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ABSTRACT 
 
 

FROM GENES TO LANDSCAPES: THE DISTRIBUTION OF WESTERN CONIFERS 
 
 

Managing and conserving forest ecosystems under a rapidly changing climate will 

require an understanding of the drivers of species distributions across a gradient of temporal and 

spatial scales. My dissertation research evaluated the relationship between distributional patterns 

of tree species and the processes driving these patterns from local to continental scales. I 

addressed three questions: 1) Which local abiotic and biotic processes are most important in 

determining the distribution of tree species along a hydrologic gradient in southeast Alaska? 2) 

How is genetic variation partitioned across the range of Pinus contorta, and is this variation 

explained by geographic or landscape variables? 3) How will Pinus contorta respond to 

predicted climate change? 

At the local scale, I assessed the role of abiotic and biotic constraints in limiting three tree 

species (Pinus contorta, Picea sitchensis, and Tsuga heterophylla) along a hydrologic gradient in 

southeast Alaska. I used a Bayesian hierarchical model to identify the strongest predictors of 

species’ occurrence and biomass. Model predictions identified abiotic variables, including soil 

nitrogen, pH, and depth to water, as the primary factors limiting species’ success in anaerobic 

wetland ecosystems. Competition was identified as the limiting factor in aerobic forest 

ecosystems.  At the continental scale, I quantified the impact of historic evolutionary processes 

in shaping patterns of genetic diversity across the range of Pinus contorta, a widespread and 

morphologically variable species. I estimated gene flow and assessed the effect of the landscape 

on population structure. Gene flow is high across the range of the species, and patterns of 

variation are most strongly influenced by landscape barriers to gene flow and the environmental 
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variation associated with its heterogeneous range. This suggests that, despite widespread gene 

flow, subspecies are adapted to local conditions. I then used correlative and mechanistic species 

distribution models to evaluate potential, future habitat suitability at the species and subspecies 

levels of Pinus contorta. Model results predict that P. contorta will maintain a large portion of its 

current habitat, but two of the more geographically constrained subspecies will lose a significant 

portion of suitable habitat. 

My work provides an understanding of the ecological and evolutionary processes shaping 

tree species distributions across a gradient of temporal and spatial scales, from historic to current 

timeframes and local to range-wide extents. Results from my research show that different 

processes determine patterns of distribution across this gradient of scales. Linking these patterns 

and processes will be essential for forest management and conservation in light of a rapidly 

changing climate. 
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1 Introduction 

 

“Predicting the fate of forest tree populations in a rapidly changing climate requires the 

integration of knowledge across biological scales from genes to ecosystems, across spatial 

scales from seed and pollen dispersal distances to the breadth of species’ ranges, and across 

temporal scales from the phenology of annual developmental cycle traits to glacial and 

interglacial cycles.”  

~ Aitken et al. 2008 ~ 
 

Understanding the processes governing the distribution and arrangement of species is a 

fundamental task of ecological research. Yet despite centuries of research on species 

distributions, the task of identifying the causes, mechanisms, and consequences of distributional 

patterns remains a major scientific challenge (Johnstone and Chapin 2003). This task is 

confounded by species-specific life and evolutionary histories that influence the balance between 

ecological and evolutionary forces (Wiens and Donoghue 2004, MacDonald et al. 2008). 

Ecological theory suggests that species’ occurrence is determined by abiotic and biotic 

constraints on dispersal, germination, and success (Hutchinson 1957, Whittaker et al. 1973, 

Wiens and Donoghue 2004). These factors limit species to a specific set of environmental 

conditions and determine local landscape patterns. Evolutionary theory states that natural 

selection and gene flow are the primary factors controlling a species’ response to ecological 

constraints and determine distributional patterns over large spatial scales (Mayr 1963, Slatkin 

1987, Holt 2003). The interplay of these ecological and evolutionary processes creates a complex 

pattern of geographic variation in species’ occurrence, distribution, and population connectivity 

(Slatkin 1987).  
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Tree species are some of the most widely distributed and highly valued species 

worldwide, playing foundational roles in ecosystem function and providing countless services 

(Aitken et al. 2008). Over the last 150 years, forests have been subjected to considerable 

anthropogenic disturbance, fragmentation, and loss. Simultaneously, climate change has altered 

local and regional habitat conditions, and there is substantial evidence that recent changes have 

already affected the distribution of many forest species (Walther et al. 2002, Parmesan and Yohe 

2003, Parmesan 2006). During the 21st Century, warming is anticipated to occur at a faster rate 

than during any recent ice-free era (Huntley 1991, Walther et al. 2002, Field 2007). Further 

changes in climate may leave tree species especially vulnerable, as the rate of change may be too 

rapid for the long generation times of these species (Davis and Shaw 2001, Hamrick 2004). In 

order to properly manage and conserve forested ecosystems under a rapidly changing climate, we 

must first gain a better understanding of the drivers of species distributions across a gradient of 

spatial and temporal scales (Millar et al. 2007, Aitken et al. 2008).  

My dissertation research investigated the ecological, biogeographic, and evolutionary 

processes that drive tree species’ distributions across a gradient of temporal and spatial scales. 

My work provides an understanding of the ecological and evolutionary processes shaping 

distributions from historic to current timeframes and across local to range-wide extents. I 

addressed the following questions: 1) Which local abiotic and biotic processes are most 

important in determining the distribution of tree species along a hydrologic gradient in southeast 

Alaska? 2) How is genetic variation partitioned across the range of Pinus contorta, and is this 

variation explained by geographic or landscape variables? 3) How will Pinus contorta respond to 

predicted climate change? 
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 Chapter 2 evaluates patterns of tree species distributions along a hydrologic gradient in 

southeast Alaska. Across an ecological gradient, biotic interactions may limit a species’ 

distribution under more favorable conditions, while its physiological tolerance of abiotic 

conditions may determine its distribution under more stressful conditions (Weiher and Keddy 

1999, Wilson 1999, Rand 2000, Sanderson et al. 2008). Species respond to local abiotic and 

biotic stressors in different ways, and explaining how some species can occupy wide 

environmental gradients while others cannot is central to describing species’ distributions and 

identifying environmental niches (Jackson et al. 2009). In southeast Alaska, three tree species 

(Pinus contorta ssp. contorta, Picea sitchensis, and Tsuga heterophylla) vary in occurrence and 

abundance across a distinct hydrologic gradient. I used this hydrologic gradient to test the theory 

that abiotic constraints limit species at the more stressful end of an ecological gradient, while 

biotic constraints limit distributions under more favorable conditions. 

Chapter 3 is a landscape analysis of population structure across the range of Pinus 

contorta, one western North America’s most widely distributed conifers. Many tree species have 

extensive ranges that occur over a broad range of environments. Heterogeneity in landscape and 

environmental conditions can create sharp boundaries between populations, shaping gene flow 

and patterns of population structure. Widespread, morphologically-variable species provide a 

natural experiment for evaluating the role of ecological and evolutionary processes in shaping 

the distribution of a species, particularly the role of gene flow in determining variation among 

populations and across environmental gradients (Latta 2004). Pinus contorta is divided into four 

morphologically and geographically distinct subspecies (ssp. latifolia, contorta, murrayana, and 

bolanderi) (Critchfield 1957). Each subspecies grows in a discrete portion of the species’ range 

and is hypothesized to be adapted to local environmental and climatic conditions (Ying and 
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Liang 1994, Rehfeldt et al. 1999, 2001). We have little knowledge on the effect of the landscape 

on variation within the species and among subspecies. In this chapter, I used landscape genetics 

to quantify population structure across the range of Pinus contorta. I hypothesized that 

populations are connected by long-distance gene flow, possessing high within- but low among-

population genetic variation, and that the landscape influences patterns of genetic differentiation. 

Chapter 4 is an analysis of potential habitat suitability for Pinus contorta under both 

current and future climate conditions. Climate change has the potential to alter the composition 

and distribution of western forests (Aitken et al. 2008). Species may be forced to adapt or 

migrate to track suitable habitat, with long-lived, immobile tree species left especially vulnerable 

to habitat loss. All tree species are expected to experience lags in their response to changing 

climate (Clark 1998, Davis and Shaw 2001, Malcolm et al. 2002, Aitken et al. 2008). Identifying 

the habitats under which tree species may persist will be essential for forest conservation and 

management (Wang et al. 2010, Mimura and Aitken 2010). The goal of this research was to 

evaluate how ongoing climatic change might alter the distribution of Pinus contorta. I used 

correlative and mechanistic models to evaluate potential, future habitat suitability at the species 

and subspecies levels. My main objectives were to 1) make predictions of habitat suitability 

across this widespread tree species and 2) examine whether incorporation of the distribution and 

physiological tolerance of each subspecies altered predictions of suitability. 
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2  The role of abiotic and biotic factors in determining patterns of tree species’ 
distributions across a distinct hydrologic gradient in southeast Alaska 

 

2.1 Introduction 
 

Describing species’ environmental niches requires an understanding of the influence of 

abiotic and biotic factors in determining a species’ local distribution, but the relative importance 

of abiotic versus biotic constraints remains highly disputed (Simberloff et al. 1999, Martin 2001, 

Laughlin and Abella 2007). Failure to physiologically cope with abiotic conditions can lead to a 

species’ absence from an ecosystem (Cooper 1982, Tilman 1982, Vince and Snow 1984, Chase 

and Leibold 2003, Sanderson et al. 2008). Competition, on the other hand, may better explain a 

species’ presence or absence from an ecosystem (Hardin 1960, Keddy 1989, Grime 2002, 

Callaway et al. 2011). Strong competitors may dominate in less stressful habitats and displace 

poorer competitors to less favorable habitats (Hardin 1960, Keddy 1989, Sanderson et al. 2008). 

It is unlikely, however, that species experience landscapes as a binary mosaic of suitable and 

unsuitable habitat but instead as complex gradients of abiotic and biotic stressors (McIntyre and 

Barrett 1992, Manning et al. 2004, McGarigal and Cushman 2005).  

Across an ecological gradient, biotic interactions may limit a species’ distribution under 

more favorable conditions, while its physiological tolerance of abiotic conditions may determine 

its distribution under more stressful conditions (Weiher and Keddy 1999, Wilson 1999, Rand 

2000, Sanderson et al. 2008). While some species are constrained to a narrow range of 

conditions, others may tolerate a broader range of conditions and have little habitat specificity 

(Baltzer et al. 2007). Species respond to local abiotic and biotic stressors in different ways, and 

explaining how some species can occupy wide environmental gradients while others cannot is 
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central to describing species’ distributions and identifying environmental niches (Jackson et al. 

2009). 

 In southeast Alaska, plant communities vary across distinct hydrologic gradients that 

develop from geologic history, topography, and a recent history of glaciation. The region is 

dominated by coastal, temperate rainforest with an abundance of peat-forming ecosystems. Four 

ecosystem types represent the vegetation and appear closely tied to topographic position and 

depth to groundwater (D’Amore et al. 2012). These four types are distinguishable by vegetative 

structure and are classified as (Cowardin et al. 1979): palustrine emergent wetland (PEM), 

palustrine scrub-shrub wetland (PSS), palustrine forested wetland (PFO), and upland (U). Three 

tree species (Pinus contorta ssp. contorta, Picea sitchensis, and Tsuga heterophylla) vary in their 

occurrence and abundance along this hydrologic gradient. Pinus contorta (Douglas Ex. Louden) 

ssp. contorta (shore pine) grows only in PEM and PSS sites, whereas Picea sitchensis (Bong. 

(Carr.)) (Sitka spruce) occurs only on steeper forested wetland and upland sites. Tsuga 

heterophylla (Raf. (Sarg)) (western hemlock) grows in all ecosystem types along this gradient. 

Hydrologic regime is thought to be a driving force behind tree species distributions in this region 

(Zoltai and Vitt 1995, Asada et al. 2003), but it is unlikely that plant community distributions are 

simply reflections of differences in water table depth and dynamics. Distinctive environmental 

conditions and biotic interactions strongly influence the distribution of P. contorta, P. sitchensis, 

and T. heterophylla, but the relative contribution of each in determining species’ occurrence and 

abundance is unknown for specific ecosystems types and likely varies across different spatial 

scales. 

I used this hydrologic gradient in southeast Alaska to test the theory that abiotic 

constraints limit species at the more stressful end of an ecological gradient, while biotic 
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constraints limit distributions under more favorable conditions. I hypothesized that abiotic 

constraints, specifically depth to groundwater and soil nutrients, limit P. sitchensis and T. 

heterophylla growth in more stressful PEM and PSS wetlands, while competition excludes P. 

contorta from PFO and U sites. This hypothesis would be rejected if I found that perennially 

saturated, nutrient-poor conditions of PEM and PSS sites do not limit the occurrence and 

abundance of P. sitchensis and T. heterophylla; that P. sitchensis and T. heterophylla do not 

competitively exclude P. contorta from forested and upland sites; and that all species respond to 

the same driving factors. 

 

2.2 Methods 

Study Region 

This study was conducted in the vicinity of Juneau, Alaska, USA, in the north-central 

portion of the Alexander Archipelago (58°26’40”N, 134°13’47”W). This region is bounded by 

the Juneau Icefield to the east and the Lynn Canal to the west (Kelly et al. 2007). Oceanic 

climate, glacier runoff, and a recent history of glacial recession strongly influence local climate 

and environmental conditions. Regional climate is hypermaritime, consisting of mild, wet 

winters and cool, wet summers (Carrara et al. 2007). Juneau’s mean annual precipitation is 150 

cm but can exceed 225 cm, with rain falling an average of 230 days a year (Carrara et al. 2007, 

Kelly et al. 2007).  

The study area landscape transitions from the Pacific Ocean into steep glaciated mountain 

ranges. This ocean to mountain gradient includes glacier-fed rivers, Sphagnum species-

dominated peatlands, and conifer forests (Alaback 1982, DellaSala et al. 2011). Palustrine (PEM, 

PSS, PFO) and upland (U) sites are the most commonly mapped wetland communities within the 

region, occurring along a distinct hydrologic gradient and characterizing valley bottoms within 
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southeast Alaska (U.S. Department of Agriculture (USDA) 1997, Fellman and D’Amore 2007). 

Palustrine sites include all non-tidal wetlands that are dominated by trees, shrubs, herbaceous 

plants, or emergent mosses and are bounded by uplands (Cowardin et al. 1979). The terms 

emergent, scrub-shrub, and forest denote the dominant plant life form’s influence on habitat 

structure. Soils of PEM, PSS, and PFO sites are highly developed peatlands (1 – 4 m peat depth) 

and Spodosols (D’Amore et al. 2012); glacial till is common within the top meter of the soil 

profile on upland sites and greatly influences drainage conditions (Swanston 1969, Collins 1974, 

Alaback 1982).   

 

Site Selection and Installation 

I used the National Wetland Inventory (NWI) classification system (Cowardin et al. 

1979) to stratify the Juneau region into commonly mapped ecosystem types. Sites were 

preliminarily distinguished in ArcGIS 9.2 (ESRI, Redlands, CA) and classified as PEM, PSS, 

PFO, or U. Study sites were randomly selected for each ecosystem type using the Generalized 

Random-Tessellation Stratified (GRTS) selection process. This spatially balanced, probability-

based survey was implemented in R 2.9.2 (R Core Team 2008) using the spsurvey package, the 

GRTS function, and equal probability selection (Stevens and Olsen 2004, Detenbeck et al. 2005; 

Kincaid 2008). It allowed for variable inclusion probabilities, sample frame inaccuracies, a 

temporal sampling design, and uneven spatial densities for variables of interest (Stevens and 

Olsen 2004). The GRTS selection process produced a list of randomly dispersed sampling sites 

for each ecosystem type, while minimizing sampling efforts and retaining the ability to make 

inferences at the landscape scale.  
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To verify ecosystem type classification, sites were visited in the order of GRTS selection 

and excluded if they did not match their mapped NWI classification. Twelve field sites were 

selected from this list and established across mainland Juneau and adjacent Douglas Island 

(Figure 2.1), with three replicate sites selected for each of the four ecosystem types (PEM, PSS, 

PFO, U) (Figure 2.2). This represents a statistical population of inference of about 1200 km2, but 

I expect the factors driving species distributions in this population would be similar across a 

larger spatial extent of similar ecosystems in the region. 

To capture within-site variation in the potential driving factors, each site was stratified by 

differences in topography, and four sampling units were selected in each site. One groundwater-

monitoring well was installed at each sampling unit and used as a plot-center for data collection. 

The following data were measured in each plot: elevation, aspect, slope, landform position, and 

presence/absence of each tree species (Table 2.1). The relevé sampling method was used to 

collect percent cover data on all vascular plant and moss species occurring on each site (Knapp 

1984). Additional data collection and analysis was conducted within a nested, hierarchical 

sampling design, which encompassed three spatial scales: ecosystem type (ntypes = 4), site (nsites = 

4 ecosystem type x 3 replicates = 12), and groundwater monitoring well plots (nwells = 12 sites x 

4 wells per site = 48). These scales were chosen to capture variability in the effects of abiotic and 

biotic factors on tree species occurrence and abundance. To address my hypotheses, I collected 

the following data over a four-year study period: occurrence and abundance of each tree species, 

depth to groundwater, pH, soil nitrogen, and light availability.  

Tree Occurrence and Abundance 

Tree occurrence and abundance were measured using a modified version of the USFS 

Forest Inventory and Analysis (FIA) protocol (USDA Forest Service, 2007; Bechtold & 
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Patterson, 2005). One 0.1 ha plot was established at each well location, with species and bole 

diameter measured for each live tree. Trees < 10 cm in diameter were tallied by mid-point 

diameter class (0 – 2.5, 2.5 – 5, 5 – 10), while trees greater than 10 cm were sampled for 

diameter at breast height (DBH). Tree abundance was derived from diameters and defined as the 

total aboveground tree biomass per unit area. The biomass regression equation used was as 

follows (Jenkins et al., 2003): 

bm = Exp (!0 + !1 ln dbh)         (2.1) 

where bm is total overstory biomass (kg dry weight), dbh is diameter-at-breast-height (cm), and 

!0 + !1 are species-specific parameters. Plot-level biomass was calculated for each species by 

summing individual tree biomass values and estimating values at the site-level (Jenkins et al. 

2003). Biomass values were then converted to per unit area values (expressed in Mg/ha). 

