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ABSTRACT 
 
 
 

CRYOPRESERVATION AND RECOVERY OF TEMPERATE FRUIT GERMPLASM USING  
 

DORMANT BUD TECHNOLOGY 
 
 
 

Cryopreservation of dormant budwood allows for the efficient processing and long-term storage 

of some temperate deciduous genetic resources and holds promise for the secure storage of 

countless others. The method is of particular interest because it is more cost effective than 

preservation using in vitro methods. By investigating the process of dormant bud cryopreservation 

reported in literature in conjunction with novel studies of pretreatment effects on regrowth after 

liquid nitrogen exposure and bud freeze resistance, critical factors affecting survival have been 

identified.  These factors can be broadly classified into two categories; factors related to the 

condition of budwood before storage and factors impacting recovery after storage. Preconditioning 

treatments such as air drying to ~30% moisture content and slow cooling of dormant budwood 

before liquid nitrogen storage are among the most critical pre-storage factors for survival. 

Preconditioning treatments can also have a significant effect on increasing freeze resistance. 

Differential thermal analysis was used to investigate the pretreatment effects and identify the best 

preconditioning method for the cryostorage of peach dormant buds. Apple, apricot, cherry, peach 

and pear were used for cryorecovery studies but not tested by differential thermal analysis. 

Treatments tested include air desiccation of budwood to 30% moisture content, exposure to 

sucrose solution using concentration and exposure treatment levels selected for greatest increase 

in freeze resistance in pretrial experiments, and a combination treatment of sucrose solution 

exposure before air desiccation. An additional group of twig segments was not treated but 
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processed in the fresh state to compare treatment effects. Of the four pretreatment groups, 

desiccation alone had the greatest impact at increasing freeze resistance and cryosurvival in most 

species tested.  A follow up experiment was conducted to investigate moisture content effect 

cryosurvival and freeze resistance in peach dormant buds. For all treatment levels tested, survival 

and shoot development were low. Best pre-storage moisture level in peach was higher than 

expected at 35% (fresh weight basis) suggesting desiccation sensitivity may be contributing to low 

cryosurvival. A linear relationship between dormant bud moisture content and LT50 was also 

observed in freeze resistance trials. 

Posttreatment factors affecting growth and establishment include warming rate and recovery 

method. Recovery of cryostored dormant budwood can be accomplished by either grafting, in vitro 

culture, or direct rooting. In order to increase efficiently in storage and recovery, a new approach 

to recovery was tested; antimicrobial forced bud development followed by in vitro culture 

initiation using shoot tips of sprouted buds. This approach aims to combine the efficiency of forced 

bud development with secure establishment of in vitro shoot cultures after cryopreservation. 

Successful establishment of shoot cultures from dormant buds recovered using antimicrobial 

forced bud development before culture initiation was correlated with the development of shoots 

with leaves. 

 The earlier developmental stages were not significant for culture establishment. This method has 

successfully been applied to several fruit and nut species namely apple, apricot, cherry, peach, pear 

and little walnut and has the potential for use with many other species of deciduous species in need 

of clonal preservation. As a two-step process, antimicrobial forced bud development can be used 

as a standalone viability test, or when needed, used as a platform for shoot culture induction for 

the reestablishment of cryopreserved dormant bud germplasm. 
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CHAPTER ONE: CONSIDERATIONS FOR LARGE-SCALE 
IMPLEMENTATION OF DORMANT BUDWOOD 

CRYOPRESERVATION 
 

 

 

OVERVIEW 

 

 

 

Cryopreservation of clonal plant germplasm is a reliable way to preserve important agronomic 

traits and protect against loss of crop genetic diversity of many horticultural species. Dormant 

bud cryopreservation techniques present an efficient alternative to the labor-intensive shoot tip 

cryopreservation process and may allow a single technician to preserve large quantities of 

germplasm in a season. This method of cryopreservation takes advantage of the natural 

dormancy in cold hardy crops, making it a viable technique only for deciduous trees and shrubs. 

Many factors must be considered when attempting to perform dormant bud research methods to 

applied-level germplasm preservation efforts. This process is necessarily a seasonal endeavor, 

which puts strain on labor and facilities particularly in winter. Integration of methods and 

procedures using different crop species or new equipment provides additional challenges that 

must be tested in advance. By identifying variables of dormant bud processing in 

cryopreservation literature, options emerge that allow for the modification of reported methods 

to work within the confines of institutional resources. Infrastructure, pre-processing, and 

recovery stages are discussed in terms of necessity and available alternatives to allow informed 

decision making in establishing an applied dormant budwood genebank.  
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INTRODUCTION 

 

 

 

Germplasm conservation is essential to preserving the genetic diversity of cultivated and wild 

species. Clonal plant collections can successfully maintain specific genetic combinations of highly 

heterozygous crops, like fruit trees, that rely on asexual propagation. While clonal collections may 

be maintained in field plots, greenhouses, screenhouses, and in vitro culture labs, long-term 

preservation in cryogenic conditions provides an option that is less susceptible to environmental 

damage, more secure, and stable with very little maintenance (Engelmann 2004).  

Dormant bud (DB) cryopreservation was developed as a technique for storing clonal germplasm 

of temperate, deciduous trees and shrubs beginning in the early 1960’s (Sakai 1960). This approach 

relies on the naturally occurring state of dormancy. During dormancy, deciduous tree shoots enter 

arrested development, allowing them to withstand the unfavorable growing conditions of winter. 

Capitalizing on this natural cold hardy state, often when paired with certain pretreatment 

techniques, allows material to withstand the extreme cold of cryogenic storage (Stushnoff 1991). 

The ability of this approach to preserve genetic integrity makes it a promising option for preserving 

temperate clonal tree fruit cultivars (Choudhary et al. 2013; Yi et al. 2015).  

The DB cryopreservation method utilizes material collected directly from the field and does not 

rely on tissue culture introduction and multiplication to provide the propagules that are 

cryopreserved. Furthermore, the cost of DB cryopreservation is ten times less than the 

cryopreservation of excised shoot tips from in vitro cultures (Jenderek et al. 2019). Additionally a 

study comparing cryopreservation of apple germplasm using DB and in vitro shoot tips found that 
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the DB takes about 40% of the time and 50% of the labor needed for in vitro shoot tips 

cryopreservation (Lambardi et al. 2011). As a result of the efficiency of DB cryopreservation, it 

has been studied in a variety of deciduous woody species, which have been reported to be amenable 

to the technique with varying degrees of success: almond (Choudhary et al. 2014), apple (Stushnoff 

1987; Forsline et al. 1996b, c, 1998a; Wu et al. 2001; Towill and Bonnart 2005; Lambardi et al. 

2008; Yi et al. 2015; Höfer 2015; Pathirana et al. 2018; Tanner et al. 2020), apricot (Tanner et al. 

2020), ash (Volk et al. 2009), aspen (Aronen and Ryynänen 2014), birch (Ryynänen 1996), black 

walnut (Morrissey and Gustafson 1990; Jenderek et al. 2011b), blueberry (Jenderek et al. 2017), 

cottonwood and willow (Towill and Widrlechner 2004; Bonnart et al. 2014), currant (Rantala et 

al. 2019), elm (Harvengt et al. 2004), grape (Esensee et al. 1990; Forsline et al. 1996a), little walnut 

Juglans microcarpa (Tanner et al. 2020), mulberry (Niino 1995; Atmakuri et al. 2009; Fukui et al. 

2011; Choudhary et al. 2013), pear (Oka et al. 1991; Reed et al. 1998; Zhumagulova et al. 2014; 

Tanner et al. 2020), peach (Tanner et al. 2020), peony (Seo et al. 2007), persimmon (Matsumoto 

et al. 2004, 2015; Ai and Luo 2005; Benelli et al. 2008) and sour cherry (Towill and Forsline 1999; 

Kovalchuk et al. 2014). Although the list of species reported to be cryopreserved as budwood is 

long, many species are reported to have low to no survival, especially with cold and drought 

sensitive individuals. Special attention should be given to reported recovery rates and number of 

reported accessions attempted for a given species to understand the general ease or difficulty of 

cryopreservation. 

In addition, several informative and helpful reviews of cryopreservation methods have been 

published which include valuable information on the state of DB technologies (Stushnoff 1987; 

Reed 2001, 2002, 2004, 2008; Towill and Ellis 2008). Genebank standards for plant genetic 

resources provide an overview of available preservation methods on everything from germplasm 
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collection, characterization, and storage for seed pollen and clonal resources (Food and Agriculture 

Organization 2016). This review aims to provide information about the DB cryopreservation 

method with a focus on its many variables and permutations reported in literature to allow 

genebanks and germplasm managers to make informed decisions regarding the designation of 

critical resources.  

INFRASTRUCTURE AND HUMAN RESOURCES 

 

 

 

FACILITIES AND EQUIPMENT 

Appropriate infrastructure is crucial to any endeavor to preserve critical germplasm. Since these 

collections are intended to be maintained indefinitely, a reliable source of funding is essential. 

Resources for processing DB minimally include tools to uniformly cut segments (bandsaw, 

pruners), balances to accurately weigh individual segments or batches of segments, as well as 

vessels and labels for storing material during processing such as trays or screens. Because 

maintaining dormancy is crucial, reduced-temperature storage facilities must be used to store and 

precondition material prior to cryopreservation. Cold storage allows for the processing of many 

accessions collected during peak mid-winter dormancy (Forsline et al. 1996c). Temperatures for 

housing DB before liquid nitrogen vapor (LNV) storage range from -5 ⁰C to 5 ⁰C in the literature 

(Forsline et al. 1998a; Fukui et al. 2011). Air flow and humidity control are essential features for 

cold rooms during desiccation steps, as humidity greatly influences budwood drying rate 

(Chrusciel et al. 1999). Liquid nitrogen (LN) compatible packaging and labels are also required 

for long-term storage. A programable freezer capable of reaching ≤-30 °C is usually needed 
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because a slow cooling step is used in most protocols (Tyler and Stushnoff 1988a; Vogiatzi et al. 

2012). A less costly alternative to programmable freezers is the use of a non-programmable low 

temperature freezer to cool budwood step-wise by reducing the freezer set point by 5 ⁰C manually 

every 24 hours (Towill and Bonnart 2005). Additionally, it has been demonstrated that 

programmable freezers can be constructed by modifying domestic freezers for slow cooling 

budwood but requires some proficiency with electronics and programming (Pathirana et al. 2018). 

Collections in long-term cryogenic storage require a permanent, dedicated space. Liquid nitrogen 

storage tanks must possess the capacity to support the needs of the individual program and may 

require periodic maintenance and/or replacement. The availability and efficient use of the storage 

space is an important consideration because samples intended for long-term storage will be 

occupying this space indefinitely. Storage of accessions as DB requires more space than excised 

meristem shoots because DB progagules are much larger. The needs of any cryopreservation 

storage operation balance preservation security with resource efficiency.  

Cryopreserved DB are typically stored in LNV. Even though LNV storage requires less LN than 

collections stored in the liquid phase, a reliable supply of LN is needed. Many LN supply options 

are commercially available, ranging from delivery services to on-site generators that allow for in-

house production. 

Infrastructure for DB recovery depends upon the selected recovery method, from the ones that are 

discussed below in detail (as discussed in detail in the recovery section). A plant tissue culture 

laboratory is required for methods that make use of a tissue culture recovery system. A tissue 

culture laboratory will require facilities for media preparation, culture vessels, laminar flow hoods, 

scalpels and forceps, instrument sterilization equipment, an autoclave, and a growth chamber with 

lighting and temperature control. Healthy seedling or clonal rootstocks are necessary for recovery 
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methods utilizing grafting. A greenhouse, growth chamber, or field plot is needed to house 

rootstocks and recovering DB. Growth chambers and greenhouses are preferable, as the 

environment in the field plots are not controlled and may only be suitable for use during a small 

seasonal period when weather is conducive to regrowth.  

Environmental monitoring systems are  critical parts of infrastructure that protects sensitive 

processes, material, and the facility from quality-compromising situations by monitoring 

temperature, smoke, oxygen and other environmental sensors and alarming if abnormal conditions 

are detected (Biringer et al. 2013). This allows for unexpected environmental changes to be 

addressed before they can cause irreversible damage. Temperature monitoring is helpful to identify 

equipment failure and potential quality compromising situations in storing, desiccating, and slow 

cooling DB. Temperature monitoring systems are most useful if operating thresholds are 

predefined and set to alarm if conditions diverge in any step of the process. Fire, smoke, and water 

leak detection capabilities help to protect against catastrophic loss. Oxygen sensors inside the LN 

tank room are critical to protecting workers from asphyxiation by ensuring levels do not fall below 

19.5% (Yanisko and Croll 2012). Duplication of critical infrastructure helps to ensure continued 

facility operation by avoiding service interruption. Duplicate electrical generators, LN supply 

tanks, cold rooms, and growth chambers are recommended for this reason.  

Data management systems are essential for keeping track of germplasm information such as 

material identity, source location, collection and storage dates, cryoprocessing method, recovery 

techniques, estimated viability, quantity of units available for distribution, and storage location of 

material for each cryopreservation event. As the material will be stored for many years into the 

future, database information needs to be organized and complete to aid in recovery when needed. 

To ensure the integrity of all information associated with a germplasm collection, data must be 
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accurate, up-to-date, and backed up regularly across multiple servers. Additionally, digital color 

images of the budwood with ruler to indicate size of budwood is a simple but useful addition to 

database records.   

HUMAN RESOURCES 

Large-scale implementation of DB cryopreservation requires a skilled workforce. Technicians 

ideally need to have an understanding of plant physiology, horticulture, and botany. Expertise in 

plant physiology allows technicians to identify critical developmental challenges and to modify 

existing protocols to match specific crop requirements as necessary. For in vitro recovery methods, 

technicians must be proficient in media preparation and have experience with sterile culture 

techniques including surface sterilization, culture initiation/maintenance, and micropropagation. 

For graft recovery methods, technicians must have experience in the relevant grafting techniques 

and have shown reliable success maintaining rootstocks and grafting fresh untreated material.  

Time management skills are required, as dormant budwood cryopreservation is a seasonal effort 

with several stages of processing. During the initial stages of large-scale DB processing, a greater 

commitment of labor is required to collect material from the field, cut, dry, assess the moisture 

content and package several accessions simultaneously without comprising bud dormancy.  
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SOURCE MATERIAL 

 

 

 

SOURCE SELECTION 

When selecting a source of material, considerations include preservation goals, the access to 

healthy plant material grown under climate and weather conditions that foster dormancy, and the 

availability of staff for collecting and preparing budwood. Location of source trees may have an 

effect on cold hardiness and cryo-recovery (Stushnoff and Junttila 1986; Toldam-Andersen et al. 

2007; Jenderek et al. 2011a). It has been demonstrated in Malus DB cryopreservation that species 

with greater cold tolerance regrow in higher numbers compared to species with lower cold 

tolerance (Towill et al. 2004). 

COLLECTION 

Budwood used for cryopreservation is collected during mid-winter dormancy for optimal regrowth 

(Stushnoff 1987; Forsline et al. 1996c). During mid-winter dormancy, material has greater 

desiccation tolerance compared to material harvested at the onset of cold acclimation during the 

fall season (Tyler and Stushnoff 1988a; Vertucci and Stushnoff 1992). When buds deacclimate 

following chilling requirement completion due to warming temperatures in spring, bud growth 

resumes and buds become cold tender and susceptible to freeze damage (Sakai 1966; Arora and 

Taulavuori 2016). Twigs collected outside of mid-winter dormancy can be expected to have very 

low survival using the DB cryopreservation method. Such actively growing material may have 

better cryo-recovery using vitrification-based protocols (Seufferheld et al. 1992).  
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As weather plays a role in preconditioning material for DB cryopreservation, recovery results are 

variable from year to year (Jenderek et al. 2011a). To ensure maximum cold hardiness, twigs are 

collected during mid-winter dormancy after at least 72 hours (h) of exposure to an average air 

temperature of 0 °C or colder when possible (Forsline et al. 1998a). Cold hardening may not 

always possible, or be needed for apple cultivars from warm winter locations such as 

Mediterranean climates (Contaldo et al. 2018). In some cases, dormant twigs can be artificially 

acclimated by exposure to gradually cooler temperature under controlled laboratory conditions 

after twig harvest (Sakai 1966). If cultivar specific chilling requirements during dormancy are not 

satisfied, budwood may have difficulty developing shoots during recovery (Toldam-Andersen et 

al. 2007). 

To collect budwood, twigs should be cut with a clean, sharp set of pruning shears (Figure 1.1a). 

