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ABSTRACT OF DISSERTATION 

STATISTICAL PROPERTIES OF DUNE PROFILES 

Properties of sand waves formed by subcritical unidirectional 

water currents are investigated by statistical analyses of records 

of streambed profiles. Records of bed elevation y as a £unction of 

distance x along the channel, y = y(x), and time records at a fixed 

point of the channel, y = y (t), were collected in three laboratory 

flumes that were 8 inches, 2 ft and 8 ft wide and in a straight 

alluvial channel that was 55 ft wide. For all cases, the bed material 

was fine sand. The continuous analogue records were converted to 

discrete data points and were analyzed by digital computer , 

The analyses show that both types of records, y(x) and y (t) , 

can be approximately represented as stationary Gaussian processes. 

When the data are standardized and the length or distance are expressed 

as ratios of the mean duration betweeh zero• crossings of y, the 

statistical properties of all the flume data are similar , with no 

distinguishing characteristics that can be attributed to size of 

flume or to whether the bed forms we r e ripples or dunes. The field 

data, however, reflect the influence of large alternate bars that 

were not present in the flumes. 
I 

The Gaussian assumption, together with the sp~ctral 

properties of the records as expressed by a dimension1e$S. parameter, 

6, permit predicting the distributions of maxi mum and minimum 

iii 



values of y between successive zeros of y. These distributions 

represent the probability distributions of the depth of local 

scour and fill due to the formation and migration of sand waves, 

and the parameters that specify the distributions relate approxi­

mately to flow velocity and depth. 

Observed values of the number of zero and h-level 

crossings, the mean duration between zero crossings, and the mean 

duration of upward excursions of the process y(t) above the fixed 

level h compared reasonably well with theoretical values for the 

Gaussian model. The distribution of the duration of upward ex­

cursions is the conditional probability distribution of the rest 

period of a particle, given that it is deposited on the downstream 

face of a ripple or dune at the level h. Observed distributions 

of these durations can be approximated by a gamma distribution with 

parameters that relate to h, where his measured in units of 

standard deviation from the mean bed level, These distributions and 

other probability distributions that enter into stochastic models of 

sediment transport can be determined either from the theoretical 

model or empirically from the observed data. The results of the study 

show that even though the bed elevation deviates somewhat from the 

postulated normal distribution, reasonable estimates of many properties 

of the bed profiles can be derived from fairly simple statistical 

models. 
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Background 

1 

Chapter I 

INTRODUCTION 

A distinguishing characteristic of sand waves formed by 

unidirectional subcritical water currents is their tendency to for m 

iien echelon" with gently sloping upstream faces and more steeply 

sloping downstream faces that meet the horizontal at approximately 

the natural repose angle of the sand. These features migrate 

slowly in the mean flow direction as material is eroded from their 

upstream faces and deposited on their downstream £aces. 

Generally, these features are described as simple tri ­

angular forms, in profile, somewhat as sketched in Figure 1, with 

a mean length from crest to crest or trough to trough; L, a mean 

height from crest to trough, H, and a constant angle of downstream 

face, s. If the waves are long-crested, or two-dimensional, their 

geometric properties then are considered completely specified by 

I, H, s. The ratio of mean length to mean height, L/H, called the 

ripple index, is a measure of the wave steepness. 

In reality, the sample wave forms of Figure 1 rarely exist. 

Long-crested sand waves occur apparently only under rather restricted 

flow conditions which will not be considered here. In the general 
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case of flow in a wide channel with a bed of fine sand, the ripples 

and dunes that form are three-dimensional and highly irregular in 

size, shape and spacing. 

The three-dimensional properties of these features are 

completely described by a contour map of the bed, and with modern 

sounding, navigation and computing equipment, large areas of a 

streambed can be mapped with ease and dispatch. However, the expense 

involved in obtaining detailed contour maps is prohibitive for most 

practical cases, and more generally, one has available only profiles 

of the streambed, obtained either by sounding along the channel 

from a boat or by sounding at some fixed point in the flow and 

recording changes in the bed elevation as the dunes and other bed 

features migrate past the sounding point. 

Although the profiles give only a two-dimensional picture 

of the streambed, they still provide a great amount of useful 

information. From longitudinal records, one can determine directly 

the distributions of lengths and heights associated with a parti­

cular ens emble of wave forms. From time records, the average wave 

per i od is easily found, which, together with mean wave height, 

provides a very good estimate of the bed load transport (Simons 

and others, 1965). The distribution of troughs and crests indicates 

the amount of local scour and fill associated with the migrating 

sand waves; information that may be important in such practical 
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problems as designing and maintaining navigation channels or in 

estimating the depth to which a structure such as a pipeline or 

siphon should be buried beneath the mean bed level to minimize 

the probability of local scour exposing the structure to the 

current. 

From a comparison of the properties of different strearnbed 

profiles, it may be possible to establish whether or not there 

are any essential differences, other than scale, between ripples 

and dunes, and whether or not there are statistical properties 

of the dune profiles other than scale that can be attributed to 

the size of the channel. Both questions have important implica­

tions in modeling alluvial channel processes. 

Perhaps the potentially most useful information to be 

derived from strearnbed profiles is information that relates to 

stochastic models of sediment transport. For example, in their 

two-dimensional stochastic model for the transport and dispersion 

of bed-material sediment particles, Sayre and Conover (1967) 

require the probability that a sediment particle will be deposited 

at a given level in the bed and the conditional probability for 

the length of time a particle will remain buried in the bed 

(i.e., that it will experience a rest period of a certain dura­

tion), given that it is deposited at a particular level. These 

probabilities, together with some other distributions of interest, 

are easily found from the bed profiles. 
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To be more specific, consider the short segment of profile 

sketched in Figure 2. Assume a straight, uniform channel with 

equilibrium flow conditions, as defined by Simons and Richardson 

(1966, p. J3). If y is the bed elevation, measured from the mean 

bed level so that y = 0, and xis distance along the channel in the 

direction of flow, the bed profile then can be represented in the 

form y = y(x,t), XEX, tET. At any given position x = x0 along 

the channel, one may record the change with time of bed elevation 

y to produce the record, y = y(t). Similarly, at any given 

instant of time, t = t 0 , one can sound along the channel to obtain 

a record of the bed profile, y = y(x). In reality, of course, it 

is impossible to obtain instantaneously a longitudinal profile, 

but practically the time required to obtain a profile is small 

compared to the time required for a dune to shift appreciably 

downstream, so the assumption that y = y(x) is quite reasonable. 

In either case, y = y(x) or y = y(t), the bed elevation y, 

measured about the mean bed level, is a random variable that 

depends on a parameter (tor x) defined on an arbitrary parameter 

set (Tor X, respectively). By definition, then, y = y(x,t) is a 

stochastic process (Cramer, 1964, p. 137). 

In all cases, y is a continuous function; obviously, there 

can be no discontinuities in the sand bed of a stream. Intuitively, 

one also would expect that if the mean properties of the flow, of 
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the sediment and of the sediment transport do not change with time 

or with distance along the channel, then y will represent a 

stochastic process which meets the requirements both of stationarity 

and of ergodicity. 

Consider next, in Figure 2, some simple definitions that will 

be used later. The points where the processes y(x) or y(t) cross 

the zero axis are zero crossings, and the average distance between 

successive upcrossings (values of y going from n_egative to positive) 

is an average wave length or wave period, somewhat analagous to L 

shown in Figure 1. The maximum ordinate between zero crossings, 

in absolute values, is defined as the amplitude, (a), and is 

roughly comparable to one-half the wave height of Figure 1. 

Crossings of the level hare defined in a similar manner. 

Note that the average duration of the upward excursion of the 

process y(t) above the fixed level h is the aver_age rest period 

experienced by a particle after it is deposited on the downstream 

faces of the sand waves at the level h. 

The probability that a particle will be deposited at the 

level h also can be determined from the bed profiles for at least 

some simple postulated depositional patterns, If a particle is 

equally likely to be deposited at any place on the bed, the dis­

tribution is simply the frequency distribution of they values. 

If deposition occurs only on the downstream faces of the ripples 
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or dunes, the distribution can be determined from the distribution 

of y values where the process y(x) has a negative slope or y(t) has 

a positive slope. If nothing is known of the previous history of 

a particle, that is, if it is equally likely to be found any place 

in the bed above the lowest point of particle motion, then the 

probability that it will be found at the level h can be determined 

approximately as the ratio of the area bounded by the fixed level 

hand the upward excursions of the process y(x) above h to the total 

area of the bed profile above the minimum y value. 

Many properties of the processes y(x) and y(t) that are of 

interest can be determined empirically if suitable records of 

streambed profiles are available. Usually, though, it is difficult 

to obtain both types of records. In the laboratory, where flows 

can be controlled, it is possible to obtain long records of y (t), 

but longitudinal profiles of the process y(x) are limited by the 

effective length of the flume. On the other hand, in field 

studies, it may be possible to obtain suitable longitudinal pro­

files, but the sand waves generally move so slowly that satis­

factory samples of the process y(t) cannot be obtained under 

constant flow conditions. It has not been established that the 

statistical properties of the processes y(x) and y(t) are compar­

able, although some similarities have been noted (Nordin and 

Algert, 1966). Thus, it is extremely important to determine in 
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what respects the two types of records are similar and to develop 

methods of correlating the properties of the two types of records. 

Ultimately, of course, one will wish to predict something 

about the streambed profiles,. given only information on the 

characteristics of the flow and the bed sediment. In order to do 

this, it is necessary first to determine if there are any consistent 

or recognizable patterns in the properties of interest, and then to 

attempt to relate these properties to flow and sediment parameters. 

There is little theoretical or empirical basis upon which 

to postulate the statistical properties of y(x) or y(t). However, 

during the course of preliminary studies of the bed profiles, 

several facts emerged that led to the approach adopted for this 

investigation. First, it was noted that they values were dis­

tributed about their mean values approximately as normal distri­

butions, which was to be expected as most natural processes that 

develop under the influence of many random factors exhibit approx­

imate Gaussian distributions. Second, many of the properties of 

a Gaussian process with known covariance functions are well 

established, particularly the mean values of duration between zero 

and h-level crossings and the maximum between zero crossings, from 

previous work on the statistical properties of random noise (Rice, 

1954) and on ocean waves (Longuet-Higgins, 1958, 1962, 1963). Finally, 

it has been shown that properties of the covariance function near the 
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origin relate to a simple flow parameter, at least for a limited 

range of flow conditions (Nordin and Algert, 1966), so in looking 

to the prediction problem, the assumption of a known covariance 

function may be rather simple to satisfy. 

Therefore, the approach adopted for thi s study was to compare 

the observed properties of the bed profiles with the theoretical 

properties of a Gaussian process of known covariance function. In 

the following section, the scope and specific objectives of the 

study are given in more detail. 

Purpose and Scope 

In broad terms, this study was designed to investigate the 

statistical properties of streambed profiles. Data were collected 

both in laboratory and in field investigations, and in all cases, 

attention was restricted to equilibrium flow over a bed of fine sand 

in a straight uniform channel with either a ripple or dune bed 

configuration. The classification of bed configurations as either 

ripples or dunes is according to Simons and Richardson (1966, 

p. JS-J7). Details of the hydraulic and sediment data are given 

in a later section. 

Specifically, we are interested in the mean values and the 

distributions of the durations between zero and h-level crossings, 

of the durat ions of upward excursions of the process y(t) above the 

fixed level h, and of the positive and negative maximums of y(x) 
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or y(t) between zero crossings. In addition, it is of interest to 

consider whether or not the statistical properties of y(x) and y(t) 

are similar, whether or not there are any significant differences 

other than scale in the statistical properties of ripple and dune 

profiles, and whether or not or to what extent the statistical 

properties of dune profiles depend on the scale of the flow system, 

Particular attention is paid to the spectral representations 

of the process y because the distributions of the amplitudes (a) 

for a Gaussian process depend to a large extent on the properties 

of the spectra (Cartwright and Longuet-Higgins, 1956), Some 

applications of cross-correlation and of cross-spectral analysis 

are examined briefly. 

As indicated above, the approach used in this study is to 

compare the observed properties of the bed profiles to the theore­

tical properties of a Gaussian process of known covariance function. 

Similarities and differences between the observed and the theoretical 

processes are noted, and some of the statistical parameters that 

describe the observed processes are related empirically to 

properties of the flow. 

In the following chapter, a review of the properties of a 

Gaussian process is given, and some of the mathematical relations 

for spectral analysis are listed. Chapter III describes the data 

and presents the results of the analysis. Chapter IV discusses 
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the implication of the results, summarizes the conclusions drawn, 

and lists some recommendations for future research along these same 

lines. 
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Chapter II 

SOME PROPERTIES OF A GAUSSIAN PROCESS 

Zero and H-level Crossings 

Suppose that y(t) is a real stationary, Gaussian random 

function of the continuous parameter t, 0 < t < 00 , with zero mean 

and covariance function~ , (s) and possessing a spectral density 
YY 

function G (w). The covariance function is the expected value yy 
_, 

of the lagged product of y(t) and y(t+s) 

~yy(s) = E{y(t)y(t+s)} . (1) 

The process y(t) is assumed to be ergodic, so the covariance func­

tion is given by 

lim 
T~ 

T 

i J y(t) 
0 

y(t+s) dt 

which by stationarity is a function only of s. 

The covariance function is related to the spectral density 

function by the equation 

G (w) Cos wsdw yy 

where w is the angular frequency. 

