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I. INTllODUCTION 

1.1 General 

Infiltration is the key process controlling rainfall runoff, sediment 

yield, and soil water recharge. The infiltration process governs the propor­

tions of the applied water going to overland flow, soil moisture, subsurface 

flow. Infiltration rates during a rainfall are highly dependent on the ante­

cedent moisture profile in the soil. Thus, to accurately predict infiltra­

tion, it is necessary to include in the model not only the rainfall event, but 

also the redistribution of soil moisture between events. 

Infiltration can be classified as either flux controlled or profile 

controlled. During flux controlled infiltration, the flow of rate into the 

soil is equal to the rate of application and no runoff results. Flux 

controlled infiltration occurs during the early stages of a rainfall event or 

when the rainfall rate is low. When the surface moisture content reaches 

natural saturation, the rate of flow of water into the soil is controlled by 

the moisture profile near the soil surface. In this case, the rate of inflow 

to the soil is less than the rate of application and runoff occurs. 

The redistribution of soil water can also be roughly divided into two 

processes. Immediately following a rainfall, the soil moisture content near 

the surface is uniformly near natural saturation. Under this condition, water 

is lost to evapotranspiration (ET) at a rate determined by climatic and cover 

conditions. As long as the soil can provide water at a rate at least equal to 

the ET extraction rate, the redistribution process is controlled by the ET 

flux demand. Within several hours to a few days, depending on the soil type 

and ET demand, soil moisture content drops to a point where ET extraction 

can no longer proceed at its initial rate, but is instead controlled by the 

soil moisture profile. 

Redistribution models which assume a constant ET extraction rate and 

neglect the profile controlled phase provide a too dry moisture profile at the 

beginning of the next rainfall event and thus tend to underestimate subsequent 

runoff. Infiltration models which assume instantaneous ponding and do not 

account for flux controlled infiltration tend to overestimate runoff. 

Neglecting flux controlled infiltration and profile controlled ET generally 

produces errors of opposite sign in runoff prediction. However, it is too 

much to expect these errors to cancel. Therefore, it is desirable to account 
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for both flux and profile controlled infiltration and redistribution. 

Infiltration and redistribution models can be classified as physically 

based or empirically based. Physically based models are derived from Darcy's 

Law and the principle of mass conservation. Empirically based models rely on 

observed relationships. Physically based models are usually superior since 

they are generally easier to calibrate and provide better accuracy. 

1.2 Objectives 

The overall objective of this report is to provide efficient methods for 

predicting catchment runoff. Specific objectives are: 

1.. During a rainfall, determine time to ponding and subsequent runoff. 

2. Between rainfallS; describe the redistribution of soil moisture 
accounting for ET, capillary and gravity effects. 

The models which accomplish the above objectives are intended to be used 

as one component of a more complex watershed model, Simons et al (1977). 

Thus, it is necessary to develop computer cost-efficient runoff and redistri­

bution models. This cost efficiency is obtained by employing analytical and 

quasianalytical solution techniques. Some of the solution methods presented 

here are neW while others have been adapted from the recent hydrology litera­

ture. 

1.3 Soil Characteristics 

Infiltration and redistribution patterns are highly soil-type dependent. 

To mathematically model soil moisutre flow, it is necessary to know the soil's 

hydraulic properties. 

Let ; (em) denote capillary pressure head, a volumetric water cotent, 

and K (cm/hr) hydraulic conductivity. Under unsaturated flow conditions, 

6 and K depend on capillary pressure, •· Qualitative graphs of a ver­

sus ; and K versus ' are shown in Figures 1a and 1b. There ' repre­

sents the soil's porosity and K
8 

(cm/hr) saturated hydraulic conductivity. 

For saturated flow, '¢' ~ 0, both a and K are constant with respect to '¢'. 

The water capacity C (cm-1) is defined by 

which, as Figure 1c shows, is also··-dependent. For'~ O, c is identically 

zero. 
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For 'IJ < 0, the soil diffusivity D 2 
(em /hr) is defined to be 

K 
0=­c 

Using the a-, relationship, Figure 1a, D can be viewed as a function of e. 
A typical o-e relationship is illustrated by the curve labeled R in Figure 

1d. Since, as 6+<P, K+K I s 

1.4 Governing Equations 

and C+O, it follows that D+~ as 6+~. 

Let z (em} denote distance measured downward from the soil surface. 

Darcy's law states that the flux of water in the z-direction, per unit cross­

sectional area is given by 

-K eli - 1 > az 

Darcy's law together with the principle of mass conservation yields the 

balance equation 

~ a [K c~- 1>J at = az az 

Using the identity 

a can be eliminated from the above balance equation to obtain the one­

dimensional pressure head flow equation 

c ti. = .L [K clt - 1 > J at az az ( 1. 1) 

Similarly, w can be eliminated from the balance equation to obtain the dif­

fusivity form of the flow equation 

~ = !_ (D ~) - ()K 
at az az az 

1.5 SimElifying AssumEtions 

( 1. 2) 

The analysis of Equations 1.1 and 1.2 can be simplified considerably if 

the real soil being modeled is approximated by an idealized linear soil. In 

this report, a linear soil is defined to be one with (i) constant diffusivity 

and (ii) a linear K - e relationship. When modeling a real soil by a linear 
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soil, it is not necessary that conditxons (i) and (ii) be globally satisfied. 

It is sufficient that they be approximately satisfied over the relevant range 

of moisture contents. 

The horizontal line labeled L in Figure 1d represents a constant 

approximation to the real diffusivity curve, o. Clearly, L is not a good 

approximation to D near 6 = $• However, to the left of the moisture level 

labeled eN, the approximation of D by L is fairly good. 

In terms of e, K, and ~ a linear soil is one for which 

d ln K 
dlll =a and e = yK + e 

R 
{1.3} 

where a, y, and eR are parameters dependent on soil type and the relevent 

range of moisture contents. From the second part of Equation 1.3, condition 

(ii) is seen to hold. To show that the diffusivity is constant, recall 

K 
D = """di) 

d~ 

Equation 1.3 implies 

de dK - = y- = ayK dw d1P 

so that if Equation 1.3 hold, then D is constant, D = 1/{ay). 

When Equation 1.3 hold, the nonlinear partial differential equations, 

Equations 1.1 and 1.2, each reduce to a linear partial differential equation 

in e 1 namely 

ay ( 1. 4) 

Equation 1.4 is much easier to analyze than either of Equations 1.1 or 1.2 

since analytical solutions of Equation 1.4 can be obtained using Fourier 

transforms. These analytical solutions a~e much more computer cost efficient 

than the finite difference methods required to solve Equations 1.1 and 1.2. 

In recent years, Equations 1.3 have been used to approximate real soils 

by a number of researchers including Lom.en and Warrick ( 1974), Philip ( 1968, 

1971), Reats (1970, 1971, 1972, 1977), Thomas (1972), Warrick (1974), Warrick 

and Lomen ( 1977), Zachmann and Thomas ( 1973), Zachmann ( 1978). Ben Asher et 

al (1978) have discussed the validity of the relationships (1.3). They 
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compared the results obtained from a nonlinear model based on actual hydraulic 

data relating K, e, and 111 to those obtained from a linear model based on 

Equations 1.3. For several such comparisons they showed that, in the midrange 

of moisture content, the results of the linear and nonlinear models were in 

good agreement. In many field applications, the moisture content stays in 

this midrange from 40 to 90 percent of total saturation. 

The flow patterns to be discussed in this report involve repeated wetting 

and drying. Therefore, some hysteresis effects are expected. Since the 

linear model based on Equation 1.4 is not capable of describing hysteresis, it 

must be assumed that in applications of these methods hysteresis effects are 

negligible. 

During infiltration, when runoff begins, generally the surface water 

channelizes quickly. Thus, it is assumed that subsequent to pending time, the 

pressure effect of ponded water is negligible. It is also necessary to assume 

the soil is spatially homogenous. This last assumption is not so severe as it 

first appears since spatial averaging of soil properties tends to smooth out 

local inhomogeneities. 

Under field conditions, the moisture content seldom exceeds what is co~ 

manly called natural saturation. Wells and Skaggs ( 1976) .have reported that 

natural saturation, eN, is typically in the range of 80 to 90 percent of 

total saturation. In order to avoid underestimating runoff, it is assumed in 

this report that e = o.a <P 
N 

and that runoff can begin when the surface 

moisture content reaches the value e . 
N 

1.6 Calibration 

To model a real soil with an idealized linear soil, it is necessary to 

estimate the parameters a, y, and eR. Mualem (1976) has compiled an 

extensive catalog of soil hydraulic properties in the form of K-w-e data for 

some 80 soils~ The introduction of the catalog states, "Field oriented 

scientists may find the catalog helpful when an estimate for the hydraulic 

properties of some particular soil are required without expensive testing. 

They can just adapt the data of a similar soil from the collection ... 

If the soil being modeled is similar to one of the soils in the catalog, 

the linear model can be calibrated by simple linear regression. To estimate 

a in the first of Equations 1.3, the K-w data yield (ln K) - w data 

pairs. If these (ln K) - 111 data points exhibit a roughly linear 
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relationship, then the method of least squares can be used to obtain a· 

Having found a for a number of soils in the catalog, it appears that a is 

on the order of 0.1 cm- 1 for a soil for which K decreases rapidly with 

decreasing ~~ say a sand. For more clay-like soils, a is generally on the 

order of 0.01 cm- 1 

In many applications, the field conditions are such that the soil 

moisture content remains in the range of 40 to 90 percent of total saturation. 

To estimate y and eR consider the cataloged K-6 data pairs over this 

range. If they exhibit a linear trend, then linear regression can be used to 

estimate y and e • 
R 

Examples of this calibration from catalog data will be 

given in the following chapters. 

