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Symbol

LIST OF SYMBOLS

Description Unit

Coordinate change parameter

Fourier coefficient

Coordinate change parameter

Water capacity cm"1
Fourier coefficient

Diffusivity (hr)
Potential ET rate cm/day
Green's function

Green's function

Green's function

Hydraulic conductivity cm/hr*
Saturated conductivity cm/hr*
Natural conductivity cm/hr*
Darcy flux cm/hr*
Rainfall rate cm/hr
Sink strength (day)‘1
Dimensionless time

Dimensionless ponding time

Time hr*
Ponding time hr

Transformed dependent variable
Transformed dependent variable

Laguerre-Gauss weight

vi



w Eigenfunction

n
Yi Laguerre-Gauss abscissa

Z Dimensionless vertical coordinate

Zo Dimensionless soil depth

z Vertical coordinate cm

z, Soil depth cm

o Soil parameter cm_1

B Coordinate change parameter

Y Soil parameter hr/cm*
§ Dirac delta function

) Volumetric water content

eR Reference water content

SN Natural saturation

ei Initial water content

An Eigenvalue

Mo Eigenvalue

T Dimensionless time

$ Porosity

1V} Capillary pressure cm

During infiltration the time unit is hours, but for the redistribution
period time is measured in days.

vii



I. INTRODUCTION

1.1 General

Infiltration is the key process controlling rainfall runoff, sediment
yield, and soil water recharge. The infiltration process governs the propor-
tions of the applied water going to overland flow, soil moisture, subsurface
flow. Infiltration rates during a rainfall are highly dependent on the ante-
cedent moisture profile in the soil. Thus, to accurately predict infiltra-
tion, it is necessary to include in the model not only the rainfall event, but
also the redistribution of soil moisture between events.

Infiltration can be classified as either flux controlled or profile
controlled. During flux controlled infiltration, the flow of rate into the
soil is equal to the rate of application and no runoff results. Flux
controlled infiltration occurs during the early stages of a rainfall event or
when the rainfall rate is low. When the surface moisture content reaches
natural saturation, the rate of flow of water into the soil is controlled by
the moisture profile near the soil surface. In this case, the rate of inflow
to the soil is less than the rate of application and runoff occurs.

The redistribution of soil water can also be roughly divided into two
processes. Immediately following a rainfall, the soil moisture content near
the surface is uniformly near natural saturation. Under this condition, water
is lost to evapotranspiration (ET) at a rate determined by climatic and cover
conditions. As long as the soil can provide water at a rate at least equal to
the ET extraction rate, the redistribution process is controlled by the ET
flux demand. Within several hours to a few days, depending on the soil type
and ET demand, soil moisture content drops to a point where ET extraction
can no lohger proceed at its initial rate, but is instead controlled by the
soil moisture profile.

Redigtribution models which assume a constant ET extraction rate and
neglect the profile controlled phase provide a too dry moisture profile at the
beginning of the next rainfall event and thus tend to underestimate subsequent
runoff. Infiltration models which assume instantaneous ponding and do not
account for flux controlled infiltration tend to overestimate runoff.
Neglecting flux controlled infiltration and profile controlled ET generally
produces errors of opposite sign in runoff prediction. However, it is too

mach to expect these errors to cancel. Therefore, it is desirable to account



for both flux and profile controlled infiltration and redistribution.
Infiltration and redistribution models can be classified as physically
based or empirically based. Physically based models are derived from Darcy's
Law and the}principle of mass conservation. Empirically based models rely on
observed relationships. Physically based models are usually supeiior since

they are generally easier to calibrate and provide better accuracy.

1.2 Objectives
The overall objective of this report is to provide efficient methods for

predicting catchment runoff. Specific objectives are:
1. During a rainfall, determine time to ponding and subsequent runoff.

2, Between rainfalls, describe the redistribution of soil moisture
accounting for ET, capillary and gravity effects.

The models which accomplish the above objectives are intended to be used
as one component of a more complex watershed model, Simons et al (1977).
Thus, it is necessary to develop computer cost-efficient runoff and redistri-
bution models. This cost efficiency is obtained by employing analytical and
quasianalytical solution techniques. Some of the solution methods presented
here are new while others have been adapted from the recent hydrology litera-

ture.

1.3 Soil Characteristics »
Infiltration and redistribution patterns are highly soil-type dependent.

To mathematically model soil moisutre flow, it is necessary to know the soil's
hydraulic properties. ) 4

Let ¢y (cm) denote capillary pressure head, 6 volumetric water cotent,
and K (cm/hr) hydraulic conductivity. Under unsaturated flow conditions,
€ and K depend on capillary pressure, . Qualitative graphs of 0 ver-
sus y and X versus ¢ are shown in Figures 1a and 1b. There ¢ repre-
sents the soil's porosity and ks {cm/hr) saturated hydraulic conducti&ity.
For saturated flow, ¢ > 0, both 6 and K are constant with respect to .

The water capacity C (em™ ') is defined by

which, as Figure 1c¢c shows, is also ‘y-dependent. For ¢ > 0, C is identically

- Zero.
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Figure 1. Soil hydraulic functions.
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For ¢ < 0, the soil diffusivity D (cmz/hr) is defined to be

D =

aiR

Using the 8-y relationship, Figure 1a, D can be viewed as a function of §.
A typical D-0 relationship is illustrated by the curve labeled R in Figure
1d. Since, as 6+¢, K#Ks, and C»0, it follows that D»» as 0+¢.

1.4 Governing Equations

Let =z (cm) denote distance measured downward from the soil surface.
Darcy's law states that the flux of water in the z-direction, per unit cross-

sectional area is given by
-x (oY _
K(az 1)

Darcy's law together with the principle of mass conservation yields the

balance equation

a6 _ 3 3y _
3t 3z X (3z ~ 1]

Using the identity

8 can be eliminated from the above balance equation to obtain the one-

dimensional pressure head flow equation

Yy _ 3 wy _
Cat ~ 3z K (GG~ Ml (1.1)

Similarly, ¢ can be eliminated from the balance equation to obtain the dif-

fusivity form of the flow equation

20 3 29, _ 3K
3t ~ 2z P9z T az (1.2)

1.5 Simplifying Assumptions

The analysis of Equations 1.1 and 1.2 can be simplified considerably if
the real soil being modeled is approximated by an idealized linear soil. In
this report, a linear soil is defined to be one with (i) constant diffusivity

and (ii) a linear K - 0 relationship. When modeling a real soil by a linear



soil, it is not necessary that conditions (i) and (ii) be globally satisfied.
It is sufficient that they be approximately satisfied over the relevant range
of moisture contents.

The horizontal line labeled L in Figure 14 represents a constant
approximation to the real diffusivity curve, D. Clearly, L is not a good
approximation to D near 0 = ¢. However, to the left of the moisture level
labeled BN, the approximation of D by L is fairly good.

In terms of 6, X, and ¢ a linear soil is one for which

d 1ln K
LIRS

ap and 6 = yK + SR (1.3)

where a, 7Y, and GR are parameters dependent on soil type and the relevent
range of moisture contents. From the second part of Equation 1.3, condition
(ii) is seen to hold. To show that the diffusivity is constant, recall
)
dy

Equation 1.3 implies

so that if Equation 1.3 hold, them D is constant, D = 1/{(ay).
When Equation 1.3 hold, the nonlinear partial differential equations,
Equations 1.1 and 1.2, each reduce to a linear partial differential equation

in 6, namely

2% 2
2 a
z

Q
<@
<<

=

|
l

ay (1.4)

@
ot
-+
N

W

Equation 1.4 is much easier to analyze than either of Equations 1.1 or 1.2
since analytical solutions of Equation 1.4 can be obtained using Fourier
transforms. These analytical solutions are much more computer cost efficient
than the finite difference methods required to solve Equations 1.1 and 1.2.

In recent years, Equations 1.3 have been used to approximate real soils
by a number of researchers including Lomen and Warrick (1974), Philip (1968,
1971), Reats (1970, 1971, 1972, 1977), Thomas (1972), Warrick (1974), Warrick
and Lomen (1977), Zachmann and Thomas (1973), Zachmann (1978). Ben Asher et
al (1978) have discussed the validity of the relationships (1.3). They



compared the results obtained from a nonlinear model based on actual hydraulic
data relating K, 6, and ¢y to those obtained from a linear model based on
Equations 1.3. For several such comparisoﬁs they showed that, in the midrange
of moisture content, the results of the linear and nonlinear models were in
good agreement. In many field applications, the moisture content stays in
this midrange from 40 to 90 percent of total saturation.

The flow patterns to be discﬂssed in this report involve repeated wetting
and drying. Therefore, some hysteresis effects are expected. Since the
linear model based on Equation 1.4 is not capable of describing hystéresis, it
must be assumed that in applications of these methods hysteresis effects are
negligible.