(2) 

(3) 
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The covariance and spectral density are Fourier transform 

2 G (w) = yy 1T 
<P (s) cos ws ds yy 

The variance of y(t) is 

00 

var y (t) = <Py/0) = J Gyy (w) dw . 
0 

The first moment of the spectrum about the origin is given by 

G (w) dw yy 

th and, in general, the r -moment, r = 0, 1, 2, ... , is defined as 

wr G (w) dw 
yy 

The mean frequency of the spectrum is then 

and the derivatives of the covariance function at the origin , 

if they exist, are 

= 

1/2 r 
( -1) 

0 , r 

mr, r even 

odd 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 
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Apparently, there is no general solution for determining 

the probability distribution of the interval between zero crossings, 

p{t
0

}, but its mean value is the reciprocal of the average number 

of zero crossings per unit time, E{N 0 }, which was given by Rice 

(1954), as 

1 
E{No } = 

n 

11 1 

[
-qi (0) ] 2 

HO) 

The expected number of h-level crossings is 

1 

E { Nh } = .!. exp { - h 2 / 2 } f_ - qi 11 ( o) ] 2 
n l qi(O) 

(10) 

(11) 

The ratio of the average number of h-level crossi_ngs to the aver_age 

number of zero crossi_ngs from Equations 10 and 11 is 

The expected duration of an upward excursion above the 

level his given by Cramer and Leadbetter (1967), 

_1 
= µ pr{y(O) > h} 

whereµ is the mean number of upcross ings per unit time and pr 

denotes probability. The mean number of upcrossings is one-half 

(12) 

(13) 
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the mean number of crossings per unit time, so, combining 

Equations 10 and 12, the ratio of expected duration of upward 

excursions above the level h to expected duration of upward ex­

cursions above the zero level is 

An interesting alternative to Rice's approach is given 

(14) 

by Tick and Shaman (1966) for a st_raight line interpolation of an 

underlying continuous Gaussian process detennined by sampling the 

underlying process at equi-spaced intervals. Again, it is assumed 

"·· that y(t) is a stationary Gaussian process with continuous parameter 

t, - 00 < t <00 , and with zero mean and covariance function~ (s), yy 

and possessing a spectral density function G (w), defined by yy 

Equation 3. Assume that ~CO)= 1 and that y(t) is sampled dis-

cretely at the time points ... -26t, -6t, 0, 6t, 26t, ... The 

sampled process also is Gaussian with covariance sequence 

~(n6t), n = 0, .±.l, ±2, ... . Connecting successively the observed 

ordinates of the sampled sequence with straight line segments 

yields the interpolation process mentioned above. 

The expected number of zero crossings in a record of length 

k6t is found to be 

E{N
0

} = k [½ -¼ arcsin ~(6t~ (15) 
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To determine the expected number of h-level crossings, choose two 

adjacent values, y(n~t) and y({n+l}~t) and denote them by Y1 and Y2, 

The joint distribution of Y1 and Y2 is bivariate normal with 

correlation ~(M). Then, the expected number of h-level crossings 

is 

E{Nh} • k ~r(Y1 > h, Y2 < h) + pr(Y1 < h, Y2 > h)] 

= 2k[pr(Y1 > h, Y2 > ~J - pr(Y1 > h, Y2 > h] (16) 

From Equations 15 and 16, the value of the ratio of the expected 

number of h-level to the expected number of zero crossi_ngs is seen 

t o depend on the cov~tiartce function at one lag, ~(~t). Values were 

computed for ~(~t) ~ 0 ,7 and 0.9, and the curve for ~(~t) = 0.7 is 

plotted in Figure 3 a1ong with Equation 12 for the corttinuous 

process. There is so little difference in the two curves for 

values of ~(At) greater than 0.7 that the simpler express ion of 

Equation 14 is to be preferred. 

Although the probability distribution of the t values cannot 

be precisely determined in the general case, Longuet-Higg ins (1962, 

1963) gives some approximations for upper and lower bounds of p{t
0
}, 

with particular attention to certain ideal forms of the spectra of 

y(t), and Cramer and Leadbetter (1967) give equations for the moments 

of the distribution functions of the duration of upward excursions 
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above the level h. From a practical point of view, the mean values 

of ih+ are of most interest, and particularly the mean in an inter­

val h2 - h1, which is the mean rest period of a particle deposited 

on the downstream face of a sand wave between the elevations h1 and 

h2, and which can be determined easily by integrating Equation 13 

between appropriate limits. 

Wave Heights and Amplitudes 

The wave he i ght H was defined as the difference in elevation 

between a crest (maximum) and th~ following trough (minimum) in 

Figure 1. The statistical distribution of H generally is not known, 

but for the case where y(t) h~s a n~rrow spectrum, it has been 

established that B/2 is distributed according to a Rayleigh dis­

tribution (see Cartwright and Long~et-Higgins, 1956). 

p(H/2) = 
H 

e 

where m
0 

, the vari ance of y(t), is determined by Equation 5 or 

Equation 7. If the process y has unit variance, the equation 

simplifies to 

p(H/2) = He-(H/2)2 

(17) 

(18) 
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and the cumulative probability distribution of H/2 is given by 

p ( H/2 < § ) = 1 - (19) 

Although the probability distribution of His not established, 

the statistical distribution of the local maxima of y(t) is known. 

If y(t) is a strictly stationary process possessing a continuous 

sample derivative y' (t), a local maximum or crest is said to occur 

at t = t
0 

if y' (t) has a downcrossing of zero at t (Cramer and 

Leadbetter, 1967, p. 242). Define a as the difference in height 

between the crest and the mean level of y(t). Then, for the 

Gaussian process considered here, the probability distribution of 

1/2 a depends only on (m 0) and on a parameter o that represents 

the relative width of the frequency spectrum, 

02 = mpm4 - m2 
mo m4 

2 

, 0 < o < 1 

For o ~ 0, the spectrum becomes infinitely narrow and the dimen­

sionless maxima , n, tend to a Rayleigh distribution 

n2 
p(n) = ne - 2 

= 0 

n > o 

n < o 

(20) 

(21) 
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where n is defined by the relation 

When o approaches its maximum value of 1, the distribution of n 

is Gaussian, 

1 
p(n) = ---

(2n) 1/2 

Derivations of the above distributions are given by Rice (1954) 

(22) 

(23) 

and are discussed in detail by Cartwright and Longuet-Higgins (1956). 

The cumulative probability distributions of n for various values of 

o are shown in Figure 4. 

In Figure 2, (a) was defined as the maximum y value between 

zero crossings, and it can assume either positive or negative values. 

From a practical point of view, it may be advant_ageous to consider 

separately the distributions of positive (a+) and negative (a-) 

values, in the event that y(t) is not symmetric about its mean 

level. The theoretical Gaussian model is assumed symmetric, so in 

this case it is permissible to consider only the positive (a) 

values, keeping in mind the symmetry of the distribution about 

zero when negative values are of concern. 

Clearly, for narrow-band random noise, the distribution of 

(a+) would approach the distribution of local maxima, the Rayleigh 
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distribution (see, for example, Bendat and Piersol, 1966, p. 17). 

For the general case, however, there apparently is no theoretical 

derivation for the probability distribution of the (a) values. 

For purposes of this study, therefore, the observed distributions 

of (a) simply will be compared with the theoretical distributions 

of local maxima shown in Figure 4. Intuitively, at least, one 

would expect the (a) values for a process with a broad spectrum 

to approach a form of the normal distribution~ but there is no 

reason to expect the distribution to depend only on o and m. 

Theory of Time Series Analysis 

In the preceding section, the covariance function, ~(s), 

or alternatively, the spectral density function, G(w), was assumed 

known. Values of these functions are required to predict mean 

durations between zero and h-level crossings and to estimate 

probability distributions of maxima for the Gaussian model. For 

the actual streambed profiles analyzed in this study, values of 

~(s) and G(w) were computed and the observed properties of the 

profiles were then compared with properties of a Gaussian process 

having the same covariance and spectral density functions. 

Apart from the problem of predicting the zero and h-level 

crossings, the covariance functions and spectra together with the 

probability distributions of they values provide a great deal of 
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information about the process y(t), and these functions will be 

found particularly useful in i ater sections when considering the 

similarities and the differences of the streambed profiles that 

can be attributed to scale of the flow system or to channel size. 

Therefore, it is appropriate at this point to review briefly the 

theory of time series analysis and to mention some of the properties 

of the covariance functions and spectral density functions that 

were found useful in analyzing the dune profiles. 

For this purpose, consider y(t) to be a real continuous 

random function of time t, -00 < t < 00 • The process y(t) is assumed 

to be stationary and ergodic. Stationarity implies time invariance 

of the general statistical properties of the process y(t), and 

ergodicity insures that averages across an ensemble are equivalent 

to averages over time along a single sample function or realization 

of infinite extent (for a more detailed discussion of these concepts, 

see Yaglom, 1962 or Cramer and Leadbetter, 1967). 

By stationarity, both the mean value, y, and the variance, 

a2 , are constants, so it is always possible to form a new time 
y 

series, (y(t) - y) /cry, that has zero mean and unit variance. Unless 

otherwise specified, it will be assumed in the following discussion 

that this transformation has been made. Then the correlation func­

tion, defined as 

(24) 

is identical to the covariance function. 
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Both ~(s) and G(w) are even functions of their respect ive 

arguments, and the usual equations for these functions are 

00 

lf ( ) e-iws ds - 1T cpyy s 
0 

=f 
0 

iws G (w) e dw yy 

whe:re negative values of both time and frequency are considered, 

Because y(t) is a real function, the correlation and spectral 

density functions often are given as a cosine transform pair, 

Equations 3 and 4, where the G and~ values are modified by the 

necessary constants to apply only to positive t and w values, 

Bendat and Piersol (1966, p. 77-84)_ give a complete discussion of 

the "one-sided" correlation and spectral density functions that 

. generally are used in practical computations. 

(25) 

(26) 

· The autocovariance function measures the d_egree of dependence 

between the observed quantity y at one time and at another times 

t.mits later. It is especially useful in defining periodicities in 

the process y(t). 

The power spectrum or spectral density function describes 

the general frequency composition of the data in terms of the 

density of its mean square value, that is, G (w)dw represents the yy 

contribution to the variance of the process from the frequencies 
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between wand (w + dw). Thus, the spectra show directly similarities 

and differences in the streambed profiles and provide a quantitative 

basis for comparing the ripple bed forms with the dune forms or 

for evaluating the effect of scale on the statistical properties of 

the streambed profiles. 

The treatment is extended to two stochastic processes as 

follows. The cross correlation between two series y(t) and z(t) 

is given by 

Pyz (s) = 
I (O)' (0) ~yy ~zz 

where ~y~(s) is the cross covariance betwee~ the series and is 

defined &S the expected value of the product y(t) z(t+s). Both 

y(t) and z(t) are ergodic, so t~e cross covariance is 

(27) 

lim 1 
~yz(s) = E{y(t) z(t+s)}= T-+<x> T 

T/2 J y(t) z(t+s) dt. (28) 

-T/2 

The cross-spectrum is defined as the Fourier transform of the 

cross-covariance function 

G (w) yz 

00 

= ¼ J -iws 
~yz(s) e ds = c(ui) + iq(w) (29) 

where w represents the angular frequency, c(w) is the co-spectrum, 

a measure of the in-phase covariance, and q(w) is the quadrature 
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spectrum, a measure of the out-of-phase covariance. The co-spectrum 

measures the contributions of oscillations at the lag zero between 

two time series. The quadrature spectrum measures the contribution 

of the different harmonics to the total cross covariance between 

the series when all the harmonics of the series y(t) are delayed 

by a quarter period but the series z(t) remains unchanged. 

The real quantity defined as coherence, y 2 . (w), is a direct yz 

measure of the square of the correlation of the amplitudes of 

frequency w of the processes y(t) and z(t) 

c 2 (w) + q2 (w) 
y2 (w) = __.Y.,,_z ___ .....--4,y_z __ 

yz G (w) G (w) 
y z 

0 2. y (w) < 1 (30) 

where G (w) and G (w) represent the spectra of y(t) and z(t), 
y z 

respectively. 

Even if the amplitudes are fully correlated, it is possible 

that the corresponding frequency components will have different 

phases. The phase lag at each frequency is given by 

0(w) = arctan ~ 
C (w) 

where 0(w) is called the phase function. 

(31) 

Another quantity sometimes useful in cross spectral analysis 

if the frequency response function, H(w), calculated from the 
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relation 

H(w) = 
G (w) zy 
G (w) 

z 

= A(w) ei0(w) . 

The quantity A(w) is the gain function or amplitude gain of the 

system and measures the ratio of the amplitude of the frequency 

components of the series y(t) and z(t) at each frequency w. 

(32) 

The cross covariance measures the dependence between two 

time series at the given lag, s, and for this study, it was applied 

to investigate the three-dimensional properties of the sand waves, 

their mean rate of shifting and the time or distance required for 

the waves effectively to lose their identity. The cross spectral 

functions, Equations 29-32, were used in conjunction with the cross 

covariance. 

The above theory is presented for a continuous process with 

the parameter t representing time. The frequency f = w/2rr is then 

given in cycles per unit time. The parameter tis simply a member 

of an arbitrarily specified parameter set, and it can be any 

quantity that permits the set of y or z values to be ordered 

linearly. If time tis replaced by distance x, the frequency f 

is replaced by wave number£ and the wave period T = 1/f is re­

placed by wave length L = 1/£. 
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Chapter III 

DATA AND ANALYSIS 

Profiles from four different channels were selected for 

these analyses. Table 1 in the Appendix gives a summary of the 

records. Three of the channels were recirculating laboratory 

flumes located at the Research Center Hydraulics Laboratory, 

Colorado State University, Fort Collins, Colorado, The other 

channel was Atrisco Lateral near Bernalillo, New Mexico, a con­

veyance channel with a sand bed and with banks stabilized by 

clay and vegetation. The dimensions of the flumes were: 0.67 ft 

wide by 30 ft long, 2 ft wide by 60 ft long, and 8 ft wide by 

200 ft long. Atrisco Lateral was approximately 55 ft wide, and 

the profiles were obtained about midway in a straight reach 

12,000 feet long. The median diameters of bed material and flow 

parameters are shown in Table 1. 

A total of 54 records representing six different flow 

conditions were selected for analysis. Runs 1, 2, and 3 were 

data collected from Atrisco Lateral on three different days, 

but with similar flows. Records 4 through 19 and 20 through 39 

are from the 8 ft flume for two different flow conditions, and 
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like the f i eld data for the first three runs, the bed configuration 

was dunes. The records for runs 40-43 are for a ripple bed in the 

2 ft fl ume, and runs 44-47 are for identical flow conditions. 

Runs 48-51 are for a dune-bed flow in the 2 ft -flume, and runs 52-54 

are for a ripple bed in the 0.67-ft flume, corresponding to the 

experiments reported by Rathbun and Guy (1967). Run 54 subsequently 

was discarded because of suspected errors in the basic data, so 

analysis eventually was carried out on 53 profiles from the six 

different flow conditions. 

Profiles of the bed elevations were obtained with the sonic 

depth sounder described by Karaki and others (1961) except for the 

smallest flume where the profiles were traced on a stripchart from 

the plastic side-walls of the flume. All data were digitized with 

an analogue to digital converter at the intervals shown in Table 1. 