To eliminate mechanical vectoring of viruses within a field collection, shears can be cleaned with 

a solution of sodium hypochlorite at a concentration of 0.5-1% by immersion of the blades for a 

few seconds (Ling 2017). 
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FIGURE 1.1. Dormant budwood cryopreservation processing steps. a. Budwood is collected 
from source tree during mid-winter dormancy, b. Twigs are sealed in plastic with identifying 
label ready for processing or shipment to processing location, c. Twigs are divided into 
individual segments or isolated bud chips; only previous season’s growth is used, d. Segments of 
DB are preconditioned for storage by exposure to high osmotic solutions and/or reducing 
moisture content by dry air exposure inside a cold chamber, e. Segments of DB are slowly 
cooled at a controlled rate to a set prefreezing temperature and held for 24 hours, f. Segments of 
DB are transferred to liquid nitrogen tank for long-term storage. 
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Twigs are collected in enough quantity to securely preserve the accession (Volk et al. 2017). The 

United States Department of Agriculture - National Plant Germplasm System routinely stores 150 

to 160 propagules per accession (Jenderek and Reed 2017). More material must be stored when 

post cryopreservation viability is expected to be low to protect against loss. Ideally, each  dormant 

budwood container should have at least one viable twig segment and enough containers in storage 

to allow for several recovery events (Reed 2001). Based on the viability assessment of a subset of 

cryopreserved twig segments, the number of viable samples in storage can be estimated (Volk et 

al. 2017). Storing more samples of a single accession increases confidence that the accession is 

securely preserved, but also increases the amount of storage space needed. For species where 

expected regrowth is low after LN exposure, more samples may be required for storage (Reed 

2001; Volk et al. 2017). Having an initial viability score of 35% or greater will ensure that at least 

one sample will be viable in every group of 10 samples stored, with a confidence level of 95% 

(Volk et al. 2017). For example, if 180 DB segments are placed into long-term storage and are 

estimated to have 35% viability or greater, at least 53 segments are estimated to be alive in storage.  

SELECTION OF PLANT MATERIAL 

Twigs selected for DB cryopreservation should ideally be healthy and come from source trees that 

are free from diseases (Reed 2008); avoid collecting material showing signs of insect damage or 

other biotic stress. Twigs selected from source trees are ideally uniform in size and diameter to 

allow for even desiccation between segments; this is also helpful for graft recovery, which requires 

using rootstocks of similar stem diameter to match scion budwood.  

For DB cryopreservation to be successful, surviving vegetative buds must be able to develop into 

shoots after LN storage. Several fruit crops have compound or multiple buds per node. A 

compound bud contains multiple growing points inside a single bud structure. Compound buds of 
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mixed bud types will have floral and vegetative structures within the same node or bud (Figure 

1.2). For example, mulberry and apple nodes include compound mixed buds, whereas peach nodes 

are composed of single vegetative and floral buds. Nodes of multiple or compound buds are 

acceptable for use in DB cryopreservation, as the vegetative structure is preserved. In species 

which have compound bud structures, growth from secondary buds may increase survival of twig 

segments when larger primary buds do not survive (Vogiatzi et al. 2010). 

Knowledge of temperate fruit crop bearing habits and reproductive biology is necessary for proper 

protocol development and DB cryopreservation implementation. Floral and vegetative buds 

produced in separate structures are referred to as single bud types. These may be found clustered 

together at a node site (Figure 1.2b) as in peach shoots or spread apart at separate node sites as 

with blueberry shoots (Figure 1.2c, 1.2d). In species having single bud types like blueberry, it is 

necessary to avoid twig segments containing only floral buds; these usually occur on the terminal 

ends of twigs (Figure 1.2c). Single floral buds are visually distinct from single vegetative buds as 

they are much larger. Floral buds also develop on lateral spurs of two-year old twigs of apple 

(Figure 1.2d) and are not used for DB cryopreservation. Twigs from previous season’s growth are 

best for cryopreservation.  
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FIGURE 1.2. Dormant shoots of various species. Dotted lines represent separation between usable 
material, shoot tips, and two-year-old wood to be discarded. a. Mulberry shoot with compound 
buds, b. Peach shoot with a single vegetative bud located in between much larger single floral 
buds, c. Blueberry shoot with several small vegetative buds and a large single floral bud on the 
terminal position, d. Apple shoot showing spur buds on two-year-old wood to the left of the dotted 
line. 

PACKAGING TWIGS FOR SHIPMENT OR HOLDING UNTIL CRYOSTORAGE 

Once collected, twigs are organized into bundles, labeled, and packed into plastic bags (Figure 

1.1b). These are kept in refrigerated conditions until processed or shipped to the processing 

location. Typical storage temperatures range from -5 to 3 ⁰C (Forsline et al. 1998b; Fukui et al. 

2011). If shipping is needed, twigs can be carefully packed into cardboard a cardboard box, then 

sent using next day shipping to ensure quick delivery; this is the standard shipping method reported 

in literature(Tyler and Stushnoff 1988b; Forsline et al. 1998a; Volk et al. 2009; Bonnart et al. 

2014). A battery-powered data logger can be included in the shipping box to track the temperature 

exposure of the material during transit. Additionally, shipping with gel-based cold packs inside 

insulated Styrofoam shipping boxes will keep budwood cool if high temperature is a concern 

during transit. Shipping arrangements need to consider holidays, weekends, and weather 

conditions to avoid unnecessary delays.  
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PRECONDITIONING  

 

 

 

MATERIAL STORAGE AND PREPARATION 

Once received, the twigs are unpacked and inventoried before being placed back into cold storage. 

Twigs are kept in sealed plastic bags in cold storage until processing. For apple buds, preprocessing 

storage temperature is reported at -3 to -5 °C (Forsline et al. 1998b), however temperatures as 

warm as 3 to 5 ⁰C have been used for mulberry(Fukui et al. 2011). Taking inventory of the twigs 

allows the material to be inspected a final time to ensure the absences of dead, damaged, or 

diseased twigs, all of which must be discarded. Proper twig storage and processing as soon as 

possible ensures that the quality of the budwood does not deteriorate; however, one study shows 

that apple DB can be stored up to six months without reduction in post-cryopreservation viability 

(Forsline et al. 1998b).  

To begin processing, the material is typically cut (Figure 1.1c) and the apical shoot tip and base of 

each twig are discarded. Dormant twigs are then cut into segments of uniform length. Single-node 

twig segments of 3.5 cm are commonly used for species recovered by grafting, while longer 

segments containing multiple buds may be used for species recovered by direct rooting (Bonnart 

et al. 2014). Well-centered buds and uniform diameter are particularly important for even moisture 

loss during the desiccation step.  

An alternative processing method is employed in the preservation of mulberry, which utilizes an 

isolated bud containing only a small cross section of connecting stem (Figure 1.1c) (Niino 1995; 

Atmakuri et al. 2009; Fukui et al. 2011). These bud chips are cut from twigs with a sharp knife or 
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scalpel and allowed to dry for a few hours before cryo-exposure. This method allows for quick 

processing and has an additional benefit of requiring less storage space compared to twig segments. 

A drawback of this method is that it requires the use of an in vitro system for recovery and it is 

reliant on surface disinfection and on recovery media that may not be optimized to the needs of all 

genotypes of a given species. In vitro micrografting is a promising approach to recovery which 

may address the issues of growing diverse genotypes on a single media. The in vitro micrograft 

recovery approach has been successfully implemented in citrus cryopreservation (Volk et al. 

2015).  

PRETREATMENT BY DESICCATION 

DB-cryo regrowth is often increased when the moisture content (MC) of twig segments is reduced 

before exposure to LNV (Tyler and Stushnoff 1988a, b). Desiccation (Figure 1.1d) is typically 

performed under cold and dry conditions to maintain dormancy. This preconditioning step reduces 

the amount of water, thereby reducing potential cellular damage caused by freezing in subsequent 

steps. In most reports of successful DB cryopreservation, an initial MC of about 45-55% is reduced 

to 25-30% by monitoring weight loss of material (Forsline et al. 1996c; Towill and Forsline 1996; 

Forsline et al. 1998b; Volk et al. 2009; Vogiatzi et al. 2011c; Benelli et al. 2013; Bonnart et al. 

2014). Tolerance to desiccation is highest during midwinter and may be optimized for a specific 

accession or species by identifying the threshold moisture level below which cellular damage 

occurs(Vertucci and Stushnoff 1992). Storage of budwood at MC below critical levels results in 

reduced regrowth post LN. Cryo-storage of DB with excess moisture reduces viability as cells are 

damaged by ice crystal formation that causes rupture of cell membranes. Damage caused by 

freezing may also result in the formation of cracks in bark and that may provide entry for invading 

pathogenic microorganisms during regrowth (Helton 1962). MC is established on a fresh weight 
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basis using the formula, [(FW-DW)/FW]*100, where FW is the fresh weight of a twig segment 

before drying, and DW is the weight of the same twig segment after oven drying (Towill and Ellis 

2008). Oven drying is accomplished by placing individually weighed twig segments into an oven 

set to temperatures between 85 to 100 ⁰C to drive off moisture for three to four days. Oven drying 

time is complete when the weight of individual segments does not change with additional drying 

and may take longer for large diameter segments or cooler drying temperatures. 

The time required to properly desiccate twig segments can range greatly from hours to several 

months depending on protocol and a number of variables: species, temperature, humidity, air 

movement, segment diameter and length, presence of residues, treatment coatings, and storage 

vessels presenting a physical barrier to moisture loss. Desiccation temperatures reported in the 

literature range from room temperature conditions for small bud chips for mulberry (Niino 1995) 

to below freezing temperatures for longer twig segments, such as -3 to -5 °C for apple (Forsline et 

al. 1998a). As relative humidity has an inverse relationship to temperature, humidity increases at 

colder temperatures compared to warmer conditions for the same amount of water vapor. This 

inverse relationship causes desiccation at lower temperatures to slow compared to warmer 

conditions, except where humidity inside the chamber is actively reduced by dehumidification 

systems. Humidity conditions during desiccation are rarely mentioned in literature but can directly 

affect desiccation rate (Chrusciel et al. 1999). Increased air movement inside the chamber will also 

aid in moisture loss. Longer, wider twig segments desiccate slower than short, thin segments (Tyler 

and Stushnoff 1988b).  

The desiccation step may not be necessary for cryopreserving extremely cold-hardy genera and 

species such as Populus trichocarpa, Salix sp. and some cultivars of apple, provided that the 

material is slowly cooled (see section below) to -30 ⁰C prior to LN exposure (Towill and Bonnart 
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2005; Bonnart et al. 2014). Extremely cold-hardy genotypes can tolerate the stress of desiccation 

while less hardy cultivars may not survive cryogenic temperatures at all without it; therefore, most 

established protocols uniformly employ desiccation to achieve regrowth of many different 

genotypes within a species.  

PRETREATMENT BY SOLUTION EXPOSURE 

While most DB cryopreservation methods have shown success with desiccation prior LN 

exposure, there is also evidence to suggest that over-desiccation can cause damage that negatively 

impacts the post-cryo regrowth of DB (Seufferheld et al. 1999). One report showed that a sucrose-

alginate treatment before the moisture reduction step could reduce desiccation damage and 

increase post-cryo regrowth in cold-tender genotypes of apple with traditionally low viability rates 

(Seufferheld et al. 1999). This treatment was accomplished by immersing twig segments in 5% 

medium viscosity alginic acid and 0.5 M sucrose before transferring segments individually to a 

solution of 100 mM CaCl2 and 0.5M sucrose at 0 ⁰C for 24 hours. Sucrose alginate encapsulated 

twig segments where then transferred to 0.7 M sucrose solution for 24 hours before exposure to 

1.0 M sucrose and 0.2 M raffinose solution for 24 hours. Further research is needed to determine 

the usefulness of alginate-sucrose pretreatments in DB before applying this method to large-scale 

preservation efforts. A study using differential thermal analysis to quantify freeze resistance of 

sucrose pretreatments in peach found that while exposure to high osmotic concentrations increased 

freeze resistance compared to untreated controls, this effect was insignificant when compared to 

the much greater freeze resistance and post-cryo recovery imparted by desiccation alone (Chapter 

2).  

Treatment of DB by exposure to high osmotic solutions has been reported to be beneficial to cryo-

regrowth when applied with and without prior artificial desiccation (Kovalchuk et al. 2014). This 
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approach aims to limit cellular damage by increasing cells osmotic concentrations using 

compatible osmolytes, such as sugars, to promote cellular vitrification over ice formation (Figure 

1.1d). A study of pear DB cryopreservation found that treatment in PVS3 before exposure to LN 

was better than PVS2, PVS4, honey, 35% glycerol + 10% DMSO + 10% PEG-8000 + 0.4 M 

sucrose or 50% glycerol, 50% glucose in liquid MS medium with 0.4 M sucrose, pH 

5.7(Zhumagulova et al. 2014). Solutions which promotion of vitrification have been highly 

successful in increasing cryosurvival but usually require buds be surface sterilized and precutltured 

using in vitro techniques before cryopreservation and recovery in tissue culture. 

PACKAGING FOR CRYOSTORAGE 

Dormant twig segments are quickly sealed inside a container to prevent further desiccation after 

any preconditioning steps and before LN exposure. Either cryovials with screw cap lids or plastic 

polyolefin tubing sealed with an impulse sealer have been used. The number of twig segments 

inside each container should be consistent. When loading containers, it is beneficial to divide the 

segments into groups of representative diameters to homogenize each subset and minimize 

recovery variability between tubes. Each tube must be labeled to uniquely identify the material 

inside. Labels need to be resistant to degradation when exposed to cryogenic temperatures. Labels 

may include barcodes, QR codes, or other scannable formats but should always include some 

identifying information on the label in addition to the code.  

After labeling, tubes are organized and loaded into vessels, such as aluminum boxes with vent 

holes, that reduce potential temperature insulation during slow cooling and the subsequent transfer 

to LNV. It is crucial that these vessels are resistant to degradation in LN and do not significantly 

impede cooling and warming rates. If space allows, multiple accessions can be stored together 
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inside a box; however, this may increase the handling of stored tubes as well as the risk of 

rewarming material during inventory or material retrieval processes.  

CRYOPRESERVATION 

 

 

 

SLOW COOLING 

Slow cooling tubes containing dormant twig segments (Figure 1.1e) to temperatures of -30 to -35 

⁰C, prior to LN exposure, greatly increases their post-cryo regrowth when compared to direct 

exposure without prior precooling (Tyler et al. 1988). The speed at which dormant twig segments 

are cooled affects the amount of freeze-induced desiccation that occurs within cells. The initial ice 

formation in vascular conduits and extracellular spaces causes a negative pressure gradient that 

pulls water out of cells. Fast cooling rates do not allow enough time for water to sufficiently 

migrate out of cells before freezing occurs, resulting in intracellular damage by ice crystal 

formation (Towill and Bonnart 2005).  

Slow cooling protocols depend on the species, material moisture, and the capability of the facility’s 

programmable freezer. While cooling rates reported in literature vary, they are generally around 1 

to 2 ⁰C per h (Stushnoff 1987; Tyler and Stushnoff 1988b; Forsline et al. 1998b, a) or 5 ⁰C per day 

(Towill and Bonnart 2005; Volk et al. 2009; Bonnart et al. 2014). After slow cooling to -30 or -35 

⁰C, DB are typically held at this temperature for 24 h before transferred to LNV for long term 

storage. The most cold-hardy species may not require a holding period after slow cooling, but are 

not adversely affected by a holding period; for more cold sensitive species, this holding period 

significantly increases regrowth (Tyler and Stushnoff 1988b). There are many companies that 
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produce temperature controlled environmental test chambers for industrial uses such as testing 

critical equipment or predicting product shelf life (Waterman and Adami 2005; Jung 2012) that 

can be used for slow-cooling dormant budwood for cryopreservation. Options exist for chambers 

that are cooled using LN or advanced electric powered multistage refrigeration systems (Jung 

2012).  

STORAGE 

After slow cooling and/or holding for 24 h at -30 to -35oC, material must be immediately 

transferred to LN temperatures without rewarming, either by way of a transfer tank or direct 

loading into long-term cryo-tank storage (Figure 1.1f). While the first reports of DB 

cryopreservation utilized direct immersion in LN (Sakai 1960; Sakai and Yoshida 1967; Sakai and 

Nishiyama 1978), subsequent protocols place material into LNV for storage (Tyler and Stushnoff 

1988b; Niino 1995; Forsline et al. 1996c; Matsumoto et al. 2004; Towill and Bonnart 2005; Towill 

and Ellis 2008; Volk et al. 2009; Fukui et al. 2011; Jenderek et al. 2011b; Bonnart et al. 2014; 

Höfer 2015; Pathirana et al. 2018; Tanner et al. 2020). There may be no practical difference in 

storing DB in LN or its vapor phase as no comparison study of DB survival has been reported.  

