

THESIS

COORDINATE REPAIR AND MEDIAL AXIS DETECTION IN VIRTUAL COORDINATE

BASED SENSOR NETWORKS

Submitted by

Gunjan S. Mahindre

Department of Electrical and Computer Engineering

In partial fulfillment of the requirements

For the Degree of Master of Science

Colorado State University

Fort Collins, Colorado

Fall 2014

Master’s Committee:

 Advisor: Anura Jayasumana

 J. Rockey Luo

 Yashwant Malaiya

Copyright by Gunjan Mahindre 2014

All Rights Reserved

ii

ABSTRACT

COORDINATE REPAIR AND MEDIAL AXIS DETECTION IN VIRTUAL COORDINATE

BASED SENSOR NETWORKS

Wireless Sensor Networks (WSNs) perform several operations like routing, topology

extraction, data storage and data processing that depend on the efficiency of the localization

scheme deployed in the network. Thus, WSNs need to be equipped with a good localization

scheme as the addressing scheme affects the performance of the system as a whole. There are

geographical as well as Virtual Coordinate Systems (VCS) for WSN localization. Although

Virtual Coordinate (VC) based algorithms work well after system establishment, they are

hampered by events such as node failure and link failure which are unpredictable and inevitable

in WSNs where sensor nodes can have only a limited amount of energy to be used. This degrades

the performance of algorithms and reduces the overall life of the network. WSNs, today, need a

method to recover from such node failures at its foundation level and maintain its performance of

various functions despite node failure events. The main focus of this thesis is preserving

performance of virtual coordinate based algorithms in the presence of node failure.

WSNs are subject to changes even during their operation. This implies that topology of

the sensor networks can change dynamically throughout its life time. Knowing the shape, size

and variations in the network topology helps to repair the algorithm better. Being centrally

located in the network, medial nodes of a network provides us with information such as width of

the network at a particular cross-section and distance of network nodes from boundary nodes.

This information can be used as a foundation for applications such as network segmentation, VC

iii

system implementation, routing scheme implementation, topology extraction and efficient data

storage and recovery. We propose a new approach for medial axis extraction in sensor networks.

This distributed algorithm is very flexible with respect to the network shape and size. The main

advantage of the algorithm is that, unlike existing algorithms, it works for networks with low

node degrees.

 An algorithm for repairing VCS when network nodes fail is presented that eliminates the

need for VC regeneration. This helps maintain efficient performance for all network sizes. The

system performance degrades at higher node failure percentages with respect to the network size

but the degradation is not abrupt and the system maintains a graceful degradation despite sudden

node failure patterns. A hierarchical virtual coordinate system is proposed and evaluated for its

response to network events like routing and node failures. We were also able to extract medial

axis for various networks with the presented medial axis detection scheme. The networks used

for testing fall under a range of shapes and an average node degree from 3 to 8. Discussions over

the VC repair algorithm and the novel medial axis extraction scheme provide an insight into the

nature of proposed schemes. We evaluate the scope and limitations for VCS repair algorithm and

medial axis detection scheme. Performance of the VC repair algorithm in a WSN is evaluated

over various conditions simulated to represent a practical node failure events to gauge the system

response through routing percentage and average hop count over the network. We compare the

results obtained through our medial axis detection scheme with existing state-of-the-art

algorithm. The results show that this scheme overcomes the shortcomings of the medial axis

detection schemes. The proposed medial axis detection technique enables us to extract the

information held by a medial axis of a sensor network. The VC repair algorithm and the new

iv

medial axis extraction scheme perform very efficiently to make a WSN tolerant of node failure

events.

v

ACKNOWLEDGMENTS

 This successful completion of my thesis is a symbol of the excellence of people who

supported me and helped me enormously. The most important person behind this successful

attempt is my adviser, Prof. Anura Jayasumana. He gave me the opportunity of working with

him. He believed in my abilities and guided me so that I put my best efforts. He has worked with

me for my best upbringing as a father and as a teacher. He encouraged me during the tough times

of this journey. During my work with him, I learnt to be an independent and efficient researcher.

Thank you Prof. Anura Jayasumana, for believing in my abilities and giving me your valuable

guidance. I cannot thank Prof. Jayasumana enough for the lessons I have learnt from him in my

academic career and my life.

 I would like to gratefully and sincerely thank, other committee members: Prof. Rockey

Luo and Prof. Yashwant Malaiya. Thank you very much for giving me your time. I would also

like to thank Prof. Liuqing Yang, Prof. Edwin Chong, Prof. Ronald Sega, and Prof. Anthony

Maciejewski. I would like to specially thank Prof. Michael Kirby and Prof. Kimiharo Noguchi

for their guidance on the data processing skills I learned with them and changing my view

towards Mathematics and Statistics.

 My dearest gratitude to my colleagues: Vidarshana Bandara, Negar Musharaff, Ali

Bound and Chepchumba Limo, in the CNRL lab for sharing their time and guidance on my

work. Thank you for being there as my friends and my critiques. I would also like to thank

Dulanjalie Dhanapala, Pritam Shah and Yi Jiyang who helped me time to time with my academic

doubts.

vi

 There are several other important people that I would like to thank who have helped me

indirectly in my work with their constant support and encouragement they gave me. My

undergraduate professors, Prof. Sachin Takale and Prof. Surendra Badwaik, who have molded

me during the beginning of my career, believed in my abilities and guided me during the most

important years of my life. I am very thankful to them for their teachings and life lessons. My

heartiest gratitude to Abhishek Wadurkar, my dearest friend, for being there whenever I needed a

true friend and supporter. Thank you for motivating me to give my best. I would like to thank my

friends who have helped me in countless ways and have always been there for me in my good

and bad times, it would have been much more difficult without you all.

 Finally, and most importantly, I would like to thank my parents, and my beloved brother

Aniket for their love and support which always strengthen me and encourages me to achieve the

best I can. I dedicate my work to them. Thank you very much for being there!

vii

TABLE OF CONTENTS

List of Tables.. xi

List of Figures... xii

Chapter 1 – INTRODUCTION.. 1

1.1 Motivation and Problem Statement... 2

1.2 Contribution... 5

1.3 Outline... 7

Chapter 2 – RELATED WORK.. 8

2.1 On Node Failure and Virtual Coordinate Repair... 8

2.2 On Medial Axis Detection... 11

2.3 Summary.. 14

Chapter 3 – PERFORMANCE OF VIRTUAL COORDINATE REPAIR POST NODE

FAILURE... 16

3.1 Introduction... 16

3.2 Algorithm.. 17

 3.2.1 Assumptions... 19

 3.2.2 Pseudo code.. 20

 3.2.3 Example.. 22

3.3 Discussion on Node Detection and its Effects on the WSN System....................................... 24

3.4 Performance Analysis….. 25

 3.4.1 Testing Conditions.. 25

 3.4.2 Performance Parameters... 26

 3.4.3 Strengths and Weaknesses.. 36

3.5 Summary and Conclusions..….................. 40

Chapter 4 – MEDIAL AXIS DETECTION... 43

4.1 Introduction... 43

4.2 Algorithm.. 47

4.3 Performance Evaluation.. 53

4.4 Applications of Medial Axis in a WSN.. 58

4.5 Summary and Conclusions... 59

viii

Chapter 5 – SUMMARY, CONCLUSIONS AND FUTURE WORK....................................... 60

5.1 Summary and Conclusions... 60

5.2 Future Work.. 61

Appendix A – Simulation of Virtual Coordinate Repair Algorithm... 63

A.1 Network Establishment.. 63

A.2 Inserting Desired Node Failure Pattern.. 65

A.3 Reliability Check, Virtual Coordinate Update and Performance Evaluation......................... 69

A.4 Routing Function.. 78

Appendix B – Simulation of Medial Axis Detection Algorithm... 81

B.1 Network Connectivity Information... 81

B.2 Round 1... 82

B.3 Round 2... 84

REFERENCES.. 90

LIST OF ABBREVIATIONS... 95

ix

LIST OF TABLES

Table 3.1 - Notations used in text... 18

Table 3.2 - Performance parameters measured for system evaluation....................................... 27

Table 4.1 - List of notations used in text.. 48

Table 4.2 - Average node degrees for networks tested... 53

x

LIST OF FIGURES

Figure 1.1 - WSN deployed in a forest; (a) WSN deployed in a forest setting. Red nodes

 are damaged nodes, (b) Effective connected WSN due to node failure................................ 3

Figure 1.2 - Illustrations of medial axes for various polygons; (a) Medial axis of

 polygon with 5 corners; (b) Medial axis of polygon with 7 corners......................... 5

Figure 3.1 - Algorithm for VC repair scheme... 21

Figure 3.2 - Sample network with (black) normal, (red) failed, (pink) affected and (green)

 reliable nodes to show an example illustration of algorithm flow; (a)

 Random failure in Odd shaped network (b) Clustered failure in Face

 shaped network.. 22

Figure 3.2 - Communication cost for system repair measured as a percentage fraction of

 communication cost for system re-establishment; (a) Results for odd shaped

 network (b) Results for face shaped network.. 28

Figure 3.3 - Percentage routability for odd shaped network, A-N: from a set of affected

 nodes to a set of non-affected nodes, N-A: from a set of non-affected nodes

 to a set of affected nodes; (a) A-N: Random failure, (b) A-N: Mixed

 failure, (c) A-N: Clustered failure, (d) N-A: Random failure, (e) N-A:

 Mixed failure, (f) N-A: Clustered failure.. 31

Figure 3.4 - Percentage routability for face shaped network, A-N: from a set of affected

 nodes to a set of non-affected nodes, N-A: from a set of non-affected nodes

 to a set of affected nodes; (a) A-N: Random failure, (b) A-N: Mixed

 failure, (c) A-N: Clustered failure, (d) N-A: Random failure, (e) N-A:

 Mixed failure, (f) N-A: Clustered failure.. 33

Figure 3.5 - Sample node failure patterns for 4% node failure case; (a) Odd shaped

 network- Random failure, (b) Odd shaped network- Mixed failure, (c)

 Odd shaped network- Clustered failure, (d) Face shaped network- Random

 failure, (e) Face shaped network- Mixed failure, (f) Face shaped network-

 Clustered failure.. 35

xi

Figure 3.6 - Sample network with Type-1 isolation... 38

Figure 3.7 - Sample network with Type-2 isolation... 39

Figure 4.1 - Medial Axis definition. (a) a network with its medial points shown

 equidistant from closest boundary set; (b) (left) Rectangular network

 with the medial axis extracted... 44

Figure 4.2 - Medial Axis of the networks with 4 node connectivity with Definition

 1; (a) FACE network with the noisy medial axis; (b) ODD network

 with boundary noise affected medial axis, even row nodes are not

 detected as medial nodes... 45

Figure 4.3 - Algorithm for Medial axis detection... 52

Figure 4.4 - Various networks tested under the medial detection algorithm; (a)

 FACE network; (b) (left) ODD shaped network;(c) (bottom-right) U-

 shaped network;(d) WINDOW network... 53

Figure 4.5 - Medial Axis of the networks with 4 node connectivity. The left most

 column shows detected boundary nodes. Middle column shows Round

 1 results and rightmost column shows Round 2 results for the

 algorithm. WINDOW, FACE and ODD shaped networks..................................... 54

Figure 4.6 - Medial Axis of the networks with 8 node connectivity. The left most

 column shows detected boundary nodes. Middle column shows Round

 1 results and rightmost column shows Round 2 results for the

 algorithm. WINDOW, FACE and ODD shaped networks..................................... 55

Figure 4.7 - Stepwise Medial Axis Computation Cost of the Algorithm for various

 network sizes... 56

1

Chapter 1

INTRODUCTION

A Wireless Sensor Network (WSN) is a mesh of small, wirelessly interconnected sensor

nodes. They monitor environmental or physical conditions in their surroundings. The sensing

devices are interconnected to each other in large numbers in order to sense events, collect,

exchange and process data in a distributed fashion and make collaborative decisions.

The sensor nodes are deployed either in a random fashion or with uniform density.

Moreover, being dispersed over a wide area in the network, identifying the location of the node

becomes crucial so as to determine the source of the data or the destination location where the

data is to be routed. Localization is one of the most important research topics as the location

information is typically useful for coverage, deployment, routing, location service, target

tracking, and rescue.

While the Global Positioning System (GPS) is one of the most popular positioning

technologies which is widely accessible, the drawbacks such as it being of high cost and energy

consuming makes it difficult to install in every node. To reduce the energy consumption and

cost, only a few of the nodes which are called beacon nodes may contain the GPS modules [1].

The rest of the nodes could obtain their locations through localization method. The process of

nodes estimating the unknown positions within the network is referred to as node self-

localization. However, this goal of self-localization can also be obtained by using Virtual

Coordinates (VCs) for sensor node localization. Virtual coordinates provide a very efficient way

of localizing the sensors instead of using Geographical Coordinates (GC) which are much

heavier from the computation point of view. In VC based addressing, a set of anchor nodes are

2

selected as landmarks and relative distances from these set of anchor nodes, in terms of shortest

hop counts, are used to define a node’s virtual coordinates. Other than localization; operations

such as routing, boundary detection, topology estimation, data analysis and distributed decision

making can also be efficiently performed in a system with VCs. It allows the WSN to act as an

independent system placed in the physical surroundings. Therefore, VC based localization

schemes play a vital role in WSNs.

1.1 Motivation and Problem Statement

Sensor nodes, in general, have a limited battery life. They are aided to be alive until their

energy drains. This - discharge of energy - can be termed as node failure. WSNs are often

deployed in inhospitable environments. So node failure can also be caused by destruction of the

nodes due to external events. In addition to that, few links in the network can be failure prone

leading to dynamic changes in the network topology [2]. Links can behave as faulty links due to

erroneous communication or blockage of signal. The failure of nodes can cause improper

connectivity or even loss of connectivity for some nodes. As GCs can be obtained from devices

such as GPS, they automatically update themselves with any changes in the location of system

components. VCs, however, are sensitive to network connectivity and therefore have to be

updated by the network autonomously. Thus we need energy-efficient and fault tolerant

algorithms for network operation in such circumstances.

Consider a WSN deployed in a forest to monitor physical parameters such as humidity,

temperature and wind speed. The system has a set of anchor nodes and the localization is based

on the Virtual Coordinate schemes as discussed above.

3

Figure (1.1.a) shows an example of WSN deployed in a forest. The blue dots represent

sensors on the trees while the red dots represent sensors damaged by forest fire. Figure (1.1.b)

shows the actual remains of the connected sensor network.

Figure 1.1: WSN deployed in a forest; (a) WSN deployed in a forest setting. Red nodes are damaged

nodes, (b) Effective connected WSN due to node failure

A forest fire may destroy few of the sensor nodes from the WSN causing node failure.

These failed or dead nodes can be the only nodes constituting the shortest path for few other

nodes in the network. This implies that the dependent nodes lost their shortest routes to the

anchors due to node failure rendering their VCs no longer valid.

We need to update VCs when such failure event(s) occur. If outdated and wrong VCs are used

even after node failure, it might cause problems such as

 Routing failure: Loss of connection to a particular part of the network can cause

permanent blockage for routing in that area. Wrong VCs can also cause false local

minima and prevent routing beyond that point. Due to outdated VCs, now we might not

have the shortest path to the destination causing inefficient routing within the network.

4

Thus, instead of taking a backtracking to reach the destination, the message might get

stuck at a node which previously, was supposed to lead to the destination.

 Excessive energy consumption: As discussed above, few nodes can act as false sinks

and the packets may get stuck at such nodes. Usually, routing mechanisms attempt to

reroute the packet for a certain number of times or hops before calling the routing

unsuccessful. These attempts, however, waste a lot of energy. Thus, inefficient routing

can lead to unnecessary energy depletion of the sensor nodes causing quick failure of

such nodes.

 Wrong topology prediction: There has been work done to derive the topology maps

from VCs [3], [4], [5]. Affected VCs might lead to wrong topology results giving wrong

information about node neighborhood and connectivity.

 False data location: When GCs are not available, VCs can be used to estimate tentative

locations of wireless sensor nodes so that we can relate the data with the location. This is

useful for applications such as indoor navigation. Lack of reliable VCs will make us

correlate data with improper locations causing misinterpretation of available information.

On the other hand, a small modification in the network establishment algorithm for VC fault

detection and recovery can make and keep the network as efficient as possible instead of

rendering it useless. This motivated us to work on methods to update Virtual Coordinates in a

WSN system affected by node failure.

 Node failure and presence of faulty links in the network requires system repair for

graceful degradation of the network. The more we know about the network, the better quipped

we are to repair it in case of failure events. Medial axis of a network provides a perfect

foundation to extract maximum information about the network. Medial axis of a network can

5

also be termed as the skeleton of the network. Figure (1.2) gives an example of network skeleton

– medial axis of the network.

Figure 1.2: Illustrations of medial axes for various polygons; (a) Medial axis of polygon with 5

corners; (b) Medial axis of polygon with 7 corners

 Knowledge of the medial axis of a network can prove very useful for other network

functions that are carried out on WSNs. Some examples are network segmentation, routing,

establishing VC system, topology extraction and data storage.

1.2 Contribution

This thesis contributes in two areas; VC repair post failure events and medial axis

extraction.

In order to have a robust WSN, the WSN should be able to tolerate the failure of single or

multiple nodes and adapt to or recover from such events on its own in an efficient way such that

the VCs are updated to smallest correct values possible with minimum transfer of messages and

thus minimum investment of energy for the required amendments in the system. We present a

simple method to detect the nodes with incorrect VCs as well as repair the VCs of the affected

6

nodes in a network due to unpredicted node failure events. The algorithm is distributed and

works locally. The algorithm has been explained through a systematic pseudocode, illustration

on a sample WSN. We also study the effect of node failure on the system through a discussion.