 

Groundwater Monitoring 

Depth to groundwater was assessed using four monitoring wells per site to quantify 

temporal and spatial variation in water table levels and identify differences within and among 

sites. Wells were constructed from 3.8-centimeter (cm) diameter, fully-slotted, schedule-40 PVC 

pipe and installed to a maximum of one meter below the soil surface using a hand auger. From 

May through August, depth to the water table was manually measured bi-weekly. The distance 

from the top of the well casing to the water table was recorded using a measuring tape and 

confirmed with an electronic tape. Pressure transducers were installed in select wells to record 

hourly water table depth and monitor fine-scale variation in groundwater fluctutation, using In 

Situ level troll 100 loggers (Fort Collins, CO). Logger data was corrected for barometric pressure 

by using barometric pressure logger data and adjusting for elevation. Values for depth to water 
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table were summarized into annual and growing season values of maximum water table depth, 

minimum water table depth, mean depth to water, and number of growing season days when the 

water table was within the rooting zone (>-20 cm, Coutts and Philipson 1978, Wang et al. 2002). 

The growing season was defined as the 138-day period between May 15th and September 30th 

(NOAA/NWS Juneau, Alaska). Groundwater pH was measured in each well using an Orion 3 

star pH meter; growing season pH was measured multiple times during this four-year study, and 

mean values were used for analysis. 

 

Soil Nitrogen 

Extractable soil nitrogen (N) was quantified as the sum of ammonium and nitrate in 0-15 

cm depth cores (Fellman and D’Amore 2007). Samples were collected three meters north of each 

monitoring well, with replicate samples extracted to capture intra-site variation in N availability. 

A 10-cm diameter PVC pipe was inserted into the soil surface to a depth of 15 cm from the top 

of the O horizon. All plant roots were cut away from the core, leaving an intact core of known 

depth, diameter, and volume (for detailed methods, see Hart et al. 1994). Cores were 

immediately placed in a gallon zip seal plastic bag, kept cool on ice, and returned to the lab for 

analysis. One bulk density sample was also collected per site. Large blocks were cut from the 

soil and taken back to the lab. Subsamples of 1.25 mL were extracted from each block and dried 

to a constant weight. Bulk density was calculated based on this dry weight and expressed in 

Mg/m3. All samples were processed and analyzed within 48 hours of collection. 

Samples were extracted following the procedure described in Robertson et al (1999). 

Duplicate 15 g portions of each sample were mixed with 100 mL of 1.0M KCl in 120 mL Falcon 

specimen cups. Samples were shaken for 1 minute on a shaker table, left to sit overnight, and 
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shaken again for 1 minute the following morning. After settling for at least 45 minutes, the 

supernatant in each specimen cup was drawn into a large syringe through a Whatman GF/D 

filter. Three laboratory replicates were split among 20 mL scintillation vials and kept on ice until 

analyzed. All extracted sub-samples were analyzed for dissolved NO3-N (nitrate) and NH4-N 

(ammonium) by flow-through colorimetry at the University of Georgia analytical laboratory. 

 

Light 

 Light available for germination under the forest canopy was measured using 

hemispherical photographs. Canopy photographs were taken at each monitoring well using a 

Nikon Coolpix 3000 digital camera equipped with a FC-E8 21x fisheye lens. Photographs were 

taken over a two day period using the following protocol: under overcast conditions, 1 m above 

ground surface, top of lens oriented to true North, and with tripod legs adjusted to draw lens 

parallel to canopy. Images were processed using Gap Light Analyzer (GLA) version 2.0 (Frazer 

et al. 1999). GLA settings were adjusted to account for image orientation, geographic location 

(latitude and longitude), elevation, and time of year. Images were first transformed to black-and-

white. Image pixels were then separated into sky versus foliage using the threshold procedure. 

Each photograph was analyzed twice to reduce error associated with threshold distinctions. Total 

light transmission, the fraction of light reaching the ground relative to the light above the canopy, 

was derived in GLA according to Frazer et al (1999). 

 

Statistical Analysis 

 I used a Bayesian hierarchical modeling approach to assess the relative importance of 

local abiotic and biotic variables in determining the occurrence and abundance of Pinus contorta, 
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Picea sitchensis, and Tsuga heterophylla across different spatial scales. Prior to modeling, I ran 

preliminary analyses to examine the relationship between tree abundance and each abiotic 

variable. All analyses were implemented using R 2.15.2 (R Core Team 2012). First, I examined 

the dataset for well- and site-level spatial autocorrelation and for correlations among predictor 

variables. To test for spatial autocorrelation in tree species occurrence and abundance, I used the 

spdep package to compute Moran’s I and Geary’s C. Canonical correspondence analysis (CCA) 

was employed to test the effects of abiotic variables on the composition and structure of the 

vegetation (understory and overstory) and to identify any environmental gradients within the 

dataset. I ran principal components analysis (PCA) on all potential predictors to reduce model 

parameters to a set of minimally correlated variables (correlation < 0.65). Initial assessments of 

covariance suggested that the relationship between tree abundance and depth to groundwater was 

quadratic for P. sitchensis and T. heterophylla. Values were transformed into quadratic terms, 

and both linear and quadratic terms were used in the abundance model. Incorporation of this 

quadratic term suggests that biomass is highest at an optimal range of depth to groundwater, with 

a decline in biomass above or below this range. The final set of predictors included: depth to 

groundwater (linear and quadratic terms), pH, light, soil N, and biomass of other species.  

 Descriptive statistics and one-way Analysis of Variance (ANOVAs) were used to 

examine significant differences in potential predictors across ecosystem types. Separate 

generalized linear models (GLM) were run for species occurrence and abundance to 

preliminarily identify the variables potentially explaining patterns of distribution. Model 

selection and Akaike Information Criterion Scores (AIC) were used to evaluate the strength of 

the models. The model with the lowest AIC score was identified as the model best explaining the 
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data (Burnham and Anderson 2002). The significance of selected predictors were considered and 

compared against Bayesian model results. 

 A Bayesian hierarchical generalized linear mixed model (GLMM) was used to assess the 

relative importance of abiotic and biotic factors in determining tree species’ occurrence and 

abundance (Diez and Pulliam 2007). The model specifically detected any effects of depth to 

groundwater, pH, nitrate-N, ammonium-N, light, and competition on forest composition and 

structure. The hierarchical structure of this model allowed for predictions across the three spatial 

scales (well, site, and ecosystem type) and explicitly accounted for uncertainty associated with 

any random effects. Separate models were developed for predicting occurrence and abundance of 

the region’s three tree species (P. contorta, P. sitchensis, and T. heterophylla). 

 The occurrence of each species was modeled under a binary Bernoulli process, Yij ~ 

Bernoulli (!ij), where Yij represents species occurrence at each well i in each site j, and !ij is the 

estimated probability of occurrence at each well. For each species, estimated probabilities of 

occurrence at each well location were related to abiotic and biotic linear predictors as 

!"# !!"
!!!!!"

!!!! !! !!!!!" !!
!!!                                              (2.2) 

where !! is a site level random intercept term, !!!are M regression coefficients, and !!" are 

well-level abiotic and biotic data. Maximum depth to groundwater (cm), nitrate-N, ammonium-

N, and transmitted light (%) were included as potential abiotic predictors. Light was used as a 

surrogate variable for the biotic effects of competition on species’ occurrence. 

 The abundance of each species was modeled under a Normal distribution, Yij, where Yij 

represents species abundance at each well i in each site j. For each species, estimated 

probabilities of abundance were related to abiotic and biotic linear predictors as 

!!" ! ! !! !! !!!!!" ! !!!!
!!! !! !!!                                             (2.3) 
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with variables defined as in Equation 2.2. In this model, random effects for site and ecosystem 

type, !!, were included as normal random variables, such that !!!!"#$%& !! !!! !where 

!!represents the variance among ecosystem types. Nitrate-N, ammonium-N, pH, and both linear 

and quadratic terms for depth to groundwater (cm) were included in the model as potential 

abiotic predictors. Maximum depth to groundwater (cm) was used in the P. contorta and P. 

sitchensis models; minimum depth to water (cm) was used as the water table predictor variable 

in the T. heterophylla abundance model. Biomass of other tree species (Mg/ha) was used as a 

surrogate variable for the biotic effects of competition on species’ abundance (Waring and 

Running 2010). Inclusion of biomass was assumed to be a reasonable substitute for the effects of 

competition (e.g. P. sitchensis and T. heterophylla biomass was included in the P. contorta 

abundance model).  

 To allow the data to drive predictions, all models were fit using flat, non-informative 

priors (Gamma (0.01,0.01) for inverse residual variance, Normal (0,100) for regression 

coefficients, and uniform (0, 10) for random effects) (Gelman 2006). All continuous covariates 

were standardized and modeled at the plot level.  Random intercepts at the site and ecosystem 

type levels represent higher levels of the hierarchical model. Model parameters were estimated in 

R 2.15.2 using Jags (Plummer 2011). Markov Chain Monte Carlo (MCMC) runs used a Gibbs 

sampler to generate posterior prediction means of model parameters. I ran 80,000 iterations with 

a burn-in of 70,000 on three chains, which allowed autocorrelation in each chain to drop below 

0.1 after 10 iterations and the Gelman-Rubin statistic to drop below 0.1. I used posterior 

estimates from the MCMC model runs to identify the abiotic and biotic variables driving the 

occurrence and abundance of each tree species (P. contorta, P. sitchensis, and T. heterophylla). I 

estimated a Bayesian R2 at each level of the model in order to quantify the proportion of variance 
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explained across this hierarchical scale. Both marginal and conditional R2 were calculated using 

the medians of the parameter posteriors; marginal R2 includes the variance explained by fixed 

effects, while conditional R2 includes the proportion of variation explained by both fixed and 

random effects (Nakagawa and Schielzeth 2013). I also calculated variance partition coefficients 

(Goldstein et al. 2002) to identify the partitioning of unexplained variation across this 

hierarchical sampling schema.  

 

2.3 Results 
 
 Spatial correlation was minimal across the levels of inference, with Moran’s I falling 

close to 0 and Geary’s C close to 1 at the well (I = 0.03, p = 0.07; C = 0.94, p = 0.08) and site (I 

= -0.12, p = 0.10; C = 1.05, p = 0.10) levels. Incorporation of spatial analysis into the predictive 

model was unnecessary. Canonical correspondence analysis (CCA) identified pH (eigenvalue = 

0.974, p<0.005), nitrate-N (0.935, p<0.005), and light (0.993, p<0.001) as the main correlates of 

plant community composition and the local environmental gradient (Appendix 2.1, Figures A.2.1 

& A.2.2). The relationships between plant communities and environmental variables drove 

clustering of the PFO and U sites. The first canonical correspondence axis arranged the PEM and 

PSS sites opposite the PFO and U sites, but the PEM and PSS sites did not cluster together along 

the second axis. Distinct community composition and differences in environmental variables 

separate these sites across the second canonical axis. The first and second canonical axes 

explained 75% of the total variation, and a global permutation of the data was highly significant 

(p<0.001).  

Descriptive statistics revealed differences in mean values of abiotic and biotic variables 

across sites and ecosystem types (Table 2.2 and Figure 2.4). Mean annual depth to water was 

highly variable and significantly different among ecosystem types (Figure 2.3, p < 0.001). Over 
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the four-year sampling period, the water table of PEM and PSS sites rarely dropped below the 

plant rooting zone (top 20 cm, Coutts and Philipson 1978, Wang et al. 2002), while the water 

table in the U sites never reached the rooting zone (Table 2.2). The water table was within the 

rooting zone in PEM and PSS sites for an average of 121 (±10) and 102 (±30) days of the 140 

day Juneau growing season A water table near the soil surface, low pH, and minimal overstory 

biomass accumulation were identified as distinctive characteristics of PEM and PSS sites (Table 

2.2 and Figure 2.4). Minimal forest canopy cover develops on these ecosystem types. Plants 

grow under high light conditions and in the absence of competition from dominant overstory 

trees. Pinus contorta is the dominant tree, and T. heterophylla occurs as a minor component. 

Picea sitchensis is absent from all emergent and scrub-shrub wetlands, with the exception of one 

PSS site (Eagle PSS, Table 2.2). Conversely, a greater depth to groundwater (p<0.001), higher 

pH (p<0.01), and greater abundance of overstory biomass (p< 0.001) characterize the PFO and U 

ecosystem types. These sites do, however, differ in depth to water over the course of the growing 

season. The water table was within the rooting zone in PFO sites for an average of 74 days (±46) 

during the growing season, but the water table was absent from the rooting zone in the U site (0 

of 138 days). Pinus contorta is absent from all PFO and U sites. Tsuga heterophylla has the 

highest abundance on all PFO and U sites, but P. sitchensis is a dominant overstory tree in both 

ecosystem types (Table 2.2). ANOVAs detected significant differences in all abiotic variables 

across ecosystem types (Figure 2.4). 

Results from GLM runs were in agreement with results from Bayesian model analysis 

and are not presented here (See Appendix Tables A.2.1 and A.2.2). In Bayesian modeling, the 

distributions of P. contorta, P. sitchensis, and T. heterophylla were explained by a distinct set of 

local abiotic and biotic variables for each species (Figure 2.5). Model runs produced probability 
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estimates for each parameter. If the estimated probability of an abiotic or biotic parameter did not 

cross zero, it was considered significantly different than zero at the 95% level (Figure 2.5, 

Appendix Tables A.2.3 and A.2.4). Both the occurrence and abundance of P. contorta were 

explained by variables related to the biotic effects of competition. High light availability was the 

strongest predictor of P. contorta occurrence, while P. sitchensis biomass was the strongest 

predictor of abundance. Pinus contorta was positively correlated with percent of transmitted 

light and negatively correlated with P. sitchensis abundance (Figure 2.5; 95% credible interval, 

CI).  

Maximum depth to groundwater was the most influential variable in determining P. 

sitchensis occurrence. The estimation of this parameter does not cross zero (95% CI), and its 

negative value indicates that P. sitchensis occurrence declines when the water table is closer to 

the soil surface (Figure 2.5). The best predictor of P. sitchensis abundance was pH, with a 95% 

probability that pH is most important in driving abundance of this species across the gradient. 

For T. heterophylla, ammonium-N availability was the strongest predictor of occurrence, with 

species presence negatively associated with light (95% CI). The importance of ammonium-N in 

predicting occurrence is more likely an indicator that this species requires greater nutrient 

availability for establishment rather than it being dependent on the availability of this specific 

nutrient. Abundance of T. heterophylla was best explained by the quadratic transformation of 

minimum depth to water and pH (Figure 2.5). The significance of this quadratic depth to water 

term reveals that the abundance of this species’ is highest under an optimal range of hydrologic 

conditions, with abundance declining above and below this optimum range. Positive parameter 

estimates (Figure 2.5, 95% CI) indicate that this optimal range is associated with a lower water 

table and a higher pH. 
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Both the abundance and occurrence models performed well in explaining the distribution 

of each tree species (Table 2.3). Based on estimates of conditional R2, the abundance models 

explained 68, 43, and 45 percent of the variation across all levels of hierarchy for P. contorta, P. 

sitchensis, and T. heterophylla. The occurrence models were a better fit to the data, with 95, 96, 

and 95 percent of the variation explained by the full model for P. contorta, P. sitchensis, and T. 

heterophylla presence (marginal R2, Table 2.3). Posterior predictions nearly always correctly 

assigned species’ presence and absence (Table 2.3). Overall, these results suggest that the abiotic 

and biotic parameters modeled explain most of the variation in abundance and almost perfectly 

explain variation in occurrence of these three species. 

The incorporation of site and ecosystem type as random effects allowed for modeling of 

additional variation within the dataset. Site and ecosystem type estimates varied across these 

different spatial scales (Figure 2.6). The parameters identified in the Bayesian model analysis 

(Figure 2.5) were the strongest predictors of tree species’ occurrence and abundance at the well 

level. Model performance at each spatial scale varied across species (Table 2.4). Predictions of 

P. contorta abundance were best explained at the site (12 percent) and well levels (34 percent). 

Abundance differed within each site as a function of well-level variation in abiotic and biotic 

variables. The inclusion of random terms indicated that additional factors contribute to the 

distribution of P. contorta at greater spatial scales, as variance was higher between the PEM and 

PSS ecosystem types (54 percent.) The highest variation in predicted P. sitchensis abundance 

occurred at the well level (64 percent), with abundance better predicted and more comparable at 

the levels of site and ecosystem type (20 and 16 percent). Tsuga heterophylla abundance was 

consistent across sites (0 percent variance at site level) but highly variable between wells (65 
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percent) and between ecosystem types (35 percent). These results suggest the importance of 

abiotic and biotic factors varies across different spatial scales. 

 

2.4 Discussion 

A fundamental part of ecological research lies in describing patterns of species’ 

distributions and identifying the processes shaping these distributions. This research is essential 

for defining a species’ niche and understanding a species’ response to abiotic and biotic factors. I 

hypothesized that abiotic constraints, specifically depth to groundwater and soil nutrients, limit 

growth in more stressful wetlands ecosystems, while competition constrains species in more 

favorable forested sites. Along a hydrologic gradient in southeast Alaska, abiotic factors are 

more important in explaining P. sitchensis and T. heterophylla distributions. A higher water 

table, lower nutrient availability, and low pH limit the occurrence and abundance of P. sitchensis 

and T. heterophylla in wetland ecosystems. Conversely, P. contorta is absent from forested sites 

because of light limitations that are likely driven by competition from other tree species. The 

probability of a species’ occurrence and abundance is functionally related to local environmental 

variables and its interactions with other organisms. I demonstrated that the distribution of tree 

species across an ecological gradient is driven by species- and location-specific responses to 

abiotic and biotic stressors. These results support the theory that abiotic constraints limit some 

species at the more stressful end of an ecological gradient, while biotic constraints limit the 

distribution of other species under more favorable conditions. 

 

Ecology of the Hydrologic Gradient 

The four ecosystem types (PEM, PSS, PFO, and U) occurring along this gradient were 

distinctive both in plant community composition and in their environment. Most notably, each 
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site was characterized by a different hydrologic regime (Figure 2.3) that appears to be 

predominantly driven by topographic position on the landscape (Table 2.1). Emergent and scrub-

shrub sites are peatlands that lie at valley toe slopes or occur as raised terraces (D’Amore et al. 

2010). Saturated conditions in the rooting zone and low pH are stressful and limiting for many 

tree species, and these conditions limited the abundance of P. sitchensis and T. heterophylla in 

PEM and PSS sites (Lieffers and Rothwell 1986, Conlin and Lieffers 1993a). Forested wetlands 

and uplands occur on the steeper end of this topographic gradient. The absence of water within 

the root zone over portions of the growing season appears to allow for the success of P. 

sitchensis and T. heterophylla along the steeper portions of this gradient.  