During infiltration, when runoff begins, generally the surface water
channelizes quickly. Thus, it is assumed that subsequent to ponding time, the
pressure effect of ponded water is negligible. It is also necessary to assume
the soil is spatially homogenous. This last assumption is not so severe as it
first appears since spatial averaging of soil properties tends to smooth out
local inhomogeneities.

Under field conditions, the moisture content seldom exceeds what is com~
monly called natural saturation. Wells and Skaggs (1976) have reported that
natural saturation, eN, is typically in the range of 80 to 90 percent of
total saturation. 1In order to avoid underestimating runoff, it is assumed in
this report that GN = 0.8 ¢ and that runoff can begin when the surface

moisture content reaches the value eN.

1.6 Calibration

To model a real soil with an idealized linear soil, it is necessary to
estimate the parameters o, 7Y, and GR- Mualem (1976) has compiled an
extensive catalog of soil hydraulic properties in the form of K-y-8 data for
some 80 soils. The introduction of the catalog states, "Field oriented
scientists may find the catalog helpful when an estimate for the hydraulic
properties of some particular soil are required without éxpensive testing.
They can just adapt the data of a similar soil from the collection.®

If the soil being modeled is similar to one of the soils in the catalog,
the linear model can be calibrated by simple linear regression. To estimate
o in the first of Equations 1.3, the K-y data yield (ln K) - ¢ data
pairs. If these (1ln K) - Y data points exhibit a roughlyAlinear



relationship, then the method of least squares can be used to obtain q.
Having found o for a number of soils in the catalog, it appears that o is

1

on the order of 0.1 cm = for a soil for which K decreases rapidly with

decreasing y, say a sand. For more clay-like soils, a is generally on the
order of 0.01 cm-1.

In many applications, the field conditions are such that the soil
moisture content remains in the range of 40 to 20 percent of total saturation.
To estimate Y and BR consider the cataloged KX~8 data pairs over this
range. If they exhibit a linear trend, then linear regression can be used to
estimate vy and GR. Examples of this calibration from catalog data will be
given in the following chapters.

An alternative calibration procedure is based on a recently developed
parameter identification method, Zachmann et al (1981)., A brief outline of
the method follows.

To estimate a, vy, and BR for a given soil, begin with a vertical
column of soil which has an initially constant moisture content, 6 = Gi < BN
where 6N is natural saturation. If water is applied to the soil surface at
a sufficiently high rate to immediately produce runoff, with an escape pro-
vided to prevent ponding, then for t > 0, 8(0,t) = SN. Knowing the applica-
tion rate and observing the runoff rate allows g(t), the flux across the
upper surface of the column as a function of time to be calculated. If the
lower boundary is far enough removed relative to the duration of the experi-

ment, then the linear flow equations are

2
36 _ 3% _ 3¢
a‘(at— 5 aaz, z>0, t>0 (1.5)
9z
-2 a0 -8 = qlt) z=0, t>0 (1.6)
az R I x4
8(200) = eir z >0 (107}

To obtain the boundary conditions, Equation 1.6, Darcy's law, = D (3986/3z) + K
= g, and Equations 1.3 imply D = (on')‘1 and K= (8 - BR)/Y were used.

The solution of Equations 1.5 through 1.7 is clearly dependent on the
choice of a, Yy, and BR. To emphasize this dependence, write the solution
of Equations 1.5 through 1.7 as - 6 = 8(z,t; a,y,eR). The values of o, Y,

and eR which characterize the soil are those for which



B(O,t; G'Y'BR) = eNl t >0 (1-8)

The parameter identification procedure is carried out by using an optimi-

zation routine to successfully adjust the parameters in Equations 1.5 through

1.7 ‘with the goél of satisfying Equation 1.8. Knowing o from catalog data,

approximate values of a, Y, GR are a great help in performing the opti-

mization.



IXI. INFILTRATION AND RUNOFF

2.1 Flux Controlled Infiltration, =z > 0

Flux controlled infiltration into a linear soil when lower boundary

effects can be neglected is governed by

2
30 _ 3% _ 28 ,
ay 3t - ——5 a 3z ' z>0, t>0 (2.1)
29z
8(z,0) =0, (z), z>0 ' (2.2)
30
- D 3; + K =r(t), z=0, t>0 (2.3)

where a and Yy are soil-type dependent. The initial moisture profile

Gi(z) is assumed to satisfy

lim 6 .(z) =6
zro

R

where OR is a constant satisfying 0 < GR < ¢. In Equation 2.3 r(t)
(cm/hr) represents the rate of application of water to the soil surface.
Using Equations 1.3 and introducing the dimensionless variable T and 2Z

and a new dependent variable

= at - 22 = pg -2 .
T = a z =" v = D& (6 eR) (2.4)

%% =3y, Z2>0, T>0 (2.5)
9Z

v(zZ,0) = vi(z), Z>0 (2.6)

%% -v=2T ¥ (T)/a, Z=0, T>0 (2.7)

where v (2) =D [0, (22/a) = 6] 272 with the diffusivity D = 1/(ay)-
Equation 2.5 is the one-dimensional linear heat equation and it, together with
the initial and boundary conditions (Equations 2.6 and 2.7), can be solved
using the Fourier transform. The solution of Equations 2.5 and 2.6 is

straightforward, but lengthy. See Warrick (1975) for details.
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Solving Equations 2.5 and 2.6 using Equations 1.3 and 2.4 to recover 6

yields
8(z,7) = 0, *+ M(Z,T,0,) + YN(Z,T,r) (2.8)
where
. © 2
Miz,1,0,(2)] = exp (2-m) [ {41 V2 [exp (- LEZE)
0
2
(2 + 2%)
+ exp (- —ar )]
-exp (T + 2 + 2') erfc(-@-—i:z—'—)- + /T)}
2T
(0.(2) - 6.) 22 az 2.9
i R (2.9)
and
T 2
_ - =z - -1/2
N[Z,T,x(T)] = 2 exp (Z - T) g lexp (g5 ) - (n(T - 1)
- exp (T - 1 + 2) erfc (M~%~*~+/T-r)}
2/T - T
T
r(t) & ar (2.10)

In Equations 2.9 and 2.10, erfc(x) repi‘esents the complementary error func-

tion 1 - erf{z) where

2 x 2
erf(x) = — | & Y dy
Ym0
For the important special case of constant flux r(T) =2 r and constant

initial water content Bi(z) g ei significant simplifications of Equations

2.9 and 2.10 can be obtained. See Lomen and Warrick (1978).

6, - 6
2

R[erfr:(-:-z-__ +VT) + & 2zerfc(—-§_~ +/T)] (2.11)

M(Z,T,0,) =
/YT 2/T
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N(Z,T,z) = r [(1/2)erfc(~2= = /T) + 2 /T/1 exp(~(—2= - /T)?)
2/T 2/T

-(Z + 2T + 1/2) exp(ZZ)erfc(*%: + /1)) (2.12)
2/T

Equations 2.8, 2.11, and 2.12 can be used to model flux controlled infiltra-
tion due to a step function rainfall hyetograph.

Flux controlled infiltration can be maintained only as long as the sur-
face moisture is below natural saturation.

To determine ponding time TP when runoff begins and the infiltration
becomes profile controlled, it is sufficient to monitor the water content at
the soil surface, 2 = 0. For the case of constant r and constant ei,

Equations 2.8, 2.11, and 2.12 show that Tp satisfies

SN - eR = (Bi - GR) erfe{VYT) + yr [{(1/2)erfc(-¥YT)

+ 2 Tm T - (2T + 1/2) erfc(YT)] (2.13)

In practice, the time to ponding is determined by monitoring Eguation 2.13 as
T increases from zero. Once the ponding time, Tp, has been found from
Equation 2.13, then Equations 2.8, 2.11, and 2.12 can be used to determine the

moisture profile at the beginning of the profile controlled infiltration.

2.2 Example
Table 1 contains empirical soil data for Yolo Light Clay, Mualem (19786).

To two decimal place accuracy, the saturated conductivity, Ks is 0.04 cm/hr
and the porosity ¢ is 0.50. ‘
To approximate Yolo Light Clay by a linear soil set

0/¢ = A[100K/K.] + B

and use linear regression on the data points in Table 1 to obtain
8 = 21.46X + 0.30 {(Yolo Light Clay)

so that in this case y = 21,46 hr/cm and BR = 0.03. To determine the para-

meter @ in the relationship



Table 1. Soil Data for Yolo Light Clay.