Performance of the system has been meticulously tested on various systems for different node

failure percentages to test the relative communication efficiency and percentage routability of the

system before node failure, after node failure and after system recovery. The results show that

our VC repair algorithm works effectively to improve the system performance after node failure.

Although it is not always as good as the system before node failure, the algorithm helps the

system to degrade gracefully.

As compared to working towards developing an algorithm that tries to improve a single

application over the network; repairing the system so that it will recover the foundation of all the

applications helps to improve performance of all the system functions. This is what we had

aimed to achieve through VC repair algorithm. It has been tested and proved that VC repair helps

improve routability and communication efficiency; similarly the algorithm can be tested for other

applications.

 This thesis also presents a novel definition and thus a novel way to detect medial axis

nodes in a WSN. Using only the connectivity information of the network, we are able to extract a

connected medial axis for the network in not more than two rounds of algorithm. We propose a

distributed algorithm that works locally with very low memory requirements and low

computation cost. Medial Axis Detection algorithm for Low Degree networks (MALD) works

for low degrees as well as higher degrees. The computation cost lowers as the node degree

increases as shorter paths are available. MALD works for degrees as low as 3 ~ 4. It performs

better than other medial axis detection algorithms proposed till date, in aspects such as

7

communication cost, scope of the network shape and algorithm complexity. Being able to detect

medial nodes of a low degree network makes it possible to utilize these nodes in several

applications such as data storage, routing, topology generation and network segmentation; which

have further applications of them.

The focus of this thesis is on node failure recovery of the VCs for better system

performance. The algorithm provides significant improvement over the routability of the network

after node failure. It also helps to maintain graceful degradation of the network post node failure.

The algorithm has also been proved to be computationally efficient as compared to the

conventional network amendment method. Properties of VC repair algorithm such as low

communication cost, energy efficiency and low memory requirements contribute to increased

lifetime of the WSN whilst providing a foundation for better system performance.

1.3 Outline

 Rest of the thesis is organized as follows. Chapter 2 reviews the related work in the area

of node failure amendment techniques and in the field of medial axis detection in sensor

networks. Chapter 3 describes the algorithm for VC repair and analyses the performance of the

proposed algorithm under several node failure conditions. Then in Chapter 4, we discuss the

novel medial axis detection scheme and test the performance of the scheme for different network

shapes and sizes. Finally, Chapter 5 summarizes our work and lists the conclusions followed by

our future interests.

8

Chapter 2

RELATED WORK

WSNs rely on VCs for numerous functions. This is so because of the low energy

requirement and high information extraction capability of VCs. VCs, in a way, help to lengthen

the life time of sensor networks. Functions such as routing and localization are mainly dependent

on the information available from the VCs of the network nodes. However, network events such

as node failure and link failure hamper the performance of these function based protocols.

Hence, there is enormous amount of research work being carried out on protocols that are robust

towards node failure. WSNs are a great source of absorbing information about the desired

environment. But it is also important to know about the deployed network in order to maintain

and repair the network if required. Since this thesis is based on VC repair algorithm and medial

axis detection for a WSN, we will look at the work on node failure and medial axis extraction in

sensor networks. We will also briefly study their advantages and their shortcomings.

2.1 On Node Failure and Virtual Coordinate Repair

Node failure events can lead to two types of faults in the sensor network system. After

node failure, the network can get partitioned into two or more networks or the network might

still be connected through few of its links maintaining a single connected component in the

network. We concentrate on the cases where nodes unpredictably fail but the network does not

lose its connectivity as a whole. We refer to the definition of ‘fault tolerance’ as the ability of a

system to deliver a desired level of functionality in the presence of faults [8].

9

We have to detect and then repair the faults and prevent it from affecting the system

performance as much as possible. Basically there are two types of fault detection techniques:

self-detection and cooperative detection. The faults that can be detected by sensor nodes

themselves by sensing the battery level or lack of response on a particular link, can be termed as

self-detection of faults. On the other hand, if a large portion of the WSN is affected, it takes more

than one sensor node to work together to detect and diagnose the problem [9]. Usually, the

former type of fault detection is needed in WSNs.

A significant amount of work has been done in the field of WSNs in order to improve the

fault tolerance of the system and extend the overall life of the WSN. Fault recovery in 1-hop

WSNs is studied in [10]. The basic idea is to partition the sensor memory as data memory and

redundant memory. The data memory is used to store sensed data and data recovered from

failures of other sensor nodes. The redundant memory is used to store redundant data for future

recovery. When a node failure is sensed, the node with its data backup covers for the location of

the failed node and the data in the redundant memory is put into use as recovered data. The

recovered data is then distributed among the other nodes of the network. The technique works

with an overhead of (n+1)/n where there are n nodes in the network. A routing scheme that takes

failure of a single sensor node from the sensor network into consideration is presented in [9]. The

algorithm also works towards detecting and recovering from the loss by replacing the failed

node. The replacement sensor facilitates fault tolerance by performing the functions of a failed

node and reconnecting the lost sensors. However, this technique works only when the sensor

failure is sparse and not in cluster.

The routing algorithm discussed in [11] watches out for the radio activity to detect

failures when they occur. It then takes actions at the point of failure and works towards rerouting

10

the data through a different node if the second broadcast is not heard. It repairs the routing path

without starting over the routing from the source node. Node failure is simulated by considering

that each node has a 3% chance of suffering a failure and becoming unresponsive for a short

time. Thus, the failure is unpredicted but temporary.

Work which focuses on repairing the node failure by moving the nodes also exists.

Algorithms such as [12] and [13] provide an autonomous and distributed ways to recover from

node failure. The scheme presented in [12] provides a solution to reinstall connectivity among

the isolated patches of WSNs caused due to bulk node failure by populating the least number of

nodes possible at the location of failure event while [13] provides a repair mechanism of

damaged WSN topologies in the event of multiple node failure by moving one or few nodes

towards the failure location to restore the connectivity of the network. However, not all the

sensor nodes are equipped with the ability to move. Thus, these solutions are not applicable

when the sensor nodes are stationary.

A centralized solution for recovery from node failure is presented in [14] and [15]. A

fault management technique is proposed in [14] where a central node analyzes the network status

at regular intervals to detect faults if any. Although the approach can be useful in certain

applications, due to centralized nature of the mechanism, it consists of high messaging overhead

causing low energy efficiency. MANNA-a fault diagnosis using management architecture

proposed in [15], is similar to the central fault management scheme.

Work presented in [16], [17] and [18] is also directed towards connectivity restoration. In

the algorithm presented by us, however, we concentrate on detecting and repairing the node

failure in the system while the network is still a single connected component.

11

There are mechanisms that detect the node failure but do not work for the recovery. A

Cash fault detection scheme in [19] where faulty nodes are detected by gathering neighbor

information. It does not perform recovery. A distributed fault detection algorithm for WSNs is

proposed in [20]. Faulty nodes are identified based on comparisons between neighboring nodes.

A localized fault detection algorithm is evaluated in [21], it is used to identify faulty nodes. The

false positive rate is low but not zero.

There has also been work done towards improving the fault tolerance of event detection

algorithms. Event region recognition algorithm from [22] tries to prevent node failure from

affecting the sensor measurements and presents that the faults in decision making are reduced by

85 – 95% for node failure rates up to 10%. It assumes that the node failure is uncorrelated and

takes only random failure into consideration.

2.2On Medial Axis Detection

The medial axis formation starts with the basic step of boundary detection. There are

several algorithms implemented to detect boundary nodes in a WSN. The boundary recognition

technique [31] uses a threshold on the node degree to separate inner nodes from boundary nodes.

Whereas, [32] is a very simple algorithm that uses triangle area to determine whether a node is

located on the outskirts or not w.r.t. its neighbors. These algorithms work very effectively for

networks with constant density. There are other complex boundary recognition methods such as

[33] that achieve to detect inner and outer boundaries in 4 steps. The message complexity is high

and the algorithm is based on the assumption that each WSN has one or more inner boundaries.

However, this may not be true in many cases. The algorithm works for node degrees as high as

35, 25, and 16. The algorithm also performs for node degrees as low as 6 but the boundary

12

detection is not as accurate as it is for higher node degrees. Medial axis is a byproduct of this

algorithm but the computed axis has a lot of branches with nodes sparsely located on them i.e. it

is not definite.

MAP –Medial Axis based naming and routing Protocol - [34]defines medial axis as a set

of points which has two or more (instead or one) closest points in set F. where F is the set of all

the boundary nodes for which the Medial axis has to be found. The paper also mentions that this

type of medial axis is very sensitive to boundary noise and works towards eliminating it by

disregarding the unstable medial nodes whose closest boundary nodes are on the same boundary

and are within a small distance. However, the scheme only works for networks with at least one

inner boundary. For networks with no inner boundary, the second scheme can be applied but the

distance can vary with the shape of network. If the network has varying thickness, the ‘small

distance’ can be larger for wider areas and shorter for the sleeker ones in the same network. Thus

the protocol works only either for the networks with at least one inner boundary or for the

networks with uniform thickness. The lowest average node degree of the communication graph

for which the protocol gives significant results is 5.4067. However, the paper does not promise a

connected medial axis component.

CASE – Connectivity Based Skeleton Extraction - [35] presents a distributed skeleton

extraction algorithm (CASE) to compute a skeleton graph that is robust to boundary noise and is

accurate in preserving the original topology of the WSN. This is achieved in steps of 5 i.e. 1)

partition the boundary using its corner points, 2) identify skeleton points, 3) generating skeleton

arcs by connecting these points, 4) connecting these arcs and 5) refining the coarse skeleton

graph. The skeleton nodes are those whose difference of the absolute distances from two nearest

boundary segments is less than a threshold. If the group doesn’t form a connected component

13

then we increase the threshold. CASE gives better results than MAP by reducing undesirable

nodes. Where the algorithm gives good results, the performance depends on parameters H and

threshold. Besides, the maximum hop count between two nodes in the network - a parameter on

which further decisions are based - is computed intuitively. The message complexity for

computing the skeleton graph increases significantly by boundary segmentation process. The

boundary segmentation and coarse skeleton arc refinement process needs an end skeleton node.

This does not work for networks with smooth outer boundaries. The algorithm works effectively

towards skeleton extraction of networks with average node degree of 20.9. Distance

Transformed-Based Skeleton Extraction (DIST) [39] extends the scope of the networks for

which medial axis can be extracted. However, the extraction mechanism is very lengthy and

computation cost is high.

Work has been done to trace the dynamic changes in the network in [36]. A Dynamic

Medial Axis Model for Sensor Networks works towards abstracting geometry and topology of

the network while it changes dynamically with the help of a dynamic medial axis. The medial

axis is updated with any changes in the network. A mobile sensor is used to survey the network

field for changes; the medial axis is modified accordingly. The paper shows efficient results for

an 8 connected grid system.

 There is a lot of work done that emphasizes on the applications of medial axis of a sensor

network. Medial axis can be used to segment the network efficiently to partition at the critical

areas that are relatively thinner than the neighborhood regions. Shape Segmentation and

Applications in Sensor Networks [37], this paper utilizes Medial axis to segment the complex

shaped network into simpler pieces. This is done via boundary detection using [33], then medial

axis is formed via selecting the nodes that are equidistant from 2 or more boundary nodes.

14

Although segmentation is the main purpose of the paper, it relies mainly on proper medial axis

formation. The algorithm gives results for average node degree around 7 ~ 8.

Medial axis can also be used to establish an efficient VC scheme in the network [34].

This can further be used to route packets within the network. Efficient data storage is another

widely used application of medial nodes where medial nodes are treated as data centers and can

be used as backup in case of node failure events [38].

We compare the scope of our algorithm with that of CASE, MALD and DIST using two

examples. One is the Face shaped network with smooth inner and outer boundaries and another

is an Odd shaped network with only one outer boundary with sharp corners. The comparison is

between listed performance parameters of MALD and of CASE. We can also visually gauge the

perfection of the medial axis formed for each algorithm.

2.3 Summary

There has been work done on improving the performance of specific network functions in

WSNs but the effect of node failure on VCs and thus the WSN as a whole hasn’t been studied

yet. It is important to study the effect of node failure on VCs of the sensor nodes because when

GCs are not available, VCs is the only set of information available for data extraction and

processing. This being stated, it implies that for WSNs, where VCs are the foundation of any

function that has to be performed on the system, any effect on VCs leads to changes in the

performance of all the functions that are dependent on VCs of the sensor nodes.

Medial axis of a sensor network can provide us with a lot of information regarding the

network. Research on medial axis extraction has to be extended in such a way that medial axis

can prove to be useful to all types of networks. Even though today, we can extract a network

15

skeleton for networks with high node degrees, a method of medial axis detection is needed that

can hold true for widely used networks with grid structure and average node degree around 3 ~ 7.

This thesis addresses the impact of node failure on the VCs of nodes in the WSN. The

problem has been stated and a solution has been proposed for the problem. The performance of

the proposed algorithm under various scenarios is tested in Chapter 3. Moreover, it proposes a

novel method of determining medial axis nodes of a WSN, effective for low node degrees and

overcomes conventional problems in medial axis detection. This will be discussed and explained

in Chapter 4.

16

Chapter 3

PERFORMANCE OF VIRTUAL COORDINATE REPAIR POST NODE FAILURE

3.1 Introduction

 Wireless Sensor Networks (WSNs) are expected to connect a large number of smart

sensor and actuator devices, sense events, exchange data over wireless medium, make

collaborative decisions and even interact with the environment. A lot of these network functions

rely on Virtual Coordinates (VCs) of the sensor nodes when Geographical Coordinates (GCs) are

not available. VCs prove to be very efficient because of their low energy requirement and usage

in multiple applications.

However, VCs being based on the hop distances from anchor nodes, network failure

events affect the validity of VCs; thus, impacting the performance of the functions performed on

the system. A lot of work has been done in the areas such as routing, data storage and security in

WSNs but we observe that the performance of such functions over a WSN is affected by node

failure. Ref. [6] notes, for example, that Rumor Routing scheme maintains its routing

performance for up to 90% for 5% node failures. This means that if about 5% nodes in the

network fail, we can expect 90% of the queries that are delivered in absence of faults can still be

delivered successfully. However, for node failure percentages over 20%, the performance

degrades more severely. The protocols and algorithms may be designed to address the level of

fault tolerance required by the sensor networks. Environments with little or no interference can

allow the WSNs to have more relaxed protocols. For example, for a sensor network in a house

deployed to keep track of humidity and temperature levels, the fault tolerance requirements can

be low as the sensor nodes are not easily damaged or interfered by environmental noise.

17

However, sensor networks deployed in a battlefield for surveillance and detection need to have

high fault tolerance levels as the data is critical and sensor nodes can be destroyed by hostile

actions [7].

Thus the fault tolerance of the algorithms plays a vital role in the performance evaluation

of such techniques. If we could add the repair algorithm to such WSNs it could drastically

improve the performance of these techniques and the percentage of node failure that can be

sustained by the techniques while maintaining their graceful degradation can be pushed by a

large margin. Having fault tolerance increases reliability of the system and the overall life time

of the WSN.

3.2 Algorithm

We consider the anchor-based VC system, in which the VCs of a node correspond to the

shortest hop distances to a set of anchors. Anchors may be selected randomly, but a proper

anchor selection scheme provides better performance with a very low number of anchors [29].

Coordinate system is generated by the set of anchors flooding the network. When node failure

affects the shortest path from an anchor to a node, the corresponding virtual coordinate of the

node becomes invalid. This may not be a concern to coordinate system such as Topology

Coordinates [5] derived from VCs unless the fraction of nodes that failed is high. However, for

algorithms that work purely using anchor based VCs [30], invalid VCs can result in dramatic

failures. We present a Virtual Coordinate Recovery Algorithm (VCRA), which detects the node

failures and responds by recovering the VCs using a distributed adaptive approach. The

algorithm adapts naturally to recover VCs irrespective of the number of faults as long as the

network remains connected. When VCRA was tested for node failures causing network

18

partitions, the algorithm successfully detected affected nodes and recovered the VCs w.r.t. the

anchors accessible within the partition. VCRA is a distributed algorithm and works locally to

correct the VCs of nodes affected due to node failure in the network with minimum exchange of

messages.

This algorithm works for virtual coordinate recovery of nodes in a wireless sensor

network in the case of single or multiple node failure where the network is still connected as a

whole. It is a distributed algorithm and works locally to correct the VCs of nodes affected due to

node failure in the network with minimum exchange of messages.

There is a lot of work done in the area of localization schemes which establish various

VC systems [23], [24], [25], [26], [27], [28]. A scheme like VCRA can help not only to make

these systems robust towards node failures and link failures in the network but also to maintain a

graceful degradation of system performance after sudden node failures.

All the notations used in the text and the algorithm are listed in Table (3.1).

