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ABSTRACT OF DISSERTATION

PERFORMANCE AND LIFETIME SIMULATION OF ION THRUSTER OPTICS

A simulation code, ffx, was developed to study various aspects of ion thruster optics. Information
concerning sheaths, impingement limits, perveance, electric potential, charge exchange, and sputtering is
covered. Electron backstreaming and pit and groove wear are discussed in detail as two grid failure
mechanisms.

The code was used to study the effects of several parameters on grid performance and lifetime,
including grid spacing, aperture diameter, and grid thickness. An evolutionary algorithm was used with the
ffx code to design- grid- sets, utilizing net accelerating voltage and current density as primary -input
parameters.

Validation of the ffx code was accomplished through comparison to other ion optics codes and to
experimental data obtained from both gridlet and full thruster testing. Gridlet test comparisons included
simulations of finite aperture grid sets. The NSTAR thruster was studied in detail with regard to lifetime.
The methods used for accurate and efficient optics simulation are discussed, including the multigrid method

for solving for electric potential.
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1 Introduction

This work expands upon the body of knowledge gained by previous research in the area of ion
thruster optics. One of the great utilities of ion optics simulation is that it aids in visualizing the physics
behind ion beams. Another advantage of simulation is convenience. After validating a code, it can be used
to analyze hundreds of grid designs relatively inexpensively. Simulation and laboratory research are
complimentary. Simulation predictions are used to improve physical models, and experimental data is used
in turn to improve computational models.

The ffx code is one of many ion optics simulation codes. Each code has advantages and
disadvantages, with tradeoffs often being made among speed, accuracy, complexity, and flexibility. One of
the advantages of the ffx code is its ability to simulate three dimensional grid erosion. Full lifetime erosion
simulations can be performed over the course of a day, resulting in predictions of grid failure due to the
onset of electron backstreaming or pit and groove wear for example. These simulations are accurate given a
correct set of input conditions, which unfortunately is not usually a simple matter to obtain.

First, ion optics are described with regard to the way in which ions are accelerated to produce
thrust. poics related to this are electric potential, plasma sheaths, and perveance. Then, the life limiting
process of grid erosion is described in terms of neutral propellant flow, charge exchange, and sputtering.

' In the second section, a closer examination is made to detérmine how several design parameters
affect grid performance and lifetime. Individual parameters, such as grid spacing or grid thickness, can be
optimized to increase grid lifetime.

The third section describes new ways in which simulation is being used to study ion optics.
Included in this are simulations of grids with finite numbers of apertures, which can be used to study the
performance of edge apertures. Another study investigates the performance of, either intentionally or
unintentionally, misaligned apertures.

In the fourth section, evolutionary algorithms are described as one way to improve grid design.
These algorithms apply the ideas of evolution to evolve a set of, initially random, solutions over many
generations to arrive at a better set of solutions under a collection of imposed constraints.

Next, the ffx code is validated against data from other ion optics codes in current use and against
data from both small and large scale grid tests. This includes comparisons to the NSTAR and NEXT
thrusters, with an interesting analysis of the erosion resulting over the course of the NSTAR Extended Life
Test.

Finally, the methods of simulation used in the ffx code are explained. Particular attention is given
to the multigrid method as an efficient way to solve the Poisson equation, a nonlinear elliptical partial

differential equation, to obtain mesh potential values.
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2 Nomenclature

Symbol Units Description
o degrees Divergence angle
amu kg/molecule Atomic mass unit: 1 amu =1.6605-107% kg
molecule
A m’ Grid active area
d,,d, m Accel and screen grid hole diameter
e C Electron charge: ¢ =1.602-107" C
& F/m Permittivity of free space: £, = 8.854 - 10" F /m
fp - Perveance fraction
ft - Thrust factor
N Thrust
Isp s Specific impulse
J Alm® Current denéity
J.o J, A Accel and screen grid current
Jy, Jg A Beamlet and beam current
k J/K Boltzmann constant: k =1.38065-107 J/K
l. m Aperture center-to-center spacing
l, m Effective ion acceleration length
[ 2 m Grid spacing
m, kg Electron mass: m, =9.109-107" kg
m,,m, kg Ton and neutral molecule mass
m kg/s Propellant flow rate
n, n,n, m> Electron, ion, and neutral number density
P A/ V2 Perveance
o, 90, % Accel and screen grid open area fraction
¢ % Transparency to ions
¢ \Y Potential
5
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- Efficiency

q C Ion charge

P P C/m? Electron and ion space charge

R - R value

t,, 1, m Accel and screen grid thickness
T,.T, KoreV Electron and jon temperature

v m/s Velocity

V..V, \' Accel and screen grid voltage
Vi V; \Y% Net and total accelerating voltage
Vs addtepoint \'% Centerline saddle point potential
Y atoms/ion Sputter yield
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3 lon Thrusters

Ton thrusters are a subclass of propulsion devices in the area of electric propulsion. Ion thrusters,
and other electric propulsion devices in general, operate with better efficiency than chemical propulsion
devices. Electric propulsion devices differ from chemical propulsion devices in that the energy used to

accelerate the propellant does not come from the propellant itself, but from a separate power source.
3.1 lon Thruster Operation

Ion thrusters are described as electrostatic thrusters because they use electric fields, rather than
magnetic fields or pressure differences, to accelerate the propellant to produce thrust. The overall synopsis
of what an ion thruster does is to ionize a propellant to form a plasma, and then accelerate ions from the
plasma to high velocities using the ion optics in order to produce thrust.

A general schematic of an ion thruster is shown in Figure 3.1. In this figure, a propellant, typically
xenon which is in a gaseous form, is fed into the ion thruster discharge chamber both directly (the main
propellant flow) and through a device commonly used in ion thrusters called the hollow cathode. The
hollow cathode is used to provide a stream of electrons into the discharge chamber. These electrons are
considered monoenergetic, and are drawn into the discharge chamber as a result of the potential difference
between the cathode and the anode, which is typically 25 to 30 Volts. These electrons have enough energy
to strike the neutral xenon gas atoms inside the chamber and knock an electron away from the atom, which
forms an ion and two electrons. Once this process is started, the collection of neutral gas atoms, electrons,
and ions is called the discharge chamber plasma.

Magnet rings placed at various locations around the discharge chamber are used to provide
magnetic fields that help to confine the electrons within the chamber. This is done to increase the collision
frequency of the atoms and electrons in order to produce ions with less input power.

The ion thruster grids, which are also called the ion optics, are attached to one side of the ion
thruster and are used to accelerate ions from the discharge chamber to produce thrust. Two grids are shown
in Figure 3.1, but three or more grids can be used depending on the application of the ion source. The grid
closest to the discharge chamber plasma is called the screen grid, and the next grid is called the accelerator
grid, commonly referred to as the accel grid for short.

Thousands of holes are cut into each grid so that ions can pass through them. Normally, the
discharge chamber plasma is at a potential close to, or a few volts above, the potential of the anode. The
screen grid is normally electrically connected to the potential of the cathode. Therefore, the screen grid is at
a potential that is 25 to 30 volts lower than the discharge chamber plasma. Because of this setup, ions from
the discharge chamber are slightly attracted toward the screen grid, and electrons are repelled away from

the screen grid.
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Outside the spacecraft downstream of the ion thruster there is a plasma called the beam plasma
that is close to or a few volts positive of the potential of the spacecraft. The accel grid is held at a potential
that is negative relative to the entire spacecraft. The accel grid is biased negative to both attract ions out of
the discharge chamber and to repel electrons away from the thruster that are in the downstream beam
plasma.

The final thing to notice from Figure 3.1 is a device called a neutralizer. The neutralizer is used to
expel electrons from the spacecraft at exactly the same rate that ions are expelled. This is done to maintain
a steady spacecraft charge relative to the beam plasma. The neutralizer can be a second hollow cathode that

expels electrons into the beam plasma.

O Neutral Propellant Molecule

@ Ion Ion Optics
N —
© Eectron Screen Grid
Magnet Rings Accel Grid

Anod
Main ‘ 4 - A
Propellant Flow 1 r_] ”””””

’/““'wu,.,_w_m_wm_'w,,.,
N X

.- Discharge Chamber '\
Plasma

Cathode
Propellant Flow

Cathode
(Electron Source)

Neutralizer )
(Electron Source)
Figure 3.1 Schematic of an ion thruster.
3.2 lon Optics
The purpose of the ion optics, or grids, is to accelerate ions from the discharge chamber to produce
thrust. An example grid set has been created in order to investigate many different aspects of ion optics.

This grid set is first used to provide an introduction to ion optics. Later, the creation of the example grid set

will be explained in greater detail.
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3.2.1 Discharge Chamber and Beam Plasmas

Within the discharge chamber, a plasma is created independently of the ion optics system. A
plasma, simply put, is a collection of ions, electrons, and neutral particles. The discharge chamber plasma is
characterized in part by a plasma potential, ¢,, an electron temperature, T,, an ion temperature, T;, and a
neutral gas temperature, T,. Downstream of the ion optics, a beam plasma exists which has a different
potential, ¢4, and temperatures, Te 4, T; 4, and T, 4, than the upstream discharge chamber plasma.

In typical ion thruster plasmas, most of the ions are singly-charged, meaning the molecules or
atoms have one less electron than they do protons, while a small fraction of the ions are doubly-charged,
meaning that the atoms have two fewer electrons than protons. The ratio of doubly-to-singly charged ions
might on average be 10 % or so, but this ratio can vary greatly inside the discharge chamber. The plasma
could also have smaller fractions of even higher multiply-charged ions, but these fractions are normally so
small that they are neglected. Also, the discharge chamber plasma might typically be 10 % ionized,
meaning 10 % of the propellant atoms are ionized while the rest of the atoms exist as un-ionized neutral
atoms.

Within the plasma, there is approximate charge neutrality, meaning the charge density of ions, p;,
is equal to the charge density of electrons, p., as shown in Eq. 3.1. The charge density of an individual
species is its number density multiplied by its charge state. Therefore, the charge neutrality approximation
can also be written as Eq. 3.2 assuming only singly-charged and doubly-charged ions are present along
with electrons. The discharge chamber and beam plasmas can be characterized by bulk (average) ion and

electron densities.
P, =p, Eq. 3.1

en" +2en’" =en, Eq.3.2

3.22 Grids

For most of the ion thrusters discussed here, two grids are used in the ion optics. The grid furthest
upstream, which sits next to the discharge chamber plasma, is called the screen grid. The next grid
downstream of the screen grid is called the accelerator grid, or simply the accel grid for short. Sometimes, a
third grid is also used in the optics which is called the decelerator grid, or decel grid for short. Figure 3.2

shows an example a) two-grid system and b) three-grid system.
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---- Accel Grid ===

Decel Grid

Two-Grid System Three-Grid System

Figure 3.2 Example two-grid and three-grid systems.

A schematic of the two-grid system is shown in Figure 3.3 that shows some of the grid geometry
labeling conventions. Aligned holes are made in the screen and accel grids to allow ions to pass through
them. The screen grid hole diameter is given the symbol d;, and the screen grid thickness t;. Similarly, the
accel grid hole diameter is d, and the accel grid thickness is t,. Finally, the spacing between the grids is /,.

_______ . S
e . ] ~
/ Discharge Chamber
\ Plasma /

Screen Grid
Accel Grid | < )
’ \
II ‘I
{ Beam Plasma !
AY 7
. | I
v

Figure 3.3 Schematic of a two-grid system showing definitions.

The holes made in the grids can in theory be any shape and can be arranged in any pattern over the
grid face. Traditionally, circular holes are used in what is referred to as a hexagonal aperture layout. Figure
3.4 shows a small section of a full grid set viewed from the upstream side. The screen grid holes are
typically larger than the accel grid holes, thus the inner parts of the accel grid holes, in blue, can be seen
through the screen grid holes.

The ffx code analyzes a three dimensional, rectangular, volume. For the standard hexagonal
aperture layout, the ffx code rectangular analysis volume, shown outlined in black in Figure 3.4,
encompasses two quarter-sized sections of two separate apertures. Symmetry conditions are applied on all

four sides of the analysis volume. Hexagons, shown outlined in green, can be drawn around each aperture.

10
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These hexagons represent the smallest repeating unit on the grid face, hence the aptly named hexagonal

aperture layout.

ffx code ~ Hexagonal repeating
analysis region .- : aperture unit '

Figure 3.4 Typical ion thruster circular hole shape and hexagonal aperture layout pattern.

The spacing between the apertures in the grids is called the hole center-to-center distance, /... The
hole center-to-center distance is usually only slightly larger than the screen grid hole diameter, d,, as shown

in Figure 3.5.

Figure 3.5 Definition of the hole center-to-center distance, /..

3.2.3 Voltages

The discharge chamber plasma potential, ¢,, is typically close to, or a few volts above, the
potential of the anode within the discharge chamber. Additionally, the screen grid is normally electrically
connected to the cathode, thus the cathode and the screen grid are at the same applied potential, V. The
difference between the anode and cathode potential is called the discharge voltage, V4, given in Eq. 3.3.

Common discharge voltages range from 25 to 30 V.

¢u ~ Vanode

I/s = Vcathode Eq 33
Vrl = Vanode - Vcathode
~¢, -V,

The net accelerating voltage, Vy, is the difference between the discharge chamber and beam

plasma potentials, as given in Eq. 3.4. It is the net voltage that the ions will “fall” through when being

11
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accelerated in going from the discharge plasma to the beam plasma. Generally, net voltages might range
from 500 to 10,000 V in ion thrusters.

Vy=0,-9, Eq.3.4
The beam plasma potential, ¢q4, is normally close to zero volts. As a result, the net accelerating
voltage is commonly taken as being equal to the potential of the discharge chamber plasma. With this

assumption, the net accelerating voltage is also the same as the screen grid voltage plus the discharge

voltage, as shown in Eq. 3.5.

¢, =0V
Vy =9, Eq. 3.5
Vy =V, 1V,

The beam plasma potential has been seen to be as high as 20 V in ion thruster measurements. For
a discharge chamber plasma potential of 1000 V and a beam plasma potential of 10 V, the error in the net
accelerating voltage is only 1 % where the actual net accelerating voltage is 990 V and the approximate net
accelerating voltage is taken to be 1000 V. ‘

The applied accel grid voltage is almost always negative. More specifically, it is negative relative
to the beam plasma potential. This is done to prevent electron backstreaming, which is discussed in greater
detail later on. Essentially, the accel grid voltage is heldbnegative to prevent electrons within the beam
plasma from traveling upstream into the discharge chamber.

The total accelerating voltage, Vr, is defined as the difference of the net accelerating voltage, Vy,
and the applied accel grid voltage, V,, as in Eq. 3.6. The total accelerating voltage is approximately equal to
the maximum potential change that an ion will experience in passing through the grids. In other words,
each ion begins its acceleration through the grids at a potential close to the upstream plasma potential,
which is also equal to the net accelerating voltage, Vn. Near the accel grid hole, the ion reaches its greatest
velocity where the potential is lowest, where this potential is normally less than the beam plasma potential

and greater than the accel grid voltage.

V, =V, -V, =V, +

Vll

Eq.3.6

The ratio of the net accelerating voltage to the total accelerating voltage is called the R value,
shown in Eq. 3.7. In general, one typically wants to operate with a high R value, near unity, where the accel
grid voltage magnitude is low relative to the net accelerating voltage. Typical ion thruster R values range
from 0.85 to 0.90.

Vo _ Wy
Vi VitV

Eq. 3.7

Unless otherwise specified, the grid geometry and operating conditions for all examples in this

chapter will be those given in Figure 3.6.
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Figure 3.6 Two-grid system with example voltages.

3.24 Currents
After the discharge chamber plasma is created and the screen and accel grid potentials are applied,
a beam of ions begins passing through each aperture pair. The beam of ions passing through a single
aperture pair is referred to as an ion beamlet, whereas the beam of ions coming from an entire ion source is
referred to collectively as the ion beam. An example ion beamlet is shown in Figure 3.7a. In this figure, the
shape of the ion beamlet can be seen from the plot of the ion density, in ions/m’, within the simulation

There are several useful currents that can be measured. The rate of ions arriving at an aperture is

region.
dependent on the discharge chamber plasma density. The ions that arrive at an aperture can either a) strike
the upstream surface of the screen grid, b) pass through the screen grid hole and strike the accel grid, or ¢)

pass through both the screen and accel grid holes and go into the beam plasma.
The current of ions that passes through both the screen and accel grid holes is called the beamlet
current, J,. The current of ions that strike the screen grid is the screen grid current, J;, and the current of
ions that strike the accel grid is the accel grid current, J,. Figure 3.7b shows a picture of an ion beamlet with

these three currents labeled. In this case, J, is zero as there are no ions impinging upon the accel grid.

13
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Figure 3.7 An example of an ion beamlet. J, = 0.139 mA.

3.2.5 Sheath and Neutralization Surfaces

Because the screen and accel grids are held at potentials different than both the discharge chamber
and beam plasmas, two plasma sheaths form that isolate the plasmas from the grids.

One of these sheaths forms upstream of the screen grid, and is simply called the sheath. Upstream
of this sheath, all ions within the plasma are at a potential very close to the assigned bulk plasma potential,
¢,. Within the discharge chamber plasma, ions and electrons have equal charge densities, meaning that
there are roughly equal numbers of ions and electrons. Electric fields upstream of the sheath can be
considered to be small relative to the electric fields that exist downstream of the sheath closer to the grids.

Downstream of the sheath, strong electric fields exist due to the potential differences between the
discharge chamber plasma and the screen and accel grids. Because the screen grid is negative relative to the
discharge chamber plasma, ions that arrive at the sheath are attracted toward the screen grid while electrons
are repelled back into the discharge chamber plasma. The electron density drops off rapidly downstream of
the sheath.

Downstream of the grids, a second sheath exists which is called the neutralization surface. This
sheath works in a similar way to the sheath upstream of the grids. Downstream of the neutralization
surface, ions and electrons are considered to be of equal charge density and at the same potential, ¢q.
Upstream of the neutralization surface, the potential becomes lower when moving closer to the accel grid.
As a result, electrons are repelled back downstream into the beam plasma while ions are attracted toward

the accel grid.
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The region downstream of the sheath and upstream of the neutralization surface is called the intra-
grid region. The entire ion acceleration process takes place within this region where the electric fields are

strong. Figure 3.8 shows the sheath and neutralization surfaces for an example ion beamlet.

___——— Sheath

Screen Grid

Accel Grid

Neutralization Surface

Figure 3.8 Sheath and neutralization surfaces for an example ion beamlet. J, = 0.139 mA.

Weak electric fields can exist upstream of the sheath, and downstream of the neutralization
surface. There is a region immediately upstream of the sheath called the pre-sheath region. Within an
idealized plasma, ion and electron velocities are distributed equally in all directions. In the pre-sheath
region, weak electric fields tend to make the ion velocities more or less perpendicular to the sheath. The
number of ions per unit area arriving at any location on the sheath surface is approximately the same.

Ions moving through the pre-sheath region acquire a certain velocity called the Bohm velocity
[Brown)]. Eq. 3.8 gives the Bohm velocity where fgq, is a non-dimensional adjustment factor sometimes
taken to be unity, q is the electric charge state of the ion, T, cv is the electron temperature of the bulk
discharge chamber plasma in electron volts, and my; is the mass of the propellant atom.

vBahm = fBohm Eq 3.8

The electron temperature of the bulk discharge chamber plasma can be expressed in Kelvin instead
of eV by using the relation given in Eq. 3.9, where e is the elementary charge value and k is Boltzmann

constant which relates temperature to energy.
T, =1, ,,— Eq.3.9

An important thing to remember is that the total energy of an ion is conserved as it moves. The

ion’s total energy is composed of potential and kinetic energy, as given in Eq. 3.10.

E Total — E Potential + E Kinetic

1 Eq.3.10
= qi¢+_2—mivi2
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Within a plasma, the mean speed of the ions is given by Eq. 3.11. For xenon ions at an ion
temperature of 500 K, the mean ion speed is 284 m/s, which corresponds to a kinetic atom energy of 0.055
eV. For a discharge chamber bulk electron temperature of 5 €V, the Bohm velocity for a singly charged
xenon atom is 1917 m/s, which corresponds to a kinetic atom energy of 2.5 eV, which is about 46 times

larger than the kinetic energy within the bulk plasma.

8KT,
ViMean = : Eq 3.11
o,

The potential at the sheath can be calculated by using the conservation of ion energy equation
applied between the discharge chamber plasma and the sheath, as shown in Eq. 3.12. Because the kinetic
energy of the ion at the sheath is usually much greater than its energy within the plasma, the speed of the
ion within the plasma can be neglected. Inserting the expression for the Bohm velocity into this equation
leads to Eq. 3.13.

1 2 1 2
qi¢u +—2-mivi Mean — qi¢Sheath + _imivBohm Eq. 3.12

T
¢u = ¢Sheath +_§e_ Eq. 3.13

The current density of ions arriving at the sheath, jgc., can be calculated using Eq. 3.14, where n;
sneath 1S the number density of ions at the sheath, vpoyy, is the Bohm velocity (the speed of the ions at the
sheath), and e is the elementary charge. The barometric equation, Eq. 3.15, relates the electron density at
any potential to the electron density in the bulk plasma farther upstream [Boerner]. The number density of
ions at the sheath, n; sheam, iS calculated using Eq. 3.16, which is derived from the barometric equation,

where n; i is the ion number density within the discharge chamber plasma. The ion and electron densities

are considered equal within the bulk plasma and at the sheath, for instance n;g,.. =R, gonn and

B g = e i -

Jsheatn = " SheathV Bohm € Eq.3.14
n, =N, gu €Xp u"— Eq.3.15
Te u
¢s11 ath ¢
R, shean = e pux €XP _eat:___u
o Eq.3.16

1
1 shean = T Buik exp(—— E) = 0.607n, g

For a given plasma temperature and density, there is a certain distance over which charged

particles within a plasma can interact. For a certain charged particle, any other charged particles within that
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distance feel the effect of the particle, while all the particles outside of that distance do not know the
particle is there. This distance is called the Debye length, Ap, named after Peter Debye.

In ion thruster plasmas, the electrons are usually at a much greater temperature than the ions, and
thus they have much greater mobility. For such plasmas, the Debye length is given in Eq. 3.17, where g is
the permittivity of free space, k is Boltzmann’s constant, T, is the electron temperature within the plasma, e

is the charge of an electron, and n, is the number density of electrons within the plasma.

_ EGKT,

Ap =——* Eq.3.17
en,

The Debye length is the distance that electrons can shield out external electric fields. Thus, the
distance between a plasma sheath and a surface held at a different potential than the plasma is roughly
equal to the Debye length. In the case of the discharge chamber plasma and the screen grid for example, the
Debye length is the distance over which electrons in the plasma can feel the effect of the screen grid.
Electrons that go closer to the screen grid than the Debye length feel the effect of the screen grid and are
repelled back into the plasma. At distances greater than the Debye length away from the screen grid, ions

and electrons within the plasma do not feel the effect of the screen grid.
3.2.6 Impingement Limits

The ideal way to operate an aperture is to choose the upstream discharge chamber plasma density
and grid voltages such that there is no direct impingement of ions onto the accel grid. Ions that originate
from within the discharge chamber may have thousands of electron volts of energy when they reach the
accel grid. If these ions strike the accel grid directly, erosion of the accel grid can take place rapidly.

It is often desirable to determine an appropriate beamlet current range for a given set of grid
voltages. Increasing the discharge chamber plasma density naturally forces more current to be pushed
toward the grids. With more ions passing through an aperture, the positive ion charge within the beamlet
increases. This causes the ion beamlets to expand in diameter as a result of the ions repelling one another.
Increasing the upstream ion density further eventually reaches the point where ions directly strike the accel
grid. This is called the perveance limit, and it is often specified in terms of a beamlet current, J, porveance: At
the perveance limit, ions that enter the edge of the screen grid hole are accelerated along the outer edge of
the beamlet where they impinge upon the accel grid.

On the other hand, decreasing the discharge chamber plasma density too far can also cause direct
accel grid impingement. In this case, the electric ficlds at low beamlet currents can set up such that ions
entering the edge of the screen grid hole can crossover the beamlet centerline and strike the accel grid on
the opposite side of the hole from which they started. This is called the crossover limit, and it is also often
specified as a beamlet current, Jy, crossover-

It is best to operate all individual aperture pairs on the grid surface between the crossover and

perveance limits where there is no direct impingement of high-energy ions onto the accel grid. Figure 3.9
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shows five beamlets operating at beamlet currents from 0.035 to 0.558 mA. At the 0.035 mA beamlet
current, ions entering the edge of the screen grid hole crossover the beamlet centerline and impinge upon
the accel grid. At the 0.558 mA beamlet current, ions entering the edge of the screen grid hole are

accelerated nearly axially downstream where they impinge upon the accel grid.

Crossover Limit Perveance Limit

l 4.0-10V
lon Density
(ions/m?)
0.0

0.035 0.139 0.279 0.418 0.558
Beamlet Current [J,] (mA)

Figure 3.9 Beamlets operating at, and between, the crossover and perveance limits.

Figure 3.10 shows the trajectories of ions as they are released from the sheath as a function of
beamlet current. Here, the trajectories of ions that crossover and strike the accel grid at the lowest beamlet
current can be seen. Also, at the highest beamlet current, one can see the trajectories of the edge ions as

they follow the beamlet surface axially and strike the accel grid.

Crossover Limit Perveance Limit

0.279 0.418
Beamlet Current [J,] (mA)

Figure 3.10 Trajectories of ions released from the sheath.
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It is also interesting to view the sheath and neutralization surfaces as a function of beamlet current,
as shown in Figure 3.11. At low beamlet currents, the sheath and neutralization surfaces are far away from
the screen and accel grids. As the beamlet current increases, and the plasma density increases both
upstream and downstream of the grids, the sheath and neutralization surfaces move closer to the grids. This
is because the Debye length decreases as the electron density increases. As a result, the electrons shield the
potential differences between the plasmas and the grids over shorter distances.

Another way to think about why the sheath and neutralization surfaces move closer to the grids as
beamlet current increases is to think about the individual ion and electron interactions. An ion, for example,
within a plasma is unlikely to interact with a grid unless the electric field between the ion and the grid is
comparable to the electric field between the ion and the surrounding charged particles within the plasma.
With more charged particles at greater plasma densities, the ions and electrons in the plasma have to move

closer to the grid in order for the effect of the grid to be significant.

Crossover Limit Perveance Limit
> l
o o o b
s W
g
0.035 0.139 0.279 0.418 0.558
Beamlet Current [J,] (mA)

Figure 3.11 Sheath and neutralization surfaces.

The amount of impingement current to the accel grid, J,, can be plotted as a function of the
beamlet current, J,. A slightly more useful thing to do is to plot the ratio of the impingement current to the
beamlet current, J,/J,, versus the beamlet current. This is called an impingement limit curve because it
allows the crossover and perveance limits to be found easily.

The impingement limit curve corresponding to the ion beamlets shown in Figure 3.9 is given in
Figure 3.12. Experimentally, the crossover and perveance limits are sometimes defined as the points where
the impingement ratio rises above some chosen value. In this case, if the limits are chosen as the points
where the impingement ratio rises above 1 % for example, the crossover limit is about 0.054 mA and the

perveance limit is about 0.508 mA.
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Figure 3.12 Impingement limit curvevshowing the crossover and perveance limits.

3.2.7 Grid Transparency To lons

Ideally, all ions that arrive at an aperture from the discharge chamber would be accelerated
through the grids to produce thrust. In reality, a small fraction of the ions that arrive at an aperture are
accelerated into the screen grid, which is the current J;. Recall that the screen grid is at a potential less than
the discharge chamber plasma, thus it attracts ions. An ion that strikes the screen grid picks up an electron
and returns to the discharge chamber as a neutral molecule.

The grid transparency to ions, ¢, is defined in Eq. 3.18. It can be thought of as the current of ions
that make it through the grids (J) divided by the total current of ions that arrive at the grids (J, + J, + J,). It
is also commonly called the screen grid transparency to ions because in normal operation, the accel grid
current, J,, due to ions from the discharge chamber is zero. In places, J, may not be included in the
definition. Additionally, the grid transparency to ions may or may not be expressed as a percentage through
the factor of 100.

Jy

=——-100 Eq.3.18
J +J, +J, 1

¢

The actual grid transparency to ions calculated with Eq. 3.18 is often very close to the physical
open area fraction of the screen grid, ¢. The physical screen grid transparency for the hexagonal aperture
layout is equal to the circular hole area divided by the area of the (imagined) hexagon that surrounds each
aperture. This calculation is given in Eq. 3.19. Common screen grid open area fractions range from 65 to 70

%.
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Figure 3.13 shows the actual grid transparency to ions, as calculated using Eq. 3.18, as a function

r d’
= 2\/51——2' Eq. 3.19

¢S

of beamlet current. As is typical, the transparency to ions is greater near the crossover limit than it is near
the perveance limit. This is mainly a result of the shape of the sheath changing at different beamlet
currents. As was seen in Figure 3.11, the sheath is located farther away from the screen grid at lower
beamlet currents than it is at greater beamlet currents. At the lower beamlet currents, the electric fields are
such that more ions that enter the sheath have trajectories that take them through the grids rather than
striking the screen grid directly.

This effect is also easily seen in Figure 3.10. At the lowest beamlet current, many of the ions that
start out directly upstream of the screen grid turn into the beamlet before they strike the screen grid. When
the sheath is located upstream away from the screen grid, the pull of the accel grid on the ions is greater,
causing more of the edge ions to be attracted toward the accel grid rather than the screen grid. At the
greatest beamlet current however, the ions that start out near the screen grid see only the effect of the

screen grid and have no chance to enter the beamlet.

100 1
90
80
70

60

50 k- Screen grid open area
: fraction, ¢s = 67 %

40 r
30
20 r
10 +

O ; 1 ] L 1 1 E ) 3
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
BEAMLET CURRENT [J,] (MA)

C.L. P.L.

GRID TRANSPARENCY TO IONS [] (%)

Figure 3.13 Grid transparency to ions, ¢.

The actual grid transparency to tons in this case, which is typical, is generally slightly greater than
or equal to the physical open area fraction of the screen grid. Below the crossover limit and above the
perveance limit, both the accel grid current, J,, and screen grid current, J;, increase relative to the beamlet

current, which causes the transparency, ¢, to decrease.
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3.2.8 Perveance Fraction

One measure of a beamlet is called the perveance fraction, f;,. It is a measure of the actual beamlet
current being extracted to the maximum amount of beamlet current that could be extracted if conditions
were ideal. The idea of the perveance fraction comes from the Child-Langmuir law, which gives the
maximum current density of ions that can pass between two surfaces of different potential. Perveance
fraction is defined in Eq. 3.20, where j is the current density of ions (which can be calculated several ways),
Puax is the maximum perveance which is a constant for a given propellant and given in Eq. 3.21, [, is the

effective ion acceleration length defined in Eq. 3.22, and Vr is the total accelerating voltage.

11 o
fp = ]7);;‘_/;3/_2 {Dzmenszonless} Eq. 3.20
4e, |2e A
PM = —;— —nTI {‘—/3/-2—} Eq. 321
: FE
1, = (lg +1, )2 +_;1_ {m} Eq.3.22

The perveance law was originally developed to apply between two parallel, perfectly transparent,
infinite surfaces separated by a certain distance. In this situation, the maximum theoretical amount of
current density that can be obtained is found by using a perveance fraction of unity. In practice, a current
density less than or equal to this amount can be obtained. For xenon, Py, is equal to 4.77-10° A/V*2,

When the perveance fraction equation is applied to the ion optics, some assumptions have to be
made. The effective acceleration length is thought of as being the distance from the sheath, which is at a
potential more or less equal to the net accelerating voltage, to the upstream centerline point of the accel
grid, which is at potential less negative than the accel grid itself due to the effects of ion space charge and
the proximity of the positive screen grid. The sheath is typically curved upstream with the sheath being
close to the screen grid at the hole edge, and as a result the effective acceleration length is more or less
constant at all points on the sheath as shown in Figure 3.14.

Sheath

’’’’’

Screen Grid <
\'2 Lﬁk__J d, L_Fl

Accel Grid
vV, d

A

Figure 3.14 Definition of the effective acceleration length, /..
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There are several ways to define the current density in the perveance equation. One way is to
define current density as the beamlet current divided by the area of a single aperture, Aaperure. Most
commonly, a hexagonal aperture layout is used where the area of an aperture is defined as Aye, in Eq. 3.23.
Using this area, the maximum value of the perveance fraction, f,, is unity. A different, more common
definition is to use the circular area of the screen grid hole, as defined in Eq. 3.24. Using this definition
essentially assumes that the ions that pass through an aperture all come from an area equal to the circular
aperture area. However, if the sheath is curved upstream for example, more current can enter the sheath
area and pass through the aperture than is assumed in using the circular hole area. In that case, the
perveance fraction can actually turn out to be more than unity. Possibly the best definition would be to use

the actual sheath area from which ions are extracted, given in Eq. 3.25.

3
A, = 3/;—1“2 Eq. 3.23
T
Agirte = stz Eq. 324
ASheath = AAperture¢ . Eq. 3.25

Regardless of the current density definition, there is often a maximum beamlet current that can be
reached before the onset of direct ion impingement onto the accel grid, which is called the perveance limit.
This point is commonly reached at perveance fractions of 0.6 to 0.9. As a result, in normal thruster
operation, all beamlet currents on the grid face must be less than or equal to this value. The peak beamlet
current will likely occur on the centerline of the thruster where the ion production is greatest (typically
when using a hollow cathode device o produce the primary electrons for instance).

The greatest utility of the perveance fraction equation is that it allows grid sets of different size to
be compared directly through data reduction. Many results in this work are presented in terms of perveance
fraction rather than current density or beamlet current, for example, as the results can be more readily
compared to other grid sets of different size operating at different voltages and currents.

The impingement limit curve from Figure 3.12 can be put in terms of perveance fraction as well as
beamlet current, the result of which is shown in Figure 3.15. Here, the current density has been defined as
the beamlet current divided by the circular screen grid hole area, given in Eq. 3.26. Unless specifically

stated, this will always be the way current density is defined when calculating the perveance fraction.

Eq. 3.26
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Figure 3.15 Impingement limit curve in terms of perveance fraction as well as beamlet current.

According to Figure 3.15, the crossover limit is at a beamlet current of 0.054 mA, which is equal
to a perveance fraction of 0.078. Also, the perveance limit occurs at a beamlet current of 0.508 mA or a
perveance fraction of 0.729.

When doubly charged ions are significant, an average ion charge, € defined in Eq. 3.27, can be
used in place of € in the perveance equation. As the double to sin‘gle current ratio goes to infinity, the

beamlet current at the perveance limit can be expected to increase by the square root of two.

1+J”

_ J,"
€ :e————J—: Eq.3.27
1410

2

J,"
3.2.9 Propellant Flow

The discharge chamber plasma is a collection of ions, electrons, and neutral, un-ionized,
propellant molecules. Ideally, all of the propellant that enters the discharge chamber would be ionized and
accelerated through the ion optics to produce thrust. However, un-ionized neutrals can simply drift through
the open holes in the grids. The ratio of the number of particles that are accelerated as ions to the number of
particles that are lost as neutrals is called the propellant utilization efficiency, 1,, which is dimensionless.

The propellant utilization efficiency is approximately equal to the beamlet current divided by the

propellant flow rate expressed in something called Amps equivalent, as shown in Eq. 3.28. Expressing the
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flow rate as an equivalent amount of current is the idea that if every propellant molecule were ionized,

m, ¢q. Would be the current of jons coming out of the grids. But since every molecule is not ionized, only a

fraction (n,) of this maximum amount of current is actually extracted as ions.

J Jy
= e 7 Eq. 3.28
. £ My q. 3.
kg
m.

i

The above expression for the propellant utilization efficiency does not take into account the
number of particles that are doubly-charged instead of only singly-charged. The expression in Eq. 3.29,
which is developed later, takes this into account using the double to single current ratio, J, /J,". The
beamlet current is comprised of the current of ions that exits as singly-charged ions added to the current
that exits as doubly-charged ions. The propellant utilization efficiency is really a number ratio, rather than a

charge ratio, of the charged to uncharged particles exiting the grids.

J,=J, +J,"

_1_Jb++
2J°7 J
n, = =t Eq. 3.29
1+ Jb - mA eq.
b

Figure 3.16 shows an example cross sectional view of the neutral number density of xenon atoms
through the grids for a propellant utilization efficiency of 90 %. This particular figure shows the neutral
density variation calculated with an analytical model. In the analytical model, the neutral density at the exit
of the accel grid is calculated such that it gives the desired propellant utilization efficiency. The neutral
density increases going upstream through each grid, and is constant between the grids and upstream of the
screen grid. The neutral density decline downstream of the grids has been set through comparison to

experimental current measurements. This model is described in greater detail in a separate section.

I 3000101
233101
1.65+10'8
M, =90 %
orsegr  Jn=0.139mA
30001017

Neutral Density
(neutrals/m?)

Figure 3.16 Neutral density variation through the grids.
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Figure 3.17 shows a plot of the neutral density variation through the centerline of the beamlet. In

this figure, the regions where the neutral density is constant, and where it is variable, can easily be seen.

3.0 r Constant neutral density upstream
. // and between grids
€ 25
90 | Linear variation through
T 00 ' screen and accel grids
N . L '
£ L /
[}

E 15 L - | "Minimum® neutral density chosen
@ b for agreement with experimental
m i L current measurments

! t
210 B
o [
|:—) 1o
o 05
T []

Screen Accel
0‘0 I —1L ] L 1 L J
0 2 4 6 8 10 12 14
AXIAL DISTANCE [z] (mm)

Figure 3.17 Axial neutral density variation.

3.2.10 Charge Exchange

A phenomenon called charge exchange, or charge transfer, takes place between the ions in the
beamlet and the neutral atoms flowing through, and downstream, of the grids. The charge exchange process
is illustrated in Figure 3.18a. When a fast moving ion in the beamlet passes very close to a relatively slower
moving neutral, an electron from the neutral can transfer to the ion. This exchange of charge results in a
fast moving neutral, which used to be the ion, and a slow moving ion, which used to be the neutral.

Charge exchange reactions are considered long distance interactions, meaning that no momentum
is transferred between the ion and neutral particles. At the instant when charge exchange ions are created,
they have the initial energy of the neutral atom which is small, often less than 1 eV. Because they are slow
moving, they are accelerated essentially from rest by the local electric fields.

Figure 3.18b shows some example charge exchange ion trajectories. Many of the charge exchange
ions that are created near the screen grid and far downstream of the grids, two of which are shown in blue
in Figure 3.18b, are simply accelerated downstream away from the grids. These charge exchange ions are
partially beneficial in that they do produce some thrust, although not as much as if no charge exchange
reaction had occurred.

Charge exchange ions created in other parts of the beamlet can be accelerated into the screen and

accel grids. These ions are undesirable because they cause erosion. The charge exchange ions that strike the
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screen grid, an example of which is shown in light blue, usually have very little energy, less than 25 to 30
damage.

eV depending on what the plasma potential is relative to the screen grid potential, and do not cause much

The charge exchange ion trajectories shown in red, orange, and yellow are cause for concern.

These charge exchange ions can have gained several hundred electron volts of kinetic energy by the time

they reach the accel grid from the point at which they were created. Charge exchange ions that are created
downstream of the grids are generally accelerated toward the downstream side of the accel grid, shown in
red. Charge exchange ions created near the accel grid hole can be accelerated into the inner part of the hole,

referred to as the hole barrel, as shown by the orange trajectory. Finally, charge exchange ions created

upstream near the screen grid at the outer surface of the beamlet can be accelerated into the upstream face
of the accel grid, as shown by the yellow trajectory.

Fast Moving Ion
Slow Moving @
Neutral Atom

A
L)
1

w vy O
O‘\

Screen Grid /
Electron ‘\‘
Transfer (N’\\ O -
O® Accel Grid
)
\“
o ' O
\
Slow Moving Ion

Fast Moving
Neutral Atom
a) Charge exchange ion process.

b) Example charge exchange ion trajectories
Figure 3.18 Charge exchange a) ion creation and b) example trajectories.

Figure 3.19 shows example ion beamlets with different regions of the beamlets colored according

to the final termination surface where charge exchange ions end up going once they are created. The

coloring scheme is the same as was used in Figure 3.18b. The charge exchange ions created in the blue

regions of the beamlet end up traveling out the downstream surface of the simulation. The ions created in

the light blue regions strike the screen grid. The charge exchange ions that are created in the yellow,
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orange, and red regions end up striking the upstream, barrel, and downstream surfaces of the accel grid,
respectively. In the green regions to the sides of the beamlet, no charge exchange ions are created because
no beam ions are present to charge exchange. Charge exchange does take place in the green region
upstream of the sheath, but these ions can be considered to be part of the group of ions coming from the

discharge chamber as they have nearly identical trajectories.

Crossover Limit Perveance Limit

0.035 0.139 0.279 0.418 0.558
Beamlet Current [J,] (mA)

0.05 0.20 0.40 0.60 0.80

Perveance Fraction [f] (-)

Charge Exchange Ion Termination Surface
B Green— No Charge Exchange Ion Production
B Light Blue - Screen Grid
I Bluc - Downstream
Yellow — Upstream Side Of Accel Grid
B Orange — Barrel Of Accel Grid
Il Red - Downstream Side Of Accel Grid

Figure 3.19 Ion beamlets colored according to the final termination surfaces of the charge exchange

ions created in each region.