-¥ (cm) 161.00 129.00 100.00 82.00 73.00 64.00 56.00 49.00
lOOl(/Ks 1.34 1.90 3.00‘ 4.00 5.50 7.00 8.94 10.4
8/¢ 0.622 0.648 0.675 0.701 0.727 0.754 0.780 0.804

T
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d(ln X) _
ay
linear regression can be used on the data pairs ¢, 1n K obtained from the
first two lines of Table 1 to obtain q = 0.21 cm—1. For purposes of
illustration, take GN to be 80 percent of total saturation, namely SN =
0.04, and assume that ei is equal to eR for all 3z.
For a constant rainfall rate, Equation 2.13 can be used to find the
dimensionless ponding time, Tp. Then the ponding time in hours can be reco-

vered from
t =4 T /o
P v P

The calculations required to produce Table 2 were carried out on an Apple II
48K micro-computer. Five-point Gaussian quadrature was used to evaluate the
error function in Eguation 2.13. Even on this small system, the calculation
of ponding time required only a few seconds of computer time. The computer
program used to find ponding time is listed in Appendix I.

Once the ponding time has been found, the moisture profile at time
Tp must be calculated so it can be used as the initial condition for the
ensuing profile controlled infiltration. In the case of constant rainfall
rate, G(Z,Tp) can be found from Equations 2.8, 2.11, and 2.12. The moisture
profile at time 1.9 hours, ponding for the rainfall rate 0.1 cm/hr, is shown
in Figure 2. The computer program used to construct this moisture profile in
Figure 2 is listed in Appendix II. The calculation and plotting of the pro-
file required only ten seconds on the Apple II.

2.3 Profile Controlled Infiltration, z > 0

When the surface moisture content reaches natural saturation, the
infiltration rate can no longer be taken equal to the application rate.
Profile controlled infiltration into a linear soil when the lower boundary can

be neglected is governed by

a6 3 6 20

oy = - ’ z > 0, t>t {2.14)
It 3z z jod

e(z,tp) = ei(z), z >0 (2.15)

6(o,t) = BN PR tp (2.186)



Table 2. Ponding Times for YoloyLight Clay.

r (cm/hr)

tp (hr)

0.05

7.70

0.10 0.20 0.40

1.90 0.47 0.13

0.60

0.05

1.00

0.02

71



Z-~cm

15

Figure 2. Moisture profile at ponding time for Yolo light
clay with r = 0.1 cm/hr.




The initial condition ei(z) is obtained by dsing Equation 2.13 to f£ind the
ponding time Tp and then Equation 2.8 to determine the moisture profile at
time of ponding.

To solve Equation 2.14 through 2.16, it is convenient to introduce the

dimensionless variables 2 and T and the new dependent variable U

az a(t - tg) T2
Z = > T = pw U = D(O - eN) L (2.17)

In terms of T, 2, and U, Equations 2.14 through 2.16 are

Up = Uyy

U(z,0) =D(6, -6.) 4 2
’ i N

u(o,T) = 0

A PFourier transform can be used to find U(Z,T), Tychohov and Samarski

(1964). From Equations 2.17 and D = (uy)_1, ® is seen to be

Z-T . . Y
8(z,T) = 0 + & g G(z,2',T)(6.(2") - eN) 2 az', (2.18)
where,
-1/2 (z - 2')2 (z + 2)2
G(Z,Z2',T) = (4n7T) [exp(- ———————) =—exp(= ——)] (2.19)

4T 47

Equation 2.19 provides the moisture profile during profile controlled
infiltration. In watershed models it is not the moisture profile, but the
runoff rate which is of primary concern. The runoff rate can be found from

Equations 2.18 and 2.19 by starting with the general Darcy €£lux

When 9 = GN, the corresponding value of hydraulic conductivity is KN which
is generally slightly less than Ks. In profile controlled infiltration, the

flow rate into the soil is, in terms of dimensionless depth Z,

[+H]

6,k Z =0 (2.20)

Z N’

|

2=
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The partial derivative of 8 with respect to Z at Z = 0 can be found by
differentiating Equations 2.18 and setting Z = 0. Let s(T) denote the
runoff rate in terms of dimensionless time. Since G(0,2',T) =0, it follows

from Equation 2.18 that

-.T o
= - &__._ v 1y - -z '
s(T) = r(T) - K+ >y (f) G,(0,2',T)(0,(2") - 0% az (2.21)
where
=1/2 22
GZ(O,Z',T) = - (4nwT) Z' exp(- :]E—)/T

Equation 2.21 provides an efficient means for calculating runoff rate during
constant rate rainfall. It is straightforward to adapt Equation 2.21 to model

runoff under a piecewise constant application rate.

2.4 Example

To illustrate the profile controlled infiltration solution, consider the
Yolo Light Clay of Section 2.2 with a constant rainfall rate of 0.1 cm/hr.
From Table 2, time to>ponding is 1.9 hours so that the initial moisture
distribution ei is the profile found in Figure 2. Recall that y = 21.46
hr/cm, o = 0.02 cmf‘, QR = 0.3, eN = 0.4, and KS = 0.04 cm/hr. Using two
points near the surface on the profile in Figure 2, d8/dz at 2Z =0 is
estimated to be -3. From Equation 2.20 the flux across the surface is esti=-

mated to be

%—Y—+KN=O.O7+KN

At ponding time, the surface flux equals the rainfall rate. This will be the
case if KN is chosen to be 0.03 cm/hr. Using Ks in place of 'KN in
Equation 2.21 will generally lead to un underestimate of the runoff.

The calculation of the runoff rate s(T) requires that the improper
integral in Equation 2.21 be evaluated. One accurate and efficient method
is as follows. First, from Figure 2 determine the depth to which rainfall has
advanced during the flux controlled stage of infiltration. 1In this example,
that depth is about z =5 cm or 2Z = 0.05.

The integral in Equation 2.21 is broken into two integrals, one from 2'

= 0 to 0.05 and the other from Z' = 0.05 to infinity. The integral from 0
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to 0.05 can be accurately approximated by Simpson's rule. Let h = 0.05/2
and use ei(O) = GN to obtain
0.05

g G,(0,2',T)(8,(2") - 8 )4

A -
dz (h/3) [6,(0,h,T) (6, (h) - 6)

~h
2 + GZ(O,Zh,T)(Si(Zh) - GN)

272

For 2Z' > 0.05, ei(z') - eN is a good approximation GR - BN' a

constant. Thus, the integral remaining is GR - GN times
Z -1/2 z' 2 -z
[ [(4nT) z' exp(~ 7=-)/T] & az'

0.05

When T is small, the term in square brackets in the above integral has a
large 2Z' derivative. To avoid having to deal with this large derivative, an

integration by parts is used to obtain

«® - '2 - 1 -
[ [(4nT) /2, exp(—‘§~*)/T] 7% azr = (1) VY 2exp(=22925_ g.025)
T : 4T
0.05 )
@ 2
-1 1
+ (a2 | exp(- %E*)
0.05
272 age

The last integral in the above equation can be evaluated in terms of the
error function. However, less algebra is involved and a satisfactory estimate

is obtained if Laguerre-Gauss quadrature is used in which case

® 2 5 : (y , + 0.05)2
z' -Z"' - i
[ expl-ggd @S T W expl- —p—)

where the Yi and wi are shown in Table 3.
Using Equation 2.21 and the above integration techniques yields the
runoff values in Table 4. The computer program used to generate Table 4 is

listed in Appendix II.



Table 3. BAbscissas and Weights for Laguerre-Gauss Quadrature.

i 1 2 3 4 5
Yi 0.2635 1.4134 3.5964 7.0858 12.6408
W, 0.5217 0.3987 0.0759 0.0036 0.00002

Table 4. Runoff from Yolo Light Clay with r = 0.1 cm/hr.

T 0.007 0.010 0.025 0.050 0.100 0.500

s(T) cm/hr 0.017 0.026 0.046 0.056 0.062 0.069

61
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At the end of the rainfall event, Equations 2.18 and 2.19 can be used to
determine the moisture profile at the beginning of the redistribution period.
Integration techniques similar to those outlined above are used to evaluate

the improper integral in Equation 2.18.

2.5 Flux Controlled Infiltration, 0 < z < zu

In some situations it is not reasonable to view the soil as being semi-
infinite in 2z. One common situation is the case of a layer of hardpan not
far below the soil surface. In this case, the lower boundary condition has a
significant effect on the developing moisture profile and if the semi-infinite
theory is applied, an underestimate of runoff will usually result.

Flux controlled infiltration into a linear soil with an impermeable boun-

dary at =z = zo is governed by

2
a6 _ 3 8 _ 38
oy 9t ;;E @ 0 <z < z t> 0 (2.22)

8(z,0) = Gi(z), 0 <zX z, o (2.23)

- D %% + K = r{t), z=0, t>0 (2.24)

i
=]

l

+
=
I

0, z = zo, £t >0 (2.25)

Again, it is convenient to introduce dimensionless variables T and 2Z

t z
2’ z = z
ayz ] o

and a new dependent variable
v(Z,T) = exp[b(Z - br)] * D(B - GR)' b = azo/z

Using Equation 1.3 and the above change of variables allows Equation 2.22
through 2.25 to be transformed to

2

%% = 3~§ , 0<Z<1, T>0 (2.26)
3%

v{Z,0) = D(ei - BR) z‘bzﬂ 0<2Z <1 (2.27)
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3z _ b'T _
bv 3z z r{T) & . Z=0, T>O0 (2.28)
pv - ¥ = g Z=1, T>0 (2.29)
az F 4 ? .

