
DISSERTATION

COMMUNITY RISK DUE TO WILDLAND URBAN INTERFACE FIRES: A TOP-DOWN

PERSPECTIVE

Submitted by

Akshat Chulahwat

Department of Civil and Environmental Engineering

In partial fulfillment of the requirements

For the Degree of Doctor of Philosophy

Colorado State University

Fort Collins, Colorado

Summer 2021

Doctoral Committee:

Advisor: Hussam Mahmoud

Bruce Ellingwood
John van de Lindt
Camille Stevens-Rumann



Copyright by Akshat Chulahwat 2021

All Rights Reserved



ABSTRACT

COMMUNITY RISK DUE TO WILDLAND URBAN INTERFACE FIRES: A TOP-DOWN

PERSPECTIVE

Recent wildfire events, in the United States and around the world, have resulted in thousands of

homes destroyed and many lives lost, leaving communities and policy makers, with the question as

to how to manage wildfire risk. Wildland urban interface fires have demonstrated the unrelenting

destructive nature of these events and signify the need to address the problem. This is particularly

important given the prevalent trend of increased fire frequency and intensity. Current approaches

to managing wildfires focus on fire suppression and managing fuel build-up in wildlands. Fre-

quent suppression of small scale fires has led to the absence of a natural reduction mechanism,

which in turn, results in low frequency high intensity fires. This phenomena has been termed as

the Wildfire paradox and it reinforces the ideology that wildfires are inevitable and are actually

beneficial; therefore focus should to be shifted towards minimizing potential losses to communi-

ties. However, reliance on these strategies alone has clearly proven inadequate. This requires the

development of vulnerability-based frameworks that can be used to provide holistic understanding

of risk. Mitigation strategies geared towards complete containment of wildfires within the wild-

lands are unrealistic. Therefore, the primary goal has to be on making communities resilient, with

the purpose of minimizing potential losses. There is a paucity of information regarding the inter-

play between communities and wildfires. Unlike other hazards, for which there exists significant

knowledge base, quantification of WUI fires is still an unanswered question for us. To better under-

stand what factors govern the impact of WUI fires, tools to assess and quantify the risk of wildfires

to communities are required.

In this study, a probabilistic approach for quantifying community vulnerability to wildfires by

applying concepts of graph theory is devised. A directed graph is developed to model wildfire
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inside a community by incorporating different fire propagation modes. Four modes are consid-

ered in this study - Convection, Radiation and Embers, and individual ignition models for each

are formulated. Through these modes the graph model accounts for relevant community-specific

characteristics including wind conditions, community layout, individual structural features, and

the surrounding wildland vegetation. The graph model is then used to evaluate vulnerability of

each component of the community using shortest path algorithms. The framework is utilized to

study the infamous 1991 Oakland fire in an attempt to unravel the complexity of community fires.

Centrality measures from graph theory are used to identify critical behavior patterns and evaluate

the effect of fire mitigation strategies.

Using the vulnerability framework developed, the risk of communities is further quantified.

Risk is generally defined by three components - (1) Hazard intensity (2) Degree of exposure and

(3) Exposed elements. In context of wildfires, the risk is formulated by combining the following

three components - probability of wildland ignition, probability of fire reaching the community and

vulnerability of community. Four different communities across the United States are selected and

risk analysis is conducted for the months May-September to understand the correlation between

community risk and community characteristics. Unlike current practice, the results are shown to

be community-specific with substantial dependency of risk on meteorological conditions, envi-

ronmental factors, and community characteristics and layout. For the final part of this study, an

intervention optimization is formulated and applied to the four communities to observe the effect

of different intervention measures on community risk. The findings show the need for exploring

unique viable solutions to reduce risk for communities independently, as opposed to embracing a

generalized approach, which is currently the case.

iii



ACKNOWLEDGEMENTS

I would like to express my sincerest gratitude to my advisor, Professor Hussam Mahmoud,

without whom this thesis would never have been possible. His constant guidance and support all

these years, not just academically but also on a personal level, has brought me to this point in

life, and for that I will always be grateful to him. This Ph.D. under his mentorship has been an

exceptional experience for me.

I would like to thank all the committee members, Professor Bruce Ellingwood, Professor John

van de Lindt and Professor Camille Stevens-Rumann for their insightful suggestions and support.

I would like to acknowledge the Department of Civil and Environmental Engineering at Colorado

State University and its dedicated staff, who have helped me over the years numerous times. I

would also like to thank all the friends that I made during this endeavor. Every one of them has

helped and inspired me.

Finally, I would like to thank my dearest parents who have supported me every step of the way

and provided encouragement when I needed it the most. They have always been my inspiration to

keep going.

iv



DEDICATION

I would like to dedicate this thesis to my dearest parents

v



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii
LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Research Significance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Research Objective and Scope . . . . . . . . . . . . . . . . . . . . . . . . 6

Chapter 2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Analytical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Numerical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Experimental Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5 Code Provision and Guidelines . . . . . . . . . . . . . . . . . . . . . . . 17

Chapter 3 Wildland Propagation Model . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1 Effect of Wind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Effect of Topography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 Ember Spotting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4 Wildland Model Validation and Calibration . . . . . . . . . . . . . . . . . 28

Chapter 4 Community Propagation Model . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.1 Convection Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2 Radiation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2.1 View Factors Calculation . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2.2 Radiation Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2.3 Radiation Ignition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3 Ember Spotting Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.4 Community Model Validation . . . . . . . . . . . . . . . . . . . . . . . . 57

Chapter 5 Community Vulnerability and General Observations . . . . . . . . . . . . . . 59
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2 Vulnerability Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2.1 Shortest Path Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.2.2 Polar Fragility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.3 Intervention Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.4 Community Analysis Results . . . . . . . . . . . . . . . . . . . . . . . . 70

5.4.1 Community inherent vulnerability . . . . . . . . . . . . . . . . . . . . 71
5.4.2 Effect of Individual Ignitable Elements . . . . . . . . . . . . . . . . . . 72

vi



5.4.3 Effect of Fire Intervention . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.4.4 Effect of Wildlands . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.4.5 Identifying Flow Paths . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.4.6 Computational resources and observations . . . . . . . . . . . . . . . . 84

Chapter 6 Risk Assessment and Intervention Strategy Optimization . . . . . . . . . . . 88
6.1 Risk Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.1.1 Background and modeling details . . . . . . . . . . . . . . . . . . . . . 89
6.1.2 Wildland Ignition Probability . . . . . . . . . . . . . . . . . . . . . . . 92
6.1.3 Community Susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.1.4 Wildland Propagation Probability . . . . . . . . . . . . . . . . . . . . . 96

6.2 Case Study: Risk Analysis of Archetypal Communities in United States . . 102
6.3 Intervention Strategy Optimization . . . . . . . . . . . . . . . . . . . . . 107

6.3.1 Intervention Framework . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.3.2 Optimization Framework . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.3.3 Optimization Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Chapter 7 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

vii



LIST OF TABLES

4.1 Classification of ignitable elements based on their ignition capacity . . . . . . . . . . . 33
4.2 Convection model parameter values . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3 Radiation model parameter values . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.4 Relative access probabilities for different type of ignitable elements . . . . . . . . . . 52
4.5 Ember model parameter values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.1 Details for each community layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.2 Kendall rank correlation (τ ) for degree centrality of region OI at different wind speeds 76
5.3 Kendall rank correlation (τ ) for degree centrality of region OII at different wind speeds 76
5.4 Computational details for the test cases . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.1 Details for each community layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.2 Pearson correlation values between risk (R), vulnerability of community (V ) and prob-

ability of wildland ignition (Pi), for each community . . . . . . . . . . . . . . . . . . 105
6.3 Effectiveness of different intervention measures . . . . . . . . . . . . . . . . . . . . . 108

viii



LIST OF FIGURES

1.1 Different stages involved in wildland urban interface fires . . . . . . . . . . . . . . . . 7
1.2 Components of proposed framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1 Different states of cells considered in the Cellular Automata model . . . . . . . . . . . 22
3.2 Segmentation of cell space based on wind direction . . . . . . . . . . . . . . . . . . . 24
3.3 A sample simulation showing effect of wind speed and direction on fire propagation . . 25
3.4 Topography layout of test scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.5 A sample simulation showing effect of topography on fire propagation . . . . . . . . . 26
3.6 A sample simulation showing effect of ember spotting on fire propagation. (a) Fire

propagation patterns with time (b) Ember generation and landing patterns . . . . . . . 28
3.7 Fire Front shapes obtained from [106] under (a) absence of wind and (b) wind from

west to east . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.8 Fire Front shapes obtained from proposed algorithm under (a) absence of wind and (b)

wind from west to east . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1 A sample representation of actual community layout (Fort Collins, Colorado, USA) as
a graph network. The nodes of each element define its specific boundary and the edges
represent the potential fire propagation paths (Map data c©OpenStreetMap contributors
[107]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2 Variation of convection threshold distance (radial axis in m) for different wind direc-
tions (polar axis in degrees) for two cases of different node heights - (i) 2.5 m and (ii)
5 m, when the angle between the source and target ignitable element is 90o . . . . . . . 36