Table 3.1: Notations used in text

Notations Description

𝑁 Total number of nodes

𝑛𝑖 Node 𝑖

𝑀 Total number of anchors

𝐴𝑖 , 𝑖 = 1: 𝑀 Set of all anchors

ℎ𝑛𝑖𝑛𝑗
 Hop distance from 𝑛𝑖 to 𝑛𝑗

𝑉(𝑖) = [ℎ𝑛𝑖𝐴𝑗
, … , ℎ𝑛𝑖𝐴𝑀

] Node 𝑖′𝑠 VC

𝑟𝑛𝑖𝐴𝑗
 Reliability variable of node 𝑖 w.r.t. 𝑗𝑡ℎ VC

𝑅(𝑖) = [𝑟𝑛𝑖𝐴𝑗
, … , 𝑟𝑛𝑖𝐴𝑀

] ; 𝑟𝑛𝑖𝐴𝑗
∈ {0,1} Set of 𝑛𝑖′𝑠 reliability variables

𝐾(𝑖) Set of nodes in 𝑛𝑖′𝑠 1-hop neighborhood

19

We also list the definitions for terms used in the text.

 Virtual coordinates: the set of VCs 𝐕(𝐢) for 𝐧𝐨𝐝𝐞 𝒊

 Ordinate: a single VC of 𝐧𝐨𝐝𝐞 𝒊

 Reliable nodes: A node 𝒊 is reliable w.r.t. its ordinate If Ǝ at least one 𝐧𝐨𝐝𝐞 𝒑 ∈ 𝐊(𝐢)s.t.

for corresponding ordinate

{𝒉𝒏𝒑𝑨𝒋
= [𝒉𝒏𝒊𝑨𝒋

− 𝟏] 𝒂𝒏𝒅 (𝒓𝒏𝒑𝑨𝒋
= 𝟏) 𝒂𝒏𝒅 (𝒉𝒏𝒊𝑨𝒋

≠ 𝟎)} ; 𝒋 = 𝟏: 𝑴; 𝒊 = 𝟏: 𝑵 (3.1)

Is satisfied, then (ℎ𝑛𝑖𝐴𝑗
) is considered reliable and thus, (𝑟𝑛𝑖𝐴𝑗

= 1).

 Affected nodes: Node that cannot satisfy the reliability condition in Eq. (1), after node

failure event, are referred as ‘affected nodes’ or ‘unreliable nodes’.

 Non-affected nodes: Nodes that can satisfy the reliability condition in Eq. (1), even after

node failure event, are referred as ‘non-affected nodes’.

3.2.1 Assumptions

We make the following assumptions regarding the network.

1. The sensor nodes are stationary and cannot move.

2. Each node is aware of its neighbors’ VCs. This can be easily achieved by each node

exchanging the information with its neighbors and this is a part of normal VC based

algorithms.

3. Reliability variable for each ordinate is 0, i.e. Unreliable or 1, i.e. Reliable. The default

value of 𝑅 is 1.

4. Failure of nodes does not partition the network.

Node failure causes neighbor change for its surrounding nodes. This triggers the VC repair

algorithm. Thus, the system starts repairing itself as soon as the failure event occurs. This is

irrespective of the location of the failure event in the network.

20

3.2.2 Pseudocode

Following pseudocode explains the flow of the algorithm in brief:

1. Each node contacts its neighbors

2. Nodes that sense neighbor change initiate reliability check for each of their ordinates

3. All the neighbors of nodes that have sensed neighbor change mandatorily conduct

reliability check

4. Neighbors of affected nodes check for reliability

5. Repeat steps 3 and 4 until we find reliable node(s)

6. Reliable nodes inform their neighbors about its reliability.

7. Neighbors who need VC update request for 𝑉(𝑖)of reliable node

8. When the reliable VCs are received, affected node broadcasts its VCs updates its

unreliable ordinates and rechecks its reliability. Overwrite R=1

9. The recovered nodes act as reliable nodes and steps 6,7, and 8 are repeated until there are

no unreliable nodes

21

Input: Neighbors of 𝑛𝑖; 𝑛𝑗 ∈ 𝐾(𝑖)

Output: 𝑅(𝑖), 𝑉(𝑖)

Step 1: Node 𝑛𝑖 periodically contacts its neighbors.

Step 2: Node 𝑛𝑖 checks the reliability of each of its VCs when number of neighbors decrease

i.e. node failure occurs

A VC is reliable if and only if following condition in Eq. (1) is satisfied, then (ℎ𝑛𝑖𝐴𝑗
) is

considered reliable and thus, (𝑟𝑛𝑖𝐴𝑗
= 1)

IF Reliability condition is not met

(𝑟𝑛𝑖𝐴𝑗
= 0)

ELSE IF Reliability condition is met

 Inform all the 𝑛𝑗 ∈ 𝐾(𝑖)that 𝑛𝑖 is reliable

END

 END

IF number of neighbors change i.e. node failure occurs

 Inform all the neighbors to perform reliability check

END

Step 3: Node 𝑛𝑖 takes actions as per the received message

IF it is informed to check reliability

 Go to step 2

END

 IF Ǝ at least one 𝑛𝑝 ∈ 𝐾(𝑖)with reliable required ordinate (𝑟𝑛𝑝𝐴𝑗
= 1)and ∑𝑟𝑛𝑖𝐴𝑗

> 0

 Request for 𝑉(𝑝)

END

Step 4: When 𝑉(𝑝) is received, update 𝑉(𝑖) from the reliable node 𝑛𝑝

FOR 𝑗 = 1: 𝑀

 IF 𝑟𝑛𝑖𝐴𝑗
= 0

ℎ𝑛𝑖𝐴𝑗
= ℎ𝑛𝑝𝐴𝑗

+ 1;

 ELSE IF (ℎ𝑛𝑝𝐴𝑗
+ 1) < ℎ𝑛𝑖𝐴𝑗

ℎ𝑛𝑖𝐴𝑗
= ℎ𝑛𝑝𝐴𝑗

+ 1;

 END

 END

END of algorithm

Figure 3.1: Algorithm for VC repair scheme

22

3.2.3 Example

The algorithm has been formally written as shown in Figure (3.1).An example

explanation is presented to illustrate our algorithm with the help of a sample network. Figure

(3.2.a) and Figure (3.2.b) show two sample wireless sensor network after node failure. The

Figures also show the networks with node failure event and thus the nodes invalid with respect to

their virtual coordinates due to node failure. Various nodes in the picture are explained as the

algorithm progresses.

Figure 3.2: Sample network with (black) normal, (red) failed, (pink) affected and (green) reliable nodes to

show an example illustration of algorithm flow; (a) Random failure in Odd shaped network (b) Clustered

failure in Face shaped network

The black stars shown in the picture are normal nodes whereas the red stars are the failed

sensor nodes that do not function anymore. Thus they are not connected to any of its neighbors.

All the data related to these nodes are therefore, lost. However, these nodes are deleted after the

network and its VCs were established. Thus, failure of these nodes will affect its surrounding

nodes w.r.t. it’s VCs in some way.

23

When the nodes beside these deleted nodes sense a neighbor change event, they trigger

the reliability check. During the process of reliability check, a node X checks if it has at least one

node in its neighborhood for its every VC with VC of one unit lower than that of itself. If the

condition of reliability is met, then the node is declared reliable otherwise it is considered

unreliable.

Neighbors of all the nodes, who have experienced neighbor change, mandatorily check

for their reliability. Unreliable nodes inform their neighbors to have a reliability check and this

wave of messages propagates until each message finds a reliable node. Considering, for example,

that a network has five anchors, each node will have five VCs. If a node is affected with respect

to its third VC, then it searches for a node which is reliable w.r.t. its third VC. If such node is

found in the neighborhood, then the search stops there else the present node is declared

unreliable and the search is handed over to the neighboring nodes. These nodes in turn search for

nodes which are reliable w.r.t. their needs.

In Figure (3.2), the black stars surrounded by pink triangles are the affected nodes and the

black stars with green triangles around are the reliable nodes from which the VC repair algorithm

extracts the reliable VCs. These reliable nodes broadcast that they are dependable and thus the

affected nodes in the neighborhood approach the nearby reliable nodes to derive their updated

VCs by adding one unit to the VC of the green nodes. This one unit represents the one hop jump

from the reliable node to the affected node. Now after update, the node again checks its

reliability. When a node is updated from its nearby reliable node, it possesses all the correct VCs.

Thus, this node can be termed as reliable after update. Therefore, this node itself can act as a

reliable node for its neighbors. This process continues until any unreliable node in the network

needs correction.

24

3.3 Discussion on node failure and its effect on the WSN system

Let us consider the following notations:

{D}: Set of deleted nodes

{N}: Set of all the nodes in the network whose shortest path to any one of the anchors passes

through the deleted node(s)

{A}: Set of all the network anchors

If the deleted node {D} is part of the only shortest path for any other node {N} from at

least one anchor from {A} in the network, failure of the node affects all the nodes in set {N}.

This implies that neighbors of a node 𝑁𝑖 will be affected by its failure if and only if their

shortest path to any of the anchor 𝐴𝑖 ϵ {A} passes via𝑁𝑖.

This being stated, we can say that the nodes on concave turnings in a sensor network are

the nodes that can affect its surrounding nodes if deleted, as the concave bending boundary

serves as the shortest path to the nodes at the end of the curve. This also holds true for the nodes

that are aligned in horizontal or vertical lines with 𝐴𝑖 ϵ {A}. Whereas, nodes that are well inside

the boundary or the nodes that are on convex boundaries do not affect their surrounding nodes as

much if deleted.

As we reach outside the shortest paths from anchors to the affected nodes, we reach the

reliable nodes. These are the nodes which are used as the reliable source of VCs and thus the

affected nodes can derive their new correct VCs with the help of these nodes. After the node

failure event, nodes around it initiate the reliability check and reach the reliable nodes if any.

These reliable nodes broadcast that they possess the right VCs. Nodes in need request for the

VCs and so the reliable nodes transmit their VCs. After repairing the VCs, the corrected nodes

25

now become new reliable sources for inner affected nodes. This process continues until all the

affected nodes are corrected and are made reliable.

Thus, we can estimate that;

 𝑀𝐴 = 3 ∗ (𝐵 + 𝑈) (3.1)

Where; 𝑀𝐴: Number of messages required to update VCs using this algorithm

𝑈:Number of affected nodes

𝐵: Number of reliable nodes around the boundary of affected nodes

Thus, we can see that the message complexity of the algorithm is only of the order𝑂(𝐵 +

𝑈)i.e. the number of nodes affected and the reliable nodes. This makes the algorithm

independent of network size.

3.4 Performance Analysis

We measured the system performance with the help of simulations, implemented in

MATLAB 8.1. As we are looking for the algorithm to repair the dead nodes, we simulate the

system for a range of node failure percentage. Starting from a low number as 1% we proceed in

with multiples of 2 and check the system response for 2%, 4%, 8% and 16% node failure. We

stop at 16% as beyond this amount, node failure mainly causes network partition which is not the

present scope of this algorithm. System responses through 1% to 16% node failure have been

listed and explained.

3.4.1 Testing conditions

As nodes can fail in any pattern, we try to cover these situations under three cases. The

system has been simulated for random node failure, clustered node failure and mixed node

26

failure. Although random and clustered node failure are the patterns for which the WSNs are

usually tested for in most of the related work that has been done; in reality nodes might not fail

in a particular pattern. Thus, we study the third type i.e. mixed node failure.

The types of node failure patters are as follows:

 Random node failure:

Nodes are randomly selected for failure by the algorithm. The deleted nodes then have no

connectivity with its previous neighbors. After a node is deleted, the next selection is

completely independent from the previously selected node.

 Clustered node failure:

Nodes are deleted in a cluster. Initially, a random node is selected. Neighbors of the

deleted node are stored and here after, nodes are selected for failure only from this pool

of neighbors. This continues until we reach the desired number of failure percentage.

 Mixed node failure:

Half of the nodes to be deleted are randomly deleted and half are deleted in cluster.

3.4.2 Performance parameters

The performance of the system has been observed at following instances:

1. Before node failure: (B)

2. After node failure but before VC update: (AB)

3. After node failure and after VC update: (AA)

Hence forth, we will refer to these instances using the initials listed in front of them.

Two shapes of WSNs have been tested for all the conditions listed above. The networks are

shown in Figure (3.2). Although the chosen networks have been tested so as to observe the

27

performance of this algorithm for concave boundaries, dispersed anchor nodes and presence of

physical voids in the network, other networks can also be tested. The parameters involved in the

performance measurement process are listed in Table (3.2).

Table 3.2: Performance parameters measured for system evaluation

Total nodes in the network before failure S

Total nodes in the network after failure N

Total anchors in the network M

Nodes deleted D

Affected nodes U

Reliable nodes found after node failure B

Messages required to update the VCs using

VC repair algorithm
MSG

Messages required for conventional flooding

to re-establish the system
C

Message overhead (MSG/C)*100

Routing from all Non-affected to each

Affected node
N-A

Routing from all Affected to each Non-

affected node
A-N

Average percentage routability in one entire

set (N-A or A-N)
Ravg%

Average hops needed for routing in one entire

set (N-A or A-N)
Havg

Average of shortest hop count needed for

routing in one entire set (N-A or A-N)
Hs

Normalized hop count Havg/ Hs

NOTE: the highlighted parameters have been plotted

Parameter 1: Efficiency (communication cost)

We measure the efficiency of the algorithm by measuring the communication cost of

updating VCs. It indicates the ratio of cost of updating through VC repair algorithm to that

through system re-establishment.

28

 𝑪𝒐𝒎𝒎𝒖𝒏𝒊𝒄𝒂𝒕𝒊𝒐𝒏 𝑪𝒐𝒔𝒕 𝑹𝒂𝒕𝒊𝒐 = (
𝑴𝑺𝑮

𝑪
) ∗ 𝟏𝟎𝟎

(3.2)

Communication cast if defined in Eq. (3.2). Where; 𝑀: Number of transmissions

occurred during the entire process of VC recovery and 𝐶: Total transmissions required to re-

establish the system through flooding. For instance, if for a node failure event, the

communication cost is 20%, it means that after the node failure event, if conventional re-flooding

of the network takes 100 messages to re-establish the system, then the VC repair algorithm

requires only 20 messages to repair the system.

Figure 3.2: Communication cost for system repair measured as a percentage fraction of communication

cost for system re-establishment; (a) Results for odd shaped network (b) Results for face shaped network

The chart shown in Figure (3.2.a) gives a comparison of communication cost through our

algorithm as compared to the conventional complete network re-establishment cost for repairing

the affected VCs of the sensor nodes in the network after node failure. The node failure range

varies from 1% to 16% as mentioned earlier and the failure has been carried out in three patterns

29

i.e. clustered, random and mixed. We compute the percentage communication cost as the average

of 100 iterations.

We can observe that the messages required to repair the system is highest in the case of

random node failure. This occurs because the affected nodes are scattered. Thus, we have more

nodes surrounding affected nodes, which implies more nodes conducting reliability check. Thus,

the message complexity for VC repair is highest in case of random node failure events and least

in case of clustered node failure event. The message complexity for mixed node failure event

falls between these upper and lower limits which is self-explanatory.

We can also see that the maximum communication cost reached for the VC repair even in

the clustered failure is only 45% of the number of messages required for conventional flooding

to re-establish the system in case of the same node failure event. This shows that repairing the

VCs in case of sensor failure is an efficient way of repairing the system as compared to re-

establishing it.

Also, we verified the relationship estimated in the algorithm as mentioned in Eq. (3.1), that

𝑀𝐴 = 3 ∗ (𝐵 + 𝐴)

Where; 𝑀𝐴: Number of messages required to update VCs using this algorithm

𝐴:Number of affected nodes

𝐵: Number of reliable boundary nodes around the affected nodes

The Figure (3.2.b) illustrates communication costs for Face network under the same

circumstances and the results are found to comply with the previous observations.

Parameter 2: Routability

30

In order to know what effect does repairing the VCs of the nodes has on the overall

system performance, we tested the routability of the system in three cases as discussed above i.e.

A, AB and AA. H-A, H-AB and H-AA gives the corresponding normalized hop counts for the

system which can be defines as stated in Eq. (3.2).

 𝑹% = (
𝑻𝒐𝒕𝒂𝒍 𝒔𝒖𝒄𝒄𝒆𝒔𝒔𝒇𝒖𝒍𝒍𝒚 𝒓𝒐𝒖𝒕𝒆𝒅 𝒑𝒂𝒄𝒌𝒆𝒕𝒔

𝑻𝒐𝒕𝒂𝒍 𝒓𝒐𝒖𝒕𝒊𝒏𝒈 𝒂𝒕𝒕𝒆𝒎𝒑𝒕𝒔 𝒊𝒏 𝒂 𝒔𝒆𝒕
) ∗ 𝟏𝟎𝟎 (3.3)

 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 ℎ𝑜𝑝 𝑐𝑜𝑢𝑛𝑡 = (
𝐻𝑎𝑣𝑔

𝐻𝑠
) (3.4)

Where; 𝐻𝑎𝑣𝑔: Average number of hops required to route a packet from non-affected nodes to

affected nodes or affected nodes to non-affected nodes

𝐻𝑠: Average of shortest hop counts needed to route from one node to another

The vertical axis on the left side of the charts refers to the routability of the system

whereas the vertical axis on the right side of the chart refers to the normalized hop count for the

system.

Let’s take one chart for detailed explanation. Figure (3.3) gives routing performance of

Odd shaped network. Chart in the Figure (3.3.c) gives us the percentage routabilty in case of

clustered node failure event. The routing is done from the set of all affected nodes to each node

in the set of non-affected nodes. Each bar represents the percentage routability. Blue bar is for

system routability before node failure, red bar represents the system routability after node failure

but before VC repair and green bar stands for system routability after node failure and after VC

repair.

