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ABSTRACT
The objectives of this investigation are twofold: (i) Deter-
mination of the distribution function for the cumulative sums St

when the output is dependent upon these sums; and (ii) Development
of probability expressions for the range of cumulative departures of
a stochastic variable.

The basic relationship between input, output and cumulative
sum is expressed by the equation of continuity

% = q (t) ~aS; with @ = constant.

The following principal assumptions concern the fluctuating
portion g; (t): (1) q; (t) is 2 normal independent variable with a

mean of zero and a variance ¢%; (ii) The correlation between the
values of q; (t) at different times tl and t, exists only when

'l'tl - tzl is very small; (iii) q (t) varies an extreme rapid amount

when compared with the variation of the cumulative sum St'
Theoretical equations and hypothesis have been substantiated

by the data generation method, which employs a digital computer.

The large generated sample for computations consisted of 100, 000
normal independent numbers, with mean zero and variance unity.

The large amount of data agreement between the data genera-
tion method and that obtained from the theory indicates the validity of
the theoretical equations.

The distribution function for the cumulative sums SJL when

output is dependent upon those sums is defined by

i e | o -a (S-S, €© Yep(1-e" %Y g2
i 5 T =
o] [:\T{i‘e 2a t) 0_2]1/3

The equations for the expected values and variance of range,
Rn’ are derived as

= A/ -2o0t
E[R]=(—1+3azeza} ; i-e % and
n _ t *
Ner t=1
- _."& n ot
Var [Rn] =(ln2-2/7)(1-8c e 2'0{”) {L_e__z___) 5 4 et

ix



THE ANALYSIS OF RANGE WITH OUTPUT LINEARLY DEPENDENT UPON STORAGE

By: Mirko J. Melentijevich

CHAPTER 1

MATHEMATICAL MODELS

i. Introduction. Assume the availability of
a record {ka of mutually independent random varia-

bles with a common distribution f(x). The mean for
these variables is assumed zero. Let Sn= Xl + XZ

4.+ X and let
n

1

M

, = max [0, Sys Spaees

8 15

min [0, §;, S,,..., 8 ].

1

m
n

The random variable Mn is the maximum surplus of
The

is the maximum deficit of the

the cumulative sums, Si‘ withi=0, ..., n.

random variable my,

cumulative sums, Si’ and the random variable

R =M - m 1.2

n n n
is the range. These values are shown in fig. 1.1
where 0t is the time axis and 0S the axis of the
cumulative sums of mutually independent random

variables with means zero. The curve representing
these sums is 0ABC, and 0C is the time of n units.

Fig. 1.1

For the cumulative sums, Si, the maximum positive

sum DA is the maximum surplus, Mn; the maximum
negative sum EB is the maximum deficit, m ; and
the sum DA + EB is the range, R . At present very

few theoretical results are available for the charac-
teristics of surplus, deficit and range. The results
available are usually valid only for [Xk] normally

distributed, with mean zero and variance o2, Feller
[4], in 1951, derived results for the asymptotic dis-
tribution of the range of the cumulative departures of
a stochastic variable from its mean. In terms of the
water storage-water yield relation in hydrology, his
results apply to cases where the variable is the annual
flow of a stream, with the annual draft equal to the
mean annual flow, and a lengthy time period. In
particular, Feller obtained:

and

E[R] = 1.60 Vo

Var [R_] = 0.2181 n .

1.3

He assumed that [Xk] is a sequence of mutually inde-
pendent random variables with E[X;] =0, and
Var [Xk] =1, Feller's asymptotic solution depends

on the variance of Sn alone.

A. A. Anis and E. H, Lloyd [1, 1953] solved
the planning storage capacity problem of a reservoir
when the water storage distribution over a given num-
ber, n, of years is not known. The storage after r
years may be regarded as the sum of r annual incre-
ments. This real problem may be approximated by
an ideal which has annual increments that are inde-
pendent variables with a common distribution. Ap-
plications to other storage problems are obvious.
Anis and Lloyd derived the expected value of the range
over n years, as

s, /2

In conclusion, they noted that the asymptotic value of
the range for large n is

=1
n r_%

1.4
r=1

2 £ n
T
which is an agreement with Feller's results,

Thomas and Fiering [7] analyzed the follow-
ing: (i) four record lengths (10, 25, 50, and 100
years) for streamflow distributions (Normal, Gamma
with skewness -0.5, 0.5 and 1.0); (ii) three serial
correlation coefficients in annual flows (0.0, 0.1 and
0. 2); and (iii) three degrees of regulation (100 per-
cent, 90 percent and 80 percent. Since the number of
parameter combinations increases in a multiplicative
fashion, 144 combinations defined the sample space
for their investigation. In each instance, the annual
flows are assumed to be derived from a population
with the mean unity and the standard deviation 0. 25,
A digital computer was coded to generate a varied
number of idential sets of data; for each combination
they chose 100. The most important result of their
study was the verification of Hurst's [5] and Feller's
[4] theory with a constant outflow equaling the mean
inflow. The agreement for small values of n is
fairly close to Hurst's and Feller's, and becomes ex-
tremely close as n increases. Computations based
on the formula given by Anis and Lloyd are only
slightly better for n = 10 than those given by Hurst
and Feller. The results of the study by Thomas and



Fiering indicate that the variance of the basic varia-
ble is by far the most important parameter, even for
relatively short record lengths. The relative unim-
portance of skewness of the distribution of basic
variables is clearly demonstrated. The serial cor-
relation tends to increase the required storage. This
fact is also supported by the queueing theory.

2, Distribution function for cumulative sums,
Si’ with output dependent upon those sums, The

basic relation beiween input, output and cumulative
sum, S,, is expressed by the equation of continuity

which for an incompressible medium may be written
as

ds _ _
=T Qi(t) Q

where Q (t) is the input, Qo (t) is the output, and

o (t) 1.6

dsS/dt is the rate of change in time of the cumulative
sum Si' The symbol t relates here to a continuous

time series. When a discrete time series is used,
the symbol n replaces t.