A simple equation is used to calculate the rate of charge exchange ion production, dn,/dt (in m™s"
", at any point within the beamlet. The rate of charge exchange ion production at any point, given in Eq.
3.30, depends on the ion density, n; (m™), the neutral density, n, (m), the speed of the ions as they pass by
the neutrals, v; (m/s), and the charge exchange cross section, o(v;) (m’), which is a function again of the ion
speed relative to the neutral speed. The velocity used in this equation is the simply the ion velocity at the
particular location because in almost all cases, the slow moving neutrals can be considered to be essentially

stationary compared to the fast moving ions.
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dan

cx

=nnv,0(v,) Eq. 3.30

The charge exchange reaction cross section, o(v;), is different for each propellant type. There are
also different types of charge exchange reactions. Symmetric charge exchange cross sections are often
described by a chemistry type reaction equation given in Eq. 3.31. In this equation, A is the propellant
species, Xe for instance, and q is a positive integer describing the charge state of the ion. In this case, only
singly-charged (q = 1) and doubly-charged (q = 2) cross sections are relevant. The “symmetric” qualifier
implies that the ion after the reaction has the same charge as the opposite ion before the reaction, or in other

words q is the same for the ion on both sides of the reaction.
A" (fast)+ Althermal) — A fast)+ A" (near — thermal) Eq. 3.31

There can also be asymmetric charge exchange processes that might have to be accounted for. An
example of a single electron asymmetric charge exchange reaction for xenon is given in Eq. 3.32. Here, it
can be seen that two singly-charged ions are created from the reaction between a doubly-charged ion and a

neutral xenon atom.
Xe™ (fast)+ Xe(thermal) — Xe" (fast)+ Xe' (near — thermal) Eq.3.32

Figure 3.20 shows three charge exchange ion cross sections presented as a function of ion kinetic
energy instead of ion velocity. For these data at least, it can be seen that the asymmetric cross section is
several times smaller than the two symmetric cross sections. Combined with the fact that the doubly-
charged ion component is normally small compared to the singly-charged ion component in the beamlet,
the asymmetric charge exchange reaction can be neglected. The rates of singly-charged and doubly-charged

charge exchange ion production are given in Eq. 3.33 and Eq. 3.34, respectively.

Singly-charged symmetric cross dn *
. _=p'nyv ot (vf) Eq.3.33
section. dt
Doubly-charged symmetric cross dn **
. ncx - ni++nnvi++o_++ (vi++) Eq. 3.34
section. dt
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Figure 3.20 Charge exchange cross sections for xenon.

The two symmetric charge exchange cross sections for xemon shown in Figure 3.20 were
calculated from equations reported by Miller, given in Eq. 3.35. These are probably the most commonly
used cross sections in the ion thruster community. Sakabe and Izawa have reported many symmetric, single
electron, charge exchange cross sections, the most relevant of which to ion thrusters are presented in Figure
3.21. Also shown in Figure 3.21 is the cross section for xenon given by Miller. Other commonly used cross
sections are those reported by Rapp and Francis.

o,.(E,)=(87.3£09)-(13.6+0.6)log(E,,)

Eq.3.35
o, (Ey)=(45.7+1.9)-(8.9%1.2)log(E,, )
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Figure 3.21 Symmetric single electron charge exchange cross sections for various propellants.

Figure 3.22 shows charge exchange production rates for several beamlet currents. Here, the
production rates have been put in terms of milliamps per cubic centimeter, mA/cm’, by multiplying the
number production rate, dn./dt, by the charge of an ion. Note that although there is charge exchange ion
production upstream of the sheath in some cases, these charge exchange ions are not tracked through the
beamlet as they have nearly identical trajectories to the beam ions which also originate upstream of the

sheath.
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Figure 3.22 Charge exchange ion production rates.

There are several competing effects in the charge exchange ion production rate equation. Charge
exchange ion production increases for higher ion densities, which is a function of the beamlet shape, and
higher neutral densities, which is greatest furthest upstream. The production rate also increases for higher
ion velocities, greatest near the accel grid, and high reaction cross sections, greatest at low ion velocities
near the screen grid.

With typical propellant utilization efficiencies near 90 %, the number of charge exchange ions
created in the beamlet is usually very small compared to the number of ions passing through the beamlet
that originate from within the discharge chamber. To a good approximation, the space charge contribution
from charge exchange ions can almost always be neglected relative to the space charge contribution from
the larger collection of beam ions.

Charge exchange ions contribute to the screen (J,), accel (J,), and beamlet (J,) currents in the same
way ions from the discharge chamber do. Any contribution to the screen, accel, and beamlet currents due to
ions from the discharge chamber, which begin upstream of the sheath, will be referred to as “direct” ion
current. Similarly, the contribution to these currents from charge exchange ions will be referred to
appropriately as “charge exchange” ion current.

In the impingement limit curve of Figure 3.15, it can be seen that the accel grid current, J,, is non-
zero between beamlet currents, Jy,, from about 0.1 to 0.5 mA even though the direct current to the accel grid
due to ions coming from the sheath is zero as seen in Figure 3.10. This “baseline” accel grid current is due

to charge exchange ions striking the grid that were created within the beamlet.
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Experimentally, a typical baseline impingement to beamlet current ratio, J,/J,, might be about 0.3
%. The non-zero pressures inside vacuum tanks increase the neutral density .in the region of the ion
beamlets, which in turn leads to greater charge exchange ion production and increased accel grid

impingement current.
3.2.11 Potential

The electric fields created near the grids, due to the positive and negative biasing of the screen and
accel grids, are much larger than any other magnetic or pressure forces that might serve to act on the ions
when they are accelerated. This is the reason ion thrusters are referred to as electrostatic thrusters, where
static means that the electric fields are constant with time.

The trajectories of ions moving through the beamlet are dictated by electric fields. These electric
fields are calculated from a potential function, ¢. Potential is a scalar function of position, ¢ = ¢(x,y,z), and
is measured in volts. The potential in the open space of the beamlet is affected by the potentials of the
upstream and downstream plasmas and the applied potentials of the screen and accel grids.

The potential is also affected by the ion and electron densities at each location within the beamlet.
The effect that ions and electrons have on the potential is called space charge. The potential increases in the
presence of ions and decreases in the presence of electrons.

» The equation that relates potential, ¢, to ion and electron space charge is called Poisson’s equation.
Poisson’s equation is a second-order differential equation that comes from Maxwell’s first law which
applies to electrostatics.

Maxwell’s first law relates the electric field at a point with the density of charges at that point, and
is given in Eq. 3.36. Here, E is the electric field at the point of interest, p is the combined ion and electron
space charge at that point, and & is the permittivity of free space. The del operator, V , is basically a partial
derivative in all directions. The electric field, E, can in turn be defined in terms of the potential function, ¢,
given in Eq. 3.37. Combining these two equations to eliminate the electric field resuits in Poisson’s

equation, given in Eq. 3.38.

v.E=L
o
Maxwell’s First Law Eq. 3.36
| F C?
£, =8.854-10 —_= 5
m Nm
Electric Field E=-V¢ Eq. 3.37
Poisson’s Equation V2¢ = "‘-8'2 Eq. 3.38
0
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Poisson’s equation as it is written in Eq. 3.38 is general to any coordinate system. If a Cartesian

coordinate system is used, the del and del squared operators (V and Vz) become those given in Eq. 3.39.
Furthermore, the space charge term p in this case is the summation of the singly-charged and doubly-
charged ion space charges, p;* and p;**, and the electron space charge, p.. The electric field equation and

Poisson’s equation expand to Eq. 3.40 and Eq. 3.41 respectively.

J - n ~
V=—i+ i Jj+ ik
ox dy 0z
NN Eq. 3.39
Vi=V-V=——+—+—
ox* dy* 9oz
Electric Field - o ~ ~
ectric Fie B d0¢ 8¢J._a_¢k Eq. 3.40
(Cartesian Coordinates) ox ox ox
Poisson’s Equation 82? " azf 82? _ o +p T +p, Eq. 341
(Cartesian Coordinates) ox ay az &

Note that the electric field equation results in an electric field vector, while Poisson’s equation is a
scalar relationship. For example, the electric field in the x-direction at a certain location, E = —a¢/ ox,

only depends on the change of potential in the x-direction at that focation. Also note that the electric field,
potential, and space charge terms are all functions of position, i.e., ¢ = §(x,y,z), pi" = pi*(x,y,2), etc.

Figure 3.23a shows a three-dimensional view of surfaces of constant potential within an example
beamlet. The sheath and neutralization surfaces are two examples of surfaces of constant potential. The
surfaces in this figure are spaced every 250 V. A somewhat more useful depiction of the potential is
obtained by viewing two-dimensional cross sections of the potential in the x-z or y-z plane. An example

cross section is shown in Figure 3.23b, where the cut has been taken through the centerline of a beamlet.

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



AXIAL LOCATION [2] (mm)
AXIAL LOCATION [z] (mm)

ial (V
[y] (mm) o gy PO D) [x] (mm)

b) Slice through the center

a) Surfaces of constant potential of the beamlet

Figure 3.23 Surfaces of constant potential within an example ion beamlet.

Electric fields measure the rate of change of potential over distance. As a result, the distance
between evenly spaced potential contours indicates the electric field strength at any location. The electric
fields are strongest where the potential contours are closest together, roughly in the region between the

grids.

3.2.12 Electron Backstreaming

The accel grid is biased negative relative to the downstream beam plasma potential in order to
prevent electrons within the beam plasma from traveling upstream, or backstreaming, into the discharge
chamber.

An easy way to see why electrons from the beam plasma would want to travel upstream is to view
the potential cross section through the centerline of a beamlet three-dimensionally, as shown in Figure 3.24.
Electrons in the beam plasma downstream of the accel grid are roughly at a zero volt potential, which is the
beam plasma potential in this case. Electrons are attracted to higher potentials, hence they would travel
readily up the hill leading toward the screen grid and discharge chamber plasma if they could. However, the
negative bias on the accel grid creates a negative drop in the potential near the accel grid and provides a
barrier to backstreaming electrons. In normal thruster operation, the accel grid always has to be kept at a

voltage sufficiently negative, relative to the beam plasma potential, to prevent electron backstreaming.
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The most likely path for electrons to backstream is usually on the centerline of the beamlet. This is
because a) the centerline is the line furthest removed from the accel grid and b) the ion density (and space
charge) is usually highest on the centerline. These two effects tend to make the potential along the

centerline the most positive relative to any other path between the beam and discharge chamber plasmas.
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-
h
0
o
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Potential (V)

Figure 3.24 The most likely path for electron backstreaming,

The most negative path through the grids is the line that runs between three apertures (in a
hexagonal aperture layout). This line is furthest removed from the three surrounding beamlets and the
effects of the positive beam ions. The potential along the beamlet centerline and the potential along the line

between three apertures are shown in Figure 3.25.
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Figure 3.25 Potential along the beamlet centerline and the line that runs between three apertures.

In this case, the minimum potential along the centerline, called the saddle point potential,
V addiePoints 18 =276 V. The beam plasma potential, ¢4, is 0 V. The Maxwellian distribution of electrons in the
beam plasma is characterized by a temperature, T, 4, that is normally a few electron volts or less. For an
electron to backstream, it would need to have ¢¢-Vsuuqiepoins €lectron volts, or 276 eV in this example, of
energy. For a significant number of electrons to backstream then, the saddle point potential along the
centerline needs to be within a few volts of the beam plasma potential.

The saddle point potential, Vsugqgicpoin, 1 affected by many variables including the accel grid
voltage (V,), beamlet current (J,) (or perveance fraction [f,]), grid spacing (/,), and accel grid hole diameter
(d,) among others.

Figure 3.26 shows the variation in the saddle point potential as a function of perveance fraction, f,
for two accel grid voltages, which is the same as a linear variation in the beamlet current. The saddle point
potential becomes more positive as perveance fraction increases in general because there is more positive
ion space charge within the beamlet. The focusing of the ion beamlet also affects the saddle point potential.
Past a certain perveance fraction, the ion beamlet starts to become wider near the accel grid and the ion
space charge spreads out, possibly decreasing the potential on the centerline even though the beamlet
current is increasing. As a result, the least negative point on the saddle point curve often occurs at some
intermediate perveance fraction. In Figure 3.26, the saddle point potential is least negative at a perveance

fraction near 0.4.
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Figure 3.26 Effect of the applied accel grid voltage on the saddle point potential.

The applied accel grid voltage, V,, tends to have a linear effect on the centerline saddle point

‘ potential, V,agepomr- Figure 3.27 shows the relationship between the accel grid voltage and the saddle point

potential for perveance fractions of 0.2, 0.4, and 0.6.
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Figure 3.27 Relationship between the applied accel grid voltage and the centerline saddle point

potential.
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The accel grid voltage required to prevent electron backstreaming, V, geq., is the accel grid voltage
that makes the saddle point potential equal to, or a few volts less than, the beam plasma potential, ¢4, where
electron backstreaming would just start to take place. Using the relationships between the saddle point
potential and the accel grid voltage such as those developed in Figure 3.27, the accel grid voltage required
to prevent electron backstreaming can be developed as shown in Eq. 3.42.

Here, S is the slope and I is the intercept of the linear curve fit equation at each beamlet current,

and Vsp packstreaming 1S the saddle point potential at which electron backstreaming just starts to begin.

Vsaaaiepoint =2V, +1

Va Req. = Va (VSaddlcPoim = VSP.Backstreaming )

=V, (VSaddlePoint =g, )

V _—
Using the equation directly: V. Req, = SP_Backstreaming
' S
dVSP VSP B VSP‘Backstreaming
If the slope, S, and the saddle v S= v Eq.3.42
. . . a a aReq.
point potential at a single accel
grid voltage are known: 1% -V — VSP - VSP_Backstreaming
aReq. =~ "a ) S :

Figure 3.28 shows the accel grid voltage required to prevent electron backstreaming, V, geq., as a
function of perveance fraction. At a perveance fraction of 0.3, the accel grid needs to be —141 V or more
negative to prevent electron backstreaming. Also shown in this figure is the definition of the voltage margin
against electron backstreaming, Vi, The margin against electron backstreaming is the amount that the
accel grid voltage could be reduced from some set value to the point where electron backstreaming begins.
For an accel grid voltage of —400 V for example, the accel grid voltage could be made more positive by 259

V before electron backstreaming begins at a perveance fraction of 0.3.
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Figure 3.28 Accel grid voltage required to prevent electron backstreaming.

The margin against electron backstreaming, Viagin» Which should be a positive value during
normal operation, is shown as a function of perveance‘ fraction in Figure 3.29. In terms of individual
beamlets, the margin against backstreaming is a function of the perveance fraction. When operating a full

grid set however, the first aperture to start backstreaming determines the margin against electron

backstreaming.
BEAMLET CURRENT [Jg] (mA)
0.0 0.1 0.2 0.3 0.4 0.5 0.6
400 ' T T T T 1: T
ég 350 | |
58 300 | V, = -400 V
0 2 S
= 250 |
52
2% 200 |
<
SE 150
zt 100 V,=-200V
Z o |
20 o 4 |
0 : :
So S cL PL.
0 N L 1 t N I I}
0.0 0.2 0.4 0.6 0.8 1.0

PERVEANCE FRACTION [f,] (-)

Figure 3.29 Margin against electron backstreaming.
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The operating accel grid voltage is often set according to the desired margin against electron
backstreaming. Once the voltage at which electron backstreaming begins is determined, V, geq, the accel

grid voltage might be set to a value that is more negative by 50 V for example.
3.2.13 Divergence Angle and Thrust Factor

There are several ways to quantify how well an ion beam is focused. One of the most common is
the divergence angle, o, which is the half-angle that describes the change of the beam radius as a function
of axial position.

Figure 3.30 shows the ion density at three axial locations within an example beamlet, one taken at

the accel grid exit and the other two farther downstream at a spacing of about 0.9 mm.

Only Screen
Grid Shown

! 4.0+10"

Ion Density
(ions/m?)

0.0

Figure 3.30 Cross sections of the ion density within a beamlet (J, = 0.139 mA, f, = 0.2).

In an ion beam, or in an individual beamlet, there is a small fraction of ions that exit the grids at
high angles which do not represent the true beam expansion rate. To take this into account, a cutoff point is
set, often 95 %, where the edge of the beam is said to be at any axial location. The definition of the beam
diameter could be the diameter that encompasses 95 % of the ions, or it could be the diameter where the ion
density drops to 95 % of the centerline value for example.

Figure 3.31 shows the current density variation along lines passing through the centerline of the
beamlet at four planes downstream of the accel grid. The beamlet diameter on a given plane was found by
integrating the profile and determining the radius that encompassed 95 % of the ions on that plane.

The divergence angle can be found from the beamlet diameters. The electric fields that affect the
ion trajectories become weaker the farther downstream the ions travel. As a result, it is best to use the
measurements farther downstream to calculate the divergence angle. Using the beamlet diameters at the 0.9

and 2.7 mm locations downstream of the accel grid, the divergence angle, «, is about 16.9 degrees.
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Figure 3.31 Ion density along lines passing through the centerline of the beamlet (J, = 0.139 mA, f, =
0.2).

Downstream of the neutralization surface; the electric fields are relatively small compared to the
momentum gained by the ions after they have been accelerated through the grids. As a result, the exit
angles of the individual ions are constant on any plane downstream of the neutralization surface. Each ion
can be placed into a histogram according to its exit angle. The 95 % divergence angle can be defined as the
angle in the histogram for which 95 % of the ion current exits at angles less than or equal to that angle.
Figure 3.32 shows the 95 % divergence angle, o, defined in this way as a function of perveance fraction.

Another way to measure the beam divergence is through the thrust factor, ft. The thrust factor
indicates how well the beam is aligned axially to the intended direction of thrust. The thrust factor can be
found for a beamlet by knowing the exit angle of every ion. A summation is performed over all ions that
compares the total ion axial velocity, v,, with the total ion velocity magnitude, |v|, as given in Eq. 3.43. If
the velocity magnitude of every ion is the same, which it should be if all of the ions go through the same

potential difference, the thrust factor can be written as Eq. 3.44 where N is the total number of ions.

ﬁ:z\/(v_r o ) ZIV' Eq.3.43
ﬁ:&iz—l——zh— Eq. 3.44

The thrust factor, ft, is shown in Figure 3.32 as a function of perveance fraction with the 95 %
divergence angle, . It can be seen that the thrust factor and divergence angle are related as expected. A

low divergence angle implies that the thrust factor is high for instance. Typical divergence angles are
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between 10 and 20 degrees while typical thrust factors are between 95 and 99 %. Ion beamlets tend to be

better aligned at higher perveance fractions.
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Figure 3.32 Divergence angle and thrust factor as a function of perveance fraction.

3.2.14 Exhaust Velocity

The exhaust velocity of the ions can be calculated from a conservation of energy equation applied
as the ions move between the discharge chamber and the beam plasmas, as shown in Eq. 3.45. As stated
before, the difference between the potentials of the discharge chamber and beam plasmas is the net
accelerating voltage, Vy. Additionally, the mean speed of the ions within the discharge chamber is
normally very small compared to the speed gained by the ions moving through the net accelerating voltage,
thus it is neglected, which gives Eq. 3.46.

1 2 1 2
; +—m.v, =dq. +—myv,
qt¢u 2 i7i Mean ql ¢d 2 ivie

Vie z\/————zqi(¢“_¢d)+v. 2

Eq. 3.45

iMean
mi

24,
v, = |24 Eq. 3.46
m;
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3.2.15 Thrust

The force provided by an aperture is approximately equal to the mass flow rate of ions passing
through the aperture multiplied by their exhaust velocity. Considering only singly-charged and doubly-
charged ions, the force is given by Eq. 3.47. The thrust factor, f#, is included in this expression to take into
account beamlet divergence, which reduces the actual amount of thrust that is obtained.

The exhaust velocity of the singly-charged and doubly-charged ions can be substituted into the
force equation, the exhaust velocity of the doubly-charged ions being greater than the velocity of the
singly-charged ions by the square root of two. Also, a simple current balance gives the singly-charged ion
current in terms of the total beamlet current, J,, and the double to single current ratio, J,**/J,*. Substituting
these into the force equation gives Eq. 3.48.

The propellant utilization efficiency, 1,, can be used to give the force in terms of the aperture
propellant flow rate, m , instead of beamlet current, J,. Making this substitution gives Eq. 3.49. One more
useful thing to do is to calculate the force per unit grid area, given in Eq. 3.50, obtained by dividing the

force per aperture by the area of the aperture.

J + ++
F pperure =f{ ; mi.vi+ + 2b mivz‘HJ Eq. 3.47
4 €
vi+ — 2€V and Vi++ - 2 28 VN — ﬁ l+
m; m;
cm [ N2ZITY L [2eV
FAperture —‘]b _—[1—*_7 b+ )ﬁ m 2
b i
J,=J, 9, ves J," =2
» =4, +J, rearranged gives J, = S
1+ =2
I
1+[2— 1,
m, 2 7 2eV,
Aperture = ‘]b 7 .] ++b ﬁ m X Eq 348
1+ i
I
++
1+ Iy
e J,
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27,7

These equations were developed for an individual aperture, but they just as easily apply to the
entire thruster. The beamlet current, J,, and the per aperture flow rate, 71, can be replaced by the total

thruster beam current, Jg, and flow rate to obtain the total thrust of the ion thruster, where the thrust factor

and propellant utilization efficiency are overall thruster values.

3.2.16 Specific Impulse

Specific impulse is a quantity commonly used in the area of space propulsion because it is useful
for describing thruster performance. Specific impulse is defined as the ratio of the thrust provided by the
thruster to the Earth weight of the propellant flow. The thrust obtained from an ion thruster is roughly equal
to the propellant mass flow rate, 71, multiplied by the ion exhaust velocity, v; .. Essentially then, specific
impulse is a measure of the exhaust velocity of a thruster. Using the expression for the force given in Eq.

3.49, the specific impulse is presented as Eq. 3.51.

_ Thrust my;, Vie

Isp=——=—"=
mgg mgy 8¢
1+£J_b+:
erture 2 ]+ 2 V
Isp =22 =7, L Jt |2V Eq. 3.51
mg 1+1 Jy E§yV m

+
2 J,
As an example, the net voltage is 2266 V for the example grid set. For singly charged xenon ions,
the ion exhaust velocity is thus about 57,700 m/s. For a combined efficiency, 1/, of 0.85, the specific

impulse, Isp, is 5000 s. As a comparison, a typical chemical rocket might have an exhaust velocity of 4,000

m/s, giving a specific impulse of 408 s.
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3.2.17 Sputtering

Atoms from the surface of a target material can be ejected when the material is struck by high
energy atoms or ions. This process is called sputtering. In a vacuum tank, or in space, the atoms from the
surface of the target material go into a gaseous phase, where they can then deposit onto nearby surfaces.
Sputtering is often used for thin-film deposition when manufacturing semiconductors for example.

With regard to ion thrusters, sputtering is seen most notably on the accel grid. The accel grid is
biased negative to both prevent electron backstreaming and to extract current from the discharge chamber.
In normal operation, beam ions that originate from within the discharge chamber do not strike the accel
grid directly. However, when operating below the crossover limit or above the perveance limit, high energy
ions strike the accel grid directly, often with enough momentum to cause sputtering. Charge exchange ions
also strike the accel grid with enough momentum to cause sputtering.

The number of target atoms that get ejected from the surface for every incident ion or atom is
called the total sputter yield, or just the sputter yield, and is given the symbol Y. The sputter yield is a
statistical value. As a result, the sputter yield could be something like 2.5 atoms per incident ion for
example.

There are several factors that determine how much sputtering takes place. The weight of the
incident ion (or atom) and the weight of the target atom both affect the sputter yield. The sputter yield is
also a function of the incident ion velocity and the angle at which the ion strikes the target surface, called
the angle of incidence. The sputter yield is also affected by the temperature of the target material.

The atoms that are ejected from the target surface leave with a distribution of angles. Some atoms
may be ejected in a direction perpendicular to the surface while others may be ejected at an angle of 45
degrees away from the target normal vector. The distribution of atoms ejected from the target is described
by the differential sputter yield.

The total sputter yield has units of atoms per ion (atoms/ion). The differential sputter yield takes
into account the distribution of atoms in terms of a solid angle, hence it is measured in atoms per ion per
steradian (atoms/(ion-Q2)). In a full sphere, there are 47 steradians, which is the surface area of a unit
sphere, as shown in Eq. 3.52. The total sputter yield, Y, is the integral of the differential sputter yield,

y(9,8), over the solid angle above the target surface, as given in Eq. 3.53.

2n7m

Qe = [[sing dp d0 =4 Eq.3.52
00
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s

The most common grid material is molybdenum because it is has reasonable sputter characteristics
and has a high density compared to many other metals. For two materials that have the same sputter yield,
the higher density material will last longer because there are more atoms per unit volume available to be
sputtered.

In the last few years, many grids intended for very long lifetime applications are being made out of
various forms of carbon. Even though carbon is not very dense compared to molybdenum for example, the
sputter rate is many times lower than molybdenum and the end result is that the carbon materials last
longer. Carbon based materials are used within vacuum chambers to shield sensitive components and act as
beam targets because the very low sputter rates result in the least amount of contamination. Two such
carbon materials are pyrolytic graphite and carbon-carbon composites.

The total sputter yields, Y, for xenon ions impinging upon molybdenum (Mo), titanium (Ti), and
carbon (C) target materials as a function of ion energy are shown in Figure 3.33. According to these data,
for an ion energy of 300 eV the molybdenum sputter yield is about 15 times greater than that of carbon.

The data in this figure are from Yamamura; recent work has been done by Doerner, Kolasinski, and Zoerb.
1.4 ¢
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Figure 3.33 Total sputter yield for xenon ions impinging upon three target materials.

The sputter yields alone do not imply that carbon is the best material to use because they do not
take into account the density of the materials. A better measure of the material is its volume erosion rate,
dV/dt. An equation for the volume erosion rate, in m*/s/A, is given as Eq. 3.54, where J is the current of
impinging ions, Y(E) is the sputter yield as a function of the impinging ion energy, m, is the mass of an

individual target atom, and p is the density of the target material.
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Figure 3.34 shows the volume erosion rate as a function of ion energy for the same three target
materials as in Figure 3.33. The volume erosion rate has been normalized to the impinging ion current,
resulting in a quantity that only depends on the sputter yield and material properties. For an ion energy of

300 eV, the molybdenum volume erosion rate per unit current is about 27 times greater than that of carbon.

045 r
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Figure 3.34 Volume erosion rate for xenon ions impinging upon three target materials.

The sputter yields in Figure 3.34 are for normally incident xenon ions. However, the total sputter
yield changes with ion angle of incidence. One way to account for this is to use a sputter yield multiplier,
such that the actual yield is the normal incidence yield multiplied by an adjustment factor. Figure 3.35
shows a sputter yield multiplier for xenon ions impinging a molybdenum target as a function of the ion
angle of incidence at a xenon ion energy of 300 eV. In this case, the sputter yield is a maximum at an angle
near 45 degrees where the actual sputter yield is about 84 % greater than the sputter yield calculated for

normally incident ions. Similar trends have been observed for other ion and target combinations.
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Figure 3.35 Total sputter yield multiplier for xenon ions impinging upon a molybdenum target.

A cosine distribution is used to model the ejection of sputtered grid material from grid surfaces.

This model is described in a separate section.

3.3 Grid Lifetime

One of the greater concerns with long lifetime ion thruster operation is the failure of the grids as a
result of ion erosion. Charge exchange ion impingement onto the accel grid causes sputter erosion which
can lead to several possible grid failure mechanisms.

An example of grid erosion is shown in Figure 3.36. The beamlet in this figure was operated for
14,400 hours, or about 1.64 years. The cells that are colored in have been completely eroded away from the
grid set. In this case most of the erosion takes place on the downstream side of the accel grid, with a small
amount of erosion also seen on the downstream edge of the hole. This erosion pattern is typical of beamlets

operating at low perveance fractions.

Grid material that has been eroded away (colored)

shown with grid material that still remains (gray).
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All of the colored cells have been completely
eroded away from the grids. The color of the cell

represents the axial location of the cell only.

Figure 3.36 An example of grid erosion. J, = 0.139 mA (f, = 0.2), T = 14,400 hours (1.64 years).

With a hexagonal aperture layout, a “pit and groove” erosion pattern is often seen. Figure 3.37
shows the pits and grooves labeled for the example erosion case. Six pits, and six grooves running between

the pits, surround each aperture.

Another way to view the grids at any time is to

color the surface cells according to axial location.

Note that the same depiction of the grid erosion is
obtained by either a) looking downstream at the grid
material that has been eroded away or b) looking

upstream at the grid material that still remains.

iewi i hat have b letel . . .
(Viewing the grid cells that have been completely (Looking upstream at the grid material that remains)

eroded away)

—

Groove Pit

Pit

Figure 3.37 Pit and groove erosion pattern.

3.3.1 Grid Failure Mechanisms

There are several possible grid failure mechanisms. Erosion of the grids due to ion impingement
can lead to a) electron backstreaming, b) structural failure, and c¢) grid shorting [Foster].

Electron backstreaming occurs when the negative potential applied to the accel grid no longer

prohibits electrons within the downstream beam plasma from backstreaming toward the higher potential
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discharge chamber plasma. These electrons can gain significant energy in traveling through the large
potential difference between the plasmas and can deposit significant power into the discharge chamber and
overheat compenents including the discharge chamber cathode.

Electron backstreaming can occur as a result of a combination of aperture diameter enlargement
and grid thinning. The particular cause of the electron backstreaming is specific to the grid design. For
example, aperture enlargement might be more important than grid thinning when operating at a high
beamlet current where there is significant hole barrel impingement from charge exchange ions created
between the grids.

The second failure mode is referred to as structural failure. Erosion of the accel grid by charge
exchange ions in particular typically results in pit and groove erosion. When the grooves erode completely
through the accel grid thickness, the aperture can detach from the rest of the accel grid. General weakening
of the accel grid due to erosion can also lead to a change in grid deflection.

The third failure mechanism, which is related to structural failure, occurs when an electrical short
between the grids cannot be cleared. Flakes that lodge between the grids can come from cathode erosion or
accel grid erosion for example. For instance, if the grooves wear completely through an aperture, the
unattached portion can end up causing an un-clearable short.

The onset of electron backstreaming is relatively easy to define in the ffx simulation code.
Electron backstreaming is said to start to occur when the saddle point potential along the beamlet centerline
becomes close to (within a few volts of) the downstream beam plasma potential.

Structural failure is harder to concretely define than electron backstreaming. The pit and groove
erosion rates can be monitored and extrapolated to determine the point where the pits and grooves will
completely wear through the accel grid thickness. Another convention is to take structural failure to occur

when a certain percentage, 50 percent is used here, of the accel grid mass has been eroded away.
3.3.2 A Useful Lifetime Parameter

The goal of operating an ion thruster for a long period of time is really to create a significant
change in the velocity of a spacecraft. A quantity useful for comparing the lifetime of grids of different size
is now developed.

The change in momentum per unit area obtained from an aperture is the integral of the force per
unit area over time. If the force per unit grid area is taken to be constant over the life of the aperture, the
change in momentum per unit area simply becomes the force per unit area multiplied by the lifetime, L, as
shown in Eq. 3.55. In this equation, the propellant utilization efficiency of the aperture, mass of an ion,
electronic charge, and net accelerating voltage can all be considered as being the same when comparing
two grid sets. Additionally, the thrust factor and double to single current ratio are likely to be similar. Thus,
to maximize the change in momentum per unit area, one would want to maximize the product of the

lifetime, L, beamlet current, J,, and the inverse of the aperture area, Aapenure, as shown in Eq. 3.56.
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If a grid has fixed geometry (where Aaperure is fixed) and the goal is to find the best operating
beamlet current for that geometry, one would maximize the product of the lifetime and the beamlet current.
This could be very useful for deciding what perveance fraction to run at given a certain grid geometry.

Given this result, it is not immediately clear whether operating at a low or high perveance fraction
is better. The answer lies in the complicated physics of things like the beamlet shape at a certain beamlet
current, the charge exchange ion current that is created within the beamlet, the electric fields that accelerate
the charge exchange ions, and so on.

. The total propellant use at any time T, including unionized neutral atoms through the propellant

utilization efficiency 1), is given in Eq. 3.57.

++
1,
25 J,m
mPropellant = T_—T;—_;— Eq. 3.57
b u
I+——
b

3.3.3 Erosion as a Function of Current

Figure 3.38 shows the progression of the erosion pattern for the example case operating at a
perveance fraction of 0.2. In the left set of pictures, the current accel grid is shown without the screen grid.
In the right set of pictures, the grid material that has been eroded away is shown. A complete accel grid
would result at any time step if the two parts were added together. Viewing the eroded material is often
more visually useful than viewing the current grid because the erosion along the inside of the hole tends to

stand out a little better.
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Remaining Accel Grid Eroded Grid Material
Key: a) Operation time (hours).
b) Percentage of accel grid mass that remains.

¢) Propellant use (g).

Figure 3.38 An example of erosion as a function of time.

The erosion in Figure 3.38 is shown at 7,200, 14,400, and 21,600 hours of grid operation, listed as
part a) to the left of the pictures. Part b) lists the percentage of the accel grid mass that remains at each
time. Structural failure of the grid is taken to occur here as the point when 50 percent of the accel grid mass
has been eroded away. Part c) lists the total amount of xenon propellant that has passed through the
aperture.

Erosion patterns are shown in Figure 3.39 for perveance fractions of 0.2, 0.4, and 0.6. Along each
row of pictures, the percentage of accel grid mass remaining is approximately the same, listed in the lower
left hand corner of each picture. Because the beamlets operate at different currents, and have different
amounts of charge exchange ion impingement, the length of operation time varies to reach the same amount
of accel grid mass loss. For instance, the beamlet at a perveance fraction of 0.2 is operated for a much

longer period of time to reach 50 % mass loss than the beamlet at a perveance fraction of 0.6.
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The other value listed is the total amount of propellant that has passed through each aperture. The
grid operating at a perveance fraction of 0.6 processes only about 23 % as much propellant as the grid
operating at a perveance fraction of 0.2 for similar amounts of accel grid mass loss. For reference, the grid

operating at the lowest perveance fraction of 0.2 takes 21,960 hours to process 16.61 g of propellant.

f,=0.2 £,=0.4 f,=0.6
(J,=0.139 mA) (J,=0.279 mA) (J, = 0.418 mA)

88 % ¢ 572¢g 86 % ¢ 226g 85% ¢ 134 g

76 % ¢ll.l7g 73 % ¢ 26l¢g

65 % 1661 g 61 % 6.58¢g 61 % 38¢

“ o--= Amount of propellant used.
—————————— Percentage of accel grid mass that remains.

Figure 3.39 Accel grid erosion patterns as a function of time for three beamlet currents.

A second depiction of the erosion that occurs at the three beamlet currents is given in Figure 3.40
showing the accel grid mass that has been eroded away. In this figure, it is easy to see the differences in the
pit and groove erosion. On average for this particular grid setup, the pits are about 1.5 times deeper than the
grooves. Also notice that as perveance fraction increases, the grooves become narrower and the pit erosion
is more concentrated.

Another thing to notice in Figure 3.40 is the difference in the amount of barrel erosion that takes
place at the three perveance fractions. The amount of barrel erosion increases significantly at the greater
perveance fractions. This erosion is caused largely by charge exchange ions created between the grids,

upstream of the accel grid. Figure 3.19, given previously, shows charge exchange ion termination surfaces
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as a function of the location where charge exchange ions are produced. As perveance fraction increases in
this figure, greater fractions of charge exchange ions from farther upstream are directed into the accel grid
upstream surface (shown in yellow) and barrel region (shown in orange). These ions have significant
encrgy when they strike the accel grid because they are created in a region of very high potential. As a
result, the accel grid hole barrel can be eroded away quickly, essentially enlarging the original hole size.

At the higher perveance fractions, much of the sputtered accel grid material can deposit onto the
screen grid. Over time, this material can build up to the point where the code can add new screen grid cells

(or accel grid cells, etc.) if the rate of re-deposition is great enough.

f,=02 f,=0.4 f,=0.6
(J, =0.139 mA) (J,=0.279 mA) (J, =0.418 mA)

88 % ¢ 572¢g 86 % ‘ 226¢g 85 % ¢ 1.34¢

-

76 % ¢11.17g 73%¢4.42g 73 % I 26l g

DA

65 % 16.61 g 61 % 6.58 g 61 % 389¢g

N N,
~ \

“ ---- Amount of propellant used.

---------- Percentage of accel grid mass that remains.

Figure 3.40 Eroded accel grid material for three beamlet currents.

Figure 3.41 compares the rates of accel grid mass loss for beamlets operating at perveance
fractions from 0.1 to 0.7. Structural failure of the grid is taken to occur at 50 % accel grid mass loss. The
independent variable on the x-axis is the total propellant throughput per aperture, which does use the
propellant utilization efficiency to include any unionized propellant that flows through the aperture.
Considering this quantity alone, it is better to operate the thruster at a lower perveance fraction in order to

obtain the greatest change in momentum.

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



100
90
80
70
60
50
40
30
20
10 +

O L L 1 L 1 J
0.00 0.01 0.02 0.03 0.04 0.05 0.06

TOTAL PROPELLANT USE PER APERTURE [my] (kg)

REMAINING ACCEL GRID MASS (%)

Figure 3.41 Accel grid mass loss rate for several beamlet perveance fractions.

Figure 3.42 shows how the saddle point potential along the beamlet centerline changes as a
function of operation time for several perveance fractions. The saddle point potential increases with time
because charge exchange ion erosion causes a) the accel grid hole diameter to increase and b) the accel grid
thickness to decrease. Once the saddle point potential, of any beamlet on the thruster, reaches the beam
plasma potential (or comes within a few volts) electron backstreaming will begin. This signals the electron
backstreaming grid failure mechanism unless something is done to mitigate the backstreaming, such as
further decreasing the accel grid voltage, increasing the grid spacing, or possibly decreasing the beam

current for example.
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Figure 3.42 Saddle point potential for several perveance fractions.

In this case, a rather large accel grid voltage of ~400 V. was used. By comparing the charts for
accel grid mass loss and saddle point potential, it is clear that structural failure of the accel grid will occur
before electron backstreaming begins. Had the accel grid voltage not been so negative, electron
backstreaming might have been the limiting grid failure mechanism.

The reason it is better to operate at a low perveance fraction is that the impingement to beamlet
current ratio, J,/Jy, is lower there than it is at higher perveance fractions. This means that for an equivalent
amount of propellant throughput, the accel grid operating at the lower perveance fraction has less total ion
impingement than an accel grid operating at a higher perveance fraction.

Figure 3.43 shows impingement to beamlet current ratios as a function of grid operation time.
Note that all of the beamlets in this figure were operated with a propellant utilization efficiency of 0.9.
There are several reasons why the impingement current ratios decrease with operation time. Charge
exchange ion production current is linearly related to the neutral density near the grids. Charge exchange
ion erosion causes a) the accel grid to become thinner and b) the accel grid hole diameter to increase. Both
of these effects result in a decrease in the neutral density, in turn resulting in less charge exchange ion
production. Additionally, at greater perveance fractions, charge exchange ions created farther upstream
toward the screen grid start to miss the accel grid as the hole is enlarged from erosion, further reducing the

accel grid impingement current.
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Figure 3.43 Impingement current variation over time.:

There is a unique occurrence at perveance fractions near the perveance limit, where the
impingement to beamlet current ratio, J./J,, is-seen to increase with operation time. Figure 3.44 shows an
ion beamlet at three operation times: beginning of life at 0 hours, 120 hours, and 240 hours. This beamlet is
operating at a perveance fraction of 0.75, or a beamlet current of 0.523 mA. At high perveance fractions, a
significant amount of erosion can occur on the upstream side of the grid. In this case, once the grids eroded
to a certain point, near 200 hours of operation, the electric fields changed to the point where the perveance
limit decreased far below the operating beamlet current of 0.523 mA.

Erosion of the accel grid progresses rapidly when maintaining a constant beamlet current above
the perveance limit. This is because the impingement current has to be very high in order to get the required
current of ions through the aperture. In a real situation, the number of ions arriving at the aperture from the
discharge chamber would be constant, resulting in a decrease in the beamlet current as some of the ions

start to directly impinge upon the accel grid.
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Figure 3.44 Impingement current increase with time at a perveance fraction of 0.75.

Figure 3.45 shows the erosion rates of the accel grid upstream, hole barrel, and downstream
surfaces as a function of perveance fraction. The erosion rates of these surfaces have been divided by the
beamlet current at each perveance fraction, giving erosion rates in mg/khr/mA. Per unit current, the erosion
rates at the lower perveance fractions are lower. Instead of operating one hole at a beamlet current of 0.4

mA for example, it is better to operate two holes at 0.2 mA because the total erosion rate will be lower.
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Figure 3.45 Accel grid surface erosion rates.
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The erosion rate of the accel grid is approximately constant, decreasing only slightly over time in
conjunction with the impingement current. Using this approximation, predictions of the operation time to
50 percent accel grid mass loss, and structural failure, can be made using only the initial erosion rates.
Figure 3.46 compares the end of life predictions using a) the initial erosion rate extrapolations and b) the
full lifetime simulations. The full lifetime simulations predict slightly greater propellant throughput

capability as expected as a result of the slightly decreasing erosion rates over time.
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Figure 3.46 End of life predictions based on structural failure of the accel grid.