Equations 2.6 throuch 2.29 can be solved by obtaining a Green's function.
Let g = ¢g(2,2',T7,T') be a Green's function to be determined. Multiplying
Equation 2.26 by g integrating from T =0 to To > T and from 2Z = 0 to
1 and using integration by parts to move all derivatives from v onto g
yvields

1 T o1
° av 3% fof 3g . 3%g
] | (Z==)gaar-= -2+ 29 § gz ar
0o o T 532 o 0 9T 322
1 T
+ é vg'Lq az + é (v3z - 95z 9

Next, Equations 2.28 and 2.29 are used to eliminate 3v/3Z from the above

equation to obtain

T 1 1 T T
o 3 32 o o] 3
[ | G+ Dhvaa=] vg| a+] (é-g—bg)viz ar
0 0 3Z 0 o 0 =1
T
o 2
- {(%g -bg) v-gz r £b T] ar
0 2=0
Prom the last equation it follows that if g 1is required to satisfy
2 . ' '
aT 2 ' !
Az
0<T, T To {2.30)
by - 24 = o, Z=0 and Z = 1 (2.31)
g=0, T> T (2.32)

then
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1

v(z,7) = [ g(z,2',T,0) D(8,(2") - 8.) &~

0
T 2
+ zZ f r{T') 2b b
° 0

In Equation 2.30, §

bz’ s

g(z2,0,T,T*) 4T’

represents the Dirac delta function which is the distri-

butional derivative of a unit impulse function, Wylie (1975).

The boundary conditions (2.31) motivate looking for g

o
g= I

an(T,T',Z‘) wn(Z)
n=0

in the form

where the wn(Z) satisfy w; (Z) = kn wn(z). A straightforward calculation

2

shows wo(Z) = exp(b2), Ao = Db, and

wn(Z) =

nt cos nxZ + b sin nv3z,

2
an "(n'lf) r n = 1' 2 eae

From Equation 2.30 and the orthogonality of the w it follows that

(..._._....

3T * kn an)l| wn'l 22

where ll wot! 2.

Solving the last equation for a,

g(Z,Z',T.T') =

™ 8

n

NIEN T

w (z') 6(T - T")
n

0.5(¢%° - /b and ||w_||% = 0.50m2 + %1, n=1, 2 ...

completes the determination of g,

An(T~T')
2 wn(Z) wN(Z')

from which it follows that, during flux controlled infiltration with

0 <2< 1,

8(z,T) = GR + exp[b(bT - Z)]

+ aYzoexp[b(bT - Z)]

Equation 2.33 is to be used to model infiltration until ponding time Tp

8(0,T) = BN‘

1

~bz'
[ 9(z,2',7,0)(68,(2) - 6_)8 az'
0 i R

T p2p

[ gtz,0,7, 7" )r(T")8 dar'  (2.33)
0

when
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2.6 Profile Controlled Infiltration, 0 < z < z.
W

Profile controlled infiltration into a linear soil with an impermeable

boundary at 2z = zO is governed by

36 _ 936 _ 238
ay 35t = s a 3z ‘ 0 <z < zo, t > tp (2.34)
9z
8(z,0) = ei(z), 0 <z« zo‘ (2.35)
g(0,t) = BN’ t >0 ‘ (2.36)
- D 30 + K=20 z =2 t>t (2.37)
3z ’ o’ P

The initial moisture distribution Bi(z) in Equation 2.35 is the profile at
the end of the flux controlled infiltration and is obtained by setting T =
Tp in Equation 2.33. Using essentially the same change of variables as in

Section 2.5, namely

P = —=R zZ = f* ' v = exp[b{Z - bT)] D(& - GR)

where b = qzo/z, allows Equations 2.34 through 2.37 to be transformed to

8v 2y 0<2Z<1, T>0 (2.38)
3T 2
32
-bz
v(z,0) = D(8, - 0.) 4, 0<2Z<1 (2.39)
2
b
V(OIT) = D(eN e 6& «Q‘ . T>0 (2-40)
by - ¥ =g Z=1, T>0 (2.41)
V az - ¢ Y4 .

Let h = h(Z,2',T,T') be a Green's function to be determined. The
calculations between Equations 2.29 and 2.30 together with Equations 2.40 and
2.41 show
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3%h
2

3h

(8T

) v 42 4T

O
O -
i

[ vn|
0

9Z

T
o

- é [(D(B - 8.) &

From the above equation it follows that if
2

g—g—+§—-}§-=6(z-z') §(T - 1),
3z

h=0, 2=20
dh

bh - 37’ =1

h=0, T>1

0

1 T
o)

h

T
o
oh
az + [ (37 - bh) ar
0 92 ﬂ z=1
-b2T 3h dv
.a_Z - h _a_Z]|z=0dT
satisfies
0<2Z, Z' < 1
0o<T, T < ‘I'o (2.42)
(2.43)
(2.44)
(2.45)

then the solution of Equations 2.38 through 2.41 is

Equations 2.43 and 2.44 motivate an expansion for h

where un is the n-th non-negative root of the transcendental equation

tan(u/b).

v(z,T)

O =

T

v b
- f hz,(ZIOIT +T) D(eN GR) L

0

Cn(T,T',Z') sin unz
n=1

From the orthogonality of the functions

it follows that

where

(—

4aT

+ B Cn)ll sin unZl[ 2

h(z,z',T,0) D(Bi(Z') - SR) L

sin A _Z'
n

-bz" L,

2 L
T ar

in the form

sin unZ and Equation 2.42

(T -T')
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1
“sin unz‘, 2 - é sin2 T

Solving for the Cn shows that

® -p M (T-T")
h(z,2',7,7') = I ‘, sin p Z" £ sin y_2 sin u_32*
n=1 n n n

from which it follows that, during profile controlled infiltration with 0 < 2

< 1
I ~bz*
6(2,T) = 6, + exp(b(z - bI)] [ h(z,2',T,00(8,(2) - 6 ) & dz'
0
I -p2p
- é h,,(2,0,7',T) D(B - 0.) 2 ar' (2.46)

Equation 2.46 is used to describe infiltration as long as the surface
moisture content is held at BN' If at any time during the rainfall event the
surface moisture content falls below GN, then flux controlled infiltration
resumes and Equation 2.33 models the flow.

As in Section 2.3, let s(T) be the runoff rate and RN be the value of
the conductivity when 6 = 6_. It follows from Equations 2.20, 2.46 and the

N
fact that hZ(O,O,T'.T) = § that

-b’r 1 gt
[} — €
™ g h,(0,2',T,0)(6,(Z) - 0.) & az

s(T) = r(T) - KN -

where hZ(O,Z',T,O) denotes the partial derivative of h at 2Z =0, T' = 0.

2.7 Example
To illustrate the analytical solutions developed in the last two sec~

tions, three soils are considered. The soils are the Yolo Light Clay of
Section 2.2, Gravelly Sand G.E. 9, [Reisenauer (1263)(see Table 5)],
and Gilat Loam, [Mualem (1976)(see Table 6)].

For Gravelly Sand the saturated conductivity is 1 cm/hr and the poro~
sity ¢ = 0.326. For the Gilat Ioam Ks = 0.72 cm/hr and the porosity is
0.44.



Table 5. Soil Data for Gravelly Sand G.E. 9.

-y (cm) 90.0 80.0 70.0 55.0 40.0 30.0

1001</KS 3.0 8.0 15.5 34.0 52.5 66.0

8/¢ 0.582 0.589 0.705 0.831 0.890 0.908
Table 6. Soil Data for Gilat Loam.

-y {cm) 77.50 72.50 66 .00 60.00 54.50 49.60 44.70 39.00

lOOK/KS 1.29 2.58 4.79 8.33 13.30 20.80 32.50 47.90

8/¢ 0.590 0.636 0.682 0.727 0.773 0.818 0.864 0.909

9T
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Recall from Section 2.2 that when ‘a linear soil was calibrated to the

soil data in Table 1, the relationships

8 = yK + 0.30Q, Y = 21.46 hr/cm (Yolo Light Clay)
ﬂégmﬁ = = 0.02 cm | (Yolo Light Clay)

were obtained. Using the calibration method outlined in Section 2.2 to fit a

linear soil to the Gravelly Sand and the Gilat ILoam yields

6 = yK + 0,191, Yy = 0.18 hr/cm {Gravelly Sagﬁ G.E. 9}
9%%-’5-—)— =q =0.05cm | ' (Gravelly Sand G.E. 9)
§ = yK + 0.284, ¥ = 0.39 hr/cm {Gilat Loam)
§£%§~§l =g = 0.09 cm"1 (Gilat Loam)

As an illustration of the analytical solutions of Sections 2.5 and 2.6,
consider three 50 cm columns of the above soils. For purposes of comparison,
assume that initially the water in each column is in static equilibrium with
y = -100 cm at the soil surface.