As cryopreserved accessions will be stored long term, it is critical to organize tanks to allow for 

the efficient retrieval of accessions when they are needed. Standardized labeling and organizational 

systems ensure order is maintained as cryogenic collections grow. If possible, it is beneficial to 

split the storage of an accession into two or more independent storage tanks to minimize loss due 

to tank mechanical failure. Duplicate collections housed in geographically separated locations 

provides even greater protection from catastrophic loss to a single storage location (Food and 

Agriculture Organization 2016). During storage, minimal sample handling will prevent 

rewarming.  
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LONGEVITY 

Longevity of budwood is an important factor that affects curation decisions. No reduction of 

viability was observed after 4 to 11.5 years of apple and mulberry dormant budwood cryostorage 

(Forsline et al. 1998b; Volk et al. 2008; Fukui et al. 2011). More long-term studies across diverse 

taxa are needed to better understand how long DB remain alive in LN storage but, theoretically, 

material may be viable indefinitely (Engelmann 2004). A study of moisture content of apple DB 

during cryoprocessing showed that no moisture loss occurs when material was sealed in cryovials 

and slow cooled to -30 ⁰C or warmed after LNV exposure (Vogiatzi et al. 2012). However, 

desiccation could occur if there are cracks or incomplete seals in the DB cryostorage packaging. 

This could affect viability and longevity of the cryo-stored DB material. 

REGENERATION OF CRYOPRESERVED MATERIAL 

 

 

 

WARMING 

After samples are retrieved from LN storage tanks, they must continue with the warming process. 

Rapid warming at temperatures of 38 °C may not be suitable for cryopreserved DB as it was 

observed to cause bark shattering in apple DB segments and reduced viability compared to gradual 

warming (Tyler and Stushnoff 1988b). Gradual warming is accomplished by transferring DB to a 

cold chamber at temperatures ranging from 2 to 5 °C for 16 to 24 h before recovery (Tyler et al. 

1988; Tyler and Stushnoff 1988b; Volk et al. 2009; Bonnart et al. 2014). In mulberry, regrowth 

was observed to be higher for samples warmed at 25 °C for 24 h compared to samples at -1 °C for 
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24 h or 40 °C for 15 minutes (Matsumoto et al. 2004). In some cases, warmed DB samples may 

be rapidly shipped to a secondary location for regrowth assessments.  

RECOVERY 

Successful recovery of DB is marked by the formation of a complete plant having either a shoot 

and root system, or the ability to further multiply through micropropagation(Food and Agriculture 

Organization 2016). Grafting (Forsline et al. 1995, 1998b; Towill and Bonnart 2005; Grout et al. 

2009; Atmakuri et al. 2009; Volk et al. 2009; Lambardi et al. 2011; Bonnart et al. 2014), direct 

rooting (Bonnart et al. 2014), in vitro recovery (Yakuwa and Oka 1988; Wu et al. 2001; Matsumoto 

et al. 2004, 2015; Lambardi et al. 2011; Choudhary et al. 2014; Rantala et al. 2019), and tissue 

culture of shoots from antimicrobial forced bud development (Tanner et al. 2020) are examples of 

established DB recovery systems. Selection of the appropriate recovery system is dependent upon 

the species, the availability of resources, and the desired use of the material.    

GRAFTING 

For graft recovery (Figure 1.3a), rootstocks are planted three to four weeks before scions will be 

grafted to allow stock plants to break dormancy and resume growth (Volk et al. 2009). After 

warming, twig segments can be rehydrated in moist peat moss for as long as 14–15 days at 4 

°C(Forsline et al. 1998b; Volk et al. 2009). Chip-budding, similar to patch budding, is the grafting 

technique most often used for DB cryo-recovery (Forsline et al. 1998b). The success of this 

recovery method is dependent upon a number of factors that include rootstock compatibility with 

scion, rootstock health, environmental conditions, the skill of the grafter, and aftercare of 

trees(Jenderek and Reed 2017). The benefit of this recovery system is its ability to produce a tree 



 

23 
 

that can be grown to flowering phase in a relatively short period of time due to the lack of 

juvenility.  

DIRECT ROOTING 

Recovery by direct rooting (Figure 1.3b) is performed by dipping the basal end of the segment in 

commercially available formulations of indole-3-butyric acid and/or 1-naphthaleneacetic acid 

before planting in a soilless medium (Bonnart et al. 2014). Direct rooting of DB can also be 

accomplished without the application of rooting hormone, but root formation may be variable 

(Towill and Widrlechner 2004). This method is the simplest recovery system and is performed in 

either growth chamber or greenhouse conditions. While it is not suitable for most species, this 

technique holds promise for species that readily form adventitious roots and are extremely cold-

hardy. After cryo-exposure in less cold-hardy species, the cambium tissue is generally damaged to 

a degree that it is no longer functional and direct rooting would not be possible. 

SHOOT CULTURE 

Surface disinfection and media must be optimized in advance for direct induction into tissue 

culture (Figure 1.3c). The growing medium should be tailored to the general needs of the species 

and work for a variety of different genotypes, both cultivated and wild, to allow for large scale 

implementation (Kim et al. 2006). As DB are sourced from field trees, they may have high rates 

of contamination and will require intense surface sterilization treatments to establish sterile 

cultures. While this recovery method may be more labor and resource intensive than others, it may 

be a desirable option when grafting is not possible. In addition, cryopreserved DB segments can 

be warmed and propagated throughout the year. Resulting plants can be easily multiplied through 

standard subculturing techniques.  
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FORCED BUD DEVELOPMENT -SHOOT CULTURE 

Forced bud development (Figure 1.3d) may also be used as a recovery system, if followed by tissue 

culture induction in a two-step process. For this recovery method, warmed budwood sections are 

planted and maintained in high humidity growth conditions. Because forced shoots are not sterile, 

high contamination levels by microorganisms may preclude them from establishing sterile 

cultures, unless forcing solutions containing antimicrobial agents such as 8-hydroxyquinoline 

citrate are used in conjunction with this technique (Tanner et al. 2020). In this study shoots 

produced using antimicrobial forcing solution after cryopreservation were successfully brought 

into tissue culture using the aforementioned techniques. Successful shoot development has been 

accomplished in cryopreserved apple, pear, sweet cherry, , apricot, peach and little walnut using 

this method (Tanner et al. 2020).  
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FIGURE 1.3. Examples of recovery systems for dormant buds after storage in liquid nitrogen. a. 
Recovery by grafting using chip-budding technique onto rootstock (Forsline et al. 1998b), b. Direct 
rooting of twig segments using rooting hormones before planting in growing environment 
(Bonnart et al. 2014), c. Bud chip recovered using in vitro system (Yakuwa and Oka 1988), d. 
Recovery using antimicrobial forced bud development to produce new growth, then induced into 
shoot cultures (Tanner et al. 2020). 

 

VIABILITY ASSESSMENT 

Viability assessments may sometimes be used to determine if an accession meets the criteria for 

being successfully preserved. In some cases, DB viability assessments such as staining or bud 

sprouting may provide insights about the regrowth capacity of cryopreserved accessions. Forced 

bud development is accomplished by placing DB into a high relative humidity growing 
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environment allowing for surviving buds to sprout; viability is determined based on the visual 

identification of survival and growth (Tanner et al. 2020). These conditions may allow some 

species to grow roots; however, the majority of sprouted DB are incapable of forming a complete 

plant system without the use of additional propagation techniques.  

Tissue browning assessment relies on the development of reactive oxygen species that oxidize 

phenols after freeze damage occurs at the site of cellular injury (Calkins and Swanson 1990). When 

these phenolic cellular compounds are exposed to air, tissues around them oxidize and become 

visibly darker. This method requires an incubation period at temperatures above freezing for 

tissues to oxidize and turn brown. For tissues incubated at room temperature and 100% relative 

humidity, browning can be visually observed after 5 days (Stushnoff and Seufferheld 1995).  

For tissue staining methods, buds are soaked in a dye solution, cross sectioned, and evaluated based 

on the presence/absence of stain in tissues of interest (Calkins and Swanson 1990). A major 

disadvantage of tissue staining as a viability test is the lack of clear delineation between damaged 

tissues that will recover and tissues that are irreparably damaged. Triphenyltetrazolium chloride 

(TTC) has been used extensively as a viability test in seed evaluation but much less in DB 

cryosurvival studies. TTC works by reacting with cellular respiration in living tissues changing 

from colorless to red dying living tissues. DB are stained with a 1% solution of TTC for 24 hours 

at 25 ⁰C before cutting into the bud to observe the localization and intensity of stain in the meristem 

(Zhumagulova et al. 2014; Kovalchuk et al. 2014). 
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CONCLUSION 

 

 

 

Dormant budwood cryopreservation is a useful tool in managing temperate clonal tree and shrub 

genetic resources. Compared to shoot tip preservation, this approach reduces the front-end labor 

of establishing and maintaining in vitro cultures and requires less technical labor in order to 

achieve preservation. For established cryopreservation facilities considering incorporating DB 

germplasm into their repertoires, the seasonal commitment and initial investment in appropriate 

infrastructure must be considered. Furthermore, any laboratory adopting published DB 

cryopreservation protocols must conduct small-scale testing prior to any attempts at large-scale 

implementation, as source material and processing conditions of different facilities can lead to 

variable results. While dormant budwood cryopreservation can be an efficient means of preserving 

large quantities of critical germplasm, careful planning is required to balance the use of limited 

resources for successful implementation of this technology on a year-to-year basis. 
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CHAPTER TWO: DETERMINING THE EFFECT OF 

PRETREATMENTS ON FREEZE RESISTANCE AND SURVIVAL 

OF CRYOPRESERVED TEMPERATE FRUIT TREE DORMANT 

BUDS 

 

 

 

OVERVIEW 

 

 

 

Freeze resistance is critical to successful dormant bud cryopreservation, and is affected by 

genotype, environmental conditions, dormancy phase and processing techniques. Pretreatment 

induced freeze resistance may contribute to more successful and efficient protocols for 

cryopreserving dormant buds. Differential thermal analysis (DTA) was used to quantify the effects 

of cryopreservation pretreatments on freeze resistance of dormant budwood. Low temperature 

exotherm profiles created by DTA could rapidly identify pretreatments that are contributing to 

increased freeze resistance in tree fruit species. In this study, DTA was used to help elucidate the 

effects of varying pretreatments (sucrose, desiccation and their combination) on peach, a model 

crop in tree fruit physiology that has shown little cryosurvival using the dormant bud method in 

the past. Post cryopreservation recovery trials using an antimicrobial forced bud development 

protocol evaluated the ability of selected pretreatments, that improved freeze resistance based on 



 

41 
 

DTA, to improve recovery rates of dormant budwood of various deciduous tree fruit and nut 

species. Pre-cryogenic exposure to sucrose solution (5.0 M, 96 hours), desiccation to 30% moisture 

content (MC) and their combination tested for their efficacy on improving post cryogenic viability 

in peach, apricot, sweet cherry, little walnut, black walnut, English walnut, apple, and pear. Among 

the different pretreatments tested, desiccation to 30% MC had the greatest impact on increasing 

freeze resistance and cryosurvival across most fruit species tested and little walnut. Gradual 

reduction of MC (40 to 25%) levels increased freeze resistance in peach (R2=0.95) and increased 

some recovery outcomes (leaf, shoot and bud swell), however, this was not correlated with equal 

cryorecovery outcomes as severe bud cracking was observed. Overall, our approach linking freeze 

resistance and preconditioning treatments could help establish efficient species-specific protocols 

to preserve a number of important temperate woody crops.  

INTRODUCTION 

 

 

 

The importance of preserving genetic resources to support the changing needs of future agricultural 

endeavors cannot be overstated as crop genetic diversity provides the basis for the development of 

new cultivars. Cryopreservation has proven to be a viable method of securing important biological 

collections against loss. Cryopreservation of dormant buds (DB) has the potential to be a more 

efficient and cost-effective germplasm backup method compared to field collections or tissue 

culture derived meristem shoot cryopreservation. Successful protocols using the DB 

cryopreservation method have been developed for some deciduous clonal tree fruit crops. 

However, more work must be done to develop reliable methodology for preserving other tree fruit 
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species that do not survive liquid nitrogen vapor (LNV) exposure using the standard processing 

protocols. 

Successful cryopreservation of DB relies upon the material’s ability to survive preconditioning to 

low moisture and exposure to the extreme cold of LNV. DB cryopreservation uses last growing 

season’s shoots that are collected following midwinter dormancy. Acclimation begins in late 

summer/early fall when daylength is reduced and low daily temperatures begin to drop. The 

gradual daily decrease of air temperature in temperate climates is associated with increasing 

resistance to freezing in perennial plants, thus acclimating to maximum cold hardiness around 

midwinter. Timing, degree, and duration of chilling events are variable from year to year and 

influence the rate of acclimation and cold hardiness; this may contribute to the lack of replicability 

of recovery outcomes on a season by season basis. One study on Vaccinium dormant budwood 

cryopreservation found a positive correlation between cryosurvival and the 10 day average of the 

maximum daily air temperature preceding the twig harvest [9]. During the peak of their dormant 

physiological state, buds have reached maximum cold hardiness and are most prepared for 

surviving cryogenic storage conditions [20].  

Additionally, supplementing the budwood’s natural cold hardiness with laboratory applied 

pretreatments that increase freeze resistance by supporting naturally occurring processes of freeze 

induced desiccation of critical cells in shoot primordia may increase the chances for survival at 

unnaturally low temperatures. Internal moisture content of budwood has been identified as an 

important factor influencing cryosurvival of apple buds [24]. In dormant apple shoots, initial 

moisture content of freshly collected DB varies from year to year but is usually between 45-55% 

when collected from source trees in field collections. Placing shoot segments into refrigerated 

chambers and exposing them to air movement will slowly desiccate the material. When the desired 
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moisture content is reached, twig segments can be sealed, and then placed in a programmable 

freezer to be slowly cooled to -30°C before LNV storage. Gradually reducing the temperature 

allows for intercellular water to migrate into extracellular spaces, where it can be frozen without 

causing damage to cell membranes [17]. At about -38°C all water spontaneously freezes; this is 

known as the homogeneous ice nucleation point. Using adequate slow cooling rates to freeze DB 

during cryopreservation allows sufficient time for water to migrate from intercellular spaces to 

extracellular locations in order to limit the severity of freeze damage to a survivable level [23]. 

Most apple genotypes have shown greater post cryogenic regrowth when reduced to 20-30% 

moisture content before LNV exposure. 

Previous studies on cold hardiness in plants have found a positive relationship between 

carbohydrate concentration and cold tolerance [4,5,8,10,11,14,16]. In response to freezing 

conditions in winter, these temperate plants supercool their buds by freezing extracellular water, 

thereby increasing sugars, sugar alcohols, and reducing water content in cells. Naturally occurring 

sugars present in DB have been found to have cryoprotective effects related to stabilization of 

cellular components during dehydration [21]. Oligosaccharides, such as sucrose and raffinose, are 

involved in cold tolerance and have been shown to increase in deciduous twigs in the fall during 

the development of hardiness [6,18]. Additionally, increasing sucrose concentration in dormant 

twigs  has been linked to repair of freeze induced embolism in dormant twigs of walnut [1]. Sucrose 

is a common ingredient used as a pretreatment in the cryopreservation of in vitro shoot tips of 

some species [15]. Exposure of in vitro shoot tips of sour cherry to high concentrations of sucrose 

or glycerol has been effective for preparing shoots for LN exposure and eliminating the need for 

artificial cold hardening in climate controlled growth chambers [2]. In dormant bud 
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cryopreservation, the application of sucrose and raffinose imbedded in a alginate matrix has been 

shown to increase cryotolerance of cold tender apple cultivars [19]. 

The goal of this research is to optimize dormant bud cryopreservation techniques to support the 

efforts of gene banking facilities in conserving clonal germplasm of deciduous fruit trees with 

greater efficiency, and to increase survival after LNV storage. This study investigates the 

relationship between various preconditioning treatments and their effect on freeze resistance and 

regrowth after LNV exposure. By identifying the most successful combination of pretreatments 

that overcome each crop’s barriers to survival and regeneration, we hope to influence protocols 

for preservation of pear (Pyrus communis L. cv. ‘Bartlett’), peach (Prunus persica (L.) Batsch cv. 

‘Cresthaven’), sweet cherry (Prunus avium L. cv. ‘Bing’), apricot (Prunus armeniaca L. cv. 

‘Tilton’), apple (Malus x domestica Borkh. cv. ‘Gala’), English walnut (Juglans regia L. accession 

‘DJUG 568.1’), black walnut (Juglans nigra L. cv. ‘Sparrow’) and little walnut (Juglans 

microcarpa Berl. accession ‘DJUG29.4’). 