The flume data, runs 4 thro_ugh 54, were standardized with zero mean 

and unit variance after removing a straight line trend to account 

for the possibility that the sand bed in the flume was not parallel 

to the instrument carriage rails supporting the sonic sounder. 

At first, the trend was not removed from the Atrisco Lateral 

data because the sounder was mounted on a boat at a constant depth 

below the water surface. However, initial analyses showed some 

long-term trends in the data, so parts of records from run 2 were 

selected for trend removal. These shorter records from Atrisco 
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Lateral are shown as runs 55 through 57 in Table 1 and are discussed 

in detail in a later section. 

Only longitudinal profiles were available for Atrisco Lateral 

and the smallest flume; for the 2-ft and 8-ft wide flumes, time 

records, y = y(t) were available along with the longitudinal 

profiles. All the computations described in this and subsequent 

sections were accomplished on the CDC 6400 computer at Colorado 

State University. 

For the discrete data used in this study, the values in 

Equations 25 through 32 were approximated by the estimates presented 

by Granger and Hatanaka (1964), using the Blackman and Tukey spectral 

estimates with a Hanning window (Blackman and Tukey, 1958, page 34). 

Formulas for the digital calculations of the covariance functions and 

spectra, and some guidelines for estimati.ng the length 0£ record 

required for the various calculations are given in Appendix Ill. 

A detailed discussion of the calculations and an excellent review 

of spectral theory are given in the above references and in a 

recent book by Bendat and Piersol (1966). Rodriguez-Iturbe (1967) 

investigated the application of cross-spectral analysis to hydro­

logic data and gave a thorough discussion of the computational 

procedures for discrete data. The procedures used in this study are 

identical to those listed by him (Rodriguez-Iturbe, 1967, p. 5-7). 
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Zero and H-Level Crossing Analyses 

In this section, mean values of the durations between zero 

and h- level crossings, the mean durations of upward excursions 

above the level hand some of the probability distributions of 

interest in the two-dimensional stochastic model of particle 

movement (Sayre and Conover, 1967) will be considered. 

First, it is noted that the bed elevation y, measured 

from t he mean bed level, follows approximately a Gaussian distri­

bution , Figur e S. Intuitively, an approximate normal distribution 

is expected, because physical phenomena governed by the complex 

interact ion of many factors often exhibit such a distribution. 

Logically, the distribution can be only approximate; in a finite 

flow depth, the variation of the bed elevation about the mean can 

never as sume infinite values. In addition, the preferred orientation 

of the dune f orms, with the characteristic steeply sloping down­

stream faces , suggests a pattern more 1'.egular than normal distri­

bution. Figure 5 shows examples of the distributions from each 

of the four channe l s and although the sets of values plot around 

the straight line of a normal distribution, each shows some 

departures f rom normality. 

The cumulative distribution curves of Figure S tend to 

smooth out irregularities of the data and are not really a good 

indication of the normality or lack of normality of the data. A 

better cri terion, perhaps, is to compare the skewness of the data 
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with the skewness of a normal distribution, which is zero. Table 2 

lists the properties of the raw data and shows that the skewness 

varied from -0.3 to about 1.7, with a preponderance of values on 

the positive side. Both the skewness and kurtosis show a considerable 

range of values with no recognizable pattern. 

Even though the distributions of the data depart from 

normality, the relation of Equation 10 provides a good estimate of 

the mean duration or the mean distance between zero crossings, to, 

as shown in Figure 6. Although there is considerable scatter, the 

data group around the line of perfect agreement. No consistent 

trends in the scatter could be attributed to flume size or type 

of bed form, so it is assumed that most of the scatter is due to 

the shortness of the records of the flume data. 

The ratio of the expected number of h-level crossings to 

the expected number of zero crossings was given for both the 

continuous process and the discrete approximation to the continuous 

process in Figure 3. Because the two curves are so similar, the 

simpler expression of Equation 12 will be used. Observed values 

of the ratio Nh/N 0 are plotted on Figure 7, along with the curve 

representing Equation 12. Values for thirteen profiles were 

plotted. Six of the profiles, runs 4, 19, 33, 40, 44 and 48 are of the 

process y = y(t), and seven of the profiles, runs 16, 32, 41, 45, 53 

and 56, are of the process y = y(x). For positive values of h, the 
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points scatter symetrically about the curve of Equation 12, but for 

negative values of h, most of the points fall above the curve for 

values of h from Oto -1 and below the curve for values of h from 

-1 to -2. 

Figure 7 shows clearly that there are more crossings below 

the mean bed elevation than above, which would be expected from 

consideration of flow conditions over a dune. Below the mean bed 

elevation, the reverse flow in the trough and the flow impinging 

on the back of the dune results in lo~er velocities to promote 

the growth of small-scale features. Above the mean bed elevation, 

the converging flow up the back of the dune results in a higher­

than-average velocity and shear stress near the bed, and small­

scale features cannot form. 

Figure 8 shows the average of all observations, with the 

points connected by dashed lines to give an indication of the 

shape of the distribution of Nh/N 0 values, and with averages of 

y(t) and y(x) differentiated. The figure indicates that records 

of both y(t) and y(x) yield values of Nh/N
0 

that agree very well 

with the theoretical curve for h > 0, but that deviate appreciably 

from the curve of Equation 12 for h < 0, with the values from the 

process y = y(t) showing the greatest deviation. Figure 8 suggests 

that there may be some slight differences in the properties of 

y(x) and y(t). However, distributions of the raw data and the 
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spectral analyses of the processes, discussed in a later section, 

indicate that there are no appreciable differences, so the 

greater deviation of the values for the process y = y(t) probably 

are fortuitous. 

No consistent differences in the deviations of the values 

from the curve in Figure 7 could be attributed either to flume 

size or to bed forms, where both ripples and dunes are represented. 

The mean duration of an upward excursion of the process y(t) 

above the level h, E{th+}, was given by Equation 13, and Equation 14 

is the ratio of mean duration of upward excursions at the level h 

to mean duration of upward excursions at the zero level. Equation 14 

is plotted on Figure 9 along with observed values of the ratio 

th /t 0+ . Again, as in Figure 7, there is systematic deviation from 

the curve for values of h from Oto -1, and there is considerable 

scatter at the higher values of h. However, this is not too disturbing 

because the number of upward excursions that are observed in the 

relatively short flurne records probably are too small to get 

reliable average values of ih . 
The average rest period of a particle deposited between the 

levels h1 and h2 can be computed from Equation 14 or estimated 

graphically from Figure 9. Theoretically, there are no limitations 

to Equation 14; it is applicable between any two levels of the bed, 

-oo < h < +00
, The ratio£~/£~ approaches zero ash assumes large 
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positive values and approaches an infinite value ash assumes 

large negative values. From a practical point of view, these 

extremes rarely would be of interest. The major transport of 

bed material occurs in the actively shifting part of the bed, and 

it is unlikely that one would need to consider anything beyond 

two standard deviations of the mean bed level to account for the 

bulk of the sediment movement. Within these limits, a reasonable ..- - .. 

estimate of an average rest period can be determined from 

Figure 9 or Equation 14; 
+ 

Equation 13 gives the mean rest period, th' of a part icle 

depos ited on the downstream face of a dune at the level h. We are 

interested in not only the mean value but also the distribution 

of th, the conditional probability distribution of rest periods, 

given that a particle is deposited at the level h. As indicated 

previously, there is no theoretical basis for predicting a dis­

tribution of the th values, and, unfortunately, the records of 

y(t) were not long enough to establish the rest period 

distributions. 

However, it may be useful to establish some of the 

+ properties of the distributions for th values of the process 

y(x), even though these values do not represent rest periods, 

because if the statistical properties of y(x) and y(t) are 

similar, the distribution of crossings and other features of 
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interest should be the same. (For Gaussian processes with zero 

means, similar covariance functions insure similarity of all other 

properties.) For this purpose, the Atrisco Lateral records were 

selected because they were the longest available. 

Figure . IO, a bar graph of 2h distributions for run l, shows 

that shapes of the distributions vary with hand suggests that at 

the level h = 0, the lengths of upward excursions follow an 

exponential distri bution. Figure 11 shows as solid lines exponen­

tial distributions with the same means as observed mean values of 

i; ror runs 1, 2 and 3. The plotted points represent the observed 

values. Obviously, the exponential distribution is only a rough 

approximation . 

W. W. Sayre (personal communication, 1967) suggested that 

perhaps a gamma distribution would serve as a model for the di stri­

bution of£~ values over any practical range of bed elevations 

that are of interest. To investigate this possibility, consider 

t he gamma distribution with parameters b > 0, A> 0, 

p( 2) 
A b- 1 

= f(b) (AX) 

= 0 

-AX 
e for x > 0 

for x < 0 . 

(33) 

When b = 1, this i s the negative exponential distribution shown in 

Figure 11, wi th A= 1/£0 . The variance of the gamma distri but i on 
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is b/A 2 , and its coefficient of variation, C, the standard devia­v 

tion divided by the mean, is 1/v'b. 

Figure 12 shows observed values of C for the distributions 
V 

+ 
of th values plotted as functions of h. The trend line sketched 

through the plotted points is positioned with C = 1 at h = 0, 
V 

corresponding to the exponential distribution of Figure 11. Thus, 

the postulated gamma distributions of the lengths or durations 

of positive excursions above the level h can be determined directly 

from Figures 12 and 9, with A and b computed from the following 

equations: 

b = 1/C 2 
V 

(34) 

(35) 

Figure 13 shows bar graphs of the observed t~ distributions 

for run 1, with points plotted at the midpoint of each class interval 

representing the frequency for that class from a gamma distribution 

with parameters given by Equations 34 and 35. The observed mean 

value oft~ was used to compute A for h = 0, and all other parameters 

were determined from Figures 9 and 12. The results of this example 

certainly are encouraging but not conclusive. 

It should be noted that the data from one time record, run 19, 

are plotted on Figure 12. These data deviate more from the trend 
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line of the C values than do the data from the longitudinal profiles, 
V 

but the number of crossings observed in the time records was too 

small to provide reliable statistical estimates of the distribution 

+ of the th values. Thus, the approach outlined above appears to be 

equally applicable to records of y(x) or y(t), but confidence levels 

for estimating the distributions of rest periods cannot be 

established until longer records of the process y = y(t) become 

available. 

One other distribution of interest that will be considered in 

this section is the probability that a particle is residing in the 

bed at the level h. This is not the same as the probability that a 

particle is deposited at the level h, for deposition occurs on the 

downstream faces and in the troughs of the sand waves; this later 

probability no doubt depends on flow conditions. The distributions 

derived empirically by investigating the area bounded by the curve 

y = y(t) or y = y(x) above a level h give the percent of particles 

found in the bed above the level hand represent the probability 

of finding a particle at the level h if nothing is known of its 

previous history. Figure 14 shows the computed values for y(x) 

and y(t) records from the 2-ft flume, with a smooth curve drawn by 

eye to indicate the trend of the distributions. An approximate 

equation for P(h), the probability that a particle is residing in 

the bed above the level h, is given by 

P(h) = l -e=0.157(h + 1.75) (36) 
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Equation 36 is a good approximation in the range 0.1 < P <_0.9, 

but it is not applicable for extreme values of h. 

Distribution of Wave Heights and Amplitudes 

The absolute maximum value of y between zero crossings was 

defined in Figure 2 as the wave amplitude, (a), and it was noted 

that the distribution of positive amplitudes, (a+), represented 

the probability distribution of local deposition and that the dis­

tribution of negative values, (a-), represented the probability 

distribution of local depth of scour associated with the formation 

and migration of sand waves. If the processes y(x) and y(t) were 

symmetric about their mean values, the distribution of positive 

and negative (a) values would be identical, and for a Gaussian 

process, it was postulated that the distributions of (a) values 

would approximate the distribution of crest heights, n, shown 

on Figure 4. 

All of the records analyzed exhibited relatively broad spectra, 

with values of o2 from Equation 20 varying from 0.83 to 0.99, see 

Table 7, and with most of the values greater than 0.9. Figures 15 

through 17 show distributions of positive and negative (a) values 

for runs 1 through 3. The solid curves on the figures represent the 

Gaussian distribution from Figure 4 of crest heights for a process 

with a broad-band spectrum ( o2 = 1.0). Two points of interest should 
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be noted: (1) the distributions are not symmetric; and (2) the 

negative values, (a-), follow more closely the normal distribution 

than do the positive values. 

The positive amplitudes, (a+), followed approximately an 

exponential distribution, as shown in Figure 18. In this figure, 

P(a) is the cumulative probability distribution of (a), and for 

this form of plotting, a Rayleigh distribution (Equation 21) woul d 

have a slope of two and an exponential distribution the slope of 

one. Clearly, except for very small values of (a); the slope is 

one; indicating an approximate exponential distribution. 

As discussed previously, there is no basis for estimatihg 

the probability distribution of wave heights, H, the trough ato­

crest height, and there is no reason to expect similarities in 

the distribution of Hand (a) values. Figure 19 shows the distri­

bution of wave heights to approach the Rayleigh distribution, rather 

than the exponential distribution. The same data were used to 

prepare Figures 18 and 19, but in Figure 19, the raw data were 

not standardized and the wave heights are given in feet rather than 

in units of standard deviations. 

Even though the distributions are different, the mean 

values of (a+) and H relate reasonably well, Figure 20, as do the 

mean values of distances between successive upcrossings of y and 

mean dune lengths, L, (trough-to-trough distance) Figure 21. Note, 
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however, that values of 2a and of the distance between successive 

upcrossings are not strictly comparable to Hand L because entire 

wave forms occur above or below the mean bed level, and their 

lengths and heights are not reflected in the average distance 

or average of maximum ordinates between zero crossi.ngs. 

An interesting correlation was found to exist between the 

average of maximum ordinates between zero crossings and the standard 

deviation of the bed elevation, Figure 22. For the smaller features, 

a direct linear relation applies, with the standard deviation of 

the bed elevation approximately equal to the average amplitude of 

the sand waves. This is precisely the relation predicted for the 

mean value of local maxima given by Equation 23 and shown in Figure 4 

as the curve corresponding to o2 = 1.0. The relation of Figure 22, 

then, supports the assumption that the distribution of (a) values 

should be similar to the distribution of the local maxima. The 

deviation from the line of agreement at the larger (a) values might 

be attributed to the fact that some of the details of the record 

are lost in digitizing the continuous trace of bed elevation. The 

larger dunes are not more regular than the smaller features; in 

fact, the reverse is true. If the bed profile were represented as 

a succession of identical triangles, similar to the idealized dune 

form of Figure 1, with ripple index, L/H, of 15 and tan 8 = 0.6, 

the relation of mean amplitude to standard deviation of y is given 
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by a= 0.64 cr . For this condition to hold for the larger dunes 
y 

represented in Figure 22, the plotted points would fall to the 

left of the line of agreement. 