Figure 3 shows how the three soils respond to the rainfall hyetograph
indicated by the piecewise constant solid curve. As expected, the Yolo Light
Clay has the smallest ponding time. 1In fact, for the clay, runoff begins
almost immediately. The runoff rate is easily obtained from Figure 3 by
subtracting the infiltration rate from the application rate. The Gravelly
sand has the largest ponding time. If the rainfall rate during the last half
hour had been only slightly less, then the infiltration for the Gravelly Sand
during that period would have switched from profile to flux controlled. Table
7 shows that during this rainfall, the cumulative inflow into the sand is much
greater than into the clay; In all respects, the response of the loam falls
between the sand and the clay.

The computer program used to construct Figure 3 and Table 7 is listed in
Appendix IV. The calculations regquired to construct Figqure 3 required nine
seconds on a CDC Cyber 171.
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Table 7. Cumulative Infiltration During Rainfall.

Time 0 0.50 0.10 1.50 2.00 2.50
Clay (cm H,0) 0 0.17 0.23 0.28 0.32 0.36
Sand (cm H,0) 0 0.50  1l.42  2.12 2.71 3.15

Loam (cm }120) 0 0.50 1.21 1.64 2.02 2.39
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IIXI. REDISTRIBUTION

3.1 Evaporation
Kolasew (1941) divided soil water evaporation into three stages. The

first is the constant rate or the energy-limiting stage. When the soil can no
longer supply water to the surface fast enough to use all the available
energy, the profile-limiting stage begins. The third phase occurs when the
so0il surface is very dry and the evaporation rate is low and decreasing almost
linearly with time. 1In Figure 4, adapted from Gardner (1981), these stages
are indicated by A, B, and C, respectively.

Let GR be the effective residual, reference water content in Equation
1.3. To approximate the evaporation rate curve A-B~-C of Figure 4, the outward

flux at the surface is set equal to E(§ =~ GR),

38 _
Do - K=E® -6, z=0 (3.1)

The constant E (cm/day) is chosen so that E(GN - BR) agrees with the
energy~-limiting evaporation rate. The flux boundary condition Equation 3.1
yields an evaporation rate curve qualitatively as indicated by the dashed

curve in Figure 4.

3.2 Extraction by Roots

Experimental work of Herkelrath et al (1977) indicates that in many cases
the rate at which roots extract water from the soil decreases with decreasing
moisture content. Moltz and Remson (1970, 1971) have used a moisture depen-
dent distributed sink to simuiate uptake by roots.

If the extraction rate varies linearly with water content then a sink of
the form S(8 - GR) can be used to account for removal of water by roots

where S(GN - GR) is the maximum extraction rate. Let =z and z be two

1 2
soil depths, z, > Zy Darcy's law and conservation of mass imply
z 4 zZ
2 2 2
d d 38 : ‘
o [ sdz= [ G Do -K dz+ [ s(e - 6.) dz (3.2)
z z zZ
1 1 1
so
38 _ 9 30
o3t  dz (D 3z Kl o+ S(QN eR)
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. . . -1
For the case of a linear soil with D = {(ay) the above eguation is

%s

36 _ 3% _ 28 _
ay 3¢ = azz @ + ay S(8 GR)

Since the sink is distributed it follows that the units on S are (day)‘1.

The constant S is negative and such that S(eN - SR) is the maximum extrac-
tion rate. 8 is dependent on the range of moisture content, soil type, and

root system being modeled.

3.3 Redistribution, =z > 0

If the evaporation rate and the root extraction rate are as described in
Sections 3.1 and 3.2 and lower boundary effects can be neglected, then for a

linear soil the moisture content is governed by

2
a’r%%='§‘~%—a§%+aYS(6~8R), 2>0, t>0 (3.3)
9z
p & _x =58 -9, z2=0, t>0 (3.4)
9z R ’ -
8(2,0) = 0, (2), z >0 (3.5)

where time is measured from the end of the last rainfall. 1In accordance with
Equations 1.3, the diffusivity is D = 1/{ay). The parameters a, Yy, and
GR are, as before, soil type and calibration range dependent. The saturated
potential evaporation rate determines E while the root extraction rate fixes
the constant S.

By introducing new variables, Equation 3.3 can be transformed into a

standard initial-boundary value problem for the heat equation. Let

2
- aBz - eB t - _ (at + b2)
Z 4 r T 16Y ’ v D(B GR) 2 (306)
where
5
B=0+2m), b=1/, a=t (o) (3.7)

B

In terms of the new variables 2, T, v, defined by Equations 3.6 and 3.7,

Equations 3.3 through 3.5 can be written in the form
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2
gf =< ; ’ Z2>0, >0 (3.8)
az
¥ _ =0 Z=0, >0 (3.9)
2z ! ’ ‘
bz
v=D(9i~eR)2 ’ Z>0, >0 (3.10)

The solution to Equations 3.8 through 3.10 is known, Warrick (1975), to

be
@ L2 2
viz,m = 0t% T [ {14 V2 (exp(- i§~i—§~l) + exp(- i3~z~gll))
0 T T
- exp(T + 7 + z)erfetEEE 4+ T 1 (0, - 0047} 27 azr
2Vt

From Equation 3.6 it follows that
8(2,1) = exp(-at - b2) D | w(Z,1) + 0,

The last two equations provide the solution 8 in terms of 2Z and T.
The scaled variables 2 and T needed to transform Equations 3.3 through 3.5
to Equations 3.8 through 3.10 are not as convenient for practical use as the
original variables z and t. For most practical values of t, «a, B, and
Y, T 4is quite small and it is easier to work with t. Using Equations 3.6

and 3.7 to recover the variables z and t yields

i} at ., _ &S, _ az
8(z,t) = expl 2 (1 " ) 4 ] u(z,t) + BR (3.11)

where wu(z,t) 1is given by
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{(z - z')2

usz _ ath] aB
4 4yt

aB t ~-1/2
16y { [(n

u{z,t) = exp[~—— 4T (exp (~a )

D 8

alz + z')2 aa t .

8
Iyt {(z + 2'))

+ exp{- 1) exp(

az'

(z+2') 5‘/‘“’" )1(8,(2") = @ >se, }

2

erfc(/}-%

»agz'
: 4 a (3.12)

At first the integral in Equation 3.12 appears formidable. However, it
can be easily approximated using Laguerre-Gauss quadrature. Let F(z,t,z')
denote the expression in {} in Equation 3.12 where 2 represents the
grouping aBz/4. 1If y, and wi' are as in Table 3, then

5
alz,t) = expl 2 ,é.,.. IowF(Z.t,y,) (3.13)

16y i=1
Using the above approximation to u requires only 21 exponential and five
error function evaluations per 6 evaluation. This allows the moisture pro-

file to be economically updated during redistribution.

3.4 Redistribution, 0 < z < z,
If the evaporation rate and the root extraction rate are as described in

Sections 3.1 and 3.2, then redistribution of water in a linear soil with an

impermaéble boundary at z = z is governed by

ay gi : g o g% - ay S(68 - 8 }, 0<zX Z {(3.14)
£t >0
p 8 _x=rp-0, z=0, t>0 ’ (3.15)
3z R
gi X =0, zZ =2z, t>0 (3.18)
8(z,0) = 6, (z), 0<z<z (3.17)

where time is measured from the end of the last rainfall.



35

Introducing the new variables of Equations 3.6 and 3.7 transforms

Equations 3.14 through 3.16 to

dv _ 92
&2 Y, 0<2Z2<2, T>0 (3.18)
aT 2 o
22 :

AV _ oy = 0 z=0, T>O0 (3.19)
az (4 r -
8 sy =0 Z=2, T>0 (3.20)

9% , ’ o’ )

bz

v = D(ei - eR) L7, 0 < z‘< zo, T> 0 (3.21)

where 2, = uBzo/4.
Equations 3.18 through 3.21 can be solved by a simple eigenfunction

expansion. Let the functions wn(z) be chosen such that

w"n(Z) = An wn(Z), W'n(O) - 2wn(0) =0,
Bw'n(Zo) - 5wn(zo) =0 (3.22)

Equation 3.22 constitutes a regular Sturm-Liouville eigenvalue problem and
therefore it is guaranteed, Wylie (1975), that there are an infinite number of

nontrivial solutions wn(Z), n=0,1, 2 ..., satisfying

Z
o

[ w (2) w (2) & =0, m#n (3.23)
0

To determine the eigenpair wo(z), Ao' set Ao = uoz so from the first of

Equations 3.22 it follows that
w (2) = A gHZ 4 3p7HE

Now the above and the last two of Equations 3.22 imply that

) (2 - uo)(5 + Buo) . -ZuOZO= ; (3.24)
(2 + uo)(s - Buo) , :

which has a unique positive solution, near yu = 5/8, except in the special
cagse that 2 - y =5 - By in which no zeroth eigenpair exists. In the excep-

tional case that 28 = 1OZo + 5 the next eigenpair is w = 2Z + 1, A = 0.
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Otherwise, the remaining eigenpairs can be found by setting An = -unz to
obtain from the first of Equations 3.22