31

32

Figure 3.3: Percentage routability for odd shaped network, A-N: from a set of affected nodes to a set of

non-affected nodes, N-A: from a set of non-affected nodes to a set of affected nodes; (a) A-N: Random

failure, (b) A-N: Mixed failure, (c) A-N: Clustered failure, (d) N-A: Random failure, (e) N-A: Mixed

failure, (f) N-A: Clustered failure

The line charts show the normalized hop counts for the corresponding situations. Blue

line is for A, orange for AB and black for AA. The variation of each individual line is not

predictable but we can see that the hop count lowers after we repair the system using VC repair

algorithm. Results show that the routability increases after VC update in all the network

structures tested. Also, in many cases, it is in fact better than the routability in the original

network.

Similarly, other charts can be explained. It illustrates how repairing the VCs of the

affected VCs makes a difference in the system performance of the system. We only checked the

operation of routing on the system but other functions such as data storage, data collection,

topology maps generation, node localization, etc. can also be tested.

We also tested the effects of VC repair on routability operation for the Face network.

Figure (3.4) gives results for Face network. The results obtained are along the same nature as that

of the results obtained for routability in Odd shaped network. However, one anomaly is

observed. In Figure (3.4.f): N-A clustered failure, the normalized hop count is high because the

algorithm has to search for reliable nodes across the network by travelling around the physical

voids in the network. The lower the node failure, the more the algorithm has to travel in search of

reliable nodes. This continues till 8% node failure but as we reach 16% node failure, the void

created by deleted nodes actually puts affected nodes and reliable nodes comparatively closer to

each other. Thus, reducing the normalized hop count in this case.

33

Figure 3.4: Percentage routability for face shaped network, A-N: from a set of affected nodes to a set of

non-affected nodes, N-A: from a set of non-affected nodes to a set of affected nodes; (a) A-N: Random

failure, (b) A-N: Mixed failure, (c) A-N: Clustered failure, (d) N-A: Random failure, (e) N-A: Mixed

failure, (f) N-A: Clustered failure

34

Parameter 3: Fidelity

We define fidelity as the degree of exactness with which the virtual coordinates are

reproduced for the affected nodes. Node failure causes change in number of neighbors for its

surrounding nodes. This neighbor change event initiates VC repair algorithm. It starts with

reliability check. We define a node to be reliable if it has at least one node in its neighborhood

with a VC lower than its own by one unit for each of its VC. This shows that it has a valid path

towards the corresponding anchor. After the reliability check, all the nodes that are declared

reliable hold at least one node in their neighborhood which will route them to the corresponding

anchor. Thus, these nodes are reliable. This implies that, we detect the faulty sensor nodes with

100% correctness. This also implies that the reliable nodes are correctly detected so as to derive

the VCs from them. It implies that the algorithm gives a 0 (zero) false positive rate.

Also, as the VCs of the affected nodes are derived from the closest reliable nodes and the

receiving node stores the smallest available value of VC received from the reliable neighbor, the

new system gives the same results as that of flooding without the deleted nodes in the system. So

the VCs after VC repair algorithm are same as it could have been if the system had been

established without the dead nodes. Thus the fidelity of the system is maintained high with much

lower communication cost.

Parameter 4: Scalability

Scalability of the algorithm is checked by simulating a range of sensor networks with a

range of node failure events from 1% to 16% of total nodes failed of different network structures.

During simulation, the node failure has been implemented by deleting the randomly selected

nodes for failure as per the failure type.

35

The three types of node failure i.e. random, clustered and mixed; cover almost all the

node failure patterns in a sensor network. Figure (3.5) demonstrate a sample node failure

example for each type of node failure. Black nodes are normal nodes and red nodes are the failed

nodes which are no longer functional.

Figure 3.5: Sample node failure patterns for 4% node failure case; (a) Odd shaped network- Random

failure, (b) Odd shaped network- Mixed failure, (c) Odd shaped network- Clustered failure, (d) Face

shaped network- Random failure, (e) Face shaped network- Mixed failure, (f) Face shaped network-

Clustered failure

Figure (3.5) gives an illustration of clustered, random and mixed node failure patterns.

Simulations have been carried out on this Odd shaped network which has both, concave and

convex network boundaries. The Face shaped network has been tested for observing the worst

case results of the algorithm i.e. in the case of having physical voids in the network which makes

36

the algorithm to travel long paths in order to circumscribe the voids and reach for the reliable

nodes.

From the results shown in Figure (3.2), Figure (3.3) and Figure (3.4); we can see that the

algorithm performs efficiently throughout the 8% failure. The message overhead then starts

being stagnant after 8%. Routability of the system lowers slowly beyond 10% node failure. It

mainly affects the N-A routing.This is because we average the routability of one source to all of

the nodes in the destination node set. i.e. from one non-affected node to all the affected nodes.

Then we take the average of all such combinations. N-A routability is lower as compared to that

for A-N because when we update the node VCs in the affected area, we actually create minima.

This causes low routability. Thus when affected nodes are in the destination side, the routability

lowers.

3.4.3 Strengths & Weaknesses

The algorithm guarantees a correct update of all the affected VCs belonging to the

affected nodes as long as the network is connected after node failure. Thus 100% recovery is

achieved through the update.

Node failure causes neighbor change for its surrounding nodes. This triggers the VC

repair algorithm. Thus, the system starts repairing itself as soon as the node failure event occurs.

The number of messages required to establish the VC system through flooding from the anchors

has the complexity of𝑂(𝑁). It is a constant for every time the same percentage node failure event

takes place in the network. Also, it is a very large number. We can see that the computation cost

for re-establishing the system does not depend on the number of nodes that are affected by the

node failure event but only on the total number of nodes in the network. Thus, even if a small

37

number of sensor nodes fail and only few of its surrounding nodes are affected, the system has to

invest a huge amount of energy to repair those few sensor nodes. However, the amount of energy

consumed to recover the network from node failure through the VC repair algorithm is much

lesser than flooding. On the contrary, number of messages required for complete update through

the algorithm is independent of size of the network. It only depends on the number of nodes

affected by the deleted nodes and the reliable nodes surrounding them. Thus the algorithm serves

as a good substitute to the option of re-flooding the system after node failure to maintain the

validity of VCs.

We observed that the routability after recovery is better for routing among set of affected

nodes to non-affected nodes and vice versa. Thus, the algorithm helps in improving the

performance of the system, post node failure event. Even though the improvement in the

performance due to VC repair is not significant after a 10% to 15% of node failure, the system

does not crash and the degradation of system performance is graceful.

As mentioned earlier, the algorithm is designed to repair the network that is a single

connected component; but we also observed its response when subjected to network partition.

Two types of partitioning have been studied.

38

1. The secondary partition separates only the normal nodes from the rest of the network:

Figure 3.6: Sample network with Type-1 isolation

Figure (3.6) shows an example of secondary partition that isolates only the normal nodes

from the rest of the system. I.e. No anchors are removed from the main network.

When the algorithm was subjected to this type of partition, as per the routine, we were

able to conduct a reliability check, detect the affected nodes and try to find the reliable nodes.

Now, as the primary partition contains all the anchors, affected nodes that fall under this region

will be able to find reliable nodes to correct themselves from, but the nodes in the secondary

partition cannot find a reliable node because they are not connected to any of the anchors in any

way. Thus, only the primary partition of the network is corrected and is repaired for its affected

VCs. The secondary partition now has all the affected nodes that cannot be corrected due to lack

of reliable node.

39

If we find a way to make the system work without updating these uncorrected nodes in the

secondary partition, e.g. if the nodes with smallest VCs are considered as anchors without

changing the value of their VCs, the system will still function well.

2. The partition isolates few anchors from rest of the anchors:

Figure 3.7: Sample network with Type-2 isolation

Figure (3.7) shows an example of a partition that isolates few anchors from the rest of the

anchors.

When VC repair algorithm was subjected to this type of partition, as per the routine, we

were able to conduct a reliability check, detect the affected nodes and try to find the reliable

nodes. Now, as few of the anchors are missing from each partition, all the nodes are detected to

as affected nodes and the affected nodes are considered unreliable. Hence, the algorithm fails to

40

find any reliable nodes when it tries to search. Therefore, the affected nodes cannot be corrected

and the system remains unreliable as per our reliability definition.

On the other hand, if we try to make the system work without the VCs that are

permanently damaged as the nodes are no longer connected to those anchors, and thus, only use

the VCs for which the algorithm can find reliable nodes for and therefore can be corrected; then

in that case, the system will work.

We studied how the system responds to the two types of network partitions. The

algorithm does not work effectively towards detecting isolated nodes and its recovery. It has to

be improvised on its reliability definition as per the situation. The algorithm is not able to detect

isolation effectively with low message complexity.

As we saw, if the distances from all the nodes to one are considered, the anchors form

local maxima and the VCs that are away from the anchors cause local minima in the network.

Since update of VCs always causes increment in the hop count of the affected nodes from

anchors, these newly updated nodes cause local minima in the network.

The algorithm has been tested on networks with significant thickness. When we consider

networks such as a ring network or a backbone network, where failure of one node affects all the

other nodes in the network, VC repair does not provide an efficient way of system repair. In fact,

in cases of ring network, repairing the system might not be required at all. Redefining a ‘reliable

VC’ will prove as a sufficient way to keep the system functioning.

3.5 Summary & Conclusions

The evolution of sensor network localization schemes has come a long way from

classical geological coordinate system to VCap and now the various forms of virtual coordinate

41

systems. Non-geographical virtual coordinate systems work for following reasons. They are easy

to implement and require much lower cost for implementation. Virtual coordinate systems

consume less energy than the geographical coordinate systems and have minimal communication

overhead. Despite all these advantages, they can provide much more precision as compared to

commercial GPS equipment. VC systems also help to improve performance of network functions

such as routing, topology extraction, localization and data extraction. Although the VC systems

perform better as compared to the other classical systems we had before, the system performance

is hampered with events of node failure. The system degrades with its performance as the sensor

nodes fail. Most of these VCS are based on hop distances from anchor nodes and the node failure

causes lack of a valid path to few or most of the sensor nodes; depending up on the effect of node

failure. This results in lack of communication with some parts of the network and thus the

network is paralyzed.

We present a simple yet effective algorithm that works towards detection and recovery of

virtual coordinates of the sensor nodes affected by the node failure. We presented the need of

such an algorithm with an example of forest fire. Then the algorithm has been explained through

a systematic pseudocode, illustration on a sample WSN followed by a discussion on how and

why node failure affects the nodes it does. Performance of the system has been meticulously

tested on various systems for different node failure percentages to test the relative

communication efficiency and percentage routability of the system before node failure, after

node failure and after system recovery. The results show that the VC repair scheme works

effectively to improve the system performance after node failure. Although it is not always as

good as the system before node failure, the algorithm helps the system to degrade gracefully.

42

As compared to working towards developing an algorithm that tries to improve the

performance of a single application over the network; repairing the system so that it will recover

the foundation of all the applications helps to improve performance of all the system functions.

This is what we had aimed to achieve through VC repair algorithm. It has been tested and proved

that VC repair helps improve routability and communication efficiency; similarly the algorithm

can be tested for other applications.

43

Chapter 4

MEDIAL AXIS DETECTION

4.1 Introduction

Wireless sensor networks are being widely used in several areas such as habitat

monitoring, battlefield surveillance, etc. In all such cases, to relate the incoming information

with the location of the sensor, knowledge of network topology is required. Other operations

such as routing, localization, path planning, network segmentation, allocating data storage

centers, establishing a virtual coordinate system are also carried out over WSNs. A medial axis

holds a lot of information about the sensor network. It can convey the width of the network at

any particular cross-section which can be used as basic information for carrying out all the

operations mentioned above. Thus, a skeleton – medial axis - of the network plays a vital role as

foundation of all such functions.

Medial axis of a network holds a lot of information about the network. Thus, knowing the

medial nodes of a network would better equip one for any kind of network repair. However,

medial axis detection schemes till date only focus on networks with network node degree as high

as 8, 17 and above. Grid based sensor networks, which have average node degree between 3 ~ 7,

have several applications such as environmental and habitat monitoring, healthcare monitoring of

patients, weather monitoring and forecasting, military and homeland security surveillance,

tracking of goods and manufacturing processes, safety monitoring of physical structures and

construction sites, smart homes and offices and many other uses. Thus, to be able to fully utilize

the information that can be extracted from a medial axis, in all fields of sensor networks, we

need a method to detect the medial nodes of WSNs even with low node degrees.

44

Medial nodes are conventionally defined as follows:

Definition 1: Medial nodes of a network are conventionally defined as the nodes that are

equidistant to two or more boundary nodes of the network.

Figure 4.1: Medial Axis definition. (a) a network with its medial points shown equidistant from

closest boundary set; (b) (left) Rectangular network with the medial axis extracted

Figure (4.1.a) illustrates this definition further. If we consider any point 𝑃 on the medial

axis, and draw a circle 𝐶 with 𝑃 as center; then the circle intersects at least two boundaries of the

network in one point. The property of locus of medial points is shown for a polygon with sharp

corners in Figure (4.1.b).

However, it is difficult to extract a skeleton – medial axis - for a low node degree

network because these networks do not always have the shortest paths to the boundary nodes.

The path has to travel through a corner node where it could have taken a diagonal course. Even

though this seems to be a small difference, it affects the hop counts of the nodes after boundary

flooding to a large extent. This causes several nodes to be equidistant from the boundary even

45

Figure 4.2: Medial Axis of the networks with 4 node connectivity with Definition 1; (a) FACE

network with the noisy medial axis; (b) ODD network with boundary noise affected medial axis,

even row nodes are not detected as medial nodes

Figure (4.2) illustrates this problem. All the medial axis detection methods are based on

this definition. The medial nodes extracted in such a way are noisy. It implies that medial nodes

extracted by this definition are sensitive to even a minor bump on the boundaries. This instability

is more severe for a discrete network [34]. For example, all nodes that are one hop away from the

boundary nodes are medial nodes by Definition 1, which are clearly undesirable. A proposed

solution for this is a method called “boundary noise elimination”. In particular, the medial nodes

whose closest boundary nodes are on the same boundary or within a small distance from each

other are disregarded. However, one has to be aware of the width of the smallest cross-section of

the network in order to implement this. Also, if the smallest and largest width of the network

varies significantly, then this method of boundary noise elimination fails. Furthermore, if the

network consists of only one boundary, network such as oval or rectangular networks with no

inner boundaries, then there will be no medial nodes detected according to this boundary noise

46

elimination method. Also, in Figure (4.2.b) we can see that in addition to the boundary noise,

when the network has even rows in its branch, the nodes of the network fail to detect themselves

as medial nodes. Thus, these issues make it difficult to extract the medial axis of a grid based

network.

Sensor nodes are a great option to absorb information about the desired environment. But

it is also important to know about the deployed network in terms of its shape, changes happening

with time, if any, and the variations in the network itself; in order to maintain and repair the

network if required. Knowing a network better makes one better prepared for repairing it in case

of events of node failure or link failure. Thus, in order to make the network robust to a maximum

possible extent towards such events, it is important to know about the network. Medial axis

provides crucial information in several other such applications as network segmentation, routing,

data storage, etc.

These functions themselves have several applications of their own. Network

segmentation can be used to partition the network at the bottleneck areas so that each partition

can be treated as a different network connected at the partition. This prevents the excess load on

the boundary nodes while routing and increases the overall life time of the network. Knowing

efficient node centers for data storage can improve the data storage for the network which can be

used in case of future node failure events for data recovery. WSNs and hence, medial axis of the

network have several uses both outdoors and indoors.

We propose a simple algorithm that works towards computation of medial axis of WSNs

with any node degree. The algorithm also works for average node degrees as low as 3.5081.

Performance of the system is evaluated using message complexity parameter for establishing the

medial axis. The algorithm is presented and tested for different network shapes and sizes.

47

4.2 Algorithm

We consider the boundary detection scheme presented in [32] to detect the boundary

nodes in the network. Other boundary detection algorithms can also be used such as detecting the

nodes with node degree lower than the average within their h-hop neighborhood; where h is a

variable parameter. Boundary detection is the basic step in medial axis extraction in this

algorithm, hence, effective boundary detection can lead to better results for medial axis

extraction for the network.

We present a distributed algorithm for medial axis detection that also holds true for low

average node degrees, unlike work done till date. We detect the medial nodes using a novel

definition:

Definition 2: Node that is a local maxima with respect to the hop counts from the boundary

nodes; is detected as medial node.

It differs from Definition 1 in the sense that nodes that are locally distant from the boundary

nodes as compared to their neighbors are selected as medial nodes. Advantages of this definition

serves two intentions. It holds the meaning of medial nodes well as we are ultimately looking for

the nodes that are most remote to the boundary nodes of the network. Also, the boundary noise

created due to discreteness of the network is eliminated.

48

Table 4.1: List of notations used in text

Notations Description

𝑁 Total number of nodes

𝑛𝑖 Node 𝑖

𝐵𝑛𝑖
= {0,1}

Flag at each node 𝑛𝑖 to record if the node is a

boundary node. Possible values are ‘0’ i.e. not

a boundary node, ‘1’ i.e. boundary node.

Default value is ‘0’.

𝐵 = {𝐵𝑛1
, … … , 𝐵𝑛𝑁

} Set of all boundary node variables

𝐻𝐵𝑛𝑖

Shortest hop distance from closest boundary

node to node 𝑛𝑖

𝑀𝑛𝑖
= {0,1,2}

Flag at each node 𝑛𝑖 to record if the node is a

medial node. Possible values are ‘0’ i.e. not a

medial node, ‘1’ i.e. Medial node and ‘2’ i.e.

formed in Round 2 of the algorithm. Default

value is ‘0’.

