the top of the drop of milk, and gently pull the milk into 

the pipette tip by slowly releasing pressure on the plunger.  Take care not to put the tip too close to 

the teat or the skin (see Figure 4.1B).  It is not necessary to completely release the plunger as this 

will pull the milk all the way to the top of the pipette tip and will make it difficult to expel the often 

viscous milk into the holding container.  

1.3.5 R2: Expel the milk into the container by using the thumb to press the plunger past the 

first stop (see Figure 4.1c).  To facilitate expulsion of small volumes, press the pipette tip against the 

side of the tube so that no liquid is lost. 

1.3.6 R1: Continue to manually express milk from each teat, moving in either a clockwise or 

counterclockwise direction so as not to skip any teats.  It is both acceptable and useful to come back 

to and continually express milk from the same teat should it produce more milk than another. 

 Anesthetic Reversal in the Dam 

1.4.1 In most cases, it is common for the dam to begin to begin to wake up during the 

milking process.  If this is not the case, place the dam in a cage indirectly underneath a heat source, 

such as a heated circulating blanket, until she begins to wake up. 
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Note: As the dam begins to wake up, keep close observation of her activity until she is able to walk 

about her cage on her own.   

1.4.2 Once the dam is moving about the cage without struggle, place her back into her 

original cage with her litter.  No ill effects have been noted with respect to the pups’ ability to feed 

after milk collection. 

 

Figure 4.1. Milk collection in the mouse. 

  

A) The dam’s teats become engorged with milk upon oxytocin injection.  B) Collection of milk from 

an anesthetized dam using a P-200 pipetman.  C) Ejection of milk into a 1.2 ml cryovial. 

 

Muntjac  

Separation of the doe from offspring  

2.1.1 Select the doe to be milked. Reeves’ muntjac deer generally give birth to one fawn (2).  

Milk the doe the day after birthing to allow the fawn opportunity to gain access to essential 

nutrients in colostrum. 

Note: The fawn usually hides and does not reappear during the procedure; separation of the 

mother-offspring pair is not necessary.  
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Administration of oxytocin, anesthesia and eye lubricant 

2.2.1 Administer 10 IU/kg of Oxytocin intramuscularly (IM). Oxytocin is a hormone that acts on the 

mammary glands of lactating females to stimulate the let-down of milk.  Oxytocin can be acquired 

from a veterinarian.  

2.2.2 Administer the BAM anesthetic IM11 containing butorphanol 0.45 mg/kg, azaperone 

0.25 mg/kg, medetomadine 0.07 mg/kg.   One dose of the BAM anesthetic mixture will sedate a 

muntjac for approximately 20-30 minutes, which provides ample time for complete milk collection.  

Another option for anesthetic is midazolam at 1-2 mg/kg, which will sedate a muntjac for 

approximately 10-15 minutes.  While this provides adequate time for milk collection, this 

anesthetic is metabolized more quickly than BAM and the animal may attempt to escape at the end 

of the shorter time period. 

Note:  Minimal response to pain, minor reflexes upon touching the ears, followed by the ability of 

R1 to hold the MJ without struggle indicates that the animal has been successfully anesthetized. 

Note:  In the case of a muntjac not being fully anesthetized with the original dosage, the researcher 

may administer another ¼ or ½ of the original dose of the anesthetic mixture depending on the size 

of the animal and/or level of sedation that has already been achieved.  However, this could increase 

the chance of an adverse reaction to anesthesia, and also may result in the muntjac being more 

deeply anesthetized and/or anesthetized for a longer period of time.   

2.2.3 Apply a small amount of lubricant to the corner of each eye and spread to prevent the 

muntjac’s eyes from drying out while under anesthesia. 

Milk Collection 

Note: The milk collection is most easily performed with two researchers; one researcher to hold the 

anesthetized muntjac in the lap while manually expressing the milk (Referred to as R1), and a 

second researcher to keep the muntjac’s head in a comfortable and safe position and to collect the 

milk (R2).  
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2.3.1 Depending upon the anesthetic used, milking should be performed either 1) in their 

pens to provide a safe place for them should they wake up during the procedure (midazolam-

induced) or 2) in a bedding-free anteroom to maintain cleanliness (BAM-induced). 