Here the input is taken as an independent
stochastic variable, while the output is a dependent
variable.

They are expressed here as:

Q; (1) =Q, +q; (1) 1.7

i
with Q, =
viations of input about Qa;

average input, and q, (t) = fluctuating de-

Q,(t) = Q, +q (1) 1,8

with Qa. =

viations of output about Qa' The basic proportionality

average output, and qo{t) = fluctuating de-

of output to the cumulative sum, S, is

q,(t) =

= a 8,

with o = constant, ~©0 < o < c; and ~@ < S < .
Equations 1.7 through 1. 9 give the basic
mathematical model for the case studied in this paper

as:

L= q-as 1.10

Equation 1. 10 is a Langevin equation for the Brownian
motion of a free particle. As for the fluctuating
part q; (t) the following principle assumptions are

made for this equation: (i) The mean of q (t) is
Zero, or qiiti = 0; (ii) The correlation between the

values of q.(t) at different times t, and t, exists

only when ty - tzl
extremely rapidly compared to the variation of S;
and (iv) 9 (t) is normally distributed with mean zero -

and variance o?. The problem is to determine the

probability at which the cumulative sum, S, after the
time t lies between S and S+ dS, with S = S0 at

is very small; (iii) q (t) varies

t = 0 being the initial sum (or storage in the case of
reservoirs).

The Langevin equation has been solved by
many authors, using different integration methods.
One solution of this equation was given by S. Chand-
rasekhar [8]. His method of solution is used here
to obtain a solution of eq, 1.10.

Consequently, ''solving' eq. 1.10 should
be understood in the sense of specifying a probability
density distribution f(S, t; SO). Physical circum-

stances of the problem require that f(S, t: SO) follow
a distribution which is independent of So as t—co:
_q2 2
f(S, t,‘S): -.__i__ eSon‘S

o (27 ':rs2 JBA

with ch2 the variance of S for t —m. This re-

1. 11

quirement on (S, t; SO) conversely requires that
9 (t) satisfy certain statistical conditions. The

general solution of eq. 1. 10 is:

t
g g i Tt (ea'fqi{g)dg 1.12
o] OJ

Consequently, the statistical properties of
i ot
5 Soe 1,43
must be the same as those of
at | o

wope : 9 (£) a&. 1,14

As t——s=o, eq. 1.13 tends to S; hence the distribution
of

t
g, {2t [eag q; (€) & bl

must be the distribution

-g2 2
SIZ:J'S

1
%4 €

T o
z s

The right-hand side of eq. 1.12 may be
written for £ = jat as

: e (j+1) at (17
i o A
ST e q; (8) ck.
! jat
Let

t+at

/

q (at) = ,/ q; (§) &, 1.18

t



and the physical meaning of q(at) is that it represents
the input during an interval at. Equation 1. 12 then
becomes

S-Soe-‘zt . o (jat = t)
]

with the condition that the quantity on the right-hand
side tends to the distribution eq. 1,16 as t—o.
This further requires that the probability of occur=
rence of different values of q(at) be governed by the
distribution function

q (at) 1. 19

o~ la (at)] 2/2at 2

f [q (M}] = *—” U: " }lz' 1. 20

where

0-3.-. 2o d’sz or O'S = Z2a 1.21

To prove this assertion the distribution function f(S,
2 SO) derived on the basis of egs. 1.19 and 1. 20, does

in fact tend to the distribution eq. 1.16 as t—=co.
Let

t
S=J 0, (8) o (5) az .

o

1.22

Then, the probability distribution of S is given by

t
;
-S/20% |6 2 (€) at ;

£(s) = ] .

t 1
[2 70262 (5) dg}

o

.23

In order to prove this, the interval (o, t) is first
divided into a large number of subintervals of dura-
tion at, so that

i +1) at

= g (8) @& . 1.24

z 6, (jat)
J
ja

Using eq. 1.19, S can be expressed in the form

S=Z s, i.25
j J
where
5, = 61 (jat) q (at). 1. 26

J

According to eqg. 1. 20, the probability distribution of
sj is given as:

-sz ,}2932 (_]a"_\t) a2

f(sj} = 1 - i
[27 6 2 (jat) o2 at]”
Hence,
-8%/20% T 02 (jat)
£(5) = s i

= e
[27 % Z6 2 (jat) )
J
1. 28

As
t
2 fs
? Oy (at) at =[9f (£) gz, 1,29
o]
then,
t
..SZ 20.2 Ie Z{g)dg
2 e S / g 1. 30
(2 crjsf (8) a |

which proves eqs. 1.22 and 1., 23,

The right-hand side of eq. 1.12 may be
expressed as

t
fsi () q; (£) d8 1.3t

o

with
el (E}:EQ (E‘t) ; 1,32

With the foregoing definition of 6, (§), eq. 1.30
governs the probability distribution of

s-soe""t. 1,33

- Since

t t
j;f (£) d& =[e2“ (€ - Vg - i?a (1 -e"2ty

o o -
1. 34

and taking into account the relationship shown in eq.
1. 21 then

£(s 48,) =
i ~(5-8,e7* Y2 /2 (- 2 Y o 2
'Za‘t 2 ‘3 &
[2z (1-e ") 2
1.:35
Therefore, eq. 1. 35 converges to
-5%/2¢ 2
.| = 1.36
£(S:1; SO} T :
2mo )

This proves the assertion made that with the statis-
tical properties of q(at) implied in egs. 1, 20 and
1.21, eq. 1.19 leads to a distribution f (S, t; SO)

which tends to be independent of SD as t—m.

3. Fokker-Planck partial differential equa-
tion for cumulative sums, S. The second method for
deriving eq. 1.35 is by adopting the Fokker-Planck
partial differential equation for cumulative sums.
For this equation f(S, t; SO) is the fundamental

solution.

When t increases by at, S will in-
crease by AS in the distribution function f(S, t; SO).



