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Abstract.  Soil salinity predictions derived from Ikonos and Landsat satellite images 
are compared with field-collected soil salinity data for a study area in Colorado's 
lower Arkansas River Basin. The accuracy of the predictions is compared and issues 
of price, resolution, and coverage area are considered. Stepwise regression is used to 
select the combination of bands in the satellite images that best correlate with the field 
data. The Ordinary Least Squares (OLS) model is used to predict soil salinity using 
the combination of bands that resulted from the stepwise regression. The residuals for 
the OLS model are checked for whether they are roughly normal and approximately 
independently distributed with a mean of 0 and whether there is some constant vari-
ance or not. If the residuals do not meet these conditions it means that there is some 
kind of autocorrelation among them. The SAR model is used to remove some of the 
autocorrelation among the residuals. If the SAR model does not give satisfactory re-
sults, then a modified kriging model is used. The residuals of the OLS model which 
proved to have autocorrelation can be interpolated using kriging. The final predicted 
surface results from combining the surface produced from the OLS model with the 
surface produced by the kriged residuals. The results of this methodology to predict 
soil salinity from remote sensing data while taking into account the importance of re-
siduals are promising. 
 
1. Introduction 

The development of saline soils is a dynamic phenomenon, which needs to 
be monitored regularly in order to secure up-to-date knowledge of their extent, 
spatial distribution, nature and magnitude (Ghassemi et al., 1995). Environ-
mental damage occurs when saline water from drainage schemes or groundwa-
ter is accumulated in off-stream floodplain areas or wetlands and either is left 
to evaporate naturally or discharged when high flow rates in the main stream 
prevail (Williams, 1987). When saline water is accumulated in floodplain areas 
or wetlands and left to evaporate, damage occurs directly in the areas inun-
dated with saline water (Tanji et al., 1986). 

The Arkansas River is one of the most saline rivers of its size in the United 
States. Salinity levels, measured as dissolved solid concentrations, increase 
from 300 mg/L near Pueblo to over 4,000 mg/L at the Colorado-Kansas border 
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(Ghassemi et al., 1995). Based on data collected over a 50,600 ha sub region of 
the Lower Arkansas Valley, Gates et al. (2002) stated that a shallow water ta-
ble with an average salinity concentration of 3,100 mg/L spreads out under the 
land at an average depth of 2.1 m below the ground surface. Burkhalter et al 
(2005) mentioned that over three irrigation seasons, average seasonal aquifer 
recharge from irrigated fields in a 50,600 ha study area ranges from 0.59 to 
0.99 m, including contribution from precipitation. 

Remote sensing of surface features using aerial photography, videography, 
infrared thermometry and multispectral scanners has been used intensively to 
identify and map salt-affected areas (Robbins and Wiegand, 1990). Multispec-
tral data acquired from platforms such as Landsat, SPOT, and the Indian Re-
mote Sensing (IRS) series of satellites have been found to be useful in detect-
ing, mapping and monitoring salt affected soils (Dwivedi and Rao, 1992). Sa-
linity hazard mapping has included salt load studies, trend-based methodolo-
gies, strongly inverse methods, composite index methods and integrated geo-
science approaches (Lawrie et al., 2000, 2003; Spies and Woodgate, 2004). 
Composite index approaches have also more recently been further developed 
for salinity risk assessments (Clifton and Heislers, 2004). For mapping surface 
land salinity, color, and thermal infrared aerial photography and spectral image 
interpretation techniques such as satellite (Landsat TM, SPOT), and other air-
borne remote sensing techniques are used (George et al., 2003; Spies and 
Woodgate, 2004). Other techniques, such as gamma radiometrics (Wilford et 
al., 2001), are useful for mapping soils and shallow sub-soil materials that can 
assist with interpretation of likely recharge and discharge areas.  

The integration of remotely sensed data, Geographic Information Systems 
(GIS), and spatial statistics provides useful tools for modeling large-scale vari-
ability to predict the distribution soil characteristics (Kalkhan and Stohlgren, 
2000). Strong statistical tools for measuring autocorrelation available are 
Moran’s I (Moran 1948) and the spatial cross-correlation statistic (Bonham et 
al. 1995; Reich et al. 1994). Earlier research in the area of spatial statistics led 
to the development of a multivariate spatial correlation statistic by Wartenberg 
(1985) based on a mantle type coefficient to quantify the spatial relationships 
among univariate data (Reich et al., 1994). Goward et al. (1994) point out that 
while many spatial data sets describing land characteristics have proven reli-
able for macro-scale ecological monitoring, these relatively coarse-scale data 
fall short in providing the precision required by more refined ecosystem re-
source models.  