2.3.2 R1 and R2 should be equipped with ethanol-soaked gauze and several 15 ml conical 

polypropylene tubes to hold the milk. 

2.3.3 As the oxytocin begins to take effect, milk letdown will become visible in the muntjac’s 
mammary area. R1: Sanitize gloved hands and fingers, as well as the entire udder and each 

individual teat of the animal with the ethanol-soaked gauze. R2: Hold the muntjac’s head in a safe 
and comfortable position to allow ease of breathing and help prevent rumen regurgitation. Hold the 

collection tube close to the teat being milked without touching it to prevent potential 

contamination. 

2.3.4 R1: Express milk from one teat by using the thumb and forefinger to gently squeeze 

the mammary tissue in an upward motion until the teat is engorged with milk, and gently roll the 

milk out of the teat and into the tube that R2 is holding (see figure 4.2).  

Note: The milk comes out in a stream, so it is important for R2 to have the collection tube 

positioned so that little to no milk will be wasted. 

2.3.5 The muntjac’s udder is divided into quadrants. R1: Continue to express milk from each 

quadrant until the milk no longer flows easily. If milk cannot be expressed from one teat, express 

from all other teats before returning to the first. It is both acceptable and useful to come back to and 

continually express milk from the same teat should it produce more milk than another. 

Note:  It is common for midazolam-induced doe to begin to wake up during the milking process. In 

most cases, the doe will attempt to escape before all the milk has been expressed. Minor restraint is 

used in an effort to increase the milk yield; however the safety and comfort of both the researchers 

and the doe are equally important. 
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Figure 4.2. Muntjac milk is collected into a 15 ml conical tube. 

 

Anesthetic reversal in the doe 

2.4.1 Administer atipamezole at 2.5 mg/kg medetomadine subcutaneously for rapid 

reversal of BAM anesthetized doe.  

Note: With both types of anesthetic, it is necessary to maintain close observation of the doe until 

she is able to walk on her own without stumbling or falling, and is able to eat and drink without fear 

of aspiration or choking. No ill effects have been noted with respect to the fawn’s ability to nurse 
after milk collection.  

Results  

Mouse 

From our experiments, we have determined that it is possible to collect approximately 100-

400μl) of milk from one laboratory mouse, dependent on several variables. These variables include 

1) the amount of time set aside for collection, 2) the dose of oxytocin administered, 3) how many 

pups the dam is currently nursing and 4) the amount of time post parturition.  Our studies have 

shown that the highest yield is obtained when the dams are separated from their offspring for at 

least two hours, and at least 45 minutes to an hour is set aside per mouse for milking.  Maximum 

milk volumes were harvested 8-12 days post parturition using 2 IU/kg of oxytocin.  Our results are 
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mostly in accordance with other studies where litter size was positively correlated with milk yield 

[8]. (Figure 4.3.) 

Muntjac 

Although the amount of milk harvested from the muntjac was variable from day to day, we 

were able to collect 5 to 30 ml milk/dam/session, depending on the anesthesia used and/or time 

post parturition.  Muntjac deer are polyestrous; milk can be collected at various time points 

throughout the year [2] (see Table 4.1.) Midazolam-induced doe remained under anesthesia for as 

little as ten minutes, allowing for smaller volume collections (typically 5-30 ml), whereas BAM-

induced doe sustained a longer period of anesthetic effect (20-30 minutes), allowing complete milk 

expression (15-130 ml). Milk collections were discontinued when milk was no longer being 

produced in sufficient amounts by the doe, and the corresponding fawn was being nourished on a 

diet of mostly hay forage. 
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Figure 4.3.  Approximate milk yield based on litter size, and age of pups post parturition. 
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Table 4.1. Milk collection start and finish dates for lactating Reeves’ muntjac dams. 