𝑀 = {𝑀𝑛1
, … … , 𝑀𝑛𝑁

 } Medial flags for all the nodes in the network

𝐾(𝑖) Set of nodes in 𝑛𝑖′𝑠 1-hop neighborhood

𝑃𝑎𝑡ℎ𝑛𝑖

Flag at each node 𝑛𝑖 to mark the nodes in the

path

𝑃𝑎𝑡ℎ𝑠𝑜𝑢𝑟𝑐𝑒
Variable at each node to record the original

source of the routing packet

Table (4.1) gives a list of notation used in text.

We also list the definitions for terms used in the text.

 Boundary packets: Packets sent by boundary nodes to flood the network. These packets

contain information regarding the number of hops travelled by the packet. The packet is

dropped by nodes with 𝐻𝐵𝑛𝑖
 value smaller than the hop count of the packet.

 Medial search packets: Packets that contain the ID of original source node and routing

variable value is ‘0’; indicating that search is not finished.

49

 Trace-route packets: It is same as medial search packet except the routing variable value

is ‘1’; indicating that search is finished and the packet is being routed to the original

source node.

 Path node: Node 𝑛𝑖with 𝑃𝑎𝑡ℎ𝑛𝑖
= 1

We consider following assumptions while presenting the algorithm:

1) Boundary nodes are detected and they flood with information regarding hops the packet

has travelled to reach that node.

2) One hop increments the hop count by one

3) All boundary nodes have (𝐵𝑛𝑖
= 1)

4) All the nodes generate a random but unique node Identification Detail (ID) number

Algorithm for Medial axis detection has been described is steps as follows:

1) Each node receives a flooding message from boundary nodes. The variable 𝐻𝐵𝑛𝑖
 saves

the smallest hop count value from the boundary packets.

2) ROUND 1:

Each node contacts its neighbors to know their 𝐻𝐵𝑛𝑗
; where Node 𝑛𝑖If 𝐻𝐵𝑛𝑗

 for all the 𝑛𝑗

is less than or equal to 𝐻𝐵𝑛𝑖
, then 𝑛𝑖 declares itself a medial node

3) ROUND 2 (part A):

i. If medial neighbors of 𝑛𝑖 are less than 2 then 𝑛𝑖 searches for medial nodes.

ii. 𝑛𝑖 sends medial search packets with its ID to 𝑛𝑗with highest hop count where 𝑛𝑗 ∈

𝐾(𝑖).

iii. When a node receives medial search packet, it marks itself as a path node and

stores the original source node ID.

iv. Steps (ii) and (iii) are repeated until medial node is found

50

v. When a medial node receives a medial search packet, it generates a trace-route

message

vi. The trace-route message is transmitted to 𝑛𝑗 with lowest hop count where

𝑛𝑗 ∈ 𝐾(𝑖) and 𝑛𝑗 is a marked path node.

vii. When a path node receives a trace-route message, 𝑃𝑎𝑡ℎ𝑛𝑖
value is made ‘0’ if

𝑃𝑎𝑡ℎ𝑠𝑜𝑢𝑟𝑐𝑒 value matches the one in the trace-route packet. Also, 𝑀𝑛𝑖
= 2.

viii. Steps (vi) and (vii) are repeated until the packet reaches original source node

where it is dropped.

4) ROUND 2 (part B):

i. Each node searches for medial nodes in vicinity.

ii. A medial search packet is sent to neighbors which satisfy the following condition

{ (𝐻𝐵𝑛𝑗
< 𝐻𝐵𝑛𝑖

) and (𝑀𝑛𝑗
= 0) } OR { (𝐻𝐵𝑛𝑗

= 𝐻𝐵𝑛𝑖
) and (𝑀𝑛𝑗

= 1) }; 𝑛𝑗 ∈ 𝐾(𝑖) ()

iii. Step (ii) is repeated until the medial search packet reaches a medial node

iv. When a medial node receives a medial search packet, it generates a trace-route

message

v. The trace-route message is transmitted to 𝑛𝑗with lowest hop count where 𝑛𝑗 ∈

𝐾(𝑖) and 𝑛𝑗 is a marked path node.

vi. When a path node receives a trace-route message, 𝑃𝑎𝑡ℎ𝑛𝑖
value is made ‘0’ if

𝑃𝑎𝑡ℎ𝑠𝑜𝑢𝑟𝑐𝑒 value matches the one in the trace-route packet. Also, 𝑀𝑛𝑖
= 2.

vii. Steps (v) and (vi) are repeated until the packet reaches original source node where

it is dropped.

51

Input: Neighbors of 𝑛𝑖; 𝑛𝑗 ∈ 𝐾(𝑖)

Output: 𝑀

Step 1: Node 𝑛𝑖receives a flooding message from boundary nodes. The variable 𝐻𝐵𝑛𝑖
 saves

the smallest hop count value from the boundary packets.

Step 2: ROUND 1:

Node 𝑛𝑖contacts its neighbors 𝑛𝑗 , 𝑛𝑗 ∈ 𝐾(𝑖) to receive𝐻𝐵𝑛𝑗
.

IF for all 𝑛𝑗 , 𝐻𝐵𝑛𝑗
 ≤ 𝐻𝐵𝑛𝑖

𝑀𝑛𝑖
= 1

 Informs all 𝑛𝑗

END

ROUND 2 (part A):

Step 1: IF medial neighbors of 𝑛𝑖 are less than 2

𝑛𝑖 sends medial search packets with its ID to 𝑛𝑗with highest𝐻𝐵𝑛𝑗
; where 𝑛𝑗 ∈ 𝐾(𝑖).

 END

Step 2: IF medial search packet is received at 𝑛𝑖

𝑃𝑎𝑡ℎ𝑛𝑖
=1

𝑃𝑎𝑡ℎ𝑠𝑜𝑢𝑟𝑐𝑒stores the original source node ID

 Step 2

 END

Step 3: IF𝑛𝑖 with 𝑀𝑛𝑖
> 0 receives a medial search packet

 generate a trace-route message

 END

Step 4: Trace-route message is transmitted to 𝑛𝑗with lowest 𝐻𝐵𝑛𝑗
; where 𝑛𝑗 ∈ 𝐾(𝑖)and

𝑃𝑎𝑡ℎ𝑛𝑗
=1

Step 5: IF𝑛𝑖 with 𝑃𝑎𝑡ℎ𝑛𝑖
=1receives a trace-route message

𝑃𝑎𝑡ℎ𝑛𝑖
= 0 if 𝑃𝑎𝑡ℎ𝑠𝑜𝑢𝑟𝑐𝑒 value matches the one in the trace-route packet

𝑀𝑛𝑖
= 2

 END

52

Step 6: Repeat steps 4 and 5 until the packet reaches original source node

ROUND 2 (part B):

Step 1: Each node𝑛𝑖searches for medial nodes

Step 2: 𝑛𝑖 sends medial search packets with its ID to 𝑛𝑗 that satisfy following condition:

 { (𝐻𝐵𝑛𝑗
< 𝐻𝐵𝑛𝑖

) and (𝑀𝑛𝑗
= 0) } OR { (𝐻𝐵𝑛𝑗

= 𝐻𝐵𝑛𝑖
) and (𝑀𝑛𝑗

= 1) }; 𝑛𝑗 ∈ 𝐾(𝑖)

Step 3: Step 2 is repeated until the medial search packet reaches a medial node

IF medial search packet is received at 𝑛𝑖

𝑃𝑎𝑡ℎ𝑛𝑖
=1

𝑃𝑎𝑡ℎ𝑠𝑜𝑢𝑟𝑐𝑒stores the original source node ID

 Step 2

 END

Step 4: IF𝑛𝑖 with 𝑀𝑛𝑖
> 0 receives a medial search packet

 generate a trace-route message

 END

Step 5: Trace-route message is transmitted to 𝑛𝑗with lowest 𝐻𝐵𝑛𝑗
; where 𝑛𝑗 ∈ 𝐾(𝑖)and

𝑃𝑎𝑡ℎ𝑛𝑗
=1

Step 6: IF𝑛𝑖 with 𝑃𝑎𝑡ℎ𝑛𝑖
=1receives a trace-route message

𝑃𝑎𝑡ℎ𝑛𝑖
= 0 if 𝑃𝑎𝑡ℎ𝑠𝑜𝑢𝑟𝑐𝑒 value matches the one in the trace-route packet

𝑀𝑛𝑖
= 2

 END

Step 7: Repeat steps 5 and 6 until the packet reaches original source node

END of algorithm

Figure 4.3: Algorithm for Medial axis detection

53

4.3 Performance evaluation

We measured the system performance with the help of simulations, implemented in

MATLAB 8.1. As we are looking for the algorithm to extract the medial axis of the network, we

simulate the system for a range of network size and shapes. We selected networks that have no

inner boundaries, networks with no sharp corners are also tested and networks that consist of

both smooth edges and corners are also tested. We test the algorithm for networks with a node

degree range 3 ~ 8. Table (4.2) lists network sizes and average node degrees for the networks

shown in Figure (4.4).

Table 4.2: Average node degrees for networks tested

Network /

Connectivity

Face Odd U shaped Window

4 3.50 3.70 3.84 3.87

8 6.84 7.15 7.53 7.66

No. of nodes 496 550 1000 1728

Figure 4.4: Various networks tested under the medial detection algorithm; (a) FACE network; (b)

(left) ODD shaped network; (c) (bottom-right) U-shaped network; (d) WINDOW network

54

Figure 4.5: Medial Axis of the networks with 4 node connectivity. The left most column shows

detected boundary nodes. Middle column shows Round 1 results and rightmost column shows

Round 2 results for the algorithm. WINDOW, FACE and ODD shaped networks

55

Figure 4.6: Medial Axis of the networks with 8 node connectivity. The left most column shows

detected boundary nodes. Middle column shows Round 1 results and rightmost column shows

Round 2 results for the algorithm. WINDOW, FACE and ODD shaped networks

 The results obtained for medial node detection through the proposed algorithm are shown

in Figure (4.5) and (4.6). Till date, medial axis or straight skeleton detection for wireless sensor

networks has worked only for higher node degrees. However, the proposed algorithm works for

average node degrees starting from as low as 3.5. The algorithm is distributed and works locally.

56

We can see from Figure (4.5.FACE) and Figure (4.6.FACE) that it is robust to boundary noise.

The chart in Figure (4.7) shows that medial axis computation cost ratio for the algorithm i.e.

 𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡 𝑅𝑎𝑡𝑖𝑜 =
𝑅𝑜𝑢𝑛𝑑 1 𝑐𝑜𝑠𝑡+𝑅𝑜𝑢𝑛𝑑 2 𝑐𝑜𝑠𝑡

𝑁
 (4.1)

 𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡 𝑅𝑎𝑡𝑖𝑜 = 3 ∗ (𝑁) (4.2)

Where; 𝑅𝑜𝑢𝑛𝑑 1 𝐶𝑜𝑠𝑡: Number of messages required to conduct Round 1 of the algorithm

𝑅𝑜𝑢𝑛𝑑 2 𝐶𝑜𝑠𝑡:Number of messages required to conduct Round 2 of the algorithm

𝑁: Total size of the network

Figure: 4.7: Stepwise Medial Axis Computation Cost of the Algorithm for various network sizes

Figure (4.7) illustrates the step wise split up of computation cost for the medial axis

detection algorithm. We can see that computation cost is proportional to the network size.

However, the computation cost ratio as defined above in Eq. (4.1) remains constant for all the

network shapes and sizes, at 3 on average.

57

 MAP uses Definition 1 for medial axis detection. It further uses boundary noise

cancellation technique as mentioned earlier in section 1 of this chapter. But selecting medial

nodes that are equidistant to 2 or more boundary nodes introduces a lot of boundary noise even

after noise elimination techniques. We studied that to efficiently eliminate the noisy nodes, the

width of the network should be known and it should be constant throughout the network.

Whereas, Figure (4.5.FACE) and Figure (4.6.FACE) show that proposed Medial axis detection

scheme works fine even in the presence of curve boundaries in the network.

Distance Transformed-Based Skeleton Extraction (DIST) works towards extracting the

network skeleton with the availability of less than 100% of boundary nodes. It also follows the

conventional definition of medial nodes i.e. Definition 1.It claims that the medial axis for a

network can be obtained with incomplete boundary nodes. Medial nodes conduct flooding more

than three times. DIST also claims to attain better results than MAP. It shows better results than

CASE for smooth curves. However, the communication cost is very high. The method is very

lengthy and expensive. In fact, the communication cost is highest among MAP, CASE and DIST

for given network size. The Computation Cost Ratio is greater than 3. DIST works with very

high node degrees. The results framed are with average node degrees 13.59 and 6.1.

CASE presents a modification in the conventional definition of medial nodes. CASE

gives better results than MAP by reducing undesirable nodes. Where the algorithm gives good

results, the performance depends on parameters H and threshold. Besides, the maximal hop count

between two nodes in the network - a parameter on which further decisions are based - is

computed intuitively. The message complexity for computing the skeleton graph increases

significantly by boundary segmentation process. The boundary segmentation and coarse skeleton

arc refinement process needs an end skeleton node. This does not work for networks with smooth

58

outer boundaries. The algorithm works effectively towards skeleton extraction of networks with

average node degree of 20.9. Moreover, CASE cannot work on networks such as the Face

network shown in Figure (4.5.a) because it does not have any sharp corners.

The presented algorithm performs better than CASE. MALD gives efficient results with

or without sharp edges, with or without inner boundaries and lastly with or without high node

degree.

4.4 Applications of Medial axis in a WSN

There is a lot of work done that emphasizes the applications of medial axis of a sensor

network. Medial nodes of a network are centrally located at any cross-section of the network. It

implies that having detected medial nodes of a network can help us derive information about the

network. Being centrally located to the surrounding boundary nodes, medial nodes are aware of

their distance from the boundary and the width of the local cross-section of the network. This

information can be used for several other applications such as network segmentation; where a

network is partitioned at the relatively thin regions which act as bottlenecks while routing.

Information extracted from medial axis can be used to segment the network efficiently to

partition at the critical areas that are relatively thinner than the neighborhood regions. Work

presented in [37] segments the network into pieces by clustering network with medial nodes with

similar hop counts from the boundary. The segmentation helps to balance the routing load on the

nodes in the network. This reduces the involvement of boundary nodes and includes inner nodes

in the network. Medial axis is proposed as a basis for network segmentation in [33] also. Medial

axis can also be used to establish an efficient VC scheme in the network [34]. This can further be

extended to route packets within the network. Lost packets can be routed along the medial axis to

59

improve the routability of the network. Efficient data storage and retrieval is another widely used

application of medial nodes where medial nodes are treated as data centers and can be used as

backups in case of node failure events [37].

Knowing the medial nodes of a network can help in a lot of applications. With the medial

axis extraction scheme proposed in this chapter, we can extend this knowledge to several other

WSNs and utilize it in such application.

4.5 Summary and Conclusions

We have proposed a distributed medial axis detection algorithm for networks with lower

node degrees, using only network connectivity information. The algorithm works for basic

boundary detection protocol. It functions in a distributed and localized fashion. Comparison with

CASE and MAP techniques shows that MALD gives better results with respect to the scope and

performance of the system. We have solved few very crucial problems such as boundary noise in

medial axis, disconnected components of medial graph and inability to work at low node

degrees. We emphasize that our algorithm is robust, flexible towards the average node degree

and the shape or size of the network.

60

Chapter 5

SUMMARY, CONCLUSIONS AND FUTURE WORK

5.1 Summary and Conclusions

 Virtual Coordinates (VCs) are a very attractive and efficient way of dealing with wireless

sensor nodes because of its simplicity, low computation cost and no additional hardware

requirement as GPS. However, VCs are vulnerable to network events of node failure and faulty

links. In Chapter 3, we studied the effects of such node failure events on VCs and thus the

network as a whole. We also present a simple, distributed and locally operated network

algorithm that works towards repairing the affected VCs because of node failure in the network.

Chapter 3 presents the performance of the various systems under different network conditions as

a response to the algorithm after node failure. The system response to node failure and VC repair

algorithm has been discussed. We also have a look at the algorithm from its strengths and

weaknesses point of view. The algorithm works for networks of all sizes and node degrees.

 This thesis also presents a novel definition and thus a novel way to detect medial axis

nodes in a WSN. Using only the connectivity information of the network, we are able to extract a

connected medial axis for the network in not more than two rounds of algorithm. We propose a

distributed algorithm that works locally with very low memory requirements and low

computation cost. Medial Axis Detection algorithm for Low Degree networks (MALD) works

for low degrees as well as higher degrees. The computation cost lowers as the node degree

increases; because shorter paths are available. MALD works for average node degrees as low as

3 ~ 8. It performs better than other medial axis detection algorithms proposed till now such as

MAP, CASE and DIST in aspects such as communication cost, scope of the network shape and

61

algorithm complexity. Being able to detect medial nodes of a low degree network makes it

possible to utilize these nodes in several applications such as data storage, routing, topology

generation and network segmentation; which have further applications of them.

The focus of this thesis is on node failure recovery of the VCs for better system

performance. The algorithm provides significant improvement over the routability of the network

after node failure. It also helps to maintain graceful degradation of the network post node failure.

The algorithm has also been proved to be computationally efficient as compared to the

conventional network amendment method. Properties of VC repair algorithm such as low

communication cost, energy efficiency and low memory requirements contribute to increased

lifetime of the WSN whilst providing a foundation for better system performance.

5.2 Future work

The VC repair algorithm works efficiently as demonstrated by the simulation results for

single or multiple node failure. It also helps to recover the lost connectivity for internal network

isolation where none of the anchor nodes are in the isolated network region.