An alternative calibration procedure is based on a recently developed 

parameter identification method, Zachmann et al (1981). A brief outline of 

the method follows. 

To estimate a, y, and aR for a given soil, begin with a vertical 

column of soil which has an initially constant moisture content, e = ei < eN 

where eN is natural saturation. If water is applied to the soil surface at 

a sufficiently high rate to immediately produce runoff, with an escape pro­

vided to prevent ponding, then for t > O, 6(0,t) = eN. Knowing the applica­

tion rate and observing the runoff rate allows q(t), the flux across the 

upper surface of the column as a function of time to be calculated. If the 

lower boundary is far enough removed relative to the duration of the experi­

ment, then the linear flow equations are 

ae - fi" + a(S- eR) = q(t), 

e(z,O) = e., 
~ 

z > 0 

z ) 0, t ) 0 ( 1. 5) 

z = o, t ) 0 ( 1.6) 

(1.7) 

To obtain the boundary conditions, Equation 1.6, Darcy's law, - D (36/3z) + K 
-1 = q, and Equations 1.3 imply D = (ay) and K = (6 - eR)/y were used. 

The solution of Equations 1.5 through 1.7 is clearly dependent on the 

choice of a, y, and a . 
R 

To emphasize this dependence, write the solution 

of Equations 1.5 through 1.7 as e = 6(z,t; a,y,aR). The values of a, y, 

and eR which characterize the soil are those for which 
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t > 0 

The parameter identification procedure is carried out by using an optimi­

zation routine to successfully adjust the parameters in Equations 1.5 through 

1.7 with the goal of satisfying Equation 1.8. Knowing a from catalog data, 

approximate values of a, y, eR are a great help in performing the opti­

mization. 
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II. INFILTRATION AND RUNOFF 

2.1 Flux Controlled Infiltration, z > 0 

Flux controlled infiltration into a linear soil when lower boundary 

effects can be neglected is governed by 

a a a
2a a a z > 0, t > 0 (2.1) ay -= -a---at az 2 az 

S(z,O) = e. (z), z > 0 (2.2) 
~ 

ae r(t), z = 0, > 0 (2.3) -D-+K= t 
az 

where a and y are soil-type dependent. The initial moisture profile 

e.(z) is assumed to satisfy 
~ 

lim 8 i (z) = SR 
z+oo 

where aR is a constant satisfying o < e < A.. 
- R '+' 

In Equation 2-3 r(t) 

(cm/hr) represents the rate of application of water to the soil surface. 

Using Equations 1.3 and introducing the dimensionless variable T and z 
and a new dependent variable 

at 
T = 4y ' 

az 
z = 2' v = D1T-Z (8 · e ) 

R 

allows Equations 2.1 through 2.3 to be transformed to 

Z > 0, T > 0 

v(Z,O) = v.(Z), 
~ 

av- v = 21T r(T)/a, az 

z > 0 

Z = 0, T > 0 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

where v.(Z) = D [8. (2Z/a) - 8] 1-z with the diffusivity D = 1/(ay). 
~ ~ R 

Equation 2.5 is the one-dimensional linear heat equation and it, together with 

the initial and boundary conditions (Equations 2.6 and 2.7), can be solved 

using the Fourier transform. The solution of Equations 2.5 and 2.6 is 

straightforward, but lengthy. See Warrick (1975) for details. 
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Solving Equations 2.5 and 2.6 using Equations 1.3 and 2.4 to recover e 
yields 

where 

and 

6(Z,T) = 6R + M(Z,T,Si) + yN(Z,T,r) 

M[Z,T,6. (Z)] 
~ 

= exp (Z-T) ~ {(41TT)-1/2 [exp (- (Z ~TZ')\ 
0 

(Z + Z') 2 
+ exp (- 4T )] 

- exp (T + z + Z') erfc((Z + Z') +IT)} 
21"T 

ca. <z> - e > t-z•dZ' 
~ R 

(2.8) 

(2.9) 

N[Z,T,r(T)) 
T -z2 -1/2 = 2 exp (Z- T) J {exp <4 (T _ T) ) • (n(T - T) 

0 

z - exp (T - T + Z) erfc (-------+IT - T)} 

2IT - T 

r(t) iT dT (2.10) 

In Equations 2.9 and 2.10, erfc(x) represents the complementary error func­

tion 1 - erf(z) where 

2 
X 2 

-y 
erf(x) = -:: J t dy 

In 0 

For the important special case of constant flux r(T) : r and constant 

initial water content 6.(Z) :e. significant simplifications of Equations 
~ ~ 

2.9 and 2.10 can be obtained. See Lomen and Warrick (1978). 

6i - 6R -z 2z z 
M(Z,T,e.) = ---[erfc(- + IT) + t erfc(- + /T)] 

~ 2 21"T 21i 
(2.11) 
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N(Z,T,r) = r [{1/2)erfc(~- {T) + 2 IT/n exp(-(_!_- {T) 2 ) 
21i 21i 

z -
-{Z + 2T + 1/2) exp(2Z)erfc(- + {T)] 

21"T 
(2.12) 

Equations 2.8, 2.11, and 2.12 can be used to model flux controlled infiltra­

tion due to a step function rainfall hyetograph. 

Flux controlled infiltration can be maintained only as long as the sur­

face moisture is below natural saturation. 

To determine ponding time T when runoff begins and the infiltration 
p 

becomes profile controlled, it is sufficient to monitor the water content at 

the soil surface, z = o. For the case of constant r and constant ei, 

Equations 2.8, 2.11, and 2.12 show that T 
p 

satisfies 

+ 2{T/w i-T - (2T + 1/2) erfc({T)] (2.13) 

In practice, the time to ponding is determined by monitoring Equation 2.13 as 

T increases from zero. Once the ponding time, T , has been found from 
p 

Equation 2.13, then Equations 2.8, 2.11, and 2.12 can be used to determine the 

moisture profile at the beginning of the profile controlled infiltration. 

2.2 Example 

Table 1 contains empirical soil data for Yolo Light Clay, Mualem (1976}. 

To two decimal place accuracy, the saturated conductivity, 

and the porosity ~ is o.so. 
To approximate Yolo Light Clay by a linear soil set 

K 
s 

is 0.04 cm/hr 

and use linear regression on the data points in Table 1 to obtain 

a = 21.46K + o.Jo (Yolo Light Clay) 

so that in this case y = 21.46 hr/cm and eR = 0.03. To determine the para­

meter a in the relationship 



-IJJ (em) 

lOOK/K s 

8/¢ 

161.00 

1.34 

0.622 

Table 1. Soil Data for Yolo Light Clay. 

129.00 100.00 82.00 73.00 

1.90 3.00 4.00 5.50 

0.648 0.675 0.701 0.727 

64.00 56.00 49.00 

7.00 8.94 10.4 

0.754 0.780 0.804 
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d(ln K) 
dlJI 

regression 

first two lines of 

illustration, take 

a 

can be used 

Table 1 to 

aN to be 

13 

on the data pairs 

"'' 
ln K obtained from 

obtain 0.21 -1 
a = em . For purposes of 

80 percent of total saturation, namely aN 
0.04, and assume that ei is equal to aR for all z. 

For a constant rainfall rate, Equation 2.13 can be used to find the 

the 

= 

dimensionless pending time, 

vered from 

T • p 
Then the ponding time in hours can be reco-

t = 4y T /a p p 

The calculations required to produce Table 2 were carried out on an Apple II 

48K micro-computer. Five-point Gaussian quadrature was used to evaluate the 

error function in Equation 2.13. Even on this small system, the calculation 

of pending time required only a few seconds of computer time. The computer 

program used to find ponding time is listed in Appendix I. 

Once the ponding time has been found, the moisture profile at time 

T must be calculated so it can be used as the initial condition for the 
p 

ensuing profile controlled infiltration. In the case of constant rainfall 

rate, S(Z,T ) can be found from Equations 2.8, 2.11, and 2.12. The moisture 
p 

profile at time 1.9 hours, ponding for the rainfall rate 0.1 cm/hr, is shown 

in Figure 2. The computer program used to construct this moisture profile in 

Figure 2 is listed in Appendix II. The calculation and plotting of the pro­

file required only ten seconds on the Apple II. 

2.3 Profile Controlled Infiltration, z > 0 

When the surface moisture content reaches natural saturation, the 

infiltration rate can no longer be taken equal to the application rate. 

Profile controlled infiltration into a linear soil when the lower boundary can 

be neglected is governed by 

S(z,t) = a.(z), 
p ~ 

aco,t> =aN , t > t 
p 

z > 0, 

z > 0 

t > t 
p 

(2.14) 

(2.15) 

(2.16) 



r (cm/hr) 

t (hr) 
p 

0.05 

7.70 

Table 2. Ponding Times for Yolo Light Clay. 

0.10 0.20 0.40 

1.90 0.47 0.13 

0.60 1.00 

0.05 0.02 
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Figure 2. Moisture profile at ponding time for Yolo light 
clay with r = 0.1 em/hr. 
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The initial condition 6.(z) is obtained by using Equation 2.13 to find the 
~ 

ponding time T and then Equation 2.8 to determine the moisture profile at 
p 

time of ponding. 