 

 

Discussion 

Mouse 

There are several factors to take into consideration when collecting milk from a mouse, 

including 1) the amount of time set aside for collection, 2) the dose of oxytocin administered, 3) 

how many pups the dam is currently nursing and 4) the amount of time that has passed since 

parturition at the time of collection.  Using previous studies as guidelines, we set out to optimize 

conditions for milk yield. 

Previous research has directly correlated milk yield with litter size [9].  Unfortunately, litter 

size is a variable that cannot be controlled.  However, the time of milking post parturition can be 

controlled.  According to The Laboratory Mouse maximum milk secretion is at 8-10 days post 

parturition [8].  Our experience is in congruence with this statement. 

It has been shown that oxytocin plays an irreplaceable role in milk production post 

parturition [10].  Oxytocin doses ranging from 0.1 IU/kg (9) to 4 IU/kg (6) have been reported for 
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collection of milk from rodents [6, 7, 9].  We began our study by administering the lowest dose 

suggested, 0.1 IU/kg.  Using this dosage, the amount of milk produced by the mouse was too small 

to measure or collect.  Upon increasing the oxytocin dose to 2 IU/kg, milk yield was considerably 

higher at approximately 120 μl. Because we wanted to use the lowest dosage of oxytocin to achieve 

optimal milk collection, we did not administer doses higher than 2 IU/kg.  

Milk yield is also dependent upon the amount of time set aside for collection.  We have 

determined that a minimum of three hours is necessary for optimal collection—two hours for the 

pups to be separated from the dam and one hour for material preparation and collection.  Collecting 

milk from several dams in one session will decrease the overall time necessary to harvest a specific 

volume of milk i.e., two hours to separate pups, 30 minutes to setup materials and 20-30 minutes to 

collect milk from each dam.  Each dam must be monitored until they are awake before being placed 

back with their pups.  We have noted that the more time set aside for milking leads to higher milk 

yields, because the mouse can be milked until she regains consciousness.  

Instances do arise with animal models that will affect milk yield.  One common issue is the 

presence of blood or exudate in the milk of older dams that have been bred repeatedly and have 

large litters, or in dams that are nursing their first litter. Should this occur, we suggest 

discontinuing milk collection from that particular teat.  It is advisable to switch pipet tips at this 

time, and discard any exudate or blood. 

Researchers carrying out this method should also be aware that, as is often the case when 

using animal models, results vary (Figure 4.3). If a less than optimal amount of milk is collected in 

one session, it is preferable to repeat the procedure at a later time (e.g. 24-48 hours) rather than 

alter the experimental conditions to force milk release.  

Muntjac 

The volume of milk collected from Reeves’ muntjac dams was dependent upon the 

anesthetic used. Our initial anesthetic of choice was midazolam. Midazolam provided sufficient 
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sedation to allow restraint for short periods of time—i.e. if R1 had a calm disposition and could 

keep the muntjac calm, R2 could take over the milking to increase the yield before the muntjac 

would awaken— the safety and comfort of both animal and handler were of utmost importance and 

we abandoned the milking effort if we felt either was compromised. We discovered that muntjac 

doe quickly become tolerant to midazolam and that higher doses would be necessary after repeated 

exposure, making milk collection twice weekly increasingly difficult. 

The shortage of midazolam, coupled with a building tolerance, led us to research an 

alternative anesthetic. A mixture of Butorphanol, Azaperone and Medetomadine (BAM) is 

effectively used for the immobilization of white tail deer [11].  In our hands, the BAM cocktail 

provided sufficient anesthesia to allow collection of acceptable volumes of milk in a safe manner, 

with less drug tolerance after repeated use, and with better control in reversing the effects of the 

anesthetic.   

Some muntjac dams suffered from sensitive udders and/or were first-time mothers. These 

muntjac developed bruising on the teats during the milking process, and the milk flow slowed or 

stopped completely, prompting us to discontinue the ongoing session. Should this occur, one should 

use a more gentle milking technique in an attempt to prevent discomfort or bruising in the teats. 