 
2. Methods 

In this study, the cross correlation between soil salinity data collected in the 
field with EM-38 probes and satellite imagery reflectance values is tested using 
a variety of techniques that include: ordinary least squares (OLS), the spatial 
autoregressive (SAR), and modified kriging models. Two images from the Ik-
onos satellite one take on July 11, 2001 and another on July 1, 2004 and a 
Landsat image taken on July 8, 2001 are tested for cross correlation with soil 
salinity. In previous studies, individual tests of the best band or the best index 
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were conducted. In this study, a combination of all bands and vegetation index 
which proved to be good indicators of soil salinity based on vegetation are 
tested collectively and the ones that have the best cross correlation with soil sa-
linity are selected. 

To test for the cross correlation between the soil salinity data and the best 
combination of the satellite imagery, three different approaches are used and 
the residuals are examined for normality and spatial autocorrelation. The re-
siduals indicate whether a chosen model is appropriate. The OLS model is fit 
for the soil salinity data and the combination of the image. If the residuals of 
the OLS model prove to have spatial autocorrelation, then SAR model is used. 
The same variables are then tested using the SAR model, which has the capa-
bility of removing some of the spatial autocorrelation in the residuals. If the 
use of the SAR model does not give better results comparing the predicted val-
ues versus the observed ones, then the modified kriging model is used. The 
modified kriging model involves kriging the residuals of the OLS model which 
proved to have spatial autocorrelation and combining the surfaces generated by 
the OLS model and the kriged residuals surface. The best model selected 
should provide the closest predicted data to the observed ones and no autocor-
relation among the residuals. 
 
3. Results and Analysis 
 
3.1 Using the OLS model 

The OLS model was tested using three sets of collected soil salinity data 
with the three acquired satellite images. The results of fitting the OLS model 
show strong correlation with the observed soil salinity data. The P-value of 
each separate band was less than 0.05. The mutable R2 shows values of 0.48, 
0.52, 0.37 for the Landsat 2001, Ikonos 2001, and Ikonos 2004 images respec-
tively. The AICC values were 1470, 959, and 1418 for the same images re-
spectively. The Moran’s (I) P-values (2-side) were 0.49, 0.00, and 0.42 for the 
same images respectively. The Moran’s (I) P-value indicated that using the 
OLS model with the Landsat 2001 and Ikonos 2004 images might not be asso-
ciated with autocorrelation among the residuals since the P-values are larger 
than 0.05. Yet the OLS model when used with the Ikonos 2001 image seems to 
produce autocorrelation among the residuals since the P-value is less than 0.05. 
In the meantime, the Lagrange P-value (2-side) was 0 for the three sets of data 
implying that there might be some spatial dependency or autocorrelation 
among the residuals. Therefore, there is a need to inspect the residuals graphi-
cally for autocorrelation. 

Figure 1 shows the residuals using the soil salinity data collected in 2001 in 
conjunction with the Landsat image. The two graphs at the top show the in-
spection of the normality while the two graphs at the bottom display the in-
spection of the homogeneity. The graph on the upper left shows the histogram 
of residuals. The histogram figure is not bell-shaped and is skewed to the left 
indicating that the distribution is not totally normal. The upper right graph (Q-
Q) graphs the empirical quantiles based on residuals versus the corresponding 
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quantiles from a normal population. It is clear from the quantiles that all the 
points are very close to the line between the vales -3 to 1, and the points start 
to deviate from the line for the values above 1. This points to the fact that the 
distribution of the residuals is not totally normal. In the graph on the bottom 
left showing the residuals versus the weight of the residuals, there is some kind 
of pattern, no homogeneity, and some cluster in the distribution. The figure on 
the bottom right, the residuals versus the predicted values of soil salinity, 
shows that the distribution of points is not scattered randomly about 0. These 
results show that the residuals are dependently distributed, implying that there 
might be some spatial autocorrelation. 
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Figure 1. Graphical inspection of the residuals of the OLS model. 