W =A cos W2+ B_ sin n 2

n n n n n
which together with the last two of Equations 3.22 implies
2
= + *
Bun cos 2unz° Sun cos unzo 10 sin unzo (3.25)

By solving Equations 3.24 and 3.25, the eigenvalues and eigenfunctions
can be determined. In practice only the first dozen or so eigenpairs are

required. Equations 3.24 and 3.25 can be solved quickly and economically by

elementary numerical methods such as Newton's method. Having found the eigen-

pair W An’ the solution of Equations 3.18 through 3.21 is almost imme-

diate. Set

-3
v= I an(T) wn(Z)
n=0
Equations 3.18 and 3.23 imply a‘n = Anan so
-] AnT
v= L C_2& w (2)
n n
n=0

Finally the sequence of constants Cn is fixed by requiring
bz >
D(6, - 98) & = ¥ C_w (2)
1 n n
n=0

from which using Equation 3.23, it follows that

Z
o}
c, =]lw || [ bte, - 018™ w_(2) az
0

where

z
o]
]IwnH2= é wnz(z) az

With the determination of +v(Z,T) complete, the moisture content function

8(z,T) can be easily recovered from Equation 3.6.
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3.5 Examgle

To illustrate the solution developed in the last section, consider the 50
cm column of Yolo Light Clay at the end of the rainfall event described by the
solid, piecewise constant curve in Figure 3. The parameter E is taken to be
2.5 cm/day or zero. Since BN - GR = 0.1, it follows from Section 3.1 that a
positive value of E in Table 8 represents a potential evaporation rate of 0.25
cm/day. The constant S is chosen to be either zero or -0.7 day -1 so that in
Table 8 a negative value of S corresponds to a distributed sink which each day
extracts 20 percent of the moisture in excess of 0 = 0.3.

The body of Table 8 contains the moisture content at the 10 cm depth. The
day following the rainfall is indicated across the top row. Root extraction and
ET patterns are specified in the first column. The program used to construct

Table 8 is listed in Appendix IV.



Table 8.

Moisture Content at 10 cm in ¥Yblo

Light Clay During Redistribution.

t (days)
E=0,

E

]

0,

[

0.302

0.302

0.302

0.302

0.332
0.323
0.329

0.320

0.329

0.317

0.323

0.311

0.328

0.314

0.317

0.305

0.326

0.311

0.311

0.301

0.325

0.309

0.306

0.300

-0.324

0.306

0.302

0.300

0.323

0.306

0.300

0.300

8¢
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IV. SUMMARY

Using an idealized linear soil to model real soils makes it possible to
develop analytical solutions of the equations governing soil mositure flow. 1In
this report, solutions have been obtained for both flux and profile controlled
infiltration into soils either semi-infinite or finite in depth. Equations to
predict the beginning of runoff during a rainfall and the subseqguent runoff rate
were developed.

The redistribution of soil water between rainfall events was also con-
sidered. To model both the energy-limited and profile-controlled ET pro-
cesses, the removal rate at the surface was taken to be moisture dependent.
Extraction by roots was accounted for by a distributed moisture dependent sink
in the flow equation. Analytical solutions of the redistribution equations were
developed for soils semi-infinite or finite in depth.

One of the foremost considerations in this report was computational effi-
ciency. The solutions presented here can be quickly evaluated. Many of the
calculations require only the error function. Instead of using tabular values,
“the error function was evaluated by five-point Gauss-Legendre quadrature. 1In
those cases where an improper integral must be evaluated, the calculation was
based on a five~point Laguerre-Gauss quadrature. The solutions for soils of
finite dpeth are eigenfunction expansions. The finite Fourier transforms
involved then were evaluated by Filon integration.

The solutions developed in this report are much more computationally effi-
cient than the usual finite difference approach to soil moisture modeling. The
algorithms presented here are not based on marching through time. For example,
during redistribution a moisture profile can be calculated at any time knowing
only the profile at the end of the rainfall event and the ET and soil parame-
ters. In contrast, finite difference methods require that profiles be calcu-
lated at many intermediate times.

No claim is made here that these linear flow equations can model all soils
over all moisture levels, nor that the profile and runoff predictions from these
flow equations will always be in very close agreement with the actual profiles
and runoff. However, it is expected that over the midrange of moisture content
for soils which are not highly hysteretic, these models will perform well. Even

in those cases where these solutions do not produce quantitatively accurate
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results, valuable information regarding the relative impact of different
management decisions and natural phenomena can be gained.

The solutions developed here are modular and can easily be interfaced with
each other or with existing watershed models. The computer time involved is
sufficiently small that it is feasible to apply these techniques to a fairly

large watershed.
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APPENDIX I

Program Theta Top *

* This program is interactive and is written in Applesoft.



[

10

1S

20
30

35
40

S0

&0

70
80
PO

100

110

130
140

150
200

210

220

220
240

W2

GOSUR 200

AL .02z

GM 21.46:

™ -3z

TN -4z

RR -1

INPUT "ENTER T "7
T=AL X T / 4 / GM:
X = SR (T)

GOSUR 20

tannu

U= (.0 + 2 %X T) x (ERF — 1) + 2 % X %

X (1 + ERPF)
U=TR + 6M ¥ RR x U

FRINT "THETA AT THE SURFACE 1S

IF U TN
THEN

PRINT "X%XPONDING HAS NOT OCCURREDXXX"

IF U > TN
THEN

PRINT "X¥X¥FONDING HAS ALREADY OCCURREDX %"

PRINT *» "
s07TQ 10
IF X > 3
THEN
ERF = 1:
IF X >3
THEN
30
G1
G2
G3
54
GS
Pl
Wi

. 20618:

- 53847

(o}

- B2:

- G1:

4 X ATN (1)
« 23693
47863

« SHBED:

W2

Wi

W3
Wa
WS

[T A TR O OO I

II;U

EXP ( - T % T) / SGR (FI) + .S

DEF FN E(Y) = EXP ( — X ¥ X ¥ (Y + 1) ¥%- (Y + 1) / 4)

ERF = X % (W1 X ( FN E(G1)) + W2 % ( FN E(G2)) + WX

{ FN E{(G4)) + WS ¥ ( FN E(G5))) /

RETURN

SER (PI)

¥ ( FN E(GB3)) + W4 ¥

FRINT "THE USER MUST SPECIFY ALPHA (AL) . GAMMA (GM) , THETA SUR RN (TR

&TN) AND THE RAINFALL RATE (RR)

PRINT "

PRINT "WHEN ASKED TO ENTER T,
HRS. "

PRINT * "

RETURN

IN CHM/HR.

THIS IS DONE IN STATEMENT 35*

INFUT TIME SINCE BEGINMING OF RAINFALL IN



APPENDIX II

Program Profile *

* Thig program is interactive and is written in Applesoft.



[y

605UB 400

3 AL = .02:
GM = 21.46: Ir.1
TR = .3:
TN = .4:
D = 10:
ZIL = D x AL / 2:
RR = .1
7 INPUT “"ENTER T ";37T:

TP = 8ER (AL X T 7 4 / GM)
1C FOR I = 1 TO 11:=
Z=.1% (1 — 1) x ZL

15 X=2 /72 77TP ~-TF
17 G0SUR 90:
TH =ERF /7 2 + 2 ¥ TP ¥ EXP ( — X % X) / SER (FI)
25 X=TP + 2 /7 2 / TP
30 GOSUB 20:
TH = TH - (Z + 2 X TP ¥ TP + .5) % EXP (2 % Z) % ERF
35 TH = TR + GM ¥ RR ¥ TH:
IF X >3
THEN
TH = TR
40 IF I =1
THEN
GOsSUB 300
435 GOSUR 310
47 PRINT TH
S0 NEXT

55 PRINT "MOISTURE PROFILE AT TIME “3;T;" FOR RAINFALL RATE OF “3;RR;“CM/HR
AND 0<Z<“;D:" CM"

60 PRINT " ":

GOTO 7
20 IF X > 3

THEN
ERF = 1:
IF X > 3
THEN

150
100 61 = .90618:

62 = .53B47:

G3 = 0=

G4 = - G2:

65 = - B61:

PI = 4 ¥ ATN (1)
110 W1 = .234693:

W2 = .47863:

W3 = .54889:

W4 = W2:

WS = W1
130 DEF FN ECY) = EXP ( — X % X % (Y + 1) % (Y + 1) / 4)

140 ERF = X % (W1 % ( FN E(G1)) + W2 % ( FN E(GZ2)) + W3 ¥ ( FN E(G3)) + W4 X
C FN E(G4)) + WS %x ( FN E(GS))) /7 SGER (PI)
150 ERF = 1 - ERF:
RETURN
300 HGR =
HFPLOT*~279.0 TO 0,0 TO O,15%:
HPLOT 275,55 70 275,0:

ARETURN

310 YI = INT (159 % Z / ZL):
XI = INT (110 % ((TH = TR) / (TN — TR))):
XI = XI + 165:



APPENDIX III

Program Runoff 2 *

* This program is interactive and is written in Applesoft.



