The Picornaviral Polymerase Fingers Domain **Controls RNA Binding and Translocation**

Colleen L. Watkins and Olve B. Peersen Department of Biochemistry & Molecular Biology Colorado State University, Fort Collins, CO 80523-1870

ribosomes. Polyprotein additional cells.

Picornavirus Polymerase Structure

"right hand" including a fingers, palm and thumb domain. Elongation complex shown with RNA passing

Catalytic Cycle

opening, <u>5.</u> Translocation, <u>6</u>.

General Mechanism of a Polymerase

A., 1998 Nature 391, 231–2). A general acid, general base, and two metal ions are required for chemistry to occur.

Abstract: The picornavirus family of viruses includes poliovirus, the causative agent of paralytic polio and coxsackievirus, which is responsible for viral-heart-disease. Picornaviruses contain a single-stranded positive-sense RNA genome replicated by 3D^{pol}, an RNAdependent RNA polymerase (RdRP). Crystal structures of 3D^{pol} from multiple picornaviruses have shown a conserved polymerase fold analogous to a "right hand" composed of fingers, palm and thumb domains. These crystal structures also identified unique regions in the fingers domain whose function in 3D^{pol} were unknown. Through biochemical kinetic analysis we have now determined the purpose of these regions, and their effects on the catalytic cycle of 3D^{pol}.

multiple time points. Curve fitting was done to a single exponential equation for fraction mixed with varying NTP concentrations and