Let the probability for an increase between the limits
4S and AS + d (aS) be f(aS, S, t) d (aS), then

+ O
£(S+ S, t+ 46 ) J’ £(S, 1:5,) (85, 5, 8) d (a9).
e o] i, 37

Suppose that the probability of an increase, aS, is in-
dependent of the fact that for t =0, S-= So’ then the

integrand for powers of aS is

£(S, t;8,) £(2S, 5,1) ={(S+48S, 1) f(aS, S+ aS, t) -
-aS[f' (S, t;8,) £(s8, 8, 1) +
+ 1(8, t;So) f' (aS, 8, 1)] +

Z
+ %—SL [f" (8, t;8 ) £(aS, 8, 1) +
+ 281 (S, t; 8 ) ' (a8, 8, 1) +
+ 1(3, t:S) £ (a8, S, o+
1 38
The resulting integrals all have simple meanings. For
instance

+
ff (a8, S+ A8, t) d (aS) =1,
-

1. 39

+

Jas f (a8, S, t) d (aS) = [aS], 1.40

’00
|aS? £ (8S, S, 1) d (&S

;% 8% [ 887

o (S+a8)%  1.41

-0
and so on. Developing the left hand side in powers of
At by using
lim [%_ = fl (S+ AS, ‘t);
At—0
1.42
: 2
HmIAS] - g, (s+ a8, 1)
At 2 2
At——0
and assuming that
4 k
11rn]£.S | = 0: for k > 2. 1,43
Ot z

Hst—a0

then for S replacing S+ aAS

af (S, t; SO) .
at -
2 .
1 O°f (S, ;8 ) [9f,(S,1)
£, (S, t) + =

) af(s, t; SO)L ” 8%t (8, 1)
£, (S, 1) 35 tlz -
ag# 1.44
8f (S, t) )
= | (5 t; 8).

The function f1 (S, t) and f2 (S, t) must be deter-

mined in order to verify the assumption of eq. 1.43.
It comes from the storage equation that

t + at
85 = -a Sat + [ q(§) at. .45
t
As the mean of q; (&) is zero, then
[AS] = ~a S at = =-a (S+A4S) at, 1.46

Which is obtained by neglecting the higher power
terms of at, From this

lim [a8] _ "
fhesn "R T (S+ a8, t) a (S+ AS). 1.47

In the same way, by neglecting the correlation be-
tween the values q; (&) at El and &,

[552] = g-z AL, 1.48

so that:

2 -

f,(8+ 28, t) =0 = 2¢ oS = constant. 1.49

All the powers of AS greater than one become pro-
portional to like powers of at, so that eq. 1.43 is
satisfied. Therefore,

af (S, t; S,)
at =
o 2 9% (S, t;8)
a—pa— [Sf(s, t; SO}J + “2— == © 1.50

which is the required Fokker-Planck partial differen-
tial equation, of which eq. 1. 35 is then the fundamen-
tal solution.

4. The range of the cumulative sums, Si,

with output dependent upon those sums. Let [q, ] be

a sequence of mutually independent random variables
with a common density function f(g), with E[q,] =0

and Var [q] = o?. The basic eq. 1.10 given in

finite differences form

S+ By

S, "S "l=g e —p—— 1.51

1.52

=z 2 2-q
Sk' 2+ 9 t 2+a5k-1



Equation 1. 52 gives further for S0 =0;

Sy, = 0;
- 2 .
Si_ 2+Q'q1'
5. = 2 Q. + 2(2 - a) 9
27 ZFa 27 o2
& (2+ a)? (2+ a)? -
= 2 2 a2 m s » =2 & = = w ® » = = 1.53
2 2(2 - o
Sn_ 2+ a Q * 2+ a2 dn-1
2
2(2 - o zgz—ar
+ o + q__ + oeoe
(2+ ) B2 (gl B2

where o« is a constant.

The maximum surplus of the cumulative
sums, Si’ for i=0, 1, ... , nis then, according to
» 8] and the
s 3]

n

eq. 1.1, M_ = max [0, Sys Sy v

maximum deficit is m = min [0, 51’ SZ’ —

-m_.

The range is Rn = Mn 4

The sums, Si' are asymptotically nor-

mally distributed and, therefore, the asymptotic dis-
tribution of the range is independent of the function
i(g). The sum Sn can then be considered as the

value at time t = n of a continuously changing normal
variable S,. According to eq. 1.35 with S =0, S

is a normal variable with-mean zero and variance

2 -
Z(t-e Zat).

2a
mal varizble with mean zero and variance o?/2q0. It

should be noted that the term (1 - o722 t)
than 0,99 for t> 2,303 /q.

As t— m, St approaches a nor-
is larger

(a) Mean and variance of range. The
mean range is E [Mn - mn] =E [Mn] -E [mn] .

Lety ) (%) be the probability density function of Mn
and let QSn (x) and 1 - ¢ (x) be the distribution func-
tion, respectively, of M and m_, so that

¢ (x)=P

! (M, € %) and v (x) = P (m_ 2 ®). 1.54

Let G’n (Sl' S
function of (Sl, 52’

PO Sn} be the joint distribution
5 Sn), so that

¢

n

(‘y s
(y} =| LR ) [ Gn (513 SZ, R i 2 Sn) dsi dsz' ot d-sn 1 55
J .

P
- -

and

Y oy
v (-y) =f....{Gn(SI,SZ,...,Sn) ds, ds,...dS_

peee
e J _J
w w 1.56

corresponding to the observation that E [M_ ] = -
E [mn] for symmetrical input distributions. The
function én (y) and ¢ (-y) are thus integrals of the

same type. If f (x) is an even function it follows that
6, () = v (-y).

For « # o it is very difficult to find
the exact analytical expression for the joint distribu-
tion function G_ (Si' S,, ...,S ). It is also practi-

cally impossible to derive general theoretical ex-
pressions for the moments of range. If one accepts
the hypothesis that the mean and the variance of range
depend on the variance of St alone, for a given o, the

following expressions are tested by the writer on a
digital computer by the data generation method
(Monte Carlo method):

n  Var [8§]

t
E[R]=C, =z T 1,57
t=1
and
n
Var [R ]=C, Z Var (5] . 1.58
t=1 T

The constants C1 and Cz are functions of o alone.