Site hydrologic regime plays an integral role, but it acts in concert with other abiotic and 

biotic variables factors to determine the success and distribution of each tree species (Yu and 

Ehrenfeld 2010). Nutrient availability and site pH are also a function of a site’s topographic 

position on the landscape and are controlled largely by hydrologic inputs (Rochefort et al. 2012). 

Sites receiving groundwater that has interacted with mineral soil have higher mineral 

concentrations and are less acidic than those isolated from groundwater (Bedford and Godwin 

2003). Differences in hydrologic regime and nutrient availability are driving variation in plant 

community composition and overstory biomass across the four ecosystem types.  

 

Species Distributions 

Across the hydrologic gradient, Pinus contorta ssp. contorta occurs only in the saturated, 

nutrient-poor conditions of PEM and PSS wetlands. I hypothesized that its absence from PFO 

and U sites was due to competitive exclusion. This subspecies of Pinus contorta is understudied, 

while research on subspecies latifolia has been extensive (Critchfield 1957, Chen et al. 1996, 
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Schoettle and Smith 1999, Rehfeldt et al. 2001). Pinus contorta ssp. latifolia, the most-widely 

distributed subspecies of Pinus contorta (Critchfield 1957), is documented to be both shade 

intolerant and a poor competitor (Burns and Honkala 1990). This species is often outcompeted 

by shade-tolerant species, such as spruce and fir but is documented to tolerate a wide variety of 

environmental conditions (Lotan and Perry 1983, Muir and Lotan 1985, Lotan and Critchfield 

1990). Previous research has also shown that P. contorta ssp. latifolia is more tolerant of 

anaerobic conditions and potentially has structures that allow for internal oxygen transport under 

such conditions (Coutts and Philipson 1978, Conlin and Lieffers 1993a, Wolken et al. 2011). My 

results conclude that these life history traits are also true for the understudied coastal P. contorta 

ssp. contorta, where it grows under the anaerobic conditions of PEM and PSS wetlands but not 

in the aerobic PFO and U sites. Model results predict P. contorta growth across a wide range of 

local, environmental conditions (Figure 2.5) but only under high light conditions and in the 

absence of a P. sitchensis canopy. My results support the hypothesis that this species is excluded 

from PFO and U sites by low light conditions and competition, not from a failure to cope with 

the conditions occurring across this gradient (Lotan and Critchfield 1990, Rehfeldt et al. 1999). 

The occurrence and abundance of P. sitchensis is greatest on the upper end of this 

hydrologic gradient, with its abundance explaining the exclusion of P. contorta from PFO and U 

sites (Figure 2.5). Picea sitchensis co-occurs with T. heterophylla on PFO and U ecosystem 

types. This species is shade-tolerant but is considered less competitive than T. heterophylla 

(Taylor 1990, Mason et al. 2004). I hypothesized that abiotic stressors limit the occurrence and 

abundance of this species in PEM and PSS sites. My results suggest that establishment is 

constrained by anaerobic soil conditions that limit oxygen transport and nutrient availability, 

supporting prior research on rooting tolerance of P. sitchensis and other boreal Picea species 
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(Coutts and Philipson 1978, Lieffers and Rothwell 1986, Conlin and Lieffers 1993b). The 

species’ physiological intolerance of anaerobic conditions explains its absence from the 

emergent and scrub-shrub wetlands, while response to competition from T. heterophylla explains 

its lower abundance on co-occurring PFO and U sites. The gentle slopes and landscape position 

of PEM and PSS sites create anaerobic conditions, low pH, and minimal nutrient flow (Chapin et 

al. 2004, D’Amore et al. 2010); these factors interact to create an inhospitable environment for 

the establishment and growth of P. sitchensis.  

Tsuga heterophylla occurs at all sites and in all ecosystem types along this gradient, 

supporting its broad tolerance of abiotic and biotic conditions. I hypothesized that abiotic 

stressors, specifically depth to groundwater and nutrient availability, limit the abundance of T. 

heterophylla at the lower end of this hydrologic gradient. Across this hydrologic gradient, T. 

heterophylla presence is best explained by soil nitrogen, and abundance is determined by depth 

to groundwater and pH. These drivers suggest that T. heterophylla is able to establish on sites 

once its minimum nutrient requirements are met but that its abundance is governed by the 

interplay between groundwater flow and nutrient availability. To some degree, T. heterophylla is 

able to tolerate the wetland sites, but the anaerobic conditions associated with this landscape 

position limit nutrient flow, pH, and the subsequent growth of this species. Tsuga heterophylla is 

not limited by biotic interactions along this gradient, but its occurrence and abundance are 

constrained by the physiological stress associated with a high water table and low nutrient 

availability.  

Plant community composition and abundance often vary as a function of nutrient 

availability and pH (Bedford and Walbridge 1999, Chapin et al. 2004), and studies have shown 

that plant community composition is highly correlated to pH (Vitt and Chee 1990, Chapin et al. 
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2004). Prior wetland research has also identified depth to groundwater and water chemistry as 

the most important drivers of plant distributions across hydrologic gradients (Vitt et al. 1990, 

Asada et al. 2003). In southeast Alaska, the occurrence and abundance of P. sitchensis and T. 

heterophylla are determined by these same factors – nutrient limitations, pH, and depth to 

groundwater. One potential explanation for P. sitchensis and T. heterophylla occurrence on 

wetland sites, despite sensitivity to a high water table and low pH, is that germination is closely 

tied to specific environmental and climatic conditions that allow for aerobic conditions in 

wetland sites. For instance, it is possible that dry summers, as occurred in 2009, result in a water 

table low enough to allow the germination and establishment of P. sitchensis and T heterophylla 

in typically inhospitable PEM and PSS wetlands.  

The occurrence and abundance of forest tree species in southeast Alaska is both species- 

and location-specific. Abiotic factors limit P. sitchensis and T. heterophylla occurrence in the 

saturated, nutrient-poor wetlands, while the biotic effects of competition exclude P. contorta 

from the more favorable forested and upland conditions. My models showed that species’ 

occurrence and abundance vary across different scales of analysis but that the factors limiting the 

distribution of each species’ are consistent across increasing spatial scales. This research is one 

of the first to quantify the drivers of tree species’ distributions across a hydrologic gradient and 

to specifically test the relative importance of abiotic versus biotic factors in determining the 

growth of these tree species. Collectively, these results highlight the importance of ecological 

and hydrologic interactions. The feedbacks between abiotic and biotic processes directly shape 

tree species distributions across different spatial scales and along hydrologic gradients. 

Understanding the role of each factor and the interactions among processes are essential to 

describing a species’ niche and in determining drivers of its distribution.  
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Site Name Ecosystem 
Type*

Latitude Longitude Elevation 
(m)

Aspect Slope Landform Position
PICO 

Presence 
(0/1)

PISI 
Presence 

(0/1)

TSHE 
Presence 

(0/1)

FAA PEM 58.33578 -134.56222 52 North 0 flat lowland 1 0 1

Water Tower PEM PEM 58.27284 -134.42079 211 North 5 sloping lowland 1 0 1

Ski Area Fen PEM 58.28849 -134.53043 278 West 10 sloping lowland 1 0 1

Eagle River PSS PSS 58.52952 -134.81861 11 Southeast 0 flat lowland 1 1 1

Water Tower PSS PSS 58.27801 -134.41075 130 South 0 sloping lowland 1 0 1

Mt Jumbo PSS 58.26144 -134.38673 203 North 0-5 sloping lowland 1 0 1

Tee Harbor PFO 58.42273 -134.75595 48 West 5-10 smooth hillslope 0 1 1

Fish Creek PFO 58.32709 -134.56751 61 South 5 sloping lowland 0 1 1

Ski Area PFO PFO 58.28835 -134.52925 306 West 15 smooth hillslope 0 1 1

Eagle River U U 58.41010 -134.61721 52 South 20 smooth hillslope 0 1 1

Peterson U 58.48095 -134.77828 77 North 20 smooth hillslope 0 1 1

Sheep Creek U 58.26595 -134.32890 122 Southeast 20 mountain 0 1 1

* PEM = Palustrine Emergent Wetland, PSS = Palustrine Scrub Shrub, PFO = Paulstrine Forested Wetland, U = Upland

Table 2.1: Descriptions of each site in Juneau, Alaska, including ecosystem type, location, landscape features, and tree species’ occurrence (0/1). PICO 
= Pinus contorta ssp. contorta, PISI = Picea sitchensis, and TSHE = Tsuga heterophylla. 
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Site Name
Ecosystem 

Type*
PICO Abundance 

(Mg/ha)
PISI Abundance 

(Mg/ha)

TSHE 
Abundance 

(Mg/ha)

Mean Annual              
Depth to Water 

(cm below surface)

Mean Growing 
Season Depth to 

Water               
(cm below surface)

Mean Growing 
Season Days 

Depth to Water     
>-20 (cm)

Groundwater    
pH

NH4                

(ug/g)
NO3          

(ug/g)
Transmitted 
Light (%)

FAA PEM 17.67 (± 0.62) 0 0.53 (± 0.14) 6.25 (± 3.70) 12.76 (± 2.79) 123 (± 7) 4.12 (± 0.05) 14.71 (± 1.2) 10.87 (± 1.28) 96.19 (± 0.33)

Water Tower PEM PEM 27.86 (± 2.40) 0 3.37 (± 2.24) 5.32 (± 1.73) 5.61 (± 1.12) 123 (± 15) 4.92 (± 0.12) 28.81 (± 10.76) 12.99 (± 7.00) 83.85 (± 6.57)

Ski Area Fen PEM 6.97 (± 2.52) 0 1.29 (± 0.44) 7.22 (± 4.30) 16.04 (± 1.27) 117 (± 8) 4.81 (± 0.03) 16.53 (± 2.31) 15.14 (± 3.61) 80.01 (± 5.06)

Eagle River PSS PSS 2.71 (± 1.42) 4.27 (± 0.96) 3.97 (± 1.41) 14.64 (± 3.65) 20.98 (± 2.14) 64 (± 13) 4.35 (± 0.07) 17.84 (± 6.53) 24.04 (± 6.03) 86.94 (± 1.40)

Water Tower PSS PSS 48.41 (± 0.84) 0 2.52 (± 0.62) 11.07 (± 5.4) 21.61 (± 1.98) 109 (± 3) 4.57 (± 0.06) 10.58 (± 2.73) 13.05 (± 3.86) 57.49 (± 7.44)

Mt Jumbo PSS 37.35 (± 2.80) 0 4.48 (± 0.81) 4.66 (± 3.10) 5.47 (± 2.53) 132 (± 8) 4.38 (± 0.15) 42.19 (± 2.51) 10.47 (± 1.80) 85.91 (± 4.14)

Tee Harbor PFO 0 68.07 (± 16.43) 267.61 (± 22.63) 16.51 (± 2.30) 20.03 (± 5.73) 108 (± 5) 5.41 (± 0.08) 72.42 (± 29.11) 5.20 (± 0.32) 13.33 (± 1.10)

Fish Creek PFO 0 91.35 (± 28.48) 267.58 (± 10.71) 15.49 (± 3.70) 21.37 (± 3.23) 105 (± 5) 5.84 (± 0.13) 95.53 (± 26.59) 5.05 (± 0.90) 19.02 (± 2.52)

Ski Area PFO PFO 0 75.27 (± 10.61) 335.95 (± 12.91) 62.10 (± 13.50) 79.8 (± 9.6) 9 (± 2) 4.96 (± 0.08) 12.48 (± 3.82) 3.22 (± 0.46) 15.16 (± 1.13)

Eagle River U U 0 96.42 (± 9.02) 307.33 (± 5.83) 84.05 (± 12.03) 94.76 (± 7.93) 0 5.86 (± 0.18) 23.49 (± 8.40) 4.04 (± 0.95) 18.53 (± 2.60)

Peterson U 0 31.18 (± 13.30) 585.50 (± 93.85) 95.69 (± 7.20) 101 (± 1.00) 0 5.88 (± 0.17) 8.04 (± 1.15) 4.55 (± 0.73) 11.87 (± 0.45)

Sheep Creek U 0 213.62 (± 38.85) 451.36 (± 63.43) 79.04 (± 13.47) 93.06 (± 3.67) 0 5.95 (± 0.14) 38.42 (± 26.21) 9.39 (± 3.22) 15.88 (± 0.47)

* PEM = Palustrine Emergent Wetland, PSS = Palustrine Scrub Shrub, PFO = Paulstrine Forested Wetland, U = Upland

Table 2.2: Mean and standard error (± SE) of abiotic and biotic characteristics of each study site, including species abundance, depth to groundwater, 
pH, soil nitrogen, and percent transmitted light. PICO = Pinus contorta ssp. contorta, PISI = Picea sitchensis, and TSHE = Tsuga heterophylla. 
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Table 2.3: Model summaries of occurrence and abundance for each species. Marginal R2 is the proportion 
of variance explained by fixed effects. Conditional R2 is the proportion of variance explained by fixed and 
random effects. Assignment statistics assess the proportion of the time the model correctly assigns the 
presence/absence data. Results assess model performance across all levels of the hierarchy: well, site, and 
ecosystem type. PICO = Pinus contorta ssp. contorta, PISI = Picea sitchensis, and TSHE = Tsuga 
heterophylla. 

Occurrence Models

Marginal 
R2

Correctly 
Assigned 
Presence

Correctly 
Assigned 
Absence

Marginal R2 Conditional 
R2

PICO 0.95 0.98 0.96 0.07 0.68

PISI 0.96 0.84 0.82 0.10 0.43

TSHE 0.95 0.95 0.51 0.14 0.45

Abundance Models
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Table 2.4: Variance partition coefficients (VPCs) for each species at each level 
of hierarchy (well, site, and ecosystem type). VPCs explain how variance is 
partitioned for each model. Values represent the amount of unexplained 
variation at each spatial scale. PICO = Pinus contorta ssp. contorta, PISI = 
Picea sitchensis, and TSHE = Tsuga heterophylla. 

PICO PISI TSHE

Well 0.34 0.64 0.65

Site 0.12 0.20 0.00

Ecosystem Type 0.54 0.16 0.35
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Figure 2.1: Study site locations on Mainland Juneau and adjacent Douglas Island in southeast Alaska. Site symbols represents one of four 
ecosystem types. PEM = Palustrine emergent wetland, PSS = Palustrine scrub-shrub wetland, PFO = Palustrine forested wetland, and U = 
upland. 
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Figure 2.2: Distribution of ecosystem types across a distinct hydrologic gradient in southeast Alaska. Ecosystem types are 
classified, based on Cowardin et al. (1979), as: Palustrine emergent wetlands, Palustrine scrub-shrub wetlands, Palustrine 
forested wetlands, and upland forests. 
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Figure 2.3: Hydrographs of mean hourly depth to water for each ecosystem type over the four-year 
study period (2009 - 2012). Mean annual depth to water is displayed in the grey box. The gray, 
hashed line marks the plant-rooting zone (Wang et al. 2002), showing the contrasting water table 
influence on plants growing in PEM versus U sites. Differences in depth to water we significant at 
p < 0.001. PEM = Palustrine emergent wetland, PSS = Palustrine scrub-shrub wetland, PFO = 
Palustrine forested wetland, and U = upland. 
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Figure 2.4: Variation in abiotic and biotic variables by ecosystem type, including: days where depth to water is in rooting zone (>-20 cm, Wang 
et al. 2002), available light (%), pH, and Overstory biomass. PEM = Palustrine emergent wetland, PSS = Palustrine scrub-shrub, PFO – 
Palustrine forested wetland, and U = Upland forest. 
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Figure 2.5: Parameter estimates from the Bayesian hierarchical model. The top row shows model output from the abundance models, and the 
bottom row shows output from the occurrence models. Points represent the mean values, and lines display the 95% credible interval. Those 
variables with intervals that do not cross the vertical zero line may be considered significantly difference from zero at the 95% level. PICO = 
Pinus contorta ssp. contorta, PISI = Picea sitchensis, TSHE = Tsuga heterophylla. 
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Figure 2.6: Parameter estimates of site and ecosystem type random effects for the species’ abundance model. Black bars 
represent predicted means; boxes display the 25th and 75th percentiles; whiskers show the 90% credible interval. Those 
variables with intervals that do not cross the vertical zero line are considered significantly different from zero at the 90% level. 
Site effects are presented in the top row, and ecosystem type effects are displayed in the bottom row. PICO = Pinus contorta 
ssp. contorta, PISI = Picea sitchensis, and TSHE = Tsuga heterophylla. PEM = Palustrine emergent wetland, PSS = Palustrine 
scrub-shrub wetland, PFO = Palustrine forested wetland, and U = Upland. 
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Appendix 2.1 

 

 

 

 

 

 

 

 

 

 

Model AIC Score Deviance

PICO ~ Light + NO3 + NH4 + Max_DTW 21.09 11.09

PICO ~ Light + NO3 + Max_DTW 19.51 11.51

PICO ~ Light +  Max_DTW 19.18 13.18

PICO ~ Light 18.61 14.61

PICO ~ Light + NO3 18.57 12.57

TSHE ~ Light + NO3 + NH4 + Max_DTW 28.27 18.28

TSHE ~ Light + NO3 + NH4 26.77 18.77

TSHE ~ Light + NH4 26.09 20.09

PISI ~ Light + NO3 + NH4 + Max_DTW 36.52 26.52

PISI ~ Light + NH4 + Max_DTW 34.52 26.52

PISI ~ Light + Max_DTW 32.77 26.77

Table A.2.1: Generalized linear model results for the species’ occurrence models. Model selection used 
Akaike Information Criterion (AIC) scores. Bolding indicates model best explaining the data. PICO =Pinus 
contorta ssp. contorta, PISI = Picea sitchensis, TSHE = Tsuga heterophylla. 
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Table A.2.2: Generalized linear model results for the species’ abundance models. Model selection used Akaike 
Information Criterion (AIC) scores. Bolding indicates model best explaining the data. PICO =Pinus contorta 
ssp. contorta, PISI = Picea sitchensis, TSHE = Tsuga heterophylla. 