Summarizing, the average amplitude (a) is approximately 

equal to the standard deviation of the bed elevation, and the dis­

tributions of (a) values predicted by the relations in Figure 4 

appear to give reasonable agreement with the observed distributions. 

However, the bed profile is not symmetric about its mean level, and 

the distribution of negative values (a-) agrees more closely with 

the predicted normal distribution than do the positive values (a+). 

For the positive values, an exponential distribution can be 

shown to apply (Figure 18). 

Spectral Analysis 

In the previous discussion, the autocovariance functions 

or the spectral density functions for the processes y(x) and y(t) were 

assumed known. These functions were required to predict the number 

of zero and h-level crossings for the model Gaussian process, and 

for the experimental data, the functions were known because they 

were computed. In the following sections, the properties of the covar­

iance functions and spectra will be considered in somewhat more 

detail. 

Stationarity and Equilibrium Flow - A critical assumption 

in spectral analysis is that the processes under consideration are 
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stationary, at least to the second order. At the initiation of 

this study, it seemed intuitively obvious that stationarity of 

the processes y(t) and y(x) would be a direct consequence of equil­

ibrium flow conditions. If the mean characteristics of the flow, 

the sediment, and the transport do not change with time or with 

distance along the channel, then surely the statistical properties 

of records of the bed profile should be invariant with respect 

to shifts in the origin of the records. 

For the longer field records, it can be demonstrated that 

the assumption of weak stationarity is justified. Figure 23a shows 

mean values and standard deviations for 8 short segments from 

the record of run number 3 plotted with their respective 90 percent 

significance levels. The standard deviations do not vary signi­

ficantly. The rather large variations in the mean values re­

sulted from large alternate bars and a meandering thalweg that 

existed in the channel, which introduced apparent trends in the 

short segments of the record. The bed profiles were obtained by 

sounding from a boat with the water surface as a datum, and the 

depth of flow varied somewhat systematically along the channels. 

However, when the bed elevations were measured from the mean bed 

level established by a linear trend line through short segments 

of the reach, the assumption of second-order stationarity for 

these short segments of record was satisfactory. For longer 
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segments of the record, say on the order of 40 to 50 times the 

mean channel width, no significant differences were noted in the 

means and variances. 

The flume records presented a somewhat different problem. 

It was assumed that for equilibrium flow conditions, any two 

records of the bed profile would show approximately the same 

statistical properties. However, this was not found to be the 

case, Figure 23b shows that the standard deviations for runs 8 

through 15, all of which were taken duri_ng apparent equilibrit..Un 

flow conditions over an identical reach of the flume (see Table 1), 

vary significantly. 

'rwo factors appear responsible for the large variations 

in the flume records. First, the flume records for y(x) are short, 

relative to the number of dunes that are observed, and the short rec­

ords introduce inherently large variations in the statistics from 

one observation to the next. Second, the concept of equilibrium 

flow implies a time-averaged stability that may not necessarily 

apply to any single observation. Simons and Richardson (1966, 

p. J3) indicate that equilibrium flow obtains when the time-

averaged water-surface slope and bed slope are parallel and 

constant and the time-averaged sediment discharge is constant. 

Rathbun and Guy (1967, p. 111) have shown that extremely large 

variations in sediment transport rates are to be expected in 
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recirculating flumes, and probably these variations are reflected in 

changes in the properties of the bed profiles from one observation 

to the next. 

Despite the rather large variations in the flume records 

due to the fact that equilibrium flow conditions do not prevail 

over short time intervals, the spectral properties of the individual 

records are remarkably similar for a given flow condition, provided 

the data are standardized to zero mean and unit variance. Figure 24 

shows as plotted points the spectral ordinates for runs 8, 10, 12 

and 14 plotted against a dimensionless wave number, E/E , where 
max 

E is the maximum wave number for which the computations were 
max 

carried out, with the solid line representing an aver_age curve for 

the spectra and with the dashed lines representing a 90 percent 

confidence band based on the procedure given by Blackman and 

Tukey (1958, p. 21-23). Only two of the 80 points fall outside 

the confidence band, indicating that the general shape of the 

spectra are quite reproduceable from one observation to the next. 

The approximation used in this study, therefore, was to treat 

each individual record as if it were weakly stationary. The moments 

of the spectra for the individual records could then be used to 

estimate the number of zero crossings by Equation 10 to compare 

with observed values. However, in attempting to relate the 

statistical properties, especially the variance, of the bed profiles 
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to flow parameters, it will be found convenient to work with 

average values over a consistent set of flow conditions. 

The Markov Model for Dune Profiles - A major question with 

regard to the spectral analysis is whether or not the properties 

of the covariance functions or the Spectra can be predicted from 

only the characteristics of the flow and the sediment. Some work 

already has been accomplished along these lines. Algert (1965) 

observed that the general shapes of the autocorrelation fl.lflctions 

and of the spectra for the process y = y(x) were similar to that 

of a second-order Markov process; and he developed a model £or 

the spectra based on previous work of Siddiqui (1962) . Nordin 

and Algert (1966) presented essentially the sam~ development, 

based on Algert's 1965 study, but added some observat ions ort the 

process y = y(t). Ashida and Tanaka (1967) noted that a second• 

order Markov process fits the observed spectra only for dttrtes, 

and postulated a higher~order linear regressive scheme for other 

bed forms but did not develop a model or apply the h_igher order 

scheme to any of their data. 

In the studies by Algert (1965) and Nordin and Algert (1966), 

the parameters upon which the model of the spectra is based are the 

values of the covariance function at zero , one and two lag inter­

vals, and these values were shown to relate roughly to the flow 

parameter, unit discharge, Figure 25. We can use Figure 25 and 

Equation 15 to predict the average length between zero crossings 
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of the process y(x) by noting that the spacing of the discrete 

data points used by Nordin and Algert (1966) in Figure 25 was 

approximately given by 

1/2 

For this case, ~xis equivalent to ~tin Equation 15, c1;c0 
is 

~(~t), and C. is o ~(i~t). Substituting these relations in 
1 y 

Equation 15 and reading values of c
0 

and C1 from Figure 25 for 

values of unit discharge given in Table 1, the average distances 

between zero crossings were computed and are compared with 

observed values in Figure 26. For the dune bed configuration, 

the observed values of £0 fall between plus and minus 40 percent 

of the expected value, E{£ 0}. For the ripple bed configuration, 

the variations are considerably greater, probably because the 

size of ripples is more dependent on grain size than flow condi­

tions, so Figure 25 perhaps is not applicable. In view of the 

gross assumptions that went into estimating E{£
0

}, the results of 

Figure 26 are considered quite good. 

(37) 

There are a number of problems involved in using the second­

order Markov model and the relations of Figure 25 for predictive 

purposes. Both the model and the relations of Figure 25 are 

strongly dependent on the lag interval at which the cont inuous 
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records are digitized. In addition, spectral analyses by the 

writer and by D. R. Dawdy and N. C. Matalas (personal communi­

cation, 1966) have shown that the Markov model does not apply 

for many of the dune profiles examined. Finally, Plate (1967) 

has raised some serious questions with regard to the lack of 

physical basis of this model. It is desirable, therefore, to 

consider an alternative approach to describe the properties of 

the spectra and to relate their properties to characteristics 

of the flow. 

Dimensionless Spectra - Autocovariance functions and 

spectra were computed for all the data listed in Table 1. 

Figure 27 shows spectra for the process y = y(x) for runs 17, 

32, 43, 46 and 49. Spectra of the process y = y(t) ror identi­

cal flow conditions, runs 19, 33, 40, 44 and 48, are shown 1n 

Hgure 28. 'rhe data include dune flows in the 8-ft flume and 

both ripples and dunes in the 2-ft flume. The abscissa in 

both figures is dimensionless, with each value of frequency 

or wave number divided by the maximum value. All the spectra 

are remarkably similar in general shape, and there is little 

difference in the two figures to differentiate the processes 

y(t) and y(x), suggesting that the statistical properties of the 

two types of records are similar. 

Figure 29 shows a comparison of spectra for ripples and 

dunes for the 2-ft flume, with a 90 percent confidence band 
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estimated according to the method given by Blackman and Tukey (1954). 

Here, as in Figures 27 and 28, the similarity in the spectra is 

apparent. For both ripples and dunes, the major part of the variance 

is contributed by the longer wave length components, say greater than 

two feet. Both spectra show peaks at about 0.3 cycles per foot 

and again at about 0.8 cycles per foot. Both show additional peaks 

in the range from 2 to 4 cycles per foot, but within the confidence 

limits, the peaks on the dune spectra in this range probably ~re 

not significant, whereas, those for the ripples are. The rather wide 

band of the confidence limits leaves open to guestion the significance 

of most of the peaks at the lower wave numbers, but there is no 

question as to the general shape of the spectra. 

The similarity of shape of the spectra in Figures 27 and 28 

suggests that a model incorporating flow parameters might be 

developed from dimensional considerations. For a first approxima~ 

tion, consider the major part of the spectra, that part which 

contributes all but a small percent of the variance, to be a 

function of only four variables 

G(t) = ~(f,g ,D,V) 

G(x) = ~(E,g,D ,V) 

where Dis mean flow depth, Vis mean flow velocity, g is the 

acceleration due to gravity and other symbols are as defined 

(38) 

(39) 
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previously. Dimensionless spectra G' are then given in terms of a 

dimensionless frequency f' or wave number £ 1 and the square of 

the Froude ntllllber, F, as follows: 

where 

G'(t) = iµ'(f',F 2 ) 

G' (x) = iµ' (£ 1 ,F2 ) 

G'(t) = Gg/V 

f I =: fV/g 

G 1 (x) = Gg/V2 

£ 1 = EV2/g 

p2 - v2;go 

(40) 

(41) 

(42) 

(43) 

(44) 

(45) 

(46) 

Neither fluid nor sediment properties enter into Equations 38 

and 39 on the assumption that water temperature and particle size 

for the data analyzed were approximately constant. Then, the 

sediment transport rate and the bed forms are primarily functions 

of velocity and depth (Colby, 1964, Nordin and others, 1965). The 

mean flow depth enters Equations 40 and 41 only through the Froude 

number. It is assumed that the equilibrium height of the bed 

configurations depends on flow depth, and it was shown in the 

previous section that the mean height of the bed irregularities 

and the variance of the process y(x) are closely related. Thus, 

because all the records were previously standardized in terms of 

the variance, the Froude number should be a parameter of only 
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minor importance in the spectra, and for the first approximation, 

G' should be a function only of the dimensionless frequency or 

wave number. 

Figure 30 shows the relation between G' and £ 1 for the 

same data given in Figure 26. For values of dimensionless wave 

numbers greater than 0.03, all data follow the relation 

3. 2 
G' = 0.0012(£ 1 ) 

For lower wave numbers, each set of data follow a separate curve 

wi thout a consistent pattern. It does not appear possible to 

collapse the family of curves into a single curve on the basis 

of Froude number. The dashed curve on the figure is intended 

only t o show the general trend of the data, which seems always to 

show a maximum va l ue for values of £1 less than 0.025. 

The dimens i onless spectra for the process y = y(t) are 

shown on Figur e 31, where the general relation for dimensionless 

frequencies less than 0.001 is given by 

G' = 0.013(f')- 2 • 1 

(4 7) 

( 48) 

In Figure 31 as in Figure 30, there is considerable scatter, 

wi th each set of data defining a general trend which tends to 

parallel Equation 48. Again, it was not possible to sort the curves 
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in terms of the third parameter, Froude number, which supports 

the assumption that depth should be a variable of minor importance 

in this analysis. 

In both Figures 30 and 31, the data for the 8-ft flume, 

runs 17, 19, 32 and 33 differ slightly in trend from the data of 

the 2aft flume, with the set of data from each flume deviatihg 

consistently from the average line shown oh the figures. lt is 

important to determine whether this is a result of a scale 

effect or of the difference in particle size of the bed material. 

Figure 32, which shows the dimensionless spectrum for run 53 in 

the 8-inch flume, strongly suggests that the difference is not 

a scale effect, since the data for this flume deviate from the 

line of Equation 48 in the same direction as the data for the 

8-ft flume, It is assumed, then, that the difference is due to 

differences in the particle size distribution of bed material 

not accounted for in Equations 38 and 39. 

Equation 47 by no means characterizes the entire spectrum, 

but if the maximum values of G' and the dimensionless wave numbers 

at which they occur were either constant or functions of the flow 

and sediment, the spectra would be reasonably well-described. 

Table 3 summarizes pertinent data for such an analysis for the 

process y = y(x). The maximum spectral ordinate relates to 

flow velocity, as shown in Figure 33. The straight line represents 
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the relationship between the maximum G'(x) and the square of the 

velocity 

-2 
G' (x) = 440 V max 

No apparent relation was found between values of E1 corresponding 

(49) 

to maximum values of G'(x) and any of the flow or sediment 

characteristics, but it simply may be that there was an insufficient 

number of observations to establish any trends. 

From Equations 47 and 48, the spectral density function G 

is approximately proportional to the square of the wave period, 

T = 1/f, or to the third power of the wave length, L == 1/E, The 

wave celerity c is defined as L/T = f/E, so from the equations 

for the dimensionless spectra, we can conclude that wave celerity 

. d . 1 . 1· l / 2 Th f fl d. is 1rect y proport1ona to E . us, or constant ow con 1-

tions, the small waves move faster than the large waves. This 

conclusion is supported by Simons and others (1961), who state, 

"Smaller dunes with their higher velocities overtake the larger 

dunes." 

One arrives at the same conclusion by considering a simple 

model for sediment transport based on continuity principles, such 

as the one given by Simons and others (1965), which states that 

for ripples or dunes, the unit transport rate of bedload, qb' is 

directly proportional to wave height, H, and wave celerity, c. 
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Suppose that the bed forms are dunes with ripples superposed, 

and that the dune movement is due entirely to the ripples over­

taking the dune crest and depositing material on its downstream 

face, Then, continuity requires that qb ~ c
1
H

1 
~ c2H

2
, which 

states simply that the larger features move at a smaller velocity. 

