WIND-TUNNEL INVESTIGATION OF THE

RUCK-A-CHUCKY SUSPENSION BRIDGE

by

J. E. Cermak*, B. Bienkiewicz** and J. A. Peterka***

for

T. Y. Lin International 315 Bay St. San Francisco, CA 94133

Fluid Dynamics and Diffusion Laboratory College of Engineering Colorado State University Fort Collins, Colorado 80523

* Director, Fluid Dynamics and Diffusion Laboratory.

** Research Assistant, Fluid Mechanics and Wind Engineering Program, Department of Civil Engineering.

*** Associate Professor, Fluid Mechanics and Wind Engineering Program Department of Civil Engineering.

July 1977

CER77-78JEC-BB-JAP11

RUCK-A-CHUCKY BRIDGE

ACKNOWLEDGMENTS

Support for this study was provided by T. Y. Lin International, Construction of the section bridge model was accomplished by personnel of the Engineering Research Center Machine Shop. Mr. James A. Garrison made motion and still pictures of flow visualization. Data collection was facilitated by the assistance of Mr. Don Patzer.

Advice on formulation of the testing program and initial design of the model by Dr. R. H. Scanlan, Princeton University, and Mr. H. R. Bosch, Fairbank Research Laboratory, U.S. Federal Highway Administration, was very helpful.

ABSTRACT

A section model of the proposed Ruck-A-Chucky Bridge and a topographic model of its site were used in the wind tunnel study. Freely oscillating section models of the original and modified bridge decks were applied to investigate aerodynamic derivatives. Steady drag, lift and pitching moment were measured for the rigidly supported model.

Wind parameters (velocity profiles and turbulence characteristics) for the bridge site were measured on the topographic model.

Flow visualization for both the section and topographic model was used to determine nature of the flow field and detect regions of separation and vortex formation.

The aerodynamic derivatives indicate stable behavior of the proposed bridge decks, although the smooth bridge deck (without fences and railings) shows slight coupling between flexural and torsional modes.

Further analysis for the entire bridge, using the wind tunnel derived aerodynamic coefficients, is necessary to predict its overall aerodynamic stability.

ii

TABLE OF CONTENTS

Chapter	Pa	ige
	LIST OF SYMBOLS	
	LIST OF FIGURES	i
	LIST OF TABLES	iii
1	INTRODUCTION	1
2	EXPERIMENTAL CONFIGURATIONS	3
	 2.1 Wind-Tunnel Facility. 2.2 General Assumptions 2.3 Model Scaling 2.4 Some Model Details. 	3 3 3 5
3	TESTING PROCEDURES	5
	3.1 Aerodynamic Derivatives	5 5
4	INSTRUMENTATION	7
	 4.1 Model Arrangement for Measurement of Aerodynamic Response	7
5	DATA ACQUISITION AND RESULTS	3
	5.1 Aerodynamic Derivatives 8 5.2 Drag, Lift and Moment Coefficients 1	3 . 0
6	FLOW VISUALIZATION	.2
7	CONCLUSIONS	.3
8	REFERENCES	.4
9	FIGURES	.5
10	TABLES 4	7
11	APPENDICES	1
	A. Aerodynamic Characteristics of Bridge Deck	2

Chapter

	A.1	Aerodynamic Derivatives for
		Modified Bridge Deck 53
	A.2	Aerodynamic Derivatives for
		Original Bridge Deck 92
	A.3	Aerodynamic Derivatives for
		Smooth Bridge Deck
	A.4	Typical Results before and after
		Smoothing
Β.	Wind	Characteristics of Bridge Site 155
		150
	B.1	Topographic Model
	B.2	Vertical Profiles of Mean Velocity
		and Turbulence
	B.3	Turbulence Spectra

Page

LIST OF SYMBOLS

Symbol	Description
λ_{L}	geometrical scale
$\lambda_{\mathbf{v}}$	velocity scale
U	mean velocity
Ν	frequency, cps.
δ _n	logarithmic decrement of damping for n cycles
A _n	amplitude of motion after n cycles
Ao	initial amplitude of motion
ζ	damping ratioactual/critical
n	number of cycles
a	decay coefficient
A _i , H _j	aerodynamic derivative (i = 2,3, j = 1)
$ζ_α$ (ζ _h)	damping ratio for angular (vertical) degree of freedom
$\omega_{\alpha} (\omega_h)$	circular frequency for undamped oscillations in angular (vertical) mode
A _i , H _j	nondimensional aerodynamic derivative $(i = 2,3, j = 1)$
I	deck moment of inertia about c.g. per unit span
m	deck mass per unit span
ρ	mass density of air
В	deck width
ω	net circular frequency
$F_{L}(F_{D})$	steady lift (drag) force
М	steady pitching moment
$C_{L}(C_{D})[C_{M}]$	lift (drag) [moment] coefficient per unit span
S	projected crosswind area
L(h)	deck length (depth)

v

LIST OF FIGURES

Figure	Page	e
1	Industrial Aerodynamic Wind Tunnel 16	,
2	Plan View of Ruck-A-Chucky Bridge Deck 17	
3	Section Model of Bridge	1
4	Fundamental Bending Bridge Mode	
5	Fundamental Torsional Bridge Mode	
6	End Plates	
7	General View of Model and Supporting Frame 22	
8	Model Bridge Decks	
9	Details of Fences	
10	Experimental Configurations	
11	Arrangement for Aerodynamic Measurements	
12	Strain Transducer	
13	Calibration for Aerodynamic Measurements (Vertical Mode)	
14	Spring Stabilizer	
15	Lift-Force Calibration	
16	Drag-Force Transducer	
17	Arrangement for Drag-Force Measurements	
18	Drag-Force Calibration	
19	Typical Records of Model Oscillations (Vertical Motion)	
20	Smooth Deck Model	
21	Drag Coefficient (versus Angle of Attack)	
22	Lift Coefficient (versus Angle of Attack)	

Figure			Page
23	Moment Coefficient (versus Angle of Attack)		38
24	Flow Visualization; Still ModelTrailing Edge		39
25	Flow Visualization; Still ModelTrailing Edge	•	40
26	Flow Visualization; Still ModelLower Surface		41
27	Flow Visualization; Still ModelLeading Edge		42
28	Flow Visualization; Still ModelUpper Surface		43
29	Flow Visualization; Still ModelWake behind Model		44
30	Flow Visualization; Model Oscillating in Vertical ModeTrailing Edge		45
31	Flow Visualization; Model Oscillating in Vertical ModeWake behind Model		46

LIST OF TABLES

Table	Pa	.ge
1	Parameters for Prototype and "Exact" Model	48
2	Parameters for Actual Models	49
3	Motion-Picture Scene Guide	50

1. INTRODUCTION

Wind loading is a very important factor in an analysis of long-span suspension bridges. Wind characteristics depend on a site and are affected by geographical latitude, topography and location relative to large bodies of water. A bridge response is governed by its structural properties and geometry. Interaction between wind loading and structure response presents an aeroelastic problem. Its analysis cannot be conducted in a purely analytical way and some experimental work is needed. Physical modeling in wind tunnels fulfills a gap between existing theoretical models and techniques necessary to solve complex practical problems. Aerodynamic analysis of suspension bridges represents one of them.

A wind-engineering study, reported herein, has been performed for the proposed Ruck-A-Chucky Bridge, California. The main purpose of this work was to find--by means of modeling in a wind tunnel-aerodynamic derivatives (of self-excited motions) for the proposed bridge decks.

A freely oscillating, mechanically sprung, section model (a short length of the bridge deck between end plates) was used. An approach developed by Scanlan (1-5) was adopted to obtain dynamic characteristics of the bridge.

Scales of turbulence usually realized in wind tunnels imply that the model scales should be very small for bridges in order for the ratio of the turbulence integral scale to deck width to be equal to prototype values. Since a large geometrical scale (1:40) was selected for the Ruck-A-Chucky Bridge section model, laminar flow with constant wind velocity was used in accordance with common procedure. Although recent work by Lin (6) indicates influence of the free-stream turbulence upon the aerodynamic derivatives, section-model testing under laminar flow may generally be considered to give conservative results, Scanlan (4).

The aerodynamic derivatives, defined by Scanlan (3), were obtained for the original and slightly modified bridge decks. Steady drag, lift and pitching moment were measured for the rigidly supported model.

Wind parameters (velocity profiles and turbulence characteristics) for the bridge site were measured on the topographic (1:1920 geometrical scale) model.

Flow visualization for both the section and topographic model as well as direct observation of the section-model dynamic behavior completed the presented wind tunnel study.

The main part of this report is devoted to the section-model investigations. Experimental configurations, testing procedures, instrumentation and data acquisition are presented below. In Appendix A, detailed results referring to aerodynamic characteristics of bridge decks for different configurations is collected. A brief description of testing procedures and results for the topographic model tests is given in Appendix B.

2. EXPERIMENTAL CONFIGURATIONS

2.1 Wind Tunnel Facility

The experiments reported herein were conducted in the Industrial Aerodynamics Wind Tunnel located in the Fluid Dynamics and Diffusion Laboratory at Colorado State University.

The Industrial Aerodynamics Wind Tunnel shown in Figure 1 is a closed circuit facility driven by a variable-pitch propeller. The test section is nominally 6 ft square and approximately 62 ft long with flow entering through a contraction having a 4-to-1 contraction ratio. The mean velocity is adjustable continuously from 1 to 65 fps.

2.2 General Assumptions

The section model is geometrically and dynamically similar to a short section of the prototype bridge deck. Although the Ruck-A-Chucky Bridge as shown by Figure 2 is curved in a plane, a straight section was modeled since it represents a length of the whole bridge, small relative to the radius of curvature. Wind perpendicular to the model centerline was assumed to be the most critical for stability. The model was constructed in such a way that an angle of attack could be changed from -6 to +6 degrees. Since laminar flow was assumed, the model together with a supporting frame, were placed at the test section entrance of the wind tunnel as shown in Figure 1 where the turbulence intensity is very low and scales are small compared to the bridge section width.

2.3 Model Scaling

A section of the bridge shown in Figure 3 was modeled at a geometrical scale $\lambda_{\rm L}$ of 1:40. The velocity scale $\lambda_{\rm v}$, according to

the Froude number equality for the model and a prototype is given by the following relationship:

$$\lambda_{\rm v} = \lambda_{\rm L}^{1/2}$$

The mass scale λ_m implied by the geometrical scale is

$$\lambda_{\rm m} = \lambda_{\rm L}^3$$

Elastic properties of the model (represented by supporting springs) were calculated on the basis of a reduced velocity equivalence

$$\left(\frac{U}{NB}\right)_{model} = \left(\frac{U}{NB}\right)_{prototype}$$

U = mean velocity, N = frequency in Hertz, and B = deck width. where In the previous dynamic calculations for the prototype bridge, the first mode shown in Figure 4 was used for vertical motion and the sixth mode shown in Figure 5 for torsional (angular) motion--T. Y. Lin (7). Values of particular parameters for the prototype and the "exact" model are given in Table 1. These "exact" values are compared with those actually achieved for the model (the original, modified and "smooth" bridge decks). The comparative values are given in Table 2 and show a large discrepancy between the "exact" and realized frequency for angular motion. However, as shown by Scanlan (5) such a difference is permissible and does not affect conclusions on stability. No attempt was undertaken to duplicate a particular value of prototype damping. However, the model was constructed to have a damping ratio lower than is estimated for full-scale suspension bridges.

2.4 Some Model Details

The section model was made of a dense styrofoam core bonded to a thin aluminum skin. Almost all structural elements were constructed of aluminum. The end plates were composed of two materials: magnesium (the smaller plates), and balsa wood (the larger, external plates), as shown in Figures 6(a) and 6(b) respectively.

The suspension system shown in Figure 7 consisted of supporting beams, pre-tensioned coil springs, strain gauge transducers and turnbuckles attached to the rigid frame. This frame was dynamically isolated from wind-tunnel vibrations. The strain-gauge transducers for measurement of vertical and torsional motion are described in section 4.1. The section model was constructed in such a way that it was possible to modify the bridge deck geometry by replacing bridge deck fairings, fences and railings. Details of the deck configurations studied are given by Figures 8 and 9.

3. TESTING PROCEDURES

3.1 Aerodynamic Derivatives

The basic parameters involved in aerodynamic derivative calculations are damping and frequency of the freely oscillating model. These two parameters may be calculated from time-history records of the model vibrating respectively in a vertical and angular mode without coupling. In the case of coupling between these two modes a phase shift between them is an additional parameter that can be also calculated from the records of motion decay.

Since no coupling (except slight coupling for the "smooth" model) was observed during experiments with the Ruck-A-Chucky Bridge section model, aerodynamic coefficients were calculated only for uncoupled motions. For a vertical (angular) motion the model was released from its initial vertical (angular) displacement and its free damped oscillations were recorded. Experiments were repeated at different wind velocities for the bridge decks shown in Figure 8 and model configurations shown in Figure 10.

3.2 Drag, Lift and Pitching Moment

During drag, lift and pitching moment measurements the suspension system was modified and the model was rigidly supported. Data taken were averaged and drag, lift and moment coefficients were computed. Experiments were performed for the modified bridge deck (c.f. Figure 8) in a range of an angle of attack from -3 to +3 degrees. Measurements were repeated for three different wind velocities to determine if these coefficients were Reynolds number dependent.