Model AIC Score Deviance

PICO_Mass  ~ pH +NO3 + NH4 + Max_DTW + PISI_mass + TSHE_mass 394.48 7468

PICO_Mass ~ pH +NO3 +  Max_DTW + PISI_mass + TSHE_mass 392.59 7484

PICO_Mass ~ pH +NO3 +  PISI_mass + TSHE_mass 390.85 7526

PICO_Mass ~ NO3 + PISI_mass + TSHE_mass 389.51 7630

PICO_Mass ~ PISI_mass + TSHE_mass 388.21 7741

TSHE_Mass ~ pH + NO3 + NH4 + Min_DTW + PISI_mass + PICO_mass 584.13 388235

TSHE_Mass ~ pH + NO3 + Min_DTW + PISI_mass + PICO_mass 582.16 388492

TSHE_Mass ~ pH + NO3 + Min_DTW + PICO_mass 580.35 389996

TSHE_Mass ~ pH + NO3 + Min_DTW 580.00 403679

TSHE_Mass ~ pH + Min_DTW 579.62 417500

PISI_Mass ~ pH + NO3 + NH4 + Max_DTW + PICO_mass + TSHE_mass 521.64 105607

PISI_Mass ~ pH + NO3 + NH4 + PICO_mass + TSHE_mass 519.64 105710

PISI_Mass ~ pH + NH4 + PICO_mass + TSHE_mass 517.69 105710

PISI_Mass ~ pH + PICO_mass + TSHE_mass 516.28 107023

PISI_Mass ~ pH +  PICO_mass 514.80 108201

PISI_Mass ~ pH 514.46 112000



46 
 

 

 

 

 

 

 

Species Parameter Mean CI  2.5% CI  97.5%

PICO Max_DTW 4.11 -0.91 12.50

Light 3.86 0.92 7.99

NH4 -1.59 -5.30 1.05

NO3 2.83 -0.26 7.41

PISI Max_DTW -7.57 -14.55 -2.10

Light -2.24 -4.62 -0.42

NH4 0.87 -1.02 3.22

NO3 -0.01 -0.98 0.91

TSHE Max_DTW -2.34 -7.96 2.22

Light -5.02 -9.06 -1.71

NH4 4.17 0.44 9.35

NO3 1.26 -0.43 3.63

Table A.2.3: Bayesian parameter estimates, mean and 95% credible intervals, for the occurrence model. 
Bolding indicates strongest predictors of abundance. PICO =Pinus contorta ssp. contorta, PISI = Picea 
sitchensis, TSHE = Tsuga heterophylla. 
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Species Parameter Mean CI  2.5% CI  97.5%

PICO Max_DTW -0.53 -1.10 0.04

Max_DTW2 -0.47 -0.93 0.00

NH4 0.01 -0.43 0.44

NO3 -0.21 -0.80 0.35

pH -0.15 -0.79 0.48

TSHE 0.03 -0.44 0.52

PISI -0.75 -1.47 -0.03

PISI Max_DTW 0.77 -0.50 2.07

Max_DTW2 0.51 -0.30 1.27

NH4 -0.02 -0.59 0.56

NO3 0.04 -0.38 0.47

pH 0.73 0.04 1.51

TSHE 0.49 -0.23 1.18

PICO -0.27 -0.70 0.16

TSHE Min_DTW -1.19 -2.75 0.31

Min_DTW2 1.51 0.33 2.70

NH4 0.00 -0.22 0.22

NO3 0.00 -0.20 0.21

pH 0.43 0.09 0.78

PISI -0.11 -0.39 0.16

PICO -0.16 -0.54 0.22

Table A.2.4: Bayesian parameter estimates, mean and 95% credible intervals, for the abundance model. 
Bolding indicates strongest predictors of abundance. PICO =Pinus contorta ssp. contorta, PISI = Picea 
sitchensis, TSHE = Tsuga heterophylla. 
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Figure A.2.1: Canonical correspondence analysis figure displaying plant 
community and sites, based on environmental gradient. The first and second axes 
explain 75% of the variation in the dataset (p<0.001). 
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Figure A.2.2: Canonical correspondence analysis figure displaying sites and the 
environmental variables driving the axes. Sites are classified by ecosystem type. The 
first and second axes explain 75% of the variation in the dataset (p<0.001). PEM = 
Palustrine emergent wetland, PSS = Palustrine scrub-shrub, PFO = Palustrine 
forested wetland, and U = upland forest. 



50 
 

3 Shaping a species: landscape influence on range-wide patterns of genetic        
   structure across Pinus contorta 
 

3.1 Introduction 

Identifying the ecological and evolutionary processes driving morphological variation 

within a species range is a central task in ecological research. Trait variation is the expression of 

a species’ ability to occupy a diversified niche and persist under a range of conditions (Mayr 

1963, Van Valen 1965). Species occurring across heterogeneous landscapes are subject to 

different selection pressures, which can have consequences for the distribution and maintenance 

of genetic diversity (Eckert et al. 2012). Heterogeneity in landscape and environmental 

conditions can create sharp boundaries between populations, shaping gene flow and patterns of 

population genetic structure. Widespread, morphologically-variable species provide a natural 

experiment for evaluating the role of ecological and evolutionary processes in shaping the 

distribution of a species, particularly the role of gene flow in determining variation among 

populations and across environmental gradients (Latta 2004). Understanding the processes 

shaping gene flow and determining patterns of genetic diversity requires knowledge on the 

influence of the landscape in structuring populations (Manel et al. 2003, Storfer et al. 2007). 

Many tree species have extensive ranges that occur over a broad range of environments. 

Some have been documented to effectively disperse and remain connected through gene flow 

among distant populations and across heterogeneous landscapes (Hamrick 2004, Savolainen et 

al. 2007, Kremer et al. 2012). These widely-dispersed, wind pollinated species appear to 

overcome the substantial landscape barriers known to limit gene flow among other plant 

populations, but the effect of the landscape on dispersal and connectivity has rarely been tested 

in tree species. Members of the Pinus genus prove to be especially intriguing study organisms for 
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research on gene flow and connectivity of widespread, morphologically-variable plant species. 

Our understanding of the life history and population structure of these species is complicated by 

long-distance pollen dispersal, lengthy generation times, slow migration rates, and competing 

hypotheses of post-glacial histories (Clark 1998, Hamrick 2004, Aitken et al. 2008).  

Pinus contorta (Douglas Ex. Louden) occurs across western North America; its success 

across environmentally and climatically heterogeneous landscapes provides a strong example for 

testing the relationship between gene flow and landscape characteristics. Pinus contorta is one of 

the most widely distributed trees in North America, playing an ecologically, economically, and 

historically important role in western forests from Baja California to the Yukon Territory 

(Critchfield and Little 1966, Wheeler and Guries 1982a, Wheeler and Critchfield 1985). It grows 

across a broad range of elevations, extending from sea level along the Pacific coast to over 3500 

m in the Sierra Nevada Mountains of California and occurring as a dominant species from 

coastal to subalpine forests (Critchfield and Little 1966, Wheeler and Critchfield 1985, Rehfeldt 

et al. 1999).  

Pinus contorta is divided into four morphologically and geographically distinct 

subspecies (ssp. latifolia, contorta, murrayana, and bolanderi; Figure 3.1) (Critchfield 1957). All 

four subspecies have two-needle fascicles and scaly bark, with variations in crown shape and tree 

form. Each subspecies grows in a discrete portion of the species’ range and is hypothesized to be 

adapted to local climate and environmental conditions (Ying and Liang 1994, Rehfeldt et al. 

1999, 2001). The geographic distributions of the subspecies do not overlap and occur under 

different combinations of local conditions, except for the occurrence of subspecies contorta and 

bolanderi in Mendocino, California. Subspecies appear to be isolated from one another by ice 

fields, deserts, mountain ranges, and coastal waters.  
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Population genetics research on P. contorta (Wheeler and Guries 1982b, Yang and Yeh 

1995, Fazekas and Yeh 2006) has shown high gene flow among subspecies and various divisions 

of population structure. We have little knowledge on the effects of landscape barriers and 

heterogeneity on variation within the species and among subspecies. In this research, I explored 

two questions: 1) how is genetic variation partitioned within P. contorta, a species that is 

geographically widespread but has potential for long-distance gene flow? and 2) do subspecies 

represent genetic clusters, or is genetic variation better explained by landscape barriers to gene 

flow? I hypothesized that populations across the range of the species are connected by long-

distance gene flow, possessing high within- but low among-population genetic variation, and that 

the landscape influences patterns of genetic differentiation. My objectives were to 1) quantify the 

distribution of genetic variation within P. contorta, 2) determine whether distinct genetic clusters 

contribute to population genetic structure, and, if so, whether these breaks align with specific 

landscape characteristics, and 3) examine how genetic differentiation among populations relates 

to geographic or landscape variables. 

 

3.2 Methods 

Study Design and Sampling 

Potential sampling locations were identified using occurrence data from U.S. Forest 

Service Forest Inventory & Analysis (FIA) (FIA, accessed July 2010; John Chase, Glenn 

Christensen, and John D. Shaw, personal communication) and British Columbia Ministry of 

Forests Biogeoclimatic Ecosystem Classification (BEC) (Will MacKenzie, personal 

communication) survey records. Regardless of subspecies designation, sampling locations were 

clustered into six ecologically and geographically distinct regions: 1) Sierra Nevada, 2) Coastal 

California and Oregon, 3) Southeast Alaska, 4) Yukon Territory to central British Columbia, 5) 



53 
 

Rocky Mountains (Jasper National Park, AB through Colorado), and 6) Black Hills (Figure 3.1; 

Table 3.1). These regions represent major physiographic divisions of western North America, 

which are based on landform and conspicuous landscape features (Fenneman 1917). Regional 

delineation presumed the potential for population connectivity within and isolation across these 

boundaries.  

Ten sampling locations were randomly selected from within five of the six stratified 

regions (regions one through five). In region four, we targeted a portion of sampling toward 

inclusion of variety yukonensis, with two locations ultimately selected for analysis. We also 

avoided sampling across a large portion of central British Columbia to prevent unintentional 

sampling of commonly occurring commercial plantations. In region six (Black Hills), the two 

known populations were sampled. The U.S. Forest Service Rocky Mountain Research Station’s 

FIA program provided samples for subspecies latifolia in areas not sampled under this study 

design, including from Colorado, Idaho, Montana, and Utah. Subspecies latifolia occupies the 

greatest portion of the species’ range, and this was reflected in our design. Sampling locations 

per subspecies were distributed in the following manner (n = 51, Figure 3.2): ssp. latifolia = 24 

(47%), ssp. contorta = 13 (25%), ssp. murrayana = 11 (22%), and ssp. bolanderi = 3 (6%). 

A total of one gram of fresh, current-year needles was collected from ten individuals at 

each sampling location. To reduce the likelihood of sampling related individuals, trees selected 

for sampling were a minimum of 50 m apart. Needles were placed in manila coin envelopes and 

dried in silica gel desiccant. Basic morphological data was collected on each tree, including tree 

form and the presence or absence of serotinous cones (0 or 1). Tree form data was classified into 

four categories: 1) short stature, twisted bole, 2) short stature, straight bole, 3) tall tree, large 

diameter (>50 cm), or 4) tall tree, small diameter (<50 cm).  
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I chose to prioritize sampling a greater number of locations given the geographic scope of 

the P. contorta distribution even though sampling more individuals per location would increase 

the reliability of population-level estimates. This schema provides the statistical power necessary 

to detect geographic patterns in genetic structure (Eckert et al. 2008).  

 

DNA Extraction and Microsatellite Amplification 

Total genomic DNA was extracted from silica gel-dried needles at the U.S. Department 

of Agriculture National Forest Genetics Laboratory (Placerville, CA) using DNeasy plant kits 

(Qiagen, Valencia, CA). After screening twenty-two previously developed markers (Hicks et al. 

1998, Stoehr and Newton 2002, Parchman et al. 2010, Lesser et al. 2011) for amplification and 

polymorphism in a subset of populations from each subspecies, I selected one polymorphic 

cpDNA marker and nine, highly polymorphic SSR markers for further analysis across all 

samples (69FR, PICO1, PICO4, PICO7, PICO77, PICO104, PICO109, PICO138, PICO154, 

PICO179; Table A.3.1) (Stoehr and Newton 2002, Parchman et al. 2010, Lesser et al. 2011).  

Microsatellite loci were amplified in multiplex under identical conditions. Locus-specific 

primers were 5’-tailed with universal primer sequences (as described by Missiaggia & 

Grattapaglia 2006), including: D8S1132f-FAM (5’-[6FAM]GGCTAGGAAAGGTTAGTGGC-

3’), D12S1090f-TAMRA (5’-[TAMRA]ACCAACCTAGGAAACACAG-3’), and DYS437f-

HEX (5’-[5HEX]GACTATGGGCGTGAGTGCAT-3’). PCR amplification reactions were 

prepared in 4 uL volumes and consisted of: 0.01 U/uL Phusion HotStart II Polymerase (Thermo 

Scientific, Rockford, IL), 1X Phusion HF Buffer (Thermo Scientific), 3.0 mM MgCl2, 200 nM 

dNTPs, 200 nM universal and reverse locus-specific primers, 20 nM forward tailed locus-

specific primer, 1X KAPA Enhancer 1 (KAPA Biosystems, Woburn, MA), 6% glycerol, and 
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approximately 5 ng template DNA. Thermal cycling was performed under the following 

conditions: 1 cycle of 90 C for 2 min; 40 cycles of 90 C for 30 sec, 63 C for 2 min, and 72 C for 

15 sec; 1 cycle of 72 C for 10 min. PCR products were separated on a 3730xl Genetic Analyzer 

(Life Technologies, Carlsbad, CA), and peak sizes were determined using GeneMarker v2.2 

(SoftGenetics LLC, State College, PA). All samples were scored three times to verify peaks and 

resolve any conflicts in scoring. 

 

Descriptive Statistics and Genetic Diversity 

Statistical analyses tested the importance of sampling location (n = 51), region (n = 6), 

and subspecies (n = 4) in explaining genetic variation. Prior to analysis, MICROCHECKER 2.2.3 

was used to test for evidence of null alleles and screen for genotyping errors, including allelic 

dropout and stuttering (Van Oosterhout et al. 2004). No evidence for allelic dropout or stuttering 

was detected, but the presence of null alleles occurred at two loci, so we used MICROCHECKER to 

adjust homozygote genotypes to more accurately reflect estimated null allele frequency (Van 

Oosterhout et al. 2004) and used adjusted allele frequencies in all subsequent analyses. Genetic 

diversity statistics were calculated in GENALEX 6.5 (Peakall and Smouse 2006, 2012). Analysis 

of molecular variance (AMOVA) was also performed in GENALEX to quantify the distribution of 

molecular variation within and among sampling locations, regions, and subspecies.  

 

Population Clustering 

STRUCTURE 2.3.2 (Pritchard et al. 2000, Falush et al. 2007) was run without spatial 

information to estimate the number of discrete population genetic clusters (K) and assign 

individuals to these genetic clusters without grouping them a priori based on geographic 
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location. Values of K = 1 – 10 were tested under a correlated allele frequency model by running 

replicate simulations (n = 5) with a burn-in of 200,000 iterations and a run length of 1,000,000 

Markov Chain Monte Carlo (MCMC) repetitions. Model runs assumed admixture among 

sampling locations, with the admixture parameter (!) set to vary and inferred separately for each. 

Preliminary model runs, testing an independent allele frequency model and K = 1-51, did not 

differ from the more biologically realistic correlated allele frequency model and a smaller K.  

The most likely value of K was determined using STRUCTURE HARVESTER (Earl and 

VonHoldt 2012), which plots the log probability [L(K)] of the data over multiple runs and 

compares it to the "K using the Evanno method (Evanno et al. 2005). Results from the five 

replicate STRUCTURE runs with the highest likelihood scores were merged in CLUMPP 1.1.2 

(Jakobsson and Rosenberg 2007) and visualized with DISTRUCT 1.1(Rosenberg 2004).  

Assignment testing was also implemented in GENELAND 4.0.3 (Guillot, et al. 2005, 2005, 

2012) to assess the role of geographic location in determining population structure and 

morphological variation among populations. This analysis incorporated both geographic location 

and the phenotypic data derived from field assessment of tree morphology. Phenotypes were 

differentiated by two variables: tree form (n = 1-4) and the presence or absence of serotinous 

cones (0 or 1). The value of K was allowed to vary among replicate (n = 10) simulations from 1 – 

51, and model runs consisted of the following: 2,000 burn-in iterations; 1,000,000 MCMC 

repetitions with a thinning of 1000; spatial uncertainty (") of 0.02 (~ 1.4 km) to account for 

measurement error; a maximum rate of Poisson process equal to 100 (default); and a maximum 

number of nuclei set to 1016. These analyses assigned each individual to one genetic cluster, 

with clustering a function of genetic, geographic, and phenotypic information. The most likely 
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number of genetic clusters was inferred from convergence of the MCMC chain and through 

comparison of the log-likelihood posterior distribution across multiple runs (n = 10). 

 

Landscape Genetics 

Landscape genetics analyses were used to quantify the effect of geographic distance and 

landscape features on population genetic structure (Manel et al. 2003). First, pairwise genetic 

distances was calculated in GENODIVE (Meirmans and Van Tienderen 2004). Mantel tests of 

isolation by distance (IBD), isolation by resistance (IBR), and isolation by barrier (IBB) were 

performed in GENODIVE under 999 permutations. Analyses correlated genetic differentiation 

with ecologic distances to infer the effect of the landscape on population genetic structuring 

(Cushman et al. 2006, Balkenhol et al. 2009). I also ran partial Mantel tests on all combinations 

of genetic, geographic, and ecological distance matrices (e.g. Genetic ~ Resistance | Geographic) 

to assess the degree of association between genetic and ecological distance after accounting for 

the influence of geographic distance. 

Tests of IBD used pairwise genetic distance (untransformed FST and FST/(1 – FST)) with 

respective pairwise geographic distance (log km) (Mantel 1967, Rousset 1997). The Mantel test 

of IBD was performed in a hierarchical manner, examining the isolation by distance relationship 

across all sampling locations, within regions, and within subspecies (excluding ssp. bolanderi 

due to small sample size).  

The Mantel test of IBR used a resistance map derived from modeling in MAXENT 3.3.3k 

(Phillips et al. 2006), assuming that habitat suitability is a valid approximation for landscape 

resistance to dispersal (Wang et al. 2008, Hagerty et al. 2010). I assessed suitability using 20,505 

FIA and BEC P. contorta occurrence records and layers of current (1950-2000), 1 km2 resolution 
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WORLDCLIM climate data (Hijmans et al. 2005). A Principal Components Analysis (PCA) was 

run in R 2.15.2 (R Core Team 2012) on WORLDCLIM variables for 20,505 randomly-selected 

points from across the range of P. contorta to identify and remove highly correlated climate 

variables. Of the 19 downscaled bioclimatic variables, five minimally correlated variables 

(correlation < 0.65) were selected, including mean annual temperature (°C), mean minimum 

coldest month temperature (°C), mean annual precipitation (mm), precipitation of wettest month 

(mm), and precipitation of driest month (mm). Layers were processed in ArcGIS 10.1 and used 

in MAXENT for predictive habitat modeling. 