3.3.4 Pit and Groove Erosion Rates

The pit and groove depths can be found by looking at cross sections of the grids. Figure 3.47
shows four cross sections taken through the screen and accel grids. The pits and grooves are about 64 and
23 percent through the accel grid respectively in this particular case. The grids are likely to fail when the
grooves wear completely through the accel grid, thereby dislodging the accel grid aperture and possibly
causing a grid short for instance. For this case, the grooves will go through the accel grid after about 63,000

hours of operation.
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Figure 3.47 Cross sectional cuts through the screen and accel grids. J, = 0.139 mA (f; =0.2), T =
14,400 hours (1.64 years).

In general, charge exchange ions created far downstream of the accel grid are vectored into the
pits because the pits are the most negative locations on the downstream side of the accel grid. Alternatively,
the charge exchange ions that originate just downstream of the accel grid are still within a highly non-zero
electric field region, and many of these ions strike the accel grid in the groove regions before they reach the
pits. For the charge exchange ions that strike the downstream side of the accel grid, Figure 3.48 shows the
charge exchange ion originating locations colored red if those ions strike the pit regions and blue if those

ions strike outside of the pit regions.
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Downstream Side of the Accel Grid

Cell Coloring
Red: Strikes Pit
Blue: Strikes Elsewhere

Figure 3.48 Charge exchange ions that strike the downstream side of the accel grid colored

according to the pit or groove termination point.

The pit and groove erosion rates can be extrapolated to the points where the pits and grooves wear
completely through the accel grid. The propellant thronghput predictions at these points are compared in
Figure 3.49 with the lifetime predictions using the 50 percent mass loss criteria. In this case, the 50 percent

mass loss criteria is a conservative end of life predictor compared to the groove wear through predictions.
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Figure 3.49 Lifetime predictions based on pit and groove depth erosion rates.

The pit and groove depth erosion rates, like the overall erosion rate, stay nearly constant over time.
As the pits and grooves become deeper, more of the sputtered grid material gets re-deposited back onto the
accel grid, causing the pit and groove erosion rates to decrease. An example of this is shown in Figure 3.50
for a perveance fraction of 0.2. Sputtered grid material can deposit onto the screen or accel grids, go

through the screen grid and travel farther upstream, or travel downstream away from the grids.

100 f,=0.2

o g0 & Jp = 0.139 mA
8 Downstream
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B% o0l
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w_,
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8 20 - Screen Grid
a
i 10 + Upstream

O 1 J
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TOTAL PROPELLANT USE PER APERTURE [mye] (kg)

Figure 3.50 Deposition of sputtered grid material according to termination grid or surface.
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Figure 3.51 shows the screen and accel grid surfaces for the beamlet operating at a perveance
fraction of 0.2 colored according to mass loss rate, which results from sputtering, and mass gain rate, which
is due to the re-deposition of sputtered grid material. At the beginning of life, all of the sputtered grid atoms
on the downstream side of the accel grid travel downstream, away from the accel grid. At 21,600 hours of
operation, a fraction of the sputtered grid material originating within the pits and grooves deposits back

onto the accel grid.

f,=0.2,J,=0.139 mA

T = 0 hours T = 21,600 hours
my,=0g my, = 1634 g

! 0.0

Mass Loss Rate
(kg/(hr-m?))

-12.2
24

Mass Gain Rate
(kg/(hr-m?))

0.0

Figure 3.51 Mass loss and gain (re-deposition) rates.

The distribution of re-deposited material changes with beamlet current. Figure 3.52 shows the
termination surfaces for the sputtered grid material as a function of perveance fraction. The values in this
figure are averaged over the life of the grid at each perveance fraction. Deeper pits and grooves at the
higher perveance fractions lead to more accel grid deposition. Also, a higher rate of hole barrel erosion
leads to a higher percentage of sputtered material traveling upstream toward the screen grid or the screen

grid hole.
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Figure 3.52 Deposition of sputtered grid material as a function of perveance fraction averaged over

the life of the grid.

3.3.5 Screen Grid Film Thickness

The deposition of sputtered accel grid material onto the screen grid increases the screen grid mass
over time. One way to characterize the amount of re-deposition is to calculate the thickness of the deposited
material layer, called the film thickness.

The surface area of the downstream side of the screen grid is given in Eq. 3.58, and the surface
area of the screen grid hole barrel is given in Eq. 3.59. The volume of deposited material will be taken as
the film thickness multiplied by the sum of these two areas, as in Eq. 3.60. The mass of the deposited

material, m, is the volume of the film multiplied by the density, p, of the film.

V3

2 T ;2
Adawn.wream = _2— l cc Z d s Eq 3.58
A[)arrel = mszs Eq 3.59
m
V= ; =t f (Adownslream + Abarrel ) Eq. 3.60

The screen grid film thickness build rate, in micro meters per gram of propellant (lm/g), is shown
in Figure 3.53 as a function of perveance fraction. The screen grid film thickness at 50 % mass loss, which

occurs at different times and amounts of propellant throughput for each perveance fraction, is also shown in
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this figure. The amount of re-deposition is small, less than 6 % at most, compared to the grid spacing,

which in this case is I mm.
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Figure 3.53 Screen grid film thickness as a function of perveance fraction.

3.4 Thruster Properties

A discussion of concepts related to the full thruster ensues. Topics include the number of apertures

in the grid, total grid area, flatness parameter, and propellant utilization.
3.4.1 Number of Apertures

For a hexagonal aperture layout pattern, the area that a single aperture takes up in terms of the hole
center-to-center spacing, /., is given in Eq. 3.61. For a thruster face area Agy,, the number of apertures, H,
is given as Eq. 3.62. The ion thruster active grid area, meaning the area with apertures, has been taken to be

circular with a diameter dp.

Ay, = _‘{2_3—_ 1’ Egq. 3.61
i’ )
Ao 4 Z_dg
H = 2 = = Eq. 3.62
AAPerture '\/5 l 2 2\/5 lcc2 !
2 cc
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3.42 Beam Current

The total beam current is given the symbol Jg, while the beamlet current of any individual aperture
is J,- The average beamlet current is the total beam current divided by the number of apertures, as given in
Eq. 3.63.

J
Jb avg =2
H

The power going into the ion beam is Pg. It is related to the beam current and the net accelerating

Eq. 3.63

voltage through Eq. 3.64.
Py =J5Vy Eq. 3.64

3.4.3 Grid Area

The beamlet current being extracted from a single hole is given by Eq. 3.65, where j is the current
density of ions arriving at the aperture from the discharge chamber, Apperure i the area that an aperture
takes up on the thruster face, and ¢ is the H.élctual grid trénsparency to ions. In the case of a hexagonal
aperture layout, Aaperture 15 €qual t0 Agey. ‘

Ty =7 Apperrre @ Eq.3.65

The average current density over the entire thruster face is the total beam current, Jg, divided by
the total grid area, Aqy. The average beamlet current is this ratio multiplied the area of a single aperture,
Apperure- This relation is shown in Eq. 3.66. The relation from Eq. 3.65 for the beamlet current can be
substituted to find that the average current density over the thruster is equal to the current density of a
single aperture multiplied by the transparency to ions. Additionally, the perveance equation can be

substituted for the current density.

J B ‘]b Average
ATotal AApermre
=j Average ¢Average Eq. 3.66
VT3/2
f p Average” Max —_l—z—' ' ¢Avemge

e

This equation results in a useful expression for determining the total area of the grids from which
ion extraction takes place, Ay, based on the physical dimensions of the grids. Rearranging Eq. 3.66 for
the total area gives Eq. 3.67. The average transparency to ions, Qaverage is more or less a constant regardless
of the hole size, and is often slightly greater than the physical, area-based, transparency of the grids. This

equation indicates that for the same average perveance fraction and ion transparency, decreasing the size of
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the grids in terms of screen grid hole diameter (ds) and grid spacing (/;) will make the total area of the grids

decrease.
Jp
At = 32
VT
f p Average” Max 2 '¢avemge
le
3 Jy Eq. 3.67
- 3/2
VT

(L, +1,F+

f P AvemgeP Max 2 ' ¢avemge
ds

Using the above expression for the total grid area, the total number of apertures in the grid is given
in Eq. 3.68. Here, the individual aperture area has been put in terms of the physical open area fraction, ¢;.
One result of this equation is that if the grid spacing, /,, and the screen grid thickness, t,, are scaled linearly
with the screen grid hole diameter, d;, while keeping everything else constant, the number of holes in the

grid will stay the same even though the grid area is changing.

s P
Jofll, +2, [+ ‘
o= L 4 2 Eq. 3.68

. 3/2
f p Average P MaxVT ) ¢avemge z dsz
4

3.4.4 Flatness Parameter

In a full ion thruster, there is a variation in the ion density throughout the discharge chamber. This
results in a variation in the current density of ions at the grids. A plot of the current density measured
downstream of the NEXT ion thruster is shown in Figure 3.54 [Soulas]. In using a hollow cathode as the
source for primary electrons, the current density tends to be greatest on the thruster centerline where the

highest rate of ionization takes place.
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Figure 3.54 Current density variation downstream of an ion thruster.

The flatness parameter, F, is used to describe the ratio of the average current density over the
entire thruster face, jayg, to the maximum currént dcnsity, Jpeak- Additiohally, this ratio is equal to the ratio of
the average beamlet current, J ,vg, to the peak beamlet current, Ji, pea, if the ion transparency is the same.
The flatness parameter is found using Eq. 3.69, where the equation has partially been written in cylindrical

coordinates for a circular ion thruster.

27R R
Ijj(r)r dr do 271_[ j(r)r dr
F= Jag _ 2% —_ 0 - I
'y jpeak7z‘R2 jpeak ﬂzz

J pea Jpea j j rdrd@
00

J
Fzﬂz_%li

J J

Eq. 3.69

b peak b peak

3.4.5 Propellant Utilization Efficiency

Propellant is supplied mainly to the discharge chamber, but it can also be supplied to a neutralizer
device, such as a hollow cathode, that expels electrons into the beam plasma at the same rate as ions leave
the thruster in order to keep the spacecraft neutrally charged. The propellant flowing through the neutralizer
is not used to produce thrust, thus it reduces the overall propellant utilization efficiency.

The overall propellant utilization efficiency is given in Eq. 3.70, where the propellant flow is

comprised of the flow going through the discharge chamber, Ihdischarge , and the flow going through the

neutralizer, M When calculating the propellant utilization efficiency of the discharge chamber

neutralizer *
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only, the flow rate through the neutralizer is not included. The discharge chamber flow can be broken up
into a *cathode” flow rate, which flows through the hollow cathode, and a “main” flow, which flows into
the discharge chamber from elsewhere. The double to single current ratio, Jg**/J5*, is an average value for

the entire ion beam.

1 J ++
1+ =2
— 2 JB JB
n,= T ' p Eq.3.70
1 + l; " (mdischarge + mneutrah’zer ) "n—l

It is thought that the unionized propellant that escapes through the grids does so evenly over the
thruster face. This means that there is an equal number of neutral atoms leaving through the thruster
centerline apertures, where the beamlet current can be relatively high, and through the edge apertures,
where the beamlet current can be relatively low. As a result, the local propellant utilization efficiencies can
be different across the grid face [Malone].

The discharge chamber propellant utilization efficiency, 1,4, is the ratio of atoms that go through
in kg/s, that exit

the grids as ions to the total number of atoms. The flow rate of propellant atoms, 71,,,,,, ;.

through the grids is given by Eq. 3.71, where the total flow rate is the discharge flow rate.

mneutrals = mdischarge (1 /7 ) Eq.3.71
After finding the neutral escape rate, one can then find the local propellant utilization efficiency,

T tocal, fOT an aperture operating at a beamlet current, Jy, and a local double to single current ratio, J,"/J,".

This is given in Eq. 3.72, where the neutral escape rate per hole is simply 11, / H.
_ 1
7, local ~— ] +
mneutrals 1+ b T
H J, Eq.3.72

1+ - —

Jy =t 1+ 17, -
e 2 Jb

The flow rate in a thruster is typically given in standard cubic centimeters per minute (sccm),
which is a volume flow rate of propellant at a standard temperature and pressure. The flow rate can easily

be converted to kilograms per second as shown in Eq. 3.73.

r{sccm}= m{@}

min

fkg] . |em®|1min 1w’ { 1 }
my—r=m Rorps — 111K,
{ s } {min} 60s 100° cm® 7" | m® ithe)

Here, ngrp is the neutral density at standard pressure (1 atmosphere) and temperature (20 degrees

Eq. 3.73

Celsius), used to convert the volumetric flow rate to one that describes the actual number of atoms per
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second. This neutral density is given in Eq. 3.74. For xenon, 1 sccm is about equal to 0.33 grams per hour,

or about 0.067 Amps equivalent. Alternatively, 1 Amp equivalent of flow is equal to about 14.96 sccm.

101325{

N
m

Nm

Porp =72 =
kT 1.38-10‘23{?

3.4.6 Lifetime

}293.15{1(}

=2.50-10% {m ™} Eq. 3.74

When evaluating the lifetime of a thruster, it is most useful to compare the grid erosion that takes

place for different beamlet currents at equal times, taking into account the variation in the local propellant

utilization efficiency.

As an example, the local propellant utilization efficiency was taken to be 0.9 at a perveance

fraction of 0.4 (beamlet current 0.279 mA). From this, the neutral escape rate per hole was calculated, and

new local propellant efficiencies of 0.818 and 0.931 were calculated for perveance fractions of 0.2 and 0.6,

respectively. The accel grid material eroded away from apertures operating at these three perveance

fractions is shown for two equal time steps in Figure 3.55.

f,=0.2
(J,=0.139 mA)
n, =0.818

Uy

f,=0.4
=0.279 mA)
n, = 0.900

f,=0.6
(J,=0.418 mA)
n,=0.931

88 %

Operation Time = 1,200 hours

| 000iske

Operation Time = 2,400 hours

92 % 0.0020 kg

77 %

0.0036 kg

N ---- Propellant use per aperture.

63 % 0.0053 kg

Percentage of accel grid mass that remains.

Figure 3.55 Erosion that would take place at equal times with varying propellant utilization

efficiency on the face of an ion thruster.
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Using the more realistic propellant utilization efficiencies increases the erosion at lower than
average beamlet currents and decreases the erosion at higher than average beamlet currents when compared
to using a single propellant utilization efficiency. Even with this effect, the erosion taking place at the
higher beamiet currents is still life limiting. When using the same neutral flow rate at all beamlet currents,
the neutral density is the same. As a result, the amount of charge exchange ion impingement current is

proportional to the beamlet current only.

3.4.7 Perveance Limit

The perveance fraction equation is repeated below in Eq. 3.75. In looking at this equation, one
way to find the perveance limit for a set net accelerating voltage, Vy, is to raise the beam current, J, until
the accel grid impingement current, J,, starts to rise. An alternative way to measure a perveance limit is to
set the beam current and lower the net voltage until the accel grid current starts to rise. This second method

is more commonly used in experimental testing.

JB
p- |
—dy e Eq. 375
fod S
! Pipax (VN +V, )/-
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4 Variable Effects

This chapter discusses the effects that geometric parameters and operating conditions have on grid
performance. The knowledge gained through these investigations can then be used to improve grid designs
to meet performance goals.

First, a simple procedure is presented by which the example grid set is created using roughly
known operating conditions and existing grid designs. Subsequently, several parameters are varied to

determine their effects on grid performance.
41 The Example Grid Set

An example grid set was used previously to introduce many aspects of grid operation. This section
will explain how that grid set was constructed.

The example grid set was created with existing grid set designs already in mind. Figure 4.1 shows
the geometrical relationships of some of these grid sets. The hole center-to-center spacing (/..), screen grid
hole diameter (d;), accel grid hole diameter (d,), grid spacing (/y), screen grid thickness (t;), and accel grid

thickness (t,) have all been normalized to each grid’s screen grid hole diameter, d,.

16 e [
Bl md, @t

ad mls ob

1 4 OO —

1.2

1.0
0.8
0.6
0.4

NORMALIZED GEOMETRY

0.2

0.0

NSTAR NEXT Interstellar HIiPEP NEXIS
Precursor

GRID SET

Figure 4.1 Geometrical relationships of several selected grid set designs.

These grid sets have been operated over a wide voltage range, from about 500 to 13,000 V. It is
somewhat expected that all of these grid sets are fairly similar as they are probably all roughly related to the
NSTAR grid set design.

Relationships between the geometrical parameters were chosen for the example grid set and are

shown in Table 4.1. All values are normalized to the screen grid hole diameter, d;. As a result, choosing a
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value for dg will set all other parameters. The ratio of the hole center-to-center spacing to the screen grid

hole diameter, I../d;, was chosen to in turn give a physical screen grid open area fraction of 67 %.

Table 4.1 Geometrical parameter relationships in the example grid set.

Ratio Value Source of Value
l. T

loo/ d 1.163 d, |23,

¢, =0.67

dg/ d 1 Identity

d,/ d 0.6 Typical

ly/ dg 0.5 Typical

ts/ ds 0.2 Typical

ta/ dg 04 Typical

The first step in designing the example grid set was to choose a specific impulse, Isp. Using xenon
as the propellant, and taking the combined propellant utilization efficiency and thrust factor (n,-ft) to be
roughly 0.85 as an estimate, the net accelerating voltage, Vy, is 2266 V for a specific impulse of 5000
seconds. This calculation is shown in Eq. 4.1.

Isp =1, I 2
4 m,

4

085 (216107 U/ b 2266 fev) Eq. 4.1

9.81{%2} 131.3-1.66-10 {kg}

After choosing the net accelerating voltage, a value for R, the ratio of the net-to-total accelerating

5000 {s}=

voltage V/V, was chosen to set the accel grid voltage. Typically, R values fall into the range from 0.85 to

0.90. To be conservative, a value of 0.85 for R was selected. This gives an accel grid voltage of 400 V as
shown in Eq. 4.2.

R=Yw Vv

Vi Vy +V,

1
or V, =V, (l - Ej Eq.4.2

~400{V } = 2266 {V)(l —L)

0.85

The next step was to select a value for the screen grid hole diameter, d;, based on what the

magnitude of the electric field between the grids was going to be. The electric field, E, is normally limited
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to a certain maximum value to prevent excessive electrical arcing between the screen and accel grids. It is
not easy to say what this value should be, but historically a value of about 2 kV/mm has been used.

In this case, the total accelerating voltage, Vr, is 2666 V. The discharge voltage, V4, which is
basically the difference between the net accelerating voltage and the screen grid voltage, Vg4 = Vn-V, is
selected as 25 V. A screen grid hole diameter, d;, of 2 mm gives a grid spacing, /;, of 1 mm according to the
selected ratio of [/d;, 0.5. This sets the electric field between the grids, E = (V-Vg)/l,, to be 2641 V/mm,
which is an acceptable electric field. Choosing a screen grid hole diameter leads to values for the rest of the

geometrical grid parameters, which are shown in Table 4.2.

Table 4.2 Geometry of the example grid set for a specific impulse of 5000 seconds.

Geometrical Parameter Value
L 2.327 mm
d, 2 mm
da 1.2 mm
L, 1 mm
ts 0.4 mm
t, 0.8 mm

4.2 Grid Design Goals

In order to design a grid set, it is important to first identify what the grid is being designed for. For
ion thrusters, the most important design goal might be a long lifetime, or really a large propellant
throughput capability. A different goal might be to extract a large amount of current per unit area.

In any case, it is also good to aim for a high grid transparency to ions in order to keep the
discharge losses to a minimum. A low divergence angle, or high thrust factor, might be desirable if the

beam divergence is important to the intended application of the ion source.
4.3 Geometry Effects

Grid Spacing (1;). The minimum grid spacing is set according to the maximum allowable electric
field between the screen and accel grids. Historically, a maximum electric field of 2 kV/mm has been used
as a guideline. The grid spacing largely controls how much current per hole can be extracted.

Aperture Center-To-Center Spacing (I..). The center-to-center spacing is discussed relative to
the screen grid hole diameter, d;, in terms of the open area fraction, ¢,. Increasing the open area fraction
increases the maximum amount of current that can be extracted from a certain size discharge chamber by
increasing the grid transparency to ions. On the other hand, having a relatively large center-to-center

spacing makes the grids stronger and also decreases the transparency to neutral atoms, which minimizes the
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amount of propellant Joss. The minimum center-to-center spacing can also be limited by sheath interactions
among neighboring holes, as discussed in the screen grid thickness section.

Screen Grid Thickness (t;). The screen grid thickness is chosen to control the plasma sheath that
forms upstream of each hole pair and to make the screen grid as lightweight as possible. Decreasing the
thickness of the screen grid generally increases the grid transparency to ions because the plasma sheath
moves upstream, allowing more ions to enter the hole instead of striking the screen grid. However, if the
screen grid is too thin, the plasma sheath can move upstream into the discharge chamber and hole
interactions can take place. Having a combination high open area fraction (according to /.. and d;) and thin
screen grid can cause the ion beamlet to become noncircular. Most importantly, this increases the crossover
limit, which can cause problems at low perveance fractions where many ion thrusters are typically
operated. On the other hand, if the screen grid is too thick the ion transparency is reduced unnecessarily.

Screen Grid Hole Diameter (d). The screen grid hole diameter, along with the grid spacing,
controls how much current per hole can be extracted. It is scaled based on the grid spacing, which is in turn
scaled according to the electric field strength. For a fixed grid spacing, having small holes can be
troublesome if hole misalignment is present. Having larger holes relative to the grid spacing can lessen the
problems that misalignment can cause.

Accel Grid Thickness (t,). The accel grid dimensions in general affect the lifetime of the grid set
and the ability to prevent electron backstreaming. Increasing the accel grid thickness a) increases the accel
grid lifetime because there is more mass in the accel grid, b) helps to prevent electron backstreaming by
making the potential along the beamlet centerline more negative, and c) reduces the transparency to neutral
propellant molecules. However, increasing the accel grid thickness increases the accel grid weight, reduces
the operating range of the grids in terms of the crossover and perveance limits, and magnifies problems
with hole misalignment.

Accel Grid Hole Diameter (d,). Decreasing the accel grid hole diameter helps mainly to prevent
electron backstreaming by reducing the potential along the beamlet centerline. Having a small diameter
also limits the loss of neutral atoms from the discharge chamber and increases the accel grid lifetime as
there is more accel grid mass to be eroded away. A larger hole diameter, however, both decreases the

crossover limit and increases the perveance limit, allowing a greater beamlet current operating range.
4.4 Parameter Effects
The following sections will expand the understanding of how each grid set parameter affects the

performance of a grid set. The parameters that are discussed are the grid-to-grid spacing (l,), accel grid hole

diameter (d,), accel grid thickness (t,), screen grid thickness (t,), and accel grid voltage (V,).
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4.4.1 Grid Spacing, Iy

As discussed previously, the minimum grid spacing is largely dictated by the maximum allowable
electric field between the grids. According to the perveance equation, Eq. 4.3, the maximum attainable

current density goes roughly as the square root of the grid spacing.

Jb
/) dz
. —d 0 +t [+ .4,
fo 122:45(g T A Eq. 4.3
? P Max ‘/T3/2 P Max ‘/T}/2

The grid spacing is one of the harder parameters to control, and measure, in actual operation of
large ion thrusters. This can be a problem because grid spacing has a large effect on perveance and
crossover limits. Figure 4.2 shows impingement limit curves for four grid spacing values, the standard grid

spacing being 1.0 mm.

_ 12 »
e 1 ly= 2:0 mm i
LLI ‘\\
E 10 - . Ly = 1.5 mm
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Figure 4.2 Crossover and perveance limits with changing grid spacing, /,.

Figure 4.3 shows the crossover and perveance limits taken from Figure 4.2 above plotted as a
function of effective grid spacing, .. instead of grid spacing, /,. From the perveance fraction equation, the
beamlet current, J,, should vary as l.2. This is with the idea that the perveance fraction, f,, should be

constant at the perveance limit for all grid spacings.
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Figure 4.3 Crossover and perveance limits with respect to effective grid spacing, /..

The data in Figure 4.3 show that the perveance limit varies as I.>* instead of I, 2. This is because
f, is not constant at the perveance limit. Figure 4.4 shows the crossover and perveance limits in terms of
perveance fraction plotted against effective grid spacing. From this figure, one can see that the perveance
limit increases and the crossover limit decreases as grid spacing is decreased. This shows that the operating
range increases with decreasing grid spacing.

The perveance equation does not predict what the crossover limit will do with grid spacing. It
turns out that the crossover limit beamlet current, Jy crossovers iNCreases with decreasing grid spacing. Many
ion thrusters designed for long lifetime are operated at low beamlet currents. If the operating grid spacing is

smaller than intended, crossover impingement is more likely to occur.
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The grid transparency to ions gets better at smaller grid spacings, as shown in Figure 4.5. The

physical open area fraction of the grids is 67 percent. Also note that this figure shows perveance fraction on

the x-axis. When looking at a constant beamlet current and varying the grid spacing, the increase in ion

transparency with decreasing grid spacing is even more apparent.
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Figure 4.5 Transparency to ions for different grid spacings.
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Grid spacing has a very important effect on the accel grid voltage needed to prevent electron
backstreaming, as shown in Figure 4.6. This figure was generated using plots of the centerline saddle point
potential, Vguaiepoins 288 a function of accel grid voltage at different perveance fractions (or beamiet
currents).

At a perveance fraction of 0.4, decreasing the grid spacing from 1.0 mm to 0.5 mm increases the
required accel grid voltage magnitude by about 57 V, or an increase of 40 %. This can increase the accel

grid erosion rate significantly.
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Figure 4.6 Resistance to electron backstreaming with variable grid spacing.

A certain voltage margin against electron béckstreaming is often selected for actual use. In this
case, at a perveance fraction of 0.4 for example, the required accel grid voltage is —143 V (I, = 1.0 mm).
Using a margin of 50 V, the accel grid voltage, V,, becomes —193 V. Selecting this voltage minimizes the
erosion rate while preventing electron backstreaming.

Figure 4.7 shows the predicted propellant throughput capability as a function of beamlet current
for four grid spacings. Because the grid spacing is different in each case, the perveance fraction cannot be
put on the second x-axis. This chart shows that if the beamlet current is held constant, greater propellant
throughput is achieved if a smaller grid spacing is used. However, the data in this chart is all for a constant

accel grid voltage of 400 V.

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



o
—
[\V]

o V,=-400V
1n,=0.9

% 0.10 lyoa = 1.0mm
w —
2L 508 0.1
[}
ZE
-l
oW 0.06
[l
(o) =
@
a W 0.04

a.
2 <
=
© o002

ooo L - L L B d I
0.0 0.2 0.4 0.6 0.8 1.0

BEAMLET CURRENT [Jy] (MA)

Figure 4.7 Propellant throughput capability as a function of beamlet current at several grid

spacings.

The data in Figure 4.7 is plotted again in Figure 4.8 versus perveance fraction instead of beamlet

current. This chart shows that if the perveance fraction is held constant, greater throughput is achieved at

larger grid spacings. This is mainly because the beamlet current decreases with increasing spacing at a

constant perveance fraction.
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Figure 4.8 Propellant throughput capability as a function of perveance fraction at several grid

spacings.
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For a certain beamlet current (Jy), the grid spacing (/;) and the accel grid voltage (V,) can be
varied together in order to maximize the propellant throughput capability. Figure 4.9 shows how this was
done at a beamlet current of 0.2 mA. For each grid spacing from 0.5 to {.75 mm, the accel grid voltage was
adjusted to give a 50 V margin against electron backstreaming. The predicted propellant throughput values

are based on the initial erosion rates.
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Figure 4.9 Variation in accel grid voltage and grid spacing to obtain a 50 V margin against electron

backstreaming.

Following the same procedure for 0.1, 0.3, and 0.4 mA as was done for 0.2 mA in Figure 4.9, the
data in Figure 4.10 are produced. At every data point in this figure, the accel grid voltage is set differently

such that there is a 50 V margin against electron backstreaming.
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Figure 4.10 Finding the optimum grid spacing and accel grid voltage combination as a function of

beamlet current.

In Figure 4.10, the optimum grid spacing occurs at a different grid spacing for each beamlet
current. The optimum spacing values are plotted in Figure 4.11. Because the grid spacing changes with
beamlet current, the perveance fraction is not a linear function of beamlet current. The optimum perveance
fractions are shown along with the perveance fraction values if the grid spacing was held constant at 1.0

mm. Using the variable spacing makes the optimum perveance fraction stay at least a little more constant

than when using a constant spacing.
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Figure 4.11 Optimum grid spacing and accel grid voltage as a function of beamlet current.

The point of this exercise was to increase the propellant throughput capability by varying the grid
spacing and accel grid voltage, as shown in Figure 4.12. Compared to the standard accel grid voltage of —
400 V, the propellant throughput capability is doubled or more when using the optimized grid spacing and

accel grid voltage combinations.
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Figure 4.12 Propellant throughput capability using variable spacing and accel grid voltage.
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4.4.2 Accel Grid Hole Diameter, d,

A small accel grid hole diameter serves to help prevent electron backstreaming and to reduce
neutral propellant atom loss from the discharge chamber. A large hole diameter, on the other hand,
increases the available beamlet current operating range.

Figure 4.13 shows the crossover and perveance limits as a function of accel grid hole diameter.
The reference hole diameter is 1.2 mm, 60 % of the 2.0 mm screen grid hole diameter. The crossover limit
decreases, and the perveance limit increases, with increasing accel grid hole diameter, both of which are
desirable results. The crossover and perveance limits were defined as the points where the impingement to
beamlet current ratio, J/J,, went above 1 %.
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Figure 4.13 Crossover and perveance limits for different accel grid hole diameters.

The main drawback of increasing the accel grid hole diameter is that it allows electron
backstreaming to occur more readily. Figure 4.14 shows the centerline saddle point potential between the
crossover and perveance limits as a function of perveance fraction, and beamlet current, for the five hole
diameters. Electron backstreaming occurs when the saddle point potential nears the beam plasma potential,
which in this case is 0 V. At a perveance fraction of 0.2, a 10 percent change in the accel grid hole diameter

results in a 16 V, or 6 percent, change in the saddle point potential.
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Figure 4.14 Resistance to electron backstreaming as a function of accel grid hole diameter.

Although it is not shown here, the divergence angle, &, of the beamlet gets slightly better (smaller)
with increasing accel grid hole size. At a perveance fraction of 0.2, a 10 percent increase in the hole size
results in about a 0.16 degree reduction in the 95 % divergence angle. Additionally, no noticeable change in
the grid transparency to ions, ¢, was seen in changing the accel grid hole diameter.

A small study was done to optimize the accel grid hole diameter while varying the accel grid
voltage at the same time. Figure 4.15 shows the total mass of propellant per aperture obtained as a function
of accel grid hole diameter at four beamlet currents. The accel grid voltage was adjusted at every point in
order to obtain a 50 V margin against electron backstreaming.

When the accel grid hole diameter is reduced, the accel voltage does not have to be as negative,
which reduces the erosion rate. Also, a smaller diameter increases the amount of mass that is available to be
eroded away. However, the accel grid impingement current increases as the diameter is reduced because
more charge exchange ions that are created in the hole barrel region, and in the region farther upstream
between the grids, strike the accel grid instead of being accelerated downstream. This effect reduces the
predicted accel grid lifetime. Another benefit of having a larger diameter hole is that, for a constant
propellant utilization efficiency, the neutral density near the grids is reduced as it is easier for unionized
propellant to flow through the grids. This reduces the charge exchange ion production rate and in turn

reduces the accel grid impingement current and erosion rate.
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Figure 4.15 Optimizing the accel grid hole diameter for different beamlet currents.

-Table 4.3 below lists the accel grid voltage and propellant throughput predictions at the four best
points on the four curves in Figure 4.15. The optimum accel grid hole diameters were about 75 percent of

the size of the screen grid hole diameter, 2.0 mm.
Table 4.3 Optimum accel grid hole diameter and accel grid voltage points.

fo)  Ju(MA)  d,(mm) V. (V) my (ko)

0.143 0.1 1.2 -141 0.151
0.287 0.2 1.6 -244 0.028
0.430 0.3 1.4 -216 0.013
0.574 0.4 1.4 -206 0.011

The reason the optimum accel grid hole diameter increases in size with increasing beamlet current
is that the beamlet diameter increases with beamlet current. Charge exchange ions created relatively far
upstream, between the grids, cause a very high erosion rate when they strike the accel grid. With increasing
beamlet diameter, more of these ions strike the accel grid upstream surface and hole barrel regions. To
alleviate this problem, the optimum accel grid diameter increases so that more of these high energy charge
exchange ions miss the accel grid, even at the expense of requiring a more negative accel grid.

The lifetime predictions in Figure 4.15 above were calculated using the initial accel grid erosion
rates. Full lifetime simulations were performed for several accel grid hole diameters at a beamlet current of
0.2 mA to investigate these results. Figure 4.16 compares the propellant use to grid failure predicted using
the initial erosion rates and full lifetime simulations. Additionally, using the full lifetime simulations, the

propellant use at the onset of electron backstreaming can also be compared. For this case, electron
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backstreaming occurs before structural failure at the smallest hole diameter. The best hole diameter for
electron backstreaming is about 1.4 mm.

The best accel grid hole diameter in terms of 50 % accel grid mass loss is different when predicted
using the initial erosion rates, 1.6 mm, compared to the full lifetime simulations, 1.2 mm. With a small hole
diameter, charge exchange ions from the hole barrel region can strike the accel grid, causing the initial
erosion rate to be relatively high. After some initial operation time, the accel grid hole diameter can erode
away to the point where fewer ions strike the accel grid, reducing the erosion rate and ultimately resulting

in a longer lifetime prediction.
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Figure 4.16 The optimum accel grid hole diameter found using full lifetime simulations.

4.4.3 Accel Grid Thickness, t,

One of the main advantages of increasing the accel grid thickness, t,, is that it makes the potential
along the beamlet centerline more negative, increasing the resistance to electron backstreaming given a
constant accel grid voltage. The other main advantage of increasing the accel grid thickness is that there is
more mass in the accel grid available to be sputter eroded, which increases the lifetime of the grid. One
drawback, however, is that the total mass, and therefore weight, of the accel grid is increased with greater
accel grid thickness.

Another possible advantage of increasing the accel grid thickness is that the grid transparency to
neutral propellant molecules is reduced, leading to higher neutral densities within the discharge chamber

which can help electrical efficiency. However, this also increases the neutral density in the grid region,
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which leads to greater charge exchange ion production, greater accel grid impingement current, and greater
erosion rates which can offset the gain in grid mass.

The crossover and perveance limits are shown as a function of accel grid thickness, t,, in Figure
4.17. In this case, the perveance limit does not change drastically with accel grid thickness. This is because
direct impingement of ions onto the accel grid often begins on the upstream side of the accel grid surface,
and is therefore independent of the grid thickness. The crossover limit, however, is a greater function of
accel grid thickness. This is because crossover impingement starts on the downstream side of the accel grid

hole barrel, and is therefore directly related to the length of the hole.
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Figure 4.17 Available beamlet current operating range as a function of accel grid thickness.

Figure 4.18 shows two ion beamlets near the crossover and perveance limits. The beamlet shapes
stay nearly the same for the two accel grid thickness values. The effect of the accel grid thickness on the
perveance limit depends on the grid spacing, I,. With a relatively close grid spacing, direct impingement
would likely start on the upstream side of the accel grid, making the perveance limit independent of the
accel grid thickness. With a large spacing, however, direct impingement might begin on the downstream
side of the accel grid, and the accel grid thickness would affect the perveance limit. In this case, the grid

spacing is between the two extremes, resulting in a modest dependence on the accel grid thickness.
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Figure 4.18 Effect of accel grid thickness on crossover and perveance limits.

Figure 4.19 shows how the centerline saddle point potential changes with both perveance fraction
and accel grid thickness. As expected, a thicker accel grid leads to a greater resistance to electron

backstreaming given a fixed accel grid voltage.
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Figure 4.19 Resistance to electron backstreaming with variable accel grid thickness.

As with the accel grid hole diameter, d,, the divergence angles of the beamlets were slightly better
(smaller) with a thin accel grid than with a thick accel grid. Furthermore, no noticeable difference was seen

in the grid transparency to ions, ¢, with changing accel grid thickness.
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Figure 4.20 shows how the predicted mass throughput capability changes as a function of accel
grid thickness at four beamlet currents. At every point, the accel grid voltage was adjusted to achieve a 50
V margin against electron backstreaming. The propellant throughput capability increases with increasing
accel grid thickness because the required accel grid voltage to prevent electron backstreaming decreases,

resulting in a lower erosion rate, and because there is more accel grid mass available to be eroded away.
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Figure 4.20 Predicted propellant throughput capability with variable accel grid thickness.

4.4.4 Screen Grid Thickness, i

The main advantage of reducing the accel grid thickness, t;, is to increase the grid transparency to
ions, ¢. However, using a screen grid thickness that is too small can result in interactions among the sheaths
of adjacent holes, which can cause the beamlets to become noncircular. Another advantage of reducing the
accel grid thickness is a reduction of the screen grid mass.

Figure 4.21 shows how the crossover and perveance limits change as a function of screen grid
thickness, t;. Observing the perveance equation, Eq. 4.4, the screen grid thickness affects the effective grid
spacing, l.. The beamlet current, J,, should vary as 1.7 if the perveance fraction, f,, stays constant at the
perveance limit. Using the data points from 0.2 to 0.8 mm, the beamlet current at the perveance limit
actually varies as [, The perveance equation does not predict the variation in the crossover limit, where

the beamlet current varied as ;.
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Figure 4.21 Shift in operating range as a function of screen grid thickness.

The perveance fraction, f,, and fhe beamlet current, J,, are not linearly related in terms of the
screen grid thickness using the perveance fraction equation so a second x-axis cannot be used. The
crossover and perveance limits are given in Figure 4.22 in terms of perveance fraction instead of beamlet
current. If the perveance fraction equation perfectly modeled the perveance limit, the perveance fraction at
the perveance limit should be a constant. Instead, the perveance fraction increases with increasing screen
grid thickness. The perveance fraction at the crossover limit decreases with increasing screen grid
thickness.

The effective acceleration length, [, is supposed to describe the distance over which the ions are
accelerated through the total voltage, V1. The actual acceleration distance is approximately the distance
between the sheath, generally located upstream of the screen grid, and the most negative point along the
beamlet centerline, or the location of the centerline saddle point potential. The reason the perveance
fraction, f;, is not constant at the perveance limit is because the sheath position changes when varying the

screen grid thickness.
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Figure 4.22 Non-constant perveance fraction at the perveance limit with variable screen grid

thickness.

The centerline saddle point potential is shown in Figure 4.23 as a function of beamlet current for
five screen grid thickness values. These data are presented in terms of beamlet current, J,, but perveance
fraction, f;, could also have been used. Generally, the resistance to electron backstreaming increases with

increasing screen grid thickness.
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Figure 4.23 Resistance to electron backstreaming as a function of screen grid thickness.
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The main reason for reducing the screen grid thickness is to increase the grid transparency to ions,
0. Figure 4.24 shows how the transparency to ions increases as screen grid thickness is reduced. The
physical open area fraction of the screen grid in this case is 67 %. At a beamlet current of 0.3 mA, for
example, the transparency to ions can be increased from 40 to 89 % in changing the screen grid thickness

from 0.8 to 0.1 mm.
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Figure 4.24 Grid transparency increase with decreasing screen grid thickness.

The screen grid thickness, t;, affects the position of the sheath upstream of the beamlet, which in
turn results in the drastic variation in ion transparency. Figure 4.25 shows how the sheath position changes
as a function of screen grid thickness at four beamlet currents. Only the accel grid is shown along with the
sheath in each case. Looking across a row, where the screen grid thickness is constant, the sheath moves
downstream with increasing beamlet current. Looking down a column, where the beamlet current is
constant, the sheath again moves downstream with increasing screen grid thickness.

When the sheath is far upstream of the screen grid, as it is at low beamlet currents with thin screen
grids, a large percentage of ions entering the sheath are vectored into the beamlet, missing the screen grid.
This results in a low screen grid current and therefore a high grid transparency to ions. When the sheath is
far downstream, at high beamlet currents with thick screen grids, many ions from the discharge chamber
strike the screen grid immediately after passing through the sheath. This results in a high screen grid

current and a low ion transparency.
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Figure 4.25 Sheath position as a function of screen grid thickness and beamlet current.

Figure 4.26 shows ion beamlet cross sections as a function of screen grid thickness at four beamlet
currents. These cross sections are taken through a plane at the downstream edge of the accel grid. At a
constant beamlet current of 0.4 mA, for example, the beamlet diameter increases as the screen grid

thickness increases.
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Figure 4.26 Beamlet cross sections, taken through a plane at the downstream edge of the accel grid,

as a function of screen grid thickness and beamlet current.

When the sheath is located upstream, interactions between the sheaths of adjacent holes can take
place. Figure 4.27 shows beamlet cross sections taken in the low beamlet current, thin screen grid range.
The ion density scale in this figure has been reduced to show the lower density structures in the cross
sections. As the screen grid thickness and beamlet current are reduced, the sheath interactions become

greater and a six sided star pattern emerges in the cross section.
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Figure 4.27 Beamlet cross sections at relatively low beamlet currents and relatively thin screen grids.