Using the computer, for nine different values of «
(-0.04 < o < 2,00), the expected values and variance
of range were calculated for n between two and
fifty. From these results it is found that the varia-
tions of C, ‘and C2 may be approximated by the

following expressions:
2 -
¢, =L (143 &2 &) -
and
C2=4(1n2-2;'rr)(1-8 e-zoa)jl-e_za! 1.60
o . .

Assuming that [q, ] is a normal variable with mean

zero and variance unity, the following equations for
the expected values and variance of range are ob-
tained

~Zo 2ot
. U+3aq%e L 1-e ;
E[R ] imv——] B ——f— § el
t=1
and
Var [R ] =
H 1,62
_ _"2 n ,_ ~2at
{in2z =~ 2lr)(1-gae20rydze )z 1 e .

& t=1
As o tends to zero, the expected values of range are
the same as found by Anis and Lloyd [1] and the vari-
ance has the same form as derived by Feller [4], i.e.,

2 3 _t

i3 t=1 Vt !

E[R] - 1.63

and
Var [R ] =4 (In2 - 2/r)a.



As a tends to infinity the expected values of range
and variance converge to zero,

(b) Correlation coefficient between M

and m_. The expression for the correlation coeffi-
cient between Mn and m is derived from the

general equation for the variance of R,

Var[Rn] = Var [Mn] + Var [mn] - 2 Cov [Mn' mn]

1.65
Cov [Mn’ mn] =p (Mn, m )7/ Var [Mn] \ [Var fmn]

1. 66
Var [mn] = Var [Mn] , and 1.67

Var [R ]

= m. 1,68

p (M, m)=1

For n large, and « =0, Var [Rn} = 0027181:1, eq.
_ .2, 2+
.31, and Var [Mn] =n (1 fr] === 4/ h

given by Anis [2]. For this case the correlation
coefficient between M and m = becomes:

p(M_,m)=1- S‘ffaziw = 0.700. 1.69

This value is verified by using the large amount of
random numbers simulated on a digital computer.
For & # o the correlation coefficient between
Mn and m = was obtained by using only random

numbers and it was shown to be less than 0. 700. If
@ —»+ @ the correlation coefficient approaches
zero,



CHAPTER II

TESTING AND IMPROVING MATHEMATICAL MODELS

USING THE DATA GENERATION METHOD

1. Boundary conditions. Equations and hypo-
theses derived in the previous chapter have been pro-
ven by using the Monte Carlo or the data generation
method with simulation of a large amount of random
numbers on a digital computer. The data used con-
sisted of 100, 000 random numbers of an independent
normal variable with mean zero and variance unity.
The program was such as to use random numbers in
blocks of 100, with a total of 1000 groups. The cumu-
lative sums of this variable are computed. The pro-
bability density distributions for the accumulated sum
during the period of n units, the accumulated sum at
the time n, the range, the upper maximum sum, and
the lower minimum sum, are obtained for the time
lags n=2, 3, 4, b, 6, 7, 8, 9, 10, 12, 14, 16, 18,
20, 25, 30, 35, 40, 45 and 50, The first four mo-
ments are determined, both about the origin and
about the mean. The variance, the standard devia-
tion, the coefficient of variation, the skew coefficient
and the excess are also computed for distributions of
each of the above statistics, All calculations were
made for the following nine values of the basic para-
meter o : -0,040, -0.020, 0,000, 0.040, 0,100,

0. 200, 0,400, 0.800 and 2. 000.

The analysis of the problem with the out-
put being a linear function of the gumulative sums
shows different results depending on the boundary
conditions taken for the equation

b Yj, case II
" L by L

X 2.1

5.=¢c, 8 +C L?

k 1 k-1 2

with ¢, and ¢, dependent on the following boundary

conditions.

Three cases for the integration of the
above equation are considered:

(1) Case I. The instantaneous output de-
pends on the instantaneous value of cumulative sum,
S, with ¢, =(2-a)/(2+a), and c, =2/(2+a);

(2) Case II. The output at the time n
depends on the value of cumulative sum, S, at the be-

ginning of an interval, with ¢, =1 -, and

1
cy = 100; and
(3) Case III. The output at the time n
depends on the value of cumulative sum, S, at the end
of an interval, with ¢, = c, = 1t +a).

Only Case I produced the same results as
the theoretical examples derived in the previous chap-
ter.

Figure 2.1 shows how the constants cy

and ¢, change with ¢ for the three above cases,

The differences between these three cases increases
with an increase of o.

c,, case I

----...._,_________l cl'. c,, case I

* e i
——

-2 0 .2 .4 .6 .8 1.b

Fig. 2.1 Constants c

{ and c, as function of @ for three cases of boundary conditions



The expression 1 - e-Zat which appears values of 1, with t = nAt and At =1, or a selected
in almost all equations of the previous chapter is unit period. Therefore, t and n are interchange-
presented in fig, 2.2. as a function of o, for various | able in this text.

s

e
i
.2 1M
L1
T T o T T T T — &
0 i o -3 .4 «5 6 o .8 .9 1.0
Fig. 2.2 Expression 1 - o 2at as function of « for various values of t
2. Probability density function of cumulative these functions it was assumed that when t = 0,
sum, S. Probability density function of cumulative SQ = 0. The computation was made by using eq. 1. 35

sum, 5, at the time t = nat, are shown in fig. 2.3

for some particular cases. For the computation of for'vanious valies of &, and at different times

p(8)

a = 0,800; ¢ = 1
@ = 0.800;¢>3

o = 0,400, o = 0,800
v = 1,000

a = 0,100, ¢ = 1,000

“—Results from computer.

o = 0,400; t = 1\

o =0.400;t> 7

-6 -4 -2 ) 2 4 6 =B -4 -2 0 2 4 8

Fig. 2.3 Probability density functions, p(S), of the cumulative sum, S, at the time t, for
various values of «