4.3 Variation of flame length (x-axis) with varying wind speeds (y-axis) for two cases of
different node heights - (i) 2.5 m and (ii) 5 m . . . . . . . . . . . . . . . . . . . . . . 38

4.4 Procedure shown for calculating net radiative heat flux exchange between two ignitable
elements such that element m is ignited. . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.5 Ember ignition probabilities as a function of distance x for different values of volume
V

(i)
n and wind speed vw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.1 Procedure for evaluating probability of ignition for any source node s inside the com-
munity due to the wildlands Ω ( c©OpenStreetMap contributors [107]) . . . . . . . . . 61

5.2 Calculation of vulnerability of destination element (D) due to source element S for a
part of an actual community Hacienda Heights, Los Angeles, CA. (a) Fire pathways
shown for wind direction θ = 300o (b) Fire pathway shown for wind direction θ = 60o

(c) Fragility curve to represent variation in vulnerability of element D for different
wind directions (θ) and wind speed vw ( c©OpenStreetMap contributors [107]) . . . . . 67

5.3 Active and Passive intervention formulations applied to the graph theory model . . . . 70

ix



5.4 Region of Oakland affected by the 1991 wildfire along with the point of origin. Two
regions are selected for analysis (a) Region OI with wind direction θ = 225o and (b)
Region OII with wind direction θ = 300o. For both regions vulnerability for each
element is calculated from the source in their respective layouts. Significantly high
vulnerability of all elements observed in both layouts in absence of any fire mitigation
( c©OpenStreetMap contributors [107]) . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.5 Eigenvector centrality of region OII for wind directions (a)θ = 300o (b)vw = 60o

(c)vw = 180o ( c©OpenStreetMap contributors [107]) . . . . . . . . . . . . . . . . . . 73
5.6 Bonacich centrality of region OII for (a)β = 0.75 (b)β = 0.50 (c)β = 0.25 (d)β =

0.10 ( c©OpenStreetMap contributors [107]) . . . . . . . . . . . . . . . . . . . . . . . 74
5.7 Degree centrality of region OI for wind speeds (a)vw = 29.058 m/s (b)vw = 10 m/s

(c)vw = 5 m/s (d)vw = 1 m/s ( c©OpenStreetMap contributors [107]) . . . . . . . . . . 75
5.8 Degree centrality of region OII for wind speeds (a)vw = 29.058 m/s (b)vw = 12.5 m/s

(c)vw = 10 m/s (d)vw = 5 m/s (e)vw = 1 m/s ( c©OpenStreetMap contributors [107]) . . 76
5.9 Transitivity of regionOI for (a)vw = 29.058 m/s and (b)vw = 0 m/s ( c©OpenStreetMap

contributors [107]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.10 Transitivity of region OII for (a)vw = 29.085 m/s and (b)vw = 0 m/s. The magnified

snapshot shows certain ignitable elements with low area to exhibit high transitivity
values ( c©OpenStreetMap contributors [107]) . . . . . . . . . . . . . . . . . . . . . . 78

5.11 Vulnerability distributions obtained for N = 100 iterations at different intervention
strengths (µ) for (a) region OI (b) region OII . The lower and upper edges of the box
correspond to the 25th and 75th percentile, the center dot represents the median and
circular markers represent the outliers . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.12 Effect of fire intervention (mitigation) showed for (a) region OI and (b) region OII

of Oakland at intervention strength µ = 50% for different wind speeds to highlight
significance of intervention strategy. Vulnerability distributions are calculated forN =
100 iterations at each wind speed and the efficiency of strategy η is measured as the
standard deviation for each distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.13 Vulnerability distribution of regionOI for source locations observed during 1991 Oak-
land fire (Reconstructed from [129]) ( c©OpenStreetMap contributors [107]) . . . . . . 82

5.14 Total community vulnerability shown at each element when that specific element is
considered as a source. With each iteration the element which results in maximum
community vulnerability is added to the list of sources. The figures show the change
in community vulnerability for region OI as sources are added for iteration (a)i = 1
(b)i = 2 (c)i = 3 (d)i = 4 (e)i = 5 ( c©OpenStreetMap contributors [107]) . . . . . . . 83

5.15 Maximum probability flow paths at wind speed vw = 29.058 m/s, considering only
short-range propagation modes - radiation and convection, for regions (a) Hacienda
Heights (vw = 300o) (b) Oakland regionOI (c) Oakland regionOII ( c©OpenStreetMap
contributors [107]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.16 Community layout showing spatial discretization (Map data c©OpenStreetMap con-
tributors [107]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.1 Community layouts for (a) Austin (Texas) (b) Jackson (Wyoming) (c) Oakland (Cali-
fornia) (d) Steamboat (Colorado) (Map data c©OpenStreetMap contributors [107]) . . . 91

6.2 Sample wildfire ignition data from WFAS Archives . . . . . . . . . . . . . . . . . . . 92

x



6.3 Probability of ignition (Pi) in months May-September for years 2007, 2012 and 2017
for Austin (Texas) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.4 Probability of ignition (Pi) in months May-September for years 2007, 2012 and 2017
for Jackson (Wyoming) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.5 Probability of ignition (Pi) in months May-September for years 2007, 2012 and 2017
for Oakland (California) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.6 Probability of ignition (Pi) in months May-September for years 2007, 2012 and 2017
for Steamboat Springs (Colorado) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.7 An example of Vulnerability map for Austin (Texas) . . . . . . . . . . . . . . . . . . . 97
6.8 An example of Vulnerability map for Jackson (Wyoming) . . . . . . . . . . . . . . . . 98
6.9 An example of Vulnerability map for Oakland (California) . . . . . . . . . . . . . . . 98
6.10 An example of Vulnerability map for Steamboat Springs (Colorado) . . . . . . . . . . 99
6.11 Community vulnerability (V ) in months May-September for years 2007, 2012 and

2017 for Austin (Texas) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.12 Community vulnerability (V ) in months May-September for years 2007, 2012 and

2017 for Jackson (Wyoming) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.13 Community vulnerability (V ) in months May-September for years 2007, 2012 and

2017 for Oakland (California) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.14 Community vulnerability (V ) in months May-September for years 2007, 2012 and

2017 for Steamboat Springs (Colorado) . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.15 WUI fire risk in months May-September for years 2007, 2012 and 2017 for Austin

(Texas) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.16 WUI fire risk in months May-September for years 2007, 2012 and 2017 for Jackson

(Wyoming) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.17 WUI fire risk in months May-September for years 2007, 2012 and 2017 for Oakland

(California) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.18 WUI fire risk in months May-September for years 2007, 2012 and 2017 for Steamboat

(Colorado) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.19 Polar fragilities for (a) Austin (Texas) (b) Jackson (Wyoming) (c) Oakland (California)

(d) Steamboat Springs (Colorado) at wind speed Vw = 15 m/s . . . . . . . . . . . . . . 107
6.20 List of different intervention strategies Λ . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.21 Optimal cases for different importance factor combinations for Steamboat Springs

(Colorado) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.22 Vulnerability, intervention cost and total fitness digram shown for Austin . . . . . . . . 116
6.23 Vulnerability, intervention cost and total fitness digram shown for Jackson . . . . . . . 116
6.24 Vulnerability, intervention cost and total fitness digram shown for Oakland . . . . . . . 117
6.25 Vulnerability, intervention cost and total fitness digram shown for Steamboat . . . . . . 117

xi



Chapter 1

Introduction

Wildfire intensity and occurrence rate have been observed to increase alarmingly in recent

years [1]. The consequences of these wildfires, particularly when interacting with communities,

have been dire and have resulted in substantial socio-economic losses all over the world [2, 3]. In

the U.S. alone, the year 2018 has experienced the most catastrophic wildfire season on record in

California, resulting in 7,579 fires that burned a total of 1,667,855 acres (674,957 ha), the largest

amount of burned acreage recorded in a fire season. The fires have caused more than $2.975

billion (2018 USD) in damages, including $1.366 billion in fire suppression costs. Even in 2017,

the year before that, exhibited similar pattern of events both in frequency and intensity, such as

the Tubbs Fire, which was named the most destructive fire before the Camp Fire of 2018, the

Thomas fire, which caused over US $2.2 billion in damages and US $230 million in suppression

costs and the North Bay fire, which included 14 wildfires across California, burned over 245,000

acres, torched 8,800 homes and claimed the lives of 42 people, making it one of the most deadly

wildfires in the history of the state. The infamous 2016 Canada McMurray Fire, which burned

through 1,500,000 acres, causing destruction of approximately 2,400 homes and forcing an excess

of 88,000 people to flee their homes. Classified as the costliest disaster in Canadian history, the

corresponding economic losses reached approximately C($9 billion). These events are just few

examples of the level of destruction observed in wildfire events in the last few years. There are

numerous other wildfire events that have left a mark on the world, including the recent Attica

wildfires in Greece [4] and the 2018 Australian bushfires, among others. The most surprising of

all are the multiple fires in a small Swedish town Lapland of Jokkmokk, which lies in the Arctic

circle [5]. The recent devastating nature of these events is a testimonial to the fact that not only

the intensity of wildfires are on the rise [6–8], but also the fire season is elongating as well [9, 10].