When the sheath moves upstream, away from the screen grid, the sheath is closest to the screen
grid at the intersection points between any three holes in the hexagonal aperture pattern. Ions from the
discharge chamber plasma passing through the sheath near these points experience a great change in radial
velocity. When these ions reach the accel grid, they create the six points of the star pattern. The star pattern
is expected to be the most well defined when the sheath is heavily dished, as it is at a beamlet current of
0.15 mA and a screen grid thickness of 0.1 mm for example. The star pattern, or a noncircular beamlet in
general, that comes about when using a relatively thin screen grid increases the crossover limit.

Increasing the screen grid thickness tends to make the beamlet more well focused as the sheath
moves closer to the screen grid and becomes flatter. Figure 4.28 shows how the divergence angle, o, of the
beamlet changes as a function of beamlet current for five screen grid thickness values. At the lower beamlet
currents in this case, the sheath is located upstream of the screen grid and moves a great deal with changing
screen grid thickness. A line connecting a constant perveance fraction of 0.5 is drawn in this figure. Past
this perveance fraction, the sheaths at all screen grid thickness values are located near the screen grid and
no interactions take place among neighboring holes. As a result, the divergence angles of the beamlets

become the same as the sheaths become less dependent on the screen grid thickness.
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Figure 4.28 Divergence angle reduction with increasing screen grid thickness as a result of the

sheath moving closer to the screen grid.

As with the other grid parameters, a small study was done to see if the predicted propellant
throughput capability could be optimized at a constant beamlet current, J,, by allowing the screen grid
thickness, t;, to vary. Figure 4.29 shows how the predicted propéllant throughput varies with screen grid
thickness-at four beamlet currents. The accel grid voltage was varied at each point to achieve a 50 V margin
against electron backstreaming. The only beamlet current to show a significant dependence on screen grid
thickness was 0.1 mA. In general, the throughput capability increases with increasing screen grid thickness

because the required accel grid voltage decreases.
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Figure 4.29 Mild variation in the predicted propellant throughput capability with screen grid

thickness.

4.4.5 - Accel Grid Voltage, V,

The accel grid voltage is‘biased negative in order to both extract ions from the discharge chamber -
and to prevent electron backstreaming. Because many of the ions that erode away the accel grid originate
downstream of the grids in a region of near zero potential, the accel grid voltage has a very direct effect on
the accel grid erosion rate. The accel grid voltage should always be kept sufficiently negative to prevent
electron backstreaming, but not excessively negative such that the accel grid erosion rate is increased
needlessly.

The accel grid voltage, V,, affects the perveance fraction, f,, equation through the total
accelerating voltage, V1, which is the sum of the net accelerating voltage, Vy, and the accel grid voltage
magnitude, |[V,|. Figure 4.30 shows the crossover and perveance limits obtained as a function of perveance
fraction and beamlet current for five accel grid voltages. Although the perveance fraction to beamlet
current ratio is technically different for each accel grid voltage, meaning a second x or y-axis should not
strictly be used, the figures that follow use the ratio at the reference accel grid voltage of —400 V. The

beamlet current axis in each case is more correct.
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Figure 4.30 Increase in the amount of extracted current. with increasing accel grid voltage

magnitude.

According to the perveance fraction equation, the beamlet current, Jy, at the perveance limit should
vary as V2 if the equation correctly models the situation. Plotting the beamlet current data versus total
accelerating voltage, using a net accelerating voltage of 2266 V, shows that the beamlet current at the
perveance limit varies as V', Similarly, the crossover limit beamlet current varies as V.

The centerline saddle point potential is shown in Figure 4.31 as a function of perveance fraction
for five accel grid voltages. At any beamlet current, the saddle point potential varies nearly linearly with
accel grid voltage. In this case, at beamlet currents less than about 0.15 mA, a 100 V change in V, results a
97 V change in Vgygqiepoint At beamlet currents greater than about 0.25 mA, a 100 V change in V, results in

a 88 V change in Vsaagiepoint-
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Figure 4.31 Near linear saddle point potential variation with accel grid voltage.

The 95 % divergenée angle is shown in Figure 4.32 as a function of perveance fraction. The
divergence angle decreases with less negative accel grid voltages. When using a less negative accel grid
voltage, the neutralization surface downstream of the grids moves upstream, closer to the accel grid.
Downstream of the neutralization surface, the electric fields are weak compared to the momentum that the
ions gain in passing through the grids. After the beam ions pass through the neutralization surface, their
trajectories stay nearly constant until they pass out of the simulation volume. A neutralization surface
located farther upstream is desirable in that the ion beamlet will expand mainly in the region upstream of

the neutralization surface.
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Figure 4.32 Divergence angle improvement with less negative accel grid voltages.

Although it is not shown here, the grid transparency to ions increases with a more negative accel
grid voltage. With a very negative accel grid voltage, the plasma density does not need to be as high as it
does with a less negative accel grid voltage in order to extract a constant beamlet current. Making the accel
grid more negative thus moves the plasma sheath farther upstream, increasing the ton transparency.

If a constant accel grid voltage is used -over the entire life of the grids, it is desirable to select an
accel grid voltage that will result in structural failure and the onset of electron backstreaming occurring at
the same time, thereby maximizing the life of the grids. Figure 4.33 shows the predicted propellant
throughput as a function of perveance fraction for grids operating with accel voltages of —200, —400, and —
600 V. The data in this figure are all from full lifetime simulations.

Using an accel grid voltage of —200 V results in structural failure (50 % accel grid mass loss) and
the onset of electron backstreaming occurring at nearly the same propellant throughput values for beamlet
currents from about 0.3 to 0.4 mA. Thus, -200 V would be a good choice for the accel grid voltage if the
grids were to be operated in that beamlet current range. For beamlet currents lower than 0.3 mA, electron
backstreaming occurs after 50 % accel grid mass loss when using an accel grid voltage of —200 V, thus the

accel grid could be made more positive to further extend the grid lifetime.
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Figure 4.33 Increase in propellant throughput capability with less negative accel grid voltages.

The grid lifetime can be maximized by varying the accel grid voltage during operation such that
the acc¢1 grid is only kept just negative enough to always prevent electron backstreaming. Keeping the
accel grid as positive as possible minimizes the erosion rate. An example of this is shown in Figure 4.34.
Here, an initial accel grid voltage of —175 V is used for a beamlet current of 0.3 mA. Every time the
centerline saddle point potential, Vs,gqiepoins COmes within 10 V of the downstream plasma potential, 0 V,

the accel grid voltage is made more negative by 25 V.
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Figure 4.34 Lowest erosion rate achieved with least negative accel grid voltage.
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Again using a variable accel grid voltage, Figure 4.35 shows the remaining accel grid mass as a
function of propellant throughput for four beamlet currents. The initial accel grid voltage was —175 V in all
cases. The alternating thickness lines indicate when an accel grid voltage magnitude increase was made. At
the 0.1 mA beamlet current, the accel grid voltage never needed to be made more negative than —175 V to
prevent electron backstreaming. For the greater beamlet currents, 50 % accel grid mass loss was seen to

occur when the accel grid voltage was -225 V.
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Figure 4.35 Maximizing the grid lifetime by using a variable accel grid voltage.

The goal of using a variable accel grid voltage is to maximize the grid lifetime. Figure 4.36
compares the propellant throughput predictions for the variable accel grid voltage cases with the constant —
200 and —400 V cases. Because the initial accel grid voltage of —175 V is close to —200 V, the variable

voltage cases are only slightly better.
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Figure 4.36 Propellant throughput capability using the least negative accel grid voltage.

For illustration, lifetime simulations of grids operating at very low R values were performed, and
tl:lé results are shown in Figure 4.37. The three cases in this figure are all operating at a perveance fraction
of 0.4, and a constant net accelerating voltage, Vy, of 2266 V. The beamlet current ranges from 0.279 mA
at an R value of 0.85 to 1;055 mA at an R value of 0.35. The erosion pattern in the 0.35 R value case is
markedly different than at the higher R values. The pits are very wide and deep compared to the grooves.
Also, the deepest part of the groove does not occur in the center between two apertures. Instead, two deeper

depressions are seen just to the sides of the midpoint between holes.
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Figure 4.37 Erosion of grids operating at low R values.
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5 Special Investigations

This chapter extends the utility of the ffx code through several interesting investigations.
Simulation of grid sets with finite numbers of apertures is relevant to the study of sub-scale gridlets and
edge apertures. Non-uniform aperture cross sections arise regularly in standard grid manufacturing
processes. A study of misaligned aperture pairs helps to shed light on grid performance concerns.

Investigations into the effects of charge exchange ion space charge and initial energy help to direct
the appropriate simulation of ion thruster optics. Finally, a method is introduced that utilizes information

from individual beamlets to predict overall thruster current density profiles.
5.1 One, Three, and Seven Aperture Grids

For a hexagonal aperture layout, an aperture in the interior of a full grid set is surrounded by 6
apertures operating at nearly the same beamlet current. As a result, symmetric boundary conditions are used
in the ffx analysis volume and only a small portion of the grid set needs to be simulated.

It turns out that apertures on the edge of the grid set, which are not symmetrically surrounded by
other apertures, behave differently than the interior apertures. This is especially true with respect to the
crossover limit.

The ffx code was used to simulate grids with 1 aperture, 3 apertures, 7 apertures, and the standard
hexagonal aperture layout. The same code ‘was used to simulate all of these cases, all still using the
symfnetric boundary conditions. To simulate 1 aperture for example, a quarter hole was placed at the corner
of a large simulation square, essentially simulating a large distance to the next aperture. The hexagonal
aperture layout is basically the case of an infinite number of adjacent apertures.

Figure 5.1 shows an impingement limit curve extending over the low beamlet current range. The
crossover limits are defined here as the points where the impingement to beamlet current ratio, J/Jp, goes
above 1 %. Charge exchange ion impingement current is not included in the calculation of the impingement
current ratio in this figure. The crossover limit is greatest for the 1 aperture grid. As more apertures are

simulated, the crossover limit decreases.
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Figure 5.1 Crossover limit change with the number of simulated apertures.

Figure 5.2 shows the crossover limits from the impingement limit curve as a function of the
number of simulated apertures. The crossover limit found with a 1 aperture grid is 33 % greater than the
crossover limit found with the hexagonal aperture grid. The difference in the crossover limit is, of course,

dependent on the exact definition of where the lcrossovevr limit occurs.
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Figure 5.2 Crossover limit decrease with an increasing number of simulated apertures.
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The reason the crossover limit changes with the number of simulated apertures is that there are
interactions among the sheaths upstream of the apertures. Figure 5.3 shows the sheaths upstream of the four
grid cases at a constant beamlet current of 0.035 mA. In the 1, 3, and 7 aperture cases, the sheath is located
a fixed distance upstream of the screen grid near the boundary edges, away from any apertures. Between
the apertures, the sheaths interact with one another and move farther upstream. In the hexagonal aperture

layout case, the sheath is located much farther upstream than in the other cases.

f,=0.05 (J, = 0.035 mA)

a) 1 Aperture b) 3 Apertures

~agi—
A

c) 7 Apertures d) Hexagonal Aperture Layout

Figure 5.3 Sheath location as a function of the number of apertures.

The greatest crossover limit will be seen in the case where the sheath is the most dished. Ions
entering the sheath at the edge of the aperture are turned inward toward the beamlet centerline. For a highly
curved sheath, these ions will receive a large radial velocity, causing impingement onto the accel grid
sooner than in a case where the sheath is less curved. Beginning with the 3 aperture case, the sheath is
already less curved between the apertures than in the 1 aperture case. Ions entering the sheath between the
apertures are therefore less likely to strike the accel grid than ions entering from the sides of the apertures
that do not have neighboring apertures. This results in a lower impingement current, and a lower crossover
limit.

Figure 5.4 shows ion beamlets that correspond to the four grid cases operating at a beamlet current
of 0.035 mA, which is below the crossover limit in all cases. The sheath above the center aperture in the 7

aperture grid is located farther upstream than the six surrounding sheaths.
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Figure 5.4 Ion beamlets below the crossover limit.

In this case, only the crossover limit is affected by the number of apertures in the grid. Figure 5.5
shows ion beamlets for the four grid cases at a beamlet current of 0.5 mA, which is just below the
perveance limit of 0.508 mA. Near the perveance limit, the sheath is located against the screen grid in all
cases. As a result, none of the sheaths upstream of the apertures interact, and the perveance limit should be
almost exactly the same in each aperture. In cases where the sheath is not against the screen grid at the
perveance limit, such as when using a very thin screen grid for example, the number of apertures might

affect the perveance limit as a result of sheath interactions.
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Figure 5.5 Constant perveance limit with the number of simulated apertures.

5.2 Grid Cusps and Linear Grids

Chemical etching grid apertures can result in cusps on the inside walls of the screen and accel grid
holes. This is in contrast to drilling the grid apertures, using a drill bit or a laser for example, where the
resulting hole walls are flat. Cusp height (h) was varied as a percentage of each grid’s thickness (t; or t,).

Figure 5.6 compares a drilled grid and a cusped grid.
Drilled Grid Cusped Grid
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Screen Grid I:I P I—}ad—{“l
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Figure 5.6 An example of a cusped grid.
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Figure 5.7 shows how the crossover limit is increased, and the perveance limit decreased, with
increasing cusp height. The operating range is reduced essentially because the effective diameter of the

accel grid hole is reduced.
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Figure 5.7 Decrease in operating range with increasing cusp height.

Figure 5.8 compares the crossover and perveance limits as a function of accel grid hole diameter
for drilled and cusped grids. The crossover limits in the cusped case are slightly lower than in the drilled
case because the crossover limit occurs when ions strike the downstream side of the accel grid holes. For
the same inner hole diameter, the cusped grids have a greater downstream edge hole diameter, and
therefore the beamlet current has to be reduced further compared to the drilled grids to reach the crossover

limit.
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Figure 5.8 Similarity between variations in cusp height and accel grid hole diameter (d,).

Cases where the hole walls were ahgled were also studied. These cases are referred to as linear
grids here, because there is a linear variation in the hole diameter in moving between the upstream and
downstream sides of the grid.’ The crossover and perveénce limit variations with changing hole wall angle
are shown in Figure 5.9. Changes in the screen grid wall angle are denoted by the open symbols, while
changes in the accel grid wall angle are denoted by the closed symbols. The inner hole diameters were held
constant, meaning the smallest part of the screen grid was always 2.0 mm in diameter, and the smallest part

of the accel grid was always 1.2 mm in diameter.
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Figure 5.9 Crossover and perveance limits as a function of hole wall angle.

+ With respect to the accel grid, the drawback of angling the hole wall in either direction is that the
resistance to electron backstreaming is reduced as a result of the accel grid being moved farther away from
the beamlet centerline, as shown in Figure 5.10. Changing the screen grid wall angle also slightly changes

the saddle point potential, but the effect is minor and is therefore not reported.
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Figure 5.10 Reduction in the resistance to electron backstreaming with angled accel grid hole walls.
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When operating an aperture near the perveance limit, high energy charge exchange ions that
originate between the grids can erode the upstream side of the accel grid aperture away quickly. This can
cause the accel grid to take on the shape of a linear hole that has a positive wall angle. Figure 5.11 shows
three beamlets, all operating at a perveance fraction of 0.75, with negative, zero, and positive accel grid
wall angles. Erosion at this beamlet current makes the accel grid look like the grid with the positive wall

angle, increasing the impingement current and erosion rate.

f,=0.75,J, = 0.523 mA

Screen Grid T N TR
, >4.0-10"7
Accel Grid !
Ton Density
(ions/m?)
0.0
d, Upstream: 1.2 mm 1.2 mm 2.0 mm
d, Downstream: 2.0 mm 1.2 mm 1.2 mm

Figure 5.11 Changing impingement current with accel grid wall angle using a constant minimum

hole diameter.

Using a positive wall angle for the screen grid and a negative wall angle for the accel grid results
in a grid set with a very large operating range (low crossover limit and high perveance limit). It turns out,
however, that the ion beamlets for this case have worse divergence angles (o) than for the normal grid case.
To minimize divergence angle over the entire operating range, the opposite situation is better, i.e. using a
negative wall angle for the screen grid and a positive wall angle for the accel grid. This is shown in Figure

5.12.
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Figure 5.12 Improved divergence angles with slanted aperture walls.

5.3 Offset Apertures

The screen and accel grid holes should be exactly aligned to provide the lowest possible crossover
limit and highest possible perveance limit. In reality, it is difficult to align every hole pair considering that
there are often thousands of apertures in a grid. It is beneficial then to be able to see how misaligned
apertures perform compared to perfectly aligned apertures.

Hole misalignment was simulated using a single aperture. Note that the crossover and perveance
limits found using a single hole may be different than those found using a full hexagonal aperture layout
pattern. Figure 5.13 shows the crossover and perveance limits as a function of accel grid hole offset. The
center of the accel grid hole was offset by a percentage of the screen grid hole diameter. A 10 % offset
(8/d,) for the 2 mm screen grid hole diameter (d,) is an offset (8) of 0.2 mm for example. The crossover
limit was seen to increase by 124 % at a 15 % misalignment compared to the aligned crossover limit.
Similarly, the perveance limit was reduced by 60 % at a 15 % misalignment compared to the aligned

perveance limit.
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Figure 5.13 Crossover and perveance limit variation with hole misalignment.

Occasionally, the screen and accel grid holes might be intentionally misaligned in order to
improve characteristics of the ion beam. To produce a more collimated beam for example, the holes toward
the perimeter of the grid can be misaligned in order to steer the ion beamlets toward the beam centerline.
Figure 5.14 shows trajectories of ions as they pass through apertures in various states of misalignment.
Notice that moving the accel grid in one direction actually has the effect of steering the ion beamlet in the

opposite direction.
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f,=0.15
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f,=0.30
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f,=0.45
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Figure 5.14 Ion trajectories passing through misaligned apertures.

Figure 5.15 shows the steering angle of the beamlet as a function of accel grid hole offset. The
steering angle for each case was found by tracking the location of the ion density centroid as a function of
axial distance downstream of the accel grid. A 10 % misalignment turns the beamlets by an average of 4.1
degrees. Both the near linear trend and magnitude of deflection angle with hole offset shown in this figure

are similar to those reported by Okawa.
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Figure 5.15 Beamlet steering as a result of hole misalignment.

One possible consequence of offsetting the screen and accel grid holes is that the ion beamlet cross
section could become noncircular. The circular nature of the cross section was checked three ways. First, -
the cross sections were simply checked visually. Second, ellipses were fit to the ion density cross sections
along the axial diétance of the beamlet. The equation of an ellipse is given in Eq. 5.1. At each axial
location, the center of the ellipse was placed at the ion density centroid (Cy,C,), and the ellipsoid
parameters (a and b) were adjusted to find the smallest ellipse in terms of area (mab) that encompassed a
given percentage of the ions on that plane. The ratio of the semi-major to semi-minor axis lengths was
determined to describe how noncircular the beamlet was. Third, the ion density variation passing through

the centerline of the beamlet was checked for skewness, as defined in Eq. 5.2, at several axial locations.

Ellipse
(x—C,) +<y—Cy)2 . Eq.5.1
a’ b* -
Skewness

|

n = number of samples

Eq.52

X =mean
s = standard deviation
None of the above tests revealed a significant change in the circularity of the ion beamlet with

changing accel grid hole offset. It could be that the changes in circularity were not detectible with the
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resoluation used in these simulations. It could also be that a different grid setup (changing the accel grid hole
diameter, voltages, etc.) might yield greater changes in beamlet deflection and possibly allow the

observation of a noncircular cross section.

5.4 Charge Exchange lon Space Charge

Most of the time, charge exchange ion space charge can be neglected. The effect of charge
exchange ion space charge on centerline saddle point potential is shown in Figure 5.16 for three propellant
utilization values. For the 0.3, 0.5, and 0.7 perveance fractions, the saddle point potential rises by about 1.5

% and 6.3 % on average for the 0.6 and 0.9 propellant utilization efficiencies respectively.

BEAMLET CURRENT [J,] (MA)

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0 T T T T T T

50 | V,=-400V
-100 |

-150
ny=0.3
-200
— Ty = 0.6
-250

-300 | Nusta, = 0.9

_350 1 I H ! |
0.0 0.2 0.4 0.6 0.8 1.0

PERVEANCE FRACTION [f,] (-)

CENTERLINE SADDLE POINT POTENTIAL
[VSaddlePomt] (V)

Figure 5.16 Variation in saddle point potential as a function of propellant utilization efficiency when

including charge exchange ion space charge.

Figure 5.17 compares the ion density contribution from charge exchange ions to the ion density
contribution from beam ions at a perveance fraction of 0.3. Note that the ion density ratio is only shown in
locations where beam ions are present. Even at a propellant utilization efficiency of 0.3, the charge
exchange ion density is less than 20 % of the beam ion density in the region near the centerline saddle point

potential.
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Figure 5.17 Increase in space charge with decreasing propellant utilization efficiency.

5.5 Charge Exchange lon Initial Energy

When a charge exchange reaction takes place, it is thought that there is no momentum transfer
between the ion and neutral molecule. As a result, charge exchange ions have a very low kinetic energy
upon creation, only due to the thermal velocity of the neutral molecules before the reaction.

For nearly all of the results presented here, the initial energies of charge exchange ions are
obtained by sampling a Maxwell Boltzmann distribution characterized by a temperature of 500 K (0.043
eV).

Changing the initial charge exchange ion energy changes the resulting erosion pattern. Figure 5.18
shows three erosion patterns at a perveance fraction of 0.4 using three charge exchange initial temperatures.
The familiar pit and groove erosion pattern is most acute with the lowest charge exchange ion temperature,
0.043 eV. As the temperature is increased, the erosion is more evenly distributed across the accel grid
downstream surface. This occurs because the ions have more initial energy to overcome the small electric
fields that would otherwise vector the ions into the pits and grooves. Because the expected erosion pattern
occurs most visibly at the neutral propellant temperature, 500 K, it is thought that using this temperature is

most correct.
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Figure 5.18 Accel grid erosion pattern as a function of charge exchange ion initial energy.

5.6 Fixed Emission Surface

Normally, the sheath between the discharge chamber plasma and ion optics sets up automatically,
finding the appropriate location according to the plasma density and grid voltages. As a result, a crossover
limit is often found at low plasma density when the sheath moves upstream, and a perveance limit is found
at high plasma density when the sheath moves downstream.

If the sheath could be fixed in a single location instead of allowing it to move, the crossover and
perveance limits could be improved for instance. One way to accomplish this has been proposed in the
Emissive Membrane Ion Thruster (EMIT) concept [Wilbur].

For this study, it will be assumed that a theoretical fixed surface from which ions are generated,
basically the sheath, could be created. This surface is of arbitrary shape, and ions are generated with

uniform current density only at desired locations.
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One way to specify the fixed sheath shape is by using a Bezier curve. Bezier curves are named for
Pierre Bezier, who used them for automobile design starting in 1962. A Bezier curve is fully described by a
number of control points, P;. A parametric parameter, u, where O <u <1, describes a single location
along the curve.

The fixed sheath location will be described in radial, r, and axial, z, coordinates. Two Bezier
curves are needed, one for r(u) and another for z(u). Cubic Bezier curves were selected for use in this
application, as given in Eq. 5.3. A cubic Bezier curve, where the greatest power of u is 3, uses four control
points: Py, P;, P, and P;. The terms in front of the control points are called blending functions, B;.

r)=(1-u) R, +3(1-u)fuR +3(1-u)u’R, + u’R,
Eq.5.3

z(u) = (l—u)3ZO ~Ir3(1——u)2uZ1 +3(1~u’Z, +u’Z,

An example Bezier curve is shown in Figure 5.19. At the start of the curve, where u =0, the
curve is tangent to the line connecting the first and second control points, Py and P;. The curve is also
tangent to the line connecting the last two control points at the end of the curve. In general, the curve only

passes through the first and last control points.

0.8 r

B, = (1-u)® R~
07 | B,=3(1-uu r(u)“éB"R"

B, = 3(1-u)u?
83 = U3

3 Control Points (R,2)
()= Bz, Po = (0.000,0.6)
=0

o
o
T

P, = (0.333,0.6)
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Figure 5.19 An example Bezier curve used as the ion macro particle release surface.

The Bezier curve is rotated around the z-axis to create the fixed sheath, or ion release surface, as
shown in Figure 5.20. All points above the fixed sheath are held at a potential equal to the upstream plasma
potential. In this case, the fixed sheath was made to extend to the same diameter as the conventional screen
grid used previously. Because the screen grid lies entirely upstream of the sheath, in this particular case, it

does not affect the simulation and is shown only to reference the ion release surface location. Ion macro
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particles were released from this surface within a radius of 0.9 mm from the centerline, less than the radius

of the last control point, 1.0 mm.

Screen Grid Location

// With Normal Sheath

\—‘_\ Fixed Sheath

Accel Grid
/g/

Figure 5.20 The example fixed sheath shown with the screen and accel grids.

Locations from which the ion macro particles are released are selected using a random number
generator. Most random number generators provide numbers evenly distributed from 0 to 1 inclusive, i.e.
0 <n<1. Two random numbers are used to obtain each particle’s starting location, as summarized in Eq.
5.4. The first number, n,, selects u, which in turn sets the r and z particle location. The second number, n,,

selects 0, the angle to the particle about the z-axis, which sets the x and y particle location using r.

()

u=n —>
z(u)
Eq. 5.4
po x =r-cos(f)
O=n,——>
2 y =r-sin(6)

Particle locations sampled evenly in the u-0 space end up being unevenly distributed when placed
into the simulation, as shown in Figure 5.21. The particles with small u values are placed closer together

than those with large u values. If all particles are equally weighted, meaning each macro particle represents
the same number of ions, the current density near # = 0 will be greater than the current densities at greater

radii.
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Figure 5.21 Starting particle locations chosen evenly in u and 6 may end up unevenly distributed in
the physical simulation.
One way to obtain equal current density over the sheath surface is to weight each particle

according to its starting location. The surface area, A, of the fixed sheath can easily be found through

numerical integration since the since the equation of the surface is known, as given in Eq. 5.5. The

differential surface area, dA , at any value of u is given in Eq. 5.6.

A= TJI' r(u)\/(a—:,;(u”—))z +(aiT(:))2 du do Eq.5.5

A= [[dA(u)du do

00

w81 <347

The maximum differential area can occur at any u value, not necessarily at # =1, depending on

Eq.5.6

the rate of change of the surface with u, which is affected by the positioning of the control points. The
derivative of r(u), which is similar in form to the derivative of z(u), is given in Eq. 5.7. Figure 5.22 shows
the differential surface area of the curve specified by the given control points plotted as a function of radial
distance. In this particular case, r and u are linearly related because the control points are evenly spaced in

the radial direction.

a—ya‘(f_)z(_3+6uﬁ3u2)R0+(3—12u+9u2)R1 Eq.5.7

+ (6u —9u? )R2 +3u’R,

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-
@
—

271
16 | A= [[d4(u)dudo
e 00
E 14| PRI
- or(u)’  oz(u)
S 1z | b=l 4T
P
1.0 | Control Points (R,Z)
< Po = (0.000,0.6)
< 08 | P;=(0.33306)
E P, = (0.667,0.6)
w 06 © p,=(1.0000.2)
04 -
L
Q02 ¢t
00 ! 1 L L L J
0.0 0.2 0.4 0.6 0.8 1.0 1.2

RADIAL DISTANCE [r] (mm)

Figure 5.22 The differential surface area variation in the radial direction.

To make the current density constant, the amount of current that an ion macro particle represents
is multiplied by the ratio of the differential area where the particle is initially located to the maximum
differential area size on the curve. This makes a particle’s size proportional to the area where it is located.
For example, particle sizes are greatly reduced near the centerline where there is typically a high particle
density. Figure 5.23 shows the first 1000 ion macro particles released from the fixed surface with and
without weighting applied. The area of each particle is proportional to the amount of current it carries. With

weighting applied, the area of particle coverage should be approximately uniform in this view.,

1.0

by (% 7y
fijles e,
et 4o (@
T ALY

Without Weighting With Weighting

Figure 5.23 Jon macro particle size weighting with differential surface area to obtain constant

current density.
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Figure 5.24 shows an impingement limit curve comparing the crossover and perveance limits
found using the conventional grids and the fixed sheath. This particular choice of the sheath location

prevented the crossover limit from occurring, and also extended the perveance limit.

12 -
10
Normal Sheath
CL: 0.054 mA
8 | PL 0508 MA

Fixed Sheath
CL: none —
PL: ~0.68 MA  —|

IMPINGEMENT TO BEAMLET CURRENT
RATIO [J/Jp] (%)
o

t i 1

0.0 0.2 0.4 0.6 0.8
BEAMLET CURRENT [Jp] (MA)

Figure 5.24 Improvement in the crossover and perveance limits using a fixed sheath.

Figure 5.25 compares the beamlet shapes found using the conventional screen-accel grid setup and
those found using the fixed sheath surface. The screen grid in the fixed sheath case is shown only to
reference the fixed sheath location. With regard to the crossover limit especially, the benefit of keeping the

ion release surface far downstream at low beamlet currents is evident.
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Figure 5.25 Beamlet shapes found using the conventional grids compared to those found using the
fixed sheath.

Another possible goal when designing the fixed sheath surface might be to improve the divergence
angles of the beamlets for example. In this case, the sheath surface produced beamlets with much lower

divergence angels, shown in Figure 5.26.
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Figure 5.26 Improvement in beamlet divergence as a result of the choice for the fixed sheath.

5.7 Thruster Current Density

It is difficult in practice to measure the beamlet currents of individual apertures over the face of a
thruster. Instead, current density profiles are usually taken at various locations downstream of the thruster
and the beamlet currents are inferred from those data. Usually, this is done by first extrapolating the current
density back to the thruster face and then simply multiplying the current density by the area of an aperture.
A program was developed to try to more intelligently determine the beamlet current variation along the
face of the thruster given a current density profile measured at some downstream location.

One way to describe a beamlet is to model it with an equation that describes the current density at
any location downstream of the aperture. Eq. 5.8, similar in form to that used by Reynolds, gives the
current density variation downstream of an aperture as a function of distance, /, and angle, @, to any point,
P. In determining the six constant values used in this equation (Aj, Ay, n5, Ay, Ay, 1,) for a particular
aperture, spherical geometry is assumed such that the integral of the current density, j,, over a hemisphere
downstream of the aperture results in the beamlet current, J,,. This calculation is shown in Eq. 5.9.

Al i (1cosa) A, —cosr)'?
jb(l,a’):?ie el +722—e A (1-cosa) Eq.5.8
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2790°

Jy = f Ijb (l,a)? sin(a)da d
00 Eq. 5.9

= ZﬂT(AIe"‘(l“"’s‘")nl + A, Halimeosa)” )sin(a)da
0
The current density equation models all of the ions as emanating from a single point on the
beamlet centerline. A flat probe that is not looking directly at this point will not collect all of the current
predicted by the equation. A second angle, B, is used to describe the angle between the probe face and the
line that connects the aperture to the probe. If the probe differential area is dA , the effective area of the

probe is reduced to dAcos . Figure 5.27 shows the angles o and B. The angle o does not depend on the

probe orientation, and o does not equal 3 in the general case.

Ion Density J
(ions/m?3) /
]
fiP
1
1
/

0.0
dA

Figure 5.27 Current density at any point P found knowing the distance to the point, /, and the angle

to the point from centerline, a. J, =0.209, f,=0.3.
The current density that a probe will detect from an individual aperture is given by Eq. 5.10. The

total current density measured by the probe at a certain location is a summation over all apertures on the

thruster face that contribute significant current, as given by Eq. 5.11.

A csat A i (ecosa)
jb(l,a,ﬂ)=(l—2'e Aili-cosa) +—l—22—e Aa(1-cosa)'® )cosﬂ Eq. 5.10
Total Apertures
Eq. 5.11

STtap),

] bProbe
i

There are three possible thruster configurations to consider: a thruster with flat grids, a thruster

with grids curved downstream, and a thruster with grids curved upstream. These are shown in Figure 5.28.
Spherical geometry is assumed in the two curved grid cases. Rc is the radius of curvature of the grids, Ry is
the radius of the area of the thruster face with apertures (measured along the chord instead of the arc
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measurements are made.
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Figure 5.28 Variable definitions for three possible thruster configurations.
gives the angle .

i = (xs, ys, zs)

o =cos™!

If the vector I is defined as the vector from the origin to the aperture, and the vector V is the
7 = (xp — x5, yp — ys,2p — 25)

vector from the aperture to the probe location, the angle o and the length [ are given by Eq. 5.12. Eq. 5.13

uyv, +uyvy +quz

(7]
f=cos”

. lxp - xs'
l

Eq.5.12

Figure 5.29 shows the spherical geometry used for the cases where the grids are curved upstream
131

or downstream. The center of the grid set was taken to be along the x-axis, where 6 = 0 and ¢ = 90°. The

Eq.5.13
hole layout was assumed to be hexagonal, where the rows of holes run along lines of constant ¢. In other
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words, while ¢ is held constant, 6 is varied by an amount A, such that the arc length change is equal to the
hole center-to-center spacing, l.. The rows of apertures are separated by Ad, and odd rows are offset by
(AB)/2. The location of the center of an aperture on the grid surface (xs,ys,zs) can then be easily found

using the transformations from spherical to rectangular coordinates listed in the figure.

Agzﬁs_zif_
R. R,
il
2 R,

xs = R, cos@sin ¢

ys = R, sin@sin ¢

z8 = R, cos ¢

Figure 5.29 Spherical geometry for the cases where the thruster grids are curved downstream or

upstream.

For the case where the grids are curved upstream, the measurement plane is placed upstream of the
thruster face such that the value L is negative. Also, the ion beamlets are taken to be directed toward the
origin. Slightly different equations are used for the flat grid case. The grid radius of curvature (R¢), for
example, is simply taken as the distance from the origin to the thruster face, and can be set to an arbitrary
value.

A stand alone program was written to curve fit the six unknown constants in the current density
equation to the ion trajectory distribution of a beamlet. This program uses the Levenberg-Marquardt
method, which is the standard in nonlinear least-squares curve fitting [Press]. An example result of the

curve fitting program is shown in Figure 5.30 for a beamlet current of 0.209 mA.
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Figure 5.30 The current density equation fit to the ion trajectory distribution of a beamlet.

The curve fitting program was used to find constants for several beamlet currents, as given in

Table 5.1. The graphical representations of these curves are given in Figure 5.31.

Table 5.1 Values for the constants used in the current density equation.

Jy(MA) £, () AR M o0 | AR A, n,
0.035 0.05 0.000150 23 0.94 0.000099 500 0.68
0.070 0.10 0.000197 57 1.38 0.000173 500 1.34
0.139 0.20 0.001624 26 0.72 0.007803 500 0.50
0.209 0.30 0.002320 18 0.62 0.001153 500 0.50
0.279 0.40 0.005284 127 1.01 0.004618 500 0.50
0.348 0.50 0.012676 500 0.50 0.012676 500 0.50
0.418 0.60 0.012681 126 0.91 0.006608 500 0.50
0.488 0.70 0.009398 500 1.32 0.004402 500 0.50
0.523 0.75 0.009080 500 1.35 0.004578 500 0.50
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Figure 5.31 Current density equation curve fits as a function of beamlet current.

For these examples, the thruster radius, Ry, was taken to be 10 cm, which results in 6697 apertures
in a flat grid. First, all apertures on the thruster were assigned an equal beamlet current, J,, of 0.209 mA (f,
= 0.3). Figure 5.32 shows current density profiles (large, solid symbols) that would be measured at different
locations downstream of the thruster. Near the grids, where Ly is 5 cm, the beam profile extends only
slightly beyond the edge of the thruster. Mdving downstream, the profile broadens. Note that no beam

attenuation as a result of ion scattering or charge exchange is accounted for.

Large, solid symbols =
measured current density
Small, open symbols =
solved current density

W W b
o O

Flat Grids

Ry=10cm
Jp =0.209 mA
Js=140A

[«

N
o

CURRENT DENSITY [j] (A/nf)
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(=]
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Figure 5.32 Current density profiles downstream of a flat grid set.

134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Rather than already knowing the beamlet current profile, the goal of the current density program is
to determine the unknown beamlet currents based on known current density measurements. The code
accepts as input a) a measured current density profile at some downstream location, b) a set of constants for
the beamlet profiles, ¢) an initial guess for the beamlet current variation along the thruster face, and d) the
thruster geometry. The code goes through an iterative process to reverse calculate the beamlet current
profile. First, the code uses the beamlet current profile to predict the current density at the measurement
plane. Then, the code compares the predicted current density profile with the measured current density
profile and updates the beamlet current profile to make a better prediction.

The current density profiles obtained previously using a constant beamlet current, 0.209 mA,
profile are now taken to be “measured” current density profiles to see if the code can correctly determine
the original constant beamlet current profile. Referring back to Figure 5.32, the small open symbol curves
are the current density profiles solved for by the current density program. At all downstream distances, the
current density profiles match well.

Figure 5.33 shows the beamlet current profiles that correspond to the current density
measurements of the previous figure. Ideally, all of the beamlet current profiles should be constant, at 0.209
mA. Close to the grid, where L is 5 cm, the beamlet current profile is correct. With the current density
measurements further downstream, the beamlet current profiles diverge from being constant even though

the current density predictions match the measured current density values well.

0.30
Flat Grids
Ry=10cm
g 025 Jp = 0.209 MA
= L Jg=140A
= 0.20 |
-
pd
s
o 0.15
)
O
m
W 0.10 }
=
<
|
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OOO L L . '
0.00 0.05 0.10 0.15 0.20

RADIUS [1] (m)

Figure 5.33 Beamlet current profiles corresponding to current density measurements.

Although it is not shown here for brevity, two things can be done to make the beamlet current
profiles match correctly. First, better initial guesses for the beamlet current profile can be made. Choosing

the initial beamlet current profile to be a constant 0.209 mA results in correct beamlet current profiles.
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Second, in a real thruster the beamlet current profile usually decreases with increasing radius. Forcing the
beamlet currents to decrease in moving toward the edge of the thruster, in this case, brings the beamlet
current profile into perfect agreement.

Finally, current density profiles at three downstream locations are shown for a linearly varying
beamlet current profile across the thruster face. This situation is much more realistic than the constant

beamlet current cases shown previously.
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Figure 5.34 Current density profiles with a variable beamlet current profile.
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6 Grid Design

The grid geometry parameters discussed previously have complex interactions, which is why
designing a grid set is not a simple, straightforward process. An individual parameter, such as the grid
spacing for instance, can be varied to find its affect on things like the ion transparency, beamlet divergence,
and operating range pretty easily given a fixed set of values for the rest of the dimensions. Trying to vary
several parameters at the same time to find optimum operating points is more difficult.

One tool that can be used to search for solutions to problems with many variables is an
evolutionary algorithm. Evolutionary algorithms work by applying evolutionary concepts to problems that
have been translated into the biological realm. Information concerning evolutionary algorithms was

compiled from the publications by Busetti, Obitko, Pohlheim, Srinivas, and Whitley.
6.1 Evolutionary Algorithms

Evolutionary algorithms, in general, attempt to solve problems using the ideas of evolution. Two
of the main sub-categories of evolutionary algorithms are genetic algorithms and evolution strategies. Two
additional sub-categories related to computer programming and machine learning are genetic programming
and evolutionary programming. | ‘

Figure 6.1 shows the general outline of what an evoluﬁonary algorithm does. The first step is to
select an evolutionary algorithm appropriate to the problerﬁ. The next step is to define a set of possible
solutions to the problem, called chromosomes or genomes. Then, those possible solutions are evaluated to
determine their effectiveness at solving the problem. In doing this, each solution is assigned a fitness value.
Then the ideas of selection, crossover, and mutation are used to advance the set of possible solutions to the

next generation. After many generations, the set of possible solutions will hopefully converge to a single,

/y Fitness \

best, solution.

Problem —— | Mutation ~ LYOMHOMAIY g tion | —  Solution
Algorithm
\ Crossover /
(Recombination)

Figure 6.1 Outline of an evolutionary algorithm.
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Genetic Algorithms & Evolution Strategies

Genetic algorithms are perhaps the most widely used evolutionary algorithms. Genetic algorithms
have been primarily developed in the United States, starting with the work of John Holland in the 1960’s.

Evolution strategies have been developed alongside, but fairly independently of, genetic
algorithms. Specifically, evolution strategies were first developed through the work of Ingo Rechenberg
and Hans-Paul Schwefel in Germany.

Both genetic algorithms and evolution strategies share the same principles of evolutionary
algorithms. Genetic algorithms generally have a wider area of application than evolution strategies. Genetic
algorithms have been used for search, design, machine learning and optimization problems, whereas
evolution strategies are mainly used for optimization problems. Genetic algorithms tend to favor binary
encoding of the solutions rather than real-value encoding, crossover rather than mutation of the

chromosomes, and tend to have larger solution populations than evolution strategies.