For o = 0.100 and t = 3, the frequency density curve
obtained by the computer is also given in fig. 2. 3.
These results are in agreement with the theoretical
results as obtained from eq. 1.35. It can be seen
from these graphs that for o = 0, 100 small differ-
ences exist between the probability density curves for
t =8, and for t > 25. In fact, the process becomes
stationary for t> 23. For @ = 0.400, the process
becomes stationary for t > 6. The general conclusion
is that the process becomes stationary for approxi-
mately t> 2.3/a. The probability density functions
of cumulative sum, Sn’ accepted as being unchanged

with time t for t 2%‘3‘, and they depend only on «
for a given o, or

where o¢? is the variance of input, For a normal in-
dependent variable with mean zero and variance unity,
this equation becomes

p(S) =\/& e 7.

n T

Figure 2.4 shows the variance of the
cumulative sum as a function of ¢ and t. It can be
concluded that the variance decreases rapidly with an
increase of o, and tends to become constant for a

given ¢ and t > E-c‘—r—%, given by

{ - o Sﬂz!or2 Var S = Z—a 2.3
P(Sn.80-0}~;'\!; e , - < S<
2,2
(1- e_-zat)fi‘.a
25
20
\ 15
5.0 W\ —1° -
\\\ ] ol = g2 1-e
——
0 1 ) 3 4 5t .B Pt 8 9 1..0
Fig. 2.4 The variance of cumulative sum S(-@m < S < ) as a functionof ¢ and t
for Var x=o¢2=1
3. Properties of range. Figure 2.5 shows R =¢; ¢ 2.5

the mean range for n values between zero and 50,
and o« = -0.04, -0.02, 0.00, 0.04, 0.10, 0,20, 0,40,
0.80 and 2. 00. The points represent results obtained
by the data generation method and the full lines re-
present the values of eq. 1.61. The hypothesis tested
is that the basic shape of lines is defined by the ex-
pression v
n (var St) c
r. = & ———

n t1 t

2.4

while the mean range is

The constant C1 is a function only of «.

This hypothesis is proved by the results obtained
from the computer. Using these results, the expres-
sion for the constant C1 is determined and its values

are given by eq. 1.59. It is nearly impossible to cal-
culate the exact values of mean range for o # ©

even for n = 2. Calculations obtained on the compu-
ter give the same results for the mean range as eq.
1,61, except when ¢ < 0o and n are large at the
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n
® Results from computer b
L] G?'o
= ‘0.
12} — Equation 1 _ g1 pr 0
A
L 2 )
« 0,909
10 4 " o 20
L
N o = 0.040
.,
0
e Bl
671 a = 0. 200e
o = 0-4&_
4 - v
5 = 0,800
® * * * ¢
o = 2,000,
2 e - *
T T T v 11
0 5 10 i5 20 25 30 35 40 45 50
Fig. 2.5 The mean range Rn as a function of n and «
3. 09 _R'n 5 sl
® Results from computer - -0 s
Eq. 1.61 "9 [l
@
4.0 | 0,080
0
=
3, . 0,40
2, i
o = 2,00
1. o
T T T T T T T T T T T — 1
a 1 i 3 4 5 6 7 8 9 10 11 12

Fig. 2.6 The mean range ﬁn as a functionof n and e, for n=1 - 12, as an enlargement of
fig. 2.5 for small n
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same moment. When n increases the number of sub-
samples of size n, as used on the computer, de-
creases. Therefore, the above differences may be
the result of sampling errors. However, for any
practical purposes, these differences may be con-
sidered as negligible.

The mean range decreases rapidly with
an increase of o, but the variance of output increases
with o as

Var Q, = 0.5a (1-e72%% 2,

2.6
For « = 2.00 and sufficiently large values of t, and
the variance of output is approximately equal to the
variance of input, o2

For & <0, the mean range and the vari-
ance of output increases rapidly which is to be expect-
ed when the cumulative sum, S, is larger than the
output is smaller or vice versa.

Figure 2.7 shows the variance of range
for n between zero and 50, and the same ¢ 's that
have been used for the computation of the mean range.
The points represent the results obtained by the data
generation method and the lines represent eq. 1.62.
The hypothesis tested is that the shape of lines is de-
fined by

n Var St
v.= = —_— 2.7
t=1
The variance of range is
5 =
Var Rn C2 Vo 2.8
The constant C, is a function only of «. This

hypothesis is proved by the results obtained on the
computer. The values determined for the constant
C2 are given by eq. 1.60. The results obtained from

Var Rn
® Results from computer A
12 o)
< Q
[~ Q‘L Q
‘ iy o ol
— Equation 1, 66 ’“’ » =
& o>
10 . 7
8 - .
L]
L]
E i -
= 0, 040
a .
4] .
(1 €
- L ]
= 0,100
- . = ®
2] . =
= 0, 200
[ — & - a - = * * - =
,4 a 8 : '™ [ ] a [ ] ™ [ ] s al = 0. 400_.

Fig. 2.7

the computer and the values of eq. 1. 66 coincide well
except for o smaller than zero. However, even for
a < 0 the differences are small. The variance of
range decreases faster than the mean range with a
identical increase of . The skewness coefficients of
range for n between one and 50, and for various

11

aid
-
13
n
‘%
=
=}

The variance of range, Var Rn as functions of n and «

values of o as obtained by the data generation method
are plotted in fig, 2. 8.