To solve Equation 2.14 through 2.16, it is convenient to introduce the 

dimensionless variables Z and T and the new dependent variable U 

az 
z = 2' T = 

a(t - t ) 
p 

4y 
U = 0(6 - 6 ) t T-Z 

N 

In terms of T, z, and U, Equations 2.14 through 2.16 are 

U(O,T) = 0 

(2.17) 

A Fourier transform can be used to find U(Z,T}, Tychonov and Samarski 
-1 

(1964). From Equations 2.17 and D =Cay) , e is seen to be 

00 

6(Z,T) =eN+ tZ-T t G(Z,Z',T)(ei(Z')- eN) t -Z'az•, (2.18) 

where, 

Equation 2.19 provides the moisture profile during profile controlled 

infiltration. In watershed models it is not the moisture profile, but the 

runoff rate which is of primary concern. The runoff rate can be found from 

Equations 2.18 and 2.19 by starting with the general Darcy flux 

When 

-D.2J!+K az 

e = e , 
N 

the corresponding value of hydraulic conductivity is which 

is generally slightly less than K • s 
In profile controlled infiltration, the 

flow rate into the soil is, in terms of dimensionless depth z, 

z = 0 (2.20) 
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'!he partial derivative of 6 with respect to z at z = 0 can be found by 

differentiating Equations 2.18 and setting Z = 0. Let s(T) denote the 

runoff rate in terms of dimensionless time. Since G(O,Z',T) =0, it follows 

from Equation 2.18 that 

-T oo 

s(T) = r(T) - ~+ ;y ~ GZ(O,Z',T)(01 (Z')- ON)t-Z' dZ' (2.21) 

where 

G (O,Z',T) =- (4wT)- 1/ 2 Z' exp(- Z'
2
)/T 

Z 4T 

Equation 2.21 provides an efficient means for calculating runoff rate during 

constant rate rainfall. It is straightforward to adapt Equation 2.21 to model 

runoff under a piecewise constant application rate. 

2.4 Example 

To illustrate the profile controlled infiltration solution, consider the 

Yolo Light Clay of Section 2.2 with a constant rainfall rate of 0.1 em/hr. 

From Table 2, time to ponding is 1.9 hours so that the initial moisture 

distribution e. is the profile found in Figure 2. Recall that y = 21.46 
~ 

-1 hr/cm, a = 0.02 em I eR = o.J, eN = o.4, and K = 0.04 em/hr. Using two 
s 

points near the surface on the profile in Figure 2, d6/dz at z = 0 is 

estimated to be -3. From Equation 2.20 the flux across the surface is esti­

mated to be 

~ + ~ = 0.07 + ~ 

At ponding time, the surface flux equals the rainfall rate. This will be the 

case if ~ is chosen to be 0.03 em/hr. Using Ks in place of KN in 

Equation 2.21 will generally lead to un underestimate of the runoff. 

The calculation of the runoff rate s(T) requires that the improper 

integral in Equation 2.21 be evaluated. One accurate and efficient method 

is as follows. First, from Figure 2 determine the depth to which rainfall has 

advanced during the flux controlled stage of infiltration. In this example, 

that depth is about z = 5 em or z = o.os. 

The integral in Equation 2.21 is broken into two integrals, one from Z' 

= 0 to o.os and the other from Z' = 0.05 to infinity. The integral from 0 
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to 0.05 can be accurately approximated by Simpson's rule. Let h = o.OS/2 

and use 6i(O) =aN to obtain 

o.os 
I Gz(O,z',T><aicz•>- aN>t-z' dZ' • (h/3) [Gz(O,h,T)Caich> -aN> 
0 

t-h + Gz<0,2h,T>Ca.<2h) - e > 
~ N 

For Z' > 0.05, 6i(Z')- eN is a good approximation eR- aN, a 

constant. Thus, the integral remaining is OR - eN times 

~ -1/2 z• 2 
' f [(4nT) Z' exp(-

4
T )/T] 1-z dZ' 

o.os 

When T is small, the term in square brackets in the above integral has a 

large z• derivative. To avoid having to deal with this large derivative, an 

integration by parts is used to obtain 

( T)-1/2 ( 0.025_ 0.0 2S) n exp 4T 

01) 

+ (nT)-1/2 I 
o.os 

z•2 
exp(- -) 

4T 

The last integral in the above equation can be evaluated in terms of the 

error function. However, less algebra is involved and a satisfactory estimate 

is obtained if Laguerre-Gauss quadrature is used in which case 

00 

I 
o.os 

z• 2 -z• 
exp(- -)f. dZ' -

4T 

5 
E 

i=1 

(Y 
w.exp(-

1. 

where the Y. and W. are shown in Table J. 
~ ~ 

Using Equation 2.21 and the above integration techniques yields the 

runoff values in Table 4. The computer program used to generate Table 4 is 

listed in Appendix II. 



T 

i 

Y. 
l. 

w. 
l. 

s(T) cm/hr 

Table 3. Abscissas and Weights for Laguerre-Gauss Quadrature. 

1 2 3 4 5 

0.2635 1.4134 3.5964 7.0858 12.6408 

0.5217 0. 3987 0.0759 0.0036 0.00002 

Table 4. Runoff from Yolo Light Clay with r = 0.1 em/hr. 

0.007 0.010 0.025 0.050 0.100 0.500 

0.017 0.026 0.046 0.056 0.062 0.069 
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At the end of the rainfall event, Equations 2.18 and 2.19 can be used to 

determine the moisture profile at the beginning of the redistribution period. 

Integration techniques similar to those outlined above are used to evaluate 

the improper integral in Equation 2.18. 

2.5 Flux Controlled Infiltration, 0 < z < z 

In some situations it is not reasonable to view the soil as being semi­

infinite in z. One common situation is the case of a layer of hardpan not 

far below the soil surface. In this case, the lower boundary condition has a 

significant effect on the developing moisture profile and if the semi-infinite· 

theory is applied, an underestimate of runoff will usually result. 

Flux controlled infiltration into a linear soil with an impermeable boun-

dary at z = z 
0 

is governed by 

6(z,O) = e. (z), 
l. 

0 < z < z
0

, t > 0 

0 ( z < z 
0 

- D ae + K = r(t), z = 0, t > 0 az 

ae 
- D- + K = 0, z = z I t > 0 az 0 

(2.22) 

(2 .23) 

(2.24) 

(2.25} 

Again, it is convenient to introduce dimensionless variables T and Z 

t 
T =---2 ayz

0 

z = 

and a new dependent variable 

z 
z 

0 

v(Z,T) = exp[b(Z- bT)] • 0(9 - 9R)' b = az /2 
0 

Using Equation 1.3 and the above change of variables allows Equation 2.22 

through 2.25 to be transformed to 

2 av a v -=--aT a z2 ' 
0 < Z < 1, T > 0 (2.26} 

0 < z < 1 (2.27) 
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bv az r(T) b2T 0, - -= z _t I z T > 0 (2.28} az 0 

bv av 
0,. z = 1, T > 0 (2.29) --= az 

Equations 2.6 through 2.29 can be solved by obtaining a Green's function. 

Let g = g(Z,Z',.T,T') be a Green's function to be determined. Multiplying 

Equation 2.26 by g integrating from T = 0 to T > T' and from z = 0 to 
0 

1 and using integration by parts to move all derivatives from v onto g 

yields 

T 1 
0 

I I 
0 0 

1 

+ I 
0 

1 

I 
0 

2 
c!cl + a g> v az dT 
aT az2 

T T 
0 0 

vg J . dZ + I 
0 0 

2.,ci av 
Cv az - 9 az> dT 

Next, Equations 2.28 and 2.29 are used to eliminate avtaz from the above 

equation to obtain 

T 1 2 0 

I I (~ + !..._2) v dZ dr = 
0 0 aT az2 

1 T T 
0 0 

I vg f dZ+ 1 (E.g - bg) 
az v b=1 dT 

0 

T 
0 

- I 
0 

0 0 

2 
[ ( ~ - bg) v - gz r t b T] dT 

az o 
Z=O 

From the last equation it follows that if g is required to satisfy 

then 

2 !.2 +!._.:I= <S(Z- Z') t5{T- T'), 

aT az2 

bg - !.2 = o, az 

g = 0, T > T' 

z = 0 and Z = 1 

0 < Z, Z' < 1, 

0 < T, T' < T 
0 

(2.30) 

(2 .. 31) 

{2.32) 
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1 
v(Z,T) = f 

0 
g(Z,Z',T,O) D{6.(Z')- B ) ~-bZ'az• 

~ R 

+ z 
0 

T 

I 
0 

b
2
T' r(T') t g(Z,O,T,T') dT' 

In Equation 2-30, o represents the Dirac delta function which is the distri­

butional derivative of a unit impulse function, Wylie (1975). 

The boundary conditions (2.31) motivate looking for g in the form 

g = i: 
n=O 

a (T,T',Z') w (Z) 
n n 

where the w (Z) satisfy 
n 

w" ( Z) = A w (Z). 
n n n 

A straightforward calculation 

shows w (Z) = exp(bZ), 
0 

A = b 2
, and 

0 

w (Z) = n~ cos n~Z + b sin n~Z, 
n 

2 
A = -(nv) , n = 1, 2 

n 

From Equation 2.30 and the orthogonality of the w 
n 

it follows that 

aa 2 
(___E.+ A a) llw tl = w (Z') o(T- T') aT n n n n 

where II w
0 

I J 2 = o.S(t2b- 1)/b and II wn 11 2 
= 0.5[(nv)

2 
+ b

2J, n = 1, 2 .... 

Solving the last equation for 

00 

a 
n 

completes the determination of 

g(Z,Z',T,T') = I: II wn 11-2 
n=O 

A (T-T') 
1 n wn(Z) wN(Z') 

g, 

from which it follows that, during flux controlled infiltration with 

0 < z < 1, 

S(Z,T) = eR + exp[b(bT - Z)] 
1 

I g(Z,Z',T,0)(6.(Z)- 6 )1-bZ'az• 
~ R 

0 

T b2 , 
+ ayz exp[b(bT - Z}] I g(Z,O,T,T' )r(T' )~ T dT' 

0 0 

Equation 2.33 is to be used to model infiltration until ponding time 

6(0,T) = BN. 