As of now, the yearly federal expenditures on managing wildfires easily exceeds US$1 billion per

year [1], and is only expected to rise given the prevalent trend. The collective damages incurred
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in the U.S. due to wildfires in the year 2017 amounted to approximately US $18 billion. The UN

Intergovernmental Panel on Climate Change (IPCC), comprised of 192 nations, recently released

the landmark report that forewarns the immediate need to take action to curb the rise in climate

change. Therefore, there is a present need to devise proper strategies to mitigate the impact of

wildfire. Suppression and management of fuel build-up in wildlands has been the primary focus

for managing wildfires, which has proven to be insufficient [11–14].

There are several wildfire protection programs, such as Firewise, aimed at the community level

to inform residents of useful fire protection measures. These commonly include managing defen-

sible spaces around houses, using fire retardant materials and using automatic fire suppression sys-

tems. While significant efforts are placed every year on increasing population awareness towards

fire mitigation practices, no clear quantitative design policies exist. Currently, wildfire suppression

is aimed at severe fire suppression that has led to reduction in controlled small-scale fires, which

aid in reducing wildland density and provide an ecological balance. In the absence of any natural

reduction mechanism and given the limited fuel management strategies, rapid growth in wildland

ecology has resulted in significant increase in high intensity wildfires [12,15]. Population residing

in the wildland urban interface is on the rise and expected to further increase [16], which has led to

significant increase in exposure of communities to wildfires. A recent study [17] showed that al-

most 84% of the wildfire incidents are a result of human actions, which correlates with the previous

statement. In light of these developments, a shift in wildfire management paradigm is required such

that mitigation efforts are geared towards wildland urban interface as well. Appropriate attention

needs to be placed on communicating and regulating community risk as well [12, 18].

Most studies on wildfires are biased towards wildlands. There is paucity of literature on dy-

namics of community wildfire propagation. Many researchers believe more attention should be

paid to fire regulation needs, in addition to wildland management, for communities to coexist with

nature. Calkin et al. [12] discussed this paradigm for controlling wildfire risk. Wildfires are a

part of nature, both inevitable and necessary, pointing to only one foregone conclusion - Wildfire

management needs to be driven by regulating vulnerability of communities [12, 18] by making
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communities resilient to wildfire events. The concept of “Resilience,” in the context of civil en-

gineering, is generally described as the ability of a community to withstand external shocks to

its infrastructure components and recover from such shocks efficiently and effectively. With the

increasing intensity of natural hazards every year, the focus of research community has shifted

towards assessing resilience of communities to these events. Such that informed decisions can

be made to create robust communities which experience minimal damage and can be recovered

efficiently. Resilience comprises of two components - (1) Initial damage phase and (2) Recovery

phase. The former relates to the damage incurred by a community due to a specific type of haz-

ard and the latter relates to the recovery of critical infrastructures within a community with time.

Since each hazard has a different impact on community, resilience for each hazard needs to be

quantified separately by formulating damage models for corresponding hazards. There have been

several comprehensive frameworks established for different hazards such as - earthquakes [19],

floods [20],hurricanes [21, 22], tornadoes [23–25] and Tsunamis [26]. However, wildfire risk has

not been quantified yet in such manner, which makes it difficult to assess resilience of communities

to wildfires.

The full realization of wildfire risk assessment and management requires the use of advanced

analytical and numerical tools. The most accurate tools are arguably those that are based on com-

putational fluid dynamics (CFD). However, CFD models are computationally very expensive and

their use in very large problems (i.e. community level analysis) is currently not feasible. With

advances in computational infrastructure, in the near future, the use of CFD models will become

a reality. However, with the risk of wildland urban interface (WUI) fires on rise each year, com-

munities cannot afford to wait for the computational technology to match the complexity of the

problem. With this in mind, the pressing need lies in exploring alternative directions for quantify-

ing and studying WUI risk of communities.
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1.1 Motivation
Wildfires are a natural phenomena, similar to other natural hazards. However, only recently

(spring 2018) the Wildfire Disaster Funding Act (H.R. 2862) was passed by congress, in which

wildfires were classified as a natural hazard just like hurricanes, floods, and earthquakes [27]. An

abundance of detailed knowledge exists on risk quantification of other hazards [28, 29]. In case of

earthquakes, for example, we understand the underlying factors that govern infrastructure damage

potential. For instance the depth of focus from the epicenter, the fault rupture mechanism, and the

proximity of the infrastructure to fault lines are all factors that affect the damage potential. Some

other factors include type of soil, water content within the soil, among several others. Damage

potential from wildfires lack the same level of details as other hazards. Even though wildfires

can be classified as a natural disaster they do not necessarily behave in a similar fashion as other

hazards. Wildfire is the only natural hazard in which the intensity of the hazard increases with time

in proportion to the volume of damage caused. The ignitable structures act as fuel to the ongoing

fire and result in an increase in spread. The yearly funding appropriated to any hazard is limited.

Given the rise in population living near the wildland urban interface [16, 30, 31] and the changing

climate it is essential that optimized allocation of funding is considered for mitigation procedures.

In order to do that an unanswered question still remains - Have we quantified the underlying factors

involved in wildfire events and do we understand their importance relative to each other?

Wildfire mitigation is primarily focused on complete fire suppression and control [32], which

ultimately results in high expenditure [33, 34]. Emphasis on public lands within and adjacent to

communities provides some relief but falls short of the level of mitigation required to impact the

susceptibility of communities [33]. Essentially, current management practices have continued with

the approach that has led us to the wildfire paradox by framing the WUI fire disaster as a wild-

fire control problem, instead of focusing on the susceptibility of structures to the inevitability of

wildfire exposure. Several researchers [32,33,35,36] have found that the characteristics of a home

determine home ignition potential to a great extent as compared to its immediate surroundings.

In addition, some researchers [37] have also found that community layout is a critical factor gov-
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erning the likelihood of household ignition. There are other factors as well, pertaining to built

environment properties, such as - housing density, fuel load and moisture, weather and some oth-

ers [38]. Primary responsibility for preventing home destruction lies with homeowners rather than

public land managers. Adequate metrics are required to quantify the ignition potential of individ-

ual households within a community such that informed mitigation decisions can be made, both, by

the authorities and household owners and to provide better understanding of the factors governing

wildfire behavior.

1.2 Research Significance
With the increasing communities at the wildland urban interface the concern for developing

fire resilient communities is ever pressing. There are several models on quantifying wildfire risk in

context of wildlands. However, currently there does not exist any computationally efficient model

to quantify risk of communities to WUI fires. Even urban planning and structural guidelines incor-

porate limited form of design requirements for wildfires. Wildfires are dissimilar to other hazards

such as earthquakes, floods and tsunamis. For any natural hazard event, the source of disturbance

has an independent effect on each structure. Generally, with some exceptions, the performance

of any one structure under the hazard does not affect the performance of other structures under

the same hazard. In case of wildland urban interface fires, the probability of a house catching fire

is strictly dependent on the probability of other houses around it getting ignited. Each individ-

ual structure when ignited not only propagates the fire to neighboring structures but also generate

embers, which further increase the likelihood of other structures igniting.

This propagation behavior of WUI fires inside a community can be considered similar to that

of systemic transmission of diseases in a social network. Graph theory has been widely utilized to

understand disease transmission [39–45], which has provided unparalleled advances in the field.