MATERIALS AND METHODS 

 

 

 

Several agriculturally important species of hardy fruit were used to investigate the impact of 

pretreatments on cryo-survival of dormant winter buds. Walnut, black walnut, little walnut, cherry, 

peach, apricot and pear were selected for this research, as these crops have historically shown 

minimal success using standard DB cryopreservation techniques. We additionally selected one 

accession of apple for this study, as it has historically had good post-cryopreservation viability.  
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Dormant peach budwood [Prunus persica (L.) Batsch cv. ‘Cresthaven’] of the previous season’s 

growth were collected on November 6, 2017 from the experimental orchard of Colorado State 

University at Western Colorado Research Center-Orchard Mesa (WCRC-OM) in Grand Junction, 

Colorado, and shipped overnight to the US Department of Agriculture’s National Laboratory for 

Genetic Resources Preservation (NLGRP) in Fort Collins, Colorado. A preliminary study utilized 

these twigs to investigate the effects of sucrose at various concentrations and durations of exposure 

on internal moisture content and cold hardiness to determine optimum treatment rates and duration 

to be further tested in a variety of species. 

The cryo-survival tests were conducted on material harvested in January 2018. Dormant twigs of 

peach, apple (Malus x domestica Borkh. cv. ‘Gala’), sweet cherry (Prunus avium L. cv. ‘Bing’), 

apricot (Prunus armeniaca L. cv. ‘Tilton’), and pear (Pyrus communis L. cv. ‘Bartlett’) were 

collected from WCRC-OM on January 4, 2018; this collection date is referred to as Sampling Time 

1 (ST1). An additional sampling (Sampling Time 2 or ST2) of apple and peach was conducted on 

January 15, 2018. A third sampling (Sampling Time 3 or ST3) of peach was performed on January 

29, 2018. Dormant twigs of little walnut (Juglans microcarpa Berl. accession ‘DJUG29.4’), 

English walnut (Juglans regia L. accession ‘DJUG 568.1’), and black walnut (Juglans nigra L. 

cv. ‘Sparrow’) were collected from the US Department of Agriculture’s National Clonal 

Germplasm Repository (NCGR) in Davis, California on January 15, 2018.  

Air temperature data for WCRC-OM were accessed through CoAgMet (coagmet.colostate.edu), 

and air temperature data for NCGR were accessed through UC Davis Atmospheric Science website 

(http://atm.ucdavis.edu/weather/uc-davis-weather-climate-station/); these are shown in Table 2.1. 
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TABLE 2.1. Air temperature data of field sites contributing twig samples. Maximum and 
minimum temperatures (°C) averaged over 10 days preceding twig sampling. NCGR contributed 
English walnut, black walnut and little walnut twigs, while all other material came from WCRC-
OM. 

Location Collection 
Date 

10d 
Ave. 
Tmax 

10d 
Ave. 
Tmin 

WCRC-
OM 

11/6/17 15.62  2.88 

WCRC-
OM 

  1/4/18   7.91 -6.84 

WCRC-
OM 

 1/15/18   7.06 -3.21 

WCRC-
OM 

 1/29/18   5.63 -7.87 

NCGR  1/15/18 14.56  6.67 
 

At NLGRP, budwood was cut into 3.5 cm segments, each containing a single node with a 

vegetative bud located close to the segment midpoint. After cutting, twig segments of each cultivar 

were mixed before being divided into treatment groups of 30 segments; the exception was little 

walnut, which was limited to 20 segments due to material availability.  

EXPERIMENT 1: EFFECT OF SUCROSE ON PEACH DORMANT BUD FREEZE 

RESISTANCE 

The first line of investigation explored the effect of sucrose on freeze resistance. A preliminary 

study on peach sampled in November 2017 showed that treatment in weak sucrose solutions 

significantly increased the moisture content (gravimetrically determined on a fresh weight basis) 

of the dormant twig segments (Figure 2.1). Using material from the same sampling time, a follow-

up experiment was conducted using the following factors: 0.0 M, 1.66 M, 3.33 M, and 5.0 M 

sucrose solutions, for 24, 48, 72, and 96 hours of exposure on a rotary shaker at 4°C. After sucrose 

exposure, a differential thermal analysis (DTA) freeze test was conducted on this material to 
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evaluate the effect these treatments had on budwood freeze resistance. Details on DTA test 

described in Freeze Resistance Analysis section below.  

EXPERIMENT 2: EFFECT OF SUCROSE AND DESICCATION PRETREATMENTS ON 

CRYO-RECOVERY OF DIFFERENT TREE FRUIT AND NUT SPECIES 

Material from all crops harvested in January 2018 (ST1 and ST2) was used for the next line of 

inquiry, which examined the differences between additive and reductive pretreatment methods. 

The pretreatments in this study included: exposure to a 5.0 M sucrose solution, desiccation to 30% 

moisture content (MC), exposure to 5.0 M sucrose plus desiccation to 30% moisture content, and 

an untreated control group.  

Segments treated in 5.0 M sucrose solutions were exposed at 4°C for 96 hours, as this was 

determined to be the optimal concentration and exposure time during preliminary experiments 

described in Experiment 1. Moisture content was determined gravimetrically on a fresh weight 

basis after drying sacrificial material at 100°C for 4 days in a laboratory oven. Material was 

desiccated at -4 ± 1°C and weighed regularly until the target moisture content was reached. A MC 

of 30% (fresh weight basis) was selected as the desiccation target as it is the standard MC level 

reported in apple DB literature[7].  This MC has also been successfully used for the 

cryopreservation of ash, cottonwood, willow, pear, apricot, and peach, [3,22,27].  

LNV exposure and FBD cryo-recovery tests were conducted as described below on 30 segments 

per pretreatment (except little walnut) for each fruit species (ST1): apple, peach, sweet cherry, 

apricot, pear, little walnut, English walnut, and black walnut. Additional samples were collected 

for apple and peach (ST2) to replicate the first sampling time. 
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EXPERIMENT 3: EFFECT OF MC ON FREEZE RESISTANCE AND CRYO-RECOVERY 

A further line of inquiry tested the hypothesis that moisture content was having the greatest impact 

on freeze resistance in peach twigs collected during midwinter (ST3). This experiment evaluated 

the effect of pretreatment on freeze resistance and cryo regrowth potential of twig segments treated 

with one of four different cryo pretreatments. These pretreatments were the same as described in 

Experiment 2. Additional treatment groups were desiccated to various MCs to investigate the 

relationship of freeze resistance to tissue MC to compare with previous treatment results of 

Experiment 2. These additional MC groups were desiccated to six MC targets; 40%, 37.5%, 35%, 

32.5%, 27.5%, and 25%. Each treatment group consisted of 60 twig segments: 30 used to quantify 

freeze resistance by DTA and 30 segments to evaluate post cryo-regrowth potential using the 

methods and conditions mentioned below. 

FREEZE RESISTANCE ANALYSIS 

DTA was used to quantify freeze resistance of peach following a methodology [12] which uses 

thermo electric modules (TEM) (Laird Technologies, Chesterfield, MO) to detect temperature 

gradients generated by the exotherms. This method was modified and upgraded for increased 

efficiency and sensitivity [13]. This updated DTA equipment was constructed by mounting TEMs 

inside rectangular candy tin cans with folding lids sized just large enough to house the TEM. 

Eleven tin cans each containing a TEM were fixed onto aluminum plate which were connected to 

a multimeter/data acquisition system (Keithley 2700, Tektronix Company, Beaverton, OR) to 

constitute the sensor array. This DTA setting provides an improved signal/noise ration allowing 

for precise exotherm detection [13]. 
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For each treatment group, 30 dormant bud segments of peach were used to assess freeze resistance. 

Peach was selected for its capacity to show distinctive peaks for low temperature exotherms and 

its lack of survival after cryostorage following standard processing procedures of the dormant bud 

cryopreservation method. The twig segments were trimmed just above and just below each node 

that contained two floral and one vegetative bud, and were cut in half, longitudinally, to reduce 

stem biomass and folded into aluminum foil to reduce moisture loss during DTA run. Five prepared 

segments were placed inside each aluminum box where the buds could contact the TEM.  

Dormant peach buds were frozen at a rate of 4°C per hour from 0°C to -40°C using a programmable 

controlled rate freezer (model ZP-8, Cincinnati Sub-Zero, Cincinnati, Ohio). Temperature and 

voltage data were recorded by a datalogger located outside of the test freezer with wires routed 

through a port which connected to TEMs using Kiethley KickStart Software (Tektronix, 

Beaverton, Oregon). After a controlled freeze event, data were exported from Kiethley KickStart 

Software to Microsoft Excel (Microsoft Corp., Redmond, Washington) analyze for exotherms. 

Low temperature exotherms (LTE) represent intracellular freezing events inside the sample tissue 

and are considered lethal events to individual buds. High temperature exotherms (HTE) mark the 

freezing of extracellular water as tissues begin to freeze and are nonlethal events. Exothermic data 

were collected from the datalogger and analyzed using Microsoft Excel by subtracting voltage 

values of a reference TEM from sample TEM readings. Analyzed data were plotted using 

GraphPad Prism version 8.3.0 to create DTA profiles used for the identification of exotherm peak 

temperatures. 
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CRYO-RECOVERY 

After applicable pretreatments were applied, material designated for cryo-recovery was frozen at 

a rate of 1°C per hour from -5°C to -30°C and held at -30°C for 24 hours using a programmable 

controlled-rate freezer (model ZP-8, Cincinnati Sub-Zero, Cincinnati, Ohio). Twig segments were 

then transferred to an LNV storage tank (MVE/Chart model XLC1830) for at least two weeks 

before rewarming and viability testing.  

Twig segments were rewarmed by removing samples from LNV and warming at -5°C for 24 hours, 

then submersing twig segments  in a 1.5 mM ascorbic acid solution for 15 minutes at 5°C before 

planting in antimicrobial forced bud development (AFBD) regrowth environment [20]. AFBD 

after cryo was accomplished by planting twig segments directly into Oasis Horticube media 

(product no. 5240, Oasis Grower Solutions, Kent, OH), each tray containing 3 L of a forcing 

solution consisting of 200 mg L-1 of 8-hydroxyquinoline citrate (Alpha Chemistry, Holtzville, NY) 

and 20 g L-1 of D-Sucrose (Phytotechnology Laboratories, Shawnee Mission, KS) as previously 

described in Tanner et al. [20]. AFBD was conducted inside plastic nursery trays covered by clear 

plastic humidity domes placed inside a Percival growth chamber (model number 166LL) set to 

21°C with a diurnal photoperiod of 18 hours light/6 hours dark. Twig segments were allowed to 

develop in this regrowth environment for 6 weeks before recovery assessment.  

A progressive bud development rating scale designed to evaluate the regrowth potential of DB 

after cryopreservation previously reported by Tanner et al. [20] was used to quantify development 

of DB after cryopreservation (Figure 3.1). Twig segment diameters were recorded for each 

segment using a digital caliper (World Precision Instruments LLC., Sarasota, FL) to investigate 

the relationship between survival of LNV-exposed twigs and segment width. The diameter at the 

segment midpoint was measured for all material designated for cryo-recovery regrowth trials.  
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STATISTICAL ANALYSIS 

Analysis of the FBD viability tests is based on percent viable, where viable is defined as having 

the tip greening or leaf/shoot development outcomes. The freeze resistance assessment is based on 

exotherms of peach buds, captured by DTA. Both bud viability and freeze resistance were analyzed 

with the Kruskal Wallis test. Dunn’s Multiple Comparison test is used to compare the results from 

each treatment. All data were analyzed on GraphPad Prism version 8.3.0. 

RESULTS AND DISCUSSION 

 

 

 

EFFECT OF SUCROSE AND DESICCATION PRETREATMENTS ON FREEZE 

RESISTANCE AND CRYO-RECOVERY 

Cryoprotectants have been used for cryopreservation of meristematic tissue and have therefore 

been explored in the realm of dormant bud cryopreservation. Sucrose has been used because it is 

a naturally occurring carbohydrate found in overwintering DB of hardy plants and is nontoxic and 

affordable cryoprotectant. In this study, we employ DTA to quantify the affect that simple sucrose 

pretreatments have on freeze resistance. Experiment 1 which focused on understanding the effect 

of sucrose solution exposure; concentration and duration, on DB freeze resistance to identify the 

best preforming sucrose treatment. The results of this experiment showed that sucrose treatment 

did alter freeze resistance of twig segments compared to untreated material. Sucrose concentrations 

below 3.33M (0M and 1.66M) reduced freeze resistance compared to untreated controls. In the 

case of water treatment (0.0 M sucrose), after 24 hours of treatment exposure freeze resistance was 

significantly less than that of untreated buds. Buds exposed to water only lost all ability to resist 
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freezing after 72 hours of treatment exposure. We also found that very high concentrations (3.33-

5.0 M) of sucrose solution applied for long exposure times (96 h) do increase freeze resistance 

(Figure 2.1). The temperature of freezing initiation may relate to solute concentration present in 

the extracellular matrix of bud tissues as suggested by Vogiatzi et al. [26] and is supported by our 

data. The amount of extracellular freezing appears to be reduced as sucrose concentration and 

exposure levels increase. This idea is supported by the reduction of the initial freezing event, the 

HTE. This reduction in the HTE was observed in both duration and degree of magnitude in the 

DTA profile suggesting osmotic desiccation is occurring during sucrose treatment. Based on the 

findings of this preliminary study, Experiment 1, the effective pretreatment level with sucrose 

solution of 5.0 M for 96 h (4oC) was selected to be used in subsequent cryo-survival trials, 

Experiment 2 and 3, as it was expected to potentially increase survival after LNV exposure 

compared to untreated material.  

 

FIGURE 2.1. Sucrose concentration and exposure effect on freeze resistance in peach dormant 
twig segments collected in November 2017. (A) DTA exotherm profiles showing high temperature 
exotherms on the left and distinctive low temperature peaks on the right. DTA profiles shown are 
after 96 hours of sucrose exposure. (B) Exotherm temperatures for each treatment group showing 
significant effect of sucrose treatment on freeze resistance. Baseline freeze resistance from 
untreated buds shown as a horizontal black dotted line. Statistical significance level is indicated 
with the symbol *. *  P ≤ 0.05, ** P ≤ 0.01, ***P ≤ 0.001, ****P ≤ 0.0001. n=30 
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DTA was also used to compare the effects of pretreating by solution exposure and conventional 

dormant budwood pretreatment by air desiccation on freeze resistance in peach. The sucrose 

pretreatment that had the greatest impact on freeze resistance was exposure to 5.0 M solution for 

96 hours  in our preliminary studies (Experiment 1, Figure 2.1), though it was not statistically 

different from the control in our follow up experiment (Experiment 2, Figure 2.2). On the other 

hand, it was shown that the conventional pretreatment (desiccation) significantly increased freeze 

resistance, as did the combined method (desiccation plus a sucrose cryoprotectant), but to a lesser 

degree. DTA peak height observed to be variable but was influenced by moisture content with 

larger peaks observed from buds with higher moisture levels (Figure 2.2A) 

.
FIGURE 2.2. Effects of various preconditioning treatments on freeze resistance of peach dormant 
twig segments collected in January 2018. (A) DTA profiles corresponding to each pretreatment. 
(B) Exotherm temperature values showing significant effect of pretreatment on increasing freeze 
resistance compared to an untreated control. Statistical significance level is indicated with the 
symbol *. *  P ≤ 0.05, ** P ≤ 0.01, ***P ≤ 0.001, ****P ≤ 0.0001.  n=30 

Although our preliminary studies of Experiment 1 showed high molarity sucrose exposure to 

increase freeze resistance of peach twig segments compared to an untreated control, these 

pretreatments were not effective at increasing survival after LNV exposure (Figure 2.3). LNV 

temperature ranges from -140° to -180°C and is thus significantly colder than the few degrees of 

increased cold tolerance produced by sucrose pretreatment detected by DTA. Reduction of internal 
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MC to 30% by air drying at -4°C had a greater effect on survival in LNV than sucrose solution 

treatment alone or in combination with desiccation to 30% MC in peach.  

Recovery outcomes for twig segments after LNV exposure for all taxa tested are reported in Figure 

2.3, except for English walnut and black walnut, which showed no recovery across all treatments 

(data not shown). Twig segments that were frozen in the fresh state (i.e. without artificial 

desiccation) and twigs treated with 5.0 M sucrose alone did not recover (tip greening/ leaf and 

shoot) after LNV exposure in any species tested. Of all the groups tested, apple twigs desiccated 

to 30% MC had the highest recovery rate, 63.33%. In pear and sweet cherry, sucrose treatment in 

combination with desiccation to 30% MC was the most beneficial pretreatment tested. In pear, 

twig segments treated with 5.0 M sucrose for 4 days before desiccation to 30% MC at -5°C had 

the same shoot recovery rate as those desiccated to 30% MC without sucrose exposure, though the 

former had more bud swelling. In sweet cherry treated with 5.0 M sucrose and desiccated to 30% 

MC, 13.33% of twig segments developed shoots compared to only 3.33% for desiccation to 30% 

MC alone. For pear and sweet cherry, both factors could be optimized in the future. 
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FIGURE 2.3. Recovery outcomes of various hardy fruit tree species after LNV exposure. English 
walnut and black walnut had no growth and are not shown. n=30 for all species except little 
walnut (n=20). Some crops were tested from two harvests, sampling time 1 (ST1) occurred on 
January 4,2018 and sampling time 2 (ST2) on January 15, 2018. 