(2.33) 

T 
p 

when 
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2.6 Profile Controlled Infiltration, 0 < z < z 

Profile controlled infiltration into a linear soil with an impermeable 

boundary at z = z 
0 

is governed by 

ae a
2

e a a 
0 < z < ay- =---a OZ I at az2 

S(z,O) = ai(z), 0 < z < z 
0 

a(O,t) = aN, t > 0 

a a 
t > -D-+K=O z = zo, az , 

t > t (2.34) zo' p 

(2.35) 

(2.36) 

t (2.37) 
p 

The initial moisture distribution a.(z) in Equation 2.35 is the profile at 
~ 

the end of the flux controlled infiltration and is obtained by setting T = 
T in Equation 2.33. Using essentially the same change of variables as in 

p 
Section 2.5, namely 

t - t 
T = __ _.P.._ 

2 
ayz

0 

z = z 
0 

I v = exp[b{Z - bT)] D(a - 6R) 

where b = az /2, allows Equations 2.34 through 2.37 to be transformed to 
0 

0 < Z < 1, T > 0 (2.38) 

0 < z < 1 (2.39) 

2 
( 0 ) (a _ a l I) b T, v ,T = D N R N T > 0 (2.40) 

av 
bv - az = o, Z = 1, T > 0 (2.41) 

Let h = h(Z,Z',T,T') be a Green's function to be determined. The 

calculations between Equations 2.29 and 2-30 together with Equations 2.40 and 

2.41 show 



T 
0 

J 
0 

1 
2 

J <a h + a h> v dz dT 
o aT az 2 
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T 
0 

J vh I dZ + 
0 0 

T 
0 

J <ah - bh> j dT 
0 az z=1 

T 
0 

- 6 
2 

[ < n < eN - e R > R.-b T a h - h a v J I dT 
az az z=O 

From the above equation it follows that if h satisfies 

ah a
2

h -- + --- = O(Z- Z') o(T- T' ), 
aT az2 

h = 0, z = 0 

ah 
bh - az' z = 1 

h = 0, T > T' 

0 < Z, Z' < 1 

0 < T, T' < T 
0 

(2.42) 

(2.43) 

(2.44) 

(2.45) 

then the solution of Equations 2.38 through 2.41 is 

1 
v(Z,T) = f h(Z,Z',T,O) D(6i(Z')- 6R) R.-bZ'dZ• 

0 

T 

- J 
0 

Equations 2.43 and 2.44 motivate an expansion for h in the form 

where ~n 

tan(~/b). 

00 

h = I: 
n=1 

C (T T' Z') sin~ Z n , , n 

is the n-th non-negative root of the transcendental equation ~ = 

From the orthogonality of the functions sin ~ Z and Equation 2.42 
n 

it follows that 

sin ~nz II 2 = 

where 

sin X Z' · o(T -T') 
n 
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II sin lln z IJ 2 = 
1 

I 
0 

2 
sin M. z 

Solving for the c 
n 

shows that 

h(Z,Z' ,T,T') = 
co JJ (T-T' } 
t tf sin llnZ II -2

R. n 
n=1 

sin JJ Z sin ll Z' n n 

from which it follows that, during profile controlled infiltration with o < z 
< 1 

S{Z,T) = aR + e~[b(Z - bT)] 
1 
I h(Z,Z',T,O)(Si(Z)- 6R) 1-bZ'dZ• 
0 

(2.46} 

Equation 2.46 is used to describe infiltration as long as the surface 

moisture content is held at aN. If at any time during the rainfall event the 

surface moisture content falls below aN, then flux controlled infiltration 

resumes and Equation 2.33 models the flow. 

As in Section 2.3, let s(T) be the runoff rate and ·RN be the value of 

the conductivity when e = aN. It follows from Equations 2.20, 2.46 and the 

fact that hz(O,O,T',T) = 0 that 

-b2T 
R. s(T) = r(T} - K -N 2y 

1 

I 
0 

where hz(O,Z',T,O) denotes the partial derivative of h at Z = 0, T' = o. 

2 .. 7 Example 

To illustrate the analytical solutions developed in the last two sec­

tions, three soils are considered. The soils are the Yolo Light Clay of 

Section 2.2, Gravelly Sand G.E. 9, [Reisenauer (1963)(see Table 5)], 

and Gilat Loam, {Mualem (1976)(s~e Table 6}]. 

For Gravelly Sand the saturated conductivity is 1 cm/hr and the poro-

sity q, = 0.326. 

0.44. 

For the Gilat Loam K = 0.12 cm/hr and the porosity is 
s 



-l/1 (em) 

lOOK/K s 

8/<P 

-w (em) 

lOOK/K s 

8/<P 

90.0 

3.0 

0.582 

77.50 

1.29 

0.590 

Table 5. Soil Data for Gravelly Sand G.E. 9. 

80.0 70.0 55.0 40.0 30.0 

8.0 15.5 34.0 52.5 66.0 

0 .. 589 0.705 0.831 0.890 0.908 

Table 6. Soil Data for Gilat Loam. 

72.50 66.00 60.00 54.50 49.60 44.70 39.00 

2.58 4.79 8.33 13.30 20.80 32.50 47.90 

0.636 0.682 o. 727 0.773 0.818 0.864 0.909 
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Recall from Section 2.2 that when'a linear soil was calibrated to the 

soil data in Table 1, the relationships 

a = yK + o.Jo, y = 21.46 hr/cm (Yolo Light Clay) 

(Yolo Light Clay) 

were obtained. Using the calibration method outlined in Section 2.2 to fit a 

linear soil to the Gravelly Sand and the Gilat Loam yields 

a= yK + o.191, y = 0.18 hr/cm (Gravelly Sand G.E. 9) 
~· 

d(ln K) = a = o.os -1 
dlf/ 

em (Gravelly Sand G.E. 9) 

e = yK + o.2s4, y = 0.39 hr/cm (Gilat Loam) 

d(ln K) 
0 .. 09 

-1 
dlf/ =a= em (Gilat Loam) 

As an illustration of the analytical solutions of Sections 2.5 and 2.6, 

consider three 50 em columns of the above soils. For purposes of comparison, 

assume that initially the water in each column is in static equilibrium with 

v = -100 em at the soil surface. 

Figure 3 shows how the three soils respond to the rainfall hyetograph 

indicated by the piecewise constant solid curve. As expected, the Yolo Light 

Clay has the smallest ponding time. In fact, for the clay, runoff begins 

almost immediately. The runoff rate is easily obtained from Figure 3 by 

subtracting the infiltration rate from the application rate. The Gravelly 

Sand has the largest ponding time. If the rainfall rate during the last half 

hour had been only slightly less, then the infiltration for the Gravelly Sand 

during that period would have switched from profile to flux controlled. Table 

7 shows that during this rainfall, the cumulative inflow into the sand is much 

greater than into the clay. In all respects, the response of the loam falls 

between the sand and the clay. 

The computer program used to construct Figure 3 and Table 7 is listed in 

Appendix IV. The calculations required to construct Figure 3 required nine 

seconds on a CDC Cyber 171. 
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Figure 3. Infiltration rate for clay, loam and sand. 
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Table 7. Cumulative Infiltration During Rainfall. 

Time 0 0.50 0.10 1 .. 50 2.00 2.50 

Clay (em H
2

0) 0 0 .. 17 0.23 0.28 0.32 0 .. 36 

Sand (em H
2
0) 0 o.so 1.42 2.12 2.71 3.15 

Loam (em H
2
o) 0 o.so 1.21 1.64 2.02 2.39 
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III. REDISTRIBUTION 

3.1 Evaporation 

Kolasew (1941) divided soil water evaporation into three stages. The 

first is the constant rate or the energy-limiting stage. When the soil can no 

longer supply water to the surface fast enough to use all the available 

energy, the profile-limiting stage begins. The third phase occurs when the 

soil surface is very dry and the evaporation rate is low and decreasing almost 

linearly with time. In Figure 4, adapted from Gardner (1981), these stages 

are indicated by A, B, and c, respectively. 

Let aR be the effective residual, reference water content in Equation 

1.3. Tb approximate the evaporation rate curve A-B-C of Figure 4, the outward 

flux at the surface is set equal to E(a- aR), 

o a 6 
- K = E( a - aR>, az z = 0 (3.1) 

The constant E (em/day) is chosen so that E(8N- aR) agrees with the 

energy-limiting evaporation rate. The flux boundary condition Equation 3.1 

yields an evaporation rate curve qualitatively as indicated by the dashed 

curve in Figure 4. 

3.2 Extraction by Roots 

Experimental work of Herkelrath et al (1977) indicates that in many cases 

the rate at which roots extract water from the soil decreases with decreasing 

moisture content. Moltz and Remson (1970, 1971) have used a moisture depen­

dent distributed sink to simulate uptake by roots. 

If the extraction rate varies linearly with water content then a sink of 

the form see 
where sea -

N 
soil depths, 

so 

d 
dt 

- e > R 

aR> 
z2 > 

can be used to account for removal of water by 

is the maximum extraction rate. Let z1 and z2 

z1. Darcy's law and conservation of mass imply 

z2 

I ~ [D ~ - KJ dz + 
dz az 

z2 

I staN - eR) dz z, 

; ! = a z ( D ; : - K] + S ( aN - 6 R) 

roots 

be two 

(3.2) 
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Figure 4. Typical evaporation rate curve. 
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For the case of a linear soil with 
-1 

D = {a.y) the above equation is 

aa a2a ae 
ay - = - - a - + ay s( a - aR) 

at a z2 a z 

Since the sink is distributed it follows that the units on s -1 are (day) • 

The constant s is negative and such that S(6N - aR) is the maximum extrac­

tion rate. S is dependent on the range of moisture content, soil type, and 

root system being modeled. 