4. INSTRUMENTATION

4.1 Model Arrangement for Measurement of Aerodynamic Response

The two strain-gauge systems shown in Figure 11 were used to detect a vertical and an angular motion. The signals from both sides of the model were averaged. By this means the influence of rolling motion of the model (rotation about a model axis of symmetry parallel to the air stream), observed in some range of wind velocity, was reduced. Amplified signals from the strain-gauge bridges were recorded by strip recorders. The strain gauges were mounted on channels as indicated by Figure 12 to eliminate an influence of spring torsion upon strain readings. The calibration of both the strain-gauge systems indicated a linear relationship between input and output. A typical example of the calibration--for vertical motion--is shown in Figure 13.

4.2 <u>Model Arrangement for Measurement of Drag, Lift and</u> Pitching Moment

The same strain-gauge systems used for aerodynamic response measurements were employed for lift force and pitching moment measurements. For these measurements the model was rigidly supported by attaching stiff rods to the suspension springs as indicated in Figure 14. As an example, a calibration curve for the lift force is shown in Figure 15. Lift force and pitching moment were measured at the same time. The special support for drag-force measurements is shown in Figure 16 with the associated strain-gauge wiring given in Figure 17. As well as for the lift and moment, only averaged steady values of the drag force were obtained, from which nondimensional coefficients were calculated. The calibration for the drag force is presented in Figure 18.

5. DATA ACQUISITION AND RESULTS

5.1 Aerodynamic Derivatives

Time-history records of motion (typical records for different velocities are shown in Figure 19) were used to calculate aerodynamic derivatives. Each record was divided into three sections. For each section logarithmic decrement of damping for n cycles

$$\delta_n = \ln \left(\frac{A}{A_0}\right)$$

where A_n = amplitude of motion after n cycles, A_o = initial amplitude of motion, and the ratio of actual to critical damping (damping ratio)

$$\zeta = \frac{1}{\sqrt{1 + \left(\frac{2\pi n}{\delta_n}\right)^2}}$$

were calculated. Mean values of δ_n , ζ (taken over mentioned above three record sections) were employed. The aerodynamic derivatives are given by the following formulas for the vertical deflection h and the torsional rotation α as formulated by Scanlan (3):

$$\ddot{h} + 2\zeta_h \omega_h \dot{h} + \omega_h^2 h = H_1 \dot{h} + H_2 \dot{\alpha} + H_3 \alpha$$

$$\ddot{\alpha} + 2\zeta_{\alpha} \omega_{\alpha}^{\dagger} \dot{\alpha} + \omega_{\alpha}^{2} \alpha = A_{1}\dot{h} + A_{2}\dot{\alpha} + A_{3}\alpha.$$

When the motion is uncoupled, stability (or instability) can be established by determination of the aerodynamic derivatives H_1 , A_2 and A_3 . These three coefficients are related to physical properties of the system as follows:

$$A_{2} = 2 (a + \zeta_{\alpha} \cdot \omega_{\alpha}) ,$$

$$A_{3} = \omega_{\alpha}^{2} - \omega^{2} - a^{2} \text{ and}$$

$$H_{1} = 2(a + \zeta_{h} \cdot \omega_{h}) .$$

In these expressions

$$a = -\zeta \omega_{i} \qquad (i = \alpha, h)$$

$$\omega = \omega_{i} \sqrt{\frac{1 - \zeta^{2}}{1 - \zeta^{2}}} \qquad (i = \alpha, h)$$

 ω_i = circular frequency for undamped oscillations,

()_{α} = quantity referring to angular motion in still air, and ()_h = quantity referring to vertical motion in still air.

Their nondimensional counterparts are defined by Scanlan (3) as follows:

$$A_2^* = \frac{A_2 \cdot I}{\rho \cdot B^4 \cdot \omega} ,$$

$$A_3^* = \frac{A_3 \cdot I}{\rho \cdot B^4 \cdot \omega^2}$$
 and

$$H_{1}^{*} = \frac{H_{1} \cdot m}{\rho B^{2} \omega}$$

where B = deck width, I = deck moment of inertia about c.g. per unit span, m = deck mass per unit span, ρ = density of air, and ω = circular frequency. The nondimensional derivatives A_2^* , A_3^* , H_1^* (denoted as A2S, A3S, H1S) were evaluated for the different bridge decks shown in Figure 8 and the different configurations illustrated in Figure 10. Final results for the modified, original and smooth bridge decks are collected respectively in Appendices A.1, A.2 and A.3. They were slightly smoothed to reduce scattering caused by imperfect damping evaluation. In Appendix A.4, a typical aerodynamic derivative before and after smoothing is shown as an example.

5.2 Drag, Lift and Moment Coefficients

The drag force, lift force and moment were nondimensionalized on the basis of a projected crosswind area of the bridge model as follows:

$$C_{i} = \frac{F_{i}}{1/2\rho U^{2}S} \qquad (i = L,D) \text{ and}$$

$$C_{\rm M} = \frac{M}{1/2\rho U^2 SB}$$

where $F_D(F_L) = drag$ (lift) force,

M = pitching moment,

 $C_{D}(C_{L})[C_{M}]$ = steady drag (lift) [moment] coefficient,

S = Lh = projected crosswind area (based on smooth deck depth as defined by Fig. 20),

- B = deck width, and
- ρ = mass density of air.

Measurements were performed for the modified bridge deck (see Fig. 8) for angles of attack in a range from -3 to +3 degrees. They were repeated for three different wind velocities. The Reynolds number based on the bridge deck width varied from 1.9 to 3.4×10^5 . For each

configuration a series of 10 single measurements was taken. The mean values of these measurements were the basis for calculations of drag, lift and moment coefficients. Their final values (c.f. Figs. 21-23) are averages of the values for different Reynolds numbers. Previous investigations--Scanlan (4)--have shown that the drag coefficient becomes independent of Reynolds number at the values for this investigation.

It was observed during experiments that drag force, lift force and moment forces were highly unsteady. It is obvious that averaging process over 10 values series is only a rough estimation of an expectation. Therefore drag, lift and moment coefficients (shown in Figs. 21-23) should be considered as an approximation of their true steady values.

6. FLOW VISUALIZATION

In an effort to determine the nature of flow over the bridge deck smoke (titanium chloride) was introduced at several critical locations near and on the model. A permanent record of the flow for study of the relationships between flow characteristics and model response was obtained by both still and motion-picture photography.

Flow visualization was performed for the most part on the modified bridge deck shown in Figure 8 although some visualizations were repeated for the smooth deck (configuration B, 0° angle of attack). The representative configuration B (c.f. Fig. 10) was chosen for different angles of attack $(-3^{\circ}, 0^{\circ}, +3^{\circ})$ with the model rigidly supported and with the model freely oscillating. For the oscillating bridge deck the smoke source was attached to the model.

Both still and movie pictures taken during the flow visualization are a supplemental part of this report. Figures 24-29 show features of flow patterns around the still bridge (modified) deck. Vortex formation at the leading and trailing edge as well as flow separation along upper and lower surface of the deck can be observed. The Figures 30-31 were taken for the model oscillating in a vortical mode. These photographs show clearly, vortex formation at the trailing edge (Fig. 30) and a wake behind the model (Fig. 31). More information regarding flow characteristics of the oscillating as well as the fixed model is given by the movie pictures. A 470 ft, 13 minutes film is included as a part of this report. A listing of contents of the film is given in Table 3. The motion pictures reveal more clearly the unsteady character of airflow around the bridge deck both in the case of the still and oscillating model. Again, almost steady vortex shedding can be observed.

7. CONCLUSIONS

1. No instability for the oscillating section model (all the bridge decks) was observed in a range of reduced velocity from 0 to 6.

2. The original bridge deck was unstable (flutter) at very high reduced velocity (V/NB \approx 9.5).

3. Variation of the aerodynamic coefficient A_2^* with reduced velocity for all cases confirms Conclusion 1. However, further analytical analysis is necessary for predicting the full-bridge aerodynamic response.

4. No coupling between the vertical and angular modes was observed in case of the modified and original bridge deck. Slight coupling was observed for the smooth bridge deck.

5. Analysis of aerodynamic derivatives indicates a possibility of vortex-shedding induced vibrations at low wind speed.

6. Drag force, lift force, and pitching moment (for modified bridge deck) are highly unsteady. The steady nondimensional values for lift and pitching moment show higher dependence on an angle of attack than for drag which can be roughly assumed constant for angles of attack in the range -3 to 3 degrees.

- 8. REFERENCES
- Sabzevari, A., Scanlan, R. H., "Aerodynamic Instability of Suspension Bridges," Jnl. Eng. Mech. Div., ASCE, vol. 94, No. EM2, April 1968.
- Scanlan, R. H., Sabzevari, A., "Experimental Aerodynamic Coefficient in the Analytical Study of Suspension Bridge Flutter," Jnl. Mech. Eng. Science, Institution of Mech. Engrs., London, Vol. 11, No. 3, 1969.
- Scanlan, R. H., Tomko, J. J., "Airfoil and Bridge Deck Flutter Derivatives," Jnl. Eng. Mech. Div., ASCE, Vol. 97, No. EM6, December, 1971.
- Scanlan, R. H., "Recent Methods in the Application of Test Results to the Wind Design of Long, Suspended-Span Bridges," Report No. FHWA - RD 75-115, October, 1975.
- Scanlan, R. H., "Theory of the Wind Analysis of Long-Span Bridges Based on Data Obtainable from Section Model Tests, Proc. of the 4th Int'l. Conf. Wind Effects on Buildings and Structures," London, 1975.
- 6. Lin, W. H., "Forced and Self-Excited Responses of a Bluff Structure in a Turbulent Wind," Doctoral Dissertation, Princeton University, December, 1976.
- 7. Lin, T. Y., International "Ruck-A-Chucky Steel Bridge, General Information," (Unpublished) September, 1976.

9. FIGURES

Fig. 1. Industrial Aerodynamic Wind Tunnel

Fig. 2. Plan View of Ruck-A-Chucky Bridge Deck

Fig. 3. Section Model of Bridge

Fig. 4. Fundamental Bending Bridge Mode

6th Mode f=0.9840 cps

Fig. 5. Fundamental Torsional Bridge Mode

(a)

(b)

Fig. 6. End Plates

(a)

Fig. 7. General View of Model and Supporting Frame

Fig. 8. Model Bridge Decks

Fig. 9. Details of Fences

Fig. 10. Experimental Configurations

Fig. 11. Arrangement for Aerodynamic Measurements

Fig. 13. Calibration for Aerodynamic Measurements (Vertical Mode)

Fig. 15. Lift-Force Calibration

Fig. 18. Drag-Force Calibration

Fig. 19. Typical Records of Model Oscillations (Vertical Motion)

Fig. 20. Smooth Deck Model

Fig. 22. Lift Coefficient (versus Angle of Attack)

Fig. 23. Moment Coefficient (versus Angle of Attack)

Fig. 24. Flow Visualization; Still Model--Trailing Edge

(α=+3°)

(a=0°)

(α=-3°)

Fig. 25. Flow Visualization; Still Model--Trailing Edge

(a=+3°)

(α=-3°)

Fig. 26. Flow Visualization; Still Model--Lower Surface

Fig. 27. Flow Visualization; Still Model--Leading Edge

(a=-3°)

Fig. 28. Flow Visualization; Still model--Upper Surface

Fig. 29. Flow Visualization; Still Model--Wake behind Model

(a= 0°)

Fig. 30. Flow Visualization; Model Oscillating in Vertical Mode--Trailing Edge

10. TABLES

	Prototype (original deck)	"Exact" model (original deck)
Width (B)	48 ft - 10 in.	14.65 in.
Depth (h)	8 ft - 0 in.	2.40 in.
Mass per unit span (correspond. to total dead load)	$\frac{7.29 \times 10^3}{32.17} = 226.61 \frac{\text{slugs}}{\text{ft}}$	0.1416 <u>slugs</u> ft
Frequency of vertical motion	1st mode 0.2940 cps	1.859 cps
Frequency of torsional motion	6th mode 0.9840 cps	6.223 cps

Table 1. Parameters for Prototype and "Exact" Model

Table 2. Parameters for Actual Models

	Original Deck	Modified Deck	Smooth Deck
Deck width (B)	1.3375 ft (16.05")	1.4508 ft (17.45")	1.4508 ft (17.45")
Mass per unit span	0.1491 slugs/ft	0.1560 slugs/ft	0.1507 slugs/ft
Mass moment of inertia per unit span	$0.0942 \frac{\text{slugs ft}^2}{\text{ft}}$	$0.1028 \frac{\text{slugs ft}^2}{\text{ft}}$	$0.0969 \frac{\text{slugs ft}^2}{\text{ft}}$
Frequency for vert mot. (still air)	1.788 cps	1.748 cps	1.778 cps
Frequency for tors. mot. (still air)	4.310 cps	4.130 cps	4.250 cps
Model length	5.6667 ft	5.6667 ft	5.6667 ft
Average air density	0.0019 $\frac{\text{slugs}}{\text{ft}^3}$	$0.0019 \frac{\text{slugs}}{\text{ft}^3}$	$0.0018 \frac{\text{slugs}}{\text{ft}^3}$
Model scale	1:40	1:40	1:40

			-
Scene	Configuration	Model_	Angle of Attack
1	MI B	still	$\alpha = 0^{\circ}$
2	MII B	still	$\alpha = +3^{\circ}$
3	MIII B	still	$\alpha = -3^{\circ}$
4	MII BV	vertical oscillations	$\alpha = +3^{\circ}$
5	MIII BV	vertical oscillations	$\alpha = -3^{\circ}$
6	MI BV	vertical oscillations	$\alpha = 0^{\circ}$
	1		

Table 3. Motion-Picture Scene Guide

Wind velocity	10 fps
Movie length	470 ft
Running time	(24 ft/sec) 13 min.