Milk production appeared to wax and wane on several occasions.  Low milk harvests may be 

caused by 1) the fawns having nursed just prior to collections or 2) a decline in milk production due 

to the natural process of fawn weaning.  

While it can be a trying process to obtain a sizeable volume of milk from small animal 

models, our work illustrates that it is indeed a possibility for both mouse and muntjac models; 

neither requiring extensive skill nor deep pockets, simply perseverance. 
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CONCLUSION 

 

 

 

Through this work, we have gained valuable insight into the transmission of prion diseases, 

not only for chronic wasting disease, but into other prion diseases as well.  Specifically we have 

learned that—1) infectious prions do not negatively impact the ability of dams to breed with naïve 

intact males nor the outcome of their offspring with regard to litter size and survival; 2) offspring 

born to CWD-positive dams at early and late timepoints in disease do not exhibit clinical signs 

throughout their lifetime but may harbor conversion competent prions in their brains and spleens, 

contributing to a silent carrier state in asymptomatic populations of prion-impacted individuals; 3) 

CWD-positive dams at clinical stages of infection do not pass infectious prions into their milk during 

suckling periods; and 4) Low levels of prions are present in fetal sac, placenta, and fetus collected in 

utero from CWD-positive dams. 

It has long been speculated that maternal/vertical transmission accounts for the high 

transmission efficiency of CWD throughout populations. Our previous studies in CWD-transmission 

from cervid mothers with epitheliochorial placentation showed decreased viability of offspring, 

accompanied by a gradual onset of recognizable symptoms that eventually resulted in terminal 

clinical disease [1].  The work of this thesis shows that the placental structure of the infected 

individual may be an important factor in maternal transmission of prions: we report that in a CWD 

model with hemochorial placentation, very low levels of prions are detected in otherwise healthy, 

asymptomatic offspring born to CWD-positive mouse mothers. Correlated to our findings, infectious 

prions have been identified in pregnancy-related tissues, such as uterus, ovary, and placenta of CJD-

positive women [2, 3](who also possess hemochorial placentation), yet there has been no diagnosis 

in children born to symptomatic CJD-positive mothers [4]. Although there are obvious differences 

between mouse and human aside from their placental structure, there is one message that is 

completely clear from this correlation: diagnosis of TSE disease cannot rely on clinical symptoms 
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alone, as covert prion transmission may result in a small population of asymptomatic, silent prion 

carriers.  These silent carriers may or may not influence the increase of prion-positive species of 

any given population, but this information does stimulate new questions regarding the ever-

evolving knowledge of prion diseases.  For one, can we still define prions as uniformly fatal if there 

is a population of individuals carrying prions that may never succumb to clinical disease?  This 

remains to be seen. 
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FUTURE DIRECTIONS 

 

 

 

Naturally, the insight that we have gained through this work opens the door for a new 

subset of questions, providing new ways to assess and potentially elucidate these mechanisms once 

and for all.  The recent advent of a gene-targeted mouse species by our collaborator, Glenn Telling 

(unpublished) may prove to be a more suited model for the experiments conducted in this study.  In 

order to discern the potential for use in our future studies, our most immediate ǲfutureǳ work 

entails characterization of cellular prion protein expression in several tissues including 

reproductive, mammary, spleen and brain collected from this gene-targeted mouse, and comparing 

that back to expression patterns in FVB wild type, PrP-knockout, and transgenic mice, including the 

Tg(CerPrP-E226) mouse used in this study. 

We will also continue to assess and characterize maternal transmission in the native host, 

focusing on localization and infectivity of PrPres in tissues collected from cervid mother:offspring 

pairs, as well as gaining insight as to the culprit behind decreased offspring viability.  Additionally, 

we aim to elucidate novel mechanisms in transmission of CWD, including transmission through the 

germ line from a mother and father to their offspring.   
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