3.3 Redistribution, z > 0 

If the evaporation rate and the root extraction rate are as described in 

Sections 3.1 and 3.2 and lower boundary effects can be neglected, then for a 

linear soil the moisture content is governed by 

ae a2e ae 
ay _, = -- - a - + (l y S( a - aR) I at az2 az 

0 ~- K = E(6 - 6 ), az R 

a< z ,o > = a . < z > , 
]. 

z > 0 

z = o, t > 0 

z > o, t > 0 

'(3.4) 

(3.5) 

where time is measured from the end of the last rainfall. In accordance with 

Equations 1.3, the diffusivity is o = 1/{ay). The parameters a, y, and 

eR are, as before, soil type and calibration range dependent. The saturated 

potential evaporation rate determines E while the root ext~action rate fixes 

the constant s. 
By introducing new variables, Equation 3.3 can be transformed into a 

standard initial-boundary value problem for the heat equation. Let 

where 

aBz 
z = 4' 

_ aB2
t 

'(' - 16y , 

f3 = {1 + 2yE), b = 1/B I 

V = 0(6- 6 ) i(aT + bZ) 
R 

a = 4 (4y5 _ 1 ) 

6
2 a 

(3.6) 

In terms of the new variables Z, T, v, defined by Equations 3.6 and 3.7, 

Equations 3.3 through 3.5 can be written in the form 
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dv d2v z > 0, > 0 (3.8) -- = --- T dT ~2 

av 
2v = o, z o, T ) 0 (3.9) az- = 

bZ 
v = ocei - eR> ~ , z > o, T > 0 (3.10) 

The solution to Equations 3.8 through 3.10 is known, Warrick (1975), to 

be 

Z-T ~ -1/2 (Z- Z') 2 (Z- Z') 2 
v(Z,T) = D~ J {[(4~T) (exp(- 4T ) + exp(- 4T )) 

0 

exp(T + z + Z')erfc(z + Z' +IT)] ca. - e )~bZ'} t-z•dZ, 
21T ~ R 

From Equation 3.6 it follows that 

-1 
S(Z,T) = exp(-aT - bZ) 0 v(Z,t) + eR 

The last two equations provide the solution 8 in terms of Z and T· 

The scaled variables Z and T needed to transform Equations 3.3 through 3.5 

to Equations 3.8 through 3.10 are not as convenient for practical use as the 

original variables z and t. For most practical values of t, a, 5, and 

y, T is quite small and it is easier to work with t. Using Equations 3.6 

and 3.7 to recover the variables z and t yields 

8(z,t) = exp[ ~t (1 -
4~5 ) - ~z ] u(z,t) + OR (3.11) 

where u(z,t) is given by 



u(z,t) 
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2 QO 

= exp[aaz - aa t] aa J 
4 16y 4 0 

+ exp(- a(z + z' )2)) -exp(a62t + 
4yt 16y 4 

-aBz' 
4 dz' 

(z + z')) 

{3 .. 12) 

At first the integral in Equation 3 .. 12 appears formidable. However, it 

can be easily approximated using Laguerre-Gauss quadrature. Let F{z,t,z') 

denote the expression in {} in Equation 3 .. 12 where 
A 

z represents the 

grouping aSz/4· If and w. 
l. 

2 
u(z,t) ,; exp[ z - ~:Y t 1 

are as in Table 3, then 

5 
}; 

1=1 
w.F(z,t,y.) 

l. 1. 
(3.13) 

Using the above approximation to u requires only 21 exponential and five 

error function evaluations per e evaluation. This allows the moisture pro­

file to be economically updated during redistribution. 

3.4 Redistribution, 0 < z < z 

If the evaporation rate and the root extraction rate are as described in 

Sections 3 .. 1 and 3.2, then redistribution of water in a linear soil with an 

impermeable boundary at z = z 
0 

is governed by 

a a 
ay --· = - a - ay S(e - aR), 

3t az2 · 3z 
0 < z < z , 

0 

t > 0 

D !ti - K = E(6 - 6 ) , 3z R 
z = 0, t > 0 

ae D-- K = 0, az 

S(z,O) =e. (z), 
l. 

Z = Z 1 t ) 0 
0 

where time is measured from the end of the last rainfall. 

(3.14) 

(3 .16) 

(3.17) 
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Introducing the new variables of Equations 3.6 and 3.7 transforms 

Equations 3.14 through 3.16 to 

av - 2v = 0 az I 

av s az - 5v = 01 

where z = aSz /4. 
0 0 

0 < z < z I T > 0 
0 

z = 0 1 T > 0 

z = z I T > 0 
0 

0 < z < z I T > 0 
0 

(3.18} 

(3.19) 

(3.20} 

(3.21} 

Equations 3.18 through 3.21 can be solved by a simple eigenfunction 

expansion. Let the functions w (Z} be chosen such that 
n 

w" (Z} =A w (Z} 1 n n n 
w' ( 0) - 2w ( 0) = 0, n n 

8 w' ( Z ) - 5w ( Z ) = 0 
n o n o (3.22} 

Equation 3.22 constitutes a regular Sturm-Liouville eigenvalue problem and 

therefore it is guaranteed, Wylie (1975}, that there are an infinite number of 

nontrivial solutions 

z 
0 

w (Z) I 
n 

n = 0, 1, 2 

J w (z) w (Z) dZ = 0 1 n m m :1: n 
0 

... , satisfying 

( 3. 23} 

To determine the eigenpair w (Z) 1 
0 

set so from the first of 

Equations 3.22 it follows that 

Now the above and the last two of Equations 3.22 imply that 

c2- ~ ><5 + s~ > 
0 0 

(3.24} 

which has a unique positive solution, near ~ = 5/B, except in the special 

case that 2 - ~ = 5 - B~ in which no zeroth eigenpair exists. In the excep-

tional case that 28 = 10Z + 5 
0 

the next eigenpair is w = 2Z + 1, A = O. 
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Otherwise, the remaining eigenpairs can be found by setting 

obtain from the first of Equations 3.22 

w = A cos ~ Z + B sin ~ Z 
n n n n n 

which together with the last two of Equations 3.22 implies 

2 
a~n cos 2~ z = 5~ cos ~ z + 10 sin ~ z no n no no 

to 

(3.25) 

By solving Equations 3.24 and 3.25, the eigenvalues and eigenfunctions 

can be determined. In practice only the first dozen or so eigenpairs are 

required. Equations 3.24 and 3.25 can be solved quickly and economically by 

elementary numerical methods such as Newton's method. Having found the eigen-

pair 

diate. 

w , A , 
n n 
Set 

v = 

the solution of Equations 3.18 through 3.21 is almost imme-

00 

I: 
n=O 

a (T) w (Z} 
n n 

Equations 3.18 and 3.23 imply a' = A a so 
n n n 

Cl) A T 
v = I: c R, n w (Z) 

n==O 
n n 

Finally the sequence of constants c 
n 

is fixed by requiring 

o c a . - a > 1. bz = 
~ 

00 

I: 
n=O 

C w (Z) 
n n 

from which using Equation 3.23, it follows that 

where 

z 

I 
0 

0 

0(6. - 6)R.bZ w (Z) dZ 
~ n 

z 
0 

I w 2
(Z} dZ 

0 n 

With the determination of v(Z,T) complete, the moisture content function 

9(Z,T) can be easily recovered from Equation 3.6. 
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3.5 Example 

To illustrate the solution developed in the last section, consider the 50 

em column of Yolo Light Clay at the end of the rainfall event described by the 

solid, piecewise constant curve in Figure 3. The parameter E is taken to be 

2.5 em/day or zero. 

positive value of E 

em/day. The constant 

Since e - a = o.1, N R it follows from Section 3.1 that a 

in Table ·a represents a potential evaporation rate of 0.25 
-1 S is chosen to be either zero or -0.1 day so that in 

Table 8 a negative value of S corresponds to a distributed sink which each day 

extracts 20 percent of the moisture in excess of e = 0.3. 

The body of Table 8 contains the moisture content at the 10 em depth. The 

day following the rainfall is indicated across the top row. Root extraction and 

ET patterns are specified in the first column. The program used to construct 

Table 8 is listed in Appendix IV. 



t (days) 0 

E = 0, s = 0 0.302 

E = 0, s < 0 0.302 

E > 0, s = 0 0.302 

E > 0, s < 0 0.302 

Table 8. Moisture Content at 10 em in Yblo 
Light Clay During Redistribution. 

1 2 3 4 5 

0 •. 332 0.329 0.328 0.326 0.325 

0.323 0.317 0.314 0.311 0.309 

0.329 0.323 0.317 0.311 0.306 

0.320 0.311 0.305 0.301 0.300 

6 7 

0.324 0.323 

0.306 0.306 

0.302 0.300 

0.300 0.300 w 
(X) 
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IV. SUMMARY 

using an idealized linear soil to model real soils makes it possible to 

develop analytical solutions of the equations governing soil mositure flow. In 

this report, solutions have been obtained for both flux and profile controlled 

infiltration into soils either semi-infinite or finite in depth. Equations to 

predict the beginning of runoff during a rainfall and the subsequent runoff rate 

were developed. 

The redistribution of soil water between rainfall events was also con­

sidered. To model both the energy-limited and profile-controlled ET pro­

cesses, the removal rate at the surface was taken to be moisture dependent. 