 MAXENT was run at the species-level under the following settings: minimum training 

presence threshold, logistic output, 0.5 probability of presence, and 25% of the data used as 

random testing points. The resultant model was evaluated using receiver-operating 

characteristics (ROC) and had a test score (area under the curve - AUC) of 0.98 (p < 0.001). A 

threshold of 60% probability of suitability (0 = lowest suitability, 100 = highest suitability) was 

set for identifying suitable versus unsuitable habitat. Any predictions falling under the 60% 

probability mark were classified as unsuitable (Angert et al. 2011). MAXENT output was 

transformed into a binary matrix and used to define landscape resistance. I scaled resistance from 

0 to 1, assigning suitable habitat cells a value of 0 and unsuitable a value of 1. I then used the 

COSTDISTANCE function in ArcGIS to calculate least-cost path and pairwise landscape 

resistance between all sampling locations. Pairwise resistance values were evaluated against 

pairwise genetic distance (Fst) in a Mantel test of IBR. 

A Mantel test of IBB was used to assess the role of landscape barriers in governing 

population genetic structure. Hypothesized barriers were defined prior to analysis and delineated 

based on likelihood of limiting gene flow across this widespread, wind-pollinated species. Four 
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significant barriers were identified: Central Valley of California, coastal waters of the Pacific 

Ocean, Juneau Icefield and Coast Mountain Range, and Great Basin-Intermountain West (Figure 

3.3). The landscape features identified as barriers represent combinations of geographic distances 

and ecological conditions likely to hinder gene flow. Under the IBB model, I assumed panmixia 

on either side of identified barriers with minimal to no gene flow between. Pairs located on the 

same side of a barrier were coded as 0, while those separated by the barrier were coded as 1. 

Pairwise distances were used to create a barrier matrix for analysis in a Mantel test of IBB. 

Canonical correspondence analysis (CCA) was employed using the ‘vegan’ package in R 

2.15.2 to test the effects of environmental variables on genetic differentiation (Fst) and 

population clustering. Sampling location environmental variables were derived for the period 

from 1981 – 2010 using ClimateWNA 4.72 (Wang et al. 2006). A PCA was utilized to reduce 

the full set of environmental variables to a set of minimally correlated variables (correlation < 

0.65), including mean warmest and coldest mean temperature (°C), mean summer precipitation 

(mm), annual heat to moisture index (AHM), and climatic moisture deficit (difference between 

evaporation and precipitation). Environmental variables were regressed on pairwise genetic 

differentiation to identify patterns in the dataset (Angers et al. 1999). Global permutation tests 

(999 permutations) were used to identify significant environmental drivers of population 

structure and statistical associations between canonical axes. 

3.3 Results 

Descriptive Statistics 

Tests of Hardy-Weinberg Equilibrium across sampling locations indicated that nearly 

28% (144 of 510 tests) of locus-by-sampling-location comparisons deviate from expectations (p 

< 0.05). All loci selected for analysis were highly polymorphic, and the minimum percentage of 
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polymorphic loci by site was 70 (Table 3.2). A total of 252 alleles were identified across the ten 

markers, with the number of alleles per locus ranging from 10 (locus PICO4) to 56 (locus 

PICO104). The mean number of alleles (NA) ranged from 2.50 (± 0.401 SE) in Dundas Bay (ssp. 

contorta, southeast Alaska) to 5.70 (± 1.248 SE) in Lemhi (ssp. latifolia, Idaho). Mean 

heterozygosity (HE) was 0.505 (± 0.011 SE) among sites, 0.373 among regions, and 0.375 among 

subspecies. 

The proportion of variation (FST) residing among sites was 0.167 (p < 0.001; Table 3.2). 

Among regions and subspecies, FST was lower (0.049 and 0.054; p < 0.001). Pairwise FST ranged 

from 0.025 to 0.376 (not presented here), with the southeast Alaska Jumbo Bog sampling 

location and three California sampling locations (Russian Gulch, Spring Ranch, and Tuolumne 

Meadows) having the highest FST scores. Larger pairwise values were detected for sites with both 

landscape barriers and larger geographic distance between them. Site-specific FIS values (Table 

3.2) ranged from -0.106 at Idaho (ssp. latifolia, Idaho), a heterozygote excess consistent with 

outbreeding, to 0.427 at Dawson Saddle (ssp. murrayana, California), a heterozygote deficiency 

consistent with inbreeding. Estimates of inbreeding rates were also high at FAA Bog (0.357, ssp. 

contorta, southeast Alaska) and at Eagle (0.359, ssp. latifolia, Colorado).  

AMOVA analyses among sampling locations revealed that most of the genetic diversity 

(87 percent) is attributable to variation within sampling locations (Table 3.3). A small, but 

significant (p < 0.001), portion of population structure resides among sampling locations (13 

percent). Analyses across larger sampling extents indicated that more variation resides among 

sampling locations than among regions (6 percent) or subspecies (5 percent) (Table 3.3). 
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Population Clustering 

Evanno method plots of !K (Supplementary Material, Figure A.3.1, Evanno et al. 2005) 

from STRUCTURE output identifed three (K = 3) as the most likely number of genetic clusters 

(Figures 3.4 & 3.5). Despite a lack of geographic information in the model, STRUCTURE clearly 

distinguished major clusters that coincide well with three subspecies and their spatial 

arrangement in relation to distinct landscape features (Figure 3.4). Individuals east of the Rocky 

Mountains cluster together and show high levels of genetic similarity across these subspecies 

latifolia individuals. Subspecies contorta individuals from southeast Alaska cluster 

predominantly into a second group. Finally, individuals from subspecies murrayana of the Sierra 

Nevada Mountains cluster into a third group. Subspecies bolanderi individuals have a high 

probability of membership to the same cluster as latifolia individuals, but all coastal individuals 

do show high levels of admixture and membership to all three genetic clusters. Across all 

subspecies, no one individual is exclusive to a single genetic cluster (Figures 3.4 & 3.5). 

The same pattern of range-wide structuring (K = 3) was detected under the spatial model 

implemented in GENELAND (Figure 3.6). The incorporation of geographic location also allowed 

for identification of potential landscape barriers to dispersal. Boundaries between GENELAND 

clusters visually correlate with distinct landscape features and potential barriers to gene flow 

when overlaid onto landscape maps. One boundary corresponds to the genetic discontinuity 

between subspecies murrayana of the Sierra Nevada Mountains and subspecies contorta along 

the coast of California and Oregon, indicating that the Central Valley of California might act as a 

barrier to gene flow (Figure 3.6a). A second barrier is apparent in the Intermountain West, which 

is potentially acting as a barrier to gene flow between subspecies murrayana of the Sierra 

Nevada Mountains and subspecies latifolia of the Rocky Mountains (Figure 3.6b). Finally, a 
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third boundary between clusters correlates to the Juneau Icefield and Coast Mountain Range as 

barriers to gene flow between subspecies contorta of southeast Alaska and subspecies latifolia 

(Figure 3.6c). The Pacific Ocean was not identified as a barrier to gene flow, which suggests that 

subspecies contorta is connected across its coastal range from southeast Alaska to central 

California. 

 

Landscape Genetics 

The Mantel test of IBD identify a weak signature of isolation by distance (r2 < 0.06, p < 

0.001, Figure A.3.2), indicating that pairwise geographic distance does not explain population 

structuring. Mantel tests of landscape features included comparisons to pairwise resistance (IBR) 

and the presence of barriers (IBB). Each of these tests revealed some signature of isolation by 

landscape features (Table 3.4) at 12 and 11 percent, respectively (p < 0.001). Mantel r-values 

calculated in these analyses suggest positive correlation between these landscape factors and 

pairwise genetic distance (Table 3.4). Pairwise Mantel r-values were not significant (Table 3.4), 

indicating that there is no additional influence of the landscape after correcting for geographic 

distance. 

The CCA revealed a strong influence of mean summer precipitation (p < 0.001), climate 

moisture deficit (p <0.001), and annual heat to moisture index (p < 0.01) on genetic 

differentiation and population clustering (Figure 3.7). The first and second canonical axes 

explained 31 percent of the variation in the dataset (p < 0.001). 

3.4 Discussion 

Determining the importance of landscapes in controlling species’ dispersal and migration 

is essential to understanding patterns of distribution and connectivity (Storfer et al. 2007). 
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Landscapes have the potential to shape gene flow and determine population structure by 

constraining the germination and success of individuals. In Pinus contorta, there is low genetic 

differentiation across the range of the species, and patterns of differentiation are most strongly 

influenced by potential landscape barriers to gene flow and the environmental variation 

associated with its heterogeneous range. 

Pinus contorta showed moderate population differentiation (FST = 0.167) at the 

continental scale, consistent with previous P. contorta population genetics research in 

concluding high gene flow and low differentiation among populations (Table 3.5). Genetic 

differentiation (FST) calculated in this study was slightly higher than that quantified in previous 

research (Wheeler and Guries 1982b, Fazekas and Yeh 2006), which is likely due to the 

inclusion of extensive sampling of subspecies murrayana. Inbreeding estimates (FIS) correlated 

well with each site’s degree of connectivity to adjacent P. contorta. For example, the Idaho 

sampling location had an FIS of -0.106, which indicates high outbreeding. This population occurs 

in the Rocky Mountain region of the subspecies latifolia distribution, an area dominated by P. 

contorta forest cover and with high levels of connectivity across forest stands. Conversely, the 

Dawson Saddle site had an FIS of 0.427, which suggests a high level of inbreeding. This 

population is located at the southern extent of the species range in the Angeles National Forest, 

with individuals growing in low densities within a mixed-conifer stand and isolated from other 

P. contorta stands. The other sites with the highest inbreeding coefficients, the FAA Bog (0.357) 

and Eagle sites (0.359), occur at the northwestern and southeastern range margins of the species, 

respectively. The populations with the highest coefficients were those occurring at the edges of 

the species’ range. Overall, P. contorta is highly connected (FST = 0.167) across its range. 
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Although FST values were consistent with widespread gene flow among populations, 

there is structuring across the species’ range. Incorporating the landscape into an assessment of 

population genetics allowed me to identify P. contorta population structure that was not 

previously apparent. The patterns observed within this species cannot be explained by simple 

isolation by distance (Figure A.3.2). Results from Mantel tests (Table 3.4) indicate that 

landscape elements are limiting gene flow by acting as barriers gene flow. Landscape barriers 

(Figures 3.3 & 3.6) and environmental conditions (Figure 3.7) better explained population 

differentiation than isolation from gene flow.  

The three genetic clusters identified in this analysis (Figures 3.4 & 3.5) correspond with 

North American physiographic regions (Fenneman 1917) that are separated by conspicuous 

geographic barriers and characterized by distinct environmental conditions. The genetic clusters 

identified here coincide with three of the four subspecies (contorta, latifolia, and murrayana), 

and the geographic distribution of genetic clustering supports the taxonomic treatment of these 

three subspecies (Critchfield 1957). Subspecies bolanderi populations were assigned to the 

subspecies latifolia cluster despite the geographic distance between the two subspecies and their 

distinct morphological traits. The affiliation of subspecies bolanderi with latifolia does not 

correspond with our assumptions of landscape and geographic influence, but my results do 

indicate that connectivity and gene flow is high among all populations. Cluster analysis by 

Wheeler and Guries (1982) identified two genetic clusters – one representing southern British 

Columbia and the United States and another including northern British Columbia and the Yukon. 

Their analysis did not include samples from the southern extent of the species’ range, where I 

identified a third genetic cluster. In this study, subspecies murrayana populations are separated 

into a distinct genetic cluster that corresponds with the Sierra Nevada region. 
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Three of my four hypothesized barriers, including the Central Valley of California, the 

Juneau Icefield and Coast Mountain Range complex, and the Intermountain West, were 

identified as potential drivers of population structure. Admixture was present in all populations 

(Figure 3.5), however, indicating gene flow across these boundaries. Pines are prolific producers 

of pollen and have the capacity for long distance dispersal (MacDonald and Cwynar 1985, 

Kremer et al. 2012), which has the potential to impact genetic differentiation following even one 

reproductive event (Kremer et al. 2012). Dispersal events have been documented to reach 

distances of up to 3,000 km for pine species (Campbell et al. 1999), so rare long-distance 

dispersal events may be enough to maintain connectivity across the geographic extent of P. 

contorta. The potential barriers identified in this study were likely penetrable at one time or 

another.  

A strong relationship exists between genetic differentiation (FST) and environmental 

conditions (p < 0.001; Figure 3.7). Differentiation was significantly related to mean summer 

precipitation, climate moisture deficit, and annual heat to moisture index (Figure 3.7). The CCA 

clearly indicated a strong influence of these local environmental factors on genetic structure. 

Clustering in the CCA is significantly associated (p < 0.001) with environmental variables, and 

plant morphology is distinct within each cluster. This indicates that the balance between growing 

season precipitation and temperature may control the success of individuals and their phenotypic 

expression of traits. The morphological variation coincides with landscape heterogeneity and can 

be related to specific environmental factors. This suggests that, despite widespread gene flow, 

subspecies are adapted to local conditions. The strength of selection based upon morphological 

variation has yet to be quantified, but my results provide a basis for testing local adaptation 
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across the three genetic groups. Tests of local adaptation across all four subspecies are likely to 

reveal fitness differences and support the distinction between each. 

Identifying the factors and processes shaping species’ distributions has long been a 

central task in ecology (Holt 2003). The landscape and environmental heterogeneity of western 

North America shapes variation and the geographic distribution of genetic information in Pinus 

contorta. Landscape elements, including topographic barriers and local environmental factors, 

drive differentiation despite gene flow. Testing local adaptation of the three subspecies identified 

here (contorta, latifolia, and murrayana) is the next step needed in linking differentiation to local 

fitness and would provide a much better understanding of the drivers of variation among 

subspecies. 
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Subspecies Region Site Site Ownership Location N ( total = 508) Latitude Longitude Average 
Elevation (m)

ssp. murrayana Sierra Nevadas Wellman's Divide San Jacinto State Park California 10 33.7991 -116.6746 2956

Hidden Lake Drive San Jacinto State Park California 10 33.8019 -116.6422 2651

Onyx Peak San Bernardino National Forest California 10 34.1953 -116.7126 2743

Champion San Bernardino National Forest California 10 34.2190 -116.9732 2307

Dawson Saddle Angeles National Forest California 10 34.3678 -117.8034 2415

Big Meadow Sequoia National Forest California 10 35.8872 -118.3429 2372

Horeshoe Meadows Inyo National Forest California 10 36.4486 -118.1700 3049

Crooked Meadows Inyo National Forest California 10 37.8424 -118.8626 2656

Tuolumne Meadows Yosemite National Park California 10 37.8715 -119.3731 2600

Levitt Meadows Humboldt-Toiyabe National Forest California 10 38.3088 -119.5870 2523

Luther Pass Tahoe National Forest California 10 38.7870 -120.0019 2212

ssp. bolanderi Russian Gulch California SP California 10 39.3111 -123.7600 132

Van Damme Pygmy California SP California 10 39.2631 -123.7376 183

Van Damme California SP California 10 39.2658 -123.7500 160

ssp. contorta Spring Ranch California SP California 10 39.2857 -123.7959 44

Patrick's Point California SP California 10 41.1397 -124.1606 52

Towala Dunes California SP California 10 41.7964 -124.2232 28

Port Oxford Oregon SP Oregon 10 42.7392 -124.5107 151

Sand Dunes Siuslaw NF Oregon 10 44.0633 -124.1198 7

Southeast Alaska Old Sitka Tongass NF Alaska 10 57.1286 -135.3687 45

Blanket Bog Tongass NF Alaska 10 56.6387 -132.6610 66

Bay Bog Tongass NF Alaska 10 58.0588 -135.0962 21

Jumbo  Bog City and Borough of Juneau Alaska 10 58.2615 -134.3864 203

Sundown Bog City and Borough of Juneau Alaska 15 58.3340 -134.5941 23

FAA Bog State of Alaska Alaska 10 58.3358 -134.5622 50

Dundas Bay Glacier Bay National Park Alaska 5 58.3253 -136.2032 0

Dick's Arm Glacier Bay National Park Alaska 10 58.2301 -136.6287 0

ssp. latifolia Alcan Highway Yukon Forest Management Yukon Territory 15 60.8528 -135.7060 670

Mt McIntyre! Yukon Forest Management Yukon Territory 10 60.6561 -135.2151 1213

Canol Road! Yukon Forest Management Yukon Territory 20 60.5669 -133.0992 1351

Pine Flats Yukon Forest Management Yukon Territory 10 60.1398 -130.2309 866

Edziza Ministry of Forests British Columbia 10 57.2055 -130.2252 789

Smithers Community Forest Ministry of Forests British Columbia 10 54.7370 -127.2562 865

Rocky Mountains Columbia Icefields Jasper National Park Alberta 10 52.3569 -117.3489 1569

Glacier Lake Banff National Park Alberta 10 51.9731 -116.7596 1456

Windermere Kootenay Kootenay National Park Alberta 10 50.8809 -116.0481 1182

Flathead* Flathead National Forest Montana 11 48.4572 -113.6403 1620

Judith Basin* Helena National Forest Montana 10 46.3211 -111.8512 2215

Lewis & Clark* Lewis and Clark National Forest Montana 6 46.8209 -110.4757 1982

Lemhi* Bitterroot National Forest Montana 11 45.4771 -113.8847 2040

Idaho* Nez Perce National Forest Idaho 3 45.2690 -115.0195 1993

Custer* Salmon-Challis National Forest Idaho 8 44.4960 -114.5536 2640

Valley* Payette National Forest Idaho 11 44.6545 -115.8714 1925

Fremont* Targhee National Forest Idaho 6 44.3423 -111.6920 2056

Bunsen Peak Yellowstone National Park Wyoming 12 44.9218 -110.7195 2194

Summit* Wasatch National Forest Utah 11 40.9192 -110.6473 3090

Eagle* White River National Forest Colorado 7 39.6099 -106.4021 2868

Gunnison* Gunnison National Forest Colorado 5 38.6162 -106.5003 3109

Larimer* Arapaho-Roosevelt National Forest Colorado 12 40.3772 -105.3533 2720

Black Hills Tillson Creek Black Hills National Forest South Dakota 10 44.1859 -103.8353 1965