Evolutionary Algorithms

e

Genetic Algorithms Evolution Strategies Genetic Programming,

. « Binary . « Real-Value Evolutionary tP]rogramming,
‘Representation Representation e
* Favor Crossover » Favor Mutation
o Larger + Smaller
Population Population

" Benetits of Genetic Algorithm and Evolution Strategies
Genetic algorithms and evolution strategies are known as “weak” methods because they try not to
make many assumptions about the problem in question. Genetic algorithms and evolution strategies are
methods that can be used to search for a global solution to a problem without the use of gradient
information.
e Evolutionary algorithms search through the solution space using many parallel solutions rather
than a single solution.
e Evolutionary algorithms do not require any derivative type information about the problem.
e Evolutionary algorithms use probabilities to influence the search direction. In this way, paths that
look bad at a certain step, when in reality might lead to good solutions, can remain open when

they otherwise might have been closed by a more absolute search method.
Example Problem
An example problem is useful for illustrating the principles of evolutionary algorithms. In this

example, one might wish to optimize the ion thruster grid geometry in order to achieve the longest possible

grid lifetime for a certain operating voltage and current range. In this case, the parameters that might be
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varied are the grid hole center-to-center spacing (/), screen grid thickness (t), screen grid hole diameter
(dy), grid-to-grid spacing (l;), accel grid thickness (t,), accel grid hole diameter (d,), and accel grid voltage
(V).

Chromosomes

By the evolutionary analogy, each possible solution to the problem in question is called a
chromosome, or genome. Each chromosome somehow describes a value for all of the parameters that vary
in the problem. Each value is by analogy called a gene, and is encoded onto the chromosome in a certain
location.

In this example, each chromosome will give a value for the hole center-to-center spacing (I),

screen grid thickness (t;), etc.

Encoding

There are many ways in which chromosomes are typically constructed. The method of encoding
values onto the chromosome is often influenced by the problem itself. Binary and real-value encoding are
common to genetic algorithms and evolution strategies. Permutation encoding is used for more specific
‘problems, such as the traveling salesman problem. Tree-encdding, not discussed here, is used in genetiyc and

evolutionary programming.

Binary Encoding

The most traditional way of placing solution values onto the chromosome is through binary value
encoding. In binary encoding, each parameter is represented by a binary bit string of a certain length. This
is the traditional way that genetic algorithms encode values.

In the example problem, the entire chromosome would be 56 bits long if each of the seven

parameters were assigned 8 bits of resolution. An example chromosome is shown in Figure 6.2.

Lo t d, 1 t, d Vv
—r —— —— —— —— —— ——

10110010 00111101 10010111 00010111 11110001 00111110 11010010

a a

Figure 6.2 Chromosome containing genes that code for parameter values.

Real-Value Encoding
A second common way of encoding values is called real-value encoding. In this encoding scheme,
each chromosome is simply the collection of the actual parameter values. This encoding method is

traditionally favored in evolution strategies.
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Figure 6.3 An example of real-value chromosome encoding.

Permutation Encoding

Permutation encoding has applications in certain types of problems. Specifically, the problem
commonly known as the traveling salesman problem and other task ordering problems use permutation
encoding. The traveling salesman problem is the problem of finding the shortest path among many different
places that the salesperson must visit. Each chromosome, for example, might have a list of numbers that

describe the order of cities to be visited.

(15620391216 137 ... )

Figure 6.4 An example of permutation encoding for a graveling salesman type problem.

ﬁopulation \

In genetics, there are many chromosomes that exist at the same time, and the complete set of
chromosomes in a generation makes up the gene pool. Essentially, the population of chromosomes in a
generation are all the possible solutions to the problem. Each problem is different, but typically there might

" be around 30 chromosomes in the population in each generation. On the first generation, all of the values in

all chromosomes are assigned random values as a starting point.

Fitness Values

There must be a way to evaluate how well each chromosome meets the solution. This is called
finding the “fitness value” of the chromosome. The fitness value will be used to determine the probability
that the chromosome will reproduce to create offspring in the next generation of the algorithm.

In the example problem, if the goal of the problem is to find a grid set with the maximum lifetime,
the fitness value of the chromosome might be the predicted operation time until the accel grid loses half of
its original mass. The ffx code can be used to test each chromosome at several operating conditions and
assign each chromosome in the population a fitness value. For example, if the population is comprised of
ten chromosomes, the ffx code will evaluate each chromosome to determine the predicted accel grid

lifetime and give each a fitness value. The fitness values for this example are listed in Table 6.1.
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Table 6.1 Example fitness values for ten chromosomes labeled 0 through 9.

Chromosome Fitness Nor@a lized
Fitness
f /8
0 5 1.0
1 0 0.0
2 3 0.6
3 12 2.4
4 6 1.2
5 2 0.4
6 4 0.8
7 7 1.4
8 1 0.2
9 10 2.0
Sum of fs: 50
Average (f,): 5

An example fitness value function for the example problem is given in Eq. 6.1. Here, the fitness of
chromosome i is given by the grid transparency to ions, ¢;, multiplied by one minus the divergence angle,

o, multiplied by the predicted grid lifetime, L.

ﬁ:@f(l_gzo)i | Eq. 6.1

There are many possible choices for the fitness function. For instance, one could desire to
minimize the beam divergence angle only, or one could increase the effect of the predicted lifetime by

taking it to a power. The fitness function will change with the desired problem solution.

Creating a New Population

Once the fitness values of each chromosome in the population are determined, the next generation
of chromosomes can be formed. In this process, the new set of chromosomes will ideally be better at
solving the problem than the previous generation of chromosomes. The chromosomes in the current
generation are called the “parent” chromosomes, and the chromosomes formed from those chromosomes
and placed in the next generation are called the “child” chromosomes.

The process of forming the chromosomes in the next generation involves a) the “selection” of
parent chromosomes for reproduction, b) combining the parent chromosomes into child chromosomes
through “crossover”, and ¢) random “mutation” of the child chromosomes. There are many different ways

in which to perform these steps in evolutionary algorithms.
Selection

Generally, as is the case in the algorithm developed here, two parent chromosomes are selected for

reproduction and two child chromosomes are produced from those chromosomes. The parent chromosomes
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are selected according to their fitness values. Here, chromosomes with greater fitness values meet the
solution better than chromosomes with smaller fitness values. The chromosomes with greater fitness values
are therefore more likely and better candidates to produce child chromosomes, hence the “survival of the
fittest” component of the evolution process.

In the example problem, chromosome 3 would have the best chance at being selected to be a
parent chromosome because it has the greatest fitness value. Accordingly, chromosome 1 is the least likely
to be selected to be a parent.

There are many techniques used to select parent chromosomes for reproduction. These include

roulette wheel selection, stochastic sampling, and tournament selection.

Roulette Wheel Selection

In roulette wheel selection, chromosomes are selected for reproduction based on the magnitude of
their fitness values. The fitness values can be thought of as being laid out around a wheel, with the portions
of the wheel allocated to the chromosomes based on the sizes of the fitness values, as shown in Figure 6.5.
To select a parent chromosome, a random number is generated from zero to the sum of the fitness values,
and the ‘random 'number will then point to a parent chromosome. Chromosome 0, for example, has a 5/50
chance (10%) of being selected for reproduction. A second random number is generated to choose the

second chromosome for reproduction.

Chromosome |  Fitness Normalized | = Selection
Fitness Probability
fi £y %
0 5 1.0 10
1 0 0.0 0
2 g 0.6 6 6%
3 12 2.4 24
4 6 1.2 12
5 2 0.4 4
6 4 0.8 8 .
7 7 14 14 24%
8 1 02 2
9 10 2.0 20
Sum of f;s: 50
Average (f,): 5

Figure 6.5 Roulette wheel selection.

Stochastic Sampling
Stochastic sampling is often used instead of roulette wheel selection because it enhances the

likelihood that the chromosomes selected for reproduction will agree with the distribution of fitness values.
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Often in the selection process, an intermediate chromosome population is created between the
current generation and the next generation. Chromosomes are seclected from the parent generation and
placed in the intermediate population. Then, only chromosomes in the intermediate population can be
selected for reproduction to place offspring in the next generation.

Chromosomes that have normalized fitness values, f//fs, greater than 1.0 are above average
chromosomes, while those that have normalized fitness values less than 1.0 are below average
chromosomes. One way to create the intermediate population is to use “remainder stochastic sampling.” In
using this method, the normalized fitness values are broken into an integer part and a remainder part. The
integer part instructs that many copies of the chromosome to be placed directly into the intermediate
population, and the remainder becomes the probability that an additional copy of that chromosome will be
placed in the intermediate population.

For instance, if a chromosome has a fi/f5 value of 1.2, the integer part is 1.0 and the remainder is
0.2. For this chromosome, 1 copy is placed directly into the intermediate population, and the chromosome
then has an additional 20% chance of placing another copy of itself into the intermediate population. On
average, this will place the correct number of chromosomes into the intermediate population. To achieve
the same end result, roulette wheel selection can be used with the sum of the remainders, after the integer
copies have been placed, to fill in the rest of the intermediate population: .

Something called “‘stochastic universal sampling” can be used to achieve remainder stochastic
sampling reliably. In this method, the f/f, values can be laid out end to end along a line, or around a wheel.
The sum of all the f/f, values is equal to the tnumber of chromosomes. An equally spaced line, with
segments of length 1 and a total length of one mivnus the number of chromosomes, is placed alongside the
line of f/f, values. This is a “pointer” line, where each of the pointers indicates a chromosome which will
be placed into the intermediate population. The entire line is offset by a random number, k, that is
generated from zero to one. This method still places the integer number of chromosomes into the
intermediate population because the line segments should never skip a chromosome with a length greater
than 1 along the line. Figure 6.6 shows an example of stochastic universal sampling. In this particular case,
the choice of k dictated that three copies of chromosome 3 would be placed in the intermediate population

for example.
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Figure 6.6 Stochastic universal sampling achieves remainder stochastic sampling.

Once the intermediate population has been created, pairs of chromosomes are selected at random
" for réprbduction. Steps can be taken to randomize the intermediate population'if desired. It is also common
to prevent (incest) breeding among the exact same, or very similar, chromosomes within the intermediate

population.

Tournament Selection

Another commonly used selection method is tournament selection. In this method, small groups of
chromosomes are randomly selected to participate in a tournament. The winner of this small tournament,
the chromosome with the greatest fitness value, will be placed in the intermediate population of
chromosomes. For instance, if the tournament size is 2, two chromosomes are selected and the one with the
greater fitness value gets placed into the intermediate population. Using larger tournament sizes has the
effect of further weeding out the chromosomes with lower fitness values because they are less likely to win

the larger tournaments.

Crossover

Once two parent chromosomes are selected for reproduction, crossover takes place to start the
process of producing child chromosomes. The term “crossover” tends to be associated with binary value
representations, and the term “recombination” tends to be associated with real-value representations, but
they refer to the same process. There are many different ways that crossover is implemented. Common
methods of performing crossover for both binary and real-value representations are one-point crossover,

two-point crossover, uniform crossover and discrete crossover. Most of these methods will be described
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with binary encoded chromosome examples, but the extension to real-value encoded chromosomes should

be clear. Intermediate recombination is described as applied to real-value encoding.

One-Point Crossover

One-point crossover involves selecting a point at random along the length of the chromosome and
then switching the sections either before or after the selected point. Figure 6.7 shows an example of one-
point crossover. Here, the crossover point was selected after bit four. For real-value encoding, one can

simply imagine real number values in each of the chromosome positions instead of the single binary bits.

One-Point Crossover
Parent Chromosomes Child Chromosomes

Figure 6.7 One-Point crossover applied to a binary encoded chromosome.

Two-Point Crossover

TWo~point crossover is very similar to oné-point crossover, the only difference being that two
locations along the chromosome are chosenrinstead of one. Figure 6.8 shows an example of two-point
crossover where the split points have been selected after bit three and after bit nine. The section between

the two split points are simply switched to create the new child chromosomes.

Two-Point Crossover
Parent Chromosomes Child Chromosomes

Figure 6.8 Two-point crossover applied to a binary encoded chromosome.

Uniform Crossover

Uniform crossover introduces greater randomness than either one-point or two-point crossover.
With uniform crossover, a random bit mask is generated for each pair of chromosomes. The bit mask
indicates which bit is taken from which parent. In essence, this is an extension of one-point and two-point
crossover, where many crossover points are selected. Figure 6.9 shows an example of uniform crossover.

Here, it can be seen that roughly half of each parent chromosome is given to each child chromosome.
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Uniform Crossover

Parent Chromosomes Child Chromosomes
11 01 O 1 00 01
e 0l 1 "

Figure 6.9 Uniform crossover applied to a binary encoded chromosome.

When two chromosomes are very similar, one-point and two-point crossover can skip entire
sections of the different parts of the chromosomes. Therefore, uniform crossover (and discrete crossover) is

normally better at producing new offspring than one-point or two-point crossover.

Discrete Crossover

Discrete crossover is very similar to uniform crossover. When using discrete crossover, a bit is
randomly selected from one of the two parent chromosomes to fill each position in the child chromosomes.
This is in slight contrast to uniform crossover, where a single bit mask is used to create the two child
chromosomes. Discrete crossover essentially uses two randomly generated bit masks to form the child
chromosomes. For instance, in the example Shown' in Figure 6.10, both child chromosomes took the bit
value frém the first parent chromosome in the first bit position. In the second bit position, both child
chromosomes took the bit value from the second parent chromosome. It is noted that it really doesn’t
matter which parent chromosome is chosen in the second bit position, since both bits are zero. This is the
case at several locations along the chromosome. In this particular case, it turns out that the child
chromosomes only differ by a single bit.

Discrete Crossover
Parent Chromosomes Child Chromosomes

5z

Figure 6.10 Discrete crossover applied to a binary enceded chromosome.

Intermediate Recombination

Intermediate recombination can be used with real-value encoding. The parameters of the child
chromosomes are assigned through interpolation among the two values of the parent chromosomes using
Eq. 6.2. A new random value of a is chosen for every parameter in the chromosome using the random
number 7 provided by a random number generator. Using d = 0.25 statistically results in the domain of

the children being as large as the domain of the parents.
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v, =v,a +vp2(l—a)
where:
a= r+d(2r—1)
d=025,r=[01],and a=[-d1+d]

Eq. 6.2

A variation, called line recombination, results when the same value of @ is used for all variables
in creating a particular child chromosome. Standard intermediate recombination results when using

d=0.

Crossover Comments

One thing to notice in the crossover process is that chromosomes are split at random locations.
These locations may fall in the middle of the genes, which code for each physical parameter. Figure 6.11
shows how the crossover points can change some parameter values and leave others the same. In this
example, the values of the hole center-to-center spacing, I.., and screen grid thickness, t;, are affected by
the crossover operation, while the gene that codes for the screen grid diameter, d;, is unchanged in the child
chromosomes. In this particular case, both child chromosomes have different values for the hole center-to-
center spacing and screen grid thickness than either of the parent chromosomes. This example serves to .
illustrate that the child chromosomes can share some of the same traits as their parents, but they can also

have new traits altogether.

Two-Point Crossover )
Parent Chromosomes Child Chromosomes

d
Looloaa

ol tagid sotogiog 00111010 ool vH100 o01111011

Figure 6.11 Example of two-point crossover indicating how genes can change.

Crossover in genetic algorithms generally occurs at a rate of 70 to 90%. In other words, when two
parents are selected to be placed in the new generation, crossover will occur about 80% of the time. If
crossover does not occur, child 1 will be an exact copy of parent 1 and child 2 will be an exact copy of

parent 2. In that case, the parents survive as children in the next generation.
Mutation
The next process is the mutation of the child chromosomes. During the process of reproduction in

genetics, there can be small errors that change DNA in a purely random way. There are many ways to

model mutation. Often the mutation method is dictated by the problem in question.

147

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Mutation Using Binary Encoding

One way to model mutation with binary encoding is to simply switch bits from O to 1 or from 1 to
0 at a small rate. Mutation usually occurs infrequently, and in many algorithms the rate at which mutation
occurs is on the order of a few percent or less. One source suggests that a mutation rate of 1/b is a
reasonable mutation rate, where b is the number of bits in the chromosome string. Using this rate has the
effect of mutating, on average, a single bit in each child chromosome. Figure 6.12 shows an example of
mutation using the two-point crossover example, where two bits were inverted in the first child

chromosome, and one bit was inverted in the second child chromosome.

Two-Point Crossover
Parent Chromosomes Child Chromosomes

Mutation

1[oJo 1 1 o1}

Figure 6.12 Mutation of the child chromosomes. A few bits at random points in each child

chromosome are flipped at a small rate.

Mautation Using Real-Value Encoding

Mutation using real-value encoding typically involves adding (or subtracting) a small number to
selected values in each child chromosome. Once again, the rate of mutation is suggested to be 1/v, where v
is the number of parameters that are in the chromosome. This has the effect of changing, on average, one
value in each child chromosome. The amount that a value is changed is normally a small percentage of the
range over which the particular value is allowed to vary. Additionally, it is desirable to make the
probability of a small change greater than the probability of a large change.

Figure 6.13 shows one way to achieve these effects. The variable r is the possible amount by
which a value could change in either direction, typically chosen as 10% of the total value domain or less.
The variable a, which in turn depends on u and &, sets the actual value magnitude of change, where a varies
from one to zero. From the plot, for a random choice of u, a is likely to be small, but it does have some
probability of being closer to one. The variable s chooses which direction to move the value. Note that the
smallest possible variable mutation is dictated by the choice of k, which determines the size of 2. The

choice of these variables can change during the algorithm to help convergence.
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Figure 6.13 Mutation of real-value encoded values.

Adaptive Crossover and Mutation

Srinivas and Patnaik proposed one example of an adaptive crossover and mutation scheme
intended to improve algorithm efficiency. A similar scheme is presented here. The idea in general is to use
less crossover and only slight mutation with the better chromosomes in the population, while using heavy
crossover and mutation with the poorer chromosomes. This tends to preserve and fine-tune the better

chromosomes while still searching widely for better solutions using the less-fit chromosomes.

On any generation, the average population fitness value is f, , and the fitness value of the best

vg
chromosome is f, . . After selecting ‘twoichromosomes, the probability of crossover is dictated by.the
better of the two chromosomes (with fitness value f ’) using Eq. 6.3. A linear variation in probability is
used if the chromosome fitness value is greater than the average fitness value, and a constant probability
(Pcny) otherwise. p. . and p. .- are the probabilities of the best and average chromosomes

undergoing crossover, respectively. Mutation is similar, Eq. 6.4, except that the probability of mutation

depends on each individual fitness value ( f ) rather than the better fitness value ( f ! ).

pCmin _(pCmin —pCmax)lm_aii— foan

pc = fmax - avg Eq' 6.3
p(,‘(wg f < fan
S =S
pmmin_(pmmin__pmmax)—%— foav
Pu= onax = fog ) Eq. 6.4
pmavg f < favg

Example adaptive crossover and mutation probabilities, found to work well, are shown in Figure
6.14 for a case where there are six variables per chromosome and real-value encoding is used. In this case,
a selective pressure of 2.0 leads to average and maximum fitness values of 1.0 and 2.0, respectively. Most

of the chromosomes selected for reproduction will come from the upper half of the population. If the best
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chromosome is picked for reproduction, crossover will occur half of the time and one and one half

variables will be mutated on average.

1.0 avg max min

1

L [

5 09 f Pc 75% 75% 50%
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Figure 6.14 An adaptive crossover and mutation scheme.

Elitism .

One other common practice is to use “elitism”. Elitism is when the best chromosome, or
chromosomes, from the current population is simply. copied directly into the next generation generally
without modification. Using elitism ensures that the best chromosome from the current generation makes it
into the next geheration. The chromosome that was directly copied could be the best chromosome in the
next generation as well as the current one. Ensuring that the best chromosome is in the next population

makes it a candidate to be a parent in that generation.

Algorithm Execution

Once a generation of chromosomes is filled through a combination of elitism and crossover &
mutation, the chromosomes are evaluated using the ffx code to determine their fitness values, and the
process repeats until some pre-determined stopping criterion has been reached. Typically, good solutions to
problems are not found until something on the order of 100 generations have passed. Convergence of an
individual gene can be concluded when about 95% of the population shares the same value of that gene.

One problem that can arise is referred to as genetic drift. This is the effect that certain genes in the
chromosome can converge to a single value, which may not be the best value. Through crossover alone, a
gene that is the same in two parent chromosomes cannot change in going to the child chromosomes. In that
case, mutation is the only way that the gene can change. However, if the mutation rate is set too high, the
algorithm will start behaving more like a random search rather than searching with a purpose using the

fitness values.
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Scaling of the Fitness Values

In order to help the algorithm run smoothly, scaling is often applied to the chromosome fitness
values to ensure that there is always a range of good, okay, and bad parent chromosome candidates. This
relates to the idea of “selective pressure,” which simply means that there is always pressure to move toward
a better solution.

If the spread of the fitness values is small, the algorithm will have trouble converging to one
solution because all of the solutions look more or less the same. On the other hand, if the spread is too big,
individual, super-fit, solutions can heavily dominate the algorithm and convergence to a certain solution
can occur too quickly.

There are several ways to control the selective pressure among fitness values. One of the most

common ways is rank selection. Another is called windowing.

Rank Selection

To ensure the spread of fitness values among the population is not too big nor too small, rank
selection is often used. In rank selection, new fitness values are assigned that are based on each
chromosome’s rank within the population. In this manner, the magnitudes of the fitness values only
determine the chromosome rank order, which serves to reduce the influence of any super-fit chromosomes

. while at the same time making sure that there are a range of individuals in the population.
. - Linear ranking is performed through the use of an equation such as the one given in Eq. 6.5. Here,
- SP is the selective pressure, which varies from 1.0 to 2.0. Selective pressure is the probability of the best
chromosome being selected for reproduction compared to the average probability of all chromosomes being
selected for reproduction. A selective pressure of 1.0 results in all of the fitness values being 1.0, while a
selective pressure of 2.0 results in the fitness values going from 0.0 to 2.0 linearly. In general, the fitness
values will go from 2.0-SP to SP. The loss of diversity in Eq. 6.6 is the proportion of chromosomes that
will not be selected for reproduction. With a selective pressure of 2.0, 75% of the chromosomes will be

selected for reproduction, which means 25% of the population will not have a chance to reproduce.

Positi _
FitnessLinearRank = 2 - SP + 2(SP - I)M

N-1
1.0 5P £2.0, N =Total Number of Chromosomes Eq. 6.5
Worst Individual, Position =1
Best Individual, Position = N
P -1
Loss of Diversity,,,...can = S—4— Eq. 6.6

With a selective pressure of 2.0, about 75% of the parent chromosomes will be chosen from the
upper half of the ranked chromosomes, i.e., those with normalized fitness values (f/f,) greater than 1.0. As
shown in Figure 6.15, the first 5 chromosomes, out of 10, take up about 78% of the wheel. Because the

number of chromosomes is finite, the exact area ratio might not always be 75%.
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16%

Figure 6.15 Linear ranking with a selective pressure of 2.0.

Windowing
» Another method of controlling the selective pressure among chromosomes is called windowing. In
this scheme, the (absolute) fitness values of all chromosomes are reduced by the fitness value of the worst
chromosome in the population. This serves to increase the selective pressure among chromosomes. For
example, if the fitness values all lie between 0.8 and 1.2 for example, applying the windowing technique
would then make the fitness values go between 0.0 .and 0.4, The relative fitness value of the best
.chromosome to the worst chromosome will be greater after windowing is applied. Also, the subtracted
fitness value could be taken as an average value over several generations to make the process steadier.
Another related method is truncation selection. In this method, a certain percentage of the worst

chromosomes, according to their rank in the population, are not allowed to reproduce.

Further Selection Ideas
Another feature of some algorithms is steady-state selection. Here, the idea is to have a larger
portion of the previous generation survive to the next generation unchanged. The worst chromosomes in the

generation are replaced with the offspring from the better chromosomes.

Parallel Algorithm Execution

One aspect of evolutionary algorithms is that they work on a population of individuals instead of
just one individual. This immediately raises concerns about the speed with which the chromosomes can be
evaluated. The chromosomes must be evaluated (relatively) quickly so that many generations can be
simulated in order to reach an acceptable solution.

The genetic algorithm used with the ffx code has been designed to run in parallel with respect to
chromosome evaluation. One “main” program handles all aspects of the algorithm execution. The main

program takes care of creating each chromosome generation, either randomly on the first generation or
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through ranking, elitism, selection, crossover, and mutation on subsequent generations, and then divides up
the chromosomes for evaluation among all the programs working on the algorithm. The main program
along with each of the “auxiliary” programs evaluates a share of the chromosomes calling the ffx code
when needed.

For instance, 8 programs may be typically set up to evaluate a population size of 25 chromosomes.
One chromosome will generally not need to be simulation as it is a result of the elitism step of the
algorithm. The main program divides up the 25 chromosomes equally among the main and auxiliary
programs for fitness value evaluation. Each of the 8 programs will essentially simulate 3 chromosomes,
which should ideally take about the same amount of time. The main program waits for the data to be
returned from all auxiliary programs before it moves on to creating the next generation of chromosomes.

Depending on the algorithm goal, the evaluation of a single chromosome can take between 10 and
20 minutes. Using a single program to evaluate all 24 chromosomes would take about 6 hours per
generation. Once again, it depends on the goal, but a good solution to the problem might not be found until
50 to 100 generations of the algorithm have passed. If eight programs are used, the evaluation of 24
chromosomes can be accomplished within an hour, which becomes much more reasonable.

» Considering that the development of an ion source might take on the order of years to complete,

spénding a few days of, ideally uninterrupted and unaided, computer time to desigh a set of grids does not

seem like an unreasonable thing to do.’
' 6.2 Previous Genetic Algorithms

The use of a genetic algorithm for grid design was first proposed by Nakayama in a 2001 paper
presented at the 37" Joint Propulsion Conference. In that work, Nakayama developed a Thruster
Performance Evaluation Code (TPEC) which was used to optimize a discharge chamber design. The results
of the genetic algorithm were in good agreement with experimental data. Eight genes were used in each
chromosome that coded for the propellant flow rate, discharge voltage, discharge current, and five
additional parameters that describe the primary electron paths through the discharge chamber. Nakayama
optimized the discharge chamber design using a fitness value that was the propellant utilization efficiency
muitiplied by the thrust divided by the total power consumption. The fitness value thus aimed for a high
propellant utilization and high thrust-to-power ratio. The algorithm was performed with 200 chromosomes
and run for 300 generations.

Nakayama also presented a second use of a genetic algorithm in 2001 at the 27™ International
Electric Propulsion Conference. In that work, he used the algorithm with the igx code which he developed
for three-dimensional, high speed, evaluation of ion thruster optics. The fitness value used was one that
optimized the thrust factor multiplied by a beam current ratio taken to a power to expand differences
between the chromosomes. Nakayama also checked to make sure electron backstreaming was avoided,

otherwise the fitness value was set to zero.
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_ Z v, y (Ib "ch) Eq. 6.7
N 1,

Five genes were used per chromosome which coded for the screen grid thickness (ty), grid gap (),
accel grid applied potential (V,), accel grid hole diameter (d,), and the accel grid thickness (t,). The screen
grid applied potential (V) and the screen grid hole diameter (d;) were held constant. The algorithm was run
at several target beamlet currents, which ended up giving different optimized parameter values at each
beamlet current. In those cases, the optimization was considered complete on or before the 80™ generation

where 100 chromosomes were used per generation.
6.3 Algorithm For Grid Design
6.3.1 Algorithm Guidelines

A set of guidelines for an appropriate evolutionary algorithm vwas determined through many trail
applications. These guidelines are described in Table 6.2. Many of the features of both genetic algorithms
and evolution strategies have been programmed into the ffx code. No clear distinction has been made
between the two algorithm types to say thét one is going to be Better than the other at solving problems

related to grid design.
Table 6.2 Guidelines for the evolutionary algerithm.

Eight programs running in parallel evaluvated 3

Population 25 .
chromosomes per program per generation.
. R in T h
Encoding Real Value 'eal value encodl' g was used more often than
binary value encoding.
. . Linear rank selection was used with a selective
Scaling Rank Selection
pressure of 2.0.
Selection Roulette Wheel
- ied directl
Elitism Yes The best chromosome was copied directly to the
next generation.
Intermediate recombination was used with real
. value encoding and uniform crossover was used
Intermediate

Crossover Recombination with binary value encoding. Adaptive crossover was
used, with rates between 50 and 75 %. Both child
chromosomes are placed into the next generation.

A larger than typical value of R was used to
Mutati ~0. - maintain population diversity. Adaptive mutation

utation R=05,k=8 was used, with rates between 1.5 and 2.5 values per
chromosome.

In keeping with the ideas of adaptive crossover and
mutation, less than average chromosomes that
underwent crossover were completely randomized
prior to evaluation to increase population diversity.

Randomness
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6.3.2

Design Goal

One goal of grid design might be to design a set of grids to provide the maximum change in

momentum per unit grid area. The question is, given a minimal set of input conditions, what should the grid

set look like? The purpose of using an evolutionary algorithm design technique is to specify as few input

values as possible, letting the algorithm determine the rest of the unknown variables.

6.3.3

Input Values

The main set of input values are:

1.

Net accelerating voltage, V. The net voltage can be determined first from a desired specific
impulse, Isp.

Current density, j. The grids are designed based on a current density instead of the thruster area,
Ar, or the total thruster beam current, Jg, because current density is independent of thruster size.

Later, given a thruster area or beam current (to obtain a certain amount of thrust for example), the
remaining unknown variable is determined using J, = j- A;.

Propellant, xenon. Xenon will be used, as it is the most common ion thruster ‘propellant. The
results for xenon will likely apply to other propellants. |
Grid material, molybdenum. Molybdenum is the most common grid material. The results for

molybdenum should apply to grids made of carbon or titanium for example.

Discharge voltage, V, = 25V . The discharge voltage is usually nearly constant for all thrusters.

Here, V4 is set to 25 V. This in turn fixes the screen grid voltage, V, =V, =V, .

++

Double to single current ratio. b — . Here, the double to single current ratio will be considered

++

constant for any possible grid set that the algorithm might come up with. For simplicity, is

set to zero.

Propellant utilization efficiency, 77, = 0.9. Here, it will be assumed that any possible grid design
can be operated with a (discharge) propellant utilization efficiency of 90 %.

Screen grid physical transparency, @, = 67% . A traditional value for the screen grid open area

fraction is 67 %.
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The two primary input values are the net accelerating voltage, Vy, and current density, j. The net
voltage is specified according to a certain mission, and the current density can be used to scale a thruster to

obtain a certain level of thrust.

6.3.4 Variables

Each chromosome in the evolutionary algorithm will contain a set of values for the unknown
variables. The unknown variables are:
1. Screen grid thickness, t..
Screen grid hole diameter, d,.
Grid spacing, /,.
Accel grid thickness, t,.

Accel grid hole diameter, d,.

AN

Accel grid voltage, V,.
There are several values that are set dependently for each chromosome ‘prior to analysis by the ffx

code. These are:

2
N

¢S

from the input screen grid physical transparency, @

50

1. Aperture center-to-center spacing, l = . The center-to-center spacing is determined -

&

and the screen grid hole diameter, d_,

obtained from each chromosome.

B

2. Beamlet current, J, = A,, - j= —2—1602 J - The beamlet current is dependent on the area per

aperture, A,, , and the downstream specified current density, j.
: 2
, Jr L :
3. Perveance fraction, fp = 75 - The chromosome provides values for ¢, d, [,, and
PV, ¢
max

V., which thenlead to f,.

6.3.5 Variable Ranges

Intelligent choices for the variable ranges can be determined using the perveance equation, Eq.
6.8, which relates current density to aperture size. The effective acceleration length, l . » an be determined

after choosing values for the downstream current density (j), propellant type (which sets P,,,), and net

accelerating voltage (Vy) with a few additional approximations.
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32
P Vi
e LV 2 Eq. 6.8
Jp omax T max

lezz(lg+t3)2+7~‘ i

The current density in the perveance equation, j p» is the current density that actually passes
through the grids. It is related to the current density downstream of the grids (j), which is simply the current
of ions (J,,) divided by the total aperture area (Ap.y), by the actual grid transparency to ions, ¢, in Eq. 6.9. A
good approximation is to set the ion transparency to be equal to the physical screen grid transparency, 0.

. _J_J
Jp == Eq. 6.9
9 9

To approximate the expected total accelerating voltage, Vr, an expected R ratio of 0.85 is chosen,

as in Eq. 6.10.
| Vv W

V o LI T
T =5 0.8 Eq. 6.10

exp

Setting the perveance fraction, f;, to unity determines the maximum possible acceleration length,
l emax » T€Quired to obtain the given current density. The apertures can be made smaller to achieve the

. current density, but not larger.

The effective acceleration: length ([ . ) 18 a relationship between the grid spacing (I ¢ )» screen grid
thickness (Z, ), and screen grid hole diameter (d,). The upper limit on any individual variable is found by

setting the other two variables to zero. This gives [, ~=¢, =l and d =2l . From

experience, the screen grid thickness will turn out to be relatively small in order to have a reasonable

transparency to ions. For this reason, ¢ smax 1S SELtO be 5 l emax *

There are three remaining variables: accel grid thickness (Z,), accel grid hole diameter (d . ) and

accel grid voltage (V). There is technically no upper limit on #,. However, increasing the accel grid
thickness eventually decreases the operating range whereby the crossover limit moves toward the

perveance limit. Arbitrarily, #,  can be set to be %lelmx or lemax . The accel grid hole diameter will be
held less than or equal to the screen grid hole diameter, damax =d smax = 21 emax *

The accel grid voltage, V_, is expected to lead to an R ratio that is within a certain range,

0.85< R<0.9. This specifies both the upper and lower limits on V, , using Eq. 6.11.
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1
v, :VN(I_EJ Eq. 6.11

The lower limits on the geometric variables are set somewhat more arbitrarily than the upper

limits. For the grid thickness and hole diameter values, the lower limits are set to be one-tenth of the

maximum acceleration length, [, .
max

The lower limit for the grid spacing, [ ¢ » can be set according to the maximum allowed electric

field, E, ., between the screen and accel grids, as in Eq. 6.12.

R.. Eq. 6.12

The variable ranges are summarized in Table 6.3. The flow chart in Figure 6.16 shows how the

directly input parameters (bold) are related to the indirectly calculated values.
Table 6.3 Variable limits.

Variable Symbol Lower Limit Upper Limit

1 1
Screen grid thickness t i—alemax 5 Leman
. . 1
Screen grid hole diameter d, 16 e 2,
Ve v
. . d
Grid spacing l, R .. Ly
Emilx
o 1 1
Accel grid thickness t, 1—6 ¢ max 5 e
d hole di d ! 21
Accel grid hole diameter a E emax e max
. 1 1
Accel grid voltage V., Vil 1= Vol 1-
Rmin Rmax
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Input Values

Maximum Electric

Propellant Type Specific Impulse, Isp Current Density, j

| Field, E,;, . '
n,ft /
/ Ion Transparency, = ¢,
Dlscharge Voltage, V, i
Net Accelerating Voltage, V

\/\ / Upstream Current Density, j,

Minimum Grid Spacing, I, v, 1
€ max

VT max

During Execution
Chromosome: t;, dg, [, t,, d,, V,

Lb (¢) Center-To-Center Spacing, [,
Lb (j) Beamlet Current, J;

Perveance Fraction, fp

Figure 6.16 Flow chart of calculated values for the evolutionary algorithm.

6.3.6 Fitness Value

The goal of the algorithm is to optimize the impulse per unit area provided by the grids. The
change in momentum per unit grid area is given in Eq. 6.13. The net accelerating voltage (V) ), propellant

++

type (m;), and double to single current ratio ( b — ) are all chosen constants. The current per area,

J .
b , 1s the downstream current density, J . The fitness value that the algorithm will maximize is f s
‘Aperture
given in Eq. 6.14, which is the product of the current density ( j ), predicted accel grid lifetime ( L), and
thrust factor ( ft ). The predicted accel grid lifetime is calculated as the time it would take to erode away 50

% of the initial accel grid mass per aperture.

_\/’— ] ++
Ap FA e ureL J i
2= AM - Ab L7 ++b ﬁ Eq. 6.13
Aperture hex

f=jL-ft Eq. 6.14
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A few additional constraints are placed on the fitness function to ensure that good chromosomes

are practical. The constraints are applied through conditional multiplying factors, f; . If a constraint is met,

no adjustment to the fitness value is made ( f; = 1). If a constraint is not met, the fitness value is linearly

reduced.

First, the centerline saddle point potential is required to be “sufficiently” negative. If the saddle
point potential is, for example, more than 40 V negative of the downstream beam plasma potential, @, , the
solution is deemed acceptable. Second, to validate the assumption that ion transparency is near the physical
screen grid transparency, the grid solution is said to be reasonable when ¢ = ¢, . This also serves to ensure

that electrical efficiency is reasonable. Third, the beamlet is restricted to operate at a perveance fraction less
than about 0.8. This, admittedly, is a relatively arbitrary constraint intended to keep the aperture well

proportioned. The new fitness function is given in Eq. 6.15.

f:j'L'ﬁ'fVS,,'f¢'ffp

10 — 1.0
0.8 | 0.8
Zos6 | ~ 0.6
Zoat =04
02 | 0.2
0.0 : ‘ ' 0.0
60 -40 -20 ] 20 0
Vgp (V) Eq. 6.15
1.0
0.8 |
T 06 :
04 08
0.2 i
0.0 : !
0 0.5 1

o ()
6.3.7 Algorithm Results
Results are presented for four cases: two net voltages, 1000 and 3000 V, operating at two current
densities, 25 and 50 A/m” These conditions are congruent to the operating conditions of the NSTAR and
NEXT thrusters.

A detailed study of the 1000 V, 25 A/m’ case is presented first to illustrate the evolutionary

algorithm. Table 6.4 shows the setup for this case.
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Table 6.4 Input parameter values and variable ranges for the first case.

Variable Symbol Units Value
Input Quantities
Net accelerating voltage Vy v 1000
Current density ] A/m® 25
R ratio range R, SR<R_, - 0.85<R<09
Maximum allowed electric
Emax kV/mm 3
field
Derived Quantities
Maximum effective
Ly mm 2.266
acceleration length
Variable Symbol Units Lower Limit Upper Limit
Screen grid thickness t, mm 0.227 1.133
Screen grid hole diameter d, mm 0.227 4532
Grid spacing I, mm 0.384 2.266
Accel grid thickness z, mm 0.227 1.133
Accel grid hole diameter d, mm 0.227 4.532
Accel grid voltage V., \Y -176 -111

Figure 6.17 shows the fitness value of the best chromosome in a generation compared to the

average fitness value of all chromosomes in the generation. As the algorithm progresses, the best and

average fitness values should be increasing, eventually reaching steady state.
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Figure 6.17 Convergence history of the evolutionary algorithm.

Figure 6.18 shows the range of chromosome fitness values on three generations. In this algorithm,
the actual fitness values are not used for reproduction. Instead, the chromosomes are ranked by fitness and

scaled fitness values are assigned to determine selection probability.

2000 r Scaled fitness values Vi = 1000V 2.0
1800 / on every generation = 25 A/m? 418
00< £,.,..<20

1600 |- . 1.6 1y
3
%l 1400 - Gen 150 Best chromosome = 1 114 <>f
<_(| 1200 | Worst chromosome = 25 P10 %
> L
® 1000 | 1.0 £
Y 800 | 08 5
E T3
% 600 <063
g
400 + 404 @

200 | 0.2

b4t TSty oW 0.0

0 5 10 15 20 25 30

CHROMOSOME

Figure 6.18 Population fitness value as a function of generation.

Figure 6.19 shows the actual chromosome variable values on generation 150 ranked by fitness.
Most chromosomes are similar, indicating convergence. There are also a few vastly different chromosomes,
created either through heavy mutation or randomly from scratch after a poor chromosome was selected for

reproduction. The allowed variable ranges are shown to the left of the chromosomes.
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Figure 6.19 Variable values within a generation.

Finally, Figure 6.20 shows the variable values of the best chromosome in every generation. Often,
the best chromosome in a generation changes only slightly through crossover or mutation to become the
best chromosome in the next generation. Early in the algorithm, better chromosomes may crop up
unexpectedly. In this case, the allowed domain ranges eventually limit the screen grid thickness, t;, and

accel grid voltage, V,.

.l vy=1000v] 1°
i Vn v
'8 Best chromosome =25 Am” | 20
t 1.6 r in generation 1 40
Eq4 |
3 s
g 12 | /ds 180 =
; 10 —d, -100'&_(9
Eost ~v, | 1203
WL e N 3
@] 0.6 M t, 1 140
w
O o4 — g -160
7
0.2 [ i Lk 1 -180
o0 | | | -200
-10 40 90 140 190

GENERATION

Figure 6.20 The best chromosome in every generation.
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It turned out that in the particular case of Vyy = 1000 V, the algorithm generally converged to one
of two solutions, depending on the initial set of randomly generated chromosomes and those generated
during execution. The solutions are referred to here by their relative perveance fraction, f;,, values. One
solution converged to a low f,, and the other solution essentially maximized f,.

The low f,, solution has a higher fitness value than the high f; solution. Ideally then the algorithm
should always find the low f;, solution. However, at mid f, values the fitness is lower, creating a valley
between the end solutions. Once the algorithm moves toward one of the solutions it becomes increasingly
unlikely that the algorithm will switch to the other solution.