The kurtosis of range for various values
of n and ¢ as obtained by the data generation
method are plotted in fig. 2. 10.
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® Results from computer 30
Q
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Fig. 2.8 The variance of range, Var Rn as a functionof n and ¢, for n=1 - 12, as an

enlargement of fig. 2.7 for small n

1Cs (R,)
.49
1. 20
1.00[
0.80f
. 2 = 0,040
2=0,100
0.60 @ =0,200
i @ =0.400
0.40f @ = 0,800
£ a = 2,000
0. 20[
L 1 ] | I 1 1 1 | o
0 5 10 15 20 25 30 35 40 45 50
Fig. 2.9 The skewness coefficients of range, CS(Rn) as a function of n and «
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Ke (Rp )
€ n d=-00 40
4.5}
40
0.040
351 0.100
\ 0.200
0.400
—.\‘—-—-—._.________‘__ —
n
3.0 1 1 1 I L : 1 1 L
5 10 15 20 25 30 35 40 45 50
Fig. 2.10 The kurtosis of range, Kr(Rn) as a function of n and «
The mean ranges for n =5, 10, 25 and up to about « = 0.4, The mean ranges decrease
50 are shown in fig. 2.11 as functions of «. It can much slower with an increase of o from 0.4 to 1.0
be concluded from these results that the mean ranges than for ¢ over 1.00, where the decrease of the
decrease much slower with an increase of ¢ from mean range with « is very slow,
1R,
12|
10 4
s\
6 1
2
~ n = 50
2 -\ n= 10
ne=s
T T — T T —
s 0 .2 .4 .6 .8 1.0 1.2 1.4 1.6 L8 2.0

Fig. 2.11 The mean ranges for n = 5, 10, 25 and 50, as functions of «
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Probability density functions of range, for it can be concluded that with an increase of the para-

a few cases of n, for a given ¢ are plotted in figs. meter @ the variance of the range decreases. The
2.12, 2.13 and 2. 14, Results are obtained on the computer results also show that for ¢ > 0 and
computer. Feller [4] stressed that it is practically n > 5/a the probability density functions for the
impossible to calculate the exact distribution of the range are approximately normal with the means given
range even for n = 3, with simple forms of a distri- in fig. 2.5 and the variances given in fig. 2.7.

bution of inflows. From figs. 2.12, 2,13 and 2. 14,

p (R}
4

Fig. 2.12 Probability density functions, p(R), of range, for ¢ = 0.00, and « = -0,020, and for
n=25, 10, 25 and 50

p(R)
5 J n=35
n= 10
5 n=25 "= 50
T T I ) ] T T ] R
0 2 4 6 8

Fig. 2.13 Probability density functions, p(R), of range, for ¢ = 0,100 and ¢ = 0.400, and for
n=>5, 10, 26 and 50
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p (R) 4, Maximum surplus (Mn) and maximum

e 10X Mo = 255 50 deficit (mn) of the cumulative sums, S. The mean
- ’\ surplus {Mn] or the mean maximum deficit (mn) is
r\ ) E[M]=E [mn] =1/2E [R 1. As fig. 2.5 shows

X

\ the mean range, E [Rn] , as a function of n and ¢,

half of the values of range of that graph represents
x the means of surplus and deficit,

l‘ The correlation coefficients p _{Mn, mn]
! between the upper maximum sum (Mn) and the lower

minimum sum (mn) for various values of n are ob-

6 tained by the data generation method and are plotted
' in fig. 2.15. For o = 0, the correlation coefficient
for n—m is calculated theoretically by using
Feller's variance of range and Anis's variance of the
.5 3 upper maximum sum and lower minimum sum. The
same value is obtained on the computer. For o # 0,
the correlation coefficients are obtained only on the
computer, For o = 0, the correlation coefficient
.4 4 approaches 0.700 with an increase of n, and for

@ # 0 it approaches zero.

Figure 2. 16 shows the ratio between the
variance of range (Var Rn) and the variance of maxi-

x mum surplus (Var Mn) or maximum deficit (Var mn).

The variance of maximum surplus or maximum defi-
\ cit is defined by

x

i \ Var [Mn] = Var [mn]

Var {Rn]
T E =M _, m_J)

2.9

surplus {Mn) or maximum deficit (mn) for n between

T R two and 50 and for various values of o are plotted
3 8 10 in fig. 2.17, For 0< @ < 0. 200 the skewness coef-
ficients decrease with an increase of n. For o< 0
and ¢ > 0, 200 the skewness coefficients decrease
Fig. 2.14 Probability density functions, p(R), of with an increase of n only for small values of n, and
range, for o = 2.000 and for n =5, 10 increase for large values of n. These results are
25 and 50 obtained on the computer by the data generation method.

x
x The skewness coefficients of maximum
0 2z 4

1.0 P (Mn, mn)

~r g T T T — 11

0 5 10 15 20 25 30 33 40 45 50

Fig. 2.15 Correlation coefficients between M, and m, for various values of o as function of n
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1.50]

1.25

Var (Mq)

Vgr (Rp)

a=2.000

0.800

0.400

0.200

1.00
0.75|
0.000
0.5 1 ] | . 1 [l 1 1 1 1
5 10 15 20 25 30 35 40 45 50

Fig. 2.16 The ratio between Var [R ] and Var [M_] with (Var [mn] = Var [Mn]

Cg (Mn or mn)

-0, 0
= =0 y -
g = 0,000
&= 0, 040
o= 2,00 =
_.‘.-—-"-_-_-_-_
o = 0,800
-a_._._._._. —
e —— " D, 400
—_— I T
= @ = 0,200 =0. 100
1 L 1 L 1 1 ! L L A
5 10 15 20 25 30 35 a0 a5 50
Fig. 2,17 GSkewness coefficients of maximum surplus (Mn) or maximum deficit (mn}

as a function of n and «
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Figure 2,18 shows the kurtosis of maxi-

mum surplus {Mn} or maximum deficit (mn) obtained

It

on the computer by the data generation method.

K, (Mp or mp)

clearly shows how the kurtosis changes as a func-
tion of ¢ and n.

50
asr
a0r
35
3.0
25

20 | A 1 ) 1 | | I I 1

5 10 15 20 25 30 35 40 45 50

Fig. 2.18 The kurtosis of maximum surplus (Mn] or maximum deficit {mn) as a
function of n and a
The discrete probability or probability of the parameter o. In fig. 2.21 for n = 50 and

mass for Mn=0 or mn=0 for 1< n < 50 is

shown in fig. 2.19 as a function of ¢ and n. It can
be concluded from these results that the probability
mass at Mn =0 (or m = 0) decreases rapidly with

an increase of both ¢ and n. Results are obtained
on the computer by the data generation method. Some
probability density functions of M (or mn) for

several values of n are plotted in figs. 2,20, 2, 21
and 2. 22 for various values of a. It can be con-
cluded from these figures that the variance of the
maximum surplus M, decreases with an increase

17

a = 0.100, it is shown that the probability density
function of Mn is approximately normal with the

mean 3.50 and variance 2, 30. The probability mass
for Mn = 0 is not shown in figs. 2,20, 2. 21 and

2,22, The probabilitj' density functions of Mn are

plotted in fig, 2, 20 as smooth curves. The smooth
curves were used to show the differences between
these curves and those developed for various values
of n. Figures 2.21 and 2. 22 show the curves as
they came from the computer, obtained by the data
generation method.