Nahant School Black Hills National Forest South Dakota 10 44.1989 -103.7740 1786
! Subepcies further classifed as var. yukonensis (Strong 2010)
* Samples collected via the USFS Forest Inventory & Analysis Program

Coastal California and 
Oregon

Yukon to Central Britsh 
Columbia

Table 3.1: Geographic descriptions of each Pinus contorta sampling location by subspecies and region. 
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Subspecies Site N PPL NA NE HE uHE F Index

ssp. murrayana Wellman's Divide 10 100 4.200 2.734 0.452 0.476 0.320
Hidden Lake Drive 10 90 4.100 2.805 0.472 0.497 0.243
Onyx Peak 10 100 4.800 3.146 0.543 0.571 0.239
Champion 10 90 4.900 3.064 0.516 0.543 0.267
Dawson Saddle 10 100 5.500 3.179 0.647 0.692 0.427
Big Meadow 10 100 4.000 2.238 0.468 0.495 0.299
Horeshoe Meadows 10 100 5.100 2.851 0.570 0.600 0.194
Crooked Meadows 10 100 6.000 3.418 0.560 0.589 0.061
Tuolumne Meadows 10 100 4.800 3.148 0.449 0.472 0.149
Levitt Meadows 10 100 4.800 2.887 0.500 0.527 0.220
Luther Pass 10 100 4.600 3.163 0.563 0.594 0.224

Among sites 110 98 4.800 2.967 0.522 0.550 0.323
ssp. bolanderi Russian Gulch 10 80 4.100 2.637 0.420 0.442 0.064

Van Damme Pygmy 10 90 4.400 2.844 0.451 0.474 0.272
Van Damme 10 90 4.200 2.804 0.480 0.505 0.021

Among sites 30 87 4.233 2.762 0.450 0.474 0.193
ssp. contorta Spring Ranch 10 80 3.400 2.311 0.389 0.409 0.120

Patrick's Point 10 90 4.300 3.012 0.539 0.568 0.272
Towala Dunes 10 100 4.800 2.798 0.486 0.509 0.125
Port Oxford 10 90 4.100 2.696 0.527 0.558 0.189
Sand Dunes 10 90 4.800 2.887 0.473 0.498 0.142
Old Sitka 10 100 5.100 3.086 0.573 0.603 0.177
Blanket Bog 10 100 4.100 2.491 0.522 0.549 0.030
Bay Bog 10 100 4.300 2.781 0.528 0.556 0.196
Jumbo  Bog 10 70 4.500 2.642 0.459 0.483 0.198
Sundown Bog 15 100 4.600 2.481 0.489 0.508 0.180
FAA Bog 10 100 4.200 2.433 0.507 0.533 0.357
Dundas Bay 5 80 2.500 1.940 0.390 0.433 0.143
Dick's Arm 10 90 4.200 2.898 0.534 0.567 0.239

Among sites 130 92 4.223 2.650 0.493 0.521 0.279
ssp. latifolia Alcan Highway 15 90 4.500 2.696 0.522 0.545 0.278

Mt McIntyre 10 100 4.800 2.976 0.573 0.606 0.276
Canol Road 20 100 4.400 2.423 0.494 0.511 0.329
Pine Flats 10 90 5.200 3.689 0.589 0.621 0.303
Edziza 10 100 4.700 3.084 0.562 0.595 0.104
Smithers Community Forest 10 100 4.900 3.437 0.571 0.601 0.213
Columbia Icefields 10 100 3.800 2.078 0.455 0.489 0.145
Glacier Lake 10 100 5.300 2.903 0.522 0.551 0.085
Windermere Kootenay 10 100 5.100 3.349 0.565 0.596 0.115
Flathead 11 90 4.800 3.106 0.528 0.557 0.318
Judith Basin 10 100 4.700 2.872 0.554 0.584 0.219
Lewis & Clark 6 70 3.400 2.575 0.393 0.429 0.286
Lemhi 11 100 5.700 4.244 0.602 0.631 0.290
Idaho 3 70 2.300 1.874 0.350 0.420 -0.106
Custer 8 90 3.900 2.582 0.493 0.549 0.184
Valley 11 100 4.700 3.142 0.511 0.535 0.252
Fremont 6 90 3.500 2.605 0.473 0.534 0.285
Bunsen Peak 12 100 5.600 3.278 0.520 0.544 0.273
Summit 11 100 5.000 2.907 0.572 0.600 0.268
Eagle 7 90 3.800 2.797 0.511 0.551 0.359
Gunnison 5 80 3.100 2.455 0.426 0.473 0.101
Larimer 12 100 4.400 3.154 0.541 0.564 0.307
Tillson Creek 10 100 4.700 2.604 0.502 0.530 0.181
Nahant School 10 100 4.200 2.470 0.443 0.467 0.235

Among sites 238 94 4.438 2.887 0.511 0.545 0.323
Among subspecies 508 100 13.825 4.217 0.375 0.560 0.054
Among regions 508 100 11.717 4.034 0.373 0.566 0.049
Among all sites 508 94 4.449 2.837 0.505 0.536 0.167
PPL, percent polymorphic loci; NA, mean number of different alleles; NE, mean number of effective alleles; HE, expected heterozygosity; uHE, unbiased expected 
heterozygosity; F Index, Fis within populations and Fst among populations

Table 3.2: Descriptive statistics for all sampling locations sampled in this Pinus contorta population genetics study. 
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Table 3.3: Results of Analysis of Molecular Variance (AMOVA) among Pinus contorta subspecies (n = 4), regions (n = 6), and sampling locations (n = 51). 
AMOVA results show that most of the genetic variation is partitioned within subspecies, regions, and sampling locations. A small, but statistically significant, 
portion is partitioned among these levels of analysis. The Fixation indices (FST, RST, and !ST) estimate the level of genetic differentiation at each level. A value of 
0 indicates panmixia, while a value of 1 indicates complete isolation. 

 

 

 

N Source of genetic variation d.f. SS MS % FST
* RST

* !ST
*

4 Among subspecies 3 118.38 39.46 5 0.045 0.068 0.051

Within subspecies 1012 3101.63 3.06 95

6 Among regions 5 167.73 33.55 6 0.049 0.072 0.054

Within regions 1010 3052.28 3.02 94

51 Among sampling locations 50 597.44 11.95 13 0.133 0.442 0.089

Within sampling locations 965 2622.58 2.72 87

d.f., degrees of freedom; SS, sum of squares; MS, mean square
* P-value " 0.001
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Table 3.4: Results from Mantel and partial Mantel tests of the effect of geographic 
and ecological distance on genetic differentiation in Pinus contorta. The r2 value 
shows that 12% of genetic variation is attributable to landscape resistance and 11% 
is attributable to landscape barriers. 

Mantel or Partial Mantel Test r2 Mantel's r

Genetic ~ Geographic 0.029 0.170*

Genetic ~ Resistance 0.124 0.352*

Genetic ~ Barrier 0.106 0.326*

Genetic ~ Geographic | Resistance - -0.038

Genetic ~ Geographic | Barrier - 0.011

Genetic ~ Resistance | Geographic - 0.337

Genetic ~ Resistance | Barrier - 0.145

Genetic ~ Barrier | Geographic - 0.307

Genetic ~ Barrier | Resistance - 0.037

* p < 0.001

In the partial Mantel tests, a vertical bar separates the main matrices 
(on the left) from the covariate matrix (on the right), which is 
partialed out in analysis.
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Subspecies Region Pop No. He FST GST RST % Among Pop % Within Pop Marker Type Reference

ssp. murrayana
CA and OR 4 0.1163 - 0.036 - - - RAPDs Fazekas and Yeh, 2006

Sierra Nevadas, CA 11 0.522 0.079 - 0.363 8 92 EST SSRs This study

ssp. bolanderi
Mendocino, CA 11 0.119 - 0.129 0.039 - 0.065 - - 3 - 6 - allozymes Aitken and Libby, 1994
Mendocino, CA 3 0.45 0.031 - 0.028 3 97 EST SSRs Thus study

ssp. contorta
Coastal CA to BC 7 0.1131 - 0.079 - - - RAPDs Fazekas and Yeh, 2006

Coastal CA to SE AK 13 0.493 0.142 - 0.605 14 86 EST SSRs This study

ssp. latifolia
BC to Montana 19 0.151 - 0.067 - - - RAPDs Fazekas and Yeh, 2006

Wyoming 22 0.543 - 0.708 0.01-0.02 0.111 - - - EST SSRs Parchman et al, 2011
Yukon to CO 24 0.511 0.114 - 0.390 11 89 EST SSRs This study

ssp. latifolia & contorta
Coastal PNW and BC 91 0.878 0.356 0.365 0.568 - - mtDNA Godbout et al., 2008

All subspecies Large portion of range 28 0.116 - 0.061 - 6 91 allozymes Wheeler and Guries, 1982
Large portion of range 31 0.1357 - 0.09 - 9 91 RAPDs Fazekas and Yeh, 2006
Entire range of species 51 0.373 0.167 - 0.442 13 87 EST SSRs This study

HE, expected heterozygosity; FST, Wright's inbreeding coefficient;GST,  Nei's coefficient of genetic variation; RST,  Slatkin's measure of genetic diversity under stepwise mutation model

Table 3.5: Comparisons of genetic differentiation among population genetics studies of Pinus contorta. 
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Figure 3.1: Distribution of the subspecies of Pinus contorta. Numbers represent regional 
delineation (Fenneman 1917). Blue = ssp. latifolia, red = ssp. contorta, yellow = ssp. 
murrayana, orange = ssp. bolanderi. Subspecies bolanderi is endemic to Mendocino 
county, California, and barely visible on this range-wide map. 
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Figure 3.2: Sampling locations across the range of Pinus contorta in western North 
America. 
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Figure 3.3: Potential barriers (n = 4) to gene flow across the range of Pinus contorta, 
including the Coast Mountains, the Great Basin and Intermountain West region, the 
Central Valley of California, and the Pacific Ocean. 
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Figure 3.4: Population structure of Pinus contorta, as identified by replicated STRUCTURE 
analysis and merged using CLUMPP. Probability of membership to each genetic cluster (n 
= 3) is represented by a population-level pie chart, indicating three genetic clusters with 
admixture across all populations. 
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Figure 3.5: Pinus contorta population structure across western North America. Bars show the average probability of membership (y-axis) to each genetic cluster 
(n = 3) of individuals (n = 508) at each sampling location (n = 51) as identified by STRUCTURE. Populations are ordered from the southern Sierra Nevadas 
(California, USA) north to the Yukon Territory (Canada) and then south through the Rocky Mountains, allowing for visualization of each population in reference 
to adjacent populations and identified as: a) Sierras, ssp. murrayana, b) Coastal California, ssp. bolanderi, c) Coastal California to Oregon, ssp. contorta, d) 
Southeast Alaska, ssp. contorta, e) Yukon Territory to central British Columbia, ssp. latifolia, f) Rocky Mountains, ssp. latifolia, and g) South Dakota, ssp. 
latifolia 
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Figure 3.6: Pinus contorta genetic clusters (K = 3) as identified in GENELAND. Maps show posterior probabilities of cluster membership for 
each of the three inferred clusters. Color scaling indicates probability of membership to each cluster, with lighter shading (white to yellow) 
indicating the highest probability of cluster membership and a decreasing probability of membership as color darkens (orange to red). Black 
points correspond to sampling locations. 
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Figure 3.7: Canonical correspondence analysis of local environmental variables regressed on population 
differentiation (FST) of Pinus contorta sampling locations. Populations are coded by majority cluster 
membership (n = 3). MSP = mean summer precipitation (mm), CMD = climate moisture deficit, AHM = 
annual heat to moisture index. The first and second canonical axes explain 35% of the variation in 
population differentiation (p < 0.001). 
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Appendix 3.1 

 

 

 

 

 

Marker Name* Marker Type Primer Sequence - F Primer Sequence - R Repeat Size (bp) Annealing Temp ( C)
69FR cpDNA TTTCGGGCTCCACTGTTATC CGTACTCAATTTGTTACTAC A10 - 55
PICO1 SSR ATGCGGTTTAACAAGCACTAC GGATTGTCACCTGGACTAGAG CTT 18 57
PICO4 SSR ACACTGGGCTACAAAATTCAC TTCCTTGCTCTTTTTATCAGC CAT 21 57
PICO7 SSR TCGCAAACCCTAATCAGAAC CTGATATTGAGGCTGCTGTG GCA 15 58
PICO77 SSR GTGCTTGTGGTTGGATATTTG AAGGAAGTTGGAAGACCGTAG TGA 18 58
PICO104 SSR CCTGATCAAGCCTTCAAATAC GATGTTGAAAGATATCCCATTG ATT 42 56
PICO109 SSR AAAAGGGTTCCTTATGCACAC AAAACCAACCACGTATGTGTC TG 34 58
PICO138 SSR GAAGTGGTGCCTCTATGTTTG ATGCAAATGGAAGAACTTGTG TG 34 57
PICO154 SSR AGTCTCAAAATGGACAAGTCG ACCTAACATAACCGCAATCAC TG 40 57
PICO179 SSR TCACGAAAGACCTTGAAAGAC CCAAGAAAGACAAGGAGTCAC ATG 33 57
* All markers from Lesser et al. 2011 (Supplementary Material) with the excpetion of 69FR (Stoehr & Newton 2002).

Table A.3.1: Microsatellite (SSR) and chloroplast (cpDNA) markers used in this population genetics analysis of Pinus contorta. 
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Figure A.3.1: Evanno et al. (2005) plot for detecting the most likely value of K (number of genetic clusters) from the 
STRUCTURE output of Pinus contorta assignment testing. 
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Figure A.3.2: Isolation by Distance (IBD) patterns across (clockwise, from top left) a) Pinus contorta 
(all subspecies), b) subspecies latifolia, c) subspecies contorta, and d) subspecies murrayana. 
Geographical distance only explains between 1% and 6% (p < 0.001) of the variation in genetic 
distance across the species. 
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4 Adapting to novel climates: predicting response of the subspecies of Pinus   
   contorta to climate change 
 

4.1 Introduction 

Climate change is a primary threat to the health, productivity, and sustainability of forests 

across western North America (Field et al. 2007, Millar et al. 2007, Aitken et al. 2008). Over the 

next century, warming is anticipated to occur at a faster rate than during any recent ice-free era 

(Huntley 1991, Walther et al. 2002, IPCC 2007), and there is substantial evidence that changing 

climate has already significantly altered the distribution and abundance of many species (Walther 

et al. 2002, Parmesan and Yohe 2003, Parmesan 2006). Trees are long-lived, sessile organisms 

with limited seed dispersal and slow migration rates. Researchers have documented a decline in 

local regeneration and the migration of subalpine tree species to higher elevations (Millar et al. 

2004, Danby and Hik 2007a, 2007b). Continued shifts in climate are likely to expose additional 

tree species to unsuitable, or even novel, habitat within their current range of distribution. These 

species will then be forced to adapt or migrate in order to persist under future conditions. 

Climate is credited as a main driver of species distributions, because it asserts strong 

selective pressure on natural populations (Clausen et al. 1940, Jump and Penuelas 2005). Local 

adaptation allows species to thrive under native conditions, and species often decline in fitness 

when subjected to foreign environments (Clausen et al. 1940, 1941). Many tree species, despite 

high gene flow, are hypothesized to be locally adapted to current habitat conditions (Hamrick et 

al. 1992). Adaptation to future climates may require rapid evolution of a suite of traits; the long 

lifespan and lengthy time to reproductive maturity may hinder this adaptive response for many 

tree species (Jump and Penuelas 2005). With climate change anticipated to continue at a rapid 

rate, tree species may be especially vulnerable to habitat loss if populations are unable to adapt to 

changes in local climate and environmental conditions (Hamrick 2004, Chuine et al. 2006). 
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A predicted consequence of maladaptation is the migration of plant species to higher 

elevations and latitudes, as the conditions to which they are adapted move outside of their current 

range (Jump and Penuelas 2005, Aitken et al. 2008). Migration requires successful dispersal and 

establishment in previously unoccupied portions of a species’ range. This response may be the 

best option for long-lived, geographically-constrained tree species that have specific ecological 

niche requirements (Davis and Shaw 2001, Pfenninger et al. 2007, Sexton et al. 2009). Migratory 

rates, however, will need to not only exceed maximum post-glacial rates but also disperse across 

highly fragmented, human-dominated landscapes (Hamrick 2004, Millar et al. 2007). 

Consequently, all tree species are expected to experience lags in their response to changing 

climate (Clark 1998, Davis and Shaw 2001, Malcolm et al. 2002, Aitken et al. 2008). Identifying 

the habitats under which tree species may persist will be essential for forest conservation and 

management (Wang et al. 2010, Mimura and Aitken 2010). 

Pinus contorta (Douglas Ex. Louden) is one of the most widely distributed trees in North 

America, playing an ecologically and economically important role in western forests from Baja 

California to the Yukon Territory (Critchfield and Little 1966, Wheeler and Guries 1982, 

Wheeler and Critchfield 1985). Its distribution encompasses an extensive geographic and 

climatically heterogeneous range, making it an appropriate species for examining the role of 

climate in determining tree species’ occurrence. Pinus contorta has been divided into four 

geographically and morphologically distinct subspecies (ssp. latifolia, contorta, murrayana, and 

bolanderi) (Critchfield 1957). Each subspecies inhabits a discrete portion of the species’ range, 

growing under and hypothesized to be adapted to local climate and environmental conditions 

(Ying and Liang 1994, Rehfeldt et al. 1999, 2001). It is unclear how the subspecies of P. 

contorta will respond to changing climate and if subspecies will respond concordantly to novel 
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conditions. Tree species are expected to experience reduced ranges under rapid climate change 

(Clark 1998, Hamrick 2004), but, given its range of environmental tolerance, P. contorta may be 

able to adapt or migrate to suitable habitat under these changing conditions. 