Solutions with perveance fractions near 0.5 can be found by changing the fitness value multiplying

factor f 7, to emphasize such chromosomes. For example, when f;, is 0.0 and 0.8 the factor is zero and
14

when f; is 0.5 the factor is unity, with linear variations in between. The low, medium, and high £, solutions
are presented in Figure 6.21 (sized relatively) for the 50 A/m’ condition. All three beamlets in this figure
are operating at the same current density. Thus, many more of the low f, beamlets fit into the same area as
the high f, beamlet, producing the same amount of current.

Vy =1000V, j = 50 A/m?2

Low fp Med fp High fp

! 5.0-1077

Ion Density
(ions/m?)

0.0

Figure 6.21 Three results of the evolutionary algorithm for a net voltage of 1000 V.

The algorithm results for the 1000 V net voltage cases are presented in Table 6.5. Low, medium,
and high £, solutions were found for both current density cases. Variables are highlighted if they are within
10 % of the domain minimum or maximum.

For the low perveance fraction solution, t; and /, were minimized and V, maximized. Also, d, was
large, presumably limited by the restriction of being less than or equal to d,. This solution is understandable
for several reasons. First, V, is maximized to minimize the ion sputter yield. Second, operation at a low
perveance fraction focuses a higher fraction of charge exchange ions through the accel grid than operation
at a high perveance fraction. Third, d, is maximized to reduce the neutral density near the grids by

providing less resistance to neutral flow.
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The low perveance fraction solutions have a few disadvantages. First, the grid apertures are
smaller, increasing difficultly in manufacturing and alignment. Second, the divergence angles are worse.
Finally, the beamlets are operating near the crossover limit; the beamlet current can be increased, but not
decreased.

With the medium or high perveance fraction solutions, /, is minimized and t, is maximized. With
these solutions, the accel grid voltage needs to be more negative to prevent electron backstreaming. Also, d,
is not maximized with respect to d;. Decreasing the accel grid hole diameter adds accel grid mass, which

extends lifetime, as a tradeoff to increased neutral density.
Table 6.5 Algorithm results for a net voltage of 1000 V.

Input Values

VN \Y 1000
j A/m? 25 50
Lo max mm 2.266 1.602
Results L M H M H
loe mm 208 2545 3.566 1.856 2.495
t, mm | 08871 0.508 0.824 0.408 0.526
ds mm | 1.038 2.187
lq mm o
ta mm | 0.778 -1.094 - 1.13 :
d, mm 0.969 1.533 1.988 | 0.705 1.294 1.410
V, \ <111.00 -129.0 -163.4|-111.0 -164.0 -163.9
At or near domain maximum .
Generation - 155 161 200 133 54 178
Fitness  y-A/m?| 1238 651 892 572 308 445
b mA | 0.032 0.141 0277 | 0.033 0.150 0.271
fo - 0.14  0.51 078 | 019 050 0.78
¢ % 824 670 594 | 769 656 627
Vsp \ -59 -38 -39 -58 -44 -41

A slightly different set of solutions was obtained for the cases at a net voltage of 3000 V. At the
higher net voltage, the algorithm always wanted to go to the low f, solution, for the same reasons outlined
previously.

For the medium £, solution, a significantly different grid solution was obtained, referred to as M1
in the tables. At 1000 V, the grid spacing /, was minimized, requiring a slightly more negative accel grid to
counteract electron backstreaming. At 3000 V however, the M1 solution maximized V, and kept d; small,
increasing /, to make f, go to 0.5. This solution is odd because it leads to difficulties in grid alignment. A
second medium £, solution was obtained by fixing /, at its minimum value, referred to as M2 in the tables.

This solution was similar to the solution obtained at 1000 V.
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Figure 6,22 shows the three perveance fraction solutions obtained for a net voltage of 3000 V and

a current density of 50 A/m’. The algorithm results for the cases at a net voltage of 3000 V are listed in
Table 6.6.

V) = 3000 V, j = 50 A/m?

Low f, Med fp M1 Med £, M2

! 5.0-10"7

Ion Density
(ions/m?)
0.0
Figure 6.22 Grid solutions obtained for a net voltage of 3000 V.
Table 6.6 Algorithm results for a net voltage of 3000 V.,
Input Values
Vy v 3000
j A/m? 25 50
e max mm 5.165 3.652
Results L M1 M2 L M1 M2
lec mm '1.900 ’ 2.036 1.348 4.000
ts mm go.1 0.702
ds mm 1.633 1.750 1.158 3.438
lg mm | 2554 @ 1.944
ta mm 2.032 1.919 - 1424 1.826
d, mm 1.618 1.618 1.158 2.982
V, \' -345.0..--333.0 -333.0 -400.5

At or-near domain maximum .

R

Generation - 34 32 60 54 36 67
Fitness y-A/m2 622 352 117 301 187 63

Jb mA | 0.079 0.090 0.857 | 0.080 0.07¢ 0.696

f - 0.14 042 0.53 022 046 0.51

¢ % 709 550 668 | 678 478 679
Vep \' -300 -281 -31 -289  -289 -65

The evolutionary algorithm uses initial erosion rates to predict grid lifetime. The ffx code was

used to perform full lifetime simulations for the algorithm solutions. For each net voltage and current
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density combination, a constant downstream length was used to fairly compare grid lifetime. The erosion
predictions are shown in Figure 6.23, where end of life is taken to occur at 50 % accel grid mass loss.
Uncolored cells indicate remaining grid material, while any colored cells have been completely eroded
away.

V), = 1000 V, j = 50 A/im?

Low Med {, High £,

V), =3000V, j =50 A/m?

Low fp Med fp M2

Figure 6.23 Evolutionary algorithm solutions near 50 % accel grid mass loss.

The lifetime predictions from the algorithm and the full lifetime simulations are compared in
Table 6.7. Note that the lifetime results are highly dependent on the listed accel grid impingement current
ratios, J,/J.
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Table 6.7 Full lifetime simulation results.

VN Y 1000 3000
j A/m? 25 50 25 50
fo - L M H L M H L M2 L M2
From genetic algorithm
Generation - 155 161 2001} 133 54 178 | 34 60 54 67
Fitness yrs:A/m® | 1238 651 892 | 572 308 445 622 117 | 301 63
Life yIs 506 275 360|116 62 90253 47| 62 1.3
From full lifetime simulations
Life yrs 746 282 189|157 46 45| 80 6.1 ] 47 16
ft - 0.978 0.994 0.991]0.984 0.994 0.99110.982 0.996]0.988 0.996
Fitness yrs:A/m? | 1825 701 468 | 773 230 223 | 195 152 | 233 80
Average values over grid lifetime
Jy % 0.14 026 025({019 030 035|028 046( 042 053
¢ Y% 79.8 651 596} 756 658 615|721 656|670 653
Vsp \ 52 28 204§ -49 -32 -221|-282 -10 | -279 -29
o deg 21 12 13 18 11 12 18 10 16 9

Finally, there are several ways to compare the grid solutions. One way is to normalize each
solution by screen grid hole diameter, d;. This results in similar normalizations. with respect to perveance
fraction, and the averages of these normalizations are given in Table 6.8. The normalized NSTAR grid

geometry has a relatively thin, closed, accel grid compared to the algorithm solutions.

Table 6.8 Average geometric values normalized to d,.

Lowf, Mediumf, Highf, NSTAR
lee/ds - 1.16 1.16 1.16 1.16
t/ds - 0.27 0.24 0.26 0.20
dy/dg - 1.00 1.00 1.00 1.00
14/d; - 0.65 0.26 0.16 0.35
to/ds - 0.99 0.50 0.37 0.27
d./ds - 0.96 0.78 0.65 0.60

For design purposes, one could combine the maximum expected current density with a medium £
solution grid. Then, other beamlets elsewhere on the grid surface operating at lower beamlet currents, still
above the crossover limit, would not be life limiting. Alternatively, one could conceivably design for the
minimum expected current density by selecting a low f, grid solution, ensuring that all beamlets operate
above the expected current density.

Previously, optimizations were performed manually for the example grid set at several beamlet
currents. The evolutionary algorithm was used to perform these optimizations as well, and the results are
compared in Table 6.9. In these cases, only two parameters were varied at a time, maximizing grid lifetime
under the requirement that the centerline saddle point potential be held at least 40 V negative of the

downstream beam plasma potential. The manual and algorithm optimizations turned out similarly.
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Table 6.9 Optimization results for the example grid set.

Jp Optimization lee ts d lg t, d, V,

mA Method mm mm mm mm mm mm Vv
Reference 2.327 0.4 2 1 0.8 1.2 -400

0.3 Manual 2.327 0.4 2 0.8

03 Algorithm 2.327 04 2 0.8

0.3 Manual 2.327 0.4 2 1 0.8

0.3 Algorithm 2.327 0.4 2 1 08
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7 Code Validation

The ffx code has been compared to several other ion optics codes and to experimental data,

including both sub-scale gridlet tests and full thruster tests.
7.1 Gridlet Tests

There are several instances where it is beneficial to test sub-scale grid sets, called “gridlets”, rather
than full grid sets. The idea behind gridlet tests is that the test conditions can be controlled more easily than
when working with large grid sets.

Gridlets are typically operated using a relatively large discharge chamber compared to the area of
ion extraction. This implies that the plasma is approximately uniform upstream of the apertures.
Additionally, the grid spacing, [,, for example can be controlled more accurately in gridlet tests compared
to large grid tests where thermal expansion can be significant and unpredictable. As a result, predictions
concerning the onset of electron backstreaming with variation in accel grid voltage can be made more

accurately as well.
7.2 Carbon Based lon Optics (CBIO) Grid Set

The CBIO project had the goal of determining the applicability of carbon-carbon material for ion
thruster optics. Specifically, the project assessed grid performance, vibration survival, voltage standoff
capability, manufacturability, and erosion resistance.

Several gridlets have been constructed and experimentally tested using CBIO-similar grid
geometry. Gridlets with 1, 7, 19, and 37 apertures have been tested to determine crossover and perveance
limits, Figure 7.1, as well as the accel voltages required to prevent electron backstreaming for a range of net
accelerating voltages. The CBIO grid geometry as tested is listed in Table 7.1, and the operating conditions
are listed in Table 7.2 [Wang].

Table 7.1 CBIO grid geometry.

Parameter Symbol mm = in
Aperture center to center spacing lec 2.674 0.105
Screen grid hole diameter d 2.305 0.091
Screen grid thickness ts 0.461 0.018
Grid spacing ly 0.813 0.032
Accel grid hole diameter d, 1.396 0.055
Accel grid thickness ta 1.016 0.040
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Table 7.2 CBIO operating conditions.

Net Accelerating Voltage Accel Grid Voltage
Vn (V) Va(V)
800 -140
1000 -150
1200 -166
1420 -170
1600 -176
1800 -190
2000 -195
2200 -200

J,=0379 mA, f, = 0.75
Vy=1600V,V,=-176 V

1 Aperture Hexagonal Aperture Layout

! 1.0-10Y7

Ion Density
(ions/m?)

0.0

Figure 7.1 CBIO grids operating near the perveance limit.

Perveance limits, found both experimentally and numerically, are shown in Figure 7.2 over a
range of total accelerating voltages. Likewise, the corresponding crossover limits are shown in Figure 7.3.
The code data is shown as found with perfectly aligned apertures and as found when using slightly
misaligned holes. The hexagonal aperture layout is essentially the case of an infinite number of apertures,

thus it is most similar to the 37 aperture gridlet.
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Figure 7.2 CBIO perveance limits as a fuhétibn of total accelerating voltage.
0.10
Crossover Limits . - °
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0.08 | | Experimental Data o Offset
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BEAMLET CURRENT [J,] (mA)

Figure 7.3 CBIO crossover limits as a function of total accelerating voltage.

In general, the code predicts greater perveance limits and lesser crossover limits than found
experimentally in the gridlet tests. As seen elsewhere, the perveance limits predicted in the 1 aperture and
hexagonal aperture layout cases are essentially the same as a result of little to no sheath interaction. The

crossover limits, however, are different due to significant sheath interaction in the hexagonal layout case.
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Two factors that have been seen to affect the code crossover and perveance limit predictions
significantly are a) aperture misalignment and b) variation of the upstream plasma potential relative to the
screen grid potential.

Aperture misalignment decreases the perveance limits and increases the crossover limits, bringing
them more in line with the gridlet data. Decreasing the upstream plasma potential increases the crossover
limits, but doing so also increases the perveance limits. Decreasing the electron temperature was seen to
increase the crossover limits, but only slightly compared to the aforementioned effects. Figure 7.4

compares aligned grids to grids where the accel grid is offset by 5 % of the screen grid hole diameter. It is

unlikely that an offset greater than 5 % is not visually detectable in the experimental gridlet tests.
8/d;=0%

6/d;=5%

Figure 7.4 CBIO grid misalignment,

The crossover and perveance limits in the previous figures were corrected using the offset data,
found using the code in the 1 aperture case, listed in Table 7.3. The crossover and perveance limits were
found to approximately vary by a constant perveance fraction, Af,, for any total accelerating voltage. A
constant Af,, results in a non-constant change in beamlet current, AJy,, because of the nonlinear affect of total

voltage.
Table 7.3 CBIO offset hole crossover and perveance limit predictions.

Crossover Perveance

Offset Limit Limit
VN Va VT 5/ds Jb Jb
\'/ Vv \'/ % mA mA
800 -140 940 0 0.007
800 -140 940 5 0.014
1200 -166 1366 0 0.026 0.314
1200 -166 1366 5 0.037 0.250
1200 -166 1366 10 0.054 0.166
2000 -195 2195 0 0.075
2000 -195 2195 5 0.097

Near the crossover limit in this case, as with many other observed cases, the plasma sheath moves
far upstream away from the screen grid as the plasma density is very low. It is unknown if it is possible that
the upstream plasma potential is lower near the grids than it is when the plasma density is greater, where it
is thought that the upstream plasma potential is likely close to the anode potential. Nevertheless, it is

observed in the code that lowering the upstream plasma potential near the crossover limit improves
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agreement with the experimental gridlet tests. In this particular case, reducing the upstream plasma
potential to about 18 V above the screen grid potential, at any net voltage, will bring the crossover limits
into agreement without using any misalignment assertion.

Backstreaming data were also recorded for the four CBIO gridlets. Code predictions of the
backstreaming limit variation as a function of net accelerating voltage are compared to the experimentally
determined backstreaming limits in Figure 7.5.

Experimentally, the accel grid voltage is reduced until the indicated beamlet current begins to rise,
signaling the onset of electron backstreaming. In the code, the accel grid voltage is reduced until the
centerline saddle point potential rises to within a few volts of the downstream plasma potential, where
higher energy electrons will likely begin to backstream. The experimental downstream plasma potential is
unknown in this case, but it is not unreasonable to take it to be about 5 V. The code predictions of
backstreaming limit were assigned when the saddle point potential became 0 V. Using these definitions, the

experimental and numerical backstreaming limits are in very good agreement.

o Or
o= Experimental Data
—— -20 r ' 1 Aperture
w <&
O 5 A 1 7 Apertures
= L 407 A 19 Apertures
ow o 37 Apertures
= 5 -60 r
e~
Gz= %0

o g
BES 100 ) A /
oL Hexagonal Aperture Layout
< w 120 + . /
a ! 1 Aperture
b 140 | s,
o] g o
Jm 160 |
o &

_1 80 ! 1 1 ) |
0 500 1000 1500 2000 2500

NET ACCELERATING VOLTAGE [Vy] (V)

Figure 7.5 Good agreement between the numerically predicted and gridlet determined CBIO

backstreaming limits.

7.3 NSTAR
The NSTAR ion engine is a 30 cm diameter thruster capable of operating over a power range of
0.5 to 2.3 kW, or a specific impulse range of 1900 s to 3100 s. NSTAR stands for the NASA Solar

Technology Application Readiness program, which developed the thruster. An NSTAR ion engine was

used on the highly successful Deep Space 1 mission, which visited the asteroid Braille in July of 1999 and

174

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



comet Borelly in September of 2001 [Brophy]. Over the course of the mission, the NSTAR ion engine
processed 73.4 kg of xenon propellant and operated for 16,265 hours {Anderson, Sengupta].

Several life tests using NSTAR ion thrusters have been performed. Here, the 8,192 hour Life
Demonstration Test (LDT) and 30,352 hour Extended Life Test (ELT) will be reviewed. Prior to those
tests, a 2,000 hour test and a 1,000 hour test were performed to identify and correct design deficiencies.

The Extended Life Test was conducted at the Jet Propulsion Laboratory from 1998 to 2003 using
the Deep Space 1 mission flight spare thruster, FT2. During the Extended Life Test , the NSTAR thruster
processed 235.1 kg of xenon and operated for 30,352 hours under continuous vacuum.

The Life Demonstration Test used the second Engineering Model Thruster (EMT2) constructed at
the NASA Glenn Research Center [Polk]. It operated for a total of 8,192 hours, processing 88 kg of xenon
propellant at a power level of 2.3 kW.

Extensive data has been collected on all aspects of the NSTAR ion engine through both
experimental and numerical tests, making it a useful validation tool [Foster, Soulas].

The NSTAR grid geometry is listed in Table 7.4 [Diaz]. The apertures in the grids are chemically
etched, a process that results in cusps midway through the apertures. The inner diameter listed for the
screen and accel grid holes describes the smallest diameter of an aperture, which occurs at the cusp tips.

The outer diameter is the hole diameter at the upstream or downstream edge of an aperture. -

Table 7.4 NSTAR grid geometry.

Parameter . Symbol mm/mm

Aperture center to center spacing Leo/ds 1.16
Screen grid hole diameter dy/d

Inner diameter, at cusp tips 1

Outer diameter, at entrance/exit 1.08
Screen grid thickness t/dg 02
Grid spacing Ly/d

Cold gap, not operating 0.347

Hot gap, during operation 0.16
Accel grid hole diameter d/d

Inner diameter 0.6

Outer diameter 0.707
Accel grid thickness t/ds 0.267

Although the NSTAR thruster is 30 cm in diameter, the active diameter with apertures is about

28.5 cm. This results in about 15085 total apertures over the grid surface.

For the Extended Life Test, 16 throttle points, THO to TH15, were selected from 50 throttle points

available to the Deep Space 1 thruster. A partial listing of the throttle table is given in Table 7.5.
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Table 7.5 Partial NSTAR throttle table.

Throttle Propellant Utilization

Level Flow Rates Efficiency
Main Cathode Neutralizer Discharge Total
TH Ny
- scem sccm scem %
0 5.89 2.42 2.33 86 67
3 6.77 2.42 2.33 93 74
6 11.15 2.42 2.33 93 80
9 15.72 2.42 2.33 g2 82
12 19.52 2.82 2.74 93 83
15 23.25 3.62 3.52 N 81
TH Vi Ve JHNt Js Ja F
- Vv \ % A A -
0 650 -150 4 0.51 0.9 0.37
3 1100 -180 8 0.61 1.1 0.36
6 1100 -180 12 0.91 2.0 0.40
9 1100 -180 14 1.20 3.2 0.45
12 1100 -180 15 1.49 4.6 0.48
15 1100 -180 17 1.76 8.5 - 0.50

The flight spare thruster was operated at seven throttle points over the course of the Extended Life
Test, usually for 4500 to 5500 hours per segment. A summary of the conditions at each of the segments is

given in Table 7.6.

Table 7.6 Extended Life Test operation summary.

. Operation Propellant P

Segment TH Power Time Use A\ vV, JHJ
- - kW hours kg A v %
1 12 2.0 447 3.9 1100 -180 15
2 15 2.3 4246 44.0 1100 -180 17
3 8 1.5 5758 39.7 1100 -180 13
4 15 2.3 5166 54.3 1100 -250 17
5 0 0.5 5689 22.4 650 -150 4
6 15 2.3 4400 46.5 1100 -250 17
7 5 1.1 4646 24.3 1100 -250 11

Total: 30352 235.1

Segment JB JA Jb avg Ja avg F Jb peak Ja peak
- A A mA mA - mA mA
1 1.49 4.6 0.099 0.00030 0.48 0.206 0.00046
2 1.76 6.5 0.117 0.00043 0.50 0.233 0.00063
3 1.10 2.8 0.073 0.00019 0.43 0.168 0.00030
4 1.76 6.5 0.117 0.00043 0.50 0.233 0.00063
5 0.51 0.9 0.034 0.00006 0.37 0.091 0.00011
6 1.76 6.5 0.117  0.00043 0.50 0.233 0.00063
7 0.81 1.7 0.054 0.00011 0.39 0.139 0.00020

There are several things to observe about the Extended Life Test. The thruster was operated at the

highest power level, TH15, for three of the test segments. The greatest amount of grid erosion takes place at
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that level because the impingement current is greatest and the accel grid voltage is most negative.
Additionally, the accel grid voltage magnitude was raised during the test in order to prevent electron
backstreaming. The accel grid hole diameter was seen to increase on the thruster centerline, creating the
need for a more negative accel grid voltage. The extended life test was terminated not because of structural
failure, but because the accel grid voltage could no longer be kept sufficiently negative to prevent electron

backstreaming.

Individual NSTAR Simulations

Several simulations were performed for apertures operating with the conditions of the greatest
throttle point, TH15. Using the hot grid gap (0.014 inches smaller than the cold grid gap) the crossover and
perveance limits obtained for four types of gridlets are shown in Figure 7.6. The average beamlet current
for TH15 is 0.117 mA, and the peak beamlet current, predicted using a flatness parameter of 0.50, is 0.233

mA. These beamlet currents correspond to perveance fractions of 0.26 and 0.52 respectively.

0.45 - 1.0
__ 040 | - — - 109 _
< 0.414 mA 0.410 0.420 0.416 g =
E 035 | ' . 108 =
= i =z
é 0.30 |- Vy=1100V 0.7 8
z V,=-180V , 10686
W 025 | o <
o0 1051
> 0.20 |
o 104 E;)
g 0.15 | 103 ﬁ
< 0.10 + 402 E
A1 < w
o 0.020 mA 0.026 0.027 0.015 o

0.05 |- 1 01

-~ * T T
0.00 : l ' 0.0

1 Aperture 3 Apertures 7 Apertures Hexagonal
Aperture Layout

APERTURE LAYOUT

Figure 7.6 Crossover and perveance limits for the NSTAR grid set.

In the case of the NSTAR grid, the sheath upstream of the screen grid moves well away from the
apertures near the crossover limit. Figure 7.7 shows gridlets operating at a beamlet current of 0.010 mA,

which is below the crossover limit.

177

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



J,=0.01 mA, £, = 0.022

a) 1 Aperture b) 3 Apertures

Ion Density
(ions/m?)
1.0-10"
|

0.0
¢) 7 Apertures d) Hexagonal Aperture Layout

Figure 7.7 NSTAR gridlets operating below the crossover limit.

Cross sections of the beamlets taken through a plane at the downstream edge of the accel grid are
shown in Figure 7.8. The scale of the ion density has been reduced greatly to show the details of the cross

sections.
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a) 1 Aperture b) 3 Apertures

lon Density
(ions/m3)
1.0-10%
n

0.0

¢) 7 Apertures d) Hexagonal Aperture Layout

Figure 7.8 Ion density cross section at the downstream plane of the accel grid when operating below

the crossover limit.

Figure 7.9 shows additional cross sections taken through a plane 1.27 mm downstream of the accel
grid, where beamlets from adjacent holes are interacting. Interesting patterns are seen in the 3 and 7

aperture cases, as well as the hexagonal aperture layout case.
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Jp =0.01 mA, {, = 0.022

a) 1 Aperture b) 3 Apertures

Ion Density
(ions/m*)

1.0-10%

0.0

¢) 7 Apertures d) Hexagonal Aperture Layout

Figure 7.9 Ion density cross section 1.27 mm downstream of the accel grid when operating below the

crossover limit.

Figure 7.10 shows ion injection locations on the upstream surface of the simulation volumes
colored according to which surface the ion macro particles end up striking. An ion is colored green if it
strikes the screen grid, red if it strikes the accel grid, and blue if it passes through the grids. The screen grid
location and hole diameter is shown in black. This representation was first depicted by Malone. Note that
only a fraction of the true number of particles simulated are shown.

In the 3 aperture case, ions from only two sides of the aperture, away from the end apertures, end
up passing through the grids. This results in the rectangular beamlet cross section downstream of the accel
grid seen before. It can be seen in general that the area from which ions are extracted is much larger than

the screen grid hole.
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a) 1 Aperture b) 3 Apertures

d) Hexagonal Aperture Layout

c) 7 Apertures

Figure 7.10 Ion injection points colored according to termination surface. J, = 0.010 mA, f, = 0.022.

NSTAR Current Density Profiles

Scans of the current density downstream of an NSTAR ion thruster have been made
experimentally at several axial locations. This provides an opportunity for validation of the current density
profile program, the intent of which is to determine the beamlet current variation across the thruster face
given downstream current density measurements.

The ion macro particle trajectory distributions at several beamlet currents were fit to the current
density equation, and the resulting coefficient values are shown in Figure 7.11. The distributions were well

modeled with a single curve, whereby the constant A, is simply set to zero.
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Figure 7.11 NSTAR coefficients for the beamlet current density equation.

The current density profiles measured experimentally were each adjusted to give an integrated

beam current of 1.76 A. These are shown in Figure 7.12.
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Figure 7.12 Current density profiles downstream of the NSTAR thruster.

The current density profile program was used to find the beamlet current variation on the face of
the thruster for each of the five measured current density curves. The beamlet current profiles give

“matched” curves that agree well with the measured curves, as shown in Figure 7.13.
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Figure 7.13 Code determined current density profiles.

The beamlet current profiles that correspond to the matched current density profiles are shown in
Figure 7.14. As can be seen here, although the current density profiles match well, the beamlet current
profiles do not perfectly agree. Ideally, one beamlet current profile would be found that would work well

for all five current density profiles.

0.30 -
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Figure 7.14 Beamlet current profiles corresponding to the matched current density profiles.
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The best beamlet current profile is likely the one found using the current density profile closest to
the grid face, at 49 mm downstream. Using this profile, the current densities at three downstream locations
are shown in Figure 7.15. Here, reasonable agreement with the experimentally measured current density

profiles is obtained.
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Figure 7.15 Current density profiles determined using the beamlet current profile found 49 mm

downstream.

The peak, centerline, beamlet current in the 49 mm downstream profile was 0.240 mA. At THI5,
the flatness parameter is 0.50, which implies a peak beamlet current of 0.233 mA. These values are
sufficiently similar, within 3 %, to reasonably take the peak beamlet current to be 0.233 mA.

NSTAR Extended Life Test

The ffx code was used to simulate the peak (centerline) and average beamlet current apertures
over the course of the 30352 hour NSTAR Extended Life Test. The erosion on the downstream side of the

accel grid as a function of time is shown in Figure 7.16.
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Figure 7.16 Erosion depictions for the average and peak beamlet currents during the Extended Life

Test.

One thing immediately noticeable about the centerline aperture is that the pits wore completely
through the accel grid. Excellent photographs of both the upstream and downstream sides of the accel grid

taken at the conclusion of the life test are compared to the code predicted erosion pattern in Figure 7.17.
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Centerline, Peak J,,
T = 30352 hours

Downstream Side Upstream Side of
of Accel Grid Accel Grid

Figure 7.17 Views of the upstream and downstream sides of the centerline aperture at the end of the

life test.

An initial attempt at simulating the centerline aperture in the Extended Life Test resulted in too
much accel grid erosion. In that simulation, the impingement to beamlet current ratio of the beamlet, J,/J,,
was taken to be the same as the overall impingement ratio, J,/Js. A different approach is to model two
components of the accel grid current: a local component that is related directly to the beamlet current, and a
global component that is related to charge exchange ion current originating farther downstream of the
aperture.

The local accel grid current is taken to be the current which originates upstream of the
neutralization surface, close to the accel grid. The global accel grid current comes from charge exchange
ions that originate downstream of the neutralization surface. The global current is modeled as flowing to
every aperture on the grid evenly. This approximation comes from the idea that charge exchange ions
created in the downstream beam plasma will flow in all directions equally. This model tends to decrease the

impingement current ratio on the centerline and increase it at the outer radii.

186

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The impingement current to an aperture, J,, is given by Eq. 7.1. The total impingement current, J4,

is given by the integral in Eq. 7.2. Simulations showed that the local impingement current ratio,

J(l

, stayed nearly constant over the beamlet current range of interest. Also, the global current per

bliocal

aperture, Jyoba, i defined as constant. Using these approximations, the integral simplifies to Eq. 7.3 where
H is the number of apertures and Jp is the total beam current. The global current per hole can be found
using that equation knowing the other parameters from experiment or simulation. Once the global current
per hole is known, Eq. 7.1 can be used to obtain the accel grid current for any aperture given a beamlet

current. This model was used in the NSTAR life test simulations.

J
Lo=0"0 1 4+ Eq.7.1
local
1%
J, :27z———'[r.]a dr Eq.72
g 0
'%b = constant and J,,,, =constant
local
J, :
JA =Jp 7 + Hngobal Eq.7.3
b l1pcat

The electron backstreaming limit, or the accel grid voltage required to prevent electron
backstreaming, was measured during the Extended Life Test. Similarly, the peak beamlet current was used

to predict the backstreaming limit during the ELT simulation. These results are shown in Figure 7.18.

Or Experimental measurements
made during the extended life
50 I test at throttle level TH15.
ffx
-100 + Jp = 0.233 mA

14/ds = 0.16 {(hot gap)

150 poo //
200 } End;&

segment 2 //
) i segment 4 °
250 segment 6

[VaReq] (V)

REQUIRED ACCEL GRID VOLTAGE TO
PREVENT ELECTRON BACKSTREAMING

_300 H L 1 1 i t 1
0 5000 10000 15000 20000 25000 30000 35000
OPERATION TIME (hours)

Figure 7.18 Electron backstreaming limit as a function of time at TH1S during the ELT.
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Toward the end of the test, the code predicts a required accel grid voltage less negative than what
was required experimentally. Post test measurements showed that the cold grid gap reduced during the life
test by about 0.2 mm. This suggests that the hot grid gap also might have been reduced during the test to a
value less than the spacing used in the code simulation. A more negative accel grid voltage would be
required to prevent electron backstreaming in that case.

The pit wear depth was measured during the Extended Life Test, with reliable results being
obtained up to the end of the third test segment. Figure 7.19 compares these measurements with the
approximate pit and groove wear depths from the simulation of the centerline aperture recorded at the end
of each test segment. The simulation showed that the pits wore nearly through the accel grid thickness by

the end of the fourth test segment.

120

Centerline fix, Peak J,
R=0cm Pit Depth
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Figure 7.19 Pit and groove wear during the Extended Life Test.

The groove depth seen in the simulation was quite a bit more than what was seen experimentally.
In the test, the grooves wore through about 39 % of the accel grid thickness, and in the simulation the
grooves wore through about 73 % of the thickness. This difference could be due to the simulation method
regarding charge exchange ions originating far downstream of the neutralization surface.

Another thing that can be compared is the accel grid aperture diameter as a function of time, as
shown in Figure 7.20. In this figure, the rate of diameter expansion in the centerline aperture is very similar
between experiment and simulation. However, the experimentally measured diameter was offset by about
0.06 mm compared to the simulation. The overall change in diameter was similar, 0.24 mm in the

experiment compared to 0.20 mm in the simulation.
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Figure 7.20 Accel grid hole diameter as a function of time during the Extended Life Test.

NSTAR 8200 Hour Life Demonstration Test

The Life Demohstration Test was operated at a single throttle poinf, very similar to TH15 in the
Extended Life Test. Initial simulations comparing the backstreaxﬁing limit of the 8200 hour life test to the
centerline aperture indicated that the grid spacing might have been larger in the Life Demonstration Test
than in the Extended Life Test.

Figure 7.21 shows backstreaming limit comparisons over time for a hot grid spacing 0.010 inches
smaller than the cold grid spacing, rather than the 0.014 inch reduction used in the Extended Life Test
simulation. The experimental backstreaming limits are about 9 V positive of the centerline aperture

simulation predictions.
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Figure 7.21 Backstreaming limit comparison during the Life Demonstration Test.

Figure 7.22 shows the downstream side of the accel grid at five points in time during the LDT.
Expectedly, the pit and groove wear pattern is similar to that abserved following the first few segments of

the Extended Life Test.

190

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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Figure 7.22 Simulation results for the 8200 hour Life Demonstration Test.

A comparison of the centerline pit and groove depths at the conclusion of the LDT is given in
Table 7.7. As with the ELT, the simulated groove depth was greater than observed experimentally, while

the pit depth was accurate.

Table 7.7 Pit and groove depth measurements for the Life Demonstration Test.

I Pit (% of t,) I Groove (% of t,)
Experimental Depth 45.2 8.2
Simulation Depth 50.0 28.6

The centerline accel grid hole diameter from experiment and simulation are compared in Table

7.8. Very good agreement is seen in this case, with the final hole diameters being similar to within 2.6 %.
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Table 7.8 Centerline accel grid hole diameter following the LDT.

Accel Grid Hole Diameter
Final d,/d, sominal
Experimental d, 1.19
Simulation d, 1.16
% Difference -2.6

Finally, Table 7.9 compares the screen grid film thickness on the downstream side of the screen
grid after the LDT. Good agreement is obtained, with the simulation giving a film thickness about 8.7 %

lower than experimentally measured.
Table 7.9 Screen grid film thickness for the centerline aperture of the LDT.

Screen Grid Film Thickness (um)

Experimental Film Thickness 8.81
Simulation Film Thickness o 8.04
% Difference -8.7

Charge exchange ion production is broken up into four regions in Figure 7.23. Region 1 is the
region upstream of the accel grid exit plane, Region 2 is the region downstream of the accel grid and
upstream of the neutralization surface, and Region 3 is the region between the neutralization surface and an .
arbitrarily chosen plane further downstream. Regions 1 through 3 consist of charge exchange ions produced
the normal way, by a volumetric production rate equation which is a product of the ion density, neutral
density, ion velocity, and cross section per cell. »

Region 4 is considered to consist of charge exchange ions produced far downstream. In this
region, charge exchange ion production is uniform, and the initial ion vectors are directed entirely axially
upstream. The amount of charge exchange ion production is chosen to agree with the experimentally

measured accel grid impingement current.
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Region 1 Region 2 Region 3 Region 4

Charge Exchange Ion Production:

0.00016 mA 0.00012 mA 0.00023 mA 0.00013 mA
Eroded Accel Grid Cells After 8200 Hours:

Figure 7.23 Accel grid erosion from charge exchange ions originating in different regions of the

beamlet.

The charge exchange ions originating within region ! primarily erode the accel grid hole barrel. In
region 2, the charge exchange ions mostly strike the downstream accel grid hole edge. The charge
exchange ions in region 3 erode away the downstream side of the accel grid. At this beamlet current, these
ions erode away the grooves more than the pits. The charge exchange ions in region 4 erode away the pits

much more than the grooves.

7.4 NEXT

NASA'’s Evolutionary Xenon ion Thruster, or NEXT, is a larger, higher power advancement of the
NSTAR ion thruster. The NEXT thruster uses 36 cm (active diameter) molybdenum grids, which results in

about 60 % more ion extraction area than NSTAR. Using similar current densities, the beam current is
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doubled to 3.52 A from 1.76 A. Also, using a maximum net accelerating voltage of 1800 V, the maximum
specific impulse is increased to roughly 4050 s.

A 2000 hour wear test has been completed using a 40 cm diameter version of the NEXT thruster
[Kamhawi, Soulas]. Currently, a Long Duration Test is being conducted at the NASA Glenn Research
Center using a 36 cm diameter thruster that will demonstrate the ability to process 450 kg of xenon
propellant [Frandina, Soulas]. The baseline mission requirement for the thruster is 185 kg, while the normal
processing objective is 300 kg. As of June, 2005, the thruster had operated for 493 hours, processing 10.2
kg of xenon.

The NEXT grid geometry is identical to the NSTAR grid geometry with the exception that the
accel grid thickness, t,, was increased by 50 %. The NEXT grids are referred to as Thick Accelerator Grid,
or TAG, optics. Additionally, improved manufacturing techniques have been used to reduce the height of

the cusps on the apertures. The NEXT grid geometry is given in Table 7.10.

Table 7.10 NEXT grid geometry.

Parameter Symbol mm/mm

Aperture center to center spacing ‘ l.Jd 1.16
Screén grid hole diameter . dy/d,

Inner diameter, at cusp tips 1

‘ Outer diameter, at entrance/exit 1.053

S;:reen grid thickness ) N t/ds 0.2
Grid spacing (cold) 1,

Cold gap, not operating , 0.347

Hot gap, during operation 0.16
Accel grid hole diameter d,/d

Inner diameter 0.6

Outer diameter 0.653
Accel grid thickness v t/d 04

Several ion optics numerical simulation codes, summarized in Table 7.11, are in currently in use.
All of these codes have been used to simulate NEXT thruster grid apertures [Emhoff, Kafafy, Malone,
Petillo].

Table 7.11 Ion optics numerical simulation codes.

Place of Development /
Code Name Simulation Type Simulation Volume
Primary Use

ffx . . Steady State / Ray 3D, Rectangular Prism
Colorado State University
1gx Tracing 3D, Wedge
CEX2D ) Steady State / Ray 2D, Rectangle
Jet Propulsion Laboratory
CEX3D Tracing 3D, Wedge
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Time Based / Particle In

erode University of Michigan Cell 2D, Rectangle
e
Virginia Polytechnic Time Based / Particle In ;
HG-IFE-PIC 3D, Rectangular Prism
Institute & State University Cell
Science Applications
Steady State / Ray
International Corporation /
MICHELLE Tracing (time based also 3D, Rectangular Prism
NASA Glenn Research
available)
Center

It is difficult to directly compare all of the simulation codes because all of the codes use different
algorithms. Additionally, different researchers may use different input values when simulating the same

problem.
ffx, igx, CEX2D, CEX3D, and erode

- The ffx, igx, CEX2D, CEX3D, and erode codes were all used to simulate the NEXT grid
impingement and backstreaming Iimifs utilizing as many of the same input parameters as possible, listed in

Table 7.12.

Table 7.12 NEXT numerical code comparison parameters.

Parameter | Symbol Value
Net Accelerating Voltage Vi (V) 1800
Discharge Voltage Va (V) 25
Accel Grid Voltage V. (V) -210
Beam Plasma Potential V) 10
Discharge Propellant Utilization Efficiency Nu (%) 90.0
Double To Single Current Ratio T (%) 0.0
Electron Temperature T, (eV)

Upstream 6.0

Downstream 1.0
Grid Spacing L/d; (mm/mm) 0.347

Impingement limit predictions from the five codes are shown in Figure 7.24. With the exception of
the CEX2D code, the perveance limit predictions are all very similar. The ffx and erode codes also show a

crossover limit at a very low beamlet current.
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Figure 7.24 NEXT impingement limit predictions.

Predictions of the centerline saddle point potential, Vs,ggepoiy. a8 @ function of beamlet current
. from the five codes are shown in Figure 7.25. The ffx and igx codes show a slightly greater margin against

electron backstreaming compared to the CEX2D, CEX3D, and erode codes.
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Figure 7.25 NEXT centerline saddle point potential predictions.
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Grid ion transparencies are shown in Figure 7.26 as predicted by the four of the five simulation

codes. Again, the ffx and igx codes predict slightly lower ion transparencies in general compared to the

CEX2D and CEX3D codes.
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Figure 7.26 NEXT ion transparéncy predictions.

As a final comparison, accel grid erosion rates as a function of beamlet current are shown in

Figure 7.27 as calculated using the ffx, CEXZD, and CEX3D optics codes. It is encouraging that the ffx and

CEX3D codes predict similar accel grid hole barrel and downstream erosion rates over a range of beamlet

currents. It is noted that the ffx erosion rate suddenly increases at the greatest beamlet current in this figure

as it is very close to the onset of direct ion impingement.
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Figure 7.27 ffx and CEX3D code erosion rate predictions on the accel grid hole barrel and

downstream surfaces.

ffx and HG-IFE-PIC

The ffx and HG-IFE-PIC codes were compared using a grid setup similar to NEXT, as

summarized in Table 7.13. The primary difference is a smaller screen grid hole diameter.

Table 7.13 NEXT grid geometry and operating conditions for the comparison of the ffx and HG-
IFE-PIC codes.

Parameter Symbol mm/mm
Aperture center to center spacing L. Jdg NEXT 1.165
Screen grid hole diameter dy/ds nExT 0.793
Screen grid thickness t/ds NEXT 02
Grid spacing lo/ds NExT 0.347
Accel grid hole diameter d./ds NexT 0.573
Accel grid thickness to/ds NEXT 0.4
Parameter Symbol Value
Net Accelerating Voltage %Y 1800V
Screen Grid Voltage A'A 1780 V
Accel Grid Voltage V. 210V
Beam Plasma Potential ov
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Electron Temperature T,

Upstream 5.0eV
Downstream 1.5eV
Propellant Temperature 300K

Figure 7.28 compares the crossover and perveance limits calculated using the ffx and HG-IFE-PIC
codes for the modified NEXT grid geometry. Also shown in this figure is experimental gridlet data
obtained near the crossover limit using a 37 aperture gridlet. Both codes show consistent perveance limits
in terms of the number of apertures being simulated, while the ffx code perveance limits are somewhat
lower than those predicted by the HG-IFE-PIC code.
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Figure 7.28 Crossover and perveance limits predicted by the ffx and HG-IFE-PIC codes.