2 = { =
pIM_ =0)=p(m_ =0

2= -0.040

Fig. 2.19 Discrete probability or probability mass, p (Mn =0)orp (mrl = 0) at zero values,
M, =0orm =0, for 0.04 < ¢ < 2.00, and 1< n < 50

piMplorimg)

p{Mplorimg}

—— S
e=-0020| !T-o.ooc

50
Mg, or mp Mp or mp
. " : L

Fig. 2,20 Probability density curves, p (Mn) or p {mn}, for @ = 0,00 and « = 0,020, and for n = 5,
10, 25 and 50. The probability mass for Mn =0or m = 0 is not shown on these graphs
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piMg) or plmy)

plMy) er plmg)

pimnlor plmg) JIL\ Tni 400‘

4 Mn or mp [ Mn or my
a8 5.4 BT
Fig. 2.21 Probability density curves, p (Mn) or Fig. 2.22 Probability density curves, p (Mn) or
P {mn}, for @ = 0.100 and ¢ = 0. 400 p (mn), for @ = 2.000 and for n = 5,
and for n = 5, 10, 25 and 50. The pro- 10, 25 and 50, The probability mass
bability mass for M =0or m = 0is for Mn =0or m= 0 is not shown on
not shown on these graphs these graphs

19



CHAPTER III

DISTRIBUTIONS OF RANGE, SURPLUS AND DEFICIT AS OBTAINED ON THE
DIGITAL COMPUTER BY THE DATA GENERATION METHOD

When the ouiput is a linear function of the
cumulative sum it is useful to know the distributions
of range, surplus and deficit for the normal independ-
ent variable of the input. These distributions are
computed by the data generation method, employing a
CDC 3600 digital computer, from 100, 000 normal in-
dependent random numbers., For different values of
@ the distributions are presented for the range and
the surplus for various values of n. As the surplus
is equal to the deficit, only the distributions of sur-
plus are presented in this chapter,

The mean range is given in table 3,1 for
=2,3,4,5, 6,7, 8,9, 10, 12, 14, 16, 18, 20,
0, 35, 40, 45 and 50 for o = -0.04, -0.02, 0. 00,
.04, 0.10, 0,20, 0.40, 0.80 and 2. 00,

o~ B
‘-I

The variance of range is given in table 3. 2,
The correlation coefficient between the maximum
surplus (Mn) and the maximum deficit (mn) are given

in table 3, 3 for each of the above parameters of «
and n,

4

From the data given in table 3.1, the mean
maximum surplus (Mn) and the mean maximum deficit

{mn) can be computed by using the equation E [Mn] =
E {mn] =1/2E [Rn].

By using the data from tables 3. 2 and 3, 3, and
eq. 2.9, the variance for maximum surplus (Mn} or

for maximum deficit (mn} can be computed,

Distribution functions of range for «=-0. 040,
and n= 2, 4, 6, 8, 12, 16, 20, 25 and 30 are plotted
in fig. 3.1. Distribution functions of range for o
-0,020, 0,000, 0.040, 0.100, 0.200, 0.400, 0.800,
and 2. 000, and for n= 2, 4, 6, 8, 12, 16, 20, 30,
40 and 50 are plotted in figs. 3. 2 through 3.9.

For some values of ¢ and n, distribution
functions of maximum surplus (Mn) or of maximum

deficit (mn) are plotted in figs. 3.10 through 3. 18,

TABLE 3.1
Ratio of mean of range to standard deviation of the input, ﬁnfcr, obtained on the digital computer

0/ -0. 040 -0.020 0.000 0.040 0.100 0.200 0. 400 0.800 2. 000
& 1,402 1,382 1.363 1.325 1,274 1,200 1.082 0.923 0.680
3 1.894 1.858 1.823 1.760 1.678 1.564 1.398 1,491 0.887
4 2.327 20271 27224 2,129 2.013 1.862 1.654 1.410 1,045
5 2,727 2.650 2.581 2,458 2,308 2,120 1.876 1,595 1.168
6 3.096 2,995 2.904 2.749 2. 566 2,346 2.070 1.751 1.267
7 3.459 3.328 3213 3.021 2,802 2,551 2,242 1.883 1.347
8 3.784 3.623 3.483 3. 257 3.009 2.733 2,397 2,003 1.421
9 4.134 3.931 3.760 3.490 3.204 2.898 2.534 2,103 1.478

10 4. 461 4,221 4,022 3.714 3.398 3.065 2. 666 2.195 1.533

12 5.065 4. 737 4,477 4. 094 3.719 3. 340 2,889 2,354 -1.623

14 5.682 5. 246 4 917 4,452 4. 025 3.606 3,086 2,489 1.696

16 6.312 5. 746 5.332 4.780 4,292 3.824 3.259 2,587 1.756

18 6.934 6. 217 5.718 5,079 4,545 4.032 3. 406 2,691 1.808

20 7.585 6.687 6.080 5. 348 4.764 4,205 3.523 2.763 1.851

25 9. 269 7.787 6.898 5. 949 5. 264 4.610 3.807 2,945 1.948

30 11,152 8.897 7.673 6.513 5.711 4,836 4,018 3.078 2,023

35 13.372 9. 951 8.320 6. 947 6,071 5,218 4. 204 3.195 2.086

40 15.784 11, 042 9.007 7.428 6,430 5. 457 4, 348 3,281 2,137

45 19. 000 12, 267 9. 642 7.814 6.718 5. 648 4,477 3.365 2,183

50 23,402 13,636 10,191 8.145 6.984 5.834 4.589 3. 435 2,221
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TABLE 3.2