 
3.2 Using the SAR model 

The same data was tested again using the SAR model. The mutable R2 
shows values of 0.18, 0.26, and 0.15 for the Landsat 2001, Ikonos 2001, and 
Ikonos 2004 images respectively. The AICC values were 1300, 888, and 1366 
for the same images respectively. The likelihood ratio test P-value was 0 for 
the three data sets. The λ  values were 0.98, 0.94, and 0.91 for the same im-
ages respectively, which implies that there was significant autocorrelation 
among the residuals. The standard error of λ  were 0.012, 0.032, and 0.04 for 
the same images respectively. Based on these numbers it is clear that the AICC 
values are better than those of the OLS and that there was some autocorrelation 
in the OLS model residuals. Figure 2 shows that the histogram of the variables 
with the SAR model is closer to a bell shape than that of the OLS model. This 
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means that the SAR model was able to make the distribution of residuals closer 
to normal. The quantiles figure behaves the same as that of the OLS model. 
The figure on the left, the residuals versus the weight of the residuals, shows 
no clear pattern and more homogeneity than that of the OLS model. These re-
sults show that the residuals still have some dependency which means that 
there might be some spatial autocorrelation. Based on this analysis it is clear 
that the SAR model makes some contribution toward removing some autocor-
relation among the residuals, but the R2 values are not encouraging. Therefore, 
the issue of the autocorrelation among the residuals needs to be dealt with in a 
better way.  
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Figure 2. Graphical inspection of the residuals using the OLS model. 

 
3.3 Using the modified kriging model 

The residuals of the OLS model proved to have spatial autocorrelation. 
Therefore, the residuals are kriged and combined with the OLS model. To ap-
ply the kriging technique to the residuals, a best fit variogram was selected 
based on the smallest value of AICC. Having chosen the best variogram, the 
nearest neighbors number of the selected variogram should be selected based 
on the smallest variance.  

Figure 3 shows the different variograms used in the kriging technique. Us-
ing the Landsat 2001 image, the AICC values are 27.01, 21.74, and 15.03 for 
the Gaussian, spherical and exponential models respectively. For the same im-
age, the standard errors were 2.07, 2.09, and 2.3. The AICC values for the Iko-
nos 2001 image are 26.17, 24.69, and 23.98 for the Gaussian, spherical and ex-
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ponential models respectively, and the standard errors were 1.55, 1.57, and 
1.57. The AICC values for the Ikonos 2004 image are 48.90, 47.79, and 47.41 
for the Gaussian, spherical and exponential models respectively. For the same 
image, the standard errors were 2.66, 2.66, and 2.75. It is clear from the figure 
that the exponential variogram fits the best of all the variograms. The exponen-
tial model had the smallest AICC values. There was no significant difference 
among the standard error values of the three models. 
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Figure 3. The variogram models used to krig the residuals of OLS model. 
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Comparison of the mean values of the OLS, the SAR, and the modified kriging 
models to the values of the collected soil salinity data
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Figure 4. Comparison of the mean values of the OLS, the SAR, and the modified kriging 

models to the values of the collected soil salinity data. 
In addition to using the best variogram in the kriging technique, the best 

nearest neighbor number for the selected variogram (the exponential 
variogram) needs to be decided based on the smallest variance. The nearest 
neighbors numbers used with the spherical variogram were 14, 12, and 10 for 
the Landsat 2001, Ikonos 2001, and Ikonos 2004 images respectively. 

Figure 4 compares the means of the collected soil salinity data sets in the 
year 2001 with the predicted data using the Ikonos image and the OLS, SAR, 
and modified kriging models. For field 17, the mean value of the collected data 
was 3.02. The mean values were 3.25, 3.41, and 3.03 for the OLS, the SAR, 
and the modified kriging models respectively. For field 40, the mean value of 
the collected data was 6.13, while 5.86, 5.00, and 6.12 were the mean values of 
the OLS, the SAR, and the modified kriging models respectively. For field 80, 
the mean value of the collected data was 5.09 while 5.00, 3.95, and 5.04 were 
the mean values for the OLS, the SAR, and the modified kriging models re-
spectively. For all the fields together, the mean of the collected data was 4.55. 
The mean values for the OLS, the SAR, and the modified kriging models were 
4.53, 4.06, and 4.53 respectively. Figure 4 and the presented numbers show 
that the predicted soil salinity mean values produced by using the modifying 
kriging technique are very close to the mean values of the collected soil salin-
ity data. Sometimes the OLS model comes closer than the modifying kriging 
model to predicting the soil salinity but not always. The SAR model is the least 
effective at predicting soil salinity.  