Extraction by roots was accounted for by a distributed moisture dependent sink 

in the flow equation. Analytical solutions of the redistribution equations were 

developed for soils semi-infinite or finite in depth. 

One of the foremost considerations in this report was computational effi­

ciency. The solutions presented here can be quickly evaluated. Many of the 

calculations require only the error function. Instead of using tabular values, 

. the error function was evaluated by five-point Gauss-Legendre quadrature. In 

those cases where an improper integral must be evaluated, the calculation was 

based on a five-point Laguerre-Gauss quadrature. The solutions for soils of 

finite dpeth are eigenfunction e~ansions. The finite Fourier transforms 

involved then were evaluated by Filon integration. 

The solutions developed in this report are much more computationally effi­

cient than the usual finite difference approach to soil moisture modeling. The 

algorithms presented here are not based on marching through time. For example, 

during redistribution a moisture profile can be calculated at any time knowing 

only the profile at the end of the rainfall event and the ET and soil parame­

ters. In contrast, finite difference methods require that profiles be calcu­

lated at many intermediate times. 

No claim is made here that these linear flow equations can model all soils 

over all moisture levels, nor that the profile and runoff predictions from these 

flow equations will always be in very close agreement with the actual profiles 

and runoff. However, it is expected that over the midrange of moisture content 

for soils which are not highly hysteretic, these models will perform well. Even 

in those cases where these solutions do not produce quantitatively accurate 
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results, valuable information regarding the relative impact of different 

management decisions and natural phenomena can be gained. 

The solutions developed here are modular and can easily be interfaced with 

each other or with existing watershed models. The computer time involved is 

suffieiently small that it is feasible to apply these techniques to a fairly 

large watershed. 
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APPENDIX I 

Program Theta Top * 

* This program is interactive and is written in Applesoft. 



1 
5 

10 
15 

20 
30 

35 
40 

GOSUB 200 
AL = .02: 
GM = 21.46: 
TR = .3: 
TN = .4: 
RR = .1 
INPUT 11 ENTER T 11 ;T 
T = AL * T I 4 I GM: 
X = SQR <T> 
GOSUB 90 

I.l 

U = (.5 + 2 t T> * <ERF - 1> + 2 * X * 
t (1 + ERF> 
U = TR + GM * RR * U 
PRINT "THETA AT THE SURFACE IS ";U 

50 IF U < TN 
THEN 

PRINT u***PONDING HAS NOT OCCURRED***" 
60 IF U > TN 

THEN 

EXP < - T * T> I SQR <PI> + .S 

PRINT .. ***PONDING HAS ALREADY OCCURRED***" 
70 
80 
90 

PRINT II 

GOTO 10 
IF X > 3 

THEN 
ERF = 1: 
IF X > 3 

THEN 
30 

.. 

100 G1 = .90618: 
62 = .53847: 
G3 = 0: 
84 = - 82: 
GS = - 61: 
PI = 4 * ATN <1> 

110 Wl = .23693: 
W2 = .47863: 
W3 = .56889: 
W4 = W2: 
WS = W1 

130 DEF FN E<Y> = EXP < - X * X * <V + 1) *' <V + 1> I 4) 
140 ERF =X* CW1 * < FN ECGl)) + W2 * ( FN ECG2)) + W3 I C FN E<G3>> + W4 t 

< FN E<G4)) + W5 * < FN E<G5))) I SQR <PI> 
150 RETURN 
200 PRINT .. THE USER t-1UST SPECIFY ALPHA ( AL > ~ GAt1t'1A < GN l , THETA SUB R~(N ( TR 

&TN> AND THE RAINFALL RATE (RR> IN CM/HR. THIS IS DONE IN STATEMENT 5" 
210 PRINT ., " 
220 PRINT ''WHEN ASKED TO ENTER T, INPUT TIME SINCE BEGINNING OF RAINFALL IN 

230 
240 

HRS. 11 

PRINT " 
RETURN 

II 



APPENDIX II 

Program Profile * 

* This program is interactive and is written in Applesoft. 



1 GOSUB 400 
5 AL = .02: 

GM = 21 • 46: II .1 
TR = .3: 
TN = .4: 
D = 10: 
ZL = D * AL I 2: 
RR = .1 

7 INPUT "ENTER T ";T: 
TP = SQR <AL t T I 4 I GM> 

10 FOR I = 1 TO 11: 
Z = .1 * <I - 1> * ZL 

15 X = Z I 2 I TP TP 
17 GOSUB 90: 

TH = ERF I 2 + 2 * TP * EXP ( - X * X> I SQR <PI> 
25 X = TP + Z I 2 I TP 
30 GOSUB 90: 

TH = TH - <Z + 2 * TP * TP + .5) * EXP <2 * Z> * ERF 
35 TH = TR + GM * RR * TH: 

IF X > 3 
THEN 

'TH = TR 
40 IF I = 1 

THEN 
GOSUB 300 

45 GOSUB 310 
47 PRINT TH 
50 NEXT 
55 PRINT "MOISTURE PROFILE AT TINE "; T;" FOR RAINFALL f<?'tTE OF "; RR; uCM/HR 

AND O<Z< .. ;D;" CM" 
60 PRINT " n: 

GOTO 7 
90 IF X > 3 

100 

110 

THEN 
ERF = 1: 
IF X > 3 

THEN 
150 
Gl = .90618: 
62 = .53847: 
63 = 0: 
64 = - 62: 
65 = - 61: 
PI = 4 * ATN 
W1 = .. 23693: 
W2 = .47863: 
W3 = .56889: 
W4 = W2: 
W5 = W1 

(1) 

130 DEF FN E<Y> = EXP < - X * X * <Y + 1) * <Y + 1> I 4) 
140 ERF =X* <Wl * < FN E<G1>> + W2 * < FN E<G2)) + W3 * C FN E<G3)) + W4 * 

< FN E<G4)) + W5 * ( FN E<GS>>> I SQR <PI> 
150 ERF = 1 - ERF: 

RETURN 
300 HGR : 

HPLOT~279~0 TO 0,0 TO 0,159: 
'1PLOT 275, 5 TO 27.5, 0: 
H~TURN 

310 VI = INT (159 * Z I ZL): 
XI= INT <110 t <<TH- TR> I <TN- TR>>>: 
XI = XI + .165: 



APPENDIX III 

Program Runoff 2 * 

* This program is interactive and is written in Applesoft. 



1 GO SUB 400 
J.OO Dlt1 V<5>,WC5): 

KN = .03: 
R = • 1: 
TR = .3: 
TN = .4: 
GM = 21.46 

110 VC1) = .263560: 
VC2) = 1.413403: 
V(3) = 3.596426: 
Y<4> = 7.085810: 
V<S> = 12.640801 

120 t4 ( 1) = .521756: 
W(2) = .398667: 
W(3) = .0759424: 
W(4) = .00361176: 
W(5) = .0000234 

130 PI = 4 * ATN ( 1): 
Tl = .38789: 
T2 = .3788: 
WD = .05: 
H = t~JD I 2 

14·0 INPUT II ENTER T I t-1E T .. : T 
145 IF T < .005 

THEN 
S = R - KN - EXP ( - T) * .07: 
IF T < .005 

THEN 
210 

III.l 

150 DEF FN GZ<Z> = - Z * EXP ( Z * Z I 4 I T> I T I SQR <PI t T) I 2 
160 11 = < FtJ GZCH> * EXP < - U> * <Tl -TN> + FN GZ<2 * H> f EXP < 2 

H> * <T2- TN>> *HI 3 
170 DEF FN G<Z> = EXP ( - Z * Z I 4 I Tl I SQR <PI * T> 
180 12 = EXP C - .OS> * FN GC.05> 
190 FOR N = 1 TO 5: 

12 = 12- W<N> * FN G<V<N> + .05): 
NEXT : 
12 = I2 * <TR - TN> 

200 S = R - KN + EXP ( - T> * (I 1 + 12) I • 5 I Gi1 
210 PRINT "AT TIME "; T; u \tJITH A RAINFALL RATE OF ": F!; "CI1/HR THE RUNOFF RATE 

IN CM/HR PER UNIT SURFACE AF,EA IS n: S 
220 PRINT .. II 

230 GOTO 140 
400 PRINT "THE USER MUST SUPPLY VALU!:::S OF GAMi .. 1A <GMi, THETA SUB Rti<N 

CTR8<TN>, tJATURAL CONDUCTIVITY <f<N) AND RAINFALL RATE <R>. THIS IS DONE 
IN STATEMENT 100." 

410 PRINT II .. 

420 PRINT "PRIOR TO EXECUTING Tf-liS PROGRAf·1 "PROFILE:~' MUST BE USED TO 
DETERMINE THE POSIT I ON OF THE \AJETT I NG FRONT AT THE T I t1E OF F·01'·1D I NG AND 
THE TlaJO VALUES OF MOISTURE CONTENT ON THAT PROFILE NEEDED FOR THE 
SIMPSON-RULE INTEGRATION." 