For most, desiccation was the pretreatment that showed the greatest increase in viability. This 

corresponds with the peach DTA results, which suggested that air drying twig segments to 30% 

MC at -4°C is more beneficial for increasing freeze resistance compared to all other pretreatments 

tested. Although 30% MC has shown to be a beneficial pretreatment in this study, this particular 

MC is not necessarily optimized for peach or other hardy tree fruit crops. The original desiccation 

recommendations for DB were developed for apple, which is somewhat desiccation tolerant and 

cold hardy; desiccation to 23.4% increased survival for apple twig segments [27]. In subsequent 

work, the MC range of desiccated apple twig segments was narrowed to between 28-32% with 

30% ideally targeted [7]. Optimum desiccation levels for crops and cultivars may differ from those 

reported for cold hardy apple cultivars and needs further investigation to increase survival and 

regrowth following LNV exposure [25]. Since cold tolerance is crucial to material survival, the 

significant improvement (p<0.0001) of freeze resistance seen in some treatments further suggests 
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that DTA can be a time and resource saving approach to optimizing cryoprotectant application in 

future studies. 

Two sample times were used in apple and peach. The first twig collection was conducted on 

January 4 (ST1) and the second on January 15, 2018 (ST2). For both crops, survival rate improved 

in the second date of January 15, 2018 compared to January 4, 2018. While the average maximum 

air temperature was similar for both and statistically not significant, the average minimum air 

temperature was significantly colder for ST1 (p = 0.0333). These results indicate additional factors 

might be influencing the improved survival and regrowth observed in sample time 2 such as 

increased cold hardening or the satisfaction of chilling requirements due to a cold weather event 

that occurred after ST1 but before ST2.  

For a more robust analysis of preconditioning factors that affect cryo-survival of dormant winter 

buds, we compared the twig diameter of every segment to its cryo-survival ranking. In all species 

tested, the smallest diameter twig segments in each treatment did not survive LNV exposure 

(Figure 2.4). For apple, shoot growth was observed in twig segment of diameters of 3.85 and 5.88 

mm. The smallest 3% of diameter segments of apple did not grow after LN exposure and were 

3.48 to 3.72 mm in diameter. In peach, shoot development was seen in sizes between 3.79 and 4.52 

mm; however only two segments were observed viable and the actual size range is expected to be 

larger than observed here. The smallest 36% of peach twig segments did not grow after cryo; 

having diameters of 2.9 to 3.7 mm. With apricot, shoot development was observed from 3.57 to 

6.88 mm. The smallest 23% of segment diameters did not regrow after LN exposure and were 2.36 

to 2.75 mm wide. For pear, 4.91 to 6.77 mm size ranges showed shoot growth after storage in LN. 

The smallest 6% of segment diameters did not grow after LN exposure and were between the sizes 

of 3.21 to 3.41 mm. In sweet cherry, viability was observed in segment diameters sized between 
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4.8 and 7.08-mm. Bud swelling occurred in sweet cherry in even the smallest diameters tested. In 

little walnut regrowth was observed between 4.1 to 5.81 mm segment diameters. The smallest 5% 

of diameters did not regrow after LN storage and ranged in size from 3.27 to 3.96 mm. Histograms 

of recovery outcomes and size classes are presented in Figure 2.4. 

FIGURE 2.4. Twig segment diameters of various deciduous fruit tree species showing the 
influence of twig diameter on cryo-recovery. n=30 for all species except little walnut (n=20). 

Twig segment with the smallest diameters were not observed to survive LNV exposure. This result 

suggests that the most apical portions of the twig should be discarded, leaving the most uniform 

middle and basal twig sections for processing and LNV storage; this practice would increase 

survival of the remaining sample group and divert storage resources from the least successful to 

the most successful material. In germplasm storage, anything that can be done to increase survival 

before storage is warranted. In discarding twig tips, a small amount of material will be lost but can 

be compensated by the addition of more twigs for storage, allowing for the stored material to have 

a greater overall survival. 
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EFFECT OF SHOOT INTERNAL MOISTURE CONTENT ON FREEZE RESISTANCE AND 

CRYO-RECOVERY 

Since moisture content showed a greater impact on freeze resistance in peach and cryo-survival 

across almost all crops tested in Experiment 2, we use DTA to further explore the relationship 

between internal moisture content and freeze resistance and conducted regrowth trials to validate 

our findings in Experiment 3. The effect of moisture content on freeze resistance illustrated by 

DTA profile of buds at various moisture contents (Figure 2.5A). We found that lower internal 

moisture content increased freeze resistance, particularly in those groups desiccated to 25-35% 

MC (significantly different from the control, p<0.0001) (Figure 2.5B). When comparing moisture 

content to freeze resistance (LT50), we found a linear relationship between these two factors 

(Figure 2.5C and Figure 2.7). 
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FIGURE 2.5. Dormant twig segments of peach (ST3) collected on January 29, 2018 desiccated by 
air drying at -4°C±1 to various moisture contents before controlled cooling at a rate of 4 °C/hour 
from 0 to -40 °C. Moisture content (fresh weight basis) treatment groups of Fresh (47% MC), 40%, 
37.5%, 35%, 32.5%, 30%, 27.5% and 25% are shown. (A) DTA exotherm profiles display the 
effect of moisture content on freeze resistance. (B) Exotherm values of DTA freeze resistance trail 
showing significant influence of reduced moisture content on increased freeze resistance. (C) 
Relationship between moisture content and LT50 values of peach DB. Statistical significance level 
is indicated with the symbol *. *  P ≤ 0.05, ** P ≤ 0.01, ***P ≤ 0.001, ****P ≤ 0.0001. n=30 

Although freeze resistance was greatly improved in those samples desiccated below 35% MC 

(Figure 2.5), the cryo-survival assessment did not exactly match the patterns seen in the DTA 

(Figure 2.6). The limited regrowth seen in material desiccated below 35% MC (figure 2.6) suggests 

that desiccation damage may be limiting recovery after LNV exposure.  

While ideal internal moisture content of DB should be optimized for peach and other hardy 

deciduous fruit crops that do not survive LNV storage, future studies must address desiccation 

damage in order to maximize sample regrowth. We speculate that different tissue types in budwood 

may lose moisture at different rates. Tissues such as the bud axis may become drier than 
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surrounding tissues as water is removed more efficiently within the vascular system during 

resulting in the formation of cracks as tissues rehydrate during recovery. 

FIGURE 2.6. Recovery outcomes of dormant peach twig segments (ST3) collected on January 29, 

2018 and pretreated by desiccating to various MC after LNV exposure. n=30 

CONCLUSION 

 

 

 

Cryopreservation of dormant winter twigs is a promising method for efficiently storing clonal 

hardy deciduous tree and shrub species. Cryo-survival is dependent on many factors, such as 

collecting budwood during periods of peak dormancy, reducing internal moisture before LNV 

exposure, and slowly cooling twig segments to allow for freeze-induced intracellular desiccation 
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before storage in LNV. Applying the DTA method has provided insight into the temperature at 

which buds are freezing and the effect that various pretreatments have on freeze resistance. DTA 

has allowed us to quickly identify pretreatment methods that have the greatest effect on increasing 

freeze resistance in vital crops such as peach. In general, pretreatments showing the greatest freeze 

resistance also had increased recovery after LNV exposure, although more work is needed to 

mitigate the effects of desiccation damage. Through our study, we show that a multi-tiered 

approach allows us to test our hypotheses about the effect these preconditions will have on DB 

before focusing our resources on optimizing the pretreatments that will most effectively preserve 

such limited and vital genetic material. Through this approach, establishing efficient species-

specific protocols for preserving a number of important temperate woody crops can become a 

reality in the near future.  

 

FIGURE 2.7. Relationship between lethal temperatures of freezing DB and the internal moisture 
content in peach. (A) Lethal temperatures that killed 10%, (B) 50% and (C) 90% of dormant buds 
are shown above. n=30. 
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CHAPTER THREE: ANTIMICROBIAL FORCING SOLUTION 

IMPROVES RECOVERY OF CRYOPRESERVED TEMPERATE 

FRUIT TREE DORMANT BUDS 

 

 

 

OVERVIEW 

 

 

 

Dormant bud cryogenic preservation is a cost- and labor-efficient method of genetic resource backup 

compared to in vitro derived meristem shoots cryopreservation. While protocols have been developed for 

cryopreserving apple dormant buds, effective and reproducible protocols are yet to be developed for several 

temperate fruit and nut species. Dormant bud cryopreservation typically requires material to be grafted to 

evaluate viability and recover a plant. Forced bud development has been used on a very limited scale for 

cryostored dormant budwood recovery, however, it provides a labor-efficient alternative viability 

assessment. To increase the utility of this approach, regrowth must be optimized to allow complete plant 

recovery. We hypothesized that bacterial attacks are limiting regrowth, thus, an antimicrobial forcing 

solution can maximize regrowth potential. This study examined the effects of an antimicrobial forcing 

solution (8-hydroxyquinoline citrate and sucrose, 8-HQC) on the cryosurvival and recovery of dormant 

buds of fruit (Malus x domestica, Prunus armeniaca, Prunus avium, Prunus persica, Pyrus communis), and 

nut species (Juglans regia, Juglans nigra, Juglans microcarpa). Recovery and shoot development were 

significantly improved for all the fruit and one nut species (J. microcarpa) treated with the 8-HQC, 

compared to standard recovery under high humidity alone (P<0.001). Additionally, this post cryo recovery 
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approach led to successful in vitro shoot tip establishment across all surviving fruit species. 8-HQC 

embedded forced bud development method increased viability and efficiency for existing cryostored 

material and can be used as a benchmark to develop protocols for different crops that could potentially lead 

to complete plant recovery. 

INTRODUCTION 

 

 

 

Cryogenic storage contributes to food security and preserves genetic diversity for crop-breeding 

programs by allowing an efficient storage of important genetic resources at lower cost, labor, 

space, and risk associated with field collection maintenance. Cryopreservation of deciduous fruit 

and nut trees using dormant winter buds is an important tool for germplasm conservation [21].  

Survival of dormant budwood exposed to liquid nitrogen was first reported nearly 60 years ago 

using mulberry and willow twigs [16]. Since then, technology and methodology have developed 

to encompass a variety of cold-hardy woody taxa and increase overall survival. Cryopreservation 

using dormant winter buds holds some advantages over tissue culture mediated preservation 

methods for temperate fruit trees as it is a simpler, more cost-effective process; however, it is only 

applicable to dormant woody plant species. Another advantage of dormant budwood 

cryopreservation is the speed at which accessions can be processed, which results in higher 

throughput of cryopreserved accessions compared to in vitro meristem shoots [7].  

Dormant bud cryopreservation has limitations, including its short seasonal harvest window and 

restricted application to cold-hardy woody taxa; however, the biggest limitation to its widespread 

use is the lack of effective protocols for many crops. At the National Laboratory for Genetic 
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Resource Preservation (NLGRP) in Fort Collins, CO, dormant bud cryopreservation is used to 

store genetic material of apple (Malus spp.) [3] and tart cherry (Prunus cerasus L.) [25]. While 

refinement of standard processing methods is currently underway for other cold-hardy fruit trees 

and shrubs at the NLGRP, a greater concentration of effort is still needed to make this process 

useful for a broader variety of fruit and nut crops [6]. 

Decreasing internal moisture content of dormant budwood has been shown to increase survival in 

liquid nitrogen exposed twigs segments and has become standard practice in dormant bud 

cryopreservation [2,18,26–31]. In dormant apple twigs, initial moisture content is usually between 

50-55% when collected from source trees in field; however, most genotypes have shown greater 

regrowth when reduced to 25-30% moisture content by air-drying under refrigerated conditions 

before slow cooling and liquid nitrogen vapor (LNV) exposure [29]. This process removes 

extraneous moisture before dormant budwood is exposed to LNV. Slowly cooling the twig 

segments allows time for symplastic water to migrate into extracellular spaces, in order to limit 

the severity of freeze damage to a survivable level [23]. Further studies have investigated the use 

of cryoprotectants to improve the ability of dormant buds to survive cryostorage [18,22].  

While research on treatments prior to cryoexposure has been invaluable to developing processing 

protocols, further research on optimizing recovery conditions for various temperate clonal tree 

fruit species is still needed. In cultivated apple, evaluating cryorecovery is usually accomplished 

by grafting a subset of twig segments onto seedling rootstocks using the chip budding or patch 

budding method [4,20,29]. The shoot development from the grafted bud indicates the viability of 

the stored samples, and further allows for complete recovery of the material into cultivation. 

Since grafting is a highly skilled technique, regrowth results may vary dependent on the technique 

of the grafter. Except for the need for skilled grafting personnel, this technique is resource-limited 
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and labor-intensive as it requires rootstocks to be propagated or procured, and specific conditions 

to be controlled in order to conduct the twig segment rehydration and graft regrowth trials [4]. 

Sprouting of shoots from dormant buds after cryostorage has been established as an alternative 

viability test [23]. Compared to grafting, bud sprouting or forced bud development (FBD) is far 

less labor-intensive. Using the FBD technique, twig segments are planted into a growing 

environment with high relative humidity and are allowed to recover from dormancy and develop 

shoots. Viability is evaluated after several weeks depending on the tree fruit species. NLGRP is 

currently working towards developing crop specific cryostorage protocols using FBD as a 

promising and efficient alternative to grafting to test dormant bud post-cryopreservation viability.  

Tissue necrosis during recovery in FBD may limit the regrowth potential of cryopreserved dormant 

bud segments. Due to desiccation and freezing damage to cell membranes and walls, 

cryoprocessed dormant buds are extremely vulnerable to microbial attack [10,17]. Forcing 

solutions containing the antimicrobial 8-hydroxyquinoline citrate (8-HQC) and sucrose have been 

useful at preventing plant pathogenic microorganisms (bacteria, fungi etc.) from building up and 

blocking xylem tissues, allowing buds to develop after flower stems have been harvested, thus, 

increasing the vase life of fresh cut flowers [9,12,13,19]. In woody plants, this forcing solution has 

been used to extend the softwood cutting season and increase success in sterile culture induction 

[33]. In the present study we used an 8-HQC and sucrose forcing solution as a microbial 

suppressant in cryoprocessed dormant buds undergoing regrowth in an FBD viability assay. By 

reducing biotic barriers to shoot regrowth, we hypothesize that the dormant bud cryosurvival of 

various fruit and nut species will be improved, and efficiency of future and past material stored 

through dormant bud cryopreservation protocols will be increased.  
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While FBD is a great alternative to grafting as a viability assessment, it is not yet useful for plant 

regeneration [23]. Cryopreserved dormant winter twig segments retain maturity when recovered 

by grafting; this allows for the rapid production of flowers within two years of recovery, which is 

helpful for plant breeders [21]. While using the ability of stored budwood to sprout a shoot as a 

determination of cryoviability is efficient compared to the labor of grafting, the method usually 

fails to establish material for regrowth after storage. The present study addresses the major 

deficiency in the FBD system using antimicrobial forcing solution. Following this approach, viable 

meristems from the segments used for FBD viability assays, could be potentially excised and 

induced into tissue culture, allowing for multiplication and re-cultivation after cryostorage. 

MATERIALS AND METHODS 

 

 

 

DORMANT BUDWOOD  

Eight species of domesticated and wild fruit and nut crops were used to investigate survival and 

regrowth after prolonged exposure to LNV. Dormant twigs of the current season’s growth were 

collected at peak dormancy, and shipped overnight to NLGRP in Fort Collins, Colorado. 

Sweet cherry (Prunus avium L. cv. ‘Bing’), apricot (Prunus armeniaca L. cv. ‘Tilton’), peach 

[Prunus persica (L.) Batsch cv. ‘Cresthaven’], and European pear (Pyrus communis L. cv. 

‘Bartlett’) dormant twigs were sampled on January 4, 2018 from CSU’s experimental orchard at 

the Western Colorado Research Center-Orchard Mesa (WCRC-OM) in Grand Junction, CO. These 

tree fruit crops were chosen because they represent a broad genetic variability and they can fit for 

preservation protocols using the dormant budwood method. Dormant twigs of cultivated apple 
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(Malus x domestica Borkh. Cv. ‘Gala’) were also sampled from WCRC-OM at the same time. 

Apple is a model fruit tree species that has been successfully tested in prior dormant budwood 

cryopreservation trials [3].  

A second twig sampling of peach and apple was conducted at WCRC-OM on January 15, 2018. 

These served both as a replication of all treatments, as well as an intra-seasonal comparison of 

performance during cryostorage and post cryopreservation treatments. These groups of apple and 

peach are differentiated by sample time, where ST1 refers to those sampled on January 4, 2018, 

and ST2 refers to those sampled on January 15, 2018. 