Figure 7.29 shows the crossover limits of the previous figure in greater detail. The ffx code
crossover predictions are greater than the HG-IFE-PIC code predictions, but are less than the
experimentally determined crossover limit. Also, while the 7 aperture ffx data falls between the hexagonal
aperture layout and 1 aperture data at a beamlet current of 0.01 mA, it falls below the hexagonal aperture
layout data at 0.02 mA. This is in contrast to the HG-IFE-PIC code which shows the 7 aperture curve lying
entirely above the hexagonal aperture layout curve. Investigations into several simulation parameters did
not explain the trend in the 7 aperture data. The 1 aperture ffx data did lie entirely above the hexagonal
aperture layout data as anticipated. It is useful to note that the rate of rise of the impingement current is

similar between the codes and the experimental data.
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Figure 7.29 Crossover limits for the modified NEXT grid geometry.

Finally, a comparison of the centerline saddle point potential as a function of accel grid voltage is
shown in Figure 7.30. In this case, the upstream plasma density was held constant, at 1.0-10'7 ions/m’, and
single aperture gridlets were simulated. The code agreement at this plasma density is very good. It is noted
that this plasma density corresponded to a relatively low beamlet current, near 0.08 mA, where all of the

codes improve in agreement with regard to saddle point potential in general.
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Figure 7.30 Agreement between the ffx and HG-IFE-PIC code predictions of saddle point potential.
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ffx and MICHELLE

The ffx and MICHELLE codes were compared using a modified NEXT grid geometry that
corresponds to the outer edge geometry of the 40 cm thruster used in the 2000 hour wear test. Malone first
used the MICHELLE code to study crossover erosion that took place near the thruster edge, presumably
during operation at a low beam current. The test geometry and conditions at radii of 180, 195, and 199 mm
are given in Table 7.14. The beamlet currents in this table were estimated using the given current densities

and a ffx code calculated ion transparency of 86 %.

Table 7.14 NEXT grid geometry and operating conditions for the comparison of the ffx and

MICHELLE codes.
Radial Position
Parameter Symbol
180 mm 195 mm 199 mm
) dy/d. , inner (mm/mm) . 0.971
“Screen grid hole diameter ST NEXT
dJ/d, nexT, Outer (mm/mm) 1.055
Grid spacing (hot) l/ds NgxT (mm/mm) - 0.2
d./ds ngxT, INNEr (mm/mm) - 0.535 0.520 0.509
Accel grid hole diameter :
d./ds ngxT, Outer (mm/mm) 0.667 0.651 0.640
Beam current ’ Iz (A) 1.20
Net Accelerating Voltage Vn (V) 1800
Screen Grid Voltage V. (V) ’ 1775
Accel Grid Voltage V. (V) -250
Beam Plasma Potential V) 15
T,, upstream (eV) 6.0
Electron Temperature
T., downstream (eV) 1.0
Current density j (mA/cm?) 0.423 0.161 0.114
Ion transparency O (%) 86
Beamlet current Jp, (mA) 0.015 0.006 0.004

First, grids with apertures in a hexagonal layout pattern were simulated, the results of which are
shown in Figure 7.31. Direct, crossover, ion impingement can be seen at all three radii. In the last set of
photos in this figure, the grid cells that have been completely eroded away due to crossover impingement
after 500 hours of operation are shown colored according to their axial location with respect to the accel

grid.
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r= 199 mm r=195mm r= 180 mm
J, = 0.004 mA J, = 0.006 mA J,=0.015mA

Ion density, red is greatest (> 1-10'¢ ions/m?):

Mass loss rate, blue is greatest loss rate (< -1-10'° atoms/(s-cell)):

| ad_ad o

T =500 hours. Erosion due to direct (crossover) ion impingement:

oo g g

Figure 7.31 Hexagonal aperture layout grids showing crossover impingement at three radial

positions.

Next, grids with 1 and 7 aperture patterns were simulated at the greatest radial position of 199 mm
in order to better approximate edge aperture erosion. The results of these simulations are shown in Figure
7.32. In going from the hexagonal grid to the 7 aperture grid to the 1 aperture grid, the impingement to

beamlet current ratio, J,/Jp, increases.
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r=199 mm, J, = 0.004 mA

Ton density, red is greatest (= 1-10'¢ ions/m?):

T = 500 hours. Erosion due to direct (crossover) ion impingement:

Figure 7.32 Crossover ion erosion among the 1, 7, and hexagonal aperture layout grids.

It is important to remember that symmetry conditions are used on the sides of each of these
simulations. Edge aperture erosion is best approximated by the 7 aperture simulation. Figure 7.33 shows

the 7 aperture grid reflected several times to show the actual geometry being simulated.
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=199 mm, J, = 0.004 mA, T = 500 hours

Downstream Side “Missing” Apertures

Figure 7.33 Reflection of the 7 aperture grid illustrating the actual geometry being simulated.

Figure 7.34 shows the erosion at three radial positions that occurred during the NEXT thruster
2000 hour wear test. The erosion at the 199 mm radial position is similar to the erosion predicted by the ffx
code for the “edge” aperture in the 7 aperture grid, where three of the six adjacent apertures are missing. In
general, the impingement current patterns found using the ffx code are similar to those found using the

MICHELLE code.

NEXT 2000 Hour Wear Test, T = 2040 hours.
r=183.7 mm r=195.2 mm r=199.0 mm
View from upstream side of grids:

View from downstream side of grids:

Figure 7.34 Erosion near the edge of the grids following the NEXT 2000 hour wear test.
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Table 7.15 gives the impingement to beamlet current ratios, J/J,, that were seen in the code

simulations. These ratios are averaged over the duration of the 500 hour simulations.

Table 7.15 Average impingement to beamlet current ratios from the ffx code simulations for the

NEXT edge aperture study.

Impingement to Beamlet

Grid Type Radial Position (mm)
Current Ratio [J./J,] (%)
Hexagonal 180 2.4
Hexagonal 195 4.2
Hexagonal 199 4.6
Hexagonal 199 4.6
7 Aperture 199 13.5
1 Aperture 199 20.2

It should be pointed out that simulating erosion due to crossover impingement is troublesome
given the very high ion incidence angles that are involved..In order to maintain non-zero erosion rates in
unusual situations where the surface normal vectors are highly orthogonal to the ion trajectories, the ion
incidence angles are not allowed to be greater than 1.3 radians (74 degrees) in terms of the sputtering yield
equations. This provides a minimum sputter yield, ensuring that erosion can take place, if only at a small

rate, in all cases.
NEXT 2000 Hour and Long Duration Tests

The operating conditions, as simulated, for the 2000 hour life test (using a 40 cm NEXT thruster)
and the Long Duration Test (using a 36 cm thruster) are given in Table 7.16. Most conditions are the same
for both tests. The grid spacing, I;, and beamlet current, J,, values are uncertain. The beamlet currents are
simply derived from the beam current, flatness parameter, and beam diameter values. The grid spacing for
the 2000 hour wear test was used to obtain good agreement with the experimentally observed erosion
patterns. The grid spacing for the LDT was used to be in good agreement with the experimentally measured

electron backstreaming limit at beginning of life.

Table 7.16 NEXT operating conditions for the 2000 hour and Long Duration life tests.

Parameter Symbol Value
Grid spacing (hot)
2000 hour (40 cm) lo/ds NgxT (MmM/mm) 0.267
LDT (36 cm) lo/ds ngxr (Mm/mm) 0.16
Accel grid hole diameter
2000 hour (40 cm) d,/d; NpxT. inner (mm/mm) 0.667
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LDT (36 cm)

Net accelerating voltage
Screen grid voltage
Accel grid voltage

Beam plasma potential
Electron Temperature

Beam current
Flatness parameter
Holes
2000 hour (40 cm)
LDT (36 cm)

Centerline (peak) beamlet current

2000 hour (40 cm)
" LDT (36 cm)
Accel grid current
2000 hour (40 cm)
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Figure 7.35 compares the pit and groove erosion patterns of the centerline aperture following the

NEXT 2000 hour wear test found experimentally and through simulation. Higher than usual mesh

resolution was used in the simulations to more accurately resolve the small amount of erosion that occurs.

Note that very little erosion was seen on the aperture barrel region at any radius over this time span.
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ffx Code

Figure 7.35 Erosion patterns from experiment and simulation for the center aperture of the NEXT

2000 hour wear test.

Figure 7.36 compares the pit and groove depths measured experimentally, with a laser
profilometer, to depths found through simulation for apertures at three radii: centerline (0 cm), one-fourth
radius (5 cm), and half radius (10 cm). The agreement is good at all three radii for the simulated beamlet
currents and grid spacing. Note that the erosion patterns were seen to be quite sensitive to both beamlet

current and spacing in this region.
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EROSION DEPTH THROUGH ACCEL GRID
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o N b~ O ©

Joldy = 0.31 %
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\\\\\
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NEXT 2000 Hour Wear Test Pit — ffx
18 T = 2038 hrs B Groove - Exp.
16 M Groove — ffx
14 | Jp=0.168 mA Jp =0.145 mA Jp =0.136 mA

Joldy = 0.34 %

THRUSTER RADIUS (cm)

Figure 7.36 Pit and groove depths at three radii for the NEXT 2000 hour wear test.

Figure 7.37 shows the predicted erosion that would take place over the first 300 kg of propellant

use during the NEXT Long Duration Test. Note that the erosion is highly specific to the beamlet current,

impingement to beamlet current ratio, and grid spacing used in the simulation.
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Figure 7.37 Predicted erosion for the centerline aperture of the NEXT Long Duration Test.

Figure 7.38 shows the pit and groove erosion depths observed as a function of operation time over
the first 300 kg of the NEXT Long Duration Test. The pit and groove erosion depths were extrapolated to
wear through. End of life is indicated by groove wear through, which occurs at about 483 kg of propellant
use, assuming thruster operation remains constant. Using the centerline saddle point potential as a function
of time (not shown) over the first 300 kg, the onset of electron backstreaming (for the centerline aperture) is
expected to occur at a propellant throughput value of about 446 kg or greater. Again, these values are

specific to the values of Jy, J,/J,, and /; used in the simulation.
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Figure 7.38 Pit and groove erosion depths for the centerline aperture of the NEXT LDT.
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8 ffx lon Optics Simulation Code

The ffx code is a three-dimensional simulation code designed primarily for the analysis of ion
thruster optics. The code analyzes a three-dimensional, rectangular prism volume. A Cartesian mesh is used
which greatly enhances simulation speed and the ease with which algorithms are implemented. The
upstream and downstream surfaces are held at fixed potential values, while symmetry conditions are
applied on the four remaining sides of the volume.

The mesh spacing in each coordinate direction is determined by the specified volume size and the
number of nodes in each direction. The mesh spacing is uniform along each individual direction, but can be
different among the three directions. Normally, the number of cells in the x direction is specified, which
sets the mesh spacing in the x direction. The code then automatically chooses the number of cells in the y
and z directions to approximately result in cubic cells.

An outline of the code algorithm is given in Figure 8.1. First, an input file is read by the code that
sets the following:

e Grid geometry (I, ds ...)

e  Applied voltages of the grids, upstream and downstream plasmas (V,, V, ...)
e  Grid material and propellant type (Molybdenum, xenon)

e Beamlet current (J,) or upstream ion density (n;)

e Electron (T,) and ion (T;) temperatures

e Mesh size

e Double to single current ratio (J**/J")

e Iteration scheme and number of ion macro particles

e Propellant utilization efficiency (1)

/ Set Operating Conditions and Geometry /

l Mesh Potentials l ]
I ;
§ l Sheath / Neutralization Surfaces I | NeutralIDensny l
[=] — T -
§ D r Electric Ficlds I [ Charge Exchange Ion Production l
5| & : i
1 (5] . .
gl = r Ton Trajectories i Charge Bxch.ange Ion Trajectorles /
13 — Grid Sputtering
I
End Beamlet Loop ? [ Update Grid Geometry |
1

End Erosion Loop ?

End Program

Figure 8.1 Flowchart for the ffx simulation code.

210

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The first main iteration procedure is the beamlet loop, which can be thought of as the portion of
the code that determines the beamlet shape. In the beamlet loop, the code alternates between 1) solving for
mesh potential values and 2) tracking ion trajectories.

The region very close to the grids is considered to be electrostatic, where electric fields are very
large compared to any magnetic fields that might be present [Brown]. In solving for the mesh potential
values, the code solves the Poisson equation, which is a second order elliptical partial differential equation.
This equation essentially relates the second derivative of potential, ¢, to ion (n;) and electron (n.) number
density. On the first iteration, no ions or electrons are present, thus the Poisson equation reduces to the
Laplace equation when p is zero. The Poisson equation is given as Eq. 8.1.

vig=-L o 20,090,990 _p
£ ox*  dy? 97’ &

Eq. 8.1

The space charge, p, is comprised of ion and electron space charge, as given in Eq. 8.2. In the case
of ion thrusters, only singly and doubly charged ions normally have significant populations in the plasmas.
In this equation, €& is the permittivity of free space.

+ ++ + + o+t
_ﬁz_pi + 0, +pe:_qi n, +q, n +qpn,
80 50 80

o Eq. 8.2
£, =~8.8542:10™" I _g8s5a2.10 —C;
m , Nm
Once the Poisson equation has been solved to determine the scalar potential values, the electric
field at each node is obtained by taking the negative of the gradient of the potential function, as shown in
Eq. 8.3. In a Cartesian coordinate system, the electric field is essentially the first derivative of potential in
each direction.

- - a¢,\ a¢,\ a¢,\
E=-V E=- 2] +2 K 8.
¢ or ( 1+ Jj+ . ] Eq. 8.3

Finite difference equations are used to approximate the derivatives in the Poisson and electric field
equations [Chapra]. In using finite difference equations, several choices for the solution of the Poisson
equation become available. Second order and fourth order accurate central divided difference equations are

given in Eq. 8.4 for the x direction. Similar equations can be written for the y and z directions.
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Second order accurate formulas:

_a_? - ¢i+1 _¢i—1

ox 2Ax
az¢ - ¢i+1 - 2¢i + ¢i—1
ox’ (Ax)’

Eq. 8.4
Fourth order accurate formulas:

_a_¢ - ~ @i, 80,80, + 6,

ox 12Ax
az¢ — — 9, +16¢,,, =309, +169,_, —¢,_,
ox’ 12(Ax)’

Once the electric fields are known, ion macro particles are tracked through the simulation volume.
An ion macro particle is a particle that behaves in electric and magnetic fields as a single ion, but carries
the weight of many ions. As long as a sufficient number of macro particles are used, the simulation time is
greatly reduced without sacrificing accuracy.

Ions are typically injected into the upstream surface at the Bohm velocity, which they acquire
upstream of the sheath, in the pre-sheath region, as described previously. The Lorentz force law describes
the forces on charged particles due to electric and magnetic fields. The method of particle tracking, called
the Leapfrog method, used in the code is described in greater detail in a separate section.

‘ As ion macro particles move thréugh the simulation volume, they “deposit” space charge on the
surrounding mesh nodes by the method of volume weighting, as shown in Figure 8.2. Eq. 8.5 shows the
space charge (C/m®) that is added to node 1 from the macro particle located at (x,y,z). The macro particle

carries a current Jp e (A = C/s) and is considered to be at that location for a time step of At (s). The cell
volume is V. (equal to Ax-Ay-Agz), and an additional volume fraction is used to divide up the space
charge. Seven additional equations are used with different volume fractions for the remaining nodes. Note
that as the particle moves closer to node 8, less space charge is deposited to node 1.

I particie A (xz _x)()’z - J’)(Zz n Z)
Vv Ax-Ay-Az

cell

pl = pl + Eq 8.5
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Figure 8.2 Method of volume weighting used to deposit ion space charge on mesh nodes.

Only one macro particle is tracked at a time. Ion macro particles are injected until either 1) the
specified beamlet current is met or 2) the upstream plasma density is met.

Once all the ions have flown through the simulation volume, the Poisson equation can be solved
again using the new estimates for the space charge at every node. Following that solution, the ion macro
particles are tracked again to obtain better space charge values. The iteration procedure within the beamlet
loop continues in this way until the potential values at all nodes change by a small amount, which signifies
convergence. k

To this point, the method of obtaining the electron space charge contribution has been omitted.
The electrons within the discharge and beam plasmas upstream and downstream of the ion thruster grids
are considered to be much more mobile that the ions. As a result, the electrons can be treated with
equations that relate the electron density at any node to the average ion density within the plasma using an
expression that involves the node potential relative to the plasma potential.

Two equations are used for each plasma, one for the case where the node potential is greater than
the plasma potential and one where it is less than the plasma potential. These equations are given in Eq. 8.6
for the upstream discharge chamber plasma. Here, (D;" + Pi™")y average 1S the average ion space charge in the
upstream plasma, ¢, is the plasma potential, and T, is the electron temperature. Two similar equations are
used for the downstream beam plasma with different plasma density, potential, and electron temperature
values.

P, = _(pi+ + pi++ )u Average C5P) %

eu

Pe =—(pi+ +'0i++)uAver(lg€ ) 1+¢__ﬂ

for ¢<9,

Eq. 8.6

for @929,

eu

Once the beamlet loop is finished, the code goes into the erosion loop where it deals with

processes related to grid erosion.
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First, the code calculates the neutral density variation throughout the grid region. This is done
using analytical equations, the process of which is described in a separate section.

The neutral density variation is needed to calculate the volumetric charge exchange ion production
rates, which is the next step in the erosion loop. The charge exchange ion production rate (1/ [s'm’]) within
a cell is a product of the neutral density (1/m3), ion density (1/m), relative particle speed (m/s), and
reaction cross section (m?).

Once the rate of charge exchange ion production has been calculated for every cell, charge
exchange ion macro particles are tracked through the volume. These particles originate from the centers of
the cells where production takes place.

An erosion model is used to calculate the erosion rates caused by charge exchange ions that strike
grid surfaces. Ions from the discharge chamber, tracked during the beamlet loop, can also add to the grid
erosion rates.

The number of atoms sputtered from a grid cell is a product of the sputter yield and the number of
ions carried by the impacting macro particle. The sputter yield is dependent on the impacting macro particle
1) energy and 2) angle of incidence. The angle of incidence is found using the local surface normal vector
of the impacted cell. Erosion constantly changes the grid surface. As a result, normal vectors are calculated
at the start of every erosion loop.

One way to obtain a surface normal vector is by calculating the location of the regional center of

, mass of the impacted cell relative to its geometrical center. The surface normal of the impacted cell is then
defined as the line that extends from the center’of mass in the region through the center of the impacted
cell, ag shown in Figure 8.3. These surface normaly vectors give a much more reasonable representation of
the true surface éhape than do the cell faces.

-~ Impinging Particle

Angle of
Incidence

T — Surface Normal

RN

Center of Cell

Local Center
of Mass

Figure 8.3 Calculation of the local surface normal vector of any cell.

After all charge exchange ions have been tracked, and erosion rates calculated, the deposition of
sputtered grid material back onto the grids is taken into account. Vectors, sampled from a cosine
distribution, are selected for every grid cell from which erosion takes place. These vectors are followed
from the cells, taking into account the individual surface normal vectors, to termination upon a grid or the
upstream or downstream surfaces. Sputtered grid material is taken to move through the simulation volume
in straight lines. All sputtered grid atoms that end up terminating upon a grid cell are assumed to become

part of that cell.
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After the deposition of sputtered grid material has been considered, the overall cell mass change
rates are calculated. These are simply the mass loss and mass gain rates added together.

An erosion time step is selected prior to the start of erosion simulations. This time step is used to
calculate how many atoms are lost and gained from each cell using the overall mass change rates.
Generally, this time step is on the order of 50 to 500 hours. The time step can be changed during the
simulation either manually or automatically depending on the cell loss rates.

The erosion time step is multiplied by the overall mass change rate in all cells to determine the
actual number of atoms lost or gained. There are several situations to consider. For illustration purposes,
take the maximum number of atoms in a cell to be Ngyeq, calculated given a certain cell size and grid
material density. Furthermore, take the current number of atoms in a cell to be N. Situations, and the
actions taken, are reported in Table 8.1 following a time step application. The code actions are designed to

maintain the best possible atom conservation.
Table 8.1 Situations where cells in the simulation are either losing or gaining atoms.

. Situation . Resolution

The cell has lost some cells, but it is not down to zero

CellAIS losing atoms. 0 < N < Nrieq yet. The cell remains a grid cell with no modification.

The cell has lost more atoms than it had to give up. In
this case, cells are taken evenly from surrounding grid
cells until N = 0. Then, the cell is turned into a free cell,
‘no longer part of a grid.

Cell is losing atoms. N<O

. Although the cell is losing mass, it still has more atoms
Cell is losing atoms. N > NFiited than a completely filled cell of its size. This cell remains
’ a grid cell with no additional modification.

There are two possibilities. This cell is either a grid cell
that has previously lost some mass or it is a free cell that
is being filled with atoms. In either case, no action is
taken.

Cell is gaining atoms. 0 < N < NEjeq

1) If the cell is already part of a grid, the excess cells are
distributed to adjacent cells if N = 2-Ngjeq. First, excess
atoms are given to cells part of a grid if they have atom
deficiencies. Next, excess cells start filling free cells
evenly. Atom distribution is not done until N = 2-Ngjjeq
Cell is gaining atoms. N > Nrijed to make sure 'the cell is consistently gaining mass in
order to avoid inadvertent atom loss.

2) If the cell is a free cell, not part of a grid, it has now
been completely filled with atoms so it becomes a grid
cell. The last adjacent cell that helped fill the cell with
atoms determines which grid the cell becomes a part of.

After all special cell cases are dealt with, the code begins the next erosion loop. Because the grid

shape can change, the beamlet loop is used to update the beamlet shape. Usually, grid changes are slight
and the beamlet loop becomes much shorter after the first iteration.

The overall ffx code algorithm is typical of steady-state algorithms used in optics simulation
codes. The steady state simplification allows the potential solution and particle tracking sections to be

separated. The main advantage of this type of simulation is greater speed. A single run of the ffx code
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typically takes less than an hour even for a relatively high beamlet current. A full simulation of grid erosion
takes on the order of one day.

In time dependent simulations, particles are all tracked together, alternately moving particles and
solving for potentials. A simulation of this type typically takes longer to run, but also has other inherent
advantages. For instance, particle collisions can be taken into account if desired, and charge exchange ion
space charge is included automatically. Charge exchange ion space charge can be taken into account in the

ffx code using multiple erosion loops with an erosion time step of zero.
8.1  Particle Tracking

In the ffx code, particle pushing is performed using what is commonly called the Leapfrog method
[Hut]. It is called the leapfrog method because particle positions and accelerations are essentially defined at
integer values (t;, iy}, t;2, etc.) while velocities are defined at half integer values (t;.15, ti;1/2, tisas2, €tc.). The

two main equations for the Leapfrog method are given in Eq. 8.7.

=7 +V,At+ la,. (Ar)
v2 Eq. 8.7
Vi =V, 1 (a + ai+1 )At
' The Leapfrog method is a second order accurate method. This is in contrast to the first order
accufate Euler method or the fourth order accurate Runge-Kutta methé)d for example. The Leapfrog method
" gives much better accuracy than the Euler method with only slightly more programming complexity. Also,
the Leapfrog method requires less computations than the fourth order Runge-Kutta method, which helps
preserve simulation speed.
The above equations for the Leapfrog method give the position and velocity on integer time steps.
A different, but equivalent, way of writing this method is given in Eq. 8.8. Here, velocities are defined on
half integer time steps. A special case is the velocity vy, which is defined in Eq. 8.9 in terms of v, instead

of V.112-

_ Eg. 8.8
vV =V | taAt
it— i-=
2
Y
v, =V, +d, —2 Eq. 8.9

When injecting ion macro particles into the simulation volume, the initial position of the particle

(7,) is determined using a random number generator. Additionally, the initial particle velocity (170) is

216

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



axial, with the particle speed being the Bohm velocity. During particle movement, only the acceleration
(a,) and time step (At ) vary.

The force on a particle in the presence of magnetic and electric fields is given by the Lorentz force
equation, Eq. 8.10. Here, ¢ is the particle charge, V is the velocity, B is the magnetic field, and E is the

electric field. This force is equal to the particle’s mass times its acceleration, a.

ﬁ:q(§X§+E):m5 Eq. 8.10
With the electrostatic simplification, a particle’s acceleration at any time step is given in Eq. 8.11.
i=1E Eq. 8.1
m

The location of a particle in the simulation volume is easily determined using the regularly spaced
Cartesian mesh. Eq. 8.12 gives the x direction index number, X, of the cell that contains the particle,

where Ax is the mesh spacing in the x direction. Two additional equations are used for the y and z indices.

Xy = int(i) ‘ Eq. 8.12

The electric fields at every node are calculated prior to particle movement. To obtain the electric
field at the particle’s actual location, the electric fields at the 8 nodes of the cell are volume weighted in the
reverse manner that space charge from the particle is applied to the nodes, as given in Eq. 8.13.

. . |
E=YE,-V, | Eq. 8.13
n=1 :

Here, V, is the volume fraction appropriate to node n. One way to obtain the volume fractions is to
use the cell index values. First, six length fractions, x, through z,, can be defined that describe the fractional
position of the particle within the cell. Two of these fractions for the x direction are given in Eq. 8.14. Next,
these length fractions are combined six different ways to obtain the volume fractions. The electric field in
the x direction is given in Eq. 8.15 for example. Note that the closer a particle is to a particular node, the

more that node influences the electric field at the particle’s location.

X
Xo = Ax—xcell

Xp =1~(£~xcell]:1_xa

Eq. 8.14
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E=E, ., % Y2

Xijk

+Exi+1jk "xn.yl).zb

+: Eq. 8.15
+EXij+lk+1 Xyt Va %y
+ Exi+1j+1k+l .xa ) ya ) Za

Conditions developed by Courant, Friedrichs, and Lewy (commonly called CFL conditions)
describe the maximum time step that is required in order to accurately track particles through a certain
mesh size. In the ffx code, the particle time step used in the Leapfrog method is adjusted constantly such

that particles do not move more than one-third of the way through any cell in a single time step, as given by
Eq. 8.16. Here, A is taken as the minimum mesh size among the three Cartesian directions, and I\7| is the
particle speed at any time. Reducing the time step requirement further was not seen to change simulation
results.

Atﬁél% ‘ Eq. 8.16

The total energy of a particle should ideally be conserved as it moves through the simulation
volume. However, small changes in energy can arise when using numerical methods. To combat this effect,
energy compensation is used to adjust the particle’s velocity vector in order to keep a constant total energy.
The initial total energy is set by the initial particle velocity, usually the Bohm velocity, and the potential at
the location where the particle is injected’, usually the upstream surface. At any location the potential is ¢,
and there is a corresponding conserved velocity Vesseneq at that location, as given by Eq. 8.17. The
uncorrected particle velocity following a time step is v, given in Eq. 8.18. Defining « to be the ratio of the

conserved to actual velocity magnitudes, Eq. 8.19, the particle velocity is corrected by multiplying the three

velocity components by ¢ to achieve the desired (conserved) velocity magnitude, as shown in Eq. 8.20.

ETotal = E Potential + EKinetic
|
=q@¢+—my
2
2
vconserved = _(EToml —q¢) Eq 8.17
m
2 2 2
v=\/vx tv, +v, Eq. 8.18
\Z
o= conserved Eq 8.19
v
2 12 2
Veonserved ™ ’\/(avx) + (a’Vy) + (a\/'z ) Eq 8.20

218

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Note that the potential, ¢, at any location is obtained in the same way the electric fields are
obtained at any location. Specifically, volume weighting is used with the node potentials instead of the

electric fields.

8.2 Solution of the Poisson Equation

The Poisson equation, Eq. 8.21, generally describes the relationship between potential, ¢, and
charged particle space charge, p, in the electrostatic case. Using a Cartesian coordinate system and
considering the plasma to consist of singly and doubly charged ions as well as electrons, this equation

expands to Eq. 8.22.

V2¢:____ Eq. 8.21
&
2 2 2 + ++
agﬁ+a?+8?:_p,- o 1o Eq. 8.22
ox* dy® 0z &

There are two ways to treat the electron populations in the upstream, discharge chamber, and
downstream, beam, plasmas. One way is referred to as the cold sheath approximation, which essentially
assumes-a zero volt electron temperature. Here, electrons are assumed to be present at any location where
the potential is at (or above) fhe reference plasma potentials. During the potential solution procedure, no
node potential is allowed to be greater than the appropriate reference plasma potential. This assumes that
the electron and ion space charges are exactly equal at or above the plasma potentials.

The other way to describe the electron populations is by using Boltzmann electron relationships.
Here, the electron populations are described in terms of the bulk, average, ion densities within the discharge
chamber and beam plasmas. The electron density at any node depends on the node potential and electron
temperature of the plasma. Eq. 8.23 gives these relationships for the upstream discharge chamber plasma.
The electron temperature determines how fast the electron density drops off as the potential decreases in
moving toward the screen and accel grids.

-9
T

eu

+ ++
pe = —-(lai + pi )u Average eXp

¢_¢M

eu

== iu Avg eXp

Eq. 8.23
-9,
T,

eu

+ ++
pe:_(pi +'0i )uAvemge. 1+

for ¢>_¢u
u
=i 1+_¢¢

eu
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In using the electron equations, a boundary is set along the axial distance of the simulation,
usually just above the accel grid, that separates the discharge chamber and beam plasma regions. One set of
potential and electron temperature values are used upstream of the boundary, and a different set
downstream of the boundary.

The average ion densities in the upstream and downstream regions are found during the code
simulation by averaging the ion densities over nodes close to the upstream and downstream boundary
surfaces.

One important result of using the Boltzmann electron equations occurs just downstream of the
accel grid. Here, the beamlet often converges on the centerline, making the ion density, and consequently
the potential, greater there than the average ion density found farther downstream. This subtle increase in
potential tends to direct charge exchange ions into pit and groove erosion patterns that better match
experimentally seen erosion patterns.

One significant disadvantage of using the Boltzmann electron relationship is that it makes the
Poisson equation nonlinear as a result of the exponential term. This has several implications with respect to
solution techniques. 7

Here, second order finite centered difference formulas can be used to approximate the second

order partial derivatives in the Poisson equation, which gives Eq. 8.24.
S (/5 ”2¢ijk +0 ¢j+1 - 2¢ijk +¢j—1 P ;2¢ijk +0,
. ; . N2 + ( A )2 + ( )2
(Ax) y Az
o -+ ++ .
__ P +pTHp,
&

Eq. 8.24

After the finite difference equations are substituted into the Poisson equation, either explicit or
implicit solution techniques can be used to solve the equations. The goal in either case is essentially to
invert the matrix formed by combining all of the equations written for every node in the mesh. This matrix
is of the form given in Eq. 8.25, where A is a coefficient matrix, u is a vector of unknown variables, and fis
a vector of constants.

Au=f Eq. 8.25

Explicit solution of the matrix involves inverting the matrix directly. Inverting matrices is usually
efficient for small matrices, but very time consuming and memory intensive for large matrices.
Additionally, explicit methods are usually only used for linear sets of equations, requiring some sort of
linear approximation to be performed on the Boltzmann electron equations.

Implicit methods are more often used with large sets of equations, as in this case. Additionally,
both linear and nonlinear solvers can be developed. The Gauss-Seidel and Jacobi methods are discussed
first, which can be used with linear sets of equations. Newton’s method is discussed next, which works for

both linear and nonlinear sets of equations.
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8.2.1 Gauss-Seidel and Jacobi Methods

The Gauss-Seidel and Jacobi iteration methods are similar. The Poisson equation written for a
general node can be solved for the unknown node potential, ¢;, resulting in Eq. 8.26 for example. To solve
the entire set of equations for all nodes, one simply iterates through every node solving for new values of

s« using the currently stored values for the surrounding node potentials (i1, 051, etc.).

1
@jk__z(lJr 1 +1J
o B
x| — :Oi+ +I0i++ 0, Pntd, P +04 P TPy
& (axf (W) (Azy

Initially, guess values for all of the node potentials are chosen. Usually, using ¢ = (O for all nodes
is acceptable, although faster convergence can be obtained if better initial guesses are used. Nodes that are
at known potentials, for instance those nodés located inside grids and on the upstream and downstream
boundaries, are simply not calculated. For a linear set of equatidns, this method converges to one set.of
potential values after iterating through all nodes multiple times.

- In this case, a linear set of equations arises when the electron charge density p. is linear. Recall
that p;* and p;** are constants during the potential solution, obtained during particle tracking, where each
node can have a different charge density value. The Boltzmann expression can be made linear by
approximating the exponential function by a linear function. Then, the part of the electron equation that
depends on ¢y can be factored out, once again obtaining an equation similar to the one above where ¢y is
solved for explicitly. .

The difference between the Gauss-Seidel and Jacobi methods lies in which node potential values
are used to find new potential values. Gauss-Seidel uses the most recently calculated node values always.
For example, in calculating the new potential ¢j;, a new potential ¢;.; was just calculated while ¢;,; will be
calculated next. Gauss-Seidel uses the new value for ¢, to calculate ¢y, while Jacobi would use the old
value for ¢;., to calculate ¢;. The Jacobi method does not use the new set of potential values until all of the
nodes have been calculated.

Using the most recent potential values usually results in Gauss-Seidel converging slightly faster
than Jacobi. However, the node potentials become slightly directional when using Gauss-Seidel because the
new potential values depend on the order in which the nodes are updated. For example, the potential values
will be different when iterating from i =0 to i =n than when iterating from I =7 to { =0 unless
exact convergence is achieved. The Jacobi method is not directional because it updates the entire set of

potentials only after all new node potentials have been calculated.
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One way to make Gauss-Seidel non-directional is to use what is commonly called a red-black
updating scheme. In this method, all of the “red” nodes are updated first, followed by the “black’” nodes. In
using the second order finite difference equations, only the six adjacent node potentials (91, 9;.1, etc.) are
used in updating the current node potential (¢y,). Therefore, the node potentials ¢, Piaajks Pisgji €1C. can be
updated successively without affecting each other for example. Once the red nodes are updated, the new
values for the red nodes can be used for the black nodes. The red-black checkerboard analogy is really for

two dimensions, but the same concept can be used in three dimensions without much more complexity.
8.2.2 Newton’s Method

Newton iteration can be used in the case where the system of equations is either linear or
nonlinear. Newton’s method treats the system of equations as a root finding problem. To turn the elliptic

partial differential equation into a root finding problem, all of the terms are moved to one side. The new

function will be called L(¢) , and the goal is to determine all of the values of @ such that L(¢) =0 asin

Eq. 8.27. In terms of a single general node, ¢ljk , Eq. 8.28 is obtained using the second order finite

difference equations.

Lig)=Vip+ : Eq. 8.27
. & | | |
26 +d. b -2+, oy
L(ij ) - ¢t+1 (Ai,j;2+ ¢;—l + ¢]+1‘ (Aizﬂ);_i- ¢j"l_ + _¢k+.1 (£§2+ ¢k—1
Yot Eq. 8.28
W R Y

2

Figure 8.4 illustrates Newton’s method. To obtain a new estimate for ¢ijk that makes

L(¢ijk ) =0, the slope of the function is calculated at @, o Using this slope, Eq. 8.29 can be derived by

noting that L(¢ "ew)‘——- 0.

i

Figure 8.4 Illustration of Newton’s method.
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8L(¢,./.k ™ ) _ L(¢z:fk " ) N L(¢z:;‘k new) _ L(¢,-jk " ) -0

old new - old new
a¢tik ¢ijk Yk ¢ijk — Piik
id
Llg,*)
oL, ™) Eq. 8.29
Iy

In this case, the partial derivative of L can be found easily, although two equations are obtained

new old
¢z;;'k = ¢ijk -

for each plasma because of the electron equations. Eq. 8.30 gives the derivative generally, without

substitution of an electron equation. Eq. 8.31 gives the derivatives of the electron equations for the

upstream plasma depending on the relationship between ¢ijk % and o,

iwlg,) -2 -2 -2 .19,

= + -— Eq. 8.30
oy (ax)f (&) (a2 & 99,

ape 1 ¢l old _¢u .
_agjk— = —IOiu Avg Texp _]_kYT—_ for ¢ijk ld = ¢u

! “ ‘ Eq. 8.31
P 1 old
e —_p —  for 2
a ¢,-jk iuAvg Te . ¢lj ¢u

For any node, one of four equations is used in Newton’s method depending on 1) the location of

L ' o ld . .
the node within the upstream or downstream plasmas-and 2) the value of ¢ijk0 relative to either @, or

@, . These two criteria essentially determine which equation for 0, to use. Iteration through the nodes is

done using the red-black iteration scheme as would be used with the Gauss-Seidel method.

8.2.3 Successive Overrelaxation

The rate of convergence of the Gauss-Seidel method can often be improved by using successive

L3
overrelaxation. Relaxation tries to predict a new value of ¢ijk "™ based on past calculated values ¢ijk e

and (/?Uk()ld , as in Eq. 8.32. The parameter (@ is called the relaxation parameter. For 0 <@ <1 the
method is called successive underrelaxation, and for 1< @ <2 the method is called successive

overrelaxation.

6" = wp,"" +(1-w)p,"  where O<w<2 Eq. 8.32

i

As an example, consider ¢, “* =1000 and ¢ijk"ew =1010, where ¢ijk"ew was just calculated

using a Gauss-Seidel iteration. Looking at these values, one might expect ¢ijk to continue to increase on
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the next iteration. Using @ =1.5, the value of ¢ijknew* would be immediately set to 1015, likely

improving the estimate of ¢iik with a single calculation. The optimum value of @ is problem specific.

Using the nonlinear electron equations, the Gauss-Seidel method can be used to solve the Poisson

equation employing underrelaxation to damp out the exponential potential oscillations.
8.2.4 Linearization of the Electron Equations

One way to keep the Poisson equation linear is to approximate the nonlinear electron equations

using a Taylor series expansion. A general Taylor series expansion of the function f(x) around x, is given in
Eq. 8.33. Applying the Taylor series to the electron equation around ¢, that pertains to @ < ¢, and

keeping only the first two terms gives Eq. 8.34.

7= £+ =) )+ EL o)

» " 2! Eq. 8.33
+...+————(x_)'c°‘) " (x,)+R
n.
pe = iu Avg exp m
. ¢” —¢u‘ ¢u _¢u 1
= —'piuAvg CXp _Tveu—d‘ - (¢_¢u )piuiAvg €Xp T;u z:
Eq.8.34

(¢-2,)

iuAvg_ iu Avg T
eu

-9,

1+ —=*

eu

== iu Avg

The end result is that the same electron equation applies for the case where @ < @, as it does

where ¢ 2 @, . However, for ¢ < @, , the linearization is only appropriate when l+¢——-¢i 20, or
eu

alternatively ¢ = ¢, —T,, . Although not shown, the Poisson equation can be explicitly solved for @, ,

facilitating the use of the Gauss-Seidel and Jacobi methods. Linearization of the electron equations is not

used in the ffx code.

224

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



8.2.5 Multigrid

In three dimensions, the number of mesh nodes can become very large. As a result, a large number
of iterations have to be performed in order to solve the mesh potentials to the desired accuracy using the
Gauss-Seidel, Jacobi, or Newton iteration methods. A typical ffx simulation mesh might contain 32 by 56
by 292 cells, or 551133 nodes.

More advanced methods can be used to improve the solution speed. One such method is the
multigrid method, which is appropriate for elliptic partial differential equations, either linear or nonlinear
[Press].

The multigrid method uses a series of meshes of different spacing, as shown in Figure 8.5. The
finest mesh, with spacing h, is the mesh on which the problem is originally defined. In other words, the
solution of ¢ on the finest mesh is what is desired. Fach coarser grid typically has twice the spacing of the

previous grid: 2h, 4h, etc.

8 4 2
7

6 3.

5

4 2 1
3

2 1

1

0 0 0

012345678 0 1 2 3 4 0 i 2
afafe 7 e > @ e
Figure 8.5 Fine grid with spacing h and the next two coarser grids. The coarser grids have spacing

2h, 4h, 8h, etc.

The idea behind using grids of different spacing is that information about mesh potentials can be
transferred between node points much more quickly with the coarse grids than with the fine grids. For the
fine grid in Figure 8.5 for example, it would take 8 iterations through all of the nodes for information to
travel from one side of the mesh to the other. However, using the grid of 4h spacing, it only takes 2
iterations for the information to pass across the mesh. In three dimensions, each successive coarse grid has
8 times fewer cells than the last.

There are two main ways to use multigrid methods. The linear multigrid method is, appropriately,
used for linear problems. The Full Approximation Storage Algorithm (FAS) multigrid method is more

general and can be used for both linear and nonlinear problems.
8.2.6 Linear Multigrid Method

A system of equations, one for every node, arises from the Poisson equation that can be thought of

in Matrix form as in Eq. 8.35. Here, u is the vector of unknowns, A is the coefficient matrix, and f s the
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collection of all source terms. On the finest grid, the unknowns are the node potentials, ¢, and the source
terms are the ion densities. With the linear method, the electron densities have to be linear, thus they can

also be thought of as source terms here.
Au=f Eq. 8.35
The multigrid method is general to more than just the Poisson equation. As a result, the equation
to be solved in a more general sense is Lu = f . The Poisson equation is of the form Viu= f.