I used correlative and mechanistic models to evaluate potential, future habitat suitability 

at the species and subspecies levels of Pinus contorta. Correlative models assume that climate is 

the primary determinant of a species’ realized niche, whereas mechanistic models represent the 

fundamental niche (Pearson and Dawson 2003). Correlative models were used to predict 

suitability based on occurrence records and local climate, while mechanistic models incorporated 

data on physiological tolerance into predictions (Buckley et al. 2010). Subspecies correspond to 

the genetic clusters I identified in Chapter 3 and are defined as subspecies contorta, latifolia, and 

murrayana. In this study, I asked two questions: 1) will P. contorta maintain its distribution over 

a large portion of western North America under predicted climate change? and 2) will subspecies 

(contorta, latifolia, and murrayana) respond differently to climate change? My main objectives 

were to 1) make predictions of habitat suitability across this widespread tree species and 2) 

examine whether incorporation of the distribution and physiological tolerance of each subspecies 

altered predictions of suitability. 

 

4.2 Methods 

Occurrence and Climate Data 

Occurrence data was obtained from U.S. Forest Service Forest Inventory & Analysis 

(FIA, accessed July 2010; John Chase, Glenn Christensen, and John D. Shaw, personal 

communication) and British Columbia Ministry of Forests Biogeoclimatic Ecosystem 

Classification (BEC) (Will MacKenzie, personal communication) survey records. Presence 

records totaled 20,505 locations across western North America, with the extent of the species’ 
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distribution ranging from 30 to 65 degrees North latitude and -145 to -100 degrees West 

longitude. Modeling extent for predictions of future suitable habitat was expanded to 70 degrees 

latitude and -170 degrees longitude to encompass a greater area for potential distribution shifts. 

These occurrence records and this extent were used for species-level assessment. Clusters 

identified in population genetics analyses (Chapter 3) were used to subdivide the species’ 

occurrence records into three locally adapted groups for modeling at the subspecies-level. 

Current (1950-2000, WORLDCLIM, Hijmans et al. 2005) and future (A2, 2080, Canadian 

Global Climate Model 3) 1 km2 resolution climate data were downloaded and prepared in 

ARCGIS 10.1 (ESRI, Redlands, CA). A Principal Components Analysis (PCA) was run in R 

2.15.2 (R Core Team 2012) on WORLDCLIM variables for 20,505 randomly-selected points from 

across the range of P. contorta to identify and remove highly correlated climate variables. Of the 

19 downscaled bioclimatic variables, five minimally correlated variables (correlation < 0.65) 

were selected, including mean annual temperature (°C), mean minimum coldest month 

temperature (°C), mean annual precipitation (mm), precipitation of wettest month (mm), and 

precipitation of driest month (mm). Distribution and environmental layers were clipped to match 

the study area. Processed layers were then used in MAXENT (Phillips et al. 2006) and ECOCROP 

(Hijmans and Graham 2006) for predictive habitat modeling. 

 

Correlative Modeling 

MAXENT v 3.3.3e (Phillips et al. 2006) was run at both the species- and subspecies-levels 

under the following settings: minimum training presence threshold, logistic output, 0.5 

probability of presence, 25% of the data used as random testing points, and 50 replicates. Models 

used the 20,505 P. contorta occurrence records and processed climate layers to predict habitat 
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suitability under both current and future distributions. This simulation estimated the probability 

of presence conditional on the environment, generating percent probabilities of a grid cell being 

suitable habitat (Elith et al. 2011). 

 

Mechanistic Modeling 

I used the ECOCROP model in DIVA-GIS 7.5 to run a mechanistic model of habitat 

suitability (Hijmans et al. 2005, Hijmans 2012). Prior to modeling, growth estimates and 

response curves were developed at the species- and subspecies-levels. Growth data was obtained 

from the British Columbia Illingworth provenance trial tests (Illingworth 1978; Nick Ukrainetz, 

personal communication). In 1974, provenance field trials were developed across 60 sites in 

British Columbia to evaluate genotype by environment interactions for 142 Pinus contorta 

populations (Figure 4.1). I calculated biomass accumulation rates for each population over the 

32-year sampling period by using the following equation (Jenkins et al., 2003): 

bm = Exp (!0 + !1 ln dbh)         (4.1) 

where bm is total overstory biomass (kg dry weight), dbh is diameter at breast height (cm), and 

!0 + !1 are species-specific parameters. Plot-level biomass was calculated for each subspecies 

by summing individual tree biomass values and estimating values at the provenance-level 

(Jenkins et al. 2003). I averaged population-level biomass at each provenance location for each 

subspecies. 

CLIMATEWNA (Wang et al. 2006a, 2012) was then used to extract local, growing-season 

climate data (1971 – 2010) for each population and each Illingworth Provenance location (Table 

4.1). Population-level growth over the 32-year timeframe was used to develop temperature and 

precipitation response curves for each subspecies, which were assumed to be reasonable 
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surrogates for subspecies’ physiological response to local climate. The data were normally 

distributed, so I fit a Gaussian curve to the data for each subspecies using the ‘nls’ function in R 

2.15.2 (Angilletta 2006, Angert et al. 2011). Curves were used to identify the following threshold 

values for ECOCROP input: killing temperature (KT), minimum temperature for growth (Tmin), 

maximum temperature for growth (Tmax), minimum temperature for optimal growth (Toptmin), 

maximum temperature for optimal growth (Toptmax), minimum rainfall for growth (Rmin), 

maximum rainfall for growth (Rmax), minimum rainfall for optimal growth (Roptmin), and 

maximum rainfall for optimal growth (Roptmax). Minimum and maximum growing periods (Gmin 

and Gmax) were extracted from CLIMATEWNA output and averaged for each subspecies. 

Thresholds were developed from population-level data for both the species and subspecies 

models (Table 4.2). 

 

Model Evaluation 

A threshold of 60% probability of suitability (0 = lowest suitability, 100 = highest 

suitability) was set for identifying suitable versus unsuitable habitat. Any predictions falling 

under the 60% probability mark were classified as unsuitable under future conditions (Angert et 

al. 2011). Suitability values were extracted and converted to binary presence/absence (0/1) 

values using the ‘raster’ package in R 2.15.2. Range maps were created for all model runs using 

the new binary layers. 

Model performance was evaluated using receiver-operating characteristics (ROC) and 

area under the curve (AUC). Estimates of the relative contribution of each environmental layer to 

predictions were also produced in MAXENT model output. These estimates allowed for 

identification of the environmental variable most important in driving model predictions. The 
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higher the value for variable contribution, the better a variable was in predicting species’ 

occurrence. 

I calculated a number of metrics to compare predictions from correlative versus 

mechanistic models and under current versus future climate scenarios (Hijmans and Graham 

2006, Angert et al. 2011). Percent of habitat lost was calculated from the total number of grid 

cells predicted to be classified as unsuitable over the 80-year timeframe (2000 – 2080). To 

evaluate correlative models against mechanistic models, I calculated relative range size (RRS) 

using the following equation (Hijmans and Graham 2006): 

RRS = -1 * (m/c – 1)     (4.2) 

where m is the area the mechanistic model predicts as suitable, and c is the area the correlative 

model predicts as suitable. This metric was also calculated to assess the effects of climate change 

on predictions made under each model, where, in this case, m and c are the predictions for 

current and future conditions. The RRS score identifies the variance in range predicted by the 

two models (e.g. a score of 3 implies range size predicted by the correlative model is four times 

as large as that predicted by the mechanistic model). Finally, I ran a Wilcoxon test on RRS 

scores in R 2.15.2 to determine the statistical significance of differences between the correlative 

and mechanistic models under both current and future climates. 

4.3 Results 

Model predictions for current P. contorta habitat suitability were significantly different (p 

< 0.05) using MAXENT versus ECOCROP (Table 4.3). Both correlative and mechanistic model 

predictions recognized differences in local climate, and predictions at the subspecies- level were 

a more realistic portrayal of the physiological tolerance of local populations and the distribution 

of each subspecies. Suitability modeling in MAXENT was a better match (p < 0.05) to the current 
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range of the species, while the ECOCROP model predicted suitable habitat outside of the species’ 

current distribution (Figures A.4.1 & A.4.2).  

Under future climate scenarios, both MAXENT and ECOCROP predicted a loss of suitable 

habitat (30 and 36%) and shifts in the distribution of Pinus contorta (Figure 4.2). The extent of 

loss was greater under the MAXENT model for all subspecies’ runs, but loss of suitable habitat at 

the species-level was higher in ECOCROP (Table 4.3). MAXENT predicted a nearly complete loss 

of habitat for subspecies murrayana (67%), but ECOCROP predicted that it would maintain more 

than half of its current habitat (Figure 4.6). MAXENT also predicted a 64% loss in suitable habitat 

for subspecies contorta, with this loss much smaller (26%) in ECOCROP predictions (Table 4.3, 

Figure 4.4). Predictions of future latifolia habitat were more consistent in percent suitable habitat 

(Table 4.3, Figure 4.5). Although models predict some loss of habitat, suitable P. contorta 

habitat is maintained across much of its current distribution. 

All MAXENT models had high values for goodness of fit (AUC values >0.93; Table 4.4). 

The importance of climate variables to model predictions varied across models and subspecies 

(Table 4.4). Mean annual precipitation was the most important predictor of ssp. contorta 

occurrence (AUC = 0.98), but mean annual temperature was the best predictor of ssp. latifolia 

and murrayana occurrence as well as species-wide predictions (AUC = 0.94, 0.99, and 0.98; 

Table 4.4). Mean precipitation of the driest month was also a strong predictor in both latifolia 

and species-wide models. 

 The negative RRS values (Table 4.3) suggest that the change in range size as predicted 

using the correlative model were consistently smaller than those predicted in the mechanistic 

model. Values closest to zero included predictions for ssp. latifolia (current, 0.09) and at the 

species-level (future, -0.04), indicating that predictions between correlative and mechanistic 
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models were not that different for these levels of analysis (Table 4.3). Conversely, the high 

negative RRS value for future subspecies murrayana (-49) showed that model predictions were 

very different between the correlative and mechanistic model runs. In most instances, MAXENT 

predicted much greater habitat loss under future climate conditions. 

 

4.4 Discussion 

Pinus contorta is one of the most widely distributed tree species in western North 

America. It is reported to have the widest range of environmental tolerance of any North 

American conifer (Lotan and Critchfield 1990), allowing it to grow and survive under a wide 

range of habitat conditions. The subspecies of P. contorta already grow in sites known to limit 

the growth of other conifers, including peatlands, sand dunes, coastal rocky cliffs, and at treeline 

(Lotan and Critchfield 1990). I used correlative and mechanistic species distribution models to 

make predictions of future habitat suitability for this widespread tree species. I discovered three 

things in this analysis. First, species- and subspecies-level model predictions were not in 

agreement. This support the hypothesis that subspecies are adapted to local conditions and will 

respond individualistically to a changing climate (Ying and Liang 1994, Rehfeldt et al. 1999, 

2001; Chapter 3). Second, incorporating physiological tolerance into predictions of current 

suitable habitat indicated that P. contorta could grow over a greater geographic extent than its 

current distribution. The predictions from mechanistic modeling suggest that P. contorta is 

excluded from some suitable, and potentially optimal, habitat, including lower elevations and in 

coastal habitats of California. My model predictions support conclusions from previous latifolia 

common garden research, which showed that the subspecies of P. contorta tend to grow outside 

of their optimum and are limited in occurrence by the effects of competition with other species 

(Rehfeldt et al. 1999, 2001). Third, mechanistic models predicted that each subspecies would 
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maintain a portion of its habitat, while correlative models predicted a nearly complete loss of 

subspecies contorta and murrayana. The contrasting predictions suggest that the distribution of 

P. contorta could be limited by the effects of competition and disturbance rather than by an 

inability to grow under altered conditions. 

Under species-wide correlative and mechanistic modeling, Pinus contorta was able to 

maintain a large portion of its range under both correlative and mechanistic model predictions. 

Some current habitat along the Pacific Northwest coast and in the southwestern United States 

was predicted to become unsuitable (Figure 4.2), but, overall, the species maintains its presence 

across the mountainous regions of western North America it currently occupies. Modeling at the 

species-level was biased toward the most widely distributed subspecies, latifolia. These models 

assumed that all subspecies would be able to tolerate the conditions under which this subspecies 

grows. These assumptions are, however, unrealistic given the distinct climate and environmental 

conditions each subspecies grows in. Subspecies-level predictions removed this bias and made 

predictions based on the physiological tolerances of each subspecies. 

Plant populations are likely to be adapted to the local climate and environmental 

conditions from which they originated (Clausen et al. 1940, 1941), and the subspecies of P. 

contorta occur in geographically and climatically distinct regions (Critchfield 1957). My 

geographic analysis of genetic structure (Chapter 3) showed a strong association of population 

structure with climate variables and indicated local adaptation of the subspecies of P. contorta. 

Each subspecies is unlikely to respond in the same manner to the effects of climate change. The 

species-level models were dominated by ssp. latifolia records and assumed that subspecies 

would respond in a similar manner. Given the more narrow distributions of the other subspecies, 

subspecies-level modeling was more appropriate. Incorporation of physiological and subspecies-
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level data produced models that did not align with species-level predictions and altered model 

predictions of suitable habitat (Figures 4.3 – 4.6). Predictions at the subspecies-level indicated 

substantial niche segregation among subspecies and identified distinct drivers of occurrence for 

each subspecies. These drivers corresponded with local climate and support the hypothesis that 

each subspecies is locally adapted (Chapter 3). Given the distribution of each subspecies, the 

importance of these variables (Table 4.4) makes biological sense.  

Pinus contorta may be able to grow over a greater geographic extent than it currently 

does. The mechanistic modeling predictions can be interpreted as representing the fundamental 

niche of the species, or the area within which existence is possible (Hutchinson 1957). By adding 

physiological tolerance into model predictions, current suitable habitat is predicted as greater 

than the species’ range would suggest. For example, mechanistic models predicted lower 

elevations in the Sierra Nevada Mountains as suitable habitat for subspecies murrayana (Figure 

A.4.8), but this subspecies only grows at high elevations (1900 to 3200 m) in this region. These 

predictions support the results from common garden research in concluding that populations do 

not grow under their physiological optimum (Rehfeldt et al. 1999, 2001). Pinus contorta is a 

light-demanding species and thought to be most limited by competition from other tree species 

(Lotan and Critchfield 1990). Each subspecies may be able to tolerate a wide range of conditions 

but is constrained to its current to distribution by biotic interactions. For this species, correlative 

model predictions made at the subspecies-level may be a better estimation of future suitable 

habitat, because these models indirectly incorporate the biotic influence of competition and are 

representative of the realized niche of each subspecies. 

Pinus contorta ssp. latifolia is one of the most important timber species in British 

Columbia, and numerous studies have focused on this subspecies and its potential response to 
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climate change (Rehfeldt et al. 1999, 2001, Wang et al. 2006b, Coops and Waring 2010). My 

results support the common garden research of Rehfeldt and colleagues (2001) in concluding that 

P. contorta is physiologically able to grow over a greater extent than its current range. Prior 

work focused on subspecies latifolia, but model results indicate that this physiological response 

is true across all subspecies. My results also demonstrate that incorporation of subspecies-level 

analyses alters predictions and provides more biologically-realistic predictions of habitat 

suitability across the species’ range. The realized niche of the species may be constrained by 

competition, while the fundamental niche of the species is actually much greater. Pinus contorta 

should maintain a large portion of its current range over the next century, but the response of the 

species to changing climate will vary by subspecies. The geographically-constrained subspecies, 

contorta and murrayana, are limited by both physiological tolerance and biotic interactions. 

These subspecies will not respond to changing climate in the same manner as subspecies 

latifolia. Management and conservation of P. contorta must be addressed at the subspecies level 

and account for the adaptations specific to each geographic range. 

Predictions from species distribution models will not provide precise estimates of habitat 

loss. The true direction and magnitude of climate change is unknown, and understanding tree 

species’ response to modern climate change will require better knowledge of geographic patterns 

of climatic adaptation. Interactions between habitat loss, unpredictable disturbance regimes, and 

rapid climate change are likely to impact a species a ability to adapt and migrate (Jump and 

Penuelas 2005). Regardless, species are likely to be impacted by this change, and knowledge on 

the potential response of our most ecologically and economically valuable species will be crucial 

to conservation and management efforts in light of a rapidly changing climate. Species range 

shifts have been predicted for many species and ecosystems (e.g. Malcolm et al. 2002, Morin et 
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al. 2008, Notaro et al. 2012), and the ability of species to persist will depend on the responses of 

local populations (Sork et al. 2010). This is important for tree species, which are thought to be 

highly adapted to local conditions (Hamrick 2004, Savolainen et al. 2007, Aitken et al. 2008). 