Ratio of variance of range to the variance of the input, ¢? R,] {a?, obtained on the digital computer

n/e -0, 040 -0, 020 0. 000 0, 040 0,100 0. 200 0. 400 0.800 2,000
2 0. 648 0.623 0.600 0. 556 0.500 0,427 0,331 0,236 0.148
3 0.923 0.869 0.819 0.734 0.633 0.514 0,382 0.275 0.172
4 1.232 1.135 1,050 0,910 0.755 0,580 0,429 0. 308 0,178
5 1.558 1,404 1,273 1. 067 0.853 0. 647 0. 464 0.327 0.177
[ 1.912 1.687 1.501 1,221 0. 950 0,709 0,506 0. 346 0.173
7 2,370 2, 040 1.7 1. 398 1. 054 0.767 0.536 0. 349 0,168
8 2.683 2.259 1.834 1. 485 1,108 0.810 0.567 0.358 0.163
9 3,288 2.689 2. 247 1. 664 1,197 0.858 0.588 0. 360 0,160

10 3.7186 2.970 2.439 1. 766 1. 256 0.886 0.607 0, 357 0,153

12 4.849 3.682 2.510 2,012 1,397 0.990 0.645 0,337 0,146

14 6.194 4,439 3. 360 2.208 1.503 1. 060 0.664 0.350 0,140

16 7.767 5. 269 3.817 2. 386 1. 587 1.104 0.671 0,344 0,133

18 9.935 6.280 4,320 2, 585 1,715 1. 169 0,681 0.338 0.131

20 12, 358 7.331 4 812 2.759 1.807 1,210 0.682 0,334 0.128

25 20. 291 10, 001 5.780 3.003 1,931 1. 257 0.675 0.320 0.121

30 32, 423 13, 496 6.982 3.453 2,220 1,342 0.668 0.304 0.114

35 51,870 17. 549 7.798 3.530 2.260 1.348 0,655 0, 206 0.107

40 86. 768 24,183 9. 426 3,971 2.438 1. 417 0.675 0,298 0.105

45 134,872 31.7127 10, 686 4, 387 2.631 1,417 0.635 0, 280 0.101

50 211,738 39, 442 11,550 4 404 2. 540 1,356 0.620 0, 267 0.0896

TABLE 3.3
Correlation coefficient, p (Mn, mn}, between the upper maximum sum, Mn' and the lower
minimum sum, m

n/o -0.040 -0.020 0. 000 0. 040 0,100 0. 200 0. 400 0.800 2.000
2 0. 567 0.570 0.570 0.575 0.575 0.615 0. 568 0.528 0.330
3 0,605 0. 607 0.615 0.612 0.616 0.614 0.595 0,516 0. 250
4 0.621 0.626 0.636 0.634 0.635 0.630 0,596 0,480 0,195
5 0.633 0.636 0,642 0.646 0,650 0. 640 0.580 0. 450 0. 160
6 0.633 0. 641 0.648 0.654 0.657 0.640 0.570 0,410 0.135
7 0.635 0.654 0,650 0.657 0.658 0. 640 0.553 0.392 0.118
8 0. 645 0. 650 0.664 0.667 0.662 0.630 0.526 0.356 0.095
9 0.640 0.654 0. 660 0.669 0. 666 0,627 0,511 0. 335 0.080

10 0.640 0.656 0. 665 0.670 0,664 0.614 0.494 0.315 0,080

12 0.640 0.657 0.662 0.670 0.654 0.588 0. 448 0.272 0. 060

14 0.635 0.656 0.670 0.673 0.648 0. 560 0.410 0. 247 0,040

16 0.8635 0.655 0.670 0,676 0. 641 0. 544 0.380 0,222 0.040

18 0.632 0.654 0.672 0.675 0.630 0,518 0. 360 0.207 0.035

20 0.617 0.662 0.674 0.678 0.632 0,500 0.342 0,200 0,025

25 0.603 0. 646 0.682 0.680 0,605 0, 450 0.285 0. 156 0.005

30 0,588 0, 646 0.680 0, 665 0,550 0.400 0.260 0,146 0,020

35 0.573 0. 646 0.694 0.662 0.548 0.375 0.235 0,134 0.030

40 0.536 0.620 0.678 0.648 0.500 0.320 0,181 0.096 0.020

45 0,522 0.610 0.675 0.622 0, 455 0.300 0.190 0.100 0.020

50 0,522 0.614 0.692 0.635 0.455 0.300 0,185 0.108 0. 040
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CHAPTER V

CONCILUSIONS

The following conclusions are based on the
analysis of the range when the output is linearly de-
pendent on the cumulative sum:

(1) For a # 0, it is practically impossible
to derive a general theoretical expression for the
range distributions or their moments even for very
small values of n, such as 2 or 3.

(2) The agreement between results obtained
by the data generation method on a digital computer
and the theory derived in this study, indicates that
the hypotheses tested in the development of theory
are confirmed.

(3) Probability density functions of the cumu-
lative sum at the time t become approximately sta-
tionary for t > 2,3/a.

(4) Equations 1.61 and 1,62 gives the mean
range and the variance of range, respectively. They
are derived under the hypothesis that the mean range
and the variance of range depend only on the variance
of the cumulative sum at the time t for a given o.
As o tends to zero the mean range tends to the same
expression as it is found by Anis and Lloyd and the
variance tends to the same expression as derived by
Feller.

28

(5) The probability density function for the
range for t > 5/ is approximately normal, with the
mean as shown in fig. 2.5 and the variance as shown
in fig. 2.7.

(6) The general expression for the correlg-
tion coefficients between the maximum surplus (v )

and the maximum deficit (mn) of the cumulative sy, 4
is related to the variance of Rn’ but the values of

these correlation coefficients are obtained on a digita)
computer by the data generation method.

(7) The mean range and the variance of
range decrease rapidly with an increase of a, while
the variance of the output increases with an increage
of o, .

(8) The variance of the basic input variable
is by far the most important parameter which affectg
the characteristics of range, surplus and deficit for
given values of parameters o and n.
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