Similarly, a graph theory model might be able to provide a better understanding of global behavior

of WUI fires in communities as well. There are Computational Fluid Dynamics models that are

able to successfully capture the wildfire dynamics within a community, however, their significant
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computational requirement restricts their application to practical purposes. Graph models, on the

other hand, have been known to be sufficiently efficient in terms of practical applications.

1.3 Research Objective and Scope
There has been prolific increase in studies focused on quantifying community resilience fol-

lowing extreme events in the U.S. including major efforts through the NIST-funded Center of

Excellence for Community Resilience Planning led by Colorado State University (CSU), of which

this study is part of. Measured by the recovery process, resilience studies have focused on infras-

tructures, social, or economic recovery [46–48]. However, a prerequisite for any resilience analysis

is quantification of structural damage caused by the hazard. Various analytical, numerical, and ex-

perimental methods have been utilized to obtain such quantification under various hazards. While

this quantification in the case of structural fire does exist [49,50], proper tools for community level

assessment under fire, whether caused by earthquakes or wildfires, are still lacking. As such, the

focus of this study is to provide a computationally efficient platform for studying the interaction

of wildland urban interface (WUI) fires with communities to quantify wildfire risk, which is an

essential ingredient for any future resilience analysis.

A WUI fire is a special case of wildfire which initiates in the wildlands but continues to proceed

into a community. The general steps involved in a WUI fire can be classified into - (1) Wildfire

initiation in the wildlands (2) Wildfire propagation from the internal regions of wildland to the

wildland-urban interface (3) Ignition of ignitable areas inside community; and (4) Propagation of

fire to different parts of community (Fig. 1.1). In accordance with this classification, the study

is primarily conducted in two major parts - (1) Propagation within wildlands and (2) Propagation

inside communities (Fig. 1.2). However, the study is kept biased towards the latter since there is

an abundance of research related to the former.

For the first component, theory of Cellular Automata (CA) is used to formulate a two-dimensional

dynamic wildfire propagation model. In doing so, the propagation mechanism of wildfire is mod-

eled by a set of rules in CA to account for short- and long-range heat transfer mechanisms and the
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rules are defined so as to include the effect of external factors, including but not limited to, wind

conditions (direction and speed), topography and vegetation properties. To model the behavior

of wildfire inside communities concepts of graph theory [39–41] are used . A directed graph for

community in question is developed to model wildfire inside a community by incorporating differ-

ent fire propagation modes. The model accounts for relevant community-specific characteristics

including wind conditions, community layout, individual structural features, and the surrounding

wildland vegetation. Vulnerability of individual components of community is evaluated using con-

cepts of shortest path such that overall exposure of a community can be evaluated. Effect of fire

mitigation measures within communities are also incorporated to account for community response.

The framework is tested to draw out meaningful conclusions on the behavior pattern of WUI fires

and the role of individual components in a community. Finally, the community propagation model

is utilized to evaluate risk of some communities in US to wildfires.

Chapter 2 provides a background of the analytical, numerical and experimental methods devel-

oped in fire research on wildfire propagation. Various code provisions and guidelines for wildfire

mitigation, currently implemented in US, are also discussed. Chapter 3 provides the theoreti-

cal development of a probabilistic wildland fire propagation model based on concepts of Cellular

Automata. Implementation of both short- and long-range propagation mechanisms in the wildland

model are described. In addition, effects of fuel density, wind conditions and topography are incor-

porated into the model. Chapter 4 describes the development of a probabilistic community wildfire

propagation model based on concepts of graph theory. Individual sub-models for different modes

of heat propagation are described that form the basis for the proposed graph model. In Chapter 5,

the steps involved in evaluating individual ignitable element vulnerability, as well as, entire com-

munity vulnerability are discussed using the graph formulated in the previous chapter. A new type

of fragility to quantify vulnerability of different parts of communities to wildfires is introduced.

Results of tests conducted on parts of different communities in Oakland, which includes - vul-

nerability analysis of community under similar conditions as 1991 Oakland fire, study of wildfire

propagation dynamics using graph Centrality measures and studying the effects of fire intervention
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and wildlands on community vulnerability are also shown. In Chapter 6 the framework for evalua-

tion of risk is discussed, along with the individual components involved in it. The results from risk

analysis on four different communities across United States are shown and discussed, followed

by a theoretical foundation to incorporate and quantify the effects of fire mitigation/intervention

measures inside communities, such that wildfire vulnerability can be captured more accurately.

An optimization framework is combined with the intervention framework to explore and better

understand optimal intervention measures in communities for different communities.
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Chapter 2

Literature Review

2.1 Background
There exist several models on wildfires, all of which can be namely classified into three cate-

gories – Analytical, Numerical and Empirical. Each type possesses certain strengths and limita-

tions. For instance, analytical models are computationally efficient since they are an approximate

mathematical representation of the actual behavior. These are specifically advantageous for emer-

gency planning purposes as they can be employed as preliminary tools; however, they cannot be

used in comprehensive analysis, where local or minute behaviors are of interest. Numerical mod-

els on the other hand involve modeling the fundamental physics of the problem, which in case

of wildfire is best described by coupled dynamic fluid-flow and thermodynamic equations. As a

result, these can be highly accurate but are mostly non user-friendly and can result in impractical

processing time. These models are specifically used for research purposes. Currently, all numeri-

cal wildfire models suffer from exaggerated computation time, making them impractical for high

number of simulations. The empirical models as the name suggests are strictly data based. These

models are fundamentally easy to use; however, their applicability is restricted to cases similar to

the reference data used for calibration.

Other than these 3 primary classifications hybrid models have also been developed which share

traits with more than one classification. The data-driven models are a recent addition to wildfire

research and can be considered as hybrid models. Data-driven models utilize extensive data to

calibrate approximate models , which can be either a numerical or analytical, to increase their

accuracy. The strict dependency of these models on data hinders their widespread application in

investigating wildfires since one of the major problems in quantifying fire behavior up till now has

been lack of pertinent physical data. Another class of hybrid models consist of a cross between

analytical and numerical models, such that only a certain portion of the behavior is modeled using
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physical principles and the rest is compensated using mathematical concepts. These models have

a lower dependency on data than empirical models and at the same time do not have impracti-

cal computation requirements. The main concern with these types of models is their respective

formulation, which therefore requires careful deliberation to arrive to effective formulations.

There exist several wildfire propagation models that are currently being used by fire manage-

ment agencies and researchers all over the world. These models encompass different types (as

discussed above) ranging from empirical to completely analytical. Some prominent examples in-

clude - Rothermel’s wildland fuel model [51], National bushfire model [52], BehavePlus [53],

FlamMap [54, 55], FARSITE [56], FSPro [57], WIFIRE [58] and others [59, 60]. These models

are widely accepted and entail several aspects of wildfires; however, the models either entirely

focus on wildlands or pertain to a localized aspect of fire propagation in communities. While ro-

bust computational fluid dynamic (CFD) models exist for simulating structure-fire interactions on a

community scale [61], their complexity and computational demand prevent their widespread appli-

cation. The physics involved in modeling wildfire propagation is computationally expensive, as it

pertains to solving simultaneous fluid-thermodynamic differential equations. The lack of requisite

data for wildfires further prevents better understanding and modeling of wildfires let alone their in-

teraction with communities. With advances in computational infrastructure, in the near future, the

use of CFD models will become a reality. Other fire propagation models have been explored in the

past using concepts of graph theory, both for wildlands [62–64] and urban settings [65, 66]. These

models provide a better alternative to the ones discussed, however, their focus has been either on

wildlands entirely or on urban fires, as a result, they do not incorporate all factors involved in WUI

fires.

2.2 Analytical Methods
Rothermel’s wildland fuel spread model [51] is considered as one of the most widely used

fire propagation models and has been successfully utilized in various simulation programs. The

model is based on extending the work by Frandsen [67] and comprises a mathematical expression
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for predicting the rate of fire growth. In the model, conservation of energy principle is applied

to a unit volume of fuel ahead of an advancing fire in a homogeneous fuel bed. The model is

complete in the sense that no prior knowledge of a fuel’s burning characteristics is required and

only the inputs describing the physical and chemical makeup of the fuel and the environmental

conditions in which it is expected to burn are needed. The general inputs taken by the formula are

fuel loading, fuel depth, fuel particle surface-area-to-volume ratio, fuel particle heat content, fuel

particle moisture and mineral content, and the moisture content. The model has been subjected to

some direct verification tests such as in logging slash assembled fuel beds [68] for both prescribed

and wild grass fires [69]. Stevenson and others [70] were also able to match observations and

predictions of spread rate in mixed chaparral-like fuels using Rothermel’s model in conjunction

with an area-growth computer algorithm.