100

110

20

130

140
145

1350
1460

170
180
150

200
- 210

220
230

400

- 410
20

430
440

450
4460

GOSUR 4CO
DIM Y(3) ,L{S):

KN = .OX: III.1
R = .1:
TR = .3:
TN = .4:
GM = 21.46
Y1) = .263560:
Y(2) = 1.413403:
Y(3) = 3.596426:
Y{4) = 7.085810:
Y(5) = 12.640801
W(l) = .S521756:
W(2) = .398667:
W(3) = .0759424:
W) = .003461176:
W(S) = .Q000234
PFI = 4 x ATN (1):
T1 = .38789:
T2 = .3738:
WD = .05:
H=WD 7 2
INPUT "EMNTER TIME T»:T
IF T < .005
THEN
S=R-KN- EXP (~-T) ¥ .07:
IF T < .005
THEN
210
DEF FNGBGZ(ZY) = - Z % EXP (-2 %X Z /74 /7 T) /7 T/ SOR(F1 x2xT) /

i

Il = ( FN BGZ(H) % EXP ( — ) % (T1 - TN) + FN GZ(2 % H) ¥ EXP ( -
HY X (T2 - TN)) x H 7 3
DEF FN G(Z) = EXP (- Z %x Z 74 /7 T) 7/ S&R (FI ¥ T}
IZ = EXP ( — .0S5) ¥ FN G(.09)
FOR N =1 TO S:

I2 = I2 — WN) 2 FN G(Y{(N) + ,05):
NEXT =
I2 = I2 ¥ (TR - TN)

=R ~-KN+ EXP ( -T) % (11 + I2) / .5 / 61
PRINT "AT TIME ":T:" WITH A RAINFALL RATE OF ":R;"CM/HR THE RUNOFF RATE
IN CM/HR PER UNIT SURFACE AREA IS ":S8
PRINT = *
GOTO 140
PRINT “THE USER MUST SUPPLY VALUES OF GAMMA (CM), THETA SUEB RN
(TRETN) , NATURAL CONDUCTIVITY (KN) AMD RAINFALL RATE (R)Y. THIS IS DONM
IN STQTENEMT 100, "
PRINT * "
FRINT "PRIOR TO EXECUTING THIS PROGRAM *PROFILE’ MUST BE USED TO
DETERMINE THE PDSITION OF THE WETTING FRONT AT THE TIME OF FOWDING AND
THE TWO VALUES OF MOISTURE CONTENT ON THAT FROFILE NEEDED FGR THE
SIMPSON-RULE INT LGRATIGN. "
PRINT " ”n
FRINT "WHEN ASKED TO INPUT 'I, THE APPROFPRIATE DIMEMSIONLESS VALUE OF T
IS TO BE ENTERED."
PRINT » ©
RETUR



SO

{0
=0
0

40

&0

II1I.2

HPLOT TO XI,YI:

RETURM

PRINT "THE USER MUST SUPPLY VALUES OF ALFHA (ALY, G6AMMA (GM) . THETA SUR
R&N (TRZTN), RAINFALL RATE (RR) IN CM/HR AND DEFTH (D) OF PROFILE 7O BE
FLOTTED. THIS IS DONE IN STATEMENT S.v

PRINT »* ™ ‘

PRINT "WHENM ASKED TO INPUT T, ENTER T IN HRS SINCE BEGINMNING OF RAINFALL®
PRINT " " '

PRINT "THIS PROFILE GENERATOR CAN BE USED CNMLY PRICR 7O PONDING. IF A
TIME GREATER THEN POMDING TIME IS ENTERED AN ERROR MESSAGE WILL RESULT
PRINT = *®

RETURN
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Program Runoff



iv.l

FROGRAM FLUMOFF

11

-
Lk

14
110

(XY

FROGRAM PUNDFFxIHPUT DUTRUT « TRPES=CUTFUTY

FERL ¥

COMMONSBLOCKE L A Re Bs DS« 0« To TSo P I o DaER« TMDs JIMDROWJUE
COMMOM<BLOCKZ U021 s 2T o K L2y
COMMOMABLOCK2-NTDDTD TRUSE

COMMOM-BLOCK4 - GAMs Py ALP

DIMENTION RO

DIMEMIION Holls

PRINT ¢S "D0 YOU WRANT B LIST OF EYMEOLZY 1=YEZ. 2Z=nNO"

RERD®,
IFCMM, BT, 1 &0 T 10
FRINT(os#x "2 DEFTH OF S0IL IN CM©

SRINT (S, e) "RLEHA:  I0IL PRRAM,  (SEDUT .01 FOR CLAY:. 1

FRINT(zs#y "R PROKING PREARMETER 0,44, 01 22
FRINT O, #3 "ERMMRD DTHETH<TK O AROUT, 13"
FRIMT (S #3 "2RTE:  IZATURATED COMDUCTIVITY"
FRINTIG«#2"Ti:  TIME DVER LHICH RAIM FQTC IR
PRIMT (R #3 "EI3 T RATHN RRTE(OMARED DURING I
FRINT(G.ex "HTD: MO, OF TIMED DURING DRYVING CYVILE"
FREINT 2« "DTD:  DELTR T TIKING DRYING CYCLE™
FRINT ey 2 “TRU:D  TRENIFIRRTIOMN FREARMETER (TAL HEEHT
PRINMNT(c«#3"Ez  EVRFOERTION FARARMETER (B ABCUT 107
FRIMT (S 4 "hiz EHP 8L PHASED dHY CREILLPRY PREITURE
PRINT (G "HT:  H VRLUE AT 0% SPTURATIONT

COMTINUE

PRINT (5s 43 "ENTER Ds FLPHFP. Fa GRPMA, SRTES

REFATi®#s Do HLFPs FaizFMa TK ’

WRITE 11 o

FORMRAT (#ENTER Tz AT ROl I=1.Sen

BEAT# TLR 1 e B {212 F {23 R I3 « RIS

WRITECSs#3 “ENTER ;Hszwa H aT <=0 BHD HE."

REFRD®s T T« HE :

WRITE 12

FORMAT CeZNTER NUMBER OF TINE: FER T1 INTERMELe)
vFHﬁ*!Nr

FRIMT fEs 83 "ENTER MTD. DTDs THLUE™

REEDRs T T Da TRE . I

FI = 2,141552!
ﬁ¢§4ﬁL§;ﬁﬁw

{

i

LIME T

P
B o= ,Sele LR+
e = :&*EqFaﬁuF*HEBEQL?
DT = T1-FLORT HT?
2 = 0%
01 = TKSEXP (ALFPSWCTY ~ALFP

0 14 I = 1s21
Iy = CleERFP (2, ¢E#FLORT (I~1seD0
WRITERs 110 1CT

* RAMND

n
fios
s

= CUOMITTEMT
TH Ti TImE IMTERWSL®

FORMAT ¢oRT T=0 WRTER CONTENT IM CM I3 #F10.€xSHyeANT W [Zed

g 1= 1s11
HOIx = Ui2el-10 U3
WRITECS« 101y “HOIYeI=1s11D

DO 43 II = 1«5

JIND = 1



31

17

40

31

L’.
fir

o

Iv.2

¥ = B

DO 17 I=1.20

TOP = XeCOSHXY ¢COTH K =P+SINH (¥ «COSH M
POT = COSHOD SCOSHEY - B

5 = ¥ - TOFP-BOT

1 o= 0,

2= 0. V

DO 1= I=1s10

ZE = FLORT(ZelreDZ

20 = FLORT(2eI-1" D7

S1 = 31 +4.eU(ZeI) #TIMH (NeZEN SENF (~E#ZED
TE o= :3 + F el iTel~1 74T INH Y eTOY #EXFP c~F e
o= ‘1+73+La~‘**SI>H' R S il S

ER =

ES *‘1!;_

2 = DZeFLORTC -1
IFCE~1.2 25410541
ML o= 0,

TUME = 0,

& J.i3T 1Y 30 TO 92

[}

C = (TS - Tr»~R
= sTHEF (T oo

[ L-J

SHME = JOEEPICYEReD
IFiJ.ET.l) =0 TO 43
FOoOod,aT, iy S0 7O g2
TUME = 3, #EXP 00 o000
SR = 2, eENF Y

GO0 T 4z

O o= (Eeb-re¥aeiTieTr R

WHE = -3 + éthtE.*ﬁ}f{%.*Eﬁ
ZUMI = EXPICT DT TTME eI ST
TUMZ = EHEPOIYSEPST MM OSoT Y ST
IFCi. 6T 1y 30 TO 42

IUMT = ‘E#P*WO?\Oﬁwpfli¢P"¢EE'WT

TG = (T ReRE-HaX W «ERESET LN T
S | 1~::
%]

Ml = Ll + EeE

T I el g el

TOR Lol —EXF B SCOS (L) P +BSEXP CRET T IM LD
BRAC = TUPfMI ’

D= MIe(TE-T).