11. APPENDICES

A. AERODYNAMIC CHARACTERISTICS

APPENDIX A.1

Aerodynamic Derivatives for Modified Bridge Deck

CONFIGURATION MIA-T

A2S

CUNFIGURATION MIA-T

INDEX	V/NB	A25	INDEX	V/NB	A25	INDEX	V/NB	A25
(1) (2) (3) (4) (6) (7) (8) (7) (10) (10) (12) (12) (13) (14)	0. 94791 1.3408 1.4958 2.1196 2.3219 2.5435 2.6811 2.8437 3.1439 3.2837 3.3914	2.42901E-04 -7.84491E-03 -2.03550E-02 -1.09436E-02 4.21297E-03 1.29787E-02 1.47288E-02 9.41403E-03 3.01496E-03 -6.84518E-03 -1.86918E-02 -2.87616E-02 -3.55534E-02 -4.10068E-02	(15) (16) (17) (18) (20) (21) (22) (23) (22) (23) (24) (25) (26) (27) (28)	3.5468 3.6713 3.7917 4.0218 4.1102 4.23932 4.32322 4.4462 4.5465 4.5465 4.7396 4.8335 4.9438	-4.93664E-02 -5.87988E-02 -7.04603E-02 -8.3707E-02 -8.99091E-02 -9.13433E-02 -8.88562E-02 -8.865703E-02 -8.16617E-02 -7.49678E-02 -7.49678E-02 -6.86944E-02 -6.86944E-02 -6.84399E-02 -7.05302E-02	(29) (30) (32) (32) (33) (34) (36) (36) (37) (38) (40) (40) (41) (42) (42)	5.0160 5.1048 5.19773 5.2624 6.2361 6.2361 6.59361 8.69964 9.14203 9.63058 10.506	-7.33232E-02 -7.79566E-02 -8.21479E-02 -8.45984E-02 -8.55533E-02 -8.67675E-02 -13006 -10648 -14553 -15389 -17568 -24008 -25001 -30330 -34192

.

57

í.

A35

CUNFIGURATION MIA-T

CONFIGURATION MIA-T

INDEX	V/NR	SEA	INDEX	V/NB	A35	INDEX	V/NB	A35
(1) (2) (3) (5) (5) (7) (8) (10) (12) (12) (13) (14)	0. .94791 1.34066 1.6418 1.8958 2.1196 2.3219 2.5435 2.6431 2.8437 2.9976 3.12837 3.3914	0. 3.56645E-04 3.56645E-04 3.56645E-04 3.56645E-04 3.56645E-04 3.56645E-04 3.56645E-04 3.56645E-04 3.56645E-04 3.56645E-04 3.56645E-04 3.56645E-04 3.56645E-04 3.56645E-04 3.56645E-04 3.56645E-04 3.56645E-04 3.56645E-04	(15) (16) (17) (18) (20) (221) (221) (223) (224) (224) (225) (225) (225) (227) (227)	3.5468 3.67137 3.9084 4.0218 4.123932 4.23932 4.23932 4.23932 4.4461 4.562496 4.562496 4.83355 4.9438	3.56645E-04 3.56645E-04 3.56645E-04 3.56645E-04 3.56645E-04 3.56645E-04 3.56645E-04 3.56645E-04 3.56645E-04 3.56645E-04 3.56645E-04 3.56645E-04 3.56645E-04 3.56645E-04 3.56645E-04	(29) (31) (32) (32) (32) (32) (32) (32) (32) (32	5.0160 5.19729 5.2723 5.24450 6.9141 8.59994 8.63623 9.63058 9.60058 10.506	94 94 94 94 94 94 94 94 94 94

A2S

CONFIGURATION MIB-T

INDEX	V/NB	A25	INDEX	V/NB	A25	INDEX	V/NB	A25
$\begin{pmatrix} 1 \\ 2 \\ 3 \\ -3 \\ -5 \\ -6 \\ -6 \\ -7 \\ -8 \\ -9 \\ -11 \\ -12$	0. 94791 1.2718 1.6418 1.9426 2.1199 2.5079 2.50811 2.8437 2.9976 3.2837 3.4177	-9.53020E-04 -6.84694E-03 -6.14787E-03 -1.75098E-03 2.18203E-03 3.81756E-03 3.57249E-03 1.65736E-03 -7.70244E-04 -3.40717E-03 -6.2177E-03 -9.24727E-03 -1.26311E-02	(15) (16) (17) (18) (20) (21) (22) (22) (22) (23) (24) (25) (26) (28)	3.5468 3.67137 3.79084 4.02217 4.23192 4.2342 4.34432 4.5461 4.64397 4.8395 4.8356	-1.63451E-02 -2.02370E-02 -2.41672E-02 -3.22029E-02 -3.63259E-02 -4.04453E-02 -4.04453E-02 -4.04453E-02 -4.04453E-02 -5.15570E-02 -5.15570E-02 -5.66363E-02 -5.84555E-02 -5.84555E-02 -6.00784E-02	(29) (30) (32) (32) (334) (35) (35) (35) (37) (38) (37) (38) (40) (42) (42) (42) (43)	5.0160 5.10480 5.12773 5.344561 5.44561 6.91432 8.6358863 8.6358863 8.65516 9.60.75 10.515	-6.16733E-02 -6.33535E-02 -6.52059E-02 -6.737659E-02 -7.29805E-02 -7.211349 -14508 -15277 -15377 -15377 -29719 -358499 -340632

A3S
CONFIGURATION MIB-T

INDEX	V/NR	435	INDEX	V/NB	A35	INDEX	V/NB	A35
$ \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 10 \\ 10 \\ 10 \\ 10 \\ 11 \\ 12 \\ 14 \\ 14 \\ 14 \\ 14 \\ 14 \\ 14$	0.94791 1.2718 1.6418 1.6426 2.1196 2.3219 2.5079 2.6811 2.8437 2.9976 3.28437 3.2837 3.4177	6.61301E-14 4.11372E-04 4.11372E-04 4.11372E-04 4.11372E-04 4.11372E-04 4.11372E-04 4.11372E-04 4.11372E-04 4.11372E-04 4.11372E-04 4.11372E-04 4.11372E-04 4.11372E-04 4.11372E-04 4.11372E-04 4.11372E-04	(15) (16) (17) (17) (120) (222) (222) (2223) (22	3.5468 3.6713 3.7917 4.0217 4.1319 4.2392 4.3439 4.5461 4.64397 4.8335 4.9256	4.11372E-04 4.11372E-04 4.11372E-04 4.11372E-04 4.11372E-04 4.11372E-04 4.11372E-04 4.11372E-04 4.11372E-04 4.11372E-04 4.11372E-04 4.11372E-04 4.11372E-04 4.11372E-04 4.11372E-04 4.11372E-04	(29) (31) (32) (32) (332) (332) (335) (336) (336) (336) (339) (41) (42) (42)	5.0160 5.10480 5.2778 5.24451 5.24161 6.9143 7.53683 8.6364 9.6216 9.6216 10.079 10.515	4.11372E-04 4.113

H1S

CONFIGURATION MIA-V

CONFIGURATION MIA-V

INDEX	V/NB	HIS	INDEX	V/NB	HIS	INDEX	V/NB	HIS
(1) (2) (3) (5) (5) (7) (8) (9)	0. 2.4512 3.1646 3.5760 4.3623 5.1031 5.4818 5.9212 6.3302	4.59478E-03 -4.55963E-02 34394 60406 70326 86959 99929 -1.1509 -1.2650	(10) (11) (12) (13) (14) (15) (15) (16) (17) (18)	6.7142 7.0067 7.4236 8.0705 8.3759 8.6114 8.9544 10.013	-1.3728 -1.4792 -1.6267 -1.7174 -1.71988 -1.8820 -1.9406 -2.0521 -2.3819	(19) (21) (223) (223) (224) (225) (226) (226) (227) (229)	10.968 112.669 14.669 16.1682 17.6828 20.4562 21.5422 21.5422 23.8804	-2.4634 -2.9694 -3.15200 -4.5215 -4.7159 -5.2264 -6.52264 -7.47538

H1S

CONFIGURATION MIB-V

INDEX	V/NA	HIS	INDEX	V/NB	HIS	INDEX	V/NB	HIS
$\begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	0. 2.2377 3.0021 4.0030 4.4756 4.9029 5.4820 5.4820 5.4829 6.2504 6.7142	6.66973E-04 9.68529E-02 1.79676E-03 40338 63939 84513 -1.0775 -1.0882 -1.1315 -1.2525	(11) (12) (13) (14) (15) (16) (17) (18) (19) (20)	7.0777 7.4232 7.6890 8.3753 8.6703 8.9542 10.012 10.969 11.848	-1.3825 -1.5065 -1.5905 -1.6743 -1.7871 -1.9456 -2.0132 -2.1111 -2.3850 -2.5284	(21) (22) (23) (24) (25) (26) (27) (28) (27) (28) (30) (31)	12.669 13.438 15.195 16.243 19.598 202.000 23.215 24.210 25.287	-2.9059 -3.0966 -3.5611 -3.6209 -6.3097 -7.1781 -5.5293 -6.2352 -7.3549 -7.3017 -8.7793

A2S

CONFIGURATION MIIA-T

INDEX	V/NB	A25	INDEX	V/NB	A25	INDEX	V/NB	A25
$\begin{pmatrix} 1 \\ 2 \\ 3 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 7 \\ 6 \\ 7 \\ 6 \\ 7 \\ 6 \\ 7 \\ 6 \\ 7 \\ 6 \\ 7 \\ 10 \\ 10 \\ 12 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ $	0. 94793 1.3406 1.6419 1.8959 2.1616 2.3220 2.5080 2.6812 2.8438 2.9976 3.1152	1.42496E-04 -1.59042E-02 -3.6935E-02 -1.60555E-02 -4.94035E-02 -4.940263E-02 -2.94124E-02 -2.94124E-02 -2.94124E-02 -2.43253E-02 -2.43253E-02 -2.69939E-02	(13) (14) (15) (17) (18) (20) (21) (22) (22) (23) (24)	3.2563 3.4178 3.5463 3.7917 3.90818 4.1320 4.23933 4.3260 4.5462	-2.85803E-02 -2.89221E-02 -2.1655E-02 -1.72418E-02 -1.78571E-02 -2.37691E-02 -2.37691E-02 -2.37691E-02 -2.83145E-02 -3.17728E-02 -3.17728E-02 -3.17728E-02 -3.102224E-02 -5.30251E-02	(25) (26) (28) (29) (30) (31) (31) (32) (31) (32) (31) (32) (31) (32) (31) (32) (31) (32) (32) (32) (33) (35) (37) (38)	4.6440 4.73358 4.83252 5.10421 5.276251 5.276251 5.20121 5.20121 6.902121 8.00121	-6.19256E-02 -7.54727E-02 -8.3302E-02 -8.32758E-02 -7.69449E-02 -7.69449E-02 -7.69449E-02 -7.62367E-02 -8.41275E-02 -8.41275E-02 -8.98354E-02 -8.98354E-02 -8.98354E-02 -5.74230E-02 -5.74230E-02

.

A3S

CONFIGURATION MIIA-T

INDEX	V/NB	A J S	INDEX	V/NB	A35	INDEX	V/NB	A3S
(1) (2) (3) (5) (6) (7) (10) (12)	0. .94793 1.3406 1.6419 1.8959 2.1616 2.3220 2.6812 2.6812 2.8438 2.9976 3.1152	0. 8.02116E-04 8.02116E-04 8.02116E-04 8.02116E-04 8.02116E-04 8.02116E-04 8.02116E-04 8.02116E-04 8.02116E-04 8.02116E-04 8.02116E-04 8.02116E-04 8.02116E-04 8.02116E-04	(13) (14) (15) (16) (17) (18) (20) (21) (22) (23) (24)	3.2563 3.4178 3.5468 3.6713 3.7917 3.9084 4.0218 4.1320 4.2393 4.3233 4.4260 4.5462	8.02116E-04 8.02116E-04 8.02116E-04 8.02116E-04 8.02116E-04 8.02116E-04 8.02116E-04 8.02116E-04 8.02116E-04 8.02116E-04 8.02116E-04 8.02116E-04 8.02116E-04	(25) (26) (27) (28) (30) (31) (32) (32) (33) (33) (35) (35) (36) (36) (38)	4.6440 4.7397 4.83368 4.921629 5.10421 5.10421 5.326291 5.326291 6.90121 6.90121 8.0883	8.02116E-04 8.02116E-04 8.02116E-04 8.02116E-04 8.02116E-04 8.02116E-04 8.02116E-04 8.02116E-04 8.02116E-04 8.02116E-04 8.02116E-04 8.02116E-04 8.02116E-04 8.02116E-04

A2S

CONFIGURATION MIB-T

INDEX	V/NB	A25	INDEX	V/NB	A25	INDEX	V/NB	A25
(1) (2) (3) (5) (6) (7) (2) (6) (10) (12) (12) (12) (12)	0. .94791 1.3406 1.6418 1.8958 2.1196 2.3219 2.5079 2.5079 2.68437 2.99769 3.1837 3.4178	2.20477E-04 8.82165E-03 4.86236E-03 2.60095E-03 4.35738E-03 7.16909E-03 1.01661E-02 8.61570E-03 7.84757E-03 6.99654E-03 4.26797E-03 1.13889E-03 -2.19847E-03	(15) (16) (17) (18) (19) (20) (22) (23) (23) (24) (25) (25) (25) (28)	3.5468 3.67137 3.79113 4.03117 4.03122 4.23432 4.23432 4.54461 4.64396 4.53356	-4.71434E-03 -6.64496E-03 -8.66039E-03 -1.08483E-02 -1.26000E-02 -1.55296E-02 -2.54129E-02 -3.54931E-02 -3.54931E-02 -3.75102E-02 -3.65569E-02 -3.41658E-02	(29) (30) (32) (333) (334) (35) (35) (36) (37) (38) (40) (41) (42) (42)	5.0159 5.1047 5.19728 5.34561 6.9140 8.6467 9.6296 8.6467 9.6208 10.513	-3.21061E-02 -3.09583E-02 -3.07264E-02 -3.11179E-02 -3.26397E-02 -6.63902E-02 -6.40621E-02 -7.42001E-02 -7.10549 -112949 -112949 -118310 -113844

.