Note, however, that Equations 47 and 48 say nothing about 

how the mean wave celerity might vary with varying flow conditions . 

This matter is considered in the next section in connection with 

mean frequencies and wave nUlllbers of the spectra computed from 

Equation 8, 

Other Properties of the Spectra - The probability distri • 

butions of they values, the characteristics of the zero artd 

h-level crossi.ngs, and the consistent shapes 0£ the dimensionless 

spectra all point to some remarkable similarities of the bed 

profiles, irrespective of the size 0£ the channel or of whether 

the bed forms were ripples or dunes , Indeed, the analysis to 

this point has been directed primarily toward exposing such 

similarities, and the procedures for standardizing the raw 

data to zero mean and unit variance and for non-dimensionalizing 

the spectra really are nothing more than procedures for applying 

appropriate scale factors to the data to facilitate comparison. 

Quite often, however, one is more interested in the differences 

than in the similarities of the bed profiles, and if this is 
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the .case, it is more appropriate to compare the spectra of the 

records directly in terms of the actual frequency or wave number 

components. Figure 34 is an example of such a comparison. Spectra 

of longitudinal profiles, y = y(x), from each of the four channels, 

are plotted against wave numbers in cycles per foot. The spectra 

were computed from the standardized data, so that the area under 

each curve is equal to unity , 

~ecord is shown on the figure. 

The standard deviation, cr, for each y 

The effects of channel size on the 

distribution of the variance over the various wave number com­

ponents is obvious. 

Several features of Figure 34 are particularly interesti.ng. 

First, note that the flow conditions for run 56 and run 24 are quite 

similar (Table 1), yet there are appreciable differences in the 

spectra of the dUile profiles. Run 56 is a 200-ft reach of 

Atrisco Lateral, and the major differences in fluid and flow 

characteristics between the field data and flume data are that in 

the field case, the velocity is about 5 percent higher and the 

temperature is lower by 4 degrees Centigrade. In addition, a fine 

sediment load was associated with the field data that was not 

present in the flume. For Atrisco Lateral, the observed sediment 

concentration from suspended sediment samples was 1440 parts per 

million (ppm) of which 220 ppm were in the sand sizes, greater 

than 0.062 mm. For the flume data, the sediment concentration was 

164 ppm, all of which was sand. It is rather surprising that the 
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dune profiles would be so markedly different with only the minor 

differences in mean flow properties. However, the effects of 

channel width, of the 4 degrees Centigrade difference in te~perature; 

of the 1,200 ppm fine suspended sediment and of the minor velocity 

variations are all undefined. Their combined effect on the bed 

forms, though, is appreciable, and comparison of the spectra 

indicates that even if the mean velocity, depth and slope are s imi lar 

in the laboratory and the field; there may exist important differences 

in bed forms. 

A second point of interest concerns the comparison of run 46 

and run 49. Here, the difference in the distribution of variance 

is due strictly to bed configuration and not to channe1 size. The 

only difference in the flows for these two runs is the increase 

in velocity, slope and sediment transport rate associated with the 

dune bed configuration; all other factors, depth, width, water 

temperature and particle size of bed material were constant, For 

the dune bed configuration, values of the standard deviation of 

the bed elevation, the mean wave amplitude, and the mean length 

between zero crossings are approximately double the values observed 

for the ripples. Surprisingly, the flow resistance as measured by 

the dimensionless Chezy coefficient is very similar for these two 

runs. 

Finally, a third interesting feature of Figure 34 is the indi ­

cation that for all the dune records, the variance is distribut ed 
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generally over components of wave le_ngth greater than two feet, 

whereas for the ripple bed configuration, the variance is dis­

tributed more-or-less uniformly over a greater range of wave 

numbers. The higher wave-number, or shorter wave-length, 

components contribute an appreciable part to the total variance 

of the profiles of the ripple bed configurations, but their con­

tribution to the variance of the dune profiles is almost 

n_egligible. The question of whether the transition from ripples 

to dunes is gradual or abrupt cannot be answered from these data, 

but if additional experimentation were to show the transition to 

be abrupt, then the distribution of variance over the wave number 

componehts would serve as a reliable criterion for distinguishing 

between ripples and dunes. 

Spectral analyses of the longer records from Atrisco 

Lateral also are of particular interest because they permit better 

definition of the spectra at the lower wave numbers. An example 

of these analyses is shown for run number 3 in Figure 35. In part 

a, the autocovariance function shows an apparent cyclic trend 

with a wave length approximating the maximum lag of 600 or 200 feet. 

Inspection of cross sections of the channel every 50 feet along the 

length of the reach revealed the existance of a meandering thalweg 

and of alternate bars spaced approximately three to five times the 

channel width through the entire 4,000-ft reach. The trend in 
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the autocovariance function, Figure 35a, is almost certainly due 

to the presence of these alternate bars. The spectra for these 

longer records show the general decreasing values of G(x) with 

increasing wave numbers, Figure 35b, which are very similar in 

shape to the spectra shown in Figures 27 artd 28, but which afford 

much greater detail at the lower wave numbers. Figure 35c shows the 

spectrum for wave numbers less than 0.1, corresponding to wave 

lengths of 10 feet or greater, with the wave lengths of the spectral 

peaks noted . The chi-square test with 20 degrees of freedom to 

establish a 90 percent confidence band on the spectral estimates 

indicates that the average ordinate should fall between 1.85 G(x) 

and 0.66 G(x). The peak at 200 feet may or may not be related to 

the meandering thalweg, but there is clearly a significant peak 

in the spectrum at wave numbers less than 0.01. All other peaks 

shown on the spectrum of Figure 35c are considered s_ignificant 

with the exception of the one at 13 feet, but the wave lengths at 

which these significant peaks occur were not found to correlate 

with any recognizable features of the bed profile. There is, of 

course, no reason to suspect that these peaks in the spectrum 

should relate to the lengths of the physical waves on which the 

analysis is being performed, although it has been observed that 

for dune records, there sometimes is a correlation between the 

wave length corresponding to the peak in the •spectra and the 

average dune length (Nordin and Algert, 1966; Ashida and Tanaka, 

1967). 
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As a final consideration of the properties of the spectra, 

it might be worthwhile to explore further the relation between 

the characteristics of the spectra and the physical characteristics 

of sand waves. It was previously shown, Figure 22, that a correla­

tion exists between the average amplitude, a, and the standard 

deviation of the bed elevation, o , which is related to the spectrum y 

of y through Equation S. The reciprocal of the mean frequency or 

wave number from Equation 8 is the mean period or wave length of 

the Spectrum, and this value relates reasonably well to the mean 

period or wave length defined from the zero crossing analysis, as 

shown in Figure 36. Thus, it is possible to relate empirically 

the spectral properties and the observed properties of the sand 

waves. 

Ashida and Tanaka (1967) used spectral analyses for detera 

mining the propogation velocity of sand waves by plotting the 

wave length of the maximum spectral ordinate for the process y(x) 

against the wave period for the maximum spectral ordinate of the 

process y(t). For the records analyzed in this study, some of 

the corresponding records of y(x) and y(t) possessed maximum 

ordinate values of their spectra at the origin, so this method 

could not be used. In addition, no consistent relations were 

found between the peaks in the spectra and the average wave lengths 

or periods of the ripples and dunes. Consequently, the procedure 

used by Ashida and Tanaka (1967) is not recommended. However, 
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from the relation of Figure 36, it should be possible to determine 

the mean wave celerity either from the mean length and period 

found in the zero crossing analysis or from the mean wave number 

or frequency of the spectra using Equation 8. Table 4, which 

shows a comparison of mean wave celerities computed by these two 

methods, indicates that values of c by the two methods are 

comparable. 

The data in Table 4 also give an indication of how the mean 

wave celerity varies with mean wave number for different flow 

conditions. In the previous section, it was established that for 

a constant flow condition, the wave celerity of the different 

wave~number components varied directly as the square root or the 

wave numbers. This relation is shown schematically irt Figure 37a. 

In Figure 37b, the mean wave celerities computed from Equatiort 8 

are plotted against mean wave number from the spectral moments. 

Here we see that wi th increasing flow velocity, the average wave 

celerity varies inversely with wave number or directly with wave 

length. This implies that the mean wave celerity is independent 

of frequency; or on the average, for these data it took just 

as long for a ripple to move past a given point as it did for a 

dune. 

The importance of the relations in Figure 37 is in the fact 

that these relations permit determining the properties of the 

process, y(t), from the properties of only the longitudinal 
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profiles, y(x). If the spectral properties of y(x) are known, then 

the spectral properties of y(t) can be determined from the relation 

in Figure 37a and Equations 47 and 48. If the mean wave number for 

the process y(x) is known, then the mean frequency or wave period 

of y(t) can be established by the relation of Figure 37b, and the 

mean particle rest period at any level hand the conditional proba­

bility distributions for the rest periods at any level h can be 

determined directly from the relations in Figure 12 and Equations 14 

and 33. Note, however, that the relation in Figure 37b is no doubt 

a consequence of the sediment transport rates associated with the 

particular flow conditions examined here, and it is not known if 

the relation is generally applicable for greater flow depths. 

O'Loughlin and Squarer (1967) and Squarer (1968) have urged 

that the standard deviation of the bed elevation and some char­

acteristic wave length from the spectrum of the bed profiles be 

used to describe the geometric properties of sand waves, rather 

than simply the mean lengths and heights. Because no consistent 

terminology for describing bed configurations or methods for 

computing average wave lengths and heights exist in the literature, 

it is very difficult to evaluate the results of different investi­

gators. Certainly, then, it is desirable to develop some standard 

and rigorous method for describing the porperties of the bed 

profiles that will permit comparison of different studies, and 
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perhaps the standard deviation of the bed elevation and the reci­

procal of the mean wave number of the spectrum from Equation 8 

would serve that purpose. In addition, it might be useful to 

specify the value of 6 (Equation 20) which generally may be 

interpreted as a measure of the root-mean-square width of the 

variance spectrum (Cartwright and Longuet-Higgins, 1956, 

p. 216). Values of these parameters and of other measures of 

wave lengths and heights are given in Tables 6 and 7 in the 

appendix. 

Cross-Correlation and Cross-Spectral Analysis - Several 

interesting properties of the sand ·waves can be investigated 

using the techniques of cross-correlation and cross-spectral 

analysis. Cross-correlation is the simpler to use and admits 

to direct physical interpretations. Figure 38 shows the cross ­

correlograms for correlations of run 8 with each of the runs 9 

through 15. The profiles are all for the same reach of flume 

(see Table 1) and were obtained five minutes apart, If the dis­

tance of the peak of the correlogram from the origin is plotted 

against time, Figure 39a, the slope of the trend line, 7 feet 

per hour, may be taken as the mean speed of movement of the dunes. 

An independent check on this figure is provided by the zero 

crossing analysis, where the mean dune length for runs 8 through 

15 is 5.7 feet and the mean period of runs 4 and 19 is 0.72 hours, 

giving a dune velocity of about 8 feet per hour. 
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The general trend for the attenuation of the peak value of 

the correlation with time, Figure 39b, gives an indication of the 

rate of change in shape of the dune profiles. The dune profiles 

are assumed to be uncorrelated when the maximum value of the correla­

tion function is 0.3 or less. The value of 0.3 is chosen because 

cross-correlation of any two profiles taken at random from a group 

collected during approximate equilibrium flow conditions shows a 

maximum correlation generally less than 0.3. Then, from Figure 39b, 

it is inferred that the profile essentially loses its identity in 

about 90 minutes, or in about the same time for the average size dune 

to migrate twice its own length. 

From Figure 38, it is seen that the maximum value of the 

cross-correlation function for runs 8 through 15 is approximately 

the same as the maximum value for runs 8 and 9. Even though the 

maximum cross correlations are about the same, it is assumed that 

the distributions of variance over the wave number components should 

be appreciably different for the two cases because the waves change 

shape somewhat as they shift downstream. In other words, the 

general shapes of the cross correlograms are not the same even though 

their maximums are equal. Plots of the coherence function, y 2 , and 

the gain function, A, in Figure 40, support this assumption. The 

general decrease in both coherence and gain from the cross spectral 

analysis of runs 8 and 15, as opposed to the values for runs 8 and 9, 

shows that the wave number components of the two records 8 and 15 are 

essentially uncorrelated. 



61 

The cross-correlation and cross-spectral analysis also 

proved useful in investigating the three-dimensional properties 

of the dunes. Run 17 was a profile y(x) taken down the centerline 

of the 8-ft flume. Runs 16 and 18 were profiles taken two feet 

on either side of the centerline. The correlograms and the spectra 

for the individual profiles, Figure 41, do not suggest any appre­

ciable differences in the profiles. A major part of the variance 

in all cases is contributed by the shorter wave-number components 

corresponding to wave lengths generally greater than 4 feet. 

The cross-correlogram for runs 16 and 17, Figure 42a, shows 

that the two profiles, taken two feet apart along the same reach 

of fl ume, are practically uncorrelated, indicating that the sand 

waves certainly are not long- crested, However, the cross ­

correlogram for runs 17 and 18 (Figure 42) shows a somewhat 

better corre lation, suggesting that the dunes along the center-

line of the flume extend to or at least influence the dunes along 

the right side of the flume. The coherence diagrams for the spectral 

analyses of the two sets of data, Figure 43, show the same effect, 

with values of the coherence function y 2 for runs 17 and 18 (Figure 43) 

approximately twice that for runs 16 and 17. 

Prediction 

In previous sections, the problem of predicting the properties 

of the bed profile from only the characteristics of the flow and 

the sediment was considered briefly in terms of the Markov model 
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and the dimensionless spectra. Neither of these approaches was 

found to be completely satisfactory. At this point, some additional 

aspects of predicting the properties of the bed profiles will be 

considered. 