Figure 8.6 shows the linear multigrid method using only two grids. The linear multigrid method
only solves for the node potentials on the finest grid. The next coarsest grid, of spacing 2h, is used to find
corrections to the potentials on the finest grid. In this case, u, are the potential values, ¢. The defect, d, is
the error in the approximate solution u, and it should ideally be going to zero as the solution progresses.
The coarser grid with spacing 2h is used to find a correction, v, to the potentials, u, on the finest grid. The
corrections, v, like the defect should be going toward zero as the solution progresses. Eq. 8.36 gives the

definition of uy, Lyuy, and fj, for the finest grid in the linear method.

Ly, =1, Lu, = f,
finest grid ~--~=~=-=-===~==-
dy = f, — Ly, u, < u,+v,
d,, =1 v, =11y
2h h 2h72h0
coarser grid -------—-—=———---——-

Figure 8.6 One v-cycle of the linear multigrid algorithm. The coarser grid is used to find a correction

v to the potentials u on the fine grid.

Ly = U — 2uijk TU Uy 2uijk tu; Uy 2uijk Tu
Wh 2 + Av ) + 2
(Ax) (Ay) (Az)
+ ++
P +p T+, Eq. 8.36
fh -
&

Uiy — zuijk tu,, Uy~ 2uijk tu,, U, — zuijk Tu,

7 N 7N N ' R

The linear multigrid method can be summarized as follows:

1. Pre smooth the solution on the finer grid by doing a few relaxation iterations solving L,u, = f, .
2. Calculate the defect (sometimes called the residual) d, = f, — L,u, .

3. Restrict the defect to the next coarser grid: d =1 ,f "d he

226

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4. Use relaxation iterations to solve L,,v,, = d,, for the correction v.
5. Prolongate the correction, v, on the coarse grid to the finer grid: v, = I 2" wVan-

6. Correct the finer grid solution: u#, <—u, +v,.

7. Post smooth the solution on the finer grid by doing a few relaxation iterations solving
Ly, = f,.

8. Repeat the cycle until the solution tolerance has been achieved.
In solving L,,v,, = d,, on the coarser grid, the source term in Poisson’s equation becomes the

defect, d, and the grid spacing is doubled in each direction, as shown in Eq. 8.37.

Ly, =dy,
Vin ¥2V +vi, v, +2v, 4y N Vi 2V +V, Eq. 8.37
(2AxY 2ayY (2Az) o

Relaxation refers to the solution of the Poisson equation on any grid level using the Gauss-Seidel,
Jacobi, or Newton methods. The nodes are updated only a few times on each level, just to smooth the
unknown vector before moving to a different grid level. The largest iteration time is spent at the coarsest

level where there are the least number of nodes.

The restriction and prolongation steps transfer information between grid levels. Restriction, [ ,? h ,

goes from fine to coarse and prolongation, [, 2}' 4 » goes from coarse to fine. Figure 8.7 illustrates restriction

and prolongation using full weighting. For node ijk, there are 27 surrounding nodes that are involved in
changing levels. Restriction takes values from these 27 fine mesh nodes and combines them using a certain
weighting scheme to obtain one value at node ijk in the coarse mesh. Similarly, when going from coarse to

fine, the value at node ijk is distributed to the surrounding 27 nodes using a similar weighting scheme.

j+l Node Weight
1
' Restriction: xX—
k-1 ' j 614
k B ) Prolongation: X
k+1 ' - j-1
i-1 1 i+1
1 2 1 2 4 2 1 2 1
2 4 2 4 8 4 2 4 2
1 2 1 2 4 2 1 2 1

Figure 8.7 Restriction and prolongation.
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Eq. 8.38 shows how restriction of the defect, d, is accomplished in going from a fine grid of
spacing h to a coarse grid of spacing 2h for the general node ijk. In restriction, the weights add up to unity.
Thus, the defect at node ijk in the coarse grid is an average defect near the node. In prolongation, the
weights add up to 8. After cycling through all of the nodes in the coarse grid, all nodes in the fine grid

receive a total weighted value of unity during prolongation.

2

d ik _ 1 d i—lj—lk—1+ d ij—lk~1+ 1 d i+1 j~1k-1
2 T Yy — o

64 64 64 "

8 .
+...+6—4dh‘-”° +... Eq.8.38

2 ij+lk+1 1 i+1j+1k+1
+ —d,’ a, "’

i dhi—l jHkH " : h—
64 64 64

More grid levels are usually used to increase the rate of convergence. Two typical methods of
using the grids are v-cycles and w-cycles. Figure 8.8 shows an example of a v-cycle and a w-cycle with
three grid levels. Cycles of either method are performed until the solution on the finest grid reaches some

tolerance value.

Finest grid (h) -----------
1% coarse grid (2h) ----~----- :
21 coarse grid (4h) ----=-=--=--
v-cycle w-cycle
Figure 8.8 A v-cycle and a w-cycle using three grid levels.

Because it is not altogether clear how to go from the 1% coarse grid to the 2™ coarse grid, Figure
8.9 shows how the linear multigrid method works with three grids in a v-cycle. One should then be able to
extend the ideas shown in this figure to a w-cycle. In the linear multigrid method, the second coarse grid is

actually used to make corrections to the corrections on the first coarse grid. In trying to be consistent with

the notation, the defect on the first coarse grid level has been called d;h to differentiate it from the
restricted defect from the finest grid d,, . The same has been done for the correction from the second

. ’
coarse grid, Vop s used to correct vV, .
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Ly, =f, Finest grid Ly, = f,

d,=fi- Lhuh

it

Uy < u, +v,

_ 72h _ 1k
d,, =1,"d, vy = Iyva,

1% coarse grid
LyyVoy = dyy & —mmmmmmmmee Lyyvyy, =dyy,

’ — - 7
dyy =dyy = Lyyvay Vo € Vau + Vg

_ y4h g 28 coarse s y2h
d,, =15d;, Van = 14y Vay,

Lyva, =dy,

Figure 8.9 The linear multigrid method using a v-cycle with three grid levels.

Typically, each successive coarse grid has double the previous mesh spacing. As a result, in order
to use two grids in the multigrid method, the number of cells in the finest mesh needs to be a multiple of 2
in each direction so that the coarse grid is well defined. Similarly, if three grids are to be used in the
multigrid method, the finest mesh needs to be a multiplev of 4 in each direction.

For example, if there are 32 x-direction cells in the finest mesh of a three grid setup, the first
coarse grid will have 16 x-direction cells, and the second coarse grid will have 8 x-direction cells.
However, 30 x~directi0n cells in the finest mesh will nat work with a three grid setup because the second

coarse grid would not have an integer number of cells. -
8.2.7 Nonlinear Multigrid Method

The nonlinear version of the multigrid method is called the Full Approximation Storage
Algorithm, or FAS, method. As opposed to the linear multigrid method, the nonlinear FAS multigrid
method essentially solves the full problem, i.e. solves for the node potentials, on all of the grid levels.

The main drawback of the FAS method is that there are more operations that have to be done in
going between levels than in the linear method. Thus, the FAS method is slower than the linear method
when applied to linear equations, but both methods will solve the linear equation in the same way. In the
FAS algorithm, the electron density term, which is a function of potential, is written on the left hand side of

the equation, and only the constant ion density source term on the right, as in Eq. 8.39.
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L [”h]= Uy —2u, +u, N Uiy —2Uy +u; . Upyy = 2y +ity +&
(Ax)2 (Ay )2 (Az)2 £, Eq. 8.39
* + +t
fh = ——.p_'__g_pl___
0

The scheme of the FAS multigrid method is shown in Figure 8.10. Here, one can see that there are
several more operations in going between the finer and coarser grid levels. These extra operations can have
a very noticeable affect on the speed that the aigorithm solves a linear equation when compared to the
linear method. One also may notice that the form of the equation being solved on both the finer and coarser
grid is the same. Both u, and uy, are potential values that have nearly the same magnitude on both grid

levels at the same points in space.

Lh[“h]= S Lh[uh]z £
finest grid -----------------
dh ='fh _Lh[uh]

dyy = I}%hdh

Uy U, +V,

_ Yy = IZthZh
Uyp =V T+ Ih2huh

Jon =dy + Ly, [I-h?-huh]

coarser grid -----------~-~ —mmmem e
Ly, [u2h ] = fan

_ L
Vo =y, — 10,

Figure 8.10 One v-cycle of the Full Approximation Scheme (FAS) multigrid method.

The nonlinear FAS multigrid method can be summarized as follows:

1. Pre smooth the solution on the finer grid by doing a few relaxation iterations solving
L, [”h ] = fi-

2. Calculate the defect (sometimes called the residual) d, = f, — L, [u P ]

3. Restrict the defect to the next coarser grid: d o =1 Z hd he

4. Calculate u and f on the next coarser grid: u,, =v,, + I_hZhuh  Jon =dy, + Ly, [I—hZhth.

5. Use relaxation iterations to solve L2 A [u2 h] =f o fOr g

6. Calculate the correction, v: v,, = U,, — I_hZhuh .

7. Prolongate the correction, v, on the coarse grid to the finer grid: v, = I ;’ wVan -

8. Correct the finer grid solution: u, é—u, +v,.

9. Post smooth the solution on the finer grid by doing a few relaxation iterations solving

Lh[uh]:fh'
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10. Repeat the cycle until the solution tolerance has been achieved.

With the FAS method, Newton’s method must be used (instead of the Gauss-Seidel or Jacobi
methods) for the relaxation iterations because it is a nonlinear method, capable of solving the nonlinear
electron equation terms.

A potential solution for a typical NSTAR grid simulation is shown in Figure 8.11. The potential
values of the nodes within the grids and on the upstream and downstream volume faces are known, as

shown in this figure. Initially, all unknown node potential values are set to 0.0 V.

o, = 1100V

1100
V,=1075V !
V,=-180 V ‘

Potential

—>
V)

-180

¢;=10V

Figure 8.11 Potential solution of a typical NSTAR simulation.

The convergence histories of four solution techniques solving the typical NSTAR simulation are
shown in Figure 8.12. Here, the multigrid method is not used (the solution is found using the finest grid

only). On the first iteration, with no ion or electron space charge known (p = 0), the Poisson equation is the
Laplace equation, V2¢ = 0. The Jacobi method is compared to successive overrelaxation using three

different relaxation parameters, . When @ =1.0, successive overrelaxation reduces to the Gauss-Seidel
method. Also, with the Laplace equation, Newton’s method is the same as the Gauss-Seidel method.

As expected, the Jacobi method shows slower convergence than the Gauss-Seidel method.
Additionally, overrelaxation (@ =1.5) increases the convergence rate while underrelaxation (@ =0.5)
decreases the convergence rate.

A single iteration involves one update of every unknown node potential in the mesh. For
perspective, 5000 iterations took approximately 40 minutes to perform using a processor rated at about 2.4
GHz. It is noted that better performance could certainly be obtained by optimizing the algorithms and

coding.
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100 r NSTAR, Typical  Mesh: 32 x 56 x 292
é dy=1100V Unknown nodes initially 0.0 V
uz_' Vo=1075V Laplace Equation, p=0
5 10 V,=-180V
[ q)d = 10 V
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3% 1 SOR, = 0.5
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J % Jacobi
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>
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Figure 8.12 Comparison of the Jacobi and Successive Relaxation methods.

The ffx code normally uses the FAS multigrid method with three grid levels in a v-cycle pattern.
Figure 8.13 compares the multigrid method using one, two, and three grid levels on the same NSTAR
problem. Newton’s method is used for the relaxation iterations in the FAS algorithm. It is easily seen that a
significant increase in convergence is obtained when using multiple grids. With a simulation of this size in

three dimensions, the extra programming complexity of the multigrid method is well worth the effort.

TIME (minutes)

. 0 1 2 3 4 5
S 100 T T T T i
[
@
= 10
g
s
>
% w 0.1
- (ZD 2 Levels
< 001t
wo
e 0.001 __—3Levels
= Multigrid Method
2  0.0001 | (Newton's Method)
<
< 0.00001 - : : : : '
0 50 100 150 200 250 300

TIME (seconds)

Figure 8.13 Comparison of the multigrid method using one, two, and three grids.
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Ion density information is obtained while ion macro particles are tracked through the simulation
volume. The Boltzmann electron equations are then used to solve for electron densities while solving for
mesh potential values. Plots of potential, ion density, and electron density are shown in Figure 8.14 for an

aperture of NSTAR grid dimensions operating at a beamlet current of 0.233 mA. Electron densities lower

than 1-10" electrons/m’ are omitted to illustrate to absence of electrons in the intra-grid region.

Potential lon / Ele.ctron
V) Density
(m?)
-180 ~0.0
Potential Ion Density  Electron Density

Figure 8.14 Electron density resulting from the combination of ion density and potential.

8.3 Symmetry

The upstream and downstream simulation surfaces are treated as Dirichlet boundaries, while the
four remaining sides of the volume are treated as Neumann boundaries. A Dirichlet boundary condition is
the case where the value of a function is known at the boundary, in this case the potentials of the upstream
and downstream surfaces. The Neumann boundary condition describes a different case where the derivative
of the function is known at the boundary. In this case, the derivative of potential through the four side

boundaries is zero, resulting in potential symmetry.

Consider the Poisson equation. At one x boundary, where i =0, the value of ¢ at i =—1 (@_))
is needed to compute the potential ¢o i« - However, ¢—1 does not exist in the mesh. From the symmetry

condition across this boundary, ¢_1 is equal to ¢+1 . Similarly, at the other x boundary, where { = X , the

potential @, ,, does not exist, and @, , is used when needed instead.

When tracking an ion macro particle through the simulation volume, it may pass through
symmetric boundaries. From the symmetry argument, when one particle exits the volume through a

symmetric boundary, an identical particle is considered to be entering the volume from an adjacent region.
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To simulate this, the particle is placed back into the simulation volume and its velocity and acceleration

components are reversed depending on which boundary the particle passed through.

For example, a particle might end up with a negative x position, X = X, , following a particle

push using the Leapfrog method. This indicates that the particle passed through the boundary at x =0.

Accordingly, the particle is placed back into the volume by setting its x position to X = +X,,,, Also, its x

direction velocity and acceleration components prior to the particle push are reversed, v, =—v_ . and

a,, =—a,, . The velocity and acceleration at time i then have the correct signs when computing the new

. 1
particle velocity at time +1 using v, ., =v_ + > (axl, +ta,,, )At in the Leapfrog method.

8.4 Distributions

Distributions are used in the ffx code primarily with regard to grid erosion and charge exchange
ion production. In terms of grid erosion, a cosine distribution is used to describe how atoms are sputtered
away from the grid surface. In simulating charge exchange ions, a Maxwell-Boltzmann speed distribution

is used to obtain initial charge exchange ion speeds.
'8.4.1 Cosine Distribution

Sputtering and gas-surface interactions are two areas in which the cosine distribution arises related
to ion optics modeling.

The differential sputter yield of many materials over a range of energies is described reasonably
well by a diffuse cosine law. The differential cosine distribution y(o), in units of atoms per ion per
steradian (atoms/(ion-Q2)) is given in Eq. 8.40, where alpha (¢0) is the polar angle measured from the surface
normal vector. Using this distribution, the differential sputter yield is not a function of the azimuthal angle

theta (8).

y(“ ) = Yeosla) Cos(a) Eq. 8.40

The integral of the differential sputter yield over the hemisphere above a surface should yield the

total sputter yield, Y, in units of atoms per ion (atoms/ion) as shown in Eq. 8.41. The differential solid
angle is d@ , given in Eq. 8.42. Combining the differential yield with the differential solid angle leads to
Eq. 8.43, which can be integrated easily using the trigonometric identity in Eq. §.44.

¥ = [[¥(e.6)dw Eq. 8.41
S

234

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



dw =sin(a)do d@ Eq. 8.42

27
Y= ij_CPE(_a_)Sin(a) da db Eq. 8.43
00 2
cos(ax)sin(ar) = %m(za) Fq. 8.44

Studies done by Knudsen in the early 1900s on the flow of rarefied gases through tubes led to
what is known as the Knudsen cosine law [Feres]. A rarefied gas is one in which the Knudsen number A/r is
large, where A is the mean free path of the neutral gas molecules and r is a characteristic length of the
system, such as the diameter of a tube. In the high Knudsen number regime, where A/r is roughly greater
than about 10, the gas molecules will essentially hit the walls or surfaces of the system much more often
than other gas molecules. In Eq. 8.45, k is Boltzmann’s constant, T, is the temperature of the neutral

molecules, p is the pressure, and d is the diameter of the molecules.

A 1 1 1 1 kT,
: Eq. 8.45

2wt r2m® p

Knudsen proposed that the direction in which gas molecules reflect from a surface is independent

of their impacting angles. In that case, the reflection of molecules was governed by a diffuse cosine law.
The probability ds that the particle will reflect within the solid angle do was given by Eq. 8.46.

n dw

ds = icﬁcos(m Eq. 8.46
V3

Notice that the form of the differential cosine sputter yield y(o) and the gas-surface reflection
probability ds is the same, where o and ¢ are measured identically. From this point on, the polar angle
will be phi (¢) and the azimuthal angle will be theta (0).

In the spherical coordinate system, the solid angle dw is given by Eq. 8.47, which can be
substituted into Eq. 8.46 to obtain Eq. 8.48. The function f (¢, (9) will be defined as being part of this

equation and is called a probability density function, or pdf, as shown in Eq. 8.49. In this case, the

probability density function is the probability that a particle will leave the surface at the angle ¢. One thing

T
to notice about the pdf is that f (¢, 9) 2 0 for the range of values over which it is valid, i.e., 0 < @< —

2
and 0<@<L27.

dw=d¢-sin(p)do Eq. 8.47
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ds = %sin(¢)cos(¢))d¢d«9

Eq. 8.48
= f(p.0)dgdo
7(.6)=—sin(g)cos(y) Bq. 8.49

Because Eq. 8.49 does not depend on the angle ©, it can be integrated from 6 = 0 to 6 = 27w to
obtain the pdf as a function of ¢ alone, as given in Eq. 8.50. At this point, to conceptually keep the

integrated angle O separate from the angle ¢, the uppercase letter theta, ®, will be defined to be equal to 27.

£l9)= j[i sin(¢)cos(¢)d¢jde

0

£(0)=sin(p)cos(@)dg Eq. 8.50

=21 f(p)= gsin(¢))cos(¢)d¢

For a continuous distribution, the probability that the particle reflects at a single angle is zero,
because the differential area d¢ is zero for a single point, so an integral is done to describe the probability
that the reflection angle is within a certain range of angles. In general, the cumulative distribution function,
or cdf, that corresponds to a pdf is the integral from the lowest possible value of the pdf to an arbitrary
value of the pdf. In this case, the cdf is the integral of the pdf from ¢ = O to an arbitrary angle ¢ = ¢, as in
Eq. 8.51.

Egq.8.51

f(p)dgp
(#)

© sin cos(¢)d¢

/4

F(¢)=f
g

Trigonometric identities can be used to perform this integral. In this case, the sum identity for the

sine function will be used, Eq. 8.52, which results in Eq. 8.53.

sin(x + y) = sin(x)cos(y) + cos(x)sin(y)

sin(2x) = 2sin(x)cos(x) 5832
Flo)= ]2 nle)cosoas
_ f%g sin(2¢)Jd¢ Eq. 853
=22 (1-cos(29)
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Once again, a trig identity can be used to further simplify this expression. In this case, the sum

formula for the cosine function will be used, given as Eq. 8.54.
cos(x * y) = cos(x)cos(y)F sin(x)sin(y)
cos(2x) = cos?(x)—sin’(x)
= cos*(x)~ (1 - cos’ (x)) =2cos*(x)-1
= (1 - sinZ(x))— sin?(x)=1-2sin*(x)

Eq. 8.54

To eliminate any confusion, the commonly used notation used for the trig functions is
cos?(x) = cos(x)-cos(x) and sin*(x)=sin(x)-sin(x). In substituting the trig identity from Eq.

8.54 into the integral for the cdf in Eq. 8.53, one obtains Eq. 8.55.
Fg)= %% (1-(1-2sin2(p)))

=2 Lsin*(p)

7?2

Eq. 8.55

Similar to the pdf, the cdf also has certain intrinsic properties. For instance, since the pdf
f (¢, B)Z O for all values of ¢ and 6, F(¢) is monotone increasing. Also, for the lowgst value of ¢,
F (¢50)#0', and for the greatest value of ¢, F' (¢=7Z’/ 2)21. The pdf and cdf for the cosine

distribution are shown in Figure 8.15.

12 ¢ 2 - 112
£6)= Zsin (p)oos(s)

1.0 | \ 110

0.8

o
o]
T
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o
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T
)

f(¢) - PROBABILITY DENSITY
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o
o

0.2

F(¢) - CUMULATIVE DISTRIBUTION
FUNCTION

(o]
N
-}
N
(N
3
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Figure 8.15 The probability density function (pdf) and cumulative distribution function (cdf) for the

cosine distribution.
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8.4.2 Distribution Sampling

Useful information is obtained from a distribution through sampling [Saucier]. A distribution is
sampled in order to obtain an individual instance of the distribution. For example, in terms of sputtering,
the cosine distribution is sampled to determine what direction individual atoms will travel away from an
ion impact site. The Maxwell-Boltzmann distribution is sampled to determine what speed to give a newly
created ion following a charge exchange reaction.

Two of the most common ways of sampling from a distribution will be discussed here. One is
referred to as rejection sampling and the other is referred to as inverting a cdf. In both cases, the idea is to
take random numbers from an available random number generator and use them to obtain samples of
values from a distribution.

Random number generators usually generate roughly even values of numbers over the range of 0.0
to 1.0 (inclusive of 0.0 and 1.0). The idea behind both rejection sampling and inverting a cdf is to transform
the distribution of numbers generated by the random number generator into the desired distribution, such as
the cosine distribution.

In rejection sampling, two random values, R, ‘and R;, obtained from the random number generator
are;used to test for possible values of ¢ that satisfy the probability density function (pdf).

First, a valﬁe M is found that is greater than any single probability over the range of ¢ values for

which the distribution is valid. For the cosine distribution, this is given in Eq. 8.56.

F(P)SM for 0< ¢s% Eq. 8.56

7 .
The first random value R; is used to generate a test angle ¢, over the range 0 < @< E This is

done by linearly interpolating over the range of valid ¢ values, as in Eq. 8.57. In a general sense not relating

to the specific problem at hand, if one were looking for test value X over the range from a to b, one would
use X =a+Rl(b—a).

T /3
=0+R|—-0|=R — Eq. 8.57
¢z 1(2 ) 12 q

The second random value R; is used to generate a random value Y over the range 0 <Y <M .

Here again, linear interpolation is used, as in Eq. 8.58.
Y=0+R,(M -0)=R,M Eq. 8.58
The test angle ¢, is accepted as a valid angle from the distribution if ¥ < f (¢; ) fY>f (¢, ),

then the test angle ¢, is rejected and the process starts over again.
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It is observed that the most efficient value of M to use is to choose M such that it is exactly equal

T
to the maximum value of the pdf. In this case, the maximum value of the pdf occurs when ¢ = Z , thus

M=f(¢=%)=1.

If the equations for ¢, and Y are combined with M = 1, one obtains a very simple test to accept or

T
reject the value for ¢. In simplest terms, the test value @, =R1-5 is accepted only if

R, < E)—sin(Rl f—j cos(R1 E—) .
V4 2 2

Once a suitable angle ¢, is found, the angle 6, can be found using yet another randomly chosen
value R;. The angle 6, is linearly interpolated over the range 0 <@ < © where © =27 from before, as
in Eq. 8.59.

6, =0+R,(©-0)=R,(27) , Eq. 8.59

In rejection sampling, Figure 8.16, the process of testing for possible angles continues until a valid

angle is found. Because test angles can be rejected, the computer likely does excess computations before an

acceptable test angle is found. The rate of acceptance is equal to the area under the curve y = f (¢)
divided by the area under the curve y = M . By definition, the area under y = f(¢) is unity, i.e.

F [¢=5) =1, while the area under y =M is equal to M E Thus, the rate of acceptance for

sampling from the cosine distribution is given in Eq. 8.60, where M has been set to unity. It is observed that

in this case, the acceptance rate decreases linearly with the choice of the value M.

Area Under y = f(g)

Acceptance Rate =
Area Under y=M
Eq. 8.60
_ 1 =2=2z63.7%
yuZ Mz ()z
2
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Figure 8.16 Rejection sampling with the cosine distribution.

Using the inverted cumulative distribution function (cdf) to sample the distribution is a more
efficient alternative to using rejection sampling. This is because a value from the distribution is guaranteed
to be found for every random number that is chosen. The only reasoh why inversion would not be used -
instead of rejection sampling is if it is not possible to solve for the cdf and/or invert the cdf easily.

Fortunately, the cdf for the cosine distribution can be found, and it is invertible. From before, the

cdf for the cosine distribution is given in Eq. 8.61.

F(¢)=%—;—Sin2(¢)=%%sinz@)):sinz@)) Eq. 8.61

To find suitable values for ¢ using the random number generator, the cdf is inverted to solve for ¢
in terms of the value of the cdf, F(¢). Because the cumulative distribution function varies over the range 0
to 1 and the random value R; also varies over the range O to 1, F(¢) is simply set equal to R, and the value

of ¢ is calculated directly, as in Eq. 8.62.

O1  ,, \ _
—5sin (p)=F(¢)=R,

y =sin"l(\/—%_2;1 ) =sin‘1(J;%T& )::sin_l(ﬁ )

As when using the rejection sampling method, the value of 6 is found using a separately generated

Eq. 8.62

random number, R;, by linearly interpolating over the possible range of 0 values, as in Eq. 8.63.

0=0+R,(©-0)=R,(27) Eq. 8.63
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8.4.3 Maxwell-Boltzmann Distribution

The distribution of neutral atom speeds is described by the Maxwell-Boltzmann speed distribution,
given in Eq. 8.64. The speed distribution is only one form of the Maxwell-Boltzmann distribution. Other
forms, for instance, give information about particle velocities and energies. To clarify, the speed in this

case has been called v, where v is really the magnitude of the particle velocity vector.

3

m )2 , —my?
f (v) = 472'(————) v exp( )
27T 2kT Eq. 8.64

/ 2 2 2
where Vv = 4/V, +vy +v,

Several useful quantities can be derived from the speed distribution, given in Eq. 8.65. One is

called the most probable velocity, vy, The most number of neutral atoms will have the most probable
velocity, and it is the maximum value of the Maxwell-Boltzmann speed distribution. A second value is the
average velocity, V. The average velocity is shifted to the right of the most probable velocity because the
distribution is not symmetric. The distribution’s tail at higher energies makes the average velocity greater
thain the most probable velocity. A third Veloéity is the root mean squared velocity, v, It is found

essentially by squaring the velocity of each particle, adding them together, and then taking the square root.

Vo = v(L(V) = O) = \/E
v dv m
— 7 8kT
V= _([Vf (v)av = \f;m— Eq. 8.65
0 U m

Rejection sampling from the Maxwell-Boltzmann distribution is illustrated here, as the
distribution is not easily invertible. Figure 8.17 shows the Maxwell-Boltzmann distribution for xenon at a

temperature of 500 K.
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Figure 8.17 An example Maxwell-Boltzmann speed distribution.

The best choice for the value M is to set it equal to the speed probability at the most probable

velocity. In mathematical terms, M = f (Vmp ) This will result in the greatest acceptance rate of test

particle velocities.

In this case, the Maxwell-Boltzmann distribution is valid for particle speeds (in t/s) from zero to * -
infinity. In using rejection sampling, test particle speeds, vV, , must be chosen over a much smaller speed
range to keep the acceptance rate at a reasonable level. Inspection of the Maxwell-Boltzmann distribution

shows that roughly 99.95 percent of neutral particles have speeds less than 3vmp . In other words, it is very
unlikely that many particles will have speeds greater than 3vmp. This simplification allows particle test

velocities to be sampled from the range 0 <v, <3v, , asinEq. 8.66.

mp >

Y = RandNuml- M = RandNuml- f(v, )
Eq. 8.66
v, = RandNum?2 -3v,,

The test particle speed, V,, is accepted as a valid speed from the distribution if ¥ < .f (v, )

Otherwise, new random numbers are chosen until a valid particle speed is found.

The acceptance rate is equal to the area under the distribution divided by the total area under the

curve y = M . In this case, the area under the distribution over the sampling range 0 <v, < 3vmp is not

exactly equal to unity, as shown in Eq. 8.67.
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3 vmp

j fv)av
Acceptance Rate = 2——-100
M -3y, Eq. 8.67

099956
0.0033-3-251.7

-100=40.1%

8.5 Neutral Density

An analytical model is used to describe the neutral density variation near the grids. In addition to
the geometry of the grids, there are five main values input either directly or indirectly into the ffx code that
affect the neutral density calculations. These values are the overall beamlet current, J,, the propellant atom
weight, m,, the propellant temperature, T, the double-to-single ion current ratio, J,/J,,*, and the propellant
utilization efficiency, 1.

The double-to-single ion current ratio, J,*/J,", has a small effect on the neutral density
calculations with regard to the propellant flow rate. The beamlet current, J, is assumed to be comprised of
a singly charged ion current, J,*, and a doubly charged ion current, jb”. The singly and doubly charged ion

currents can be found from the overall beamlet current and the double-to-single current ratio, as in Eq. 8.68.

oy ot
Jy=Jd, +J," =T, 1+
Jy
J
7y = Jb“ | Eq. 8.68
1+ 45
Jb
J, =07 be
‘,b

The propellant utilization efficiency, 1, is defined as the ratio of the number of propellant atoms
that exit through the aperture pair as ions to the total number of propellant atoms flowing through the

aperture pair. The propellant utilization efficiency can be calculated using the overall beamlet current, Ty,
the double-to-single current ratio, J,""/J,", and the propellant flow rate, #,, , in Amps equivalent (Aeq.),

as in Eq. 8.69.
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e De € J,"
=" = 7
m, m,
J, @+1h”J
1+, /1, 7,
m Eq. 8.69

mAeq =

- The average thermal velocity of the neutral propellant atoms is given in Eq. 8.70. In this equation,
kg is the Boltzmann constant (in J/K), T, is the neutral atom gas temperature (in K) which is taken to be

equal to the discharge chamber wall temperature, and m, is the mass of the neutral propellant atom (in kg).

8k,T,
v, = [—— ‘ Eq. 8.70
m, A

As an example, the neutral atom speed is calculated for xenon atoms at a temperature of 500 K in

Eq. 8.71.
kB=138074043{1}
K
T, =500{K}
Eq. 8.71
m, =m,,  =131.29-1.6605-10" =2.18-107 {kg}

m
Vo renon@soox = 284 {_S—}

The neutral atom flow rate, N , is- constant through each grid hole. It is found by subtracting the
singly charged and doubly charged ion flow rates from the total propellant atom flow rate, as in Eq. 8.72.
m J J"

m, e 2e
. Eq. 8.72
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The flow rate of atoms in a particular direction at a certain location is equal to the density of atoms
at that location multiplied by the area through which the atoms are passing multiplied by the velocity of the
atoms in that direction. In this case, the directional velocity of the propellant atoms is 1/4™ of their thermal
velocity. At the downstream exit of the last grid, the flow rate of neutral atoms in the downstream direction

is equal to the flow rate of neutral atoms through the aperture pair, as in Eq. 8.73.

neAelvn =N or n, = N
4 v, A,

Eq. 8.73

For the typical case where the apertures are circular in nature, the exit area used in the above
equation is simply the circular open hole area, Eq. 8.74. Here, d, is the diameter of the holes in the last grid

in the system.

A =—= Eq. 8.74

Clausing factors are used to describe the resistance to flow of the neutrals through the grids. A
curve fit is used to obtain the Clausing factor for each grid as a function of each grid’s thickness, t, and hole

diameter, d, as in Eq. 8.75.

N2
Fe(t,d)=0.9968-0.93 17&) + 0.6967(3) -

\3 4
—0.2997(-’--) +0.0524 i)
a) " \a

Through any grid in the syste‘,m,'the difference between the flow of neutrals in the downstream and

Eq. 8.75

upstream directions is equal to the net flow rate of neutrals, N , through the aperture pair, as given in Eq.
8.76. Here, n; is the neutral density at the upstream edge of the grid and nyy; is the neutral density at the
downstream edge of the grid. The area A, is the open area through which the neutrals pass, equal to the total

aperture area multiplied by the physical open area fraction.

N =n,AFc, %vn —n,,AFc,; -}vn
. Eq. 8.76
n,=n,,+ AN
oy AFe,
The variation of the neutral density through each grid is taken to be linear, varying from n; to n,,
with the axial distance z. Also, the neutral density between each grid is taken to be constant.
As a special case, the backflow of neutrals downstream of the last grid in the system can be
considered to be zero. In this case, the neutral density at the downstream edge of the last grid, n,, is still
calculated in the same way as before, but the neutral density at the upstream edge of the last grid, n g, is

calculated without using the downstream neutral density n., as in Eq. 8.77.
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4N

n,,=——— Eq. 8.77
v,AFc,

The method of characterizing the neutral density decay downstream of the grids is somewhat more
arbitrary. The neutral density downstream of each aperture is complicated by the neutral flow from
surrounding apertures and by the overall thruster diameter. The model used in the ffx code is based on an
expansion using a characteristic length in relation to the grid dimensions. This length has been chosen
through simulation in order to match experimental results of grid impingement current. The neutral density
decay downstream of the last grid is given in Eq. 8.78, where z is the axial distance measured from the

downstream side of the last grid in the system to the point of interest.

n
n(Z)Z—ﬁe — where Liar =51, e aos
(1+2i 4%
char

Frequently, special modeling of the neutral density near the downstream simulation plane is
performed. In order to match experimentally observed grid impingement currents, the neutral density in the
region near the downstream plane is adjusted automatically by the code during the simulation. This in turn
causes the charge exchange ion production rates to be adjusted linearly according to the charge exchange
ion production equation. Additional care is often taken to axially align the charge exchange ion injectior
vectors,I more closely approximating charge exchange ions originating far downstream.

With respect to a full thruster, the neutral density within the discharge chamber can be calculated
more directly using Eq. 8.79, where N is calculated using the overall flow rate and propellant utilization
efficiency, Ag is the total area over which ions are extracted (including both closed and open area), and ¢ is
the overall transparency to ions. For a two grid system, the overall transparency is calculated using Eq. 8.80
where ¢ is the physical open area fraction of the screen grid for example. The pressure within the discharge

chamber is then given by Eq. 8.81.

m
) 4—(1—-
n, = v __ m"( ”u) Eq. 8.79
! vnAB¢ SkBTn q .
'—_”"AB¢
mnﬂ
1 1 1 Fc ¢ Fc
—= + or ¢ = 9.Fc.d.Fe, Egq. 8.80a
¢ ¢chs ¢aFca ¢s ch + ¢aFCa
P =nk,T, Eg. 8.81
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8.6 Random Number Generators

Perhaps the most common kind of random number generator is one that produces random numbers
uniformly distributed in the range from zero to one, inclusive of zero and one. Mathematical operations are
often applied to this base kind of random number generator to provide random number generators that
sample from other types of distributions.

Ideally, a random number generator should produce numbers that are truly independent of each
other. Physical devices exist that produce random numbers based on processes known to be truly
unpredictable, such as radio active decay or the electrical noise that comes from resistors and
semiconductors.

More common than using a physical source of random numbers is to use a computer algorithm.
Random number generators generally fall into two broad categories: pseudo-random number generators
and quasi-random number generators. Pseudo-random number generators attempt to be as close to truly
random as possible. Quasi-random number generators are more predictable in their randomness, and are
used for specific applications.

In general, any random number generator has to pass several tests in order to be considered a
“good” random number generator. When random numbers are generated using an algorithm, an initial state

-called the seed state is usually used to start the random number generator at a certain point in its sequence.
The period of a generator describes-its length, or the number of numbers that can be generated before the
generator returns to the same state where it started. The period of the generator should ideally be much
greater than the number of numbers to be obtained from the generator. The most important feature of a
generator should be its uniformity of random number generation. Other nice properties to have in a

generator are a short time to access each random number and a low memory requirement.
8.6.1 Pseudo-Random Number Generators

Many types of pseudo-random number generators have been devised. Some examples are linear
congruential generators, lagged Fibonacci generators, linear feedback shift registers and generalized
feedback shift registers [Press]. ’

Already imbedded within the C++ programming language is the rand() function. Calling rand()
produces integers from zero to RAND_MAX, inclusive. The value of RAND_MAX is defined within each
specific C++ implementation, but it is at least 32,767 in all cases. One source suggests that only about
20,000 useful random numbers can be obtained if RAND_MAX is defined as 32,767.

The C++ random number generator is initialized with a call to srand(seed), where seed is an
integer that initializes the state of the random number generator. For instance, the seed value could be O, 1,

or 10000. Following the call to srand, subsequent calls to rand() produce integers in the range
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0 <rand() < RAND _MAX . Dividing the integers obtained with rand() by RAND_MAX then

produces random numbers in the range 0 < r <1,

Another pseudo-random number generator with increasing popularity is the Mersenne Twister,
first developed in 1997 by Makoto Matsumoto and Takuji Nishimura [Matsumoto]. It is based on a twisted
generalized linear feedback shift register and has a period of 2"*"-1, which is longer than any other

generator to date. It is thought to be at least as fast as the rand() function when sampling random numbers.
8.6.2 Quasi-Random Number Generators

Quasi-random number generators generate numbers based on low discrepancy sequences. In
certain instances, one wishes to obtain numbers that are roughly evenly distributed over a certain range.
Quasi-random sequences know how to “fill in” a certain range. There are many commonly used low
discrepancy sequences, including Faure, Niederreiter, Sobol, Halton, Hammersley, Van der Corput,
Centroidal Voronoi, and Tessellation [Bratley, Fox].

The Faure, Niederreiter, and Sobol sequences are compared here. In these sequences, one has to
know the number of dimensions in which to generate points For instance, if one is generating random
points in a rectangle the sequences are called spemflcally to generate two-dimensional points.

‘ In the ffx code, roughly 10,000 random ion macro partlcle starting points are used on each code
'iteration Flgure 8.18 shows the first 10, 000 randomly chosen two-dimensional pomts using the Mersenne
Tw1ster and Nlederrelter random number generators The C++ rand() function would generate similar

) po1nts to the Mersenne Twister, and the Faure and Sobol sequences would generate similar pomts to the
Niederreiter sequence. One can easily see in this plot how even the Niederreiter points are compared to the

Mersenne Twister points.

1.0

0.8 ko 0-Ra ek : Quasi-Random
i 5 Niederreiter

06

0.4

0.2

Figure 8.18 The first 10,000 Mersenne Twister and Niederreiter randomly generated two-

dimensional points.

A second comparison between the pseudo- and quasi-random number generators is shown in
Figure 8.19. Here, a histogram of the first 10,000 points generated with each number generator was created
in ten increments. Ideally, there would be exactly 1000 points in each bin for a perfectly even distribution

of points. Because the Faure, Niederreiter, and Sobol sequences are designed to uniformly fill in the range
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from 0 to 1, there is very little variation from 1000 points in each bin. Because the C++ rand() function and

the Mersenne Twister generators are supposed to be more random, there is more variation among the bins.

Additionally, the rand() function is seen to be less uniform than the Mersenne Twister generator. There are

only 902 points generated by the rand() function in the bin from 0.2 to 0.3 for instance.
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Figure 8.19 Histogram of the first 10,000 points generated with the pseudo- and quasi-random

number generators.

Table 8.2 lists the first ten three dimensional points obtained with the Mersenne Twister and

Niederreiter random number generators. Expectedly, one cannot easily see a pattern in the Mersenne

Twister numbers. However, one can easily see that the Niederreiter points have a pattern, especially in the

first two columns of numbers. Each successive call to the Niederreiter algorithm gives a new point that

helps to fill in the domain evenly. The two dimensional Niederreiter sequence consists of the first two

columns of numbers in the table.

Table 8.2 Comparison of three dimensional random points generated with the Mersenne Twister

and Niederreiter random number generators.

Point

)

Mersenne Twister
(Pseudo-Random)

Niederreiter
(Quasi-Random)

SOP®NOOAWN

0.549 0.593 0.715
0.844 0.603 0.858
0.545 0.847 0.424
0.624 0.646 0.384
0.438 0.298 0.892
0.057 0.964 0.273
0.383 0.478 0.792
0.812 0.529 0.480
0.568 0.393 0.926
0.836 0.071 0.337
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0 0 0

0.5 0.5 0.75
0.75 0.25 0.3125
0.25 0.75 0.5625
0.375 0.375 0.875
0.875 0.875 0.125
0.625 0.125 0.6875
0.125 0.625 0.4375
0.1875 0.3125 0.51563
0.6875 0.8125 0.26563
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The ffx code uses the Mersenne Twister and Niederreiter random number generators. The
Niederreiter random number generator is mainly used to obtain a two dimensional sequence of numbers
that serve as ion macro particle starting locations upon injection into the upstream simulation plane.

The Mersenne Twister random number generator is used in many instances within the ffx code. If
the Niederreiter sequence is not used, the Mersenne Twister generator is used to find ion macro particle
injection locations. Another instance of the Mersenne Twister generator is used to randomly determine if
ions are singly or doubly charged. With respect to charge exchange ions, a Mersenne Twister generator is
used to select random initial velocity vectors and to sample from the Maxwell-Boltzmann speed
distribution for initial velocity magnitudes. With respect to sputtering, a generator is used to select grid
material ejection angles from a cosine distribution. Mersenne Twister generators are also used in several

facets of evolutionary algorithms.
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