Species distribution models provide a reasonable baseline for understanding how climate is 

likely to impact the distribution and persistence of Pinus contorta, one of western North 

America’s most ecologically and economically valuable tree species. 
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1900 2010 2080 1900 2010 2080 1900 2010 2080 1900 2010 2080

39.28 -123.76 11.6 12 15.3 8.6 9.3 12.3 1074 1104 1217 341 345 363

42.19 -124.37 11.6 12.1 15.4 7.5 8.5 11.3 2041 2136 2321 346 349 363

46.56 -124.04 9.8 10.2 13.3 4.6 5.6 8.7 1840 2005 2345 309 319 353

49.35 -123.01 8.5 9 12.7 1.1 2.4 6.3 2103 2357 2682 274 289 351

53.33 -129.71 7.1 7.6 11.1 0.6 1.9 6.6 4037 3626 4517 263 278 349

59.37 -135.82 1.7 2.5 6.8 -12 -10.3 -2.6 994 1029 1308 142 153 214

43.12 -122.04 4.3 4.5 8.3 -2.4 -1.5 2.6 1076 1219 1282 113 126 200

45.11 -118.23 5.1 2.7 9.8 -4.3 -5.4 2.5 768 1610 963 161 108 261

48.15 -117.14 6.8 7.4 11.3 -4.6 -3.4 1.3 616 724 822 173 192 276

52.21 -122.39 2.9 3.4 7.3 -10.5 -8.9 -3.8 392 462 523 138 148 213

56.12 -120.94 0.9 1.8 5.5 -15.6 -13.2 -7.4 367 453 588 139 155 195

59.96 -130.34 -3.7 -2.7 1.7 -17.8 -15.9 -7.8 464 480 639 92 101 149

34.13 -116.91 5.4 6 9.7 -2.1 -1.6 1.9 1104 1170 1059 122 139 199

37.14 -119.10 4 4.1 8 -1.2 -1.2 2.4 1084 1159 1304 121 134 208

39.26 -120.55 8.5 8.4 12.5 1.6 1.5 5.8 1660 1735 1945 197 205 281

40.20 -121.27 8.1 8 12.1 -0.4 -0.3 4.2 932 964 1092 164 177 256

41.19 -121.75 9.5 9.5 13.5 1.4 1.6 6 1506 1670 1862 221 232 306
Average difference 

(1900 to 2080)
+ 3.8 + 5.1 + 232 + 64

Number of Frost-Free Days

murrayana

contorta

latifolia

Subspecies Latitude Longitude
Mean Annual Temperature (°C ) Mean Coldest Month Temperature (°C ) Mean Annual Precipitation (mm)

Table 4.1: ClimateWNA variables for past (1900), current (2010), and future (2080) climate. Presented is a subset of population-level data from each Pinus 
contorta subspecies. 
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Model Run Tmin       
(°C)

Toptmin   
(°C)

Toptmax   
(°C)

Tmax     
(°C)

Rmin    
(mm)

Ropmin   
(mm)

Ropmax 
(mm)

Rmax    
(mm)

Gmin    
(days)

Gmax       
(days)

contorta 1 11 14 18 300 600 900 1300 110 160

latifolia 0.5 10 14 17 125 250 450 600 70 150

murrayana 1.2 16 20 28 70 100 175 200 110 220

Full species model 0.5 10 15 18 150 250 500 1100 70 150

Table 4.2: Mean growing season variables for Pinus contorta and each subspecies. Parameters were derived from ClimateWNA and Illingworth Provenance Trial 
(British Columbia, Canada) data. Values derived for use in ECOCROP modeling included: minimum temperature for growth (Tmin), maximum temperature for 
growth (Tmax), minimum temperature for optimal growth (Toptmin), maximum temperature for optimal growth (Toptmax), minimum rainfall for growth (Rmin), 
maximum rainfall for growth (Rmax), minimum rainfall for optimal growth (Roptmin), maximum rainfall for optimal growth (Roptmax), and minimum and maximum 
growing periods (Gmin and Gmax). 
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Model

MaxEnt EcoCrop RRS MaxEnt EcoCrop RRS MaxEnt RRS EcoCrop RRS

contorta 1.6 2.99 -0.90 0.56 2.2 -2.94 -64 -1.77 -26 -0.35

latifolia 22.4 20.4 0.09 11.5 13.3 -0.15 -43 -0.92 -30 -0.54

murrayana 0.25 7.17 -0.93 0.08 4.1 -49 -67 -2.03 -41 -0.73

Full species model 27.5 31.9 -0.16 17.6 18.3 -0.04 -30 -0.54 -36 -0.75

! in Area (%)Current Area (%)               Future Area (%)                            

Table 4.3: Estimates of suitable habitat (in percent of landscape of western North America). Percentages are based on grid cells of suitable habitat of all grid cells 
used in prediction. Extent of analysis ranged from 30 to 70 degrees latitude and -170 to -100 degrees longitude. Relative range size (RRS) values assess the area 
predicted in correlative modeling (MaxEnt) against that predicted in mechanistic modeling (EcoCrop). The RSS values for change in area evaluate current versus 
future habitat for each model. p < 0.05 for all comparisons 
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Model Mean Annual Temp 
(°C )

Min Coldest Temp   
(°C )

Mean Annual Precip 
(mm)

Precip Driest Month 
(mm)

Precip Wettest Month 
(mm)

AUC Scores

contorta 3.3 6.5 85.4 13.0 0.9 0.98

latifolia 40.5 11.7 13.0 31.9 0.4 0.94

murrayana 87.7 2.9 0.9 0.4 8.1 0.99

Full species model 48.0 11.5 16.7 22.3 1.5 0.98

Table 4.4: Contribution of climate variables to model predictions in the MaxEnt models of current and future habitat suitability. BOLD values were the most 
important variables in determining species' occurrence. Receiver-operating area under the curve (AUC) values were used to evaluate model performance. 
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Figure  4.1: Illingworth Provenance Trial source populations (left) and planting locations in British Columbia, Canada (right). Data from these trials was 
used to estimate physiological tolerances of Pinus contorta populations to temperature and precipitation. 
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Figure 4.2: Species-level predictions of Pinus contorta suitable habitat in 2080 (A2 scenario) in MaxEnt (left) and EcoCrop (right). White = 
unsuitable, grey = suitable. 
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Figure 4.3: Predictions of subspecies latifolia suitable habitat in 2080 (A2 scenario) in MaxEnt (left) and EcoCrop (right). White = unsuitable, grey = 
suitable. 
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Figure 4.4: Predictions of subspecies contorta suitable habitat in 2080 (A2 scenario) in MaxEnt (left) and EcoCrop (right). White = unsuitable, grey = 
suitable. 
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Figure 4.5: Predictions of subspecies murrayana suitable habitat in 2080 (A2 scenario) in MaxEnt (left) and EcoCrop (right). White = unsuitable, grey = 
suitable. 



109 
 

4.5 Literature Cited 

Aitken, S., S. Yeaman, J. Holliday, T. Wang, and S. Curtis-McLane. 2008. Adaptation, 
migration, or extirpation: climate change outcomes for tree populations. Evolutionary 
Applications 1:95–111. 

Angert, A. L., S. N. Sheth, and J. R. Paul. 2011. Incorporating population-level variation in 
thermal performance into predictions of geographic range shifts. Integrative and 
comparative biology 51:733–50. 

Angilletta, M. J. 2006. Estimating and comparing thermal performance curves. Journal of 
Thermal Biology 31:541–545. 

Buckley, L. B., M. C. Urban, M. J. Angilletta, L. G. Crozier, L. J. Rissler, and M. W. Sears. 
2010. Can mechanism inform species’ distribution models? Ecology letters 13:1041–54.  

Chuine, I., G. Rehfeldt, and S. N. Aitken. 2006. Height growth determinants and adaptation to 
temperature in pines: a case study of Pinus contorta and Pinus monticola. Canadian Journal 
of 1066:1059–1066. 

Clark, J. 1998. Why trees migrate so fast: confronting theory with dispersal biology and the 
paleorecord. American Naturalist 152:204 – 224. 

Clausen, J., D. Keck, and W. Hiesey. 1940. Experimental studies on the nature of species. I. 
Effect of varied environment on Western North American plants. Carnegie Institution of 
Washington, Washington, DC, USA. 

Clausen, J., D. Keck, and W. Hiesey. 1941. Regional Differentiation in Plant Species. The 
American Naturalist 75:231–250. 

Coops, N. C., and R. H. Waring. 2010. A process-based approach to estimate lodgepole pine 
(Pinus contorta Dougl.) distribution in the Pacific Northwest under climate change. Climatic 
Change 105:313–328.  

Critchfield, W. B. 1957. Geographic variation in Pinus contorta. Harvard University Cambridge, 
Massachusetts, USA. 

Critchfield, W. B., and E. L. Little. 1966. Geographic distribution of the pines of the world. 
Washington D.C.: U.S. Department of Agriculture. 

Danby, R. K., and D. S. Hik. 2007a. Variability, contingency and rapid change in recent 
subarctic alpine tree line dynamics. Journal of Ecology 95:352–363.  

Danby, R. K., and D. S. Hik. 2007b. Responses of white spruce (Picea glauca) to experimental 
warming at a subarctic alpine treeline. Global Change Biology 13:437–451.  



110 
 

Davis, M. B., and R. G. Shaw. 2001. Range Shifts and Adaptive Responses to Quaternary 
Climate Change. Science 292:673.  

Elith, J., S. J. Phillips, T. Hastie, M. Dudík, Y. E. Chee, and C. J. Yates. 2011. A statistical 
explanation of MaxEnt for ecologists. Diversity and Distributions 17:43–57. 

Field, C. B., L. D. Mortsch, M. Brklacich, D. L. Forbes, P. Kovacs, J. A. Patz, S. W. Running, 
and M. J. Scott. 2007. North America. In “Climate Change 2007: Impacts, Adaptation and 
Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the 
Intergovernmental Panel on Climate Change”.(Eds ML Parry, OF Canziani, JP Palutikof, PJ 
van der Linden, . Cambridge University Press: Cambridge, MA. 

Hamrick, J. 2004. Response of forest trees to global environmental changes. Forest Ecology and 
Management 197:323–335.  

Hamrick, J., M. Godt, and S. Sherman-Broyles. 1992. Factors influencing levels of genetic 
diversity in woody plant species. New forests 6:95–124. 

Hijmans, R. J. 2012. Cross-validation of species distribution models: removing spatial sorting 
bias and calibration with a null model. Ecology 93:679–88. 

Hijmans, R. J., S. E. Cameron, J. L. Parra, P. G. Jones, and A. Jarvis. 2005. Very high resolution 
interpolated climate surfaces for global land areas. International journal of climatology 
25:1965–1978.  

Hijmans, R. J., and C. H. Graham. 2006. The ability of climate envelope models to predict the 
effect of climate change on species distributions. Global Change Biology 12:2272–2281.  

Huntley, B. 1991. How Plants Respond to Climate Change!: Migration Rates , Individualism and 
the Consequences for Plant Communities 67:15–22. 

Hutchinson, G. E. 1957. The multivariate niche. Pages 415–421 Cold Spr. Harb. Symp. Quant. 
Biol. 

Illingworth, K. 1978. Study of lodgepole pine genotype-environment interaction in BC. Pages 
151–158 Proceedings International Union of Forestry Research Organizations (IUFRO) 
Joint Meeting of Working Parties: Douglas-fir Provenances, Lodgepole Pine Provenances, 
Sitka Spruce Provenances, and Abies Provenances. Vancouver, British Columbia, Canada. 

IPCC. 2007. Contribution of Working Groups I, II, and III to the Fourth Assessment Report of 
the Intergovernmental Panel on Climate Change. (R. Pachauri and A. Reisinger, Eds.). 
IPCC, Geneva, Switzerland. 

Jenkins, J. C., D. C. Chojnacky, L. S. Heath, and R. A. Birdsey. 2003. National-scale biomass 
estimators for United States tree species. Forest Science 49:12–35.  



111 
 

Jump, A. S., and J. Penuelas. 2005. Running to stand still: adaptation and the response of plants 
to rapid climate change. Ecology Letters 8:1010–1020. 

Lotan, J. E., and W. B. Critchfield. 1990. Pinus contorta Dougl. Ed. Loud. Pages 302 – 315 in R. 
Burns and B. Honkala, editors. Silvics of North America, Volume 1, Conifers. USDA 
Forest Service. 

Malcolm, J. R., A. Markham, R. P. Neilson, and M. Garaci. 2002. Estimated migration rates 
under scenarios of global climate change. Journal of Biogeography 29:835–849.  

Millar, C. I., N. L. Stephenson, and S. L. Stephens. 2007. Climate change and forests of the 
future: managing in the face of uncertainty. Ecological applications!: a publication of the 
Ecological Society of America 17:2145–51. 

Millar, C. I., R. D. Westfall, D. L. Delany, J. C. King, and L. J. Graumlich. 2004. Response of 
subalpine conifers in the Sierra Nevada, California, USA, to 20th-century warming and 
decadal climate variability. Arctic, Antarctic, and Alpine Research 36:181–200.  

Mimura, M., and S. N. Aitken. 2010. Local adaptation at the range peripheries of Sitka spruce. 
Journal of evolutionary biology 23:249–58.  

Morin, X., D. Viner, and I. Chuine. 2008. Tree species range shifts at a continental scale: new 
predictive insights from a process !based model. Journal of Ecology:784–794. 

Notaro, M., A. Mauss, and J. W. Williams. 2012. Projected vegetation changes for the American 
Southwest: combined dynamic modeling and bioclimatic-envelope approach. Ecological 
applications!: a publication of the Ecological Society of America 22:1365–88. 

Parmesan, C. 2006. Ecological and Evolutionary Responses to Recent Climate Change. Annual 
Review of Ecology, Evolution, and Systematics 37:637–669.  

Parmesan, C., and G. Yohe. 2003. A globally coherent fingerprint of climate change impacts 
across natural systems. Nature:37–42. 

Pearson, R. G., and T. P. Dawson. 2003. Predicting the impacts of climate change on the 
distribution of species: are bioclimate envelope models useful? Global Ecology and 
Biogeography 12:361–371.  

Pfenninger, M., C. Nowak, and F. Magnin. 2007. Intraspecific range dynamics and niche 
evolution in Candidula land snail species. Biological Journal of the Linnean Society 
90:303–317.  

Phillips, S., R. Anderson, and R. Schapire. 2006. Maximum entropy modeling of species 
geographic distributions. Ecological Modelling 190:231–259.  



112 
 

R Core Team. 2012. R: A Language and environment for statistical computing. R Foundation for 
Statistical Computing, Vienna, Austria. 

Rehfeldt, G., W. Wykoff, and C. Ying. 2001. Physiologic plasticity, evolution, and impacts of a 
changing climate on Pinus contorta. Climatic Change:355–376. 

Rehfeldt, G., C. Ying, D. Spittlehouse, and D. Hamilton Jr. 1999. Genetic Responses to Climate 
in Pinus contorta!: Niche Breadth , Climate Change , and Reforestation. Ecological 
Applications 69:375–407. 

Savolainen, O., T. Pyhäjärvi, and T. Knürr. 2007. Gene Flow and Local Adaptation in Trees. 
Annual Review of Ecology, Evolution, and Systematics 38:595–619.  

Sexton, J. P., P. J. McIntyre, A. L. Angert, and K. J. Rice. 2009. Evolution and Ecology of 
Species Range Limits. Annual Review of Ecology, Evolution, and Systematics 40:415–436.  

Sork, V. L., F. W. Davis, R. Westfall, A. Flint, M. Ikegami, H. Wang, and D. Grivet. 2010. Gene 
movement and genetic association with regional climate gradients in California valley oak 
(Quercus lobata Née) in the face of climate change. Molecular ecology 19:3806–23.  

Walther, G., E. Post, P. Convey, A. Menzel, C. Parmesan, T. Beebee, J.-M. Fromentin, O. 
Houegh-Guldberg, and F. Bairlein. 2002. Ecological responses to recent climate change. 
Nature:389–395. 

Wang, T., E. M. Campbell, G. a. O’Neill, and S. N. Aitken. 2012. Projecting future distributions 
of ecosystem climate niches: Uncertainties and management applications. Forest Ecology 
and Management 279:128–140.  

Wang, T., a. Hamann, D. L. Spittlehouse, and S. N. Aitken. 2006a. Development of scale-free 
climate data for Western Canada for use in resource management. International Journal of 
Climatology 26:383–397.  

Wang, T., a. Hamann, a. Yanchuk, G. a. O’Neill, and S. N. Aitken. 2006b. Use of response 
functions in selecting lodgepole pine populations for future climates. Global Change 
Biology 12:2404–2416.  

Wang, T., G. a O’Neill, and S. N. Aitken. 2010. Integrating environmental and genetic effects to 
predict responses of tree populations to climate. Ecological applications 20:153–63. 

Wheeler, N., and W. B. Critchfield. 1985. The distribution and botanical characteristics of 
lodgepole pine: biogeographical and management implications. Pages 1–13 in D.M. 
Baumgartner, editor. Lodgepole pine: the species and its management. 

Wheeler, N., and R. Guries. 1982. Biogeography of lodgepole pine. Canadian Journal of Botany 
60:1805–1814. 



113 
 

Ying, C., and Q. Liang. 1994. Geographic pattern of adaptive variation of lodgepole pine (Pinus 
contorta Dougl.) within the species’ coastal range: field performance at age 20 years. Forest 
ecology and management 67:281 – 298.



114 
 

Appendix 4.1 

 

 

      

 

     Figure A.4.1: MaxEnt species-level predictions of Pinus contorta suitable habitat under current (2010, left) and future (2080, A2, right) conditions. 
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Figure A.4.2: EcoCrop Species-level predictions of Pinus contorta suitable habitat under current (2010, left) and future (2080, A2, right) conditions. 
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Figure A.4.3: MaxEnt predictions of subspecies contorta habitat under current (2010, left) and future (2080, A2, right) conditions. 
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Figure A.4.4: Predictions of subspecies contorta habitat under current (2010, left) and future (2080, A2, right) conditions in EcoCrop. 
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Figure A.4.5: MaxEnt predictions of subspecies latifolia habitat under current (2010, left) and future (2080, A2, right) conditions. 
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Figure A.4.6: EcoCrop predictions of subspecies latifolia habitat under current (2010, left) and future (2080, A2, right) conditions. 
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Figure A.4.7: MaxEnt predictions of subspecies murrayana habitat under current (2010, left) and future (2080, A2, right) conditions. 
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Figure A.4.8: EcoCrop predictions of subspecies murrayana habitat under current (2010, left) and future (2080, A2, right) conditions. 
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5 Synthesis 

 My dissertation research evaluated the relationship between distributional patterns of tree 

species and the processes driving these patterns from local to continental scales. I addressed 

three questions: 1) Which local abiotic and biotic processes are most important in determining 

the distribution of tree species along a hydrologic gradient in southeast Alaska? 2) How is 

genetic variation partitioned across the range of Pinus contorta, and is this variation explained by 

geographic or landscape variables? 3) How will Pinus contorta respond to predicted climate 

change? 

 At the local scale, I assessed the role of abiotic and biotic constraints in limiting three 

tree species (Pinus contorta, Picea sitchensis, and Tsuga heterophylla) along a hydrologic 

gradient in southeast Alaska. Model predictions identified abiotic variables, including soil 

nitrogen, pH, and depth to water, as the primary factors limiting species’ success in anaerobic 

wetland ecosystems. Competition was identified as the limiting factor in aerobic forest 

ecosystems.  

At the continental scale, I quantified the impact of historic evolutionary processes in 

shaping patterns of genetic diversity across the range of Pinus contorta, a widespread and 

morphologically variable species. Gene flow is high across the range of the species, and patterns 

of variation are most strongly influenced by landscape barriers to gene flow and the 

environmental variation associated with its heterogeneous range. This suggests that, despite 

widespread gene flow, subspecies are adapted to local conditions. I then used correlative and 

mechanistic species distribution models to evaluate potential, future habitat suitability at the 

species and subspecies levels of Pinus contorta. Model results predict that P. contorta will 
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maintain a large portion of its current habitat, but two of the more geographically constrained 

subspecies will lose a significant portion of suitable habitat. 

My work provides an understanding of the ecological and evolutionary processes shaping 

tree species distributions across a gradient of temporal and spatial scales, from historic to current 

timeframes and local to range-wide extents. Results from my research show that different 

processes determine patterns of distribution across this gradient of scales. Linking these patterns 

and processes will be essential for forest management and conservation in light of a rapidly 

changing climate. 

 