A3S

CONFIGURATION MIIB-T

INDEX	V/NB	435	INDEX	V/NB	A35	INDEX	V/NB	A35
$(1) \\ (2) \\ (3) \\ (5) \\ (5) \\ (6) \\ (7) \\ (8) \\ (10) \\ (12) \\ (12) \\ (12) \\ (14$	0. .94791 1.3406 1.6418 2.1196 2.3219 2.6071 2.68437 2.9976 3.12837 3.2837 3.4178	0. 5.56756E-04 5	(15) (16) (17) (18) (20) (22) (22)	3.5468 3.67137 3.79113 4.02179 4.123929 4.123929 4.123929 4.123929 4.54619 4.54619 4.546396 4.546396 4.53356	5.56756E-04 5.56756E-04 5.56756E-04 5.56756E-04 5.56756E-04 5.56756E-04 5.56756E-04 5.56756E-04 5.56756E-04 5.56756E-04 5.56756E-04 5.56756E-04 5.56756E-04 5.56756E-04 5.56756E-04 5.56756E-04	(29) (31) (32) (33) (34) (36) (36) (37) (39) (41) (42) (42)	5.0159 5.1047 5.19278 5.34561 6.9140 7.59242 7.59242 8.6467 9.62927 9.62076 10.513	5.56756E-04 5.56756E-04 5.56756E-04 5.56756E-04 5.56756E-04 5.56756E-04 5.56756E-04 5.56756E-04 5.56756E-04 5.56756E-04 5.56756E-04 5.56756E-04 5.56756E-04 5.56756E-04 5.56756E-04 5.56756E-04

H1S

CONFIGURATION MITA-V

INDEX	V/NB	HIS	INDEX	V/NB	HIS	INDEX	V/NB	H15
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)	0. 2.2377 3.1646 4.6030 4.4756 4.9028 5.4817 5.9211 6.3301 6.6392 7.0066	4.15335E-05 7.34110E-02 15197 60072 75942 91967 -1.0818 -1.2102 -1.22064 -1.4844	(12) (13) (14) (15) (16) (17) (18) (18) (19) (20) (22)	7.4918 7.7536 8.0705 8.5749 8.6703 8.9540 9.2854 9.4985 9.4985 9.7072 10.014 10.309	-1.9938 -1.6778 -1.6839 -2.0558 -1.9724 -2.3075 -2.3075 -2.3075 -2.3075 -2.3075 -2.3075	(23) (24) (25) (27) (28) (28) (29) (31) (31) (31) (33)	10.455 10.742 11.017 11.418 11.638 11.6555 12.108 12.473 12.6708	-2.6943 -3.1057 -2.60151 -2.8199 -3.16468 -3.75230 -3.4548 -3.22347

CONFIGURATION MIIB-V

H1S

CONFIGURATION MIIB-V

INDEX	V/NR	H1S	INDEX	V/NB	HIS	INDEX	V/NB	HIS
(1) (2) (3) (4) (5) (5) (7) (8) (9) (10)	0. 2.2377 3.1645 3.8758 4.4756 5.039 5.4817 5.8358 6.3302 6.7144	7.86806E-04 7.15281E-02 -1.0/570E-02 29543 5/249 76908 93127 -1.0500 -1.2291 -1.3640	(11) (12) (13) (14) (15) (15) (16) (17) (18) (19) (20)	7.0777 7.3557 7.7538 8.0706 8.3760 8.3760 8.7290 8.9250 10.012 10.969 11.848	$\begin{array}{c} -1 \cdot 4821 \\ -1 \cdot 5750 \\ -1 \cdot 7233 \\ -1 \cdot 8724 \\ -2 \cdot 0411 \\ -2 \cdot 2078 \\ -2 \cdot 634 \\ -2 \cdot 3031 \\ -2 \cdot 4685 \\ -2 \cdot 6430 \end{array}$	(21) (22) (23) (24) (25) (26) (26) (27) (28) (28) (29) (30)	12.669 14.517 16.155 17.651 19.036 20.319 21.525 22.6877 23.887 24.825	-2.9804 -3.3032 -3.5745 -4.4626 -5.3077 -5.5677 -5.8191 -6.5514 -6.8315 -7.0921

A2S

CONFIGURATION MILIA-T

INDEX	V/NR	A25	INDEX	V/NB	A25	INDEX	V/NB	A25
$\begin{pmatrix} 1 \\ (2) \\ (3) \\ (5) \\ (6) \\ (7) \\ (8) \\ (10) \\ (12) \\ (12) \\ (13) \\ (14) \end{pmatrix}$	0. 94791 1.3406 1.6418 1.8958 2.1219 2.4718 2.6752 2.99769 3.2837 3.4178	-1.45001E-03 -3.89437E-03 -3.89437E-03 -2.86322E-03 -2.86322E-03 -2.11883E-03 -2.2561E-03 -3.41206E-03 -3.41206E-03 -1.6128E-03 -1.05857E-02 -1.51205E-02 -1.51205E-02 -1.86728E-02 -1.86728E-02 -2.14310E-02	(15) (16) (17) (18) (19) (20) (21) (22) (23) (24) (25) (26) (26) (28)	3.5213 3.6957 3.79853 3.99991 4.1180 4.36461 4.36461 4.6588 4.6588 4.6588 4.6588 4.8585 4.8256	-2.36603E-02 -2.76169E-02 -3.21297E-02 -3.21297E-02 -3.48998E-02 -4.02331E-02 -4.38466E-02 -4.38466E-02 -4.58838E-02 -4.58838E-02 -5.09765E-02 -5.61758E-02 -5.88375E-02	(29) (30) (31) (32) (33) (33) (35) (36) (36) (37) (38) (38) (39) (41) (42) (42) (42)	5.0160 5.10420 5.129423 5.2344561 5.344561 6.952994 7.50364561 6.952994 8.6447 8.6495 8.6447 8.64561 6.95364 8.64620 7.5 9.06.515	-6.15585E-02 -6.43407E-02 -7.06370E-02 -7.29594E-02 -7.29594E-02 -7.10536 13720 13720 21031 24370 31174 35126 35126 39332

.

A3S

CONFIGURATION MILLA-T

.

INDEX	V/NB	A 3 5	INDEX	V/NB	A35	INDEX	V/NB	A35
$\begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7$	0. .94791 1.3406 1.6418 1.8958 2.1196 2.3219 2.4718 2.6811 2.8752 2.9976 3.1439 3.2837 3.4178	0. 3.98917E-04 3.98917E-04 3.98917E-04 3.98917E-04 3.98917E-04 3.98917E-04 3.98917E-04 3.98917E-04 3.98917E-04 3.98917E-04 3.98917E-04 3.98917E-04 3.98917E-04 3.98917E-04	(15) (16) (17) (18) (20) (22) (22) (22) (23) (24) (25) (26) (28)	3.5213 3.6957 3.7917 3.8853 3.99901 4.21800 4.21800 4.36461 4.56588 4.56588 4.56588 4.56588 4.5335 4.8335 4.9256	3.98917E-04 3.98917E-04 3.98917E-04 3.98917E-04 3.98917E-04 3.98917E-04 3.98917E-04 3.98917E-04 3.98917E-04 3.98917E-04 3.98917E-04 3.98917E-04 3.98917E-04 3.98917E-04 3.98917E-04 3.98917E-04 3.98917E-04	(29) (30) (31) (32) (33) (34) (35) (36) (36) (37) (38) (38) (38) (38) (41) (42) (42) (42)	5.0160 5.1928 5.1928 5.29428 5.29425 5.4251 6.95247 8.62549 8.64561 6.952497 8.6426 8.64216 8.6275 10.51	3.98917E-04 3.98917E-04 3.98917E-04 3.98917E-04 3.98917E-04 3.98917E-04 3.98917E-04 3.98917E-04 3.98917E-04 3.98917E-04 3.98917E-04 3.98917E-04 3.98917E-04 3.98917E-04

A2S

CONFIGURATION MIIIB-T

INDEX	VINB	A 2 S	INDEX	V/NB	A25	INDEX	V/NB	A25
(1) (2) (3) (4) (5) (7) (8) (10) (10) (11) (12) (13)	0. .94793 1.2718 1.6419 2.1196 2.3220 2.6412 2.6412 2.6412 2.6438 2.9724 3.110 3.1440	6.92132E-06 -1.31431E-02 -3.52589E-02 -2.61484E-02 -3.76373E-02 -2.98403E-02 -3.65874E-02 -3.664034E-02 -3.664034E-02 -4.56885E-02 -4.56885E-02 -4.85670E-02 -4.85077E-02	(15) (16) (17) (20) (21) (22) (22) (24) (24) (26) (26) (27)	3.54718 3.67918 3.799185 4.015371 4.15187 4.21847 4.54663 4.54660 4.673375	-6.78502E-02 -7.00506E-02 -6.38668E-02 -6.42132E-02 -7.25913E-02 -6.53581E-02 -6.49177E-02 -6.49283E-02 -6.49283E-02 -6.79086E-02 -7.888999E-02 -9.38999E-02 -9.38999E-02 -10110 -10427	(29) (30) (31) (32) (33) (34) (36) (36) (37) (38) (38) (40) (40) (42)	5.0162 5.27828 5.27828 5.27828 5.2628 5.42162 6.91422 6.91422 8.6267 9.16267 9.16317 9.16317 10.0884	12758 13660 11863 12634 12634 10664 14043 -7.95482E-02 17499 25893 35362 34727 37372

A3S

CONFIGURATION MIIIB-T

INDEX	VZNB	A 35	INDEX	V/NB	A35	INDEX	V/NB	A35
(1) (2) (3) (4) (5) (7) (8) (10) (12) (13)	0. 94793 1.27119 1.64959 2.11920 2.4712 2.4712 2.4712 2.48431 2.48431 2.84376 3.1724 3.1724 3.1110	6.61301E-14 6.90279E-04 6.90279E-04 6.90279E-04 6.90279E-04 6.90279E-04 6.90279E-04 6.90279E-04 6.90279E-04 6.90279E-04 6.90279E-04 6.90279E-04 6.90279E-04 6.90279E-04 6.90279E-04	(15) (16) (17) (18) (20) (22) (22) (23) (24) (24) (26) (27)	3.5469 3.6714 3.79185 4.92185 4.1537 4.2187 4.2187 4.2462 4.4662 4.6462 4.6462 4.6462 4.6337 5 3375	6.90279E-04 6.90279E-04 6.90279E-04 6.90279E-04 6.90279E-04 6.90279E-04 6.90279E-04 6.90279E-04 6.90279E-04 6.90279E-04 6.90279E-04 6.90279E-04 6.90279E-04 6.90279E-04 6.90279E-04	(29) (30) (31) (32) (33) (34) (35) (36) (37) (38) (38) (40) (41) (41)	5.0162 5.12261 5.276283 5.276288 5.276288 5.27628 6.91442 6.91442 8.62636 7.57757 8.62436 9.63178 9.63178 9.63178 10.0884	6.90279E-04 6.90279E-04 6.90279E-04 6.90279E-04 6.90279E-04 6.90279E-04 6.90279E-04 6.90279E-04 6.90279E-04 6.90279E-04 6.90279E-04 6.90279E-04 6.90279E-04 6.90279E-04

.