We studied the algorithm performance mainly on 2D grid networks. All the simulations

were subjected to network with rectangular connectivity and 1-hop coverage. We are interested

in testing the algorithm performance in case of increased hop coverage while maintaining

optimum energy consumption. With the enhanced reach of each sensor node, we predict this will

lead to efficient VC repair, increased network lifetime and lower probability of network partition

due to node failure.

We are also interested in observing the effects of changed network connectivity over the

system performance. Although rectangular connectivity provides fairly good energy

62

consumption and reliability; hexagonal, triangular and strip based connectivity are also deployed

in practical WSNs. In general, when sensor nodes are randomly deployed, they are n-connected.

We can extend the work of this algorithm to a generalized version in case of n-node connectivity.

We intend to take this work further in order to be able to recover the WSN when the

network is partitioned due to node failure. Few meaningful amendments in the way the algorithm

detects reliable nodes will help to determine the repairable VCs and unrepairable VCs. Knowing

the network better will help in concluding whether the network is partitioned; with lesser number

of communications overhead.

The greater picture will be to modify the VC repair algorithm in order to make the system

self-learning and autonomous in nature so as to be able to adjust with dynamic network topology.

We would like to experiment with different boundary detection techniques along with the

proposed Medial Axis detection algorithm for low degree networks. Medial axis has several

applications. We would like to work towards extending the algorithm for different applications

and evaluate its efficiency towards applications such as data storage, routing and topology

extraction. We also look forward to extend the algorithm to 3D networks, where the complexity

of boundary detection increases further.

63

REFERENCES

1. C. Long, C. Wu, Y. Zhang, H. Wu, M. Li and C. Maple, "A survey of localization in wireless sensor

network," International Journal of Distributed Sensor Networks 2012.

2. Q. Han, L. Paradis, "A survey of fault management in wireless sensor networks," Journal of network

and systems management 15.2: 171-190, 2007.

3. S. Funke, "Topological hole detection in wireless sensor networks and its applications," Proc. of Joint

Workshop on Foundations of Mobile Computing, ACM, 2005.

4. D. C. Dhanapala and A. P. Jayasumana, "Topology preserving maps from virtual coordinates for

wireless sensor networks, "IEEE 35th Conf. on Local Computer Networks, 2010.

5. D. C. Dhanapala and A. P. Jayasumana, “Topology preserving maps - extracting layout maps of

wireless sensor networks from virtual coordinates," IEEE/ACM Transactions on Networking, Vol.

22, No. 3, 2014.

6. D. Estrin, D. Braginsky,"Rumor routing algorthim for sensor networks, " Proc. of the 1st ACM

International Workshop on Wireless Sensor Networks and Applications, 2002.

7. I. F. Akyildiz, W. Su, Y. Sankarasubramaniam and E. Cayirci, "Wireless sensor networks: a

survey," Computer networks 38.4: 393-422, 2002.

8. H. Liu, A. Nayak, and I. Stojmenović, "Fault-tolerant algorithms/protocols in wireless sensor

networks." Guide to Wireless Sensor Networks. Springer London, 261-291, 2009.

9. D. S. Park, "Fault tolerance and energy consumption scheme of a wireless sensor

network," International Journal of Distributed Sensor Networks, 2013.

10. P. Maestrini and S. Chessa, "Fault recovery mechanism in single-hop sensor networks," Computer

communications 28.17: 1877-1886, 2005.

64

11. I. Koren and M. Gregoire, "An adaptive algorithm for fault tolerant re-routing in wireless sensor

networks,"5th Annual IEEE International Conference onPervasive Computing and Communications

Workshops, 2007.

12. M. Younis and S. Lee, "Recovery from multiple simultaneous failures in wireless sensor networks

using minimum steiner tree," Journal of Parallel and Distributed Computing 70.5: 525-536, 2010.

13. Y. K. Joshi and M. Younis, "Autonomous recovery from multi-node failure in Wireless Sensor

Network," Global Communications Conference (GLOBECOM), IEEE 2012.

14. W. L. Lee, A. Datta, and R. Cardell-Oliver, "Winms: Wireless sensor network-management system,

an adaptive policy-based management for wireless sensor networks," 2006.

15. L. B. Ruiz, I. G. Siqueira, L. B. eOliveira, H. C. Wong, A. A.Loureiro, et al., "Fault management in

event-driven wireless sensor networks," Proc. 7th ACM International Symposium on Modeling,

Analysis and Simulation of Wireless and Mobile Systems, 2004.

16. J. Du, L. Xie, X. Sun, and R. Zheng, "Application-oriented fault detection and recovery algorithm for

wireless sensor and actor networks,"International Journal of Distributed Sensor Networks, 2012.

17. G. Venkataraman, S. Emmanuel and S. Thambipillai, "Energy-efficient cluster-based scheme for

failure management in sensor networks," IET communications 2.4: 528-537, 2008.

18. A. Akbari, A. Dana, A. Khademzadeh and N. Beikmahdavi, "Fault detection and recovery in wireless

sensor network using clustering," International Journal of Wireless & Mobile Networks (IJWMN)3.1:

130-138, 2011.

19. P. Santi and S. Chessa, "Crash faults identification in wireless sensor networks," Computer

Communications 25.14: 1273-1282, 2002.

20. Y.-H. Choi and M.-H Lee, "Fault detection of wireless sensor networks," Computer

Communications 31.14: 3469-3475, 2008.

21. S. Kher, A. Somani and J. Chen, "Distributed fault detection of wireless sensor networks," Proc.

Workshop on Dependability Issues in Wireless Ad Hoc Networks and Sensor Networks, ACM, 2006.

65

22. S. Iyengar and K. Bhaskar, "Distributed bayesian algorithms for fault-tolerant event region detection

in wireless sensor networks," IEEE Transactions on Computers 53.3: 241-250, 2004.

23. A. Caruso, S. Chessa and S. De, "GPS free coordinate assignment and routing in wireless sensor

networks," INFOCOM, 24th Annual Joint Conf. of the IEEE Computer and Communications

Societies, 2005.

24. A. Gautam and A.. Gautam, “Accurate localization technique using virtual coordinate system in wireless sensor

networks,” International Journal of Recent Trends in Engineering, Vol. 2, No. 5, Nov. 2009.

25. T. Grubman, Y. A. Sekercioglu, and N. Moore, "Virtual localization for robust geographic routing in

wireless sensor networks."

26. L. Ma, J. He, D. Ma, “A localization algorithm based on virtual beacon nodes for wireless sensor

network,” Proc. of International Conference on Information Acquisition, 2007.

27. A. Karima, B. Mohammed and B. Azeddine, “New virtual coordinate system for improved routing

efficiency in sensor network,” International Journal of Computer Science Issues (IJCSI); Vol. 9 Issue

3, May 2012.

28. D. C. Dhanapala and A. P. Jayasumana, “Directional virtual coordinate systems for wireless sensor

networks,” Proc. of IEEE International Conference on Communications (ICC), June 2011.

29. D. C. Dhanapala and A. P. Jayasumana, “Anchor selection and topology preserving maps in wsns – a

directional virtual coordinate based approach,” Proc.36th IEEE Conference on Local Computer

Networks, Oct. 2011.

30. Q. Cao and T. Abdelzaher, “Scalable logical coordinates framework for routing in wireless sensor

networks,” ACM Transactions on Sensor Networks,Vol. 2,pp. 557-593, Nov 2006.

31. A. Kroller, D. Pfisterer, S. Fischer and S. P. Fekete, "Neighborhood-based topology recognition in

sensor networks," Algorithmic Aspects of Wireless Sensor Networks. Springer Berlin Heidelberg,

123-136, 2004.

http://link.springer.com/search?facet-author=%22Li+Ma%22
http://link.springer.com/search?facet-author=%22Jianpei+He%22
http://link.springer.com/search?facet-author=%22Dongchao+Ma%22
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6105664

66

32. D. C. Dhanapala, A. P. Jayasumana, and S. Mehta. "On boundary detection of 2-d and 3-d wireless

sensor networks," Global Telecommunications Conference (GLOBECOM), IEEE, 2011.

33. Y. Wang, J. Gao and J. S. B. Mitchell, "Boundary recognition in sensor networks by topological

methods," Proc. 12th Annual International Conference on Mobile Computing and Networking, ACM,

2006.

34. J. Bruck, J. Gao and A. Jiang, "MAP: Medial axis based geometric routing in sensor

networks," Wireless Networks 13.6: 835-853, 2007.

35. H. Jiang, W. Liu, D. Wang, C. Tian and X. Bai, "CASE: Connectivity-based skeleton extraction in

wireless sensor networks," INFOCOM, IEEE, 2009.

36. L. Lin and H. Lee, "A dynamic medial axis model for sensor networks," Proc. 13th IEEE International

Conference onEmbedded and Real-Time Computing Systems and Applications, 2007.

37. X. Zhu, R. Sarkar and J. Gao, "Shape segmentation and applications in sensor networks," INFOCOM,

26th IEEE International Conference on Computer Communications, 2007.

38. S. Xia, N. Ding, M. Jin and H. Wu, "Medial axis construction and applications in 3D wireless sensor

networks," INFOCOM, 2013.

39. W. M. Pang and K. S. Choi, "Distance transform-based skeleton extraction and its applications in

sensor networks," 2013.

40. W. Liu, H. Jiang, X. Bai, G. Tan and C. Wang , "Skeleton extraction from incomplete boundaries in

sensor networks based on distance transform," Proc. 32ndIEEE International Conf. on Distributed

Computing Systems (ICDCS), 2012.

67

APPENDIX A

SIMULATION OF VIRTUAL COORDINATE REPAIR ALGORITHM

 MATLAB code for simulating Virtual Coordinate Repair Algorithm (VCRA) is given

below. The code has been presented in parts where Section A.1 gives the code for network

establishment. Section A.2 gives code for inserting node failures as per desired patterns. Section

A.3 gives code for reliability check, VC update and performance evaluation. Section A.4 gives

code for routing function used to perform routing in the network at different intervals.

A.1 Network establishment

%INPUT: XY coordinates of sensor nodes in the network

%OUTPUT: Adjacency matrix for the network, Virtual Coordinates for the network for ENS

anchor nodes

%Initialization of parameters being monitored/ measured----------

MSG = 0; %total msgs exchanged

VCaffected = 0; %total VCs affected due to accidental death of nodes

VCcorrected = 0; %total VC that this algo was able to correct from affected VCs

NODEcorrected = 0; %total nodes that this algo was able to correct from affected nodes

Affected = [];

%deadNodes - total nodes died suddenly

%no_nodes - size of the network

%no_anchors - determined by ENS algo.

%GnodeXY - X and Y coordinates of the sensor nodes

%GnodePos - network node indices

% Prepare network--

global GnodeXY;

GnodeXY = [];

global GnodePos;

GnodePos = [];

A = zeros;

GnodePos = zeros;

GnodeXY = input('enter coordinates :');

[r,c]=size(GnodeXY);

for i=1:r

 A(GnodeXY(i,1),GnodeXY(i,2))=1;

68

end

[r,c] = size(A);

n=1;

i=1;

j=1;

for i=1:r

 for j=1:c

 if A(i,j)==1

 GnodePos(i,j)=n;

 n=n+1;

 end

 end

end

no_nodes = n-1;

% Connectivity information is stored in adjacency matrix

%adjacency matrix for 4 connected neighbors:---------------------------------

global adj;

row=r;

column=c;

[r,c] = size(GnodePos); %# Get the matrix size

diagVec1 = repmat([ones(c-1,1); 0],r,1); %# Make the first diagonal vector

 %# (for horizontal connections)

diagVec1 = diagVec1(1:end-1); %# Remove the last value

diagVec2 = ones(c*(r-1),1); %# Make the second diagonal vector

 %# (for vertical connections)

adj = diag(diagVec1,1)+... %# Add the diagonals to a zero matrix

 diag(diagVec2,c);

adj = adj+adj.';

%this is basic adj..now substitute 0 for removed nodes.check by [n,m]

i=1;

for n = 1:row

 for m = 1:column

 if GnodePos(n,m) == 0;

 adj(i,:)=[];

 adj(:,i)=[];

 i = i-1;

 end

 i = i+1;

 end

end

Oadj = adj;

69

% Getting VCs:---

% Dijkstra's algorithm is used to calculate the VCs by computing the shortest hop distances

between an anchor and a node

% algorithm works on adjacency matrix for connectivity

Anchors = input('Source node array:');

S = sparse(adj);

for i = 1:numel(Anchors)

 VCmatrix(i,:)=dijkstra_sp(S,Anchors(i));

end

A.2 Inserting desired node failure pattern

%INPUT: Network information, node failure pattern, node failure percentage

%OUTPUT: Network information for network with node failure

%Insert node failures:---

OGnodePos = GnodePos;

deadNodes=0;

mynumber = input('Enter type of failure\n 1: Randomly distributed\n 2: Mixed\n 3: Clustered:');

adj_temp = adj;

[r,c]=size(adj_temp);

add = (1:r);

matrix = cat(1,add,adj_temp);

add = cat(2,0,add);

matrix = cat(2,add',matrix);

adj_temp1 = matrix;

adj_temp2 = matrix;

switch mynumber

 case 1 %1:Randomly distributed

 percentage = input('Enter percentage to be deleted: ');

 zz=fix(no_nodes*percentage/100);

 flaw=[];

 while numel(flaw)<=zz

 s = randsample(no_nodes,1);

 % updating adj matrix for deleted node

 sss = find(adj_temp1(1,:)==s);

 adj_temp1(sss,:)=[];

 adj_temp1(:,sss)=[];

 if (~any(Anchors==s)) && (checkconnected(adj_temp1)) %check the connectivity here.

 disp('connected');

 flaw = cat(2,flaw,s);

70

 flaw=unique(flaw);

 adj_temp2 = adj_temp1;

 else

 disp('Disconnected');

 adj_temp1 = adj_temp2;

 end

 end

 case 2 %2:half distributed..half clustered

 percentage = input('Enter percentage to be deleted: ');

 %sparse failure

 zz=fix(no_nodes*percentage/200);

 flaw=[];

 while numel(flaw)<=zz

 s = randsample(no_nodes,1);

 % updating adj matrix for deleted node

 sss = find(adj_temp1(1,:)==s);

 adj_temp1(sss,:)=[];

 adj_temp1(:,sss)=[];

 if (~any(Anchors==s)) && (checkconnected(adj_temp1)) %check the connectivity here.

 %Connected

 flaw = cat(2,flaw,s);

 flaw=unique(flaw);

 adj_temp2 = adj_temp1;

 else

 %Disconnected

 adj_temp1 = adj_temp2;

 end

 end

 %cluster failure

 zz=fix(no_nodes*percentage/100);

 pool=[];

 s = randsample(no_nodes,1);

 if any(Anchors==s)

 else

 flaw=cat(2,flaw,s);

 end

 nebrs=[];

 nebrs=find(adj(s,:)); %storing neighbors of nodes being deleted

 pool=cat(2,pool,nebrs);

 while numel(flaw)<zz

 s = randsample(pool,1);

 % updating adj matrix for deleted node

 sss = find(adj_temp1(1,:)==s);

 adj_temp1(sss,:)=[];

 adj_temp1(:,sss)=[];

71

 % conditions to actually delete the selected node from the n/w

 %delete if = it is NOT an anchor + the n/w stays connected after

 %its failure

 if (~any(Anchors==s)) && (checkconnected(adj_temp1))%check the connectivity here.

 %Connected

 flaw = cat(2,flaw,s);

 flaw=unique(flaw);

 nebrs=[];

 Rnebrs = [];

 sss = find(adj_temp2(1,:)==s);

 nebrs=find(adj_temp2(sss,:)==1);

 [r,c]=size(nebrs);

 if numel(nebrs)>=1

 for i=1:c

 pin = nebrs(i);

 Rnebrs=cat(2,Rnebrs,adj_temp2(1,pin));

 end

 end

 pool=cat(2,pool,Rnebrs);

 pool=unique(pool);

 adj_temp2 = adj_temp1;

 else

 %Disconnected

 adj_temp1 = adj_temp2;

 end %iF conditional statement ends here

 end %while loop ends here

 case 3 %3:Clustered

 percentage = input('Enter percentage to be deleted: ');

 zz=fix(no_nodes*percentage/100);

 flaw=[];

 pool=[];

 s = randsample(no_nodes,1);

 if any(Anchors==s)

 else

 flaw=cat(2,flaw,s);

 end

 nebrs=[];

 nebrs=find(adj(s,:)); %storing nebrs of nodes being deleted

 pool=cat(2,pool,nebrs);

 [~,ID]=find(pool==0);

 pool(ID)=[];

 if size(adj_temp1)>0

 while numel(flaw)<=zz

 s = randsample(pool,1);

 % updating adj matrix for deleted node

72

 sss = find(adj_temp1(1,:)==s);

 adj_temp1(sss,:)=[];

 adj_temp1(:,sss)=[];

 % conditions to actually delete the selected node from the n/w

 %delete if = it is NOT an anchor + the n/w stays connected after

 %its failure

 adio=adj_temp1;

 adio(:,1)=[];

 adio(1,:)=[];

 if (~any(Anchors==s)) && (checkconnected(adj_temp1))%check the connectivity here.