Under the assumption that the bed profiles can be approximated 

by a random Gaussian process, only three factors are needed to pre­

dict the mean values of durations between zero and h-level crossings 

and the distribution of maximum and minimum y values between zero 

crossings. These factors are the variance of the bed profile, cr 2 , y 

the second derivative of the covariance function at the origin; 

¢11 (0), and the parameter o2 • The parameter ¢11 (0) enters only in 

calculations of the mean duration between zero crossings, so it 

could be replaced by E{t 0}. Values of o2 approached unity, so as 

a first approximation, it can be considered equal to one and the 

prediction problem reduces to determining cr and ¢11 (0) or E{t 0 }. y 

Definition of the dimensionless spectra in terms of flow 

parameters would permit determination of ¢11 (0) and E{t
0

}, and 

this approach is favored by the writer. Some simple alternatives 

are to relate t directly to flow parameters or to find a relation 
0 

between t
0 

and the standard deviation of the bed profile, which 

would be analogous to the ripple index commonly used in geologic 

literature. In either event, it would still be necessary to 

determine cr, because the dimensionless spectra are based on the 
y 

standardized data . 
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As we might expect, the standard deviation of the bed eleva­

tion, a , relates roughly to flow depth, F_igure 44a, or to the unit y . 

water discharge, Figure 44b. Data for these figures are summarized 

in Table 5 and include average values from this study and values 

reported by Nordin and Algert (1966). It was not possible to reduce 

the scatter in these relations by consideration of other hydraulic 

or fluid variables. The point falHng farthest to the left on the 

figures may be unrepresentative, because the bed profiles (runs 52 

and 53) were collected after cessation of sediment motion and propably 

represent residual features from higher velocity flow (see Rathth.µ1 
; 

and Guy, 1967, for details of this experiment). 

All things considered, the scatter of the points in 

Figure 44 is neither unexpected nor discouragi_ng. The data r~presetnt 

observations from five different flumes and two field channels , Two 

of the flumes used a sand feed system and three were of the recircu­

lating type. In all of the experiments except those performed by 

Algert (1965) in the 0.4 ft flume, information on the bed configura­

tions was a consideration peripheral to the main objectives of the 

study, A number of unknown factors may contribute to the scatter 

in the data, such as flume entrance and exit characteristics, 

operating procedures in the experiment, imposed fine sediment load 

(in the field case) and particle size distribution of the bed 

material. 
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The one other property of the bed profiles that is of 

most interest is the probability distribution of the durations of 

upward excursions of the process y(t) above the fixed level h, which 

is the conditional probability distribution of the rest period of a 

particle, given that it is deposited on the downstream face of 

a dune at the level h. The gamma distribution with parameters 

that relate to h, as shown in Figures 12 and 13, is an attractive 

possibility. However, before this approach can be recommended, 

it is necessary to verify both the gamma distribution and the rela­

tion of Figure 12 with additional observations of the process 

y = y(t). Experiments to collect data for such verification have 

been designed and will be undertaken by the writer and others of 

the U.S. Geological Survey sometime in 1968. 

In summary, the problem of predicti_ng the properties of 

interest of the bed profiles is still not solved, but the results 

of this study have suggested several promising approaches. Some 

crude empirical relations, such as those of Figures 12, 13, 26, 37 

and 44, permit approximations to be made of most of the properties 

of interest, but the need for both refined theoretical models and 

additional experimental data is obvious. 



Discussion of Results 

65 

Chapter IV 

SUMMARY AND CONCLUSIONS 

The application of statistical techniques to analyze the 

properties of sand waves is a relatively recent Urtdertaking , so 

perhaps it is difficult to evaluate ob jectively some of the rami­

fications of this investigation. Nonetheless, three implications 

of the results seem to the writer to be of particular importance 

and to merit further discussion. 

The first important conclusion drawn from these investigations 

is that the properties of the profiles obtained in the laboratory 

flumes are all very similar, regardless of the size of the flume 

or of whether the bed configurations are ripples or dunes, provided 

that scale effects are properly taken into consideration. The 

scale effects seem to be completely accounted for by standardizing 

the raw data to zero mean and unit variance and by expressing the 

length of h-level crossings as a ratio of the mean length between 

zero crossings, or by forming dimensionless parameters in terms 

of the flow properties, as in the case of the spectra. This means 

that certain simple properties, such as the average values of the 

conditional probability-density functions of rest periods, can be 
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modeled in a ripple bed configuration or in a very small flow 

system, and the results can be extrapolated to dune configura­

tions of much larger flow systems. 

Similarity of the properties of the ripple and dune profiles 

does not imply that there are no differences in these features, but 

only that their general shape and method of movement are similar, 

as noted by Taylor and Brooks (1961). In fact, the comparisons of 

distributions of variance over the wave-number components shown in 

Figure 34 support very strongly the notion that there are appre­

ciable differences. The major differences between ripples and 

dunes are described in detail by Simons and Richardson (1966) and 

need not be considered here. 

In addition, there were important differences between the 

flume and field data for dune bed configurations . The longer 

records from Atrisco Lateral reflected the influence of a meandering 

thalweg and of accompanying large alternate bars that generally 

were not present in the flumes. Simons and Richardson (1966) have 

noted that alternate bars do form in flumes, but for the flume data 

analyzed here, the width-to-depth ratio was not great enough to 

permit the bars to develop significantly. 

A second important implication arises in the developments 

leading to Figures 30 through 33 of the dimensionless spectra. 

These figures show that the spectral representations of the processes 
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can be determined as unique functions of the flow, fluid and 

sediment properties. It was fortunate for these studies that the 

water temperatures and sediment sizes varied over rather narrow 

ranges, for this permitted expressing the dimensionless spectra 

in extremely simple form. On the other hand, because of this 

limited range of conditions, it was not possible to define 

adequately the shapes of the spectra. But the results, so far as 

they were carried, are encouraging, and they point the way to future 

experimental studies that will permit a better definition of the 

spectra. 

However, the most important result, by far, is the demonstra­

tion in Figures 6~9 and 15-17 that the properties of the profiles 

can be estimated by theoretical considerations of fairly simple 

models. Certainly, the assumption that the processes y(x) and 

y(t) are Gaussian is a crude approximation, but the results ob­

tained using this model are reasonable and consistent. 

In one important aspect, this study was unsuccessful. It 

was not possible to relate uniquely the statistical properties 

of the bed profiles to the characteristics of the flow. However, 

some simple empirical relations were considered that will permit 

predicting approximately many of the properties of interest. The 

most important relations in this regard are shown in Figure 44, 

which gives o as a function of either depth or unit water discharge, 
y 
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and Figure 25 from Nordin and Algert (1966, p. 109) which shows 

values 'of the correlation function at zero, one and two lag inter­

vals as functions of unit water discharge. These values, along 

with the length of profile record permit calculations of most of 

the factors considered in the zero and h-level crossing analysis 

and the approximations of th+/ t~ , as given by Equations 15 and 16. 

However, the relations of Figure 25 apply only if the lag interval 

is selected so that it bears a constant ratio to the standard 

deviation, (j • 
y 

Conclusions 

In this study statistical properties of streambed profiles 

from four different size channels are compared by the techniques 

of time-series analyses and by considering the mean values and dis­

tributions of zero and h-level crossings, the durations of upward 

excursions of the records y(x) and y(t) above a fixed level h, and 

the distribution of maximum y values between successive zero 

crossings . The principal conclusions drawn from the study are the 

following: 

1. No appreciable differences in the statistical properties 

of the profiles from the flumes could be attributed to flume size 

or to whether the bed forms were ripples or dunes, provided that 

the raw data were standardized to zero mean and unit variance and 

that the length scales were expressed as ratios of the mean length 
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between zero crossings, In addition, only minor differences -were 

noted between the properties of the longitudinal profiles, y = y(x), 

and the properties of the profiles, y = y(t), obtained by sounding 

continuously in time at a fixed point. Longer records of both types, 

particularly the time records, are required to establish if the 

differences are real or apparent. 

2. Spectra of the longer records from Atrisco Lateral 

appeared to reflect the influences of a meanderi_ng thalweg and 

large alternate bars that were not present in the flume data. 

3. By dimensional analyses, forms of dimensionless spectra 

were derived which describe reasonably well the observed forms 

in the higher frequency and wave number regions. The peak values 

of t he dimensionless spectral ordinates for the process y = y(x) 

correlated with the squares of the mean velocity. From the equa­

tions of the dimensionless spectra, it was establ ished that for 

constant flow condi tions, the celerities of the individual wave­

length components vary directly as the square root of the wave 

numbers. 

4. From the mean spectral moments, it was shown that the 

mean wave celerity varied inversely as the mean wave number for 

the different flow conditions considered. This relation, together 

with the relation for celerity of wave-number components under 

constant flow conditions permits determining the properties of 

t he process, y(t), from the properties of the longitudinal 

profiles, y(x). 
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5. The techniques of cross-spectral analysis were found 

useful for defining the mean rate of shifting of ripples and dunes 

and investigating their three-dimensional properties. 

6. Values of the bed elevation follow an approximate 

Gaussian distribution. For a Gaussian process of known covariance 

fW1ction, the expected number of zero or h-level crossings, the 

expected length between crossings and the mean duration of upward 

excursions of the process y(t) above the fixed level h can be 

computed. The comparison of observed and computed values show 

good agreement for positive values of hand indicate systematic 

deviations for values of h below the mean bed elevation. The mean 

duration of upward excursions of the process y(t) is the mean rest 

period of a particle at the level h. 

7. The distributions of the distances between zero 
-

crossings, t
0

, are approximately exponential. Values of the dura-

tions of upward excursions of y above the level h follow · a gamma 

distribution with parameters that relate to h, as shown in Figures 10 

through 13. 

8. The distributions of maximum values of y between zero 

crossings represent the distributions of scour and fill associated 

with the formation and migration of sand waves. The sand waves are 

not symmetric about the mean bed elevation. The positive maximums, 

(a+), are distributed exponentially and the negative maximums, (a-), 
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are distributed according to a Gaussian distribution. For both 

cases, the distributions are functions of the standard deviation 

of the bed elevation, o , which relates approximately to mean flow y 

depth or unit water discharge, F.igure 44. 

9 , Finally, the results Of this study show that some of 

the distributions enteri.ng the two-dimensional model of sediment 

transport (Sayre and Conover, 1967), and most properties of the 

dune profiles that are of interest can be determined from theoreti­

cal considerations of fairly simpie models. 

Recommendations for Future Studies - -

The results of this study suggest a number of areas for 

future invest.igations . Four, in particular, appear especially 

promising, These are: 

1. Studies should be undertaken to include fluid and 

sediment properties in the dimens i onless spectra and to determine 

more accurately the dimensionless wave numbers at which the peak 

spectral ordinates occur. 

2. The possibility of incorporating the distribution of 

wave height and length and the relation of wave celerity to wave­

length components (Figure 37) into a continuity-type bedload 

trartsport relation based on size and rate of shifti.ng of the 

sand waves should be investigated. 
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3. Experiments should be designed to obtain longer 

records of y = y(t) so that the probability distributions of particle 

rest periods (the durations of upward excursions) can be adequately 

defined. 

4. Models other than the simple Gaussian model should be 

investigated as possible representations of the processes y(x) 

and y(t) to see if more accurate predictions of the properties 

of the bed profiles can be obtained theoretically. In addition, 

it should be possible to investigate some models by simulation 

techniques. One such possibility would be a process of the form 

y(t) = p cos (AY + 0), where p, A, and 0 are all random variables 

of some specified distribution. 

In addition to the above studies, it is necessary to obtain 

reliable field records of bed profiles to permit extending these 

studies to a greater range of flow conditions. Records of the 

process y = y(t) are especially lacking, and many existing longi­

tudinal profiles suffer from inadequate horizontal control. 

As noted in Chapter 3, reliable relations between the 

statistical properties of the profiles and the characteristics 

of the flow still remain to be developed. Empirical relations 

exist, but they are far from satisfactory for predictive purposes. 

Finally, detailed descriptions of bed profiles are of 

value only if they lead ultimately to a better understanding of 

sediment transport processes. Hopefully, the results of this study 

and of future studies along the lines outlined above will contribute 

to such an understanding. 
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TABLE 1, SUMMARY OF BASIC DATA 

Time JI No. Median 
Run or Transverse of data Lag Mean Mean Water diam or 
No. Channel Date T ime station station points interv:a.l depth velocity Slope temperature bed mtl. 

(rt.)or(min.) (rt . ) (ft. /sec . ) (OC) (mm) 

Atrrco Lateral 6/23/66 0 - 4000 Q.. 12,924 o. 333 2. 20 2.16 0. 00055 19 0. 23 

I 6/22/66 0 - 4000 CL 13 , 118 . 333 2. 30 2.11 0. 00055 20 23 
6/21/66 1000 - 4000 Q.. 9,864 . 333 2 . 29 2. 08 0. 00058 20 23 

8 ft, Flume 3/15/66 936 min. Q.. 936 I. 00 2. 60 2. 09 . 00063 20 . 24 
3/ 17/66 1115 60 - 180 2 924 . 130 
3/17/66 1115 180 - 60 924 , 130 
3/17/66 1115 60 - 160 912 . 132 
3/ 17/66 1255 80 - 120 432 . 139 
3/17/66 1300 60 • 120 444 . 135 

10 3/17/66 1305 60 • 120 432 . 139 
11 3/17/66 1310 60 - 120 432 . 139 
12 3/17/66 1315 60 - 120 444 . 135 
13 3/17/66 1320 60 - 120 444 135 
14 3/17/66 1325 60 - 120 456 . 131 
15 3/17/66 1330 60 - 120 444 . 135 
16 3/17/66 1530 80 - 180 676 , 137 
17 3/17/66 1636 60 - 180 4 900 . 133 
18 3/17/66 1540 60 - 180 6 900 . 137 
19 3/ 17/66 888 mln . Q.. 888 1.0 
20 7/ 12/68 1732 60 - 180 4 468 . 256 2. 36 2 01 . 00056 24 24 
21 7/11/68 2114 60 - 180 4 736 . 1~3 
22 7/ 12/66 0930 60 - 180 4 984 . 122 
23 1 I 12/66 0924 60 - 180 720 . 167 
24 1 I 12/66 0935 60 - 180 876 . 137 
25 7/12/66 0946 60 - 180 612 . 198 
26 7/12/66 0950 60 - 180 480 . 250 
27 7/12/86 0953 80 - 180 528 . 228 
28 7/12/66 1113 60 - 160 460 . 250 
29 7/12/66 1308 60 - 180 468 , 256 
30 7/ 12/86 1328 60 - 170 792 . 152 
31 7/ 12/66 1329 170 - 60 969 0 . 158 . 00056 24 . 24 
32 7/ 12/86 1727 60 - 180 852 . 141 l l 33 7/ 12/66 1735 505 min . 672 . 750 
S4 7/ 13/66 0907 60 - 180 864 . 139 