430 PRINT '' •• 
440 PRINT "V.JHEN ASI<ED TO INPUT T, THE APPROPRIATE DIMENSIONLESS VALUE OF T 

IS TO BE ENTERED." 
450 PRINT " .. 
460 HETURN 



III.2 

HPLOT TO XI~ VI: 
RETu:.::N 

00 PRINT "THE USER MUST SUPPLY VALUES OF ALPHA (AL>, GAMMt~ <GJ1). THETA SUB 
R8(N <TR~-<TN) !I RAINFALL RATE <RH) IN CM/HR AND DEPTH <D> OF PROFILE TO BE 
PLOTTED. THIS IS DONE IN STATEi·1ENT S." 

tO PRINT .. II 

20 PRINT "WHEN ASKED TO INPUT T., ENTER T IN HRS SINCE BEGINNING OF RAINFALL •• 
30 PRir.&T •• .. 
40 PRINT "THIS PROFILE SEf~ERATOR CAN BE USED ONLY PRIOR .,..0 PONDING. IF A 

Titv;E GREATER THEN PONO!NG T!l"-1E IS ENTERED AN ERROR 11ESSAGE vliLL RESULT .. 
50 
60 

PRINT •• 
RETURN 

.. 
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Program Runoff 



IV.l 

PROGRAI'-1 

10 

11 

p~~OGP.AM RUN OF~=' (I tiF'tJT' DtJTPUT' TAf'E6=0tJTF'UT) 
REAL K 
COt·1to10t~ ... ··BLDCK t .... ·A, .B, 112' C1Q, T' TS, PI' n~d~:R• IND, ,_II NO, ~:Q, US 
CCMMON/BLOC~2/U l),Q ,K(25) 
CDMMON/~LOCK3/NTD,DTD,TAU,E 
CDMMON/BLOCK4/6AM,P,ALP 
Dit>1ENS:IOt--t R (5) 
Dit-1ENS IQt-~ !-I (11) 
PRINT(~.,+) "DO \'OU ·t,JANT A LIST OF S'v'MBOLS·?· 1=YES, 2=NO .. 
READ+, Nt·~ 
IF <NN. • 1 ':1 TO 1 0 
PRINT(6,+) .. D: DEPTH OF IL IN 
P~·INT (.::., +) "RLPI-H~: IL PPRAt.-t. . • 01 a=ot;.· CLA·-..·,. 1 FOF.~ SAN!J)" 
PRINT , ·~ .. P: I~'-113 J:·PRf=!t..:ETE~: < O • .::·!=·<. 01 :. .. 
PRINT ~·6, +) "13At·it1Ft: DTHETA .. · .. IiK ( A'FOUt • 1)" 
PRINT , •·:. '' S:ATK: S:ATUt:::ATED COt-i'DUCT I'•/ I T'y'" 
P~:INT ,+) "T1: TI 0"lE~: l,.a.JICH RAIN D CDNS~TRt~T .. 
p;;~It-~T '*) .. t;~(I':l: RATE ITH T1 TI INTE~:'•/~L .. 
~·~:INT.:6,+) .. NTD: NO .. OF' Tit-1ES: !JURING r·~~YINt:5 CYCLE*' 
PRINT (€., +) "DTt;: t!EL TA T DURING It~·"'r'It'H~ CYCLE .. 
PRINT (6, +) .. TAU: TJ;;:W.N:S·P I~:AT I OJ'! F·t=tfZ!'~t-1ETE~~ (TRU ABOUT • 1)1) .. 

PRINT(t;,•'>"E: E\·'APORATIOt" PARAt-1ETEt;.: +iBOUT .. 1)" 
P~~INT • •":t "hi: J:.:::·::F· <ALPHA+t-:'> <H: ILLAf;:•y P~·E:S'·s·URE HEAr-:. .• 
PRINT(~., •) "H:S:: J..i VALUE AT 90~~ :~~f!TU~·ATIOt-i .. 
CONTINUE 
PRINT ,.).'t:t·1TFF: {1 , ALPHfh F·-. •3Ar!t-1A, 
READ•,D,ALP,P,GAM, 
t•1RITE 11 
FORMAT<+E~TER Tl AND R(!) 1=1,5+) 
READ•~rt,R(l),R ,R ,R<4),R 
MRITE (6, +) "ENTE~: INITIAL H AT 
REAI•+, I, HS 
,_,.tF;: I TE 13 

Tk •. 

13 FORMAT(+~NTER NUMBER OF TIMES PER Tl INTERVAL+) 
r;;·EAD+, t-~T 
F·h;~II"~T ~ +) .. E'NT&::~~ NT!J, DTt;, TAL•, E' .. 
~t~fi+, r·.iTfi, I1, TA* , '=-

p I = a. 141 '5 ·? ,=: t: ':·4 
8 = r••n•ALF••=~,·~ 
B = • 5+D+ •: 
US = SK+EXP<ALP•~S)/8LP 
DT = Tl/FLOAT(NT) 
r•z = • 1)5 
Cl = !K+EXP<ALP+WC!)/ALP 
ItO 14 I = 1,21 

14 U(!) = C(+E~? .+B+FLOAT<I-l>+DZ) 
J.,JRITe (6!' 11 (D I 

110 FOR~ATC+~T T=O ~RTER CONTENT IN CM IS .,~10.6, '*AND W IS+l 
no .;: I = 1 , 11 

3 H<I> = U(2+I-1)/US 
bJP.ITE (6• 1 01) (H (!':.' I=t' 11) 
DO 49 II = 1•5 
.JIN!• = 1 



IV.2 

31 X = B 
DO 17 1=1,20 
TOP = X+COSH(~)+COSH(X)-!+SINH<X>+COSH<X> 
POT = COSH<X>+COS~<X> - B 

17 ~ = X - TOP/BOT 

1,-, 
·~ 

S1 : 0. 
S:2 = 1). 
DO 1 :3 I= 1 , 1 0 
ZE = FLOAT<2+l)+D2 
z·o = FLOAT t:::?•I-1 ":t +DZ 
S:l· = S1 +4. +tJ <2+1) +S!t·~H <>:!+ZE) +E>::p <-:E;+ZE> 
·s:2 = S2 + 2.+Uf2+1-1)+5!NH<X+Z0)+EXP<-B•20) 
G!i] = 
EB = .5+(EXP(X+F>-1.)/(X+B)-.5+(EXP(B-X)~1.)/(B-X> 

29 DO 1 J=1,21 
Z = DZ+FLOAT<J-1) 
IF (E~-1.) 39, 40,41 

Sttt•1::~ = 0 • 
IF <J.GT.l> GO TO 42 
SUM3 = 0. 
SUt14 = 0. 
GO TO 42 

40 C = <TS - T)/A 
SUM1 = 3.+EXP<C)+QO+Z 
SUM2 = 3.+EXP<C>+EP+Z 
IF<J.GT.l) GO TO 42 
IF <J.GT.l) 50 TO 42 
SUM3 ~ 3.•EXP(C)+QO 
s·ut·14 = :~:. +E>:'P (C) 
130 TO 4.=: 

WNS = -.5 + SI~Ht2.+X)/(4.•~) 
SUMl = EXP(C)•QO+SI~HfY+2~/WN: 
SUM2 = EXP<C)+EP+SINHtX+Z)/W~S 
IF<J.GT.l> GO TO 42 
SUM3 = (B+B-X+X)+E~P(C)+QO+~E/WNS 
~UM4 = (B+B-~+X)+EB+EP/WNS 
L = il(!':t 
t·~! ::: L•L + B•B 
WlS = .5 - SIM<2.+L)~(4~+L) 
TOP = L+(l.-EXP<B)+CdS<L))+B+EXP(B)+SIN(L) 
BRAC = TOP . ...-MI 
C = MI• (TS:-T) ... ··A 
I~<C.LT.-200.) GO TO 11 
SUM1 = SUM1+EXP(C)+9<I>+S!N(L+Z)/WIS 
SUM2 = ~UM2+EXP(()+BRAC+SI~<L+l)~WIS 
!~<J.GT.l) GO TO 3 
$0~3 = SUM?+MI•Q(I)+EXP<C)+BPAC/WIS 
SUM4 = SUM4+~I+E~PrC)+BRAC+PRAC/WIS 

:3 CONTINUE 
11 '•.·'1 (.)) = ~}::t:• o:!•Z) +:SUt•11 

V2<JJ = EXP<E+Z)•SU~2 
1 U<J) = US+EXP(2.+P+Z) + Vl~J) - U!+V2(J) 



IV.3 

3 ~<I>=EXP<-B+DZ+FLCAT<I-l))+U<I> 
DO 5 1=1,2'5 
TH = K(I)+DZ 
ATH = <TH+<TH+.S+SIN<2.+TH>>-2.+<SIN<TH))++2)/TH++3 
PTH = (2.+<TH+<l.+<COSCTH)i++2>-SIN<2.+TH)))/TH++3 
GTH = 4.+{SI~<TH)-TH+COS<TH))/TH++3 
:s:E = (1. 
SO = .F<2)+SIN<K<I>+DZ> 
DO 7 .J=l '9 
SE = SE + ~C2+J+l)+SIN<K<I>+DZ+~LOAT<2+J)) 

7 SO = SO + F<2+CJ+l)>+SIMCK(I)+0Z+~LOAT<2+J+l)) 
SE.= SE + .5+F<21)+SIN<KC!)) 

5 t~ (I:> =DZ+ <ATH+ .:'1= (t·:r -F <21) +COS· 0( (I)))+ ''E:TH+SE+GTH+SCD. 
IF<IND.EQ.0)60 TO 17 
:s~ 1 = •). 
S:2 = o. 
ItO '3 I= 1 , 1 0 
Sl = Sl + 4.+U<2+l) 

9 S2 = S2 + 2.+U(2+I-1) 

1 .. -. ;. 