HIS

CONFIGURATION MILLA-V

-

INDEX	V/NH	H15	INDEX	V/NB	HIS	INDEX	V/NB	H1S
$\begin{pmatrix} 1 \\ 2 \\ (3) \\ (4) \\ (5) \\ (6) \\ (7) \\ (8) \end{pmatrix}$	0. 2.2377 3.1646 3.8760 4.4757 5.1032 5.4818 6.0054	8.95823E-03 -5.69269E-03 60607 76948 93669 -1.0667 -1.2649	(9) (10) (11) (12) (13) (14) (15) (16)	6.3304 6.7145 7.4233 7.7541 8.1326 8.3763 8.6700 8.9545	-1.3657 -1.4519 -1.6194 -1.7447 -1.8905 -1.9765 -2.0567 -2.1257	(17) (18) (20) (22) (22) (22) (23) (24)	10.013 10.969 11.853 12.671 14.524 16.168 17.661 19.044	-2.3903 -2.6338 -3.1246 -3.372 -4.0607 -4.6582 -5.1882 -5.718

90

H1S

CONFIGURATION MILLA-V

INDEX	V/NB	H1S	INDEX	V/NB	HIS	INDEX	V/NB	H15
$\begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 $	0. 2.2377 3.1649 3.8759 4.4757 5.1031 5.4818 5.9211 6.6391	5.63494E-04 -3.74409E-03 28106 55318 75053 86154 -1.0278 -1.1151 -1.2525 -1.2526	(11) (12) (13) (14) (15) (15) (15) (15) (17) (18) (19) (20)	7.0775 7.3560 7.7537 8.4352 8.4352 8.6694 5.8986 10.064 10.975 11.806	-1.4661 -1.6543 -1.6835 -1.6918 -1.8451 -1.9568 -2.7462 -3.4916 -2.7482	(21) (22) (23) (25) (25) (26) (27) (28) (27) (28) (29) (30)	12.670 14.569 16.170 17.054 20.5824 20.5820 22.480 22.480 22.655 24.948	-3.1859 -5.0538 -4.9019 -6.2661 -9.8073 -5.4047 -5.4047 -3.6034 -7.1666

APPENDIX A.2

Aerodynamic Derivatives for Original Bridge Decks ·

AZS

CONFIGURATION IA-T

INDEX	V/NB	A25	INDEX	V/NB	A25	INDEX	V/NB	A25	
(1)	0.	-4.594805-06	(18)	4.3124	-3.06420F-02	(35)	8.0444	28075	
1 21	- 48416	-5. hadyur -04	(1	4.5100	-3.476051-02	(36)	8.3054	32292	
(3)	1.2449	9.307/00-03	(20)	4.1199	-5.609.18F-02	(37)	8.4892	- 13289	
(4)	1.5247	2.000031-02	(21)	4-4204	11115	(38)	8.6929	31369	
(5)	1.7946	2-0/1021-02	(22)	5-1846	- 14029	(39)	8.9453	- 26318	
(6)	1.9145	3.221471-02	(23)	5.3908	- 19109	(40)	9.1165	- 14847	
1 7)	2.2442	2-634235-02	(24)	5.5674	-9-02754F-02	(41)	9.3576	- 14787	
1 61	2.4107	2-424611-112	(25)	5.7723	-D. 73624F-02	(42)	9.5446	- 56806	
1 91	2. 5408	3.360011-02	(26)	5.4542	- 11453	(43)	9.7745	- 48834	
1 101	2.7446	3.405941-02	(21)	6.0955	-4-20232E-02	(44)	9.9517	- 52025	
1 111	2.9851	2.745146-42	1 281	6. 2550	- 11898	(45)	10,142	- 36189	
1 121	3.2042	-1-130 144 -44	(24)	5.4035	- 11093	(45)	10.435	- 22302	
1 121	3 4042		(30)	5 51-1	- 11757	(47)	10 675	- 58125	
1 1 4 1	3 6446	-8 7153/5-03	(1)	6 1144	- 16275	(AH)	10 905	- 50317	
1 151	3.6424	-1.356044-02	(12)	6.4545	- 20694	231	11 129	- 52261	
1 161	3 8117	-9.676676-03	1 33)	7 1744	- 25819	(50)	11 326	- 36314	
1 17)	A 11578	-2.210841-02	(34)	7 4612	- 14119	1 511	11 522	- 49621	

A3S

CONFIGURATION 14-T

CONFIGURATION 1A-T

INDEX	V/ND	A35	INDEX	V/NB	A35	INDEX	V/NB	A35
(12) ((3)) ((5)) ((5)) ((12)) ((0. 984169 1.224497 1.27018497 1.27018497 1.2718497 1.2718497 1.2718497 1.27189 1.2718	-7.685/3E-14 4.855/9E-04 4.855/9E-04 4.855/9E-04 4.855/9E-04 4.855/9E-04 4.855/9E-04 4.855/9E-04 4.855/9E-04 4.855/9E-04 4.855/9E-04 4.855/9E-04 4.855/9E-04 4.855/9E-04 4.855/9E-04 4.855/9E-04 4.855/9E-04	(18) (29) (20) (22) (223) (225) (235) (235)	4.3510999 4.3510999 4.57120902 89002 8007232 850724 8500 55724 8500 55724 8500 55724 8500 55724 8500 55724 8500 557582 8500 557582 8500 557582 8500 800 800 800 800 800 800 800 800 80	4.855779E-04 4.85579E-04	(35) (37) (37) (39) (40) (442) (443) (445) (445) (445) (445) (445) (445) (445) (445) (445) (451)	8.0444 8.30542 8.48929 8.6953 9.1165 9.5546 9.5546 9.55445 9.55445 10.435 10.435 10.435 10.9226 11.5222	4.85579E-04 4.85579E-04 4.85579E-04 4.85579E-04 4.85579E-04 4.85579E-04 4.85579E-04 4.85579E-04 4.85579E-04 4.85579E-04 4.85579E-04 4.85579E-04 4.85579E-04 4.85579E-04 4.85579E-04 4.85579E-04 4.85579E-04

CONFIGURATION 18-1

CONFIGURATION IB-T

INDEX	V/NB	A25	INDEX	VINB	A25	INDEX	V/NB	A2S
$\begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 7 \\ 8 \\ 9 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	U. 98416 1.34189 1.58663 2.158663 2.158663 2.15872 2.44972 2.7435 2.7455 3.24032 3.24032	-1.06423E-05 -1.53528E-02 -1.66090E-02 -1.38952E-02 -3.600/1E-02 -3.58171E-02 -3.58171E-02 -3.58491E-02 -3.58491E-02 -4.43087E-02	$\begin{pmatrix} 13\\ (14)\\ (15)\\ (16)\\ (16)\\ (16)\\ (18)\\ (14)\\ (21)\\ (22)\\ (22)\\ (24)\\ (24)\\ (24)\\ (24)\\ (24)$	3.7861 3.9855 4.3124 4.5314 4.5813 5.3182 5.7055 5.283 5.5283 5.5044 7.1107 7.4175	-3.23861E-02 -3.76995E-02 -7.64563E-02 -7.64563E-02 10513 12198 -8.70335E-02 -9.65648E-02 13567 14606 15750 18492	(25) (26) (27) (28) (31) (31) (31) (32) (34) (35)	7.6740 7.9347 8.45589 8.6589 8.8905 9.3676 9.8233 10.809 11.0059 11.687	11816 13710 31855 27990 18629 -2.75681E-02 40585 31461 34106 25808 26629

CONFIGURATION IB-T

CONFIGURATION IB-T

INDEX	W/NB	A35	INDEX	V/NB	A35	INDEX	V/NB	A35
$\begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 6 \\ 6 \\ 7 \\ 6 \\ 7 \\ 6 \\ 7 \\ 7 \\ 7 \\ 7$	0. 98416 1.34418 1.54673 2.15672 2.48775 2.48775 2.7535 2.4992 2.7536 3.4092 3.4092 3.4092 3.4092 3.4092	-7.68573E-14 1.96827E-04 1.96827E-04 1.96827E-04 1.96827E-04 1.96827E-04 1.96827E-04 1.96827E-04 1.96827E-04 1.96827E-04 1.96827E-04 1.96827E-04 1.96827E-04 1.96827E-04	(13) (14) (15) (16) (17) (14) (17) (14) (17) (14) (20) (21) (22) (23) (23) (24)	3.7861 3.9855 4.3124 4.5124 4.513 5.3182 5.7045 5.7045 5.283 5.5283 5.5283 7.5044 7.1105	1.96827E-04 1.96827E-04 1.96827E-04 1.96827E-04 1.96827E-04 1.96827E-04 1.96827E-04 1.96827E-04 1.96827E-04 1.96827E-04 1.96827E-04 1.96827E-04 1.96827E-04	(25) (26) (27) (28) (30) (31) (32) (32) (33) (34) (35)	7.6740 7.9347 8.4554 8.45589 8.8905 9.3676 9.8233 10.304 10.809 11.004 11.359 11.687	1.96827E-04 1.96827E-04 1.96827E-04 1.96827E-04 1.96827E-04 1.96827E-04 1.96827E-04 1.96827E-04 1.96827E-04 1.96827E-04 1.96827E-04 1.96827E-04

CUNFIGURATION IA-V

H15

CONFIGURATION IA-V

INDEX	V/NB	H15	INDEX	V/NB	H15	INDEX	V/NR	HIS
$\begin{pmatrix} 1 \\ -2 \\ -3 \end{pmatrix}$ $\begin{pmatrix} -3 \\ -5 \end{pmatrix}$ $\begin{pmatrix} -5 \\ -7 \\ -8 \\ -9 \end{pmatrix}$ $\begin{pmatrix} -16 \\ -12 \end{pmatrix}$	0. 2.1226 3.0019 3.1840 3.8268 4.2455 4.2455 4.5035 5.3073 5.2144 6.2001	-2.18648E-04 4.4653E-03 -3.65339E-03 3.669 76554 84318 98949 -1.1146 -1.3194 -1.694 -1.0627 -1.9128	(13) (14) (15) (16) (17) (18) (18) (18) (21) (21) (22) (22) (24)	7.7285 8.3588 9.1936 9.7293 10.514 10.931 11.237 11.536 11.930 12.294 13.308 13.892	-1.8737 -1.8033 -1.8236 -1.7639 -3.1162 -2.2915 -2.3647 -3.0658 -4.3648 -3.1315 -3.2634 -3.7555	(25) (26) (27) (28) (30) (31) (31) (32) (34) (34) (36)	14.367 14.977 15.458 15.825 16.100 16.489 16.865 17.726 18.726 19.689 21.689 23.391	-3.1074 -2.2956 -2.2960 -3.1036 -3.1872 -4.0109 -9.3538 -5.6247 -1.7594 -2.7594 -6.4798

CONFIGURATION IB-V

HIS

CONFIGURATION 18-V

INDEX	V/NB	H15	INDEX	V/NB	H15	INDEX	V/NB	HIS
$ \begin{array}{c} (1) \\ (2) \\ (3) \\ (4) \\ (5) \\ (5) \\ (6) \\ (7) \\ (9) \\ (10) \\ \end{array} $	1.0613 2.1226 3.5201 4.5031 5.6165 6.5436 7.5513 8.8190 9.8472 10.350	1.05444E-03 7.41653E-02 34323 70327 -1.0393 -1.4764 -1.7766 -2.1037 -2.5253 -2.6823	(11) (12) (13) (14) (15) (15) (16) (17) (17) (19) (20)	11.144 11.730 17.387 13.357 14.335 15.263 15.263 16.0007 16.423 17.326 17.326	-3.8421 -3.0539 -3.1928 -3.3706 -4.0955 -5.2349 -3.8651 -3.8656 -4.3913	(21) (22) (23) (24) (25) (26) (28) (28) (28) (29) (29) (31)	19.016 19.732 20.454 20.8843 21.8625 22.6720 24.820 24.820 25.6836	-6.7333 -5.9784 -6.8194 -6.3994 -5.2102 -6.2521 -8.2360 -6.0470 -5.0012 -7.0143 -8.5957

CONFIGURATION IIA-T

CONFIGURATION ITA-T

INDEX	V/NA	A25	INDEX	V/NB	A25	INDEX	V/NB	A25
$\begin{pmatrix} 1 \\ (2) \\ (3) \\ (4) \\ (6) \\ (6) \\ (8) \\ (10) \\ (10) \\ (11) \\ (12) \\ (13) \\ $	0. .98416 1.5243 2.2000 2.4897 2.6408 2.8182 3.46408 3.46408 3.4649 3.46492 3.46492 3.46492 3.5210	-4.359172-06 -4.48/46E-03 4.03/34E-02 2.356/3E-03 -9.04982E-03 -3.6/883E-02 -2.81825E-02 -4.122332E-02 -1.42332E-02 -2.73/41E-02 -2.29544E-02 -2.688/5E-02	(14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24) (25)	3.7086 3.8370 3.90816 4.19899 4.2233 4.5316 4.5316 4.65712 4.8414 4.65715 5.3001	-4.44715E-02 -2.30512E-02 -3.30360E-02 -2.44983E-02 -2.93099E-02 -8.99721E-02 -4.53159E-02 -2.91843E-02 -5.22509E-02 -1.80147E-02 -5.20394E-02 12530 19793	(27) (28) (29) (31) (33) (33) (34) (36) (36) (36) (37) (37) (37) (37) (37) (37) (37) (40) (41)	5.4973 5.6537 5.9869 6.3171 6.4536 6.7329 7.0283 7.31224 7.5596 8.0437 8.28129 8.28129	13711 15318 -9.98226E-02 11234 10370 11855 -7.60398E-02 15031 -7.11962E-02 24337 11787 28496 -7.28860E-02 14428 12028