. T53 
25 

35 7/ 13/66 0912 60 - 180 480 . 250 l 36 7/ 13/66 1012 60 • ~80 864 . 134 
37 7/ 13/66 1018 60 • 180 480 . 250 
38 7/ 14/66 0810 60 - 180 1188 . 101 . 00045 25 
39 7/ 14/66 1435 60 - 180 4 1176 . 102 . 0004:5 I 
•o 2 ft . 2/23/87 395 min. q_ 395 1.0 . 518 1. 10 

. Or8 
2r 

. 35 
41 2/21/67 1110 5 - 55 Q.. 688 . 075 l I l 42 2/22/87 2350 5 - 55 L 667 . 075 
43 2/23/67 1412 5 - 55 R 766 . 070 
44 3/23/67 532 min. Q.. 532 1. 0 . 522 I . 07 . 00088 20 35 
45 3/21/67 1720 5 - 55 CL 840 . 078 

l l l l l 46 3/22/67 0908 5 • 55 CL 696 . 072 
47 3/22/ 67 2156 5 - 55 L 640 . 078 
46 4/ 12/67 1640 1160 min . Q.. 776 1. 50 . 521 1. 62 . 00212 

2r 

35 
49 4 / 11/67 1400 5 - 55 CL 416 . 120 l l l l 50 4/12/67 1403 5 • 55 L 407 . 123 
51 4/ 12/67 1536 5 • 55 L 393 . 127 
52 0. 67 fl. 11/30/65 1000 0 - 7 . 2 L 306 . 0208 . 174 . 508 . 00148 20 . 30 
53 0 . 67 ft . 11/30/65 1000 9 • 16 L 348 . 0208 . 174 . 508 . 00148 20 . 30 .. 0, 67 ft . J 12/1/65 1000 0 - 7. 2 L 318 . 0208 . 174 . 508 . 00148 20 . 30 
55 Atrlsco Lateral 6/22/66 0 - 2000 CL 6000 . 333 2. 30 2. 11 . 00055 20 . 23 
56 I I 6/22/66 0 - 200 CL 600 . 333 2. 30 2 . 11 . 00055 20 . 23 
57 6/22/66 200 • 400 q_ 600 . 333 2. 30 2. 11 . 00055 20 . 23 

]I Ci, ls centerline, L and R are left and right third points of the channel, 2, 4, and 6 are stations from the left wall of the 8-foot nume. 
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TABLE 2. STATISTIC A L l'l lOl'l •: 1n n :s OF' l{A W D A TA 

Run 

2 
3 
4 
5 
6 
7 

8 
9 

10 
11 
12 
1 3 
14 
15 
16 
17 
18 
19 
20 
21 
22 

23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
5 1 
52 
53 
54 
55 
56 
5 7 

Variancl' 

6. 70 x Io- 2 

7.G3xto - 2 

7 .28x10- 2 

4 . 00 X 10- 2 

2. on x 1 o- 2 

1 .58x to-L 
1 . 77 X 10- 2 

2.62x 10- 2 

1. no x 10- 2 

3. 12 x 10- 2 

3.59 X 10- 2 

3 . 38 X 10=~ 
2. 96 X 10 
3. 80 X 10'" 2 

3. 83 X 10- 2 

3.22x 10- 2 

4.68 x 10- 2 

3. 37 X 10- 2 

1 . 14 x 10- 2 

2. 16 X 10- 2 
-2 1.23 x 1o_

2 
1. 94x1 0 
1. 88 X 10- 2 

1. 96 X 10- 2 

2 . 61 X 10- 2 

2 77 10- 2 
• X -2 

2.98x 10 
1. 76 X 10- 2 

1, 44x 10- 2 

1.07 X 10- 2 

1 . 17 x 10- 2 

2.11x 10- 2 

1. 45 X 10- 2 

1. 22 X 10- 2 

1.2 3x 10- 2 

1.03 x 10- 2 

1. 04 X 10- 2 

1. 25 X 10- 2 

8.52x 1o- 3 

1 , 29 X 10- 3 

1. 9 1 x 1o- 3 

2 . 25 X 10- 3 

2 . 09 X 10- 3 

1 . 20 X 10- 3 

1 . 64 X 1 o- 3 

1. 50 X 10- 3 

1 . 79 X 10- 3 

5. 62 x 1o- 3 

5. 48 X 10- 3 

5.54 x 1o- 3 

3. 23 X 10- 3 

2 . 16 x 10- 3 

1 . 19 X 10- 3 

- Not Used -
8 . 09 X 10- 2 

8.72 x 10=~ 
3 , 95 X 10 

Standanl 
Dl' vi al ion 

L. !'i!J x t o- 1 

2 . 76 X 10-t 
L . 10 x t 0- 1 

l.00 X 10-I 
I . 44 x Io- I 
t. 26x 10-t 
1 .33x 10- l 
t. 62x 10- 1 

l . 38x 10- 1 

1 . 77 X 10-l 
1 . a n x 10- 1 

I. 84 X 10-l 
1 . 72x10-l 
1 .9 5 X 10-l 
1. 96x 10- 1 

1 . 7Dx 10-l 
2. 16 X 10-l 
1. 84 X 10-l 
1 . 07x1o- 1 

1.47 x 10- 1 

1.11 X 10-l 
1. 39 X 10· 1 

1. 37 X 10-l 
1.40x10'" 1 

1 .62x 10- 1 

1.67 x 10-l 
1 . 7 3x 10-l 
1 .33x 10-l 
1.20x10· 1 

1 . 03 X 10-l 
1 . 08x1 0- 1 

1.45 X 10-l 
1. 20 X 10-l 
1 . 10 x 10- 1 

1.11 X 10-l 
1 . 01 x 10- 1 

1 .02x10- l 
1.12 x 10- 1 

9 . 23x 10- 2 

3. 60 x 10- 2 

4.37 x 10- 2 

4 . 74 x 10- 2 

4 . 57 x 10- 2 

3.46x 10- 2 

4 . 04 X 10- 2 

3 . 87 X 10- 2 

4.23x1o- 2 

7 .5 0 x 10- 2 

7.39 X 10- 2 

7 . 44 X 10- 2 

5. 68 x 10- 2 

4 . 64x10- 2 

3 . 44x 10- 2 

2 . 84 X 10- l 
2.!J6 X 10-l 
1 . 99 X 10- l 

Skt ·Wll l'SS 

(j . 38 x 1 o- I 
:, . O!J x t o -I 

2 .77 X t o-I 
1.71 X 10 Q 
4 . 04 X 10- 1 

4 . 'l2x 10- 1 

1 . 48 x 10- 1 

6 . 06 x 10- 2 

2 . 59 X 10-l 
5 . 70x10- 1 

4 . 12 X 10-l 
3 .38 x 10-l 
5.20 X 10-l 
6.07x1o- 1 

5 . 5 7 x 10- 1 

8 . 66 X 10-l 
1 . 65x10- 1 

2 . 06 x 10· 1 

1.29x10- 1 
-1 4 .5 0 x 10_

1 
2.2 8 x 10 
3.17x 10-l 
1.47 X 10· 1 

5 . 09x 10· 1 

8 . 33 X 10-l 
6 .97x 10'" 1 

- 1 6 . 9 1 x 1o.
1 4 . 06 X 10 

5 . 37 X 10-l 
9 .84xto- 2 

•9, 77 X 10:f 
8 . 07 x 10 
1. 75 X 10-l 

-1 
2. 04 X 10 Q 
1.16 x 10 

1 . 60x10=~ 
-2 .7 1 x 10 

7 . 66x10· 1 

1 . 0 3x 100 
6 . 78x10- 1 

2.81 X 10-l 
-1 . 85x10- 1 

3 . 33x 10- 1 

- 2 . 29 X 10-l 
7 . 92x 10· 2 

2 . 15 X 10•! 
2 40 10- 1 

. X -1 
9 .27 x 10 
1 . 03x10° 
3 . 60x10· 1 

1 . 46 X 10-l 
-l . 44x10-l 
2. 84 X 10-l 

5. 41 X 10-l 
1.16x100 
4 . 81 x 10- 2 

ExcPss of 
Kurtosis 

1.07 x 100 
n.4 7x1o- 1 

3.35x 1o- 1 

9.91 X 100 
- 8. 12 X 1 o- 3 

6 . 45 X 10- 2 

- 2 . 87 X 10-l 
-2 .03x10- 1 

- 5 . 62 X 10-l 
3. 35 X 10- l 

- 3 . 15 X 1 o- l 
- 2 .5 8x10-l 
-1.49x 10- 1 

• 3 . 23 X 10-l 
-4 . 36 X 10-l 

2 .32x100 
- 5. 84 X 10- l 
-1 .53x10· 1 

-1 . 67 X 10•l 
-1 5.03 X 10_

1 
4 . 46 X 10 

- 2 . 21 X 10-l 
-1 -2 .20x10_

2 
-8 . 2 1 x10 

8 . 11 X 10-l 
4 20 10· 1 

. X -1 
4.41x10_

1 
7 . 06 X 10 
1 . 66 X 1 OO 

8.41 X 10- 3 

5. 49 X 10; l 
1.55x10 

2.5 7x10=~ 
-1. 79 X 10 
9,00 X 100 
2 .9 1 X 10-l 

- 4 . 1 7 X 10- 2 

1 . 12x10° 
1.71x100 
4 . 76 X 10-l 
1. 9 8 X 10-l 

-7 . 54 X 10- 3 
-4 . 25 X 10-l 
-4.87x10- 1 

-1 - 5.28x1o_
1 

-4 . 16 X 10 _ l .. 
-1 . 78x10_

1 6 . 70 X 10 
1 . 64 X 100 
2 . 68x100 

-8 . 08 X 10=~ 
- 4 .99 X 10 
-4 . 33x10-l 

0 3.83x10
0 2.49 x 10_

2 
- 5. 73 x 10 
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TABLE 3, SUMMARY OF FLOW CHARACTERISTICS 
FOR DIMENSIONLESS SPECTRA 

Median El 

Run Mean Mean particle Froude for 
No. velocity depth diameter No, Maximum maximum 

ft/ sec ft mm G' G' 

53 0,508 0,174 0,30 0,214 1800 0.006 
46 1. 07 . 522 0,35 ,262 220 . 012 
43 1. 10 • 518 0,35 . 270 320 ,004 
49 1. 62 . 521 0,35 .396 150 ,023 
32 2,01 2.36 0,24 . 230 120 ,015 
17 2.09 2.80 0.24 .220 150 . 009 



Run number 

y(x) y(t) 

17 19 

32 33 

43 40 

46 44 

49 48 

TABLE 4. COMPARISON OF WAVE CELERITIES 

From zero crossing From Equation 8 

L T c=L/T L=l/E T=l/f c=f/E 
ft min f t/min ft min ft/min 

8.45 29.3 0.288 7.62 42.5 0.179 

4.78 16.6 .288 5.45 26 . 8 .204 

1.36 14.3 .0952 1. 75 29.7 .0590 

1.01 27.4 .0368 1.24 38.8 .0320 

2.56 25.5 .100 3.00 32.4 .0926 

00 
f--' 



TABLE 5. AVERAGE VALUES OF OBSERVED VARIABLES 

V D w s T d5 0 Oy Ave a+ R, 
Remarks Channe l 0 

ft/sec ft ft oc mm ft ft ft 

Atri sco 2. 16 2.20 55 0 . 00057 19 0 . 23 0.259 0.277 4.48 Dunes 

Atri sco 2 . 11 2 .30 55 .00055 20 .23 .276 .287 4.61 Dunes 

Atrisco 2.08 2.29 55 .00058 20 .23 .270 .302 3.90 Dunes 

8-ft flume 2.09 2.80 8 .00063 20 .24 .169 .214 2.95 Dunes-Recir. system 

8-ft flume 2.01 2.36 8 .00056 24 .24 .127 .146 2.28 Dunes - Recir. system 

2-ft flume 1.62 .521 2 .00212 20 .25 .0700 .0806 1.42 Dunes-Recir. system 
(X) 

2-ft flume 1.10 . 518 2 . 00088 20 .35 .0432 .0416 .58 Ripples-Recir. system N 

2- f t flume 1.07 . 522 2 . 00088 20 .35 .0390 .0408 .54 Ripples-Recir. system 

0.67-ft flume . 80 .197 0.67 . 00148 20 .30 .0404 .0400 .36 Ripples-Sand feed system 

From Nordin and Algert, (1966) 
Bernardo 3.62 2.60 70 .00058 8.34 0.23 .647 -- -- Dunes 

Bernardo 2 . 48 4.15 70 .00058 8.34 .23 .745 -- -- Dunes 

8-ft flume 2 .11 1.05 8 .00134 16.7 .28 .175 -- -- Dunes-Recir. system 

8-ft flume 1. 91 .670 8 .00136 17.8 .28 .115 -- -- Dunes-Recir. system 

0. 4- ft flume 1. 81 .580 0.4 .0044 18 . 4 .34 .0478 -- -- Sand feed s ystem 

0 . 4- ft flume 1. 78 .485 . 4 .0038 15.6 .34 .0330 -- -- Sand feed system 

0 . 4-ft flume 1. 74 . 400 .4 . 0037 17.8 .34 .270 -- -- Sand feed system 



* 
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TABLE 6. SUMMARY OF WAVE PROPERTIES 

lJ Length or Period 
2/ in feet in minute s Height i n feet Ripple Index 

Run Average Coefficient Average Coefficient Average Coeffi cient 
Number of of of 

Variation Variation Variation 

1 6.06 . 533 .370 . 643 22.8 • 857 
2 6. 14 • 535 . 368 . 655 22.7 . 815 
3 5.28 . 535 . 408 • 597 17. 2 .764 
4* 25.9 . 763 • 214 1. 43 163. .786 
5 5.07 • 658 • 225 . 571 25.7 . 678 
6 3 .73 . 700 . 184 • 317 21. 6 . 733 
7 4.24 . 604 • 201 . 388 22.2 • 575 
8 5 . 16 . 408 . 341 . 514 22.3 . 870 
9 4.66 • 553 • 269 • 535 21. 7 .772 