Albini [59] presented a mathematical model to predict maximum spot fire distances. This

work has laid the foundation for several other models, such as the BEHAVE model of USDA [53],

which uses a simplified modification of Albini’s work. Albini’s spotting model hinges on the con-

cept that, regardless of the source, all firebrand trajectories are similar except for the first phase of

the trajectory in which the lofting height (initial firebrand height) is attained. In order to implement

the simplified method for calculating lofting heights from wind-driven surface fires, Albini mod-

eled fireline intensity pulses that cast firebrands aloft using a best-fit frequency spectrum, which

measures the thermal energy in a pulse. Albini proposed a simpler model, called the ’lofting

energy model’ [71], which is a simplification of the previous model. The two parameters are fuel-

dependent and must be computed for each condition of fuel type and moisture. The lofting energy

model estimates mean thermal energy per foot of fireline at the front of wind-driven surface fires

spreading at a uniform rate under suitable burning conditions.

Knight and Coleman [52] used Huygen’s principle to model the spread of the perimeter of a

wildfire as part of the National Bushfire Model. They suggested that a perimeter of a fire can be

regarded as a continuous curve or as a discrete number of points approximating such curve. This

is also known as the fire front in several studies. Each point on the perimeter can be considered
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as a point source, which expands as a small ellipse. The parameters of each ellipse are a function

of the local fuel type, slope, meteorological conditions and the time step. According to Huygens’

principle, the envelope of these ellipses describes the new perimeter. Problems with this approach

arise when the terrain and fuel are discontinuous, causing the perimeter to become complex and

develop concavities. Some other studies have also used Huygens’ principle for the propagation

of a fire shape [56, 72–77]. However, these models require intensive measures to correct crossing

segments on the fire edge and to merge multiple fronts [52, 56, 78]. To alleviate this problem,

Finney [62] approached the propagation modeling as a search for the minimum time for fire to

travel among nodes in a two-dimensional network. The paths producing minimum travel time be-

tween nodes are then interpolated to reveal the fire perimeter positions at an instant in time. These

fire perimeters and their fire behavior characteristics (e.g. spread rate and fireline intensity) are

essentially identical to the products of perimeter expansion techniques. Travel time methods offer

potential advantages for some modeling applications, because they are more readily parallelized

for computation than methods for expanding fire fronts and require no correction for crossed fronts

or merging separate fires. Cohen [33] proposed a model to understand the effects of fire radiation

on structures. They developed a thermal radiation and ignition model to estimate structure ignition

potential using various types and densities of vegetation and flame-to-structure distances. Model

results indicated that ignitions from flame radiation are unlikely to occur from burning vegetation

beyond 40 meters (131.23 ft) of a structure and thinning vegetation within 40 meters (131.23 ft)

reduces the effect of ignition significantly. Woycheese and others [79] also proposed an analytical

model to determine fire brand propagation. They considered factors such as plume velocity fields,

brand size and shape distributions, time varying wind velocities, combustion rates and terrain ef-

fects. The study assumed brands to be spherical in nature and utilized the concept of mechanics to

determine the equations for maximum brand propagation distance. Several other analytical models

have been formulated and tested over the years. These models have formed the basis for several

numerical models and have led to the advancement in the field of WUI fires analysis.
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2.3 Numerical Methods
Recent advancement in computational methods and numerical techniques have resulted in an

increase in the application of numerical methods in almost all fields of science. The advantages of

using numerical methods lie in the fact that they are cost effective and can be a substitute to ex-

perimental studies, providing a better perspective in some cases. In light of the high uncertainties

in the risk poses by WUI fires, several numerical models have been developed in the last decade

to emulate real-time behavior of fire. The most successful fire propagation models at present are

the ‘Fire Dynamic Simulator’ (FDS) [61] and its extension - the ‘Wildland-Urban Interface Fire

Dynamic Simulator’ (WFDS), developed by the National Institute of Standards and Technology

(NIST). The FDS is a computational fluid dynamics model of fire-driven fluid flow. The software

solves numerically a large eddy simulation form of the Navier–Stokes equations that is appro-

priate for low-speed, thermally driven flow, with an emphasis on smoke and heat transport from

fires. Smoke generated during wildfires is a source of concern for the community as it impedes

fire suppression efforts. Thus, it is important to consider behavior of smoke while considering a

plan of action against any wildfires and community evacuation. NIST developed a smoke visu-

alization tool ‘Smokeview’ [80] to visualize the data from FDS. It utilizes numerical simulations

generated by the FDS to calculate the changing distribution of smoke, fire gases, and temperature.

BehavePlus [53] is another fire behavior software which accounts for a variety of fire parameters

such as rate of spread, spotting distance, scorch height, tree mortality. In addition, fire environ-

ment parameters such as fuel moisture and wind adjustment factor are also included. BehavePlus

is part of a suite of fire behavior systems that includes FlamMap [54, 55], FARSITE [56], and

FSPro [57]. The FlamMap fire mapping and analysis system does fire behavior calculations for

each point on the landscape with fuel moisture and wind constant in time. The FARSITE fire area

simulator models fire growth under conditions that vary in both space and time. The fire behavior

at a point (pixel) depends on the fire spreading from adjoining pixels and the conditions at the time

it burned. The FSPro fire spread probability system performs hundreds or thousands of separate

fire growth simulations from weather sequences based on climatology. Under the Landscape Fire
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and Resource Management Planning Tools Prototype Project, or LANDFIRE Prototype [81], a

large field-referenced database was compiled to act as the training data for multi-faceted goals,

including 1) developing predictive landscape models, 2) generating satellite image catalogs and

biophysical gradient layers to serve as spatial predictors for mapping vegetation and wildland fuel

characteristics, 3) developing vegetation and fuel map unit classifications, 4) developing vegeta-

tion dynamics models for simulating vegetation development over time, and 5) implementing a

landscape succession model (LANDSUMv4) for simulating historical fire regimes and vegetation

reference conditions.

The challenges found when developing quantitative fire models are associated with providing

accurate mathematical representations of the multi-physics phenomena that constitute the fire dy-

namics. In addition, data pertaining to fire behavior that is required to inform the model are quite

sparse. A possible approach to overcome the limitations found in numerical simulations of fires

is data assimilation (DA), which combines computer simulation tools with sensor observations

through iteratively correcting the numerical model by the observed data to improve the predic-

tion abilities of the numerical models. The use of DA in other fields of science, especially for

weather prediction, has been proven successful and has started to gain popularity in modeling fire

as well. Finney et al. [57] developed a data ensemble simulation system (FSPro) that can account

for uncertainties in long-range weather conditions and two- dimensional wildland fire spread. The

study comprised of modeling fuel moisture based on energy release component while developing

a U.S. fire danger rating index and modeling the index variation throughout the fire season using

time series analysis of historical weather data. To account for uncertainties in wind, wind speed

and direction was stochastically sampled from joint probabilities of historical wind data for the

date range of the fire simulation period. The simulations performed were found to be in consis-

tent agreement with the reference cases. Some other data-assimilation fire models have also been

developed and successfully applied such as – Rochoux et al. [60], Zhang et al. [82] and WIFIRE

by Altintas et al. [58]. With the success of these models, soon fire models will also acquire the

prediction accuracy of weather models as well. However, in order to achieve that substantial data
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is required regarding the behavior of fire and its other parameters, thus experimental studies are

quite vital at this stage of research in wildfires.

2.4 Experimental Methods
In order to quantify WUI fires, significant and comprehensive data are required. Thus, experi-

mental studies of fire are quite crucial in understanding the behavior and for developing preventive

measures. Over the years, urban fires have been investigated in detail; however, WUI fires have not

been given the necessary attention. In the last decade, significant number of experimental studies

have been conducted. Rollo [83] correlated the relationship between wind speed and building con-

figuration with the transportation characteristics of various sizes of fire brand material developed

by Cheney and Sullivan [84]. Given the variables of wind direction, wind speed, and topography,

their study assessed the behavior of a single-story mono-pitch base model on an unobstructed hor-

izontal ground plane subjected to a scaled 7 m (23 ft) vertical wind profile ranging between 28-35

Km/hr (17.4-21.75 mph). Cohen performed large-scale testing during the International Crown

fire modeling experiments from 1997-2001. From these experiments, it was determined that when

a clear defensible space of 36 m (120 ft) was maintained, radiative exposure was insufficient to ig-

nite wooden exterior walls from crown fires, i.e. only firebrands or local combustible material (e.g.

mulch) could ignite a structure. Reinhardt et al. (2006) used destructive measurement techniques

to measure canopy fuels on plots in five interior west conifer stands. The work was geared at quan-

tifying important fuel parameters such as bulk density, canopy fuel load, and vertical profiles of

canopy fuels. The experimental results were compared with several computational methods to test

the validation. Murphy et al. [85], Safford et al. [86] and Calkin [12] showed that fuel treatments

that reduced the fire intensity beyond the high-intensity zones were not effective in reducing WUI

losses.