IFeC. LT =200, SB TO 11

Iumy = ‘hm1+E”Pfr%¢ﬂf13¢*Tfo**”~

TUMZ = TUMS4EHEPCCYSRRHCSITIM L 2
IFCH,ET, 1y 28 70 2
T = TUMTIHMT eI ¢\’-"~'l== SO SBERACSWIR
ZiUMg = TUMGeMIeERR 7 \*EPHitszifmIi
CONTINUE

Widthy = ZHRIReZreTti]

#ou

t

WE iy = EXPJReTy#ITiipME
o = iZeEERrz «Pefe 4 W1 o i% ~ ITelZ ¢ Iy

ﬂ*v»ep'w+£'- L O ED —, S TR CE=R1 =1, ) S S E=)



03

-}

on

=4

.3

F(I»=EXP (-ReDZeFLOART CI-10 2ol CID
DO S I=1.25
TH = K{IYeD?

ATH =
BTH =
5TH =
ZE =
0 =
g7
SE =
s = ¢
AE:

0.
p
J

fTHOfTH+ SeSIMCZ. ¢THY

Z. e THe Ll + 00T cTHY Y 00,__”:--I¥"<--

. ¢ CEINCTHY =THeCOZ (THD

(2RI (Ir DD
=19

=2, (TIMCTHY Y o921~ THRee 2

1THe e

SE 4+ FiZe 4104 INK (I «DZeFLDAT (Ce. 00
SO + FO2e v i+10 0 S IME (I oDZSFLORT (2@ I+102

Eod

B

EE + SeFi21ieTINKLIND

REId=NTe AT+ F i =-Fr2iy 0%

(130 +BTHeSE+GTHe SO

LTINS, #THY

+ ETHeCE + oTHeCD

IFCIMD.ED.0vRD TO L7
1 = 0,
S = 0.
DO 2 I=1s1n
] = Z1 + 4,elliCeI
TE o= 32 o+ Z.eliZel-12
90 = D2ecTl + T2 - ddix o+ (21233,
I 11 I = 1«25 :
TH = K{I D3
TH2 = THeTH
THZ = THeTHZ
ATH = 1. TH + SeSINCZ,«THX -THZ - (2. *
BTH = (2.4Z.+C02(TH) O (THI 3 ~THZ - 2
BTH = 4, eI I THY - TH“ - 4, SIOECTHY #THE
CE = .SeF i1
O = FiZwel0sikdIreDish
oo o1z J= 12
CE = CE+AF(Ze 411900 kI «LleFLORT (2o 11
CH =00 + Fi2ed il EdIreliZeFLORT (S J+ 1)
CE = CF 4+ ,SeF (21«00 kEdTa
31 = LT ATHeE (10 e ]fdlt IR
Coly = 311
GBIy = D1 + EBedIdsK (I
COMTIMUE
FRETURM

ENT

ng =

...L' I

:11‘-§

""‘-"+F‘I¢FLPHT I
IFfB.LT. 1. ¥=X¥-F]
M= TAM O S BY

COMTIMCE

HeHeR TeFLORT VT2 :
IFCR.LT. 1.2 H=x-FI
Kilo=y
neX=-FIeFLDORT I
CONTINUE

ARl LaFR« IMNe JTHDs RO 1T

o =%

’TH*Y b 'l P THQ‘ -

TIMOCTHI «TTMCTHY 3 #TH3

sTHZ



Iv.4

IFCIT.EQ. 1 RO = 0.
IFCITL.ER. 1> TS = 0,
IFCITLED 1y GO TO St
IFCRCIIY =R CII=130 37+ 35, 37
37 TS = FLORTII-13eT1
38 COMTINUE
IFCR(IIN=REIT~19.E0.0.% JIND = D
1 CONTINUE
RR = RCID
DIl 42 0 = 1sNT
T = FLORT(II-12+T1 + FLOAT () DT

IF CUS=U04n s 29,29 21

29 IFROF 2121320
30 CRLL AT

Do 15 M = 1«11
SP=, 1 #FLOAT MY
1= HiMy = 2 eN=10 - {USSEXP {TF#F) )
M = 021y = Uiy
DO 47 I=1.10 '
TUM = TUM +d, elc2elt + S, el 00el~10
WAT = DesAMeALFSIUM S0,
WRITERL 100 THlAT
100 FORMAT c#RT TIME T=eFS,Zse  HED COMTENT IZesFZ,.2:x¢ AND i ISe)
WRITECES 101 HM aM=14110
101 FORMAT ¢ 11FT.20
WRITE S 103 RIOSRER ‘
{02 FORMAT (eRUNOFF IZe«F10, 4% FRIM RATE I «sFli. 4
IFCROJLE. DLy TE=T
IFROLE. .2 JIND = 1
50 TO 42
31 CRLL FLUX
L 18 H=1s11
1% HOMY = U(Tep=13 0%
UM = g2l - Ll
D 48 I=1s10
45 SUM = TM +g,ellZelr + 2,6l ZeI~1)
WHT = DeRlesn] PelUM e,
WRITE S 100 T RT
W ITE o 10iY Omiidy » dMz=lails
MRITECS« 104y RR .
104 FORMAT (o THERE I3 MO RUNDFF,  THE RERIM RRTE IT  esFii. 4y -
COIFRTUS-U 0L 338 35
33 TSeT
JIND=1
RO = , 00001
CONTINMUE
CONT INUE
CALL IRY
EMD
TURRDUTIMNE QURD
RERL W
COMMONABLOCK IRy Be D2 D0 To TEo P Yo Do RP IMDe JIMNDs RO UT
COMMOMABLOCK S U1y s QUSSr 2 k(2%
DIMEMTIDON FO2in e 0 (350
T 2 I=t1«21

£
~4

£ B

L]



v
i

Ll
o

0"'3

Iv.5

RETUEN

END

SUBROUTINE FLLES

REAL HeMIal

COMMOMNBLOCE L~ Ha Es DT e e Ta TS e P I Da RRY
COMMONCBLOCKEZ S 0210 s D 0SS s E 25D
IFCIND EQ. Q0 JIMD = 1

IND = 1

IFCIIND —1) 2S«24425

DO 12 I=1:25

0]y = FLORTCIxeF]

CRLL 2uURD

JIMD = 0

WHE = (EXNPI2.eBr=1.32 02, «B
31 1 = 1.21

T = [ITeFLOAT O t-17

SUML = DOSESEF (BT ~LNE

FUME = EMP (EeZr @ (T=TI1 ./ (RehiNT
00 2 I=1+25

o= PISFLORT I

MI = LelL + EeFk

WIS = MIACZ, el el

WIZ = COTCLeT) + PeTINCLeIs - L
C = MIe(T-TZr A

IFOC,5T.200.) 20 TO 11

TUML = ZiMl 4+ EMP O R CI0#WIZAWIE

IME

TUME = TUME — (EMP =0y =1, #WIZ< (MIeWID

=0 TG 3

TUME = ZUMZ & WIZ-(MIeWIT

COMT IMUE

WO = EXPOESZ+ (TUML + DeRReIUMEID
CHTIrUE

RETURHM

END
SUBROUTINE
pEFtL KalIsl
Dwmﬂﬂfﬂlglkl,H.Eqﬁ
COMMOM B0k
DIMEMNTTION V1027 vEeD
IF~IND.FL.1v AIMD = 1
IHD = o
IFCdInMDER, 1y CTALL RDD
IF&JIHE.tQ.IJ CHLL @
IF CJAIMD.EG, 0y 30 7O 2
IFCE-1.> 29220231
=1 = 0,

L ]

ERT

.Hr’aT T F’I”_-FF'

TS = ':' .
Do 2 I=is10

SE = FLOAT(ZeldeD

Z0 = FLOATZeI=-112e0T
= 31 4+ d4,ediZe]1 @ ZE-ENFPOZED
= IZ + Z.eUCCel-12eZ0-EXFCE00
= D ¢ CT1+T24+UTIIv P (=R o3,

IR Py
1t O 1) e

- il
1
fary
1.
"

-

I

HIMTe RO UE

JIHD R U2



13

=~} T

S OR

-

[N kT

D

Iv.6

FLUX = (UZeIiMa - ZiIMZY D

RO = RR - FLUX

JIND =

RETURN

END

SUBROUTIME. DRY

FEAL KeMIsL

COMMOM-BLOCE L1 -FA+Be DS« 0a Toa TS« FIs Dy RREs IMDs JIMDLRONUE
COMMOMN-BLOCKE (213 0025 ok (250
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