 %Connected

 flaw = cat(2,flaw,s);

 flaw=unique(flaw);

 nebrs=[];

 Rnebrs = [];

 sss = find(adj_temp2(1,:)==s);

 nebrs=find(adj_temp2(sss,:)==1);

 [r,c]=size(nebrs);

 if numel(nebrs)>=1

 for i=1:c

 pin = nebrs(i);

 Rnebrs=cat(2,Rnebrs,adj_temp2(1,pin));

 end

 end

 pool=cat(2,pool,Rnebrs);

 pool=unique(pool);

 adj_temp2 = adj_temp1;

 else

 %Disconnected

 adj_temp1 = adj_temp2;

 end %iF conditional statement ends here

 end %while loop ends here

 end

 otherwise

 disp('Wrong choice! Please make a valid selection');

end

flaw=sort(flaw,'descend');

[~,ID]=find(flaw==0);

flaw(ID)=[];

for pointer=1:numel(flaw)

 i = flaw(pointer);

 [n,m] = find(GnodePos==i,1);

 GnodePos(n,m) = -1;

 A(n,m) = 0;

 VCmatrix(:,i)=[];

73

 adj(i,:)=[];

 adj(:,i)=[];

 deadNodes=deadNodes+1;

end

[r,c]=size(GnodePos);

 n=1;

 for i=1:r

 for j=1:c

 if A(i,j)==1

 GnodePos(i,j)=n;

 n=n+1;

 end

 end

 end

 no_nodes=n-1;

A.3 VCRA – Reliability check, VC update and performance evaluation

%INPUT: Network information

%OUTPUT: Routability, average hop count, total messages transmitted

%Compute data:------------------------------------

% The nodes calculate neighbor change if any after node failure event

% Nodes with neighbor change initiate reliability check

global Right_wrong;

Right_wrong = [];

nebrChange=[];

for n=1:no_nodes

 node_neighbors = [];

 node_neighbors = find(Oadj(n,:));

 nebrNumBefore(n)= numel(node_neighbors(1,:));

 node_neighbors = [];

 node_neighbors = find(adj(n,:));

 nebrNumAfter(n)= numel(node_neighbors(1,:));

 nebrChange(n) = nebrNumBefore(n) - nebrNumAfter(n);

end

for p = 1:numel(flaw(1,:))

 val = flaw(p);

 [i,j] = find(OGnodePos==val,1);

 if GnodePos(i,j)==(-1)

 nebrChange(val) = -1; %if the node is dead..nebrChange=(-1)

 end

end

 no_anchors = numel(Anchors);

74

%reliability check:---

for j=1:no_anchors

 for i=1:no_nodes

 Right_wrong(i,j)=1; %setting default value as 1

 end

end

%repeated until we can no more find any update in Rel[]

unrelNodes=[];

checkDone = [];

nebrI = [];

%check the reliability for nodes with neighbor change [ROUND #1]

 for i = 1:no_nodes

 if (nebrChange(i) > 0)

 [rows columns] = size(VCmatrix);

 for a = 1: rows %check rel for coordinates corresponding to all the anchors

 %checks VCs for all the neighbors

 node_neighbors = [];

 node_neighbors = find(adj(i,:)); %getting its nebrs from new adjmatrix

 if ((numel(node_neighbors(1,:)))~=0)

 for n = 1:(numel(node_neighbors(1,:)))

 nebr = node_neighbors(1,n);

 if VCmatrix(a,nebr) == (VCmatrix(a,i)-1)

 R = 1;

 break;

 else

 R = 0;

 end

 end

 nebrI = cat(2,nebrI,node_neighbors(1,:));

 %if for any neighbor, we dont find a VC == VC-1 then VC for current node is affected

 if (R ==0 & (VCmatrix(a,i)~=0))

 Right_wrong(i,a) = 0;

 unrelNodes = cat(2,unrelNodes,i);

 end

 end

 end

 checkDone = cat(2,checkDone,i);

 end

 end

 nebrI = unique(nebrI); %taking out repetative elements

%now conduct the check for neighbor of nodes with neighbor-change-----go through nebrI

 nebrII=[];

 for n = 1:(numel(nebrI(:,:)))

 i = nebrI(n);

 if (~(any(i==checkDone)))

75

 node_neighbors = find(adj(i,:));

 [rows columns] = size(VCmatrix);

 for a = 1: rows

 %checks VCs for all the neighbors

 node_neighbors = find(adj(i,:));

 if ((numel(node_neighbors(1,:)))~=0)

 for n = 1:(numel(node_neighbors(1,:)))

 nebr = node_neighbors(1,n);

 if VCmatrix(a,nebr) == (VCmatrix(a,i)-1)

 R = 1;

 break;

 else

 R = 0;

 end

 end

 nebrII = cat(2,nebrII,node_neighbors(1,:));

 %if for any neighbor, we dont find a VC == VC-1 then VC for current node is affected

 if (R ==0 & (VCmatrix(a,i)~=0))

 Right_wrong(i,a) = 0;

 unrelNodes = cat(2,unrelNodes,i);

 end

 end

 end

 checkDone = cat(2,checkDone,i);

 end

 end

 %copy data from nebrII to nebrI

 nebrI = nebrII;

 nebrI = unique(nebrI);

 %notify nebr to check it's reliability

 zz = sum(nebrChange(:,:)>0);

 MSG = MSG + zz;

%Reliability check for remaining nodes..if any!

 for i = 1:no_nodes

 if (~(any(i==checkDone))) % it checks if the node is already done with the reliability check

 node_neighbors = [];

 node_neighbors = find(adj(i,:));

 % loop to check VCs corresponding to all the anchors

 [rows columns] = size(VCmatrix);

 for a = 1: rows

 %checks VCs for all the neighbors

 node_neighbors = find(adj(i,:));

 if ((numel(node_neighbors(1,:)))~=0)

 for n = 1:(numel(node_neighbors(1,:)))

 nebr = node_neighbors(1,n);

76

 if VCmatrix(a,nebr) == (VCmatrix(a,i)-1)

 R = 1;

 break;

 else

 R = 0;

 end

 end

 nebrII = cat(2,nebrII,node_neighbors(1,:));

 %if for any neighbor, we dont find a VC == VC-1 then VC for current node is affected

 if (R ==0 & (VCmatrix(a,i)~=0))

 Right_wrong(i,a) = 0;

 unrelNodes = cat(2,unrelNodes,i);

 end

 end

 end

 checkDone = cat(2,checkDone,i);

 end

 end

 nebrII = unique(nebrII); %taking out repetative elements

unrelNodes = unique(unrelNodes);

relCount=0;

discovered=1;

unrelNebrs = [];

NewunrelNodes = [];

seen = [];

L1=0;

L2=1;

while L1<L2 %scanning nebrs of unRel nodes until we stop finding new unrel nodes

%list nebrs of the nodes that have rel[]=0 in previous round

%store nebrs of unrelNodes

 discovered = 0;

 for i = 1:numel(unrelNodes)

 pointer=unrelNodes(i);

 node_neighbors = [];

 node_neighbors = find(adj(pointer,:));

 unrelNebrs = cat(2,unrelNebrs ,node_neighbors(1,:));

 end

 unrelNebrs = unique(unrelNebrs);

 %check for reliability of these unreliable neighbors

 for i = 1:numel(unrelNebrs)

 pointer=unrelNebrs(i);

 node_neighbors = [];

 node_neighbors = find(adj(pointer,:));

 [rows columns] = size(VCmatrix);

 for a = 1: rows

77

 %checks VCs for all the neighbors

 node_neighbors = find(adj(pointer,:));

 if ((numel(node_neighbors(1,:)))~=0)

 for n = 1:(numel(node_neighbors(1,:)))

 nebr = node_neighbors(1,n);

 if Right_wrong(nebr,a) ==1;

 if VCmatrix(a,nebr) == (VCmatrix(a,pointer)-1)

 R = 1;

 break;

 else

 R = 0;

 end

 end

 end

 %if for any neighbor, we dont find a VC == VC-1 then VC for current node is affected

 if (R ==0 && (VCmatrix(a,pointer)~=0))

 Right_wrong(pointer,a) = 0;

 discovered = 1;

 NewunrelNodes = cat(2,NewunrelNodes,pointer);

 end

 end

 end

 end

 unrelNodes = NewunrelNodes;

 L1=numel(seen);

 seen = cat(2,seen,unrelNodes);

 seen = unique(seen);

 L2=numel(seen);

 NewunrelNodes = [];

 unrelNodes = unique(unrelNodes);

 relCount=relCount+1;

 end

%Number of affected VCs (VCaffecetd) and number of affected nodes (Affected)are measured

here

z = sum(Right_wrong(:,:)==0);

VCaffected = z(1)+z(2);

Affected = [];

for p=1:no_nodes

 zz = sum(Right_wrong(p,:)==0);

 if zz>0

 Affected = cat(2,Affected,p);

 end

78

end

AffectedPool = Affected;

% Routing check ----------------------------BEFORE NODE FAILURE--*******

%destinationPool = all affected nodes

destinationPool = oldAffected;

%sourcePool = all non-affected nodes = (no_nodes)-(affected)

sourcePool = (1:Bno_nodes);

for i=1:numel(oldAffected)

 sample = oldAffected(i);

 if any(sourcePool==sample)

 [~,II]=find(sourcePool==sample);

 sourcePool(II)=[];

 end

end

%calculate the avg Routability percentage NON affetced to Affeted nodes prior

%to update

DDD = [3 6];

[N_A_avgRoutability_Original,N_A_avgHopCount_Original] =

route(sourcePool,destinationPool,DDD,BVCmatrix,Bno_nodes,Anchors,Badj);

[A_N_avgRoutability_Original,A_N_avgHopCount_Original] =

route(destinationPool,sourcePool,DDD,BVCmatrix,Bno_nodes,Anchors,Badj);

% Routing check -----------------------------------BEFORE VC update--*******

%destinationPool = all affected nodes

destinationPool = Affected;

%sourcePool = all non-affected nodes = (no_nodes)-(affected)

sourcePool = (1:no_nodes);

for i=1:numel(Affected)

 sample = Affected(i);

 if any(sourcePool==sample)

 [~,II]=find(sourcePool==sample);

 sourcePool(II)=[];

 end

end

%calculate the avg Routability percentage NON affetced to Affeted nodes prior

%to update

[N_A_avgRoutability_Pre,N_A_avgHopCount_Pre] =

route(sourcePool,destinationPool,DDD,VCmatrix,no_nodes,transAnchors,adj);

[A_N_avgRoutability_Pre,A_N_avgHopCount_Pre] =

route(destinationPool,sourcePool,DDD,VCmatrix,no_nodes,transAnchors,adj);

%---------------VC updating---

79

node_neighbors = [];

for i=1:numel(Affected)

 pointer = Affected(i);

 nebrs = [];

 nebrs = find(adj(pointer,:)); %stores all the nebrs of Affected nodes

 node_neighbors = cat(2,node_neighbors,nebrs);

end

boundary = [];

boundary = node_neighbors;

boundary = unique(boundary);

for i=1:numel(Affected)

 pointer = Affected(i);

 if any(boundary==pointer)

 zz = find(boundary==pointer);

 boundary(zz) = [];

 end

end

B=boundary; %these are the reliable nodes surrounding affected nodes

% number of nodes which undergo VC =0 are AFFECTED nodes.

%every node braodcasts its Rel[] to neighbors if ==0

MSG = MSG + numel(Affected);

%when the unreliable node tells its neighbors that it is unreliable.. its neighbors check for

reliability again

%now we have Affected nodes and their boundary Reliability nodes

%Reliability nodes will try to update their unreliable neighbors

while (numel(boundary)>0)

 needed = [];

 for i=1:numel(boundary)

 pointer = boundary(i);

 nebrs = [];

 nebrs = find(adj(pointer,:)); %collect neighbors of Reliable nodes

 needed = cat(2,needed,nebrs);

 end

 needed = unique(needed);

 %keep only unrel nodes

 A=needed;

 for i=1:numel(A)

 pointer = A(i);

 if any(Right_wrong(pointer,:)==0)

 else

 zz=find(needed==pointer);

 needed(zz)=[];

80

 end

 end

MSG = MSG+numel(needed); %these unreliable nodes ask their neighbors for help-1 broadcast

%nodes in need get VC update from their Reliable neighbors

 for i=1:numel(needed)

 %process each unrel node

 pointer = needed(i);

 helpers = [];

 helpers = find(adj(pointer,:));

 %remove unrel nodes from nebr list

 A=helpers;

 for j=1:numel(A)

 if any(Right_wrong(A(j),:)==0) %remove the node if unrel

 zz=find(helpers==A(j));

 helpers(zz)=[];

 end

 end

 ME=needed(i);

 %See what VC the unrel node needs

 [rows columns] = size(VCmatrix);

 CHECK = [];

 for a = 1: rows

 CHECK(1,a) = 0; %stores zeros in CHECK as default value

 end

 STORE = [];

 for a = 1: no_anchors

 STORE(1,a) = -1; %default value in STORE is -1

 end

 for a = 1: rows

 if (Right_wrong(ME,a) == 0)

 CHECK(1,a) = -1; %this tells which VCs are faulty and needs to be looked for

 STORE(1,a) = -1;

 end

 end

 %look for the VCs needed

 for n = 1:(numel(helpers))

 nebr = helpers(n);

 for a = 1: rows %we check all the VCs at one nebr 1st and then move to other nebr's data

 if CHECK(1,a) == -1

 if STORE(1,a) == -1

 STORE(1,a) = VCmatrix(a,nebr)+1; %Storing the VCs that we need

 else if (VCmatrix(a,nebr)+1) < STORE(1,a) %if we already got a Rel VC for what we

were searching then we store the one which is smallest

 STORE(1,a) = VCmatrix(a,nebr)+1; %overwrite the prev value by the new smaller

one

 end

81

 end

 end

 end

 end

 %at the end of this loop, the unreliable node has smallest VC value derived

 %from its Reliable neighbor

 %update the unreliable node - pointer

 for a = 1: rows

 if (STORE(1,a) > -1)

 VCmatrix(a,ME) = STORE(1,a); %updating

 end

 end

 %also check if we have corrected R_w[] value for ME

 R=0;

 node_neighbors = [];

 node_neighbors = find(adj(ME,:)); %so neighbors are stored in this 1D matrix

 % loop to check VCs corresponding to all the anchors

 [rows columns] = size(VCmatrix);

 for a = 1: rows

 %checks VCs for all the neighbors

 node_neighbors = find(adj(ME,:));

 if ((numel(node_neighbors(1,:)))~=0)

 for n = 1:(numel(node_neighbors(1,:)))

 nebr = node_neighbors(1,n);

 if Right_wrong(nebr,a)==1

 if VCmatrix(a,nebr) == (VCmatrix(a,ME)-1)

 R = 1;

 break;

 end

 end

 end

 %if for any neighbor, we don’t find a VC == VC-1 then VC for current node is

affecetd

 if R==1

 Right_wrong(ME,a) = 1;

 end

 if (sum(Right_wrong(ME,:)==0)==0) %if ME is completely updated

 zz=find(AffectedPool==ME);

 AffectedPool(zz)=[]; %remove it from the AffectedPool

 end

 end

 end

 end

 %at the end of this loop, all the 1st level unrel nodes are updated.

 %This is repeated and the wave is spread inwards

 %save the nebrs of unrel nodes - keep only unrel nodes and

82

 %repeat the process for them.

 boundary = needed;

 MSG = MSG + numel(boundary); %when a node changes into Rel, broadcast its nebrs

end %end the while loop here

%calculate the Routability percentage Affeted to NON affetced nodes post

%the update

[N_A_avgRoutability_Post,N_A_avgHopCount_Post] =

route(sourcePool,destinationPool,DDD,VCmatrix,no_nodes,transAnchors,adj);

[A_N_avgRoutability_Post,A_N_avgHopCount_Post] =

route(destinationPool,sourcePool,DDD,VCmatrix,no_nodes,transAnchors,adj);

A.4 Routing function

%INPUT: Set of source nodes, set of destination nodes, network information

%OUTPUT: Routability, average hop count

%% Routing function--**********

% Tries to route messages from specified set of source and destination. Returns

% DDD is the pair of Directional Virtual Coordinates (DVCs) that gives best result for routing in

the given Wireless Sensor Netork

function[avgRoutability,avgHopCount] =

route(sourcePool,destinationPool,DDD,VCmatrix,no_nodes,transAnchors,adj)

avgHopCount = 0;

avgRoutability = 0;

RO = 0;

%% Calculating Anchor to anchor hop count:---

C = factorial(numel(transAnchors))/(factorial(2)*factorial((numel(transAnchors))-2));

n=1;

H=[];

for i=1:numel(transAnchors)

 VCa = VCmatrix(:,transAnchors(i));

 for j=i+1:numel(transAnchors)

 H(1,n) = i;

 H(2,n) = j;

 H(3,n) = VCmatrix(j,transAnchors(i));

 n=numel(H(3,:))+1;

 if numel(H(3,:))==C

 break;

 end

 end

83

end

%% Calculate DVCs for the nodes:--

DVC = [];

X = [];

Y = [];

for i=1:no_nodes

 for point=1:numel(H(3,:))

 a=H(1,point);

 b=H(2,point);

 h1 = VCmatrix(a,i);

 h2 = VCmatrix(b,i);

 DVC(i,point)= (h2-h1)*(h2+h1) /(2*H(3,point));

 end

end

%% get shortest hop distance matrix:--

%Dijkstra's algorithm is used to compute the VCs

%algorithm works on adjacency matrix for connectivity

arr = (1:no_nodes);

 S = sparse(adj);

for i = 1:numel(arr)

 Hs_matrix(i,:)=dijkstra_sp(S,arr(i));

end

%% routing process :--

 RO = 0; % gives number of messages routed successfully

 disp(H);

 Routed=0;

 TotalHopCount = zeros(1,numel(destinationPool));

 percent = zeros(1,numel(destinationPool));

 for d=1:numel(destinationPool)

 dest = destinationPool(d);

 Routed=0;

 HopCount = 0;

 RO = 0; %count routed msgs separately for each destination

 for s=1:numel(sourcePool)

 source = sourcePool(s);

 Routed=0;

 distance = [];

 jump = source;

 travelled=0;

 while (jump~=dest)

 distnebr = [];

84

 %compute odiff1[] and odiff2[]

 node_neighbors = [];

 node_neighbors = find(adj(jump,:));

 for ii=1:numel(node_neighbors)

 nebr = node_neighbors(ii);

 odiff1 = (DVC(nebr,DDD(1))-DVC(dest,DDD(1)))^2;

 odiff2 = (DVC(nebr,DDD(2))-DVC(dest,DDD(2)))^2;

 distance(ii) = sqrt(odiff1+odiff2);

 end

 node_neighbors = [];

 node_neighbors = find(adj(jump,:));

 %before we check for distance, check if the node index is in

 %nebrs

 if any(node_neighbors==dest)

 Routed = 1;

 RO=RO+Routed;

 %Routed!

 break;

 end

 [~,ID] = min(distance);

 node = node_neighbors(ID);

 jump = node;

 HopCount = HopCount+1;

 distance = [];

 travelled = travelled+1;

 if travelled>100

 break;

 end

 if jump==dest

 Routed = 1;

 RO=RO+Routed;

 %Routed!

 break;

 end

 end %while loop ends here

 end %for loop for each source ends here

 percent(d)=(RO*100/(numel(sourcePool)));

 [~,ID]=find(Hs_matrix(d,:)==Inf);

 Hs_matrix(d,ID)=0;

 Hs_avg = sum(Hs_matrix(d,:))/ numel(Hs_matrix(d,:)); %avg of shortest hop count for one

node

 TotalHopCount(d)=HopCount/Hs_avg;

 end % destination loop ends here

 %We take average of prercentage routability:

85

 avgRoutability = sum(percent)/numel(percent);

 avgHopCount = sum(TotalHopCount)/numel(TotalHopCount);

end %function ends here

86

APPENDIX B

SIMULATION OF MEDIAL AXIS DETECTION ALGORITHM

 MATLAB code for simulating Medial Axis Detection Algorithm is given below. The

code has been presented in parts where Section B.1 gives the code for obtaining the network

connectivity information through adjacency matrix with 8 node neighbor connectivity. Section

B.2 gives code for Round 1 of the algorithm. Section B.3 gives code for Round 2 of the

algorithm.