Various experimental studies on WUI fires have also been conducted by researchers at NIST.

These studies have paved way for many other experimental work all over the world. For example,

the NIST, in collaboration with the University of Florida and the US Forest Service Southern Re-
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search Station, tested 34 species of ornamental shrubs at NIST’s Large Fire Laboratory (LFL) to

quantify and rank their flammability. Wind-tunnel experiments were conducted on the specimens

to characterize the potential of disk [87, 88] and cylinder-shaped [89] firebrands to ignite different

types of fuel beds such as - surface fuels and structural fuels. The cylinder-shaped firebrand di-

mensions were based on Douglas fir tree burn experiments previously conducted in NIST’s LFL

and Korean pine trees at the Building Research Institute (BRI) in Japan [90]. It was shown that if

the firebrands were burning, then both types of firebrands would induce ignition in the fuel bed.

Following these experiments, further studies were conducted to determine the range of conditions

for firebrand ignition of common building materials [91]. A simple and efficient firebrand gener-

ator was developed by NIST, which is also referred to as the ‘NIST Dragon’ [89], that produces

glowing firebrands. The output capacity of the generator was validated to that of the results pro-

duced for Douglas tree burns as well as Korean pine trees [90]. The generator has been used in

several other experimental studies by NIST and has also been used to study firebrand ignition in

the large-scale wind tunnel (5 m (16.4 ft) wide, 4 m (13.12 ft) tall) at Japan’s BRI. The success of

NIST Dragon has motivated researchers all around the world to develop a similar mechanism for

firebrand testing. The conditions simulated by the firebrand experiments are now being adopted to

simulate real time WUI fire scenarios. In addition to NIST, other agencies - United States Forest

Services (USFS) and the Insurance Institute for Business and Home Safety (IBHS) have also been

highly active in this field. Recent experimental studies have identified clear vulnerabilities of WUI

structures to low intensity fires and firebrands, including roofing components, eaves, vents, wood

piles, mulch, fences, decks, and so on [12, 92, 93]. These unique full-scale and reduced-scale test

methods have provided and continue to provide the proper means by which future building codes

and standards for fire protection of structures can be developed.

2.5 Code Provision and Guidelines
Codes and standards are useful for regulatory bodies to adopt in order to help mitigate potential

WUI home ignitions and the impact on communities. There are several standards and codes that
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were developed to address the problem of WUI fires; however, none extensively covers all aspects

of the problem. There is currently no standardized method of risk assessment that can be applied

nationwide to WUI communities in the U.S. [94]. Some of the most prominent codes and standards

include:

o NFPA 1141: Standard for fire protection infrastructure for land development in wildland,

rural, and suburban areas [95]

o NFPA 1142: Standard on water supplies for suburban and rural firefighting [96]

o NFPA 1144: Standard for reducing structure ignition hazards from wildland fire [97]

o NFPA 1143: Standard for wildland fire management [98]

o ICC International Wildland-Urban Interface Code [99]

o California Building Code Chapter 7A: Materials and Construction Methods for Exterior

Wildfire Exposure [100]

The standards set by NFPA 1141 - 1144, the ICC WUI code and CA CBC can partially be

used by planners, developers, and communities. NFPA 1141 covers - means of access, building

access and separation, fire protection, water supply, community safety, emergency preparedness

and fire protection during construction. NFPA 1142 primarily deals with regulation of water sup-

plies required in rural areas, but also includes regulations related to WUI to some extent. NFPA

1143 applies to wildland fire management. NFPA 1144 is the most useful for home and property

owners as it deals with assessment of fire hazards in the structure ignition zone, building design,

location and construction and fuel loads around the defensible space. Section 701A of the 2009

California Building Code includes a wide variety of topics regarding prevention of WUI fires such

as - protection against intrusion of embers under roof coverings or into attics through attic ventila-

tion, ignition-resistant exterior construction, use of tempered glass windows, and multiple decking

requirements [100]. The California building code is viewed to be the most flexible and compre-

hensive of all standards in the U.S. to mitigate the effects of WUI fires. An in-depth investigation
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of the 2007 San Diego fires showed that houses built between 2001 to 2004 following CA Building

Code standards were much less likely to burn, with 2-3% of those houses exposed to WUI fires

burning, as opposed to 13-17% of exposed homes built before 2001 burning. Many other standards

have also been developed which primarily deal with testing of materials and components of struc-

tures in WUI-prone communities. The American Standards of Testing and Materials (ASTM) has

been a proponent for developing such standards, some of which are listed below.

o ASTM E108 - Standard Test Methods for Fire Tests of Roof Coverings [101]

o ASTM E84 - Standard Test Method for Surface Burning Characteristics of Building Materi-

als [102]

o ASTM E2726 – Standard Test Method for Evaluating the Fire-Test-Response of Deck Struc-

tures to Burning Brands [103]

o ASTM D2898 – Standard Practice for Accelerated Weathering of Fire-Retardant-Treated

Wood for Fire Testing [104]

o UL 790 - Standard Test Methods for Fire Tests of Roof Coverings [105]

o Testing Standards CA SFM 12.7A-1, Exterior Wall Siding and Sheathing [100]

o Testing Standards CA SFM 12.7A-2, Exterior Windows [100]

o Testing Standards CA SFM 12.7A-3, Under Eaves [100]

o Testing Standards CA SFM 12.7A-4, Decking [100]

Firewise is a program of the National Fire Protection Association, co-sponsored by the USFS,

DOI, and the National Association of State Foresters (NASF), developed to aid homeowners in

preventing WUI fires. Firewise aims at a more hands on approach by the community itself through

promoting involvement of homeowners through taking individual responsibility for protecting their

homes from the risk of wildfire [98]. Firewise describes the goal of teaching residents about
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wildfire and about smart practices around their homes that can reduce the risk of destruction. The

program started in 1986 as a national project and gradually evolved to become a national program

in 2002. It encourages local solutions for wildfire safety by involving homeowners, community

leaders, planners, developers, firefighters, and others in an effort to protect people and properties

from wildfire risks. These codes and standards provide some degree of protection from WUI fires;

however, these are all qualitative in nature. To develop effective measures, the behavior of WUI

fire needs to be better understood and quantified through simplified tools such that advancements

in quantitative standards can be made.
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Chapter 3

Wildland Propagation Model

In order to quantify and understand wildfire risk to communities, it is essential to first under-

stand the propagation mechanisms in wildlands, since they are are a critical part of WUI fires.

In this study, a Cellular Automata (CA) model is proposed and developed to simulate wildfire

propagation in wildlands (Fig. 3.1). Theory of Asynchronous CA, which is a discrete element

modeling technique, is utilized to create an approximate analytical model as a function of cer-

tain probabilistic parameters that account for the uncertainties associated with the problem and

can be tuned by on-site data to improve the model’s accuracy as per user’s discretion. CA was

originally developed in the 1940s by Stanislaw Ulam and John Von Neumann, however its signif-

icance did not come to light until the 1970’s, when British mathematician John Horton Conway

created the ’Game of Life’. A cellular automaton consists of a regular grid of cells such that

each cell can attain a finite number of states. On a two-dimensional grid of NxM cells, each cell

{A(i, j, t) : i ∈ N, j ∈ M, t ∈ R} may be present at any of the finite number of states. At each

time step t the next state of a cell A(i, j, t+1) is determined by its present state and the states of its

local neighbors. CA models can be used to emulate both deterministic and probabilistic scenarios.

A significant number of CA models have been developed in different fields of science ranging from

astrophysics, ecology, and hydrology to structural engineering and many others.

The CA framework is implemented by dividing the layout of wildland area into a grid compris-

ing of cells. The size of the cells will be a function of the scale of the location chosen for analysis.