Figure 5 shows one example of comparing the absolute mean errors of the 
three different models when used to predict soil salinity from the Ikonos im-
age. For field 17, the absolute mean error values were 0.70, 0.97, and 0.52, for 
the OLS, the SAR, and the modified kriging models respectively. For field 40,  

43 



Eldeiry and Garcia 

Comparison of the absolute mean error values of the OLS, the SAR, and the 
modified kriging models
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Figure 5. Comparison of the absolute mean error values of the OLS, the SAR, and the     

modified kriging models. 
 

the absolute mean error values were 1.81, 1.96, and 0.58, for the OLS, the 
SAR, and the modified kriging models respectively. For field 80, the absolute 
mean error values were 1.31, 1.51, and 0.38, for the OLS, the SAR, and the 
modified kriging models respectively. For all fields together, the absolute 
mean error values were 1.21, 1.43, and 0.50, for the OLS, the SAR, and the 
modified kriging models respectively. Again, the above figure and the pre-
sented numbers show that the absolute mean error values of using the modify-
ing kriging technique to predict soil salinity from the Ikonos image compared 
to the other models are the smallest. It is clear that the OLS model sometimes 
is second after the modifying kriging while the SAR model performs the worst. 
As in the previous figure, the best results were gained from considering the re-
siduals. Also, selecting the best variogram based on the smallest AICC value 
and selecting the best nearest neighbors based on the smallest variance con-
tributes some improvement to the predicted values using the modified kriging 
model. 

Figure 6 shows the predicted values using the three spatial models (OLS, 
SAR, and kriging models) versus the observed values of soil salinity when us-
ing a Landsat image. It is obvious from this figure the there is a significant im-
provement in R2 value when using kriged residuals combined with the OLS 
model over using the OLS or SAR models alone. The R2 values were 0.52 for 
the OLS model, 0.27 for the SAR model, and 0.82 for the modified kriging 
model. The modified kriging model produces predicted points with a clearer 
trend and more scatter than those of the OLS and the SAR models. In addition, 
the points tend to compose a line close to the 45 degree inclination which has 
an R2 value of 1. The other models deviate from this line.  
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The results of the other two sets of data show similar results. The data set  

Comparison of predicted values of the OLS, the SAR, 
and the modified kriging models
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Figure 6. Comparison of predicted values of the OLS, the SAR, and the modified kriging 

models. 
 
from 2001 combined with the Landsat image shows R2 values of 0.48, 0.40, 
and 0.80 for the OLS, the SAR, and the modified kriging models respectively. 
The 2004 data with the Ikonos image produces R2 values of 0.37, 0.15, and 
0.76 for the OLS, the SAR, and the modified kriging models respectively.  

Figure 7 shows the contribution of residuals when combined with the OLS 
model for field 7. The upper left figure (a) shows the kriged surface of the ob-
served soil salinity. The upper right figure (b) shows the predicted surface of 
soil salinity resulting from the OLS model. The lower right figure (c) shows 
the kriged residuals of soil salinity resulting from the OLS model. The lower 
right figure (d) shows the final predicted surface of the soil salinity resulted 
from combining surfaces results from the OLS model and kriged residuals. It is 
clear from figure (b) that the OLS model behaves as a trend surface. The re-
sulting surface shows the average of the points, but the high values are under-
estimated and the low values are overestimated. Kriging the residuals is able to 
fix the issue of underestimating and overestimating the high and low values as 
shown in figure (c). When surfaces (b) and (c) are combined to produce figure 
(d), the resulting predictions are very close to the observed salinity measure-
ments.  
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Predicted soil salinity for Field 07 using Ikonos image for the year 
2004 
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Figure 7. Predicted soil salinity for Field 07 using Ikonos image for 2004 

 
 
 

4. Conclusions 
To generate high quality soil salinity maps, it is very important to chec the 

normality and spatial autocorrelation among residuals. In our research, the 
OLS model usually produced higher R2 values than the SAR model, but the 
OLS model was associated with autocorrelation in residuals. The SAR model 
was able to remove some of the autocorrelation in the residuals. When the re-
siduals of the OLS model were kriged and combined with the OLS model, the 
results showed a significant improvement in R2 over the other models. On its 
own, the OLS model acts as a trend surface model; this means that it underes-
timates the high values and overestimates the low values. The kriged residuals 
generate a surface that has positive and negative values which are added to the 
generated surface from the OLS model improving the predicted values by add-
ing positive values to the underestimated values and adding negative values to 
the overestimated values. When using the modified kriging model, results are 
also improved by selecting the best variogram based on the smallest AICC 
value and selecting the best nearest neighbors based on the smallest variance. 
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