CONFIGURATION IIA-T

CONFIGURATION IIA-T

INDEX	V/NB	A35	INDEX	V/NB	A35	INDEX	V/NB	A3S
$\begin{pmatrix} 1 \\ 2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -$	0. .98416 1.5246 1.59683 2.20097 2.64498 2.81825 2.81825 3.11222 3.26442 3.26442 3.5210	-1.53715E-13 2.37519E-04 2.37519E-04 2.37519E-04 2.37519E-04 2.37519E-04 2.37519E-04 2.37519E-04 2.37519E-04 2.37519E-04 2.37519E-04 2.37519E-04 2.37519E-04 2.37519E-04 2.37519E-04	$ \begin{pmatrix} 14 \\ (15) \\ (16) \\ (16) \\ (17) \\ (18) \\ (20) \\ (22) \\ (22) \\ (22) \\ (22) \\ (23) \\ (24) \\ (25) \\ (26) \\ \end{pmatrix} $	3.7086 3.80370 5.90616 4.19869 4.28933 4.5316 4.5316 4.5516 4.5516 4.5516 5.516 5.3001	2.37519E-04 2.37519E-04 2.37519E-04 2.37519E-04 2.37519E-04 2.37519E-04 2.37519E-04 2.37519E-04 2.37519E-04 2.37519E-04 2.37519E-04 2.37519E-04 2.37519E-04 2.37519E-04 2.37519E-04	(27) (28) (30) (31) (32) (34) (34) (35) (36) (37) (37) (37) (37) (37) (37) (37) (37	5.4973 5.6537 5.98669 6.3171 6.45169 7.01283 7.01283 7.01284 7.01283 7.01284 7.01283 7.01284 8.0127 8.04312 8.28119	2.37519E-04 2.37519E-04 2.37519E-04 2.37519E-04 2.37519E-04 2.37519E-04 2.37519E-04 2.37519E-04 2.37519E-04 2.37519E-04 2.37519E-04 2.37519E-04 2.37519E-04 2.37519E-04 2.37519E-04 2.37519E-04 2.37519E-04 2.37519E-04

CONFIGURATION IIH-T

CONFIGURATION 118-T

INDEX	V/NB	A25	INDEX	V/NB	A25		INDEX	V/NB	A25
$\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ $\begin{pmatrix} 4 \\ 5 \end{pmatrix}$ $\begin{pmatrix} 5 \\ 7 \end{pmatrix}$ $\begin{pmatrix} 9 \\ 10 \end{pmatrix}$	0. .98416 1.3918 1.7046 1.4683 2.2442 2.4107 2.5664 2.9851 3.2937	2.01724E-04 7.38109E-04 -2.82126E-02 5.89427E-04 6.43529E-03 -1.52042E-02 -1.07100E-02 -2.75637E-02 -3.28637E-02	(11) (12) (13) (14) (15) (16) (17) (17) (17) (17) (20)	3.5485 3.5485 3.5370 4.0339 4.5317 4.5210 5.3003 5.6535 5.6535 5.6535 5.6535 5.6535 5.6535 5.6535 5.6535 5.6535 5.6535 5.6535 5.6535 5.6535 5.6535	-3.76161E-02 -4.63888E-02 -6.47045E-02 17906 14439 25318 21804 17069 20309 14052	,	(21) (22) (23) (24) (24) (26) (27) (26) (27) (27) (27) (28) (30) (32)	6.8753 7.1788 7.4443 7.9357 8.4209 8.8581 9.2746 9.7037 10.096 10.463 10.837	15988 24076 35792 38180 37582 27780 24238 19486 29619 43644 3644 3644 42214

CONFIGURATION IIB-T

CONFIGURATION IIB-T

INDFX	V/NB	A35	INDEX	V/NB	A35	INDEX	V/NB	A35
$\begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}$ $\begin{pmatrix} 3 \\ 5 \\ 6 \\ 7 \end{pmatrix}$ $\begin{pmatrix} 7 \\ 8 \\ 4 \end{pmatrix}$ $\begin{pmatrix} 9 \\ 10 \end{pmatrix}$	98416 1.3918 1.7046 1.7046 2.2442 2.4107 2.5664 2.9851 3.2937	7.685/3E-14 4.23335E-04 4.23335E-04 4.23335E-04 4.23335E-04 4.23335E-04 4.23335E-04 4.23335E-04 4.23335E-04 4.23335E-04 4.23335E-04	(11) (12) (13) (14) (15) (16) (17) (18) (15) (15)	3.5485 3.6370 4.0337 4.5317 4.5317 5.3003 5.6533 5.5533 5.5533 5.5533 5.6533 5.6533 5.6533 5.6533 5.6533 5.6533 5.6533	4.23335F-04 4.23335E-04 4.23335E-04 4.23335E-04 4.23335E-04 4.23335E-04 4.23335E-04 4.23335E-04 4.23335E-04 4.23335E-04 4.23335E-04 4.23335E-04	(21) (22) (23) (24) (25) (26) (27) (28) (29) (30) (31) (32)	6.8753 7.1788 7.4443 7.70357 8.4209 8.8581 9.7037 10.096 10.837	4.23335E-04 4.23335E-04 4.23335E-04 4.23335E-04 4.23335E-04 4.23335E-04 4.23335E-04 4.23335E-04 4.23335E-04 4.23335E-04 4.23335E-04 4.23335E-04 4.23335E-04

CONFIGURATION IIA-V

H1S

CONFIGURATION TIA-V

INDEX	ANVA	HIS	INDEX	VINA	HIS	INDEX	V/NR	HIS
$ \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	0 2.5997 3.3563 3.7467 5.4124 5.4124 5.4099 6.4505 7.5819	1.108/9E-04 1/512 4/493 4/500 -1.0028 -1.2700 -1.1651 -1.533n -2.1503 -2.1417	(11) (12) (13) (14) (15) (15) (16) (17) (17) (19) (20)	7.9441 8.2931 8.6250 8.9411 9.1933 10.406 10.434 11.493 11.976	-2.1537 -2.6355 -2.4463 -3.7388 -3.2294 -3.4927 -3.2578 -3.7578 -3.9948 -3.9948 -4.3282	(21) (22) (23) (24) (25) (26) (27) (27) (27) (27) (27) (27) (27) (27	12.719 13.542 14.309 15.1847 16.614 17.307 18.620 19.253	-5.6537 -6.0572 -5.65861 -7.60861 -6.0525 -7.85892 -7.4992 -7.4992 -7.4992 -7.4992 -7.4992 -7.39892 -7.3989 -7.5050

H1S

CONFIGURATION 118-V

CONFIGURATION IIB-V

INDEX	V/NB	HIS	INDEX	V/NB	HIS	INDEX	V/NB	H15	
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)	0.5997 3.3563 3.9713 4.8640 5.3072 5.3072 6.3692 7.1211 7.8726 8.6258	1.666/5E-04 5.14280E-02 48/36 6/99 -1.0342 -1.2017 -1.489 -1.5837 -1.6920 -2.3592	(12) (13) (14) (15) (16) (17) (18) (19) (20) (22)	9.1966 9.8478 10.8875 12.8375 13.6865 14.859 15.8599 15.809 15.809 15.305	-2.8104 -2.7563 -3.3083 -3.2883 -3.58850 -3.5448 -3.1660 -4.9497 -4.7022 -4.7035 -4.7835	(23) (24) (25) (26) (28) (28) (30) (31) (31) (33)	17.919 18.608 19.197 20.345 20.915 21.921 22.528 21.9228 22.9482 23.9482	-5.1786 -5.6920 -5.15285 -8.25435 -7.9378 -7.9378 -6.8009 -8.5146 -6.8006 -8.16522	

CUNFJGURATION IIIA-T

A2S

CONFIGURATION IIIA-T

INDEX	V/NB	A25	INDEX	V/NH	A25	INDEX	V/NB	A25
$ \begin{array}{c} (1) \\ (2) \\ (3) \\ (4) \\ (5) \\ (5) \\ (6) \\ (7) \\ (8) \\ (9) \\ (10) \end{array} $	0. 98417 1.3204 1.7046 1.9683 2.2007 2.4107 2.6407 2.6407 3.2642	5.85572E-06 -1.35499E-02 -1.05912E-02 -2.18712E-02 9.77856E-03 3.81394E-04 -3.54284E-03 -1.35764E-02 -2.11559E-02 -4.85974E-02	$(\begin{array}{c} 11 \\ (\begin{array}{c} 12 \\ 13 \\ (\begin{array}{c} 13 \\ 15 \\ (\begin{array}{c} 15 \\ 16 \\ (\begin{array}{c} 17 \\ 18 \\ (\begin{array}{c} 19 \\ 19 \\ (\begin{array}{c} 20 \\ 1 \end{array}) \end{array})$	3.5485 3.5371 4.0575 4.9011 5.3183 5.6538 6.0028 6.3028 5.6188	-3.67853E-02 -5.67654E-02 -2.36863E-02 -1.100076-02 -7.83856E-02 -1.2126 -1.1256 12126 11656 20374 10989	(21) (22) (224) (225) (226) (226) (227) (228) (227) (228) (227) (228) (229) (229) (221) (221) (221) (221) (221) (223) (223) (224) (223) (224) (223) (224) (224) (225) (225) (226) (226) (226) (226) (226) (227) (226) (227) (237) (2	6.8899 7.1653 7.64936 7.69928 8.8578 9.2961 9.6086 10.454 10.437	26316 30547 11934 13784 17207 25310 12979 39291 32214 32460 26375 4094

CONFIGURATION IIIA-T

A3S

CONFIGURATION IIIA-T

INDEX	V/NB	A35	INDEX	V/NB	A35	INDEX	V/NB	A35
(1) (2) (3) (4) (5) (1) (1) (1) (1)	0. .98417 1.3204 1.7046 1.9683 2.2007 2.4107 2.6408 2.9852 3.2642	0. 7.45.550. 7.45.550. 7.45.550. 7.45.550. 7.45.550. 7.45.550. 7.45.550. 7.45.550. 7.45.0550. 7.45.0550. 7.45.0550. 7.45.0550.	(11) (13) (14) (15) (15) (15) (15) (15) (19) (20)	3.5485 3.3371 4.0579 4.5375 4.59011 5.3183 5038 30238 30238 3068	7.45055F-04 7.45055F-04 7.45055E-04 7.45055E-04 7.45055E-04 7.45055E-04 7.45055E-04 7.45055E-04 7.45055E-04 7.45055E-04 7.45055E-04	(21) (22) (23) (24) (25) (26) (27) (27) (28) (29) (30) (30) (31) (32)	6 • 8899 7 • 1658 7 • 4435 7 • 6996 7 • 9228 8 • 39280 8 • 8577 9 • 6841 10 • 036 10 • 454 10 • 837	7.45055E-04 7.45055E-04 7.45055E-04 7.45055E-04 7.45055E-04 7.45055E-04 7.45055E-04 7.45055E-04 7.45055E-04 7.45055E-04 7.45055E-04 7.45055E-04 7.45055E-04 7.45055E-04

CUNFIGURATION IIIB-T

CONFIGURATION IIIB-T

INDEX	V/NB	A25	INDEX	V/NH	A25	INDEX	V/NB	A25
(1) (2) (3) (4) (5) (6) (7) (8) (10) (10) (11)	0. 1.2449 1.3418 1.7046 1.9683 2.2442 2.6038 2.7485 2.7485 3.1122 3.1122	6.11759E-05 -1.01634F-02 -2.55276E-02 -1.32630F-02 -4.15066E-03 -1.70208E-02 -1.702708E-02 -1.71709E-02 -1.71709E-02 -3.97258E-02 -3.97258E-02 -3.97258E-02	(18) (19) (20) (21) (22) (23) (24) (25) (26) (26) (27) (23)	4.1/54 4.4013 4.5951 4.8214 5.0183 5.2077 5.5673 5.7386 5.9050 0.0554	-8.446886-02 -8.86930F-02 -8.13532E-02 -8.01265E-02 -7.946666E-02 -7.5751E-02 -6.82628E-02 -6.32428E-02 13938 13938 13941	(35) (36) (37) (38) (40) (41) (42) (42) (44) (44) (44) (44) (45)	7.3522 7.6110 7.8489 8.1278 8.3628 8.5575 8.8030 9.0203 9.2429 9.44505 9.64319	32819 27125 21370 21688 24266 23819 24183 22008 18546 26027 27575
(13) (14) (15) (15) (17)	3.4092 3.5484 3.7086 3.7861 3.9856	-6.70551E-02 -7.15387E-02 -6.44040E-02 -6.76145E-02 -9.22472E-02	(30) (31) (32) (33) (34)	6.3781 6.5726 6.504 6.8186 7.0971	-9.92939E-02 10127 11928 1/025 21968	(47) (48) (49) (50) (51)	10.037 10.228 10.426 10.600 10.781	18966 26180 33269 27537 22228

UNTION HIB-

CONFIGURATION IIIB-T

INDEX	V/NB	A35	INDEX	V/NB	A35	INDEX	V/NB	A35
(1)	0.	-7.08573E-14	(18)	4.1754	1.23603F-04	(35)	7.3522	1.23603E-04
1 21	1,2449	1.236U3E-04	(19)	4-4011	1.2.1603F-04	(36)	7.6110	1-23603F-04
1 31	1.4418	1.216035-04	(20)	4.5451	1-236035-04	(37)	7.8489	1.23603F-04
1 41	1 7046	1.236035-04	(21)	4 8214	1.236036=04	(38)	8.1278	1.23603E-04
2	1 4643	1 245036-04	(22)	5 0184	1.236036-04	(39)	8.3628	1.23603F-04
1 21	1.9003	1	(23)	5 2077	1 236035-04	(40)	8.5575	1.23603F-04
5	5. 5705	1 236035-04	(24)	5.2.41	1 236035-04	(41)	8.8030	1.23603F-04
1	2 4124	1 2460 45-04	(25)	5.41.05	1 2360 45-04	1 421	0 0203	1 236035-04
1 81	C.0030	1.00000004	1 201	5.5015	1 216035-04	1 7 2 1	0 3430	1 236035-04
(9)	2.1480	1.23503F-04	(20)	2.1350	1.230032-04	(+3)	9.6467	1.236036-04
(10)	2.9195	1.236034-04	(21)	5.9050	1.236035-04	(44)	9.4505	1.230035-04
(11)	3.1155	1.136032-04	(28)	0.0005	1.23603E-04	(45)	9.6433	1.23603E-04
(12)	3.2541	1.23003E-04	(29)	0.2554	1.23603E-04	(46)	9.8419	1.23603E-04
(13)	3.4092	1.23603E-04	(30)	0.3/01	1.23603E-04	(47)	10.037	1.23603E-04
(14)	3.5484	1.23603E-04	(31)	6.5120	1.23603E-04	(48)	10.228	1.23603E-04
(15)	3.7086	1.23603E-04	(32)	6.6604	1.23603E-04	(49)	10.426	1.23603E-04
(16)	3.7861	1.236031-04	(33)	0.8180	1.23603E-04	(50)	10.600	1.23603E-04
(17)	3.4856	1-236035-04	(34)	1.0971	1.23603E-04	(51)	10.781	1.23603E-04