Three nut crops were also included in this study: little walnut (Juglans microcarpa Berl. accession 

‘DJUG29.4’), English walnut (Juglans regia L. accession ‘DJUG 568.1’), and black walnut 

(Juglans nigra L. cv. ‘Sparrow’). These were sampled on January 15, 2018 from the US 

Department of Agriculture-Agriculture Research Service, National Clonal Germplasm Repository, 

Davis, CO. 

Air temperature data for WCRC-OM were accessed through CoAgMet (coagmet.colostate.edu), 

and air temperature data for NCGR were accessed through UC Davis Atmospheric Science website 

(http://atm.ucdavis.edu/weather/uc-davis-weather-climate-station/) and are shown in Table 3.1. 
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TABLE 3.1. Air temperature data of field sites contributing twig samples. Maximum and 
minimum temperatures (°C) averaged over 10 days preceding twig sampling. National Clonal 
Germplasm Repository in Davis, CA (NCGR) contributed English walnut, black walnut and little 
walnut twigs. All other material came from Western Colorado Research Center-Orchard Mesa, 
Grand Junction, CO (WCRC-OM). 

Location Harvest Date 10 d Ave. Tmax 10 d Ave. Tmin 

WCRC-OM 1/4/2018  7.9 -6.8 

WCRC-OM 1/15/2018  7.1 -3.2 

NCGR 1/15/2018 14.6  6.7 

 

CRYOPROCESSING AND PRE-TREATMENTS  

Upon arrival, twigs were cut into 3.5 cm segments containing one node located close to the 

segment midpoint. After cutting, twig segments of each batch were mixed before being separated 

into treatment groups. All treatment groups consisted of 30 twig segments per species per harvest, 

except little walnut, which was limited to 20 segments per treatment due to material availability. 

Based on standard processing techniques developed for apple [3], all groups were desiccated to 

30% moisture content through air drying at -3 °C. Moisture content was determined 

gravimetrically on a fresh weight basis after drying a subset of 20 twig segments at 100 °C for 4 

days in a laboratory oven. Moisture content of little walnut was determined using a subset of 15 

segments per treatment group.  

After desiccation, each treatment group was frozen at a rate of -1 °C per hour from -5 °C to -30 

°C, and then held at -30 °C for 24 hours using a programmable controlled rate freezer (model ZP-

8, Cincinnati Sub-Zero, Cincinnati, Ohio). After controlled cooling, twig segments were 

transferred to and held in an LNV storage tank (MVE/Chart model XLC1830) for at least two 
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weeks between the temperatures of -140 °C and -180 °C before rewarming and viability tests were 

conducted.  

POST CRYO RECOVERY TREATMENTS 

Twig segments were rewarmed by removing samples from LNV, thawing at -5 °C for 24 hours 

and then submerging them in a 1.5 mM ascorbic acid solution for 15 minutes at 5 °C. Twig 

segments were then divided into two recovery test groups: (1) FBD standard protocol (namely 

STD), (2) FBD with 8-HQC antimicrobial forcing solution (namely HQC).  

Segments undergoing the standard (STD) protocol developed for apple dormant buds [3] were 

rehydrated in sterile peat for 14 days at 3 ± 2 °C, then planted in Oasis Horticube media product 

no. 5240 (Oasis Grower Solutions, Kent, OH) containing approximately 3 L of water per flat. 

Segments undergoing FBD with an antimicrobial forcing solution (HQC) were planted directly 

into Oasis media, with each flat containing 3 L of a forcing solution. The forcing solution, 

originally used to increase the vase life of cut flowers [8,9,11], consists of 200 mg L-1 of 8-

hydroxyquinoline citrate (Alpha Chemistry, Holtzville, NY) and 20 g L-1 of D-sucrose 

(Phytotechnology Laboratories, Shawnee Mission, KS).  

All trays were covered with clear domes and kept in a Percival growth chamber (model number 

166LL) set to 21 °C with a diurnal photoperiod of 18 hours light/6 hours dark. These incubated 

for 6 weeks before viability assessment was conducted.  

VIABILITY EVALUATION  

A progressive dormant bud development classification system was created to quantify 

development of cryopreserved twig segments in STD and HQC FBD and report recovery outcomes 

in this study 6 weeks post thaw. This classification system is illustrated visually in diagram form 
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in Figure 3.1. Cryopreserved twig segments were evaluated by classifying the development of 

dormant buds for each twig segment into any of the following five developmental outcomes: no 

growth, bud cracking, bud swelling, tip greening, or leaf and shoot development (Figure 3.1).  

 

FIGURE 3.1.  Visual diagram of developmental outcomes (Y axis) of dormant winter twig 
segments after liquid nitrogen exposure recovered under forced bud development conditions 
illustrating distinctions used for evaluating development potential after cryopreservation. Five 
developmental stages where recognized in this study; no growth, bud cracking, bud swelling, tip 
green, and leaf and shoot. Developmental stages are shown for apple (cv. ‘Gala’), peach (cv. 
‘Cresthaven’), apricot (cv. ‘Tilton’), Sweet cherry (cv. ‘Bing’), and European pear (cv. ‘Bartlett’). 
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TISSUE CULTURE INDUCTION 

Cultivated apple, peach, pear, apricot, and sweet cherry were targeted for this experiment. At least 

three shoot tips from each fruit species that showed growth in FBD were excised after no further 

growth was expected. Cultures were established after surface sterilizing shoot tips in 0.525% 

sodium hypochlorite for 10 minutes and rinsing 3 times in sterile deionized water. After surface 

sterilization, explants were plated on Linsmaier and Skoog pH Buffered Basal Salts Product: 

LSP03-100LT (Caisson Laboratories Inc, Smithfield, Utah). Explants were cultured under Philips 

Greenpower TLED lights at a temperature of 26 °C±1 and relative humidity of 32.5%±22. Tissue 

cultures were evaluated after 4 weeks and considered successful when shoot tips resumed growth. 

STATISTICAL ANALYSIS 

A classification system of five distinctive developmental outcomes was applied to each twig 

segment individually and used to convert observed recovery outcomes into numeric values (0-4) 

for statistical analysis. No growth of the dormant bud was scored as 0. Bud cracking was scored 

as 1. Bud swelling was scored as 2. Tip green developmental stage was scored as 3. Leaf and shoot 

development were scored as 4. The Mann-Whitney test was used to compare developmental 

outcome differences among post cryogenic methodologies across all species studied. Statistical 

analysis and graph artwork were conducted using GraphPad Prism v8.1.2 for Windows (Graph 

Pad Inc., San Diego, CA, USA). Observed recovery outcome values where converted to percentage 

using fraction of the total calculation for graphical representation. 
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RESULTS AND DISCUSSION 

 

 

 

8-HQC ANTIMICROBIAL FORCING SOLUTION IMPROVES RECOVERY OF 

CRYOSTORED BUDWOOD 

Exposure to LNV, as well as subsequent rewarming and rehydration, is very stressful to plant cells; 

expanding water inside tissues may deform and damage the functionality of membranes during 

recovery, causing cellular leakage and oxidation of phenolic compounds after thawing [15,29]. 

While desiccation and slow freezing may mitigate lethal intracellular freezing, some amount of 

damage is unavoidable. Stressed plant tissues are predisposed to infections and disease 

development [17]. Microbial attacks during recovery of LNV-exposed dormant budwood can 

limits regrowth potential and rot twig segments.  

In FBD using high humidity alone, excessive amounts of fungal growth were observed on 

budwood segments. Cobweb mold and blue/green sporulating mold were observed to colonize the 

top cut surface of the twig segments and engulf the bud and lenticels, with the worst infections 

covering the entire surface of the bark. The presence of these decomposers indicated that the twig 

segments were in decay. All segments regrown under high humidity alone had some amount of 

mold (Figure 3.2A); in contrast, almost none of the twig segments treated with the antimicrobial 

forcing solution were observed to be colonized by molds after 6 weeks of recovery (Figure 3.2B). 
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FIGURE 3.2. ‘Gala’ apple twig segments after LNV exposure under forced bud development: (A) 
grown under high humidity alone (STD), and (B) using an HQC antimicrobial forcing solution. 

Antimicrobial treatment of buds during cryorecovery aids survival by discouraging colonization 

of microbes in the xylem of twig segments [1]. By precluding microbial decomposers from 

colonizing the plant material during this critical period, tissues have time to recover from the stress 

of desiccation and damage to cell walls, as well as the oxidation of phenolic compounds that leak 

out of damaged cells. 

In six out of eight species tested, the signs of regeneration (combined bud cracking, bud swelling, 

tip greening, and leaf/shoot development) were consistently higher under the antimicrobial forcing 

solution, compared to the standard FBD method (Figure 3.3). Two species, English walnut and 
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black walnut, showed no signs of regrowth after LNV exposure under either post-cryopreservation 

recovery condition; for this reason, data from these two species are not presented herein.  

FIGURE 3.3. FBD recovery outcomes of cryoprocessed dormant winter twig segments under 
standard high humidity (STD), or in 8-Hydroxyquinoline citrate and sucrose forcing solution 
(HQC) post cryo recovery strategies. Some crops were tested from two harvests, distinguished by 
ST1(January 4,2018) or ST2 (January 15, 2018).  

Percent viability (tip greening and leaf/shoot development) was compared between the material 

grown under the standard condition versus that grown with the HQC antimicrobial forcing 

solution. A Mann-Whitney test showed significantly different outcomes between the two 

conditions (P= 0.0005), with greater regeneration when the FDB solution was enriched with the 

antimicrobial 8-HQC and sucrose (Table 3.2). 

 

 

 

TABLE 3.2. Mann-Whitney U test (two-tailed) of statistical differences between dormant buds 
recovered using 8-HQC forcing solution and standard (STD) recovery using high humidity alone. 
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 Mann-Whitney U test outcome 

Median value of STD (%) 0 (n=10) 

Median value of HQC (%) 28.3 (n=10) 

Exact P value 0.0005 (***) 

Actual difference 28.3 

Hodges-Lehmann difference 26.7 

***, significant difference at the level of 0.001. 

For pear, little walnut, peach, and apricot, viability was only observed in the presence of the 8-

HQC in the FDB solution (Figure 3.3). The results of this study suggest that material such as little 

walnut, apricot, sweet cherry and peach, which have previously been evaluated as non-viable 

through conventional FBD tests at NLGRP (unpublished data), may have low levels of survival if 

recovered with an antimicrobial forcing solution.  This approach may therefore be used as a tool 

to improve further research into the cryopreservation of woody crops that have historically had 

little to no success under the methodology developed for apple. 

Apple and sweet cherry were the only crops that had viable dormant budwood under standard FBD 

conditions following cryopreservation. In sweet cherry, the antimicrobial forcing solution 

increased viability from 16.7% to 36.7%. In apple, an increase in viability from 6.7% to 33.3% 

was observed for ST1, and 23.3% to 63.3% for ST2. 

The results of the apple trials suggest that antimicrobial forcing solutions could be used to further 

optimize existing protocols. While grafting is still often used for cryoviability testing, the success 

shown in this study suggest that FBD could be used as an efficient and viable alternative. Further 

study is, however, needed to provide a direct recovery rate comparison between grafting and FBD.  
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The higher viability scores for segments recovered in an antimicrobial forcing solution compared 

to those recovered under standard FBD, suggests that some material stored at NLGRP may in fact 

have a higher viability than first reported. As the use of forcing solution in recovery is a post-

recovery treatment, it can thus be applied to dormant twig segments already processed and stored 

in LNV from previous years of processing at the NLGRP.  

While the 8-HQC forcing solution seemed to improve the overall recovery of LNV-exposed 

dormant buds, a major recovery issue was tissue cracking occurring on tissues supporting the bud. 

Bud cracking was most severe in peach where callus tissue production resulted in the complete 

separation of the bud from the stem. This was a major limiting factor in peach cryorecovery, with 

43% of ST1 and 40% of ST2 impacted by bud cracking. All species that showed any signs of 

regrowth also had some segments affected by bud cracking.  

We hypothesize that tissue cracking observed in cryorecovered dormant budwood relates to 

differential drying rates across tissue types during desiccation preconditioning. One study looking 

at the effect of desiccation on cultivated apple cryosurvival found that budwood damage increased 

when moisture content was brought below 40%; they subsequently applied a sucrose-alginate 

stabilization treatment before desiccation, which reduced desiccation damage and increased 

viability [18]. Stabilization treatments can secure uniform desiccation across tissue types and 

potentially lead to the preclusion of this type of damage, and further increase the viability of 

material grown using an 8-HQC forcing solution. 

 

IN VITRO ESTABLISHMENT OF LNV-EXPOSED SHOOTS  
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As field derived buds are prone to contamination in tissue culture, grafting was seen as the best 

option for dormant bud cryorecovery [24]. Based on the research of Yang and Read [33] that 

suggested that new growth produced under 8-HQC and sucrose could be used for in vitro 

establishment, our work expanded this scope to include complete plant recovery of cryoprocessed 

dormant buds. In this study, LNV-exposed buds were recovered under FBD and successfully 

introduced into tissue culture for all five temperate fruit species tested: apple, peach, apricot, pear, 

and sweet cherry (Figure 3.4). Tissue culture establishment considered successful when shoot tips 

resumed growth with at least two to three leaves present after 4 weeks in cultures free of microbes. 

FIGURE 3.4. Shoot tips established in vitro from excised buds of LNV-exposed twig segments of 
(A) ‘Gala’ apple, (B) ‘Bartlett’ pear, and (C) ‘Cresthaven’ peach. 
 

We found that the presence of the antimicrobial solution made surface sterilization possible and 

allowed us to establish tissue cultures from all shoot tips (three replicates) and fruit species used 

in this intermittent and preliminary study. The practical implications of this finding are that the 

FBD method using a forcing solution of 8-HQC and sucrose can be used, not only as a viability 

test, but additionally to induce a complete plant recovery system for cryopreserved dormant winter 

twig segments. It has been reported that forcing solution can also be combined with plant growth 
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regulators to further increase shoot development and proliferation of shoots for culture induction 

[5,14,32]. 

Additional studies focused on in-vitro establishment rates of LNV stored twig segments would be 

useful. Since, the first objective of this study was to observe the effect of FBD conditions on 

recovery of LNV-exposed budwood, in vitro establishment of rescued shoot tips occurred after the 

ideal timing of culture induction. As shoots began to stall and no further growth was expected, 

shoots were surface sterilized and plated onto sterile media to investigate the feasibility of in vitro 

establishment of dormant buds recovered using 8-HQC forcing solution. Future work focusing on 

in vitro cultivation would ideally utilize shoots in their optimal stage of growth for the purpose of 

quantifying tissue culture establishment.  

Overall, we found that culture induction was possible when an 8-HQC forcing solution was 

applied. This technique holds promise for improving the efficiency of dormant budwood 

cryopreservation protocols. Surface sterilization of shoot tips produced in FBD on an as needed 

basis allows recovery work to be performed anytime of the year, as dormant winter twig segments 

are held in LNV until recovery can be accomplished according to workflow needs. The added 

utility of being able to quickly micro propagate and multiply material that was initially stored as 

dormant bud segments may further serve as a tool that germplasm curators can use to manage their 

collections and preserve stored propagules. 
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CONCLUSION 

 

 

 

While dormant budwood cryopreservation is a promising method of preserving temperate clonal 

tree fruit species, more work is needed to tailor the method to new species. There are many 

important factors affecting survival and any improvement in survival outcomes is beneficial. As 

the process of cryostorage is stressful to plant cells, they are extremely vulnerable to attack during 

the recovery stage after LNV exposure. We have found that reducing the microbial pressure during 

this critical stage can significantly increase bud survival for many different temperate tree fruit 

species. Our improved FBD approach, can become an efficient alternative to grafting for viability 

assessment. Furthermore, when cryopreserved budwood is recovered with an antimicrobial forcing 

solution, culture induction becomes possible. By uniting the viability assessment tool with a 

germplasm recovery system, curators and preservation germplasm units may have better options 

tailored to managing their valuable and limited collections.  
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CHAPTER FOUR: ANTIMICROBIAL FORCED BUD 

DEVELOPMENT CAN LEAD TO COMPLETE PLANT RECOVERY 

FROM CRYOPRESERVED POME AND STONE FRUIT DORMANT 

BUDS 

 

 

 

OVERVIEW 

 

 

 

Cryopreservation allows for the secure storage of agriculturally important genetic resources. Tree 

fruit cultivars are highly heterozygous and cannot be stored in seed form requiring the preservation 

of shoots from field or in vitro collections. Dormant bud cryopreservation is a time and labor 

efficient option of cryo-storage compared to in vitro derived shoot tips for temperate deciduous 

species. This method utilizes twigs from field collections harvested during winter dormancy in the 

volume needed for secure preservation to quickly protect vulnerable germplasm against loss 

compared to the lengthy process of establishment, multiplication, meristem excision and 

cryopreservation of in vitro storage methods. Recovery of dormant buds by grafting or tissue 

culture has been the primary methods of reestablishment after liquid nitrogen storage but have 

their own challenges and disadvantages. Grafting is laborious and results are variable, influenced 

by grafter consistency, rootstock suitability and the regrowth environment. Tissue culture recovery 
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allows for greater control of variables which may contribute to regrowth but is more complex. In 

vitro recovery is reliant on specialized media to support the shoot development from diverse 

genotypes of a given genera or species and may not be adequate for all. Viability tests aim to 

address the question of regrowth potential while reducing labor demands associated with full plant 

recovery. Viability tests such as tissue staining, tissue browning assessment, electrolyte leakage 

and bud sprouting have been used to estimate survival but may not relate to actual recovery rates 

for grafting or culture induction. After cryopreservation dormant budwood is in a state of stress 

caused by cellular desiccation and freeze induced damage to cell membranes increasing 

vulnerability to attach by microbes. By modifying bud sprouting with an antimicrobial agent, 8-

hydroxyquinoline citrate, and sucrose, regrowth after cryopreservation has increased for several 

clonal fruit species and cultivars compared to sprouting in high humidity alone. When 

antimicrobial forced bud development is used as an intermediate step in recovery between liquid 

nitrogen storage and in vitro shoot culture, establishment has improved for most genotypes tested. 