B.1 Network connectivity information

 %The network is established using code in Section A.1. It also provides code for obtaining

adjacency matrix in case of 4 node connected network.

%INPUT: Network information

%OUTPUT: Adjacency matrix

% adjacency matrix stores the connectivity information of the network

% Section A.1 gives the adjacency matrix for a network with 4 neighbor connectivity

% 8- neighbor connected - adjacency:------------------------------------

global adj;

adj=[];

row=r;

column=c;

 diagVec1 = repmat([ones(c-1,1); 0],r,1); %# Make the first diagonal vector

 %# (for horizontal connections)

diagVec1 = diagVec1(1:end-1); %# Remove the last value

diagVec2 = [0; diagVec1(1:(c*(r-1)))]; %# Make the second diagonal vector

 %# (for anti-diagonal connections)

diagVec3 = ones(c*(r-1),1); %# Make the third diagonal vector

 %# (for vertical connections)

diagVec4 = diagVec2(2:end-1); %# Make the fourth diagonal vector

 %# (for diagonal connections)

adj = diag(diagVec1,1)+... %# Add the diagonals to a zero matrix

 diag(diagVec2,c-1)+...

 diag(diagVec3,c)+...

 diag(diagVec4,c+1);

87

adj = adj+adj.'; %'# Add the matrix to a transposed

 %# copy of itself to make it

 %# symmetric

%substitute 0 for removed nodes

i=1;

for n = 1:row

 for m = 1:column

 if GnodePos(n,m) == 0;

 adj(i,:)=[];

 adj(:,i)=[];

 i = i-1;

 end

 i = i+1;

 end

end

B.2 Medial Axis Detection Algorithm – Round 1

%INPUT: Adjacency matrix, Boundary nodes

%OUTPUT: Medial nodes, total message transmissions during Round 1 of the algorithm

% Round 1: Limited flooding from boundary nodes to normal nodes

% Nodes store the shortest hop count received from any boundary node flooded packet

global R1cost;

global Bflood;

Bflood = 0;

for i=1:no_nodes

 Bdistance(i).ID=-1;

 Bdistance(i).hops=-1;

end

for B=1:numel(Boundary_nodes)

 BN = Boundary_nodes(B);

 Need=1;

 nebrs=BN;

 own_hop_count=1;

 while(Need==1)

 Need = 0;

 nebrsI=[];

 for zz=1:numel(nebrs)

 nn=nebrs(zz);

 addnn=find(adj(nn,:));

 nebrsI=cat(2,nebrsI,addnn);

 end

 nebrsI=unique(nebrsI);

88

 %take out bounadry nodes from the neighbors

 commons = intersect(nebrsI,Boundary_nodes);

 nebrsI = setxor(nebrsI,commons);

 %forwarding MSG to current nebrs

 if numel(nebrsI)>0 % then only proceed else move on to next boundary node

 Bflood = Bflood +1;

 for n=1:numel(nebrsI)

 node=nebrsI(n);

 if (Bdistance(node).hops>0)

 if (Bdistance(node).hops>own_hop_count)

 Bdistance(node).hops=own_hop_count;

 Bdistance(node).ID=BN;

 Need=1;

 else if (Bdistance(node).hops==own_hop_count)

 %else if 2 nodes are equidistant..Concatenate (cat) both IDs

 Bdistance(node).ID=cat(2,Bdistance(node).ID,BN);

 Need=1;

 end

 end

 else

 %else overwrite the hop count value

 Bdistance(node).hops=own_hop_count;

 Bdistance(node).ID=BN;

 Need=1;

 end

 end

 own_hop_count = own_hop_count+1;

 nebrs = [];

 nebrs = nebrsI;

end %if condition includes the entire for loop

 end

end

%--

%% Self detect nodes whose nebrs have hops(>=self)....skeleton nodes

R1cost = 0; %number of messages required to execute Round 1

skeleton = zeros(1,no_nodes);

for i=1:no_nodes

 nebrs = [];

 nebrs = find(adj(i,:));

 %take out boundary nodes

 [~,ID]=find(Bflag(nebrs)==1);

 nebrs(ID)=[];

89

 count = 0;

 for n=1:numel(nebrs)

 if (Bdistance(nebrs(n)).hops<=Bdistance(i).hops)

 count = count+1;

 end

 end

 if count>0 && count==numel(nebrs)

 skeleton(i)=1;

 end

end

R1cost = R1cost + no_nodes - numel(Boundary_nodes);

MedialFlag = skeleton;

Medial_nodes = find(MedialFlag>0);

R1cost = R1cost + no_nodes - numel(Medial_nodes);

B.3 Medial Axis Detection Algorithm – Round 2

%INPUT: Adjacency matrix, Boundary nodes, Medial nodes from Round 1

%OUTPUT: Medial nodes, total message transmissions during Round 2 of the algorithm

% Round 2: Medial node inter-connection.....part A

global R2cost; %number of messages required to execute Round 1

R2cost = 0;

for NEED=1:3 % do until all medial nodes have at least 2 medial neighbors

 for i=1:numel(Medial_nodes)

 node=Medial_nodes(i);

 %check if the node needs to search for friends:

 nebrs=[];

 nebrs = find(adj(node,:));

 count=0;

 for mm=1:numel(nebrs)

 m=nebrs(mm);

 if MedialFlag(m)>0

 count=count+1;

 end

 end

 if count<2 %it means the search is needed...

 found=0;

 disp(node);

 TTL=1;

 path=[];

 nebrs=[];

 nebrs = find(adj(node,:));

 %eliminate old Medial neighbors to avoid backtracking

90

 flag=0;

 pointer=1;

 while(flag==0)

 flag=0;

 if pointer<=numel(nebrs)

 pin=nebrs(pointer);

 else

 break;

 end

 if MedialFlag(pin)>0

 ID = find(nebrs==pin);

 nebrs(ID)=[];

 flag=1;

 end

 pointer=pointer+1;

 end

 past=node;

 while (TTL<11)

 if TTL>1

 %get nebrs

 nebrs=[];

 nebrs = find(adj(node,:));

 %eliminate PAST nebr to avoid backtracking - node

 flag=0;

 pointer=1;

 while(flag==0)

 flag=0;

 if pointer<=numel(nebrs)

 pin=nebrs(pointer);

 else

 break;

 end

 if pin==past

 ID = find(nebrs==pin);

 nebrs(ID)=[];

 flag=1;

 end

 pointer=pointer+1;

 end

 end

 %take out boundary nodes from nebrs

 commons = intersect(nebrs,Boundary_nodes);

 nebrs = setxor(nebrs,commons);

 %keep only the ONES -with higher Bdistance

 store=[];

 for zz=1:numel(nebrs)

91

 nn=nebrs(zz);

 store = cat(2,store,Bdistance(nn).hops);

 end

 [~,ID]=find(store==max(store));

 %if >1 nodes have max Bdist

 %store all

 senses=[];

 sensible_nebr = [];

 for ii=1:numel(ID)

 senses=cat(2,senses,nebrs(ID(ii)));

 end

 %store medial node if any

 if numel(senses)>0

 if any(MedialFlag(senses)>0)

 for ss=1:numel(senses)

 if MedialFlag(senses(ss))>0

 sensible_nebr=senses(ss);

 break;

 end

 end

 else

 sensible_nebr=senses(1);

 end

 end

 %check if this is a Medial node

 if (MedialFlag(sensible_nebr)>0)

 found=1; %Medial node found! route back and leave a trail

 %store the path of sensible_nebrss and mark all those if found

 if numel(path)>0

 MedialFlag =

traceroute(Medial_nodes(i),sensible_nebr,no_nodes,adj,MedialFlag,path,1);

 R2cost = R2cost + numel(path);

 end

 break;

 else

 past=node;

 node=sensible_nebr;

 path = cat(2,path,sensible_nebr);

 end

 TTL = TTL+1;

 end %while loop ends here

 end %for neccessity check

 end

 Medial_nodes = find(MedialFlag>0);

end% the main for loop of NEED ends here-do 3 times

92

%% ROUND 2 : Medial node inter-connection.....part B

%controlled search for other medial nodes in sensible directions

 for i=1:numel(Medial_nodes)

 node = Medial_nodes(i);

 destination = node;

 nebrsII = node;

 count = 1;

 found = 0;

 allowedNebrs = node;

 while (numel(allowedNebrs)>0)

 nebrsI = [];

 for nnn=1:numel(nebrsII)

 addI = find(adj(nebrsII(nnn),:));

 nebrsI = cat(2,nebrsI,addI);

 end

 nebrsI = unique(nebrsI);

 %take out past nodes from nebrs

 commons = intersect(nebrsI,nebrsII);

 nebrsI = setxor(nebrsI,commons);

 if count==1

 %take out present Medial nodes

 [~,ID] = find(MedialFlag(nebrsI)==1);

 nebrsI(ID)=[];

 end

 count = count+1;

 %take out boundary nodes from nebrs

 commons = intersect(nebrsI,Boundary_nodes);

 nebrsI = setxor(nebrsI,commons);

 allowedNebrs=[];

 for n=1:numel(nebrsI)

 found = 0;

 %allow nebrs only if (=current-1;NONmedial) or (=current;medial)

 if (Bdistance(nebrsI(n)).hops==(Bdistance(nebrsII(1)).hops-1)) &&

(MedialFlag(nebrsI(n))==0)

 %save that nebr

 allowedNebrs = cat(2,allowedNebrs,nebrsI(n));

 else if (Bdistance(nebrsI(n)).hops==Bdistance(nebrsII(1)).hops) &&

(MedialFlag(nebrsI(n))==1)

 %save that nebr

 allowedNebrs = cat(2,allowedNebrs,nebrsI(n));

 end

 end

 end

 R2cost = R2cost + numel(allowedNebrs);

 if numel(allowedNebrs)>0

 %stop the wave only if (=current;medial) or (=current;NONmedial)

93

 comparewith = nebrsII;

 for n=1:numel(allowedNebrs)

 if (Bdistance(allowedNebrs(n)).hops==Bdistance(comparewith(1)).hops) &&

(MedialFlag(allowedNebrs(n))==1)

 %destination found

 found = 1;

 mark = allowedNebrs(n);

 break; %breaks FOR loop

 else

 nebrsII = allowedNebrs;

 end

 end

 end

 if found==1

 break; % breaks WHILE loop

 end

 end%end of while loop

 if (found==1)

 %back track from mark to destination

 nebrs = [];

 nebrs = find(adj(mark,:));

 past = mark;

 %eliminate old nebrs to avoid backtracking

 [~,ID] = find(nebrs==past);

 nebrs(ID)=[];

 %eliminate old Medial nodes

 [~,ID] = find(MedialFlag(nebrs)==1);

 nebrs(ID)=[];

 %take out boundary nodes from nebrs

 commons = intersect(nebrs,Boundary_nodes);

 nebrs = setxor(nebrs,commons);

 scan = nebrs;

 nebrs = [];

 %keep only sensible nebrs...hop=self

 for m=1:numel(scan)

 if (Bdistance(scan(m)).hops==Bdistance(mark).hops)

 nebrs = cat(2,nebrs,scan(m));

 end

 end

 nebrs = unique(nebrs);

 %if we find medial node in the 1st hop itself.. that means this

 %connection is not required

 if any(MedialFlag(nebrs)==2)

 %do nothing and we will go to next medial node

 else

 %jump to any 1

94

 jump = nebrs(1);

 R2cost = R2cost + 1;

 while(jump~=destination)

 MedialFlag(jump)=2; %implies that these are newly formed Medial nodes

 nebrs = [];

 nebrs = find(adj(jump,:));

 %take out boundary nodes from nebrs

 commons = intersect(nebrs,Boundary_nodes);

 nebrs = setxor(nebrs,commons);

 %remove past nodes to avoid backtracking

 [~,ID] = find(nebrs==past);

 nebrs(ID)=[];

 scan = nebrs;

 nebrs = [];

 %keep only sensible nebrs...hop=self

 for m=1:numel(scan)

 if (Bdistance(scan(m)).hops==(Bdistance(jump).hops)+1)

 nebrs = cat(2,nebrs,scan(m));

 end

 end

 %check if any of it is Medial

 if any(MedialFlag(nebrs)==2)

 [~,ID] = find(MedialFlag(nebrs)==2);

 jump = (nebrs(ID(1)));

 destination=jump;

 R2cost = R2cost + 1;

 else if any(MedialFlag(nebrs)==1)

 [~,ID] = find(MedialFlag(nebrs)==1);

 jump = (nebrs(ID(1)));

 R2cost = R2cost + 1;

 else

 %else ... jump to any 1

 past = jump;

 if numel(nebrs)>0

 jump = nebrs(1);

 R2cost = R2cost + 1;

 else

 break;

 end

 end

 end

 end %while loop ends here

 end %need check if condition ends here

 end

end% the main for loop of all the Medial nodes

95

% Traceroute function:

% the function routes from given source to given destination and marks the path nodes as medial

nodes

function[MedialFlag] =

traceroute(sourcePool,destinationPool,no_nodes,adj,MedialFlag,path,val)

%% routing--

 RO = 0; % gives number of messages routed successfully

 Routed=0;

 for d=1:numel(destinationPool)

 dest = destinationPool(d);

 Routed=0;

 HopCount = 0;

 RO = 0; %count routed messages separately for each destination

 for s=1:numel(sourcePool)

 source = sourcePool(s);

 Routed=0;

 distance = [];

 jump = source;

 travelled=0;

 TTL=0;

 past=jump;

 while (jump~=dest)

 distnebr = [];

 node_neighbors = [];

 node_neighbors = find(adj(jump,:));

 node_neighbors = [];

 node_neighbors = find(adj(jump,:));

 %check if the destination node is in neighborhood

 if any(node_neighbors==dest)

 Routed = 1;

 RO=RO+Routed;

 break;

 end

 %look for sensible_nebrs androute

 commons = intersect(node_neighbors,path);

 if numel(commons)>0

 %remove past nodes from commons

 if any(commons==past)

96

 xx=find(commons==past);

 commons(xx)=[];

 end

 end

 past=jump;

 jump = commons;

 TTL=TTL+1;

 if TTL>20

 break;

 end

 MedialFlag(jump)=val; %marks the nodes in path as Medial nodes

 distance = [];

 travelled = travelled+1;

 if jump==dest %routing successful!!

 Routed = 1;

 RO=RO+Routed;

 break;

 end

 end %while loop ends here

 end %for loop for each source ends here

 end % destination loop ends here

end %function ends here

97

LIST OF ABBREVIATIONS

CASE Connectivity Based Skeleton Extraction

DIST Distance Transformed-Based Skeleton Extraction

GC Geographical Coordinate

GPS Global Positioning System

ID Identification Detail

MALD Medial Axis detection scheme for Low Degree networks

MAP Medial Axis based naming and routing Protocol

TTL Time To Live

VC Virtual Coordinate

VCap Virtual Coordinate assignment protocol

VCS Virtual Coordinate System

WSN Wireless Sensor Network

VCRA Virtual Coordinate Repair Algorithm