10 3.89 • 742 . 268 . 509 17. 5 1. 05 
11 5. 13 . 524 . 305 . 482 20.5 .722 
12 3.89 .757 . 251 • 477 18.8 • 916 
13 6.44 • 340 .384 • 468 19.4 • 590 
14 4.49 . 812 . 264 • 616 21, 7 , 979 
15 6. 18 • 462 .364 , 483 18. 3 • 613 
16 5.06 . 575 . 315 • 915 23.7 . 739 
11 4.84 . 77 9 , 265 . 547 25.0 1.23 
18 4.54 . 698 , 297 . 483 17. 8 . 821 
19* 25. 6 . 664 . 149 . 229 175. . 674 
20 4. 3 1 . 475 .2 61 • 413 18.6 • 429 
21 3.55 . 502 . 221 . 506 18.4 • 671 
22 3.49 • 564 . 265 . 476 16. 2 ,826 
23 3. 67 .574 . 257 • 524 16.0 , 584 
24 4.40 • 47 1 .296 . 578 19. 2 • 77 0 
25 4. 31 • 595 . 316 • 484 15.8 , 627 
26 4. 34 . 532 .300 . 546 19.0 . 897 
27 4.89 . 489 . 367 • 506 16.5 • 668 
28 4.55 . 515 . 276 . 538 18.7 • 536 
29 4.77 . 528 . 253 . 494 23.9 . 704 
30 3. 85 .649 • 165 • 347 25 , 6 • 727 
31 4. 12 .754 , 161 . 450 27.5 .868 
32 4.72 . 445 . 260 • 506 21.3 • 577 
33* 16,3 • 94 1 . 133 • 216 127. • 929 
34 4. 36 , 521 .200 • 411 27.4 , 735 
35 4.59 . 562 . 255 • 645 25. 5 .783 
36 3.27 . 538 . 173 .381 21. 6 • 647 
37 4,64 . 428 • 204 • 446 26.7 • 576 
38 4. 28 . 510 • 175 • 380 26.5 • 559 
39 3.78 . 545 • 185 • 457 21. 6 • 549 
40* 30.2 . 426 . 0783 . 277 399, • 426 
41 1. 20 . 484 • 0922 . 328 14.7 • 648 
42 1. 15 . 568 . 0902 • 288 13.4 • 579 
43 1. 24 . 606 . 0913 . 307 14.3 • 679 
44* 40.4 .744 ,0750 • 353 577. • 802 
45 1. 24 • 534 . 0856 • 268 14.9 .545 
46 1. 34 • 542 . 0827 • 216 15.9 • 422 
47 1. 28 . 518 • 0874 • 318 15.7 • 583 
48* 17. 7 .514 • 111 • 491 183 . • 574 
49 2,73 • 408 • 167 • 454 18. 7 • 642 
50 2.75 • 424 . 149 . 482 24.4 • 836 
51 3. 15 • 630 . 114 . 369 27.4 • 589 
52 • 498 • 353 • 0609 • 752 13.7 1.08 
53 . 440 • 485 . 0520 . 752 14.3 . 697 

Wave period. l/ Length is trough-to-trough distance . 2 / Height is difference in elevation , crest 
to trough. 



Run 
No. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
'.11 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
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TABLE 7. MISCELLANEOUS PROPERTIES FROM THE 
ZERO-CROSSING AND SPECTRAL ANALYSIS 

.:! Length E Amplitude ~ ~ 
cry 2 - 6 L C rt+ C 

0 V V ft 

8.96 0.577 o.2Y7 0.850 0 .259 ---
9,22 • 589 • 287 . 913 • 276 - --
7.79 • 560 .302 .782 • 270 ---

57.3 . 504 . 386 1.46 • 200 0. 933 
4,97 • 599 • 164 • 868 .144 • 978 
4.94 • 681 .158 . 886 • 126 . 968 
5, 37 • 618 ,156 , 673 • 133 • 973 
5.24 • 631 • 180 • 712 • 162 • 964 
6.13 .379 ,225 • 573 • 138 .952 
5. 78 • 511 .221 • 687 • 177 , 966 
6. 59 • 596 , 223 • 684 .189 • 972 
3.39 • 877 .119 1. 21 • 184 • 975 
6.39 • 481 • 243 , 690 , 172 , 970 
4. 74 , 789 • 192 1, 02 • 195 , 982 
7,38 • 186 ,306 • 467 .196 , 977 
6,21 • 512 , 256 1.09 • 176 , 960 
8,45 .384 :274 .147 • 216 , 983 
6,96 .358 ,226 , 555 .184 • 979 

29.3 , 591 ,099 • 885 .107 , 974 
4. 68 .44.3 , 169 • 800 , 147 , 931 
4,34 , 648 • 138 • 834 • 111 , 946 
4,21 . 575 , 189 , 648 , 139 , 974 
4.19 , 623 , 167 . 708 , 137 • 946 
5. 04 • 416 • 190 ,705 , 140 . 966 
5, 61 • 412 • 201 , 843 ,162 • 952 
5. 62 , 598 • 212 . 836 , 167 , 938 
5.79 . 530 , 227 • 702 .173 • 944 
3.70 • 635 • 137 . 928 • 133 • 909 
4,04 • 706 .144 1.00 .120 .876 
3,98 • 620 .091 , 899 • 103 . 968 
5,69 • 576 • 129 ,716 • 108 , 966 
4,78 • 644 , 157 • 853 • 145 , 970 

16. 6 • 817 • 103 , 815 .120 • 961 
4,67 • 662 . 132 , 732 , 110 • 965 
5,78 • 453 • 179 1,06 • 111 • 830 
3,20 ,709 ,093 • 836 • 101 • 961 
4. 12 . 756 .106 ,755 • 102 • 923 
4.20 • 552 .072 1.01 • 112 • 983 
2,79 • 757 ,088 1. 23 .0923 • 962 

14. 3 • 989 • 0237 1, 16 • 0360 • 958 
, 968 • 635 • 0432 , 857 • 0437 , 886 

1. 16 • 666 • 0483 . 666 , 0474 ,895 
1, 36 • 542 . 0512 • 680 , 0457 • 921 

27,4 • 630 . 0279 • 963 • 034t) • 970 
l. 14 • 546 ,0493 , 619 . Q404 , 874 
1.01 • 515 ,0430 ,652 • 0387 • 881 
l. 13 • 679 • 0431 . 820 .0423 • 904 

25,5 • 562 , 0885 .817 , 0750 • 92 7 
2.56 • 472 • 0952 • 901 ·' 0739 • 948 
2. 77 • 610 • 0734 1.03 .0744 • 927 
3, 16 • 665 • 0653 • 687 • 0568 • 956 

• 636 • 534 . 0384 . 920 .0464 • 980 
.782 • 460 . 0416 ,449 . 0344 ,964 

5/ Type 
l/m

1 
of 

Profile 

--- y(x) 
-- - y(x) 

--- y(x) 
26.0 y(t) 

6.38 y(x) 
4,91 
5.75 
4. 46 
3,85 
5.11 
5,56 
5,31 
4. 91 
6,37 
6,24 
4, 52 
7,59 
6, 48 y(x) 

42.5 y(t) 
5,35 y (x) 
4.01 
4, 47 
4,07 
4.43 
5, 15 
5,85 
5.68 
4. 72 
3. 48 
5.37 
5. 86 
5, 44 y(x) 

26, 8 y(t) 
4. 95 y(x) 
3,02 
4,31 
5.25 
6,21 
3,32 y(x) 

29.7 y(t) 
1. 36 y(x) 
1, 61 y(x) 
l. 75 y(x) 

38.8 y(t) 
1, 33 y(x) 
l. 24 y(x) 
1. 58 y(x) 

32.4 y(t) 
3,00 y(x) 
2.37 

I 3,56 
1.08 

• 81 

!/ L 0 is the average distance in fee t or time in minutes between successive up crossings of y = O. 
Cv is the coefficient of variation. 

'!:J a-+ is the average of maximum y values between successive ze ros. 

~ - From eq. 5. ~ From eq. 20. 3/ Mean wave length in feet, or wave period in minutes 
from the spectra, e q. 8. 
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APPENDIX II 

FIGURES 
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Figure I. Ideali z.ed dune shape. 
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Figure 2. Definition sketch of bed profile . 
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APPENDIX III 

PLANNING OF DATA REQUIREMENTS 

This appendix gives some approximate guidelines for planning 

the length of records required for the various analyses considered 

in the text. The statistical basis for determining record length 

and the computational procedures are given by Bendat and Piersol 

(1966, p. 278-320), and will not be repeated here. The computer 

programs used in this study are available from the writer or from 

Mrs. Lois Niemann, Civil Engineering Department, Colorado State 

University. 

The computational procedures used in this study can be applied 

to any continuous record of streambed elevation, provided that the 

r ecord meets the necessary conditions for stationarity. From a 

practical point of view, this means that for longitudinal profiles, 

the channel cross section should not vary appreciably alo.ng the 

channel and that for either longitudinal or time records, the flow 

and sediment transport rates should be approximately constant 

during the period of observation. 

We consider here only flow conditions where well-defined 

sand waves are known to be present at the streambed, that is, 

only lower regime flow. The bed configurations for lower regime 

flow are ripples, dunes, bars, and combinations of these features 

(Simons and Richardson, 1966). In the following discussion 

the computational procedures for spectral analysis of a single 
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record first are outlined. Next, some rough guidelines for deter­

mining the length of record and the spacing of observations for 

converting a continuous record to discrete data points for spectral 

analysis are given. Finally, the record length and spacing of 

data points for other types of analysis, such as estimating the 

mean lengths between zero and h-level crossings, are considered. 

Computational Procedures 

A continuous record of bed profile, y = y(x) of length L r 

is converted to discrete data points by sampling the continuous 

record at intervals t:,.x = h ft, so that the sampHng rate is 1/h 

samples per ft. The entire record is converted to N discrete 

data points, yi' i = 1,2, .. . , N. We consider the entire sequence 

of y. values to have zero mean and unit variance. The covariance 
1 

function corresponding to Equation 2 of the text is computed by the 

formula 

N-s 
1 

N - s L (3-1) 
n=l 

for s = 0, 1, ... , m, where mis the maximum number of lags. 

Next, the finite cosine series transform function of the auto-

covariances is computed from 

m 
N L <l>(J) 

Jsn 
(3-2) G (s) = cos m 

J=O 
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for s = 0, 1, 2, ... , m. In the above, 

HO) = <pyy (0) 

Hi) = 24> (i) , i = 1,2, ... , m-1 yy 

Hm) = <l>yy (m) 

The spectrum is computed from the equations 

G(O) = 0.5 G(O) + o.s G(l) 

G(i) = 0.25 G(i-1) + o.s G(i) + 0,25 G(i+l) 

for i = 1, 2; ••• , m-1 

G(m) = 0.5 G(m-1) + 0.5 G(m). 

(3-3) 

(3-4) 

These computations yield m+l values for the spectrum at each of the 

lags s = 0, 1, ... , m, corresponding to the wave numbers . e:
8 

= s/2rnh 

or to wave lengths L = 2mh/s. . s 

I 

Length of Record and Spacing of Data Points 

The computational procedures outlined above show that in 

selecting a length of continuous record for spectral analysis by 

digital techniques, three quantities must be considered: the 

record length, L, the sampling (digitizing) rate, h, and the r 

maximlUll lag, m. The smallest wave length for which spectral 

estimates are computed is 2h and the largest wave length for 

which the spectral estimates are computed is 2rnh. 
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As a general rule , we should select a sampling rate such 

that 2h < L . , where L . is the smallest wave-length component - min min 

of interest, and a maximum lag m such that 2mh ~ L , where L max max 

is the largest wave-length component of interest. The record 

length, L, should be no less than lOmh for the percentage error 
r 

of the estimated spectrum to be of reasonable size (Parzen, 1967). 

For a given bed form, say dunes, quite satisfactory results 

have been obtained by selecting mh approximately equal to the mean 

dune length, by sampling at an interval h so that the average dune 

length is represented by 20 to 30 data points, and by selecting a 

length of record 10 to 20 times the mean dune length. For the 

case where ripples are superposed on the backs of dunes, a sampling 

interval h of about one-fourth the mean ripple length is recommended. 

Generally, the contribution to the total variance of wave-number 

components greater than four cycles per foot was negligible in 

the case of ripples. For dunes, the contribution to the variance 

from components greater than one cycle per foot was negligible . 

Where large alternate bars with smaller bed forms superposed 

are known to exist in a channel, a somewhat different procedure 

is called for . The record should be sufficiently long to cover 

ten or a dozen of the bars if the properties of the bars are of 

interest. However, to investigate the properties of the smaller 

features, it is suggested that short segments of the longer record 

be analyzed after trend removal. Methods for removing trends are 

given in Bendat and Piersol (1966) and Parzen (1967). 
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Records for Zero and H-Level Crossing Analysis 

It has been shown by Tick and Shaman (1966) that the 

expected number of maximums and minimums of y and the expected 

number of zero and h-level crossings determined from the discrete 

approximation to a continuous Gaussian process in a given length 

of record is always less than the expected number determined from 

the continuous record. If the sampling interval his selected such 

that 4h < L . the estimated number of crossi_ngs from the discrete 
- min' 

process will be at least 90 percent of the number in the continuous 

process for any level h within two standard deviations of the mean. 

Therefore, a sampling rate at least twice that recommended for 

spectral analysis is required for determining the average number 

of zero or h-level crossings. 

Much longer records are required to determine the probability 

distributions of maximum and minimum y values between zero crossings, 

of the lengths between zero crossings, and of the durations of the 

positive excursions of y above the level h, than are required for 

the spectral analysis. The writer recommends at least one hundred 

observations of these values to obtain reasonable estimates of the 

distributions. As a rule of thumb, the records should be ten 

times as long as the records for spectral analysis, and if consider­

ation is to be given to h-level crossings at levels beyond one and 

one-half times the standard deviation from the mean, for ripples 

or dunes, the record should be of the order of 300 times the mean 
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r i pple or dune length. Because t he ripples and dunes are not 

symmetric about the mean bed elevation, and because they values 

are not strictly Gaussi an in di stri but i on, no hard and fas t rules 

can be established f or the r ecord lengths to determine t h'e di s ­

t ributions of the h-level cros s ings . The probabil i t y distribu­

tions of maximum and mi nimum y values bet ween zero crossings, 

Figures 15-17 of the text, are t he logical starting place to 

estimate record lengt h requirements for a given number of obser­

vations of these extreme events. 
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