This report investigates the utility of antimicrobial forced bud development in several genotypes 

of apple and sour cherry as well as an apricot, a peach and a pear cultivar to assess the usefulness 

of this approach to a wide array of important temperate fruit crops for viability assessment and 

culture establishment after cryopreservation. 
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INTRODUCTION 

 

 

 

Cryopreservation allows for the secure storage of agriculturally important genetic resources and is 

especially useful for storage of clonally propagated crops that cannot be stored in seed form, such 

as tree fruit cultivars or other highly heterozygous crops [3]. Germplasm of clonally propagated 

crops must be stored as dormant buds or shoot tips, either because seed production will not result 

in reproduction of the elite clone or because seed production is not possible. Cryopreservation is 

complimentary to field collection efforts as it provides a duplicate backup to safeguard against loss 

[9]. 

For temperate deciduous trees, dormant bud cryopreservation is a time- and labor-efficient 

approach to germplasm storage. Dormant bud (DB) cryopreservation holds great promise of 

increased processing efficiency, benefitting large-scale preservation goals for temperate woody 

crops. Cryoprocessing dormant bud germplasm is ten times less expensive than in vitro derived 

shoot tip cryopreservation [9]. Budwood can be collected directly from trees during mid-winter 

endodormancy in the volume needed for effective germplasm storage and can be processed and 

stored relatively quickly. Cryopreserving tissue culture (TC) shoots requires a longer process 

including the establishment of sterile in vitro cultures using species-specific media, multiplication 

over several subculturing cycles, meristem excision from shoot cultures, and cryoprocessing. 

To determine if a plant has been successfully cryopreserved, material must be recovered and 

regenerated into a plant. Complete plant recovery may be achieved by grafting the rewarmed bud 

onto suitable rootstock or by establishing an uncontaminated culture that is able to be 
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micropropagated [4]. Grafting is a common recovery method [2,6,15] but is a resource and labor-

intensive process that requires suitable rootstocks, greenhouse space, tools, and a skilled grafter. 

One study successfully surface sterilized and initiated DB into culture before storage in liquid 

nitrogen (LN) [11]; this procedure does, however, mirror TC shoot preservation in many of the 

steps involved. In an effort to reduce the amount of processing prior to storage, some research has 

focused on initiating DB germplasm to TC after LN storage [1,7,8,11–13].  This approach has led 

to the successful recovery of many cryopreserved accessions of apple, pear, mulberry, gooseberry, 

and currant.  

Viability tests aim to address the question of regrowth potential while reducing labor demands 

associated with full plant recovery. Viability tests such as tissue staining, tissue browning 

assessment, electrolyte leakage, and bud sprouting have been used to estimate survival but may 

not relate to actual recovery rates for grafting or culture induction. Antimicrobial forced bud 

development (AFBD) is a new method of sprouting cryopreserved buds that increases post-

preservation regrowth by suppressing microbial growth; it utilizes an antimicrobial forcing 

solution comprised of 0.2g 8-hydroxyquinoline citrate (HQC) and 20g sucrose per liter to support 

healthy bud growth while suppressing microbial colonization after cryogenic storage [16]. Not 

only is AFBD an improved method for estimating DB regrowth potential, it holds further promise 

as an intermediary step to establishing clean TC with greater efficiency. As budwood is sourced 

from field trees, twigs are naturally covered with microbes which may invade and decompose 

cryostressed buds after storage and hinder culture induction efforts. 

Preservation efforts are racing to prevent loss of vulnerable, rare, wild, and diverse species. 

Efficient and reliable methods of storing and recovering germplasm are essential to success. It is 

therefore crucial to research and utilize economical preservation and recovery techniques, such as 
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DB cryopreservation and AFBD, that may allow gene banks to successfully store greater quantities 

of material in less time. This research seeks to determine the utility of AFBD as a reliable indicator 

of cryopreserved DB regrowth potential, as well as its effect on establishing clean TC and therefore 

its ability to create a complete plant recovery system. This study first compares the results of 

AFBD viability assessments to that of TC recovery systems. To determine the effect AFBD has 

on the DB’s ability to establish plantlets, two recovery systems are compared: A) TC induction of 

buds directly after rewarming, and B) TC induction of shoots produced through AFBD. Budwood 

in this study came from 17 genotypes spanning three genera of agriculturally important deciduous 

fruit trees: Malus, Prunus, and Pyrus.  

MATERIALS AND METHODS 

 

 

 

COLLECTION OF BUDWOOD 

Dormant twigs of the previous season’s growth were collected from two orchards during mid-

winter dormancy. Dormant budwood from peach (Prunus persica L. Batsch) cv. ‘Cresthaven’, 

apricot (Prunus armeniaca L.) cv. ‘Tilton’, and pear (Pyrus communis L.) cv. ‘Bartlett’ was 

collected from Colorado State University at Western Colorado Research Center – Orchard Mesa 

(WCRC-OM) in Grand Junction, Colorado on January 6, 2020. Budwood was collected from 

several accession of apple (Malus Mill.) and sour cherry (Prunus cerasus L.) on the week of 

January 20, 2020 from US Department of Agriculture – Agriculture Research Service, Plant 

Genetic Resources Unit (PGRU), located in Geneva, NY. Six and seven unique accessions of apple 

and sour cherry, respectively, representing a diversity of genotypes was selected for this study. All 
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accessions tested are listed in Table 4.1. Budwood material was packaged and shipped overnight 

to the processing facility at US Department of Agriculture – Agriculture Research Service, 

National Laboratory for Genetic Resources Preservation (NLGRP) in Fort Collins, Colorado.  

TABLE 4.1. Accession information, twig collection date, and source information for all 17 
accessions included in this study. 
ID code Accession 

number 
Genus Species Cultivar name Collection 

date 
Source 

A1 PI 107196 Malus domestica Antonovka 1.5 pounds 1/20/2020 PGRU 
A2 PI 588880 Malus domestica Granny Smith 1/20/2020 PGRU 
A3 PI 588943 Malus domestica Liberty 1/20/2020 PGRU 
A4 PI 590185 Malus domestica Jonathan 1/20/2020 PGRU 
A5 PI 589976 Malus coronoria GMAL 2892 1/20/2020 PGRU 
A6 PI 613813 Malus sargentii GMAL 397.l 1/20/2020 PGRU 
P03 PI 657712 Prunus sp. Rosi de Bistrista 1/20/2020 PGRU 
P06 PI 592860 Prunus cerasus Csengodi Csokros 1/20/2020 PGRU 
P07 PI 592862 Prunus cerasus Maliga Emleke 1/20/2020 PGRU 
P09 PI 592878 Prunus cerasus Balaton 1/20/2020 PGRU 
P22 PI 657743 Prunus cerasus Tamaris 1/20/2020 PGRU 
P08 PI 592872 Prunus cerasus Studencheskaya o.p. 

IV-6-15 
1/20/2020 PGRU 

P10 PI 657730 Prunus  sp. Stevns 1/20/2020 PGRU 
P12 PI 657733 Prunus  sp. Early Ludwig 1/20/2020 PGRU 
Apricot PI 290818 Prunus armeniaca Tilton 1/6/2020 WCRC-

OM 
Peach PI 673787 Prunus persica Cresthaven 1/6/2020 WCRC-

OM 
Pear PI 267940 Pyrus communis Bartlett 1/6/2020 WCRC-

OM 
 
PROCESSING AND LN STORAGE 

Upon arrival at NLGRP, twigs were inventoried and placed into a cold storage room set to -4 °C 

until they could be processed. Twigs were cut into 3.5 cm segments containing a bud positioned 

near the midpoint. Each accession was evaluated for initial moisture content (MC) gravimetrically 

on a fresh weight basis. Accession groups were air dried at -4 °C with ~75% relative humidity and 

weighed daily to monitor MC changes. Once segments reached an estimated 28–30% MC, they 

were packaged and sealed in polyolefin tubing, labeled for storage, then slow cooled at a rate of 1 
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°C per hour from -5 °C to -30 °C and held at -30 °C for 24 hours using a programmable controlled-

rate freezer (model ZP-8, Cincinnati Sub-Zero, Cincinnati, Ohio). Due to equipment malfunction, 

three accessions of sour cherry, P08, P10, and P12, were heated to 34 °C just prior to the slow cool 

step. After 24 hours at -30 °C, DB segments were quickly transferred to an LN storage tank 

(MVE/Chart model XLC1830) where they were stored in the vapor phase of LN for at least two 

weeks. 

REWARMING AND RECOVERY 

Budwood segments were removed from LN storage and warmed at 4 °C for 24 hours. Material 

was split into three groups: A) AFBD for evaluation of shoot growth, B) direct TC recovery of the 

buds, and C) forced shoot development through AFBD before TC recovery (AFBD-TC). Each 

group contained 30 twig segments per accession.  

For AFBD, DB segments were planted into Oasis Horticube media product no. 5240 (Oasis 

Grower Solutions, Kent, OH) containing 3 L of forcing solution. Forcing solution consisted of 200 

mg L-1 of HQC and 20 g L-1 of sucrose [16]. Trays containing DB were covered with clear plastic 

humidity domes and placed into a growth chamber set for 21 °C and day length of 18 hours light/6 

hours dark. Segments were monitored daily and forcing solution was refreshed as needed. For the 

AFBD viability assessment, DB segments were regularly evaluated and ranked according to the 

maximum level of growth achieved within six weeks. Growth outcomes were classified into one 

of five outcome groups: no growth, cracking near the bud, bud swelling, bud tip greening, and leaf 

or shoot production. This rating system is described in detail in a previous report of AFBD [16]. 

For direct TC recovery, the outer bud scales were carefully removed with a scalpel to reduce the 

incidence of contamination. After peeling, buds were excised from the twig segment by cutting 

through the bud axis to allow a small piece of basal tissue underneath the bud to remain during 
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surface sterilization. Surface sterilization was accomplished by submersing peeled and excised 

buds in 70% (vol./vol.) isopropanol for 45 seconds before transferring to 0.825% sodium 

hypochlorite solution containing two drops of Tween 20 surfactant (Sigma Aldrich, St. Louis, 

Missouri) for 10 minutes. After surface sterilization, buds were rinsed three times with sterile, 

deionized water inside a laminar flow hood. Buds were then given a fresh cut at the base to remove 

tissue damaged by surface sterilization before plating on sterile species-specific media.  

For AFBD-TC, the same initiation steps were used as the material in the AFBD viability 

assessment. Buds were monitored daily for growth and were excised as soon as leaf and shoot 

development became apparent. These shoots underwent the same surface sterilization, plating 

process, and media type as the material used in direct TC recovery.  

For both TC recovery groups, material was replated onto fresh media after browning appeared due 

to phenolic oxidation, 24 hours after planting. This replating was repeated as necessary every 24 

hours until discoloration from oxidized phenolic compounds was no longer observed. Cultures 

remaining free from microbial contamination were subcultured onto fresh media after four weeks. 

Material was evaluated as either contaminated, clean, or clean and growing eight weeks after TC 

initiation.  

MEDIA 

Apple and pear accessions were cultured on full strength Murashige & Skoog basal medium with 

vitamins supplemented with 30 g sucrose, 0.5 mg 6-benzylaminopurine, 0.1 mg indole-3-butyric 

acid, and 7.5 g agar per liter of media. The pH was adjusted to 5.8 before autoclaving. This media 

formulation was developed at NLGRP. For peach and sour cherry, plant material was cultured on 

media containing full strength Murashige & Skoog basal medium with half-strength 

macronutrients and full-strength micronutrients and supplemented with 30 g sucrose, 0.25 mg 6-
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benzylaminopurine, 0.25 mg kinetin, 0.05 mg gibberellin A3, and 7.5 g of agar per liter of media. 

The pH was adjusted to 6.0 before autoclaving. This media formulation was developed at NLGRP. 

Apricot was cultured on full strength Murashige & Skoog basal medium with vitamins 

supplemented with 30 g sucrose, 0.5 mg 6-benzylaminopurine, 0.01 mg 1-naphthaleneacetic acid, 

0.5 mg gibberellin A3, and 7.5 g of agar per liter of media [10]. 

STATISTICAL ANALYSIS 

Statistical analyses were conducted using GraphPad Prism 8.3. Individual observations of growth 

in AFBD were converted to show percent of total (%). Two-way ANOVA was conducted on 

AFBD data to identify sources of significant variation. Analysis of correlation was preformed 

using Pearson correlation coefficients to investigate the relationship to growth outcomes observed 

in AFBD and TC establishment from AFBD sprouted buds. Contamination rates in culture 

establishment form direct TC and AFBD-TC were analyzed using a paired, two-tailed, T-test. All 

graphs were produced using GraphPad Prism 8.3. 

RESULTS 

 

 

 

SPROUTING IN ANTIMICROBIAL FORCED BUD DEVELOPMENT 

All species tested were capable of sprouting and growing in AFBD after storage in LN (Figure 

4.1). Shoot growth was observed in all six apple accessions tested. Of the apple, A4 had the lowest 

regrowth in AFBD with only 24% of dormant buds forming shoots with leaves, while A2 and A6 

showed the highest regrowth potential at 93% shoot and leaf formation (Figure 4.2). Six of the 

eight sour cherry accessions were able to produce shoots with leaves after LN exposure. The two 
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that did not sprout in AFBD, P08 (P. cerasus cv. ‘Studencheskaya o.p. IV-6-15’) and P10 (P. sp. 

Cv. ‘Stevns’), along with one that did, P12 (P. cerasus cv. ‘Early Ludwig’), were exposed to 34 

°C just prior to slow cooling due to equipment malfunction. The highest regrowth potential 

observed in sour cherry was 90% in both P06 and P22 (Figure 4.2).  

For apricot, 67% of buds were able to produce shoots with leaves (Figure 4.2). As the buds of 

apricot are located close together, each 3.5 cm segment had several buds. On surviving segments, 

several buds developed into shoots, increasing the number of shoots available for culture induction. 

Pear had the highest rate of growth potential observed in this study with 100% of buds forming 

shoots with leaves (Figure 4.2). For peach, 33% of DB formed a shoot with leaves in AFBD (Figure 

4.2).  

Along with new vegetative shoots, several accessions produced flowers in AFBD including apple 

A1, A5, and A6, and cherry P03 and P22 (Figure 4.3). Floral buds are developed on budwood 

during the previous season and are more cold-sensitive than vegetative buds. Flowers come from 

mixed buds in apple and cherry, with shoots coming from lateral meristems below the apical flower 

buds. Not all buds which flowered produced shoots. Flower buds were not used for establishing 

shoot cultures. Whenever present, flowers were removed from shoots before shoot culture 

establishment. The ability to obtain shoots from flower buds was not tested. 
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FIGURE 4.1. Sprouting LN-exposed dormant buds of A) apple, B) sour cherry, C) apricot, D) 
pear, and E) peach buds in antimicrobial forced bud development. 
 

FIGURE 4.2. Growth outcomes LN-exposed dormant buds recovered by antimicrobial forced bud 
development. Final assessment of shoot development was conducted 6 weeks after planting. n=30. 
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FIGURE 4.3. Flower growth in LN-exposed dormant buds under antimicrobial forced bud 
development in three apple and two sour cherry accessions. A) A1, M. domestica cv. ‘Antonovka 
1.5 pounds’, B) A5, M. coronoria ‘GMAL 2892’, C) A6, M. sargentii ‘GMAL 397.1’, D) P03, P. 

sp. cv. ‘Rosi de Bistrista’, and E) P22, P. cerasus cv. ‘Tamaris’. 
 