If the cells are chosen to be too small the computation cost would increase significantly, and if

they are chosen too big the accuracy could be affected. The state of each cell is determined by

its respective color. For instance, the fire blocks (Fig. 3.1) represent propagation of fire by means

of different colored cells. The numbers on each cell represent the flame intensity and the flame

cells are assigned increasing strength numbers as 1, 2 and 3. The yellow, orange and red cells are

the different stages of flame intensity, and black cell represents burnt-out state. The green cells
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represent the wildland vegetation and are the only ignitable elements in the model. For initial tests,

only two types of vegetation are considered (Fig. 3.1). Dark green vegetation cells represent grass

and the light green cells represent trees. The blue cells represent water, which stays unaffected by

fire.
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Figure 3.1: Different states of cells considered in the Cellular Automata model

The probability of ignition for each cell is calculated by Eq. 3.1, where f(.) is defined by

Eq. 3.2. Using the probability of ignition the new state of each cell is given by Eq. 3.3, where

H(.) ∈ [0, 1] is the Heaviside function, rnd(.) ∈ [0, 1] is a random number generator up to two

decimal places and I(.) is the state value for fire progression (Fig. 3.1). For initial tests, it is

assumed that each flame intensity lasts for only a unit time i.e. after each time step the flame

changes its intensity based on its previous state. Each vegetation block has the chance to be ignited

if at least one of the neighboring cells is ignited. The equation states that the probability of ignition

of the center block is proportional to the number of cells ignited in its neighboring cells and is

given by the summation of the flame strengths of the neighboring blocks scaled by λs, which is the

expected probability of ignition due to short-range heat transfer when only one neighboring cell is

ignited.
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Pi(i, j, t+ 1) = (f(A(x, y, t))|x ∈ {i, i+ 1, i− 1}, y ∈ {j, j + 1, j − 1}, (x, y) 6= (i, j)) (3.1)

f(X1, ..., Xn) =
n∑

w=1

Xw.λs (3.2)

A(i, j, t+ 1) =


H(Pi(i, j, t+ 1)− rnd(i, j, t)) if A(i, j, t) = 0

I(A(i, j, t) + 1)I∈{1→2→3→2→1→0} if A(i, j, t) > 0

(3.3)

3.1 Effect of Wind
Wind conditions have a profound effect on wildfire propagation as it can not only alter the

direction of propagation, but also the rate of propagation. For the proposed model, the effect of

wind is segregated into two components – (1) wind speed (vw) and (2) wind direction (θ). The

CA fire propagation mechanism is modified to account for effect of wind by scaling the strength

of neighboring cells. As shown in Fig. 3.2, the neighboring cells are divided into eight regions

and m represent the boundaries of classification. Depending on the wind direction at time t the

cells lying in the same region are scaled. For instance, if θ = 45o, the cell in region 4 is amplified

(A(x, y, t) = A(x, y, t).λw(x, y, t)) and the cell in region 8 is reduced (A(x, y, t) = A(x,y,t)
λw(x,y,t)

).

Cell 4 is scaled up since it lies behind cell A(i, j, t), and it will have a higher chance of igniting

it, thereby increasing its contribution. On the other hand, cell 8 is scaled down as the wind will

force the flame in cell 8 to move away from A(i, j, t), thereby reducing its contribution. The

scaling factor is defined by Eq. 3.4, where g(.) is a scaling function proportional to wind speed.

As the wind speed increases, the probability of forward propagation increases while backward

propagation decreases.

λw(x, y, t) =


g(vw) if A(x, y, t) 6= 0

1 otherwise
(3.4)
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Figure 3.2: Segmentation of cell space based on wind direction

The effect of wind direction and speed on the wildfire propagation pattern is shown through a

sample simulation in Fig. 3.3. Both wind direction and speed are varied in time and their respective

values are shown on the top of the figures. As seen from the simulation, the fire starts out in the

direction of wind since the wind speed is quite high at the beginning. As wind direction changes,

the direction of fire deviates with it. When the wind speed is reduced sufficiently the fire spreads in

all directions until the wind speed picks up again. When this pattern is repeated, and a non-uniform

burn scar is observed from the simulation.

3.2 Effect of Topography
Topography, like wind, has a significant effect on fire propagation as well. The rate of fire

propagation tends to decrease when going down slope and tends to increase when going up slope.

A similar mechanism to the wind is utilized to account for the effect of variation in topography.

Given the height for each cell from a specific reference point, based on the difference in heights

between A(i, j, t) and its neighboring cells (A(x, y, t)), the strength of the neighboring cells is

modified as given by Eq. 3.5. The scaling factor λt(x, y, t) is given by Eq. 3.6, where h(x, y) and

h(i, j) are heights of neighboring and central cells and rth is the threshold distance between them.

When the difference in heights is negative i.e. the neighboring cell is below central cell the strength

of neighbor cell is amplified, otherwise, the strength is reduced. The effect of topography is limited
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Figure 3.3: A sample simulation showing effect of wind speed and direction on fire propagation

by a threshold distance such that if the difference in height between the central and its neighboring

cells is more than the threshold, then topography does not have an effect. The threshold distance

ensures that the model is able to capture the presence of severe discontinuities in the topography.

A(x, y, t) = A(x, y, t).λt(x, y, t) (3.5)

λt(x, y, t) =



e

h(x,y)−h(i,j)
rth if (A(x, y, t) �= 0 and (h(x, y)− h(i, j)) ≤ rth)

1 otherwise
(3.6)

The topographic profile of a test area is shown in Fig. 3.4, which also shows the fire initiation

point and its expected route. A test simulation is presented in Fig. 3.5 to show the effect of

differences in topography on wildfire propagation. For this simulation wind speed is assumed to

be small to reduce its participation. The fire spreads out in all directions at first but eventually takes

two directions - the upper and the lower paths shown in Fig. 3.5. The fire spreading along the top

path eventually comes to a halt once it spreads completely, as it cannot spread to the lower regions

from top. The fire which proceeded to the lower path keeps on spreading until it completely
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Figure 3.4: Topography layout of test scenario

covers the area. This test shows the restrictions introduced by a topographic profile on wildfire

propagation and also the variation in propagation rates for wildfire as the fire travels faster going

upslope than downslope.

Figure 3.5: A sample simulation showing effect of topography on fire propagation

3.3 Ember Spotting
A wildfire propagates by short-range (convection, radiation and conduction) and long range

(embers) heat transfer mechanism. The latter primarily includes embers generated from ignited

sources, such as vegetation, houses, etc. Short-range mechanisms have been studied in sufficient
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detail and have been incorporated in several models quite efficiently. However, the uncertainty

associated with ember spotting is rather significant, and its complex mechanism, renders the im-

plementation not so straight forward. Most studies ignore the spotting mechanism, which is an

essential component to completely understand and model wildfire propagation. Embers are able to

travel long distances and initiate fires at locations far away from the fire front, resulting in multi-

ple fire-fronts and unpredictable fire propagation patterns. In the proposed algorithm, the embers

are modeled probabilistically by assigning every cell a probability to generate embers. Once an

ember is generated at a particular cell, its trajectory for it is calculated based on the uplift, wind

direction and wind speed at that specific time. Each ember is treated as an individual particle and

using kinematics the trajectory of each ember is calculated for next time step. At each time step,

the trajectory for each ember is updated based on the conditions at that time. The wind speed and

direction are a function of time, hence, the trajectory of embers may not be a straight path. Since

in the proposed model all embers are tracked it is possible to update trajectories for each ember.

While in flight, the embers can possibly collide with an incombustible object or they can collide

with an ignitable object and ignite it, hence all embers are checked for collision at each time step

while updating their respective trajectories.

Simulation results combining all the features of the proposed algorithm i.e. variation in wind,

variation in topography and ember generation are shown in Fig. 3.6. For the generation of embers

wind is a necessary condition, hence, a high wind velocity is considered. The topological profile

of the area is considered the same as shown in Fig. 3.4. The first part of the simulation show

the wildfire propagation patterns and the latter show the trajectories of the embers generated. The

white spots are the landing locations of the embers and the orange spots are embers still in flight.

The dark green vegetation cells represent short grass while light green vegetation represents trees.

The embers are generated only from the light green cells since embers generated by grasses would

be redundant as their flight distances would be quite small. In this simulation once the fire initiates

it starts spreading and once it reaches a patch of trees it generates embers, which in turn initiate

fire at some distance away. The direction of wind varies between−60o to 60o, as a result, the flight
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path of the embers also changes accordingly. The embers generated tend to create new points of

initiation resulting in faster propagation of fire. The embers generated by fire at lower elevations

are seen to collide with the terrain and remain in the same area; however, once the fire reaches the

highest elevation the embers generated are able to spread throughout the area.

Figure 3.6: A sample simulation showing effect of ember spotting on fire propagation. (a) Fire propagation
patterns with time (b) Ember generation and landing patterns

3.4 Wildland Model Validation and Calibration
A validation is conducted to ensure that the algorithm is producing acceptable results. Under

the absence of wind, the shape of the fire front should be circular at all times, given that the
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topography of the location and other factors such as fuel distribution are uniform. In the presence of

wind; however, the circular fire front changes into an ellipse in the direction of wind. The seminal

work by Karafyllidis and Thanailakis [106] presented one of the first CA based fire propagation

models and the fire front shapes they obtained in presence and absence of wind are shown in Fig.