HIS

CONFIGURATION ITTA-V

IN	DEX	V/NR	H1S	INDEX	V/NB	HIS	INDEX	V/NB	H1S
	1) 23) 45) 67) 89	0 2.5997 3.3563 4.1107 4.7466 5.3073 5.1137 6.2800 7.1998	5.50154E-04 7.03429E-02 46 228 7445 H2503 -1.2005 -1.1436 -1.4953 -1.6650	(10) (11) (12) (13) (13) (14) (15) (15) (16) (17) (18)	7.9443 9.1954 9.1954 10.885 11.824 12.839 12.855 14.493	-1.8700 -2.0474 -2.4496 -2.8552 -3.4416 -2.5591 -3.9733 -3.6027 -4.2141	(19) (20) (21) (22) (23) (24) (25) (26) (27)	15.244 15.920 16.708 17.982 18.646 19.177 20.612 21.458 22.488	-3.2852 -5.6438 -7.3602 -7.3402 -7.8859 -7.6676 -14.974 -7.2205 -6.9402

CONFIGURATION IIIB-V

H1S

CONFIGURATION JIIB-V

INDEX	V/NB	HIS	INDEX	VINB	HIS	INDEX	V/NB	HIS
(1) (2) (3) (4) (5) (6) (7) (8)	0 2.3732 3.3563 4.1106 4.746d 5.4127 5.8150 6.3694	8.77523F-04 9.26154E-03 44383 64865 -1.0370 -1.5914 -1.9804 -1.7539	(9) (10) (12) (13) (14) (15)	1.1493 7.8006 8.5589 9.1939 9.7898 10.884 11.879 12.834	-1.3456 -1.5553 -1.8187 -2.5589 -2.5589 -3.2632 -3.2658 -3.2853	(17) (18) (20) (21) (22) (22) (23) (24)	13.683 14.403 15.210 15.938 16.630 17.337 18.085 18.639	-2.9294 -2.4877 -3.6803 -6.8140 -6.7496 -7.2934 -10.418 -10.476

APPENDIX A.3

Aerodynamic Derivatives for Smooth Bridge Deck

A2S

CONFIGURATION SI-T

INDEX	V/NB	A25	INDEX	V/NB	A25	INDEX	V/NB	A25
(1) (23) (567) (1123) (1123)	0 + 905999 1.254105 4.254105 1.579990066 4.579990066 4.579990066 4.570066 4.570066 4.52620 9.2531809 2.254100 4.55262 9.25399 3.351809 2.254100 4.55262 9.25399 3.351809 3.3551809 3.3551809 3.3551809 3.3551809 3.3551809 3.3551809 3.3551800 3.3551809 3.3551800 3.3551800 3.35518000 3.35518000 3.3551800000000000000000000000000000000000	-5.96529E-07 -1.61834E-02 -2.31492E-02 -1.86635E-02 -3.75485E-02 -3.10762E-02 -3.10762E-02 -7.18176E-02 -7.18176E-02 -7.18176E-02 -7.1180 -9.62934E-02 -11180 -9.62934E-02 -11180 -9.62934E-02 -10217 -7.99228E-02 -7.49115E-02	(20) (223) (223) (224) (224) (225) (224) (225) (235) (2	3.8806 3.98147 4.07978 4.2616 4.23616 4.53616 4.5626 4.5626 4.5626 5.03970 5.38809 5.38809 5.7036 5.65657 5.9038 6.0384	-9.62442E-02 11425 11758 13291 15262 15663 16966 14953 16466 14953 15447 20466 17412 18419 21521 18401 19376 21285 21285 20200 18518	(((441)))))))))))))))))))))))))))))))))	6.1682 6.2958 6.4811 6.6387 6.9997 7.34027 7.35027 7.91133 8.1122 8.39457 8.30457 8.30457 9.3828 9.03828 9.03828 9.0036	18055 23900 216962 220704 28524 28459 28459 319840 260961 35161 351641 368997 304818 48127 48127 44816

A3S

CONFIGURATION SI-T

INDEX	V/NB	A35	INDEX	V/NB	A3S	INDEX	V/NB	A35
(1) (2) (3) (4) (5) (6) (5) (8) (10) (12) (12) (12) (12) (13) (15) (15) (15) (17)	0. 89023 1.2590 1.5419 1.7805 2.3554 2.3554 2.6452 2.6452 2.6452 3.2599 3.3310 3.4480 3.5610	$\begin{array}{c} 0 & & \\ 7 & 68032E - 04 \\ \end{array}$	(20) (21) (22) (23) (24) (25) (26) (27) (26) (27) (26) (27) (30) (31) (32) (32) (32) (32) (34) (35) (36)	3.8806 3.9814 4.0758 4.2882 4.3615 4.5396 4.5396 4.5396 4.5261 4.5261 4.5261 4.5261 4.5164 5.12270 5.3270 5.48839 5.7563	7.68032E-04 7.68032E-04 7.68032E-04 7.68032E-04 7.68032E-04 7.68032E-04 7.68032E-04 7.68032E-04 7.68032E-04 7.68032E-04 7.68032E-04 7.68032E-04 7.68032E-04 7.68032E-04 7.68032E-04 7.68032E-04	(39) (40) (42) (43) (442) (43) (445) (445) (445) (445) (447) (449) (551) (551) (552) (553) (555)	6.1682 6.2958 6.4817 6.8387 6.99899 7.3423 7.5027 7.9133 8.1124 8.39545 8.6876 9.3828	7.68032E-04 7.68032E-04 7.68032E-04 7.68032E-04 7.68032E-04 7.68032E-04 7.68032E-04 7.68032E-04 7.68032E-04 7.68032E-04 7.68032E-04 7.68032E-04 7.68032E-04 7.68032E-04 7.68032E-04 7.68032E-04 7.68032E-04 7.68032E-04
(18) (19)	3.6706	7.68032E-04 7.68032E-04	(37) (38)	5.9057	7.68032E-04 7.68032E-04	(56)	9.7059	7.68032E-04 7.68032E-04

CONFIGURATION SI-V

H1S

CONFIGURATION SI-V

INDEX	V/NB	HIS	INDEX	V/NB	HIS	INDEX	V/NB	H1S
(1) (2) (5) (5) (5) (11) (12)	0. 3.1996 3.1109 3.8102 4.4001 4.9194 5.8222 6.2241 6.49587 7.69347 7.9347 8.2349	3.24291E-05 36998 72394 95770 -1.3410 -1.3585 -2.1063 -2.0337 -2.0337 -1.6761 -1.9981 -2.2353 -2.2353 -2.9061 -2.2808 -2.3848	(16) (17) (18) (20) (21) (22) (22) (22) (225) (225) (225) (225) (225) (225) (225) (225) (227) (227) (229) (227) (2	8.5249 8.8052 9.0767 9.5968 9.84422 10.5553 10.782 11.223 11.439 11.439 11.4439 12.101 12.451	-2.6453 -2.7770 -3.8267 -3.1078 -2.1585 -2.1585 -2.0560 -2.4675 -2.8293 -2.6571 -2.7050 -2.1997 -3.2376 -2.6393	(31) (32) (333) (335) (335) (335) (338) (339) (442) (442) (442) (445) (445) (445)	12.840 13.576 14.614 15.586 16.9264 15.586 16.9264 16.9259 16.9259 16.9259 17.785 18.191 18.577 18.5083	-3.3164 -3.4536 -2.92018 -3.6788 -4.1589 -4.1589 -4.2317 -4.5021 -4.6038 -4.8983 -4.8983 -4.8983 -4.8983 -4.8983 -4.8983 -4.55463 -5.5364 -5.53645 -5.53645 -5.79827

A2S

CONFIGURATION SII-T

INDEX	V/NB	A25	INDEX	V/NB	A25	INDEX	V/NB	A25
(1) (2) (5) (5) (7) (10) (12) (0 • 92024 1 • 5939 1 • 5939 1 • 5939 2 • 0577 2 • 2542 2 • 0577 2 • 2542 3 • 0243 3 • 1612 3 • 3181 3 • 4433 3 • 5642 3 • 6810	-9.67224E-07 -5.50233E-02 -7.16353E-02 -7.55881E-02 -5.82812E-02 -5.82812E-02 -9.17150E-02 -8.53590E-02 -7.83604E-02 -9.30474E-02 -12800 -11628 -9.07571E-02 -10319 -11726 -1143 -9.43972E-02	(18) (19) (20) (22) (22) (22) (22) (24) (24) (24) (24) (25) (26) (27) (28) (22) (28) (30) (31) (32) (33) (34)	3.9043 4.1156 4.51683 4.56744 4.66744 4.86697 5.17359 5.56731 5.6731 5.82638 6.2418 6.2418 6.4943	-9.62842E-02 10846 -6.88626E-02 -8.02787E-02 11810 -4.36723E-02 12395 12050 -5.24066E-02 -9.43235E-02 -9.43235E-02 15736 -6.82406E-02 -5.03906E-02 14874 -7.21241E-02 11908 12464	(35) (36) (378) (379) (42) (443) (443) (445) (445) (445) (446) (446) (447) (446) (447) (446) (51)	6.6997 6.886970 7.06682 7.419884 7.419884 8.822055 8.822055 8.6822155 8.8822155 8.8822155 9.256436 8.90248 9.266436 10.9248	13502 18547 11955 10957 10306 -5.54808E-02 -5.55668E-03 -1.19265E-02 -5.35709E-02 22707 62008 22707 662008 17242 46053 17242 15935

A3S

CONFIGURATION SII-T

INDEX	V/NB	A35	INDEX	V/NB	A35	INDEX	V/NB	A35
(1) (2) (5) (5) (10) (12)	0.92024 1.5935 1.5935 2.2540100000000000000000000000000000000000	-5.8/459E-14 5.41151E-04 5.84151E-04 5.41151E-04	(18) (19) (20) (22) (22) (22) (22) (25) (25) (26) (27) (27) (28) (27) (28) (29) (30) (31) (32) (32) (33) (33)	3.9043 4.1156 4.31633 4.66749 4.667694 4.8627694 5.3229 5.32232 5.52151 5.826355 5.82635 5.826555 5.8265555 5.82655555555555555555555555555555555555	5.41151E-04 5.41151E-04 5.41151E-04 5.41151E-04 5.41151E-04 5.41151E-04 5.41151E-04 5.41151E-04 5.41151E-04 5.41151E-04 5.41151E-04 5.41151E-04 5.41151E-04 5.41151E-04 5.41151E-04 5.41151E-04 5.41151E-04 5.41151E-04 5.41151E-04	(35) (36) (37) (38) (40) (42) (442) (442) (442) (443) (445) (446) (448) (448) (49) (50)	6.6997 6.88707 7.24195 7.41985 7.5882265 8.223534 8.223534 8.622154 8.622154 9.50636 9.50636 9.20436	5.41151E-04 5.41151E-04 5.41151E-04 5.41151E-04 5.41151E-04 5.41151E-04 5.41151E-04 5.41151E-04 5.41151E-04 5.41151E-04 5.41151E-04 5.41151E-04 5.41151E-04 5.41151E-04 5.41151E-04 5.41151E-04 5.41151E-04

H1S

CONFIGURATION SII-V

INDEX	V/NB	HIS	INDEX	V/NB	H15	INDEX	V/NB	HIS
$\begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \end{pmatrix}$	0. 1.9674 3.1108 3.8101 4.3996 4.9193 5.3892 5.8213 6.2237 6.5275	9.88215E-06 23381 53065 83877 92098 -1.2169 -1.5203 -1.6613 -1.8673 -1.9215	(11) (12) (13) (14) (15) (16) (16) (17) (18) (19) (207	6.9586 7.2307 7.6235 7.9351 8.2340 8.8057 9.3358 9.3358 9.8440 10.282 10.811	-1.9677 -1.7262 -2.2200 -2.3147 -2.1983 -2.8589 -1.9935 -2.6744 -3.5658 -5.9790	(21) (22) (23) (24) (25) (26) (27) (28) (29) (30)	11.655 12.655 12.6469 13.8234 13.5731 13.5931 14.582 15.605	-6.3227 -3.8973 -4.5799 -4.4612 -4.4914 -5.2851 -3.5951 -3.57631 -4.2170 -4.0848