					150 - S115L 130 - T114V 110 - 5	S115T	VT 25
عD ^{pol}	RNA Initiation	EC Stability	Single	Single	Processive	Processive	Discrimination
5			Nucleotide	Nucleotide	Elongation	Elongation	
	(min)	(min)	Nucleofide k _{pol} (nt/sec)	Nucleotide K _M (µM)	Elongation k _{pol} (nt/sec)	Elongation K _M (μM)	Factor
WT	(min) 4 ± 2	(min) 130 ± 20	Nucleofide k _{pol} (nt/sec) 25 ± 1	Nucleotide K _M (µM) 20 ± 2	Elongation k _{pol} (nt/sec) 20 ± 1	Elongation K _M (μM) 49 ± 4	Factor 120 ± 10
WT	(min) 4 ± 2	(min) 130 ± 20	Nucleofide k _{pol} (nt/sec) 25 ± 1	Nucleotide K _M (µM) 20 ± 2 Gateway Mutan	Elongation k _{pol} (nt/sec) 20 ± 1 ts	Elongation K _M (μM) 49 ± 4	Factor 120 ± 10
WT T114A	(min) 4 ± 2 10 ± 2	(min) 130 ± 20 57 ± 10	Nucleotide k _{pol} (nt/sec) 25 ± 1 25 ± 2	Nucleotide K _M (µM) 20 ± 2 Gateway Mutan 31 ± 5	Elongation k _{pol} (nt/sec) 20 ± 1 ts 14 ± 1	Elongation K _M (μM) 49 ± 4 63 ± 6	Factor 120 ± 10 100 ± 10
WT T114A T114L	(min) 4 ± 2 10 ± 2 33 ± 7	(min) 130 ± 20 57 ± 10 57 ± 1	Nucleofide $k_{pol} (nt/sec)$ 25 ± 1 25 ± 2 26 ± 3	Nucleotide K _M (µM) 20 ± 2 Gateway Mutan 31 ± 5 90 ± 20	Elongation k _{pol} (nt/sec) 20 ± 1 ts 14 ± 1 10 ± 1	Elongation $K_{M} (\mu M)$ 49 ± 4 $6_{3} \pm 6$ 100 ± 10	Factor 120 ± 10 100 ± 10 -
WT T114A T114L T114S	(min) 4 ± 2 10 ± 2 33 ± 7 4 ± 1	(min) 130 ± 20 57 ± 10 5 ± 1 82 ± 9	Nucleofide $k_{pol} (nt/sec)$ 25 ± 1 25 ± 2 26 ± 3 26 ± 1	Nucleotide $K_M (\mu M)$ 20 ± 2 Gateway Mutan 31 ± 5 90 ± 20 23 ± 1	Elongation k _{pol} (nt/sec) 20 ± 1 ts 14 ± 1 10 ± 1 20 ± 1	Elongation $K_{M} (\mu M)$ 49 ± 4 63 ± 6 100 ± 10 52 ± 4	Factor 120 ± 10 100 ± 10 - -
WT T114A T114L T114S T114V	(min) 4 ± 2 10 ± 2 33 ± 7 4 ± 1 18 ± 4	(min) 130 ± 20 57 ± 10 57 ± 1 82 ± 9 9 ± 2	Nucleofide $k_{pol} (nt/sec)$ 25 ± 1 25 ± 2 26 ± 3 26 ± 1 27 ± 6	Nucleotide $K_M (\mu M)$ 20 ± 2 Gateway Mutan 31 ± 5 90 ± 20 23 ± 1 150 ± 40	Elongation k _{pol} (nt/sec) 20 ± 1 ts 14 ± 1 10 ± 1 20 ± 1 5 ± 1	Elongation $K_M (\mu M)$ 49 ± 4 63 ± 6 100 ± 10 52 ± 4 80 ± 40	Factor 120 ± 10 100 ± 10 - - 130 ± 100
WT T114A T114L T114S T114V S115A	(min) 4 ± 2 10 ± 2 33 ± 7 4 ± 1 18 ± 4 5 ± 1	(min) 130 ± 20 57 ± 10 5 ± 1 82 ± 9 9 ± 2 90 ± 20	Nucleofide k_{pol} (nt/sec) 25 ± 1 25 ± 2 26 ± 3 26 ± 1 27 ± 6 28 ± 2	Nucleotide $K_M (\mu M)$ 20 ± 2 Gateway Mutan 31 ± 5 90 ± 20 23 ± 1 150 ± 40 60 ± 7	Elongation k _{pol} (nt/sec) 20 ± 1 ts 14 ± 1 10 ± 1 20 ± 1 20 ± 1 5 ± 1 11 ± 1	Elongation $K_M (\mu M)$ 49 ± 4 63 ± 6 100 ± 10 52 ± 4 80 ± 40 95 ± 6	Factor 120 ± 10 100 ± 10 - - 130 ± 100 -
WT T114A T114L T114S T114V S115A S115L	(min) 4 ± 2 10 ± 2 33 ± 7 4 ± 1 18 ± 4 5 ± 1 17 ± 3	(min) 130 ± 20 57 ± 10 5 ± 1 82 ± 9 9 ± 2 90 ± 20 15 ± 1	Nucleofide k_{pol} (nt/sec) 25 ± 1 25 ± 2 26 ± 3 26 ± 1 27 ± 6 28 ± 2 19 ± 4	Nucleotide $K_M (\mu M)$ 20 ± 2 Gateway Mutan 31 ± 5 90 ± 20 23 ± 1 150 ± 40 60 ± 7 110 ± 30	Elongation k _{pol} (nt/sec) 20 ± 1 ts 14 ± 1 10 ± 1 20 ± 1 20 ± 1 5 ± 1 11 ± 1 5 ± 1	Elongation $K_M (\mu M)$ 49 ± 4 63 ± 6 100 ± 10 52 ± 4 80 ± 40 95 ± 6 30 ± 10	Factor 120 ± 10 100 ± 10 - -130 ± 100 -130 ± 100 -150 ± 20
WT T114A T114L T114S T114V S115A S115L S115T	(min) 4 ± 2 10 ± 2 33 ± 7 4 ± 1 18 ± 4 5 ± 1 17 ± 3 5 ± 1	(min) 130 ± 20 57 ± 10 5 ± 1 82 ± 9 9 ± 2 90 ± 20 15 ± 1 13 ± 1	Nucleofide k_{pol} (nt/sec) 25 ± 1 25 ± 2 26 ± 3 26 ± 1 27 ± 6 28 ± 2 19 ± 4 23 ± 2	Nucleofide K_{M} (µM) 20 ± 2 Gateway Mutan 31 ± 5 90 ± 20 23 ± 1 150 ± 40 60 ± 7 110 ± 30 61 ± 7	Elongation k _{pol} (nt/sec) 20 ± 1 ts 14 ± 1 10 ± 1 20 ± 1 20 ± 1 5 ± 1 11 ± 1 5 ± 1 8 ± 1	Elongation $K_M (\mu M)$ 49 ± 4 63 ± 6 100 ± 10 52 ± 4 80 ± 40 95 ± 6 30 ± 10 120 ± 10	Factor 120 ± 10 100 ± 10 - - 130 ± 100 - 150 ± 20 130 ± 20

Conclusion: Kink residues play a role in RNA binding and resetting the polymerase active site after translocation.

Conclusion: Sensor residues position the proton donor for catalysis and act as the signal that catalysis has occurred.

Conclusion: Gateway residues act as an energy barrier to RNA template translocation and are involved in RNA positioning.