QO = DZ+<Sl + S2 - U(l) + UC21))/3. 
I!O 11 I = 1, 
TH = t< <I> •DZ 
TH2 = TH+TH 
TH3 = TH•TH2 
ATH = 1./TH + .5+SIN<2.+TH)/TH2 - <2~+SI~<TH>+SIN<TH))/TH3 
BTH = <2.+2.+CDS<TH)+COS<TH))/TH2 - 2.+SIN<2.+THl/TH3 
GTH = 4.+SIN<TH)/TH3 - 4.+C0S(TH>/TH2 
CE = • S+F' S::1) 
CO = ~(2)+C0S(K(l)+DZ) 
DD 1:3 .:J= l:t'3 
CE = CE+~(2+J+1)+C[S(K(!)+DZ+FLOATC2+J)) 
CO = CO + ~<2+(J+l))+CDS<K<I>+DZ+FLOAT<2+J+1)) 
CE = CE + .S•~(21)+C0S(k(J)) 
91 = DZ+<RTH+~(21l+SIN<KCI)) + BTH+CE + GTH+CO) 
C <I> = ;;11 

11 Q(l) = 91 + B+Q(J)/K(!) 
17 CDt~T I NUE 

~·ETURN 

E:ND 

!=1,25 
DG •3 ._1 =; 1 , 2 0 

, T, TS:!I PI, n, f;•R" It·~D"._llf-'D, ~·o, 
1) ,1].(25) 'K 

::<=X+P I •~LGFtT (J) 

IF(B.LT.1.) ~=X-PI 
~=~=F!Tt=ft-t .:-:~~-...- f:) 

'3 CONTI t·~t'E 
:~-=~=::·=:+t=· I +FLOAT (I) 
IF<B.LT.l.) X=X-PI 
K <I) :::;::< 
:>'~=;1(-P I +FLOAT (I) 

7 CONTINUE 



I~<II.EQ.l) RO = 0. 
IF<II.EQ.l) TS = 0. 
I'<II.EQ.l) GO TO 51 
IF <R CI I> •R <I I-1) :37, , 

37 TS = FLOAT<II-1>•T1 
CONT I N,t.JE 

IV.4 

IF<R<~II>.-RCII-1) .EQ. 0.) JitiD = 0 
51 CONTINUE 

RR = R <I 1) 
DO 48 ·.J = 1 !d'iT 
T = ~LOAT<II-1>•T1 + FLOAT(J)•DT 
IFCUS-U(l)) 29,29,31 
IF <~:0) :?l, :31,:3 

30 CPLL 
DO 15 N = 1'11 
ZP=. l+FLIJAT (t'i':l 

15 H = UC2+N-1)/lUS•EXP<ZP•P>> 
SUM = U ll - U(1) 
DO 47 !=1,10 

47 SUM = SUM +4.+U<2•I> + 2.•U(2•I-1> 
t..JAT = D+i3A"1+ALP+SllM/60. 
W~ITEC6,1 T,WAT 

1 FDRMAT<+AT T!ME T=+,F5.2'* H20 CONTENT IS+,FS.a,• A~D W l$+) 
WRITE<6,101) <H(H),N:t,11> 

101 FORMAT(11F7. 
W~ITE ,103) RQ,RR 

103 FORMAT(+QUNOFF l$+,F10~4,+ RAI~ RATE IS *'F10.4) 
IF<RO.LE.O.) TS=T 
IF(RIJ.LE.'O.) .. .JIND = 1 

TO 4E: 
FLu::.:: 

16 t·-f= t ~ 11 
16 HCN) = U<2•N-1) 

SUM = U(21> - Utl 

46 

11)4 

DO 41!. I= 1 , 1 0 
SUM = SUM +4.+U(2+I) 

WAT = D+GA~•~LP+SUM 
ITE 100) T,WRT 
I • 1 f• ) (jo; 

t.~,JR I , 1 R~~ 

~t:!~t'l~ T t. • T~~t:.·E ·I-~: t~O 
'ti=· < 1) ·' .39• ~ 4E; 
T:S•T 
.JIND=1 
RO =· • 00001 

4;;:. COt~T I NUE 
4'? CONT INJJE 

ItR'!.l 

INE 
~EAL K 

o. 

• THE 

•::OMr1QN....-:E:LOCK1 ... ··A, p, If2' t;•o, r, TS, PI' rr, t;~R~ IND, JIND, RQ, US 
COMMON/FLOCK2....-U<21),Q(25)~K 
DIMEN~IOM F(2!),C(25) 
r·o :;: I=t ~ 21 



RETUPN 
El'fD 
SUBROIJT I NE I=LU::-:: 

IV.S 

REAL ~:::, t·~ I, L 
COMMON/BLOCKl/A,B,DZ,QD,T,tS,PI,D,RR,IND,JI~D,RO,US 
COMMON/BLDCY2/U(21),Q(25>~K( 

IF<IND.EQ.O) JIND = 1 
IND = 1 
IF<JIND -1) 25,24,25 

24 DO 12 1=1,25 
12 K<I> = FLOAT<I)+PI 

CALL OUA!I 
._liND = 0 

25 WNS = <EXP .+B>-l.)/(2.•B> 
DO 1 _! = 1, 21 
2 = DZ+FLOAT<J-1) 
SUM1 = QO+EXPCB+Z)/WNS 
SUM2 = EXP<B•Z>•<T-TS)/CA+WNS) 
DO :3 I=l ~ 25 
1_ = PI+FLOAT (I) 

MI = L•L + :E:+.t: 
WIS = MI/(2.+L+l) 
WIZ = CDS<L+Z> + B+SIN(L+Z)/L 
C = ~1I• (f-TS) ...-·A 
IF<C.GT.200.) GO TO 11 
SUMl = SUMl + EXP~-C)+Q(l)+WIZ/WIS 
SUM2 = SUM2 - (E\P(-C)-1.>•WIZ/(MI+WIS' 
GO TO :::: 

11 SUt·12 = .S:Ut•12 + !.1.! I (~'1 I*'·'·' I ·s·) 
:3 COt·~T I NUE 

U(J) = EXP(B+Z)+(SfJ~1 + D+~R•SUM2) 
1 ccr·~r I r·.;u~ 

;;:· E T 1_1 F.: t·i 
END 
SIJE!~~OfJT I !"~E SFIT 
REAL K, t•1 I, L 
COMMDM/BLOCKl/A~P,DZ,QO,T,TS,PI,D~RR,IND,JIND,RO,uS 

COMMO~/BLOCK2/U(21),Q(25),K(2~) 

IF<IND •• 1) JIND = 1 
It-~D = 0 
IF(J!ND.EQ.l) CALL RCGT 
IFCJIND.EQ.l) CALL QURD 
IF <JIND.EQ.O) GO TO 29 
I F ( B -1 • ), ' :3 0 !I :31 

30 Sl = 0. 
:S2 = o. 
DO 9 !=1!110 
ZE = ~LORT(2+I)+DZ 
ZO = FLD8T(2+1-1)+DZ 
Sl = Sl + 4.•U(2•l)•ZE/EXP<2E) 

9 S2 = S2 + 2.+UC2+I-1>•ZD/EXP<ZD> 
QO = DZ+<S1+S2+U l)+EXPC-P)) 
EE: = 1. 



IV.6 

FLUX = <US•SUM4 - SUM3)/D 
RO = RR - I=LU::-:: 
.JIND = 0 
RETURN 
END 
:SUB~:OUTINE. I!r;!~··.-· 
J;•E AL K , t·1 I , L 

COMMON/BLCCK2/IJ(21),QC25),K(25) 
COMMON/PLOCK3/NTD,DTD,TAU,E 
COMMON/BLOCK4/GAM,P,ALP 
D I f't1EN:S: I ON H ( 11) 
DO 12 I = 1 ' ;=: 5 

12 ~<I> = ~LO~T(f)+~I 
IN!~ = 1 
CALL PUAD 
WNS =<EXP(2.+P) - 1.)/(2.+P) 
no :;·~ .J.J = 1 , t·i rn 
T = FLOAT(JJ)+DTD 
no 5~3 ·-' = 1 , 21 
Z = DZ+FLOAT(J-1) 
~1I = TAU·· .. A 
:SUt·11 = G!O+E::<J:· (~:•Z> +E>~P (-t·1 I • T'> .. ···t.,!t·~S 
SUM2 = <1.-EXP<-MI+T))+EXP(B+Z)/(M!+YNS) 
no 57 I = 1 , :::s 
L = PI+~='LOAT (!) 
MI = L+L +B•B +TAU 
C = t·1I +T _...A 
WIS = MI/(2.•L•L> 
WIZ = CDS<L•Z> +B+SIN(l+Z)/L 
II=(C.GT.200.) GO TO 56 
SUM1 = SUMt + EXP(-C)+Q(l)+WIZ/WIS 
S:Ui·1.~ = SUt·t:: +· ( ( 1. -E><P (-C>) ) . ...- (!·i l+i,: I 
GO TO 57 

56 SUM2 = SUM2 + WIZ/(Ml+WIS) 
5 ..,. 

( CONTINUE 

7 U(J) = EXP(B+Z)+SUMl 
GO ro .. ss 

58 COt·~T I t·iUE 
DO 11 r·~ = 1 , 11 

11 H(NJ = U(2+N-1)/(US•E~P<P•2P)) 
:s:ut·1 = u (21) -u < 1::. 
!10 · 4 7 I =.1, 10 

47 SUM = SUM + 4.+U<2+I) + 2.•U<2+!-1) 
WAT = D•GPM+ALP•SUM/EO. 
WQITE<6,10Q) T•WPT 

10 1~ r:::-o~·MA.T .:"!='~. ;:: "• ~ .. p:;;,·:: A~ TE:P ·:·TG::::'t•1 ~EC! 1: CnT~r·1 T I: •, J:'5. 2, •l!lt~D '.•.1 I S•) 
l_,ts;· I TE .:'f., 1 0;2) (I-I •::t-1 ':! , t·~= 1, 11 ·:, 

102 ~ORMAT(111="7.2) 

59 C0i-4T I NUE 
RETU~~N 
END 
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