A2S

CONFIGURATION SIII-T

CONFIGURATION SIII-T

INDEX	V/NB	A25	INDEX	V/NB	A25	INDEX	V/NB	A2S
(1) (2) (2) (5) (5) (12) (0. 92022 1.35939 1.55939 1.684047 2.05541 2.2541 2.2541 2.2541 2.2541 2.2541 2.2541 2.2541 2.2541 2.2541 2.2541 3.5607 2.9101 3.1883 3.31803 3.56810 3.56814 3.68825 3.88253 4.0323	-4.36244E-06 -6.27767E-03 -4.65950E-03 -2.93089E-02 -1.83992E-02 -4.42358E-02 -5.43144E-02 -6.86212E-02 -8.86126E-02 -8.64160E-02 -8.64160E-02 -8.64160E-02 -8.64167E-02 -9.33811E-02 -11286 -11286 -12441 -1230 -11286 -12441 -12391 -9.72592E-02 -5.99572E-02	(21) (223) (223) (2245) (2335) (2355) (2335) (2355) (2355) (2355) (2355) (2355) (2355) (2355) (2355) (2355) (2355) (2355) (2355)	4.1155 4.211724 4.31134 4.50842 4.501059 4.501059 4.501059 4.501059 5.0235222 5.555 5.562212 5.555 5.562212 5.555 5.562212 5.555 5.562212 5.555 5.562212 5.555 5.562212 5.555 5.562212 5.555 5.562212 5.555 5.562212 5.555 5.562212	10687 12295 13219 13385 13668 10059 13611 14999 14999 15918 15918 25922 26102 25951 23140 24137 24973 25976 22910	((((((((((((((((((((((((((((((((((((((6.5082 6.70018 7.0816 7.41995 7.41995 7.575463 8.18100 8.18508 8.588004 8.588004 9.154228 9.154228 9.5698174 9.5698174 9.697174 10.210	31723 25315 35249 30405 242105 24207051 2207051 2207051 30711 3336984 39244 39244 346039 460989 460989 46036 492997 55696

A3S

CONFIGURATION SIII-T

INDEX	V/NB	A35	INDEX	V/NB	A 3 S	INDEX	V/NB	A3S
(1) (2) (3) (5) (1)	0.92022 1.50939 1.55939 1.55939 1.55939 1.55939 1.55939 1.55930 2.45954 2.45927 2.450207 2.450207 3.13183 3.13183 3.568323 3.5684410 3.689243 3.88223	-1.17492E-13 4.12671E-04	(223) (223) (223) (224567) (224567) (224567) (224567) (224567) (224567) (224567) (224567) (224567) (22457) (23457) (23	4.11552 4.2311552 4.2311381259 4.4.2311381259 5.062512 4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.	4.12671E-04 4.12671E-04	(41) (42) (43) (445) (445) (447) (449) (512) (557) (557) (557) (557) (557) (559) (61)	6.5002 6.50001 6.88876 7.88876 7.241995 7.241995 7.557000 8.3859463 8.3857800 8.357800 8.357800 8.357800 8.357800 8.357800 8.357800 8.357800 9.34200 9.352081 9.322081 9.322080081 9.320080081 9.3200810000000000000000000000000000000000	4 • 12671E-04 4 • 12671E-04

H1S

CONFIGURATION SIII-V

INDEX	V/NB	HIS	INDEX	V/NB	н15	INDEX	V/NB	H1S
(1) (2) (3) (5) (5) (10) (10) (12) (12) (12) (12) (13) (15)	0. 2.1996 3.1108 3.5101 4.3997 4.9190 5.38207 6.2228 6.60576 7.29709 7.9340 8.2335	2.42959E-05 -9.30195E-02 664616 058825 85811 99821 -1.1393 -1.3037 -1.3556 -1.5389 -1.5389 -1.14528	(16) (17) (18) (20) (22) (22) (22) (22) (22) (22) (25) (25) (25) (25) (27) (29) (30)	8.5227 8.80725 9.0725 9.5419 9.8419 10.326 10.326 10.513 10.788 11.426 11.447 11.459	-1.9426 -2.2089 -1.92040 -2.0691 -2.1107 -2.1107 -2.8600 -3.0023 -3.1818 -2.8215 -2.9829 -3.1836 -3.1836 -3.1836 -3.1836 -3.1836 -3.1836 -3.1836 -3.1836 -3.1836 -3.1836 -3.1836 -3.191	(312) (323) (335) (3356) (3356) (337) (3390) (442) (442) (442) (442) (445) (445) (447)	12.065 12.4841 12.827 13.9382 13.9382 14.940 15.271 16.940 15.271 16.940 15.271 16.445 16.445 16.93369 17.767 17.767	-3.7042 -2.86730 -3.2221 -3.68768 -3.98772 -4.36621 -4.36621 -3.65761 -4.28756 -3.65761 -4.28746 -3.75526 -3.75526 -2.9883 -4.6303

APPENDIX A.4

Typical Results before and after Smoothing

Results have been slightly smoothed by FORTRAN LIBRARY

SUBROUTINE ICSSCU*, with control parameter:

SM = 0.010 for A2S, HIS 0.000 for A3S

*IMSL-International Mathematical and Statistical Library.

WIND CHARACTERISTICS OF BRIDGE SITE

APPENDIX B

TABLE OF CONTENTS

	LIST OF FIGURES	157
B.1	Topographic Model	159
B.2	Vertical Profiles of Mean Velocity and Turbulence	160
B.3	Turbulence Spectra	161
	REFERENCES	162
	FIGURES	163

Page

LIST OF FIGURES

		Page 164
1.	Schematic of Bridge Location	104
2.	Topographic Model in Wind Tunnel	165
3.	Environmental Wind Tunnel	166
4.	Basic Wind Directions Considered in Study	167
5.	Mean Velocity Profile $\alpha = 30^{\circ}$	168
6.	Mean Velocity Profile $\alpha = 300^{\circ} \dots \dots \dots \dots \dots \dots$	169
7.	Mean Velocity Profile $\alpha = 105^{\circ} \dots \dots \dots \dots \dots \dots$	170
8.	Mean Velocity Profile $\alpha = 270^{\circ} \dots \dots \dots \dots \dots \dots$	171
9.	Turbulence Intensity $\alpha = 30^{\circ} \dots \dots \dots \dots \dots \dots \dots$	172
10.	Turbulence Intensity $\alpha = 300^{\circ}$	173
11.	Turbulence Intensity $\alpha = 105^{\circ}$	174
12.	Turbulence Intensity $\alpha = 270^{\circ}$	175
13.	Wind Visualization (a) along canyon, (b) across canyon	176
14.	Unsteady Vortex Formation Associated with North Wind ($\alpha = 0^{\circ}$)	177
15.	Normalized Spectrum ($\alpha = 300^\circ$, vertical velocity component, point 1)	178
16.	Normalized Spectrum ($\alpha = 300^{\circ}$, longitudinal velocity component, point 1)	179
17.	Normalized Spectrum ($\alpha = 300^{\circ}$, vertical velocity component, point 2)	180
18.	Normalized Spectrum (α = 300°, longitudinal velocity component, point 2)	181
19.	Normalized Spectrum ($\alpha = 30^{\circ}$, vertical velocity component, point 1)	182
20.	Normalized Spectrum ($\alpha = 30^{\circ}$, longitudinal velocity component, point 1)	183

					Page
21.	Normalized component,	Spectrum (point 2)	(α =	30°, vertical velocity	184
22.	Normalized component,	Spectrum (point 2)	(α =	30°, longitudinal velocity	185

Appendix B

WIND CHARACTERISTICS OF BRIDGE SITE

B.1 Topographic Model

The Ruck-A-Chucky Bridge location is schematically shown in Fig. 1. Topography of the area surrounding the bridge site is rather complex. Accordingly, an investigation of wind characteristics in this area by means of physical modeling in a wind tunnel was recommended and accomplished. Certain similarity criteria must be fulfilled in order to obtain similar flow fields for model and prototype. These criteria are implied by governing physical conservation laws and have been discussed in detail by Cermak (1,2). Basically they provide geometric, dynamic and kinematic similarity. In addition, similarity of upwind flow characteristics and ground boundary conditions must be achieved.

In the study presented, geometric similarity is satisfied by an undistorted model of length ratio 1:1920. This scale was chosen to enable significant topography surrounding the site to be included in the model and to provide a representative upwind fetch necessary for appropriate boundary-layer growth. Topography was modeled by thin styrofoam layers cut to match contour lines of a topographic map (enlarged to the 1:1920 scale) and glued together. Overall view of the model in the environmental wind tunnel (EWT) is shown in Fig. 2.

The model terrain surface was made rough to represent estimated roughness of the site which was sufficient to achieve Reynolds number independence of flow over the model surface.

Sections of modeled topography were constructed for regions upwind and downwind of the topography mounted on the 12-ft (3.66 m) diameter turntable. The EWT, in which the whole, described herein, wind study was conducted is schematically presented in Fig. 3.

B.2 Vertical Profiles of Mean Velocity and Turbulence

Velocity profiles and turbulence intensities were measured at the bridge deck center for several different wind directions. The most extreme conditions were expected for wind blowing along and across the canyon centerline at the bridge site. These directions, respectively $\alpha = 300^{\circ}$ and $\alpha = 30^{\circ}$, are shown in Fig. 4. Also certain intermediate wind directions ($\alpha = 105^{\circ}$, $\alpha = 270^{\circ}$) were chosen for measurements.

Vertical profiles of the longitudinal mean velocity component and turbulence intensities were measured for the configurations indicated. The velocity profiles are plotted in Figs. 5-8. Corresponding turbulence intensity graphs are shown in Figs. 9-12. Similar data were taken for a representative point located on top of one of the ridges near the bridge site. These results are compared with measurements taken at the bridge center in Fig. 5 and Fig. 9.

The above graphs show that, for wind along the canyon ($\alpha = 300^{\circ}$) the mean longitudinal velocity at the center of the bridge deck level equals approximately 40% of its value above the boundary layer, Fig. 6. This magnitude reduces as the wind direction approaches $\alpha = 30^{\circ}$ and its lower limit is approximately 15%, Fig. 5. The extreme magnitude of turbulence intensity at the bridge center equals approximately 50% for flow across the canyon, i.e., $\alpha = 30^{\circ}$, Fig. 9.

The effects of wind direction on the overall flow pattern are shown by Figs. 13a, 13b and 14. No large-scale organized swirling flow was observed at the bridge site by flow visualization. Furthermore, no such motion was detected by a rotated, yawed hot-film probe--a technique which is capable of detecting organized vorticity (3). More detail of the flow pattern is provided by a motion picture that supplements this report.

B.3 Turbulence Spectra

Turbulence spectra were calculated for the longitudinal* U and vertical W velocity components at two different points of the bridge deck, located 1/3 bridge span apart. These points are schematically shown in Fig. 1. Again two representative wind directions ($\alpha = 30^{\circ}$, $\alpha = 300^{\circ}$) were chosen (see Fig. 4).

The spectra computed for the foregoing configurations are plotted in Figs. 15-22. They are normalized in such a way that mean-square-value (the area under a spectrum graph) is equal to one.

Basically the spectra for point No. 1 and No. 2 are almost identical. Comparison of the spectrum of the vertical velocity component for flows along ($\alpha = 300^{\circ}$) and across the canyon ($\alpha = 30^{\circ}$) shows that the later flow has relatively more turbulent energy in the low-frequency range.

B.4 Space Correlations

Two-point velocity correlations for the longitudinal* and vertical velocity components were measured for the two locations and wind directions described in the Section B.3. The results of the measurements are shown in Table I. The vertical component is practically uncorrelated for both wind directions. However, the correlation coefficient for the longitudinal component is substantial and is higher for $\alpha = 300^{\circ}$ than for $\alpha = 30^{\circ}$. This is a reasonable result since for $\alpha = 300^{\circ}$ the wind blows parallel to the canyon axis while if $\alpha = 30^{\circ}$ the flow is perpendicular to the canyon.

*Parallel to canyon axis

REFERENCES

- 1. Cermak, J. E., "Laboratory Simulation of the Atmospheric Boundary Layer," AIAA Jnl., Vol. 9, No. 9, Sept. 1971, pp. 1746-1754.
- Cermak, J. E., "Applications of Fluid Mechanics to Wind Engineering--A Freeman Scholar Lecture," ASME, Jnl. of Fluid Engrg., Vol. 97, Series 1, No. 1, March 1975.
- Marsh, G. L., and Peterka, J. A., "Measurement of Turbulent Flows with a Rotated Hot-Film Anemometer," Fluid Mechanics and Diffusion Laboratory Report, CER76-77GLM-JAP64, Colorado State University, 1977.

)

FIGURES

.

Fig. 1. Schematic of Bridge Location

ENVIRONMENTAL WIND TUNNEL FLUID DYNAMICS & DIFFUSION LABORATORY COLORADO STATE UNIVERSITY

Fig. 3. Environmental Wind Tunnel

Fig. 4. Basic Wind Directions Considered in Study

Fig. 5. Mean Velocity Profile $\alpha = 30^{\circ}$

Fig. 6. Mean Velocity Profile α = 300°

Fig. 7. Mean Velocity Profile $\alpha = 105^{\circ}$

Fig. 8. Mean Velocity Profile $\alpha = 270^{\circ}$

(a)

(b)

Fig. 13. Wind Visualization (a) along canyon, (b) across canyon

Fig. 14. Unsteady Vortex Formation Associated with North Wind $(\alpha {=}0^\circ)$

Fig. 15

Velocity component	Correlation Coefficient
U(Parallel to canyon axis)	0.297
W (Vertical)	0.001
U (Parallel to canyon axis)	0.390
W (Vertical	-0.017
	U(Parallel to canyon axis) W (Vertical) U (Parallel to canyon axis) W (Vertical

Table I. Two-Point Space Correlations