CULTURE ESTABLISHMENT 

Two culture initiation methods were attempted, direct culture after thaw and culture of sprouted 

shoots produced using AFBD.  Using direct culture after cryostorage, the establishment of sterile 

actively growing shoot cultures was not possible. Although a few buds did begin growing after 

surface sterilization shoot cultures were not able to be established and maintained through direct 

TC (Table 4.2). Many buds began early development, showing bud swelling and tip greening 

development stage before ceasing further growth. Contamination also contributed to a lack of 

establishment of shoot cultures (Figure 4.4). Contamination was higher for buds directly cultured 

compared to AFBD shoots in all species tested except Malus, in which contamination level was 

not significantly different in either method. 
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FIGURE 4.4. Contamination in shoot cultures from LN-exposed dormant buds. Cultures were 
induced from dormant buds that were either cultured directly after thawing (Blue) or cultured after 
sprouting using antimicrobial forced bud development preconditioning (Red).  
 

Compared to the direct TC approach, buds that underwent and AFBD preconditioning stage were 

much more capable of producing clean cultures that could be maintained through several culture 

cycles. Fourteen out of the seventeen accessions tested in this study were capable of producing 

sterile, actively growing plants through the AFBD-TC recovery method (Table 4.2). Sterile 

actively growing plants were distinguished from plants that were contaminated with microbial 

growth or had died and were no longer capable of shoot growth which could be used for 

micropropagation. 
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TABLE 4.2. Percentages of clean cultures and growing cultures established from LN-exposed 
dormant buds. Direct culture of thawed buds compared to culture induction of shoots produced in 
antimicrobial forced bud development. 30 DB segments were recovered for each group, however, 
only buds sprouted in AFBD were initiated into culture in the AFBD-TC method.  

ID code
PI 

number

Total 

number 

of buds

Clean (%)
Growing + 

Clean (%)

Total 

number 

of buds

Clean (%)
Growing + 

Clean (%)

A1 107196 30 73.3 0.0 26 61.5 3.8
A2 588880 30 73.3 0.0 29 100.0 10.3
A3 588943 30 96.7 0.0 30 73.3 6.7
A4 590185 30 83.3 0.0 11 72.7 18.2
A5 589976 30 23.3 0.0 23 17.4 0.0
A6 613813 30 93.3 0.0 29 89.7 82.8
P03 657712 30 70.0 0.0 11 100.0 9.1
P06 592860 30 70.0 0.0 23 82.6 4.3
P07 592862 30 10.0 0.0 24 100.0 54.2
P09 592878 30 46.7 0.0 9 100.0 33.3
P22 657743 30 33.3 0.0 19 100.0 94.7
P08 592872 30 56.7 0.0 - - -
P10 657730 30 20.0 0.0 - - -
P12 657733 30 33.3 0.0 11 90.9 27.3

Apricot 290818 30 100.0 0.0 30 100.0 0.0
Pear 267940 30 100.0 0.0 30 100.0 100.0

Peach 673787 30 90.0 0.0 10 100.0 30.0

AFBD-TCDirect TC

 
 
While the number and maturity of shoots varied by accession, all six apple produced shoots in 

AFBD that could be used for TC (Figure 4.5). Five of the six apple accessions were successfully 

established and maintained in TC (Figure 4.6). The only apple accession not possible to maintain 

was A5 (M. coronoria ‘GMAL 2892’). As a wild species of Malus, A5 may not have been 

adequately supported by the growth medium, resulting in shoot collapse and dieback of 

uncontaminated shoot cultures. Establishment rates in apple ranged from 0% for A5 to 82% for 

A6 (M. sargentii ‘GMAL 397.l’) (Table 4.2). 
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FIGURE 4.5. Shoot development of LN-exposed apple DB under antimicrobial forced bud 
development four weeks after planting. All apple tested developed shoots with leaves. New growth 
from sprouted buds used to establish in vitro cultures. A) A1, M. domestica cv. ‘Antonovka 1.5 
pounds’, B) A2, M. domestica cv. ‘Granny Smith’, C) A3, M. domestica cv. ‘Liberty’, D) A4, M. 

domestica cv. ‘Jonathan’, E) A5, M. coronoria ‘GMAL 2892’, and F) A6, M. sargentii ‘GMAL 
397.1’. 
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FIGURE 4.6. LN-exposed apple buds sprouted through AFBD and induced into tissue culture. All 
apple accessions successfully established uncontaminated and actively growing shoot cultures 
through AFBD-TC. A) A1, M. domestica cv. ‘Antonovka 1.5 pounds’, B) A2, M. domestica cv. 
‘Granny Smith’, C) A3, M. domestica cv. ‘Liberty’, D) A4, M. domestica cv. ‘Jonathan’, E) A5, 
M. coronoria ‘GMAL 2892’, and F) A6, M. sargentii ‘GMAL 397.1’. 
 

Six of the eight sour cherry accessions produced shoots in AFBD that were suitable for TC 

induction (Figure 4.7). The two that did not sprout in AFBD, P08 and P10, may have experienced 

reduced survival due to exposure to 34 °C during cryoprocessing. All six sour cherry accessions 

that produced shoots in AFBD established sterile shoot cultures (Figure 4.8). TC establishment 

rates ranged from 4.4% for P06 (P. cerasus cv. ‘Csengodi Csokros’) to 94.7% for P22 (P. cerasus 

cv. ‘Tamaris’) (Table 4.2).  
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FIGURE 4.7. Shoot development of LN-exposed sour cherry DB under antimicrobial forced bud 
development four weeks after planting. Six accessions developed shoots with leaves. New growth 
from sprouted buds used to establish in vitro cultures. A) P03, Prunus sp. cv. ‘Rosi de Bistrista’, 
B) P06, P. cerasus cv. ‘Csengodi Csokros’, C) P07, P. cerasus cv. ‘Maliga Emleke’, D) P09, P. 

cerasus cv. ‘Balaton’, E) P12, P. sp. cv. ‘Early Ludwig’, and F) P22, P. cerasus cv. ‘Tamaris’. 
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FIGURE 4.8. LN-exposed sour cherry buds sprouted through AFBD and induced into tissue 
culture. All sour cherry accessions that grew in AFBD successfully established uncontaminated 
and actively growing shoot cultures through AFBD-TC. A) P03, Prunus sp. cv. ‘Rosi de Bistrista’, 
B) P06, P. cerasus cv. ‘Csengodi Csokros’, C) P07, P. cerasus cv. ‘Maliga Emleke’, D) P09, P. 

cerasus cv. ‘Balaton’, E) P12, P. sp. cv. ‘Early Ludwig’, and F) P22, P. cerasus cv. ‘Tamaris’. 
All LN-exposed buds of apricot, pear, and peach produced shoots under AFBD (Figure 4.9). In 

apricot (P. armeniaca cv. ‘Tilton’), uncontaminated and actively growing shoot cultures were 

initially established (Figure 4.10) but could not be maintained long-term on the culture medium 

that was used. Dieback occurred during the two four-week culture cycles, resulting in 0% apricot 

after eight weeks (Table 4.2). All segments of pear (Pyrus communis cv. ‘Bartlett’) produced 

shoots under AFBD, and all 30 shoots produced clean and actively growing cultures (Table 4.2, 

Figure 4.10). This was the highest establishment rate seen in this study for all accessions tested. In 

peach (P. persica cv. ‘Cresthaven’), uncontaminated shoot culture establishment was initially high, 

however, shoot growth was slow and dieback was observed in several actively growing explants, 

suggesting a suggesting a suboptimal medium formulation for this cultivar. After two culture 

cycles 30% of peach were established in TC (Table 4.2, Figure 4.4). 
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FIGURE 4.9. Shoot development of LN-exposed A) apricot, Prunus armeniaca cv. ‘Tilton’, B) 
pear, Pyrus communis cv. ‘Bartlett’, and C) peach, Prunus persica cv. ‘Cresthaven’ under 
antimicrobial forced bud development four weeks after planting. All three species developed 
shoots with leaves. New growth from sprouted buds used to establish in vitro cultures. 
 

 

FIGURE 4.10. LN-exposed buds sprouted through AFBD and induced into tissue culture: A) 
apricot, Prunus armeniaca cv. ‘Tilton’, B) pear, Pyrus communis cv. ‘Bartlett’, and C) peach, 
Prunus persica cv. ‘Cresthaven’. Apricot, pear, and peach accessions successfully established 
uncontaminated and actively growing shoot cultures through AFBD-TC. 
 

Establishment of shoot cultures through AFBD-TC recovery was significantly (P < 0.05) 

correlated with the development of shoots with leaves in the AFBD viability assessment (Table 

4.3). Buds that only developed to tip green, bud swell stage, or did not develop were not 

significantly correlated with establishment of in vitro shoot cultures.  

Shoot culture contamination rate was significantly (P < 0.01) less in AFBD-TC compared to direct 

TC for sour cherry and peach. Both apricot and pear were free from contamination in both methods. 
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For apple, there was no significant difference in contamination rate. Contamination rates for both 

recovery treatments are shown in Figure 4.10; rates are reported as a percentage of the total number 

of samples initiated into TC (n=30 for direct TC, variable from 0 to 30 in AFBD-TC).  

TABLE 4.3. Correlation between establishment of shoot cultures and growth outcomes in 
antimicrobial forced bud development. Data from 17 accession of cryopreserved pom and stone 
fruit budwood recovered using antimicrobial forced bud development. For each accession 60 twig 
segments were used for sprouting; 30 to evaluate regrowth potential of shoots at six weeks after 
planting, and 30 for culture induction four weeks after planting. 

AFBD-TC 
Est %
vs.
Leaves

AFBD-TC 
Est %
vs.
Tip Green

AFBD-TC Est 
%
vs.
Bud Swell

AFBD-TC Est 
%
vs.
No Growth

Pearson r
r 0.5374 -0.2289 -0.2288 -0.4446
95% 
confidence 
interval

0.07653 to 
0.8091

-0.6392 to 
0.2828

-0.6391 to 
0.2830

-0.7623 to 
0.04590

R squared 0.2888 0.05241 0.05234 0.1976

P value
P (two-
tailed)

0.0261 0.3768 0.3771 0.0738

P value 
summary

* ns ns ns

Significant? 
(alpha = 
0.05)

Yes No No No

Number of 
XY Pairs

17 17 17 17
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DISCUSSION 

 

 

 

Traditionally, cryopreserved DB are recovered by grafting onto appropriate rootstocks [2,5,17]. 

This is a labor and resource intensive process. Directly inducing dormant buds into culture after 

thawing seems like a good alternative, especially for facilities that already possess tissue culture 

laboratories; however, this study reveals many challenges that precluded successful regeneration 

through this approach. Lower rates of TC establishment have been reported for DB compared to 

in vitro derived shoot tips [18]. Similarly, our study was not successful in establishing shoot 

cultures directly from cryopreserved dormant buds. 

Direct TC initiation of cryopreserved DB results in high contamination rates, even with the 

additional step of removing the outer layer of bud scales. Removal of bud scales was deemed 

necessary for this research, as spaces in between bud scales may protect microbes from 

sterilization. An initial induction trial in pear showed less contamination in buds with outer scales 

removed than buds left intact (Unpublished data).  

The AFBD-TC method did however, yield cultures that were actively growing and free from 

contamination (Table 4.2, Figures 4.6,4.8,4.10). As DB are produced on field trees, they may 

harbor more microbial inoculum than shoots produced inside a climate-controlled growth chamber 

under AFBD. By combining forced bud development with an antimicrobial forcing solution, 

recovering DB can produce new shoots without the high microbial pressure associated with freeze-

induced stress [16]. Our results, particularly in sour cherry, suggest that the added step of AFBD 

may lead to more reliably clean cultures. Bud scale surface anatomy might also contribute to 
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contamination rates and could explain some of the differences in contamination levels observed 

for different species. 

Improvement in culture establishment  using AFBD could be explained in part by the isolation of 

healthy shoot tissue since the xylem of budwood is likely to have severe damage after 

cryopreservation [14]. Shoots must be excised from budwood in AFBD, surface sterilized and 

plated onto fresh media before visual observation of decline in the sprouting buds. The amount of 

shoot development attained before decline was observed to varied by species and cultivar and is 

highlighted in Figures 4.4, 4.6, and 4.8. The correlation between the development of shoots with 

leaves and the ability to establish shoot cultures suggest that there is a reliable relationship between 

viability assessment in AFBD and recovery results in AFBD-TC, making the former a suitable 

indicator of the latter.   

After surface sterilization and plating, explants from apple, sour cherry, and apricot exhibited a 

burst in the production of phenolic compounds from the cut tissue into the media surrounding the 

explant as observed by a yellowish discoloration diffusing from the base of the explant into the 

media. Addressing phenolics by subculturing required more labor and materials to transfer explant 

onto fresh media as needed. Excised, surface sterilized buds were replated every 24 hours until 

discoloration in media was not observed. For the extreme cases as with A1 (M. domestica cv. 

‘Antonovka 1.5 pounds’) and A3 (M. domestica cv. ‘Liberty’) explants were transferred four times 

before the media would remain clear from discoloration 24 hours later. In the future, the addition 

of an antioxidant, such as ascorbic acid, may improve culture establishment in accessions releasing 

phenolics in vitro [4]. Phenolics production was more persistent in buds directly initiated in culture 

as compared to the green shoot tips initiated from AFBD. It is reasonable to assume that phenolics 

released from explants into media may have been responsible for the inhibition and stalling 
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observed directly culture DB from cryostorage. Stalling was a major issue observed in all buds 

directly initiated into culture after storage but was also observed in a few shoot cultures from 

AFBD-TC as well. Stalling of explants may also be caused by deficiency of growth media 

formulations in supporting the development of shoots from diverse genotypes, some of which may 

respond poorly to any given formulation.  

Both recovery methods in this study may have been affected by the use of suboptimal media for 

the individual genotypes. The use of optimized shoot culture media will enhance the success of 

establishment as was observed in pear (Table 4.2). The reliance on a single media formulation for 

the development and growth of a species with diverse genotypes presents a major disadvantage to 

in vitro recovery systems. In this study, several accessions developed well under AFBD but 

struggled to grow in TC, particularly A1 (M. domestica cv. ‘Antonovka 1.5 pounds’), A4 (M. 

domestica cv. ‘Jonathan’), A5 (M. coronoria GMAL 2892), P03 (Prunus sp. cv. ‘Rosi de 

Bistrista’), apricot (Prunus armeniaca cv. ‘Tilton’), and peach (Prunus persica cv. ‘Cresthaven’). 

In the future, variations on the media may be needed to cater to needs of specific plants. 

An advantage of the AFBD-TC system is flexibility. When the intent is to quickly estimate 

viability of cryopreserved DB germplasm in order determine whether the material is successfully 

preserved, AFBD can provide insight into growth potential at reduced labor expense compared to 

grafting or TC. AFBD regrowth after LN exposure can even be conducted without a tissue culture 

facility. When reestablishment of an accession is required, AFBD provides a preconditioning step 

to increase successful TC establishment. The results of this study confirm a previous report of 

culture establishment after cryopreservation using AFBD [16]. 

An added benefit of AFBD-TC is that it allows for efforts to be focused on material showing signs 

of life, unlike initiating DB directly. In this study, P08 and P10 were two accessions that did not 
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grow through either recovery method. This material was likely irreparably damaged prior to slow 

cooling. Through direct TC, media was prepared and 30 buds from each accession were peeled, 

sterilized, plated, and replated. Through AFBD-TC, 30 segments from each accession were placed 

in Oasis Horticube media and forcing solution, then left to grow in a monitored growth chamber. 

Because the material did not sprout, no further labor was needed to report a survival of zero.  

The use of AFBD and AFBD-TC allows for efficient viability and recovery of cryopreserved 

dormant buds. Shoot recovery from forced buds can have a higher efficiency than one shoot per 

bud in compound bud structures, as was observed in some sour cherry, or may have several buds 

developing shoots from a single twig segment, as was observed with apricot. By effectively 

recovering all surviving material, more germplasm may be conserved in storage for later use in 

cultivation, breeding, or research. 

 

 

 

 

 

 

 

 

 

 

 

 



 

113 
 

CONCLUSION 

 

 

 

Preservation of fruit tree germplasm can be efficiently accomplished using dormant bud 

cryopreservation. This approach can be used to preserve important cultivars at a large scale and 

easily provide a security back-up to safeguard against loss in field collections. By using AFBD as 

a preconditioning treatment before recovery as in vitro culture, uncontaminated shoot cultures can 

be established for a variety of genotypes of woody deciduous fruit trees. The AFBD-TC approach 

holds promise as a recovery method for apple, sour cherry, apricot, pear, and peach dormant buds, 

allowing for crucial varieties of these crops to be cryoprocessed faster and evaluated more easily 

in laboratory settings. While more study is needed to investigate the utility of AFBD and AFBD-

TC as a means of recovering other taxa, the reduced rates of contamination and increased rates of 

establishment shown in this study indicate that antimicrobial forced bud development is a suitable 

path to complete plant recovery for cryopreserved dormant buds.  
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