3.7. The proposed algorithm was tested under similar conditions, as shown in Fig. 3.8. The

shape of the fire fronts obtained correlates well with the work by Karafyllidis and Thanailakis.

This suggests that the CA rules selected for the propagation model are satisfactory. For this semi-

quantitative validation, the proposed algorithm was tuned by adjusting the parameter λs to match

the required shape. Since the proposed CA model is stochastic in nature it would require suitable

calibration on a per case basis.

!"# !$#

Figure 3.7: Fire Front shapes obtained from [106] under (a) absence of wind and (b) wind from west to east
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Figure 3.8: Fire Front shapes obtained from proposed algorithm under (a) absence of wind and (b) wind
from west to east
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Chapter 4

Community Propagation Model

The underlying propagation mechanisms for WUI fires are identical to wildland fires; how-

ever, the difference in topographic features creates explicit differences in behavior. The urban fire

problem can be formulated analogous to a network flow problem in graph theory. A community

comprises of ignitable, as well as, non-ignitable regions. Once a wildland fire reaches an urban

interface it spreads into the community, propagating from one ignitable source to another (mostly

in parallel). The discrete movement of wildfire can thus be modeled as a flow problem in graph

theory. In this study, a graph model is presented (AGNI-NAR: ’Asynchronous Graph Nexus Infras-

tructure for Network Assessment of WUI Risk’), which takes into account different modes of heat

transfer to evaluate propagation probabilities between ignitable components, and subsequently, the

vulnerability of a community. Once ignitable areas of the community in question are identified a

suitable directed graph is developed. Each area/structure of a community is defined by multiple

nodes that form a boundary, which can also be referred to as an ’ignitable element’. Even though

parts of the area inside an ignitable element are ignitable, only the boundary of each ignitable

element is defined by nodes. Each node does not represent a particular component, but rather a

specific area within the element. For instance, a house represented by a boundary comprising of

four nodes will have each node share one-fourth the area of the total house. A node is considered

ignitable if even a small part of the area it covers is ignitable. Ideally, a high number of nodes can

be used to model different components within an ignitable element, however that would increase

the computational cost substantially.

The ignitable elements are utilized to form a directed graph, defined as G = (V , E), where

V = {v1, ..., vn} defines the node set and E ⊆ VxV defines the edge set. The adjacency matrix

of the graph is defined as A = [a(i,j)] ∈ Rnxn associated to G such that a(i,j) = (P
(i,j)
tr ){i∈Z,j∈Z},

where P (i,j)
tr ∈ [0, 1] is the probability of fire transfer from ignitable node i to ignitable node j and

Z refers to set of integers. The nodes i and j are part of ignitable elements (same or different),
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as the boundary of each element is described by node set W(m) such that V = ∪Nw
m=1W(m), where

NW is the total number of ignitable elements. A sample graph formulation is shown in Fig. 4.1

for a segment of city of Fort Collins (Colorado). Each element is comprised of multiple nodes,

which forms the boundary. The edge weights assigned between the nodes define the wildfire

propagation probabilities from one node to another. The elements in each community are classified

into different categories to recognize ignitable elements. The classification is made into categories

shown in Table 4.1 and each of which are further classified into sub-categories to improve the

accuracy of the data. Each ignitable element classification can have minor categories. For instance,

type ’Building’ could be further classified into - residential, religious, commercial and others.

Similarly, type ’Amenity’ could encompass - entertainment, financial, transportation, education

and others. An important thing to note is that while all ’Building’ types can be considered ignitable,

not all sub-classifications of type ’Amenity’ would be ignitable. A detailed list of sub-categories

is listed and defined in http : //wiki.openstreetmap.org/wiki/Map_Features.
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Figure 4.1: A sample representation of actual community layout (Fort Collins, Colorado, USA) as a graph
network. The nodes of each element define its specific boundary and the edges represent the potential fire
propagation paths (Map data c©OpenStreetMap contributors [107])
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Table 4.1: Classification of ignitable elements based on their ignition capacity

Type Landuse Building Amenity Natural area Leisure Shop Office Route Others

Ignition Some All Some All All All All None None

The discrete vegetation in a community have an impact on wildfire behavior. Even though the

vegetation patterns are not discretely modeled in the community layouts their effect is studied.

A sensitivity analysis was conducted using Monte-Carlo simulation for N = 100 iterations. It is

observed that for > 95 percentile cases, the mean vulnerability of the community converges to

a single value. This suggests that for these layouts even if the location of vegetation around a

house is unknown, the total risk of the community does not change drastically when effect of

fire intervention is not considered. This can be attributed to the multiple paths available for the

wildfire to propagate within a network. On the other hand, when fire intervention is applied,

the effect of presence/absence of vegetation is inherently considered within the framework. The

effect of vegetation would affect the fire graph network in general, and for best practice, the stray

vegetation would have to be considered as separate nodes in the graph. To circumvent this problem

in the future, satellite images can be used in conjunction with a custom image pattern recognition

algorithm to identify stray vegetation, which can be overlaid on the GIS data to get an accurate

representation of the community layout.

There are four primary modes of heat transfer from one ignitable elements to another that

are observed during WUI fires. The four modes are incorporated using information from previ-

ous research studies on wildfire. These modes are classified into two types, based on the nature

of source and target nodes, as - (1) Internal and (2) External propagation (Fig. 4.1). The for-

mer involves propagation within a particular ignitable element and the latter includes propagation

from one ignitable element to another. The cumulative fire transfer probability along each edge

from node i (under ignition) to node j is given by Eq. 4.1, such that internal propagation is gov-

erned dominantly by conduction mode [36], whereas, external propagation is governed by multiple

modes [108]. When nodes i and j belong to the same ignitable element, the ignition transfer prob-
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ability is given by conduction probability only - P (i,j)
cond ∈ {0, 1}. The dependence of conduction

propagation on material properties is not considered, hence P (i,j)
cond = 1 for all cases. It is observed

from preliminary tests that the effect of internal propagation of ignitable elements on the global

vulnerability of the community is minimal, hence conduction is modeled in a simplified manner.

In case of external propagation, three modes of heat transfer are considered - (1) Convection -

P
(i,j)
conv ∈ {0, 1} (2) Thermal radiation - P (i,j)

rad ∈ [0, 1] and (3) Ember spotting - P (i,j)
ember ∈ [0, 1],

which account for majority of fire propagation in WUI fires [35]. The total probability of external

propagation is derived from the individual mode probabilities (Eq. 4.2), which are evaluated based

on their respective formulated models. X(i,j)
conv, X

(i,j)
rad and X(i,j)

ember are the events that an element is

ignited by convection, radiation and ember modes. The three modes of external propagation are

mutually independent to each other but not entirely mutually exclusive. The details for the other

three models are discussed in the following sections.

P
(i,j)
tr =


min(P

(i,j)
total, 1) if {j /∈ W(m) : i ∈ W(m)}m∈Z

P
(i,j)
cond if {j ∈ W(m) : i ∈ W(m)}m∈Z

(4.1)

P
(i,j)
total = P (X(i,j)

conv ∪X
(i,j)
rad ∪X

(i,j)
ember) (4.2)

4.1 Convection Model
Convection is the transfer of heat from one place to another by movement of fluids. The con-

vective heat transfer includes transfer of heat flux driven by winds generated from fire. Ideally,

convection models have been developed to account for complex heat transfer mechanisms using

computational fluid dynamics (CFD) models. The most renowned is the Wildfire Dynamic Sim-

ulator (WFDS) developed by NIST [61], which utilizes the concepts of Finite Element to solve

complex coupled hydrodynamic and thermodynamic differential equations spatially. The compu-

tational requirement of solving these coupled differential equations is quite significant and herein

lies the biggest limitation of such models, which has made their widespread application all but
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impossible given the current state of computation technology. To provide a practical formulation

convective heat transfer was modeled using the concept of flame contact. In this study, heat transfer

by convection corresponds to ignition of an object due to direct influence of flames. The proba-

bility of convection is defined by the condition whether the flames from the source reaches the

target or not. Ignition due to convection would occur only if the distance between the source and

target is less than the flame length generated by the source. As given by Eq. 4.3, the probability

is considered unity since it is reasonable to assume that if the flames touch an ignitable object the

chances of ignition will be most likely. d(i,j) is the distance between source node i and target node

j and d(i,j)
conv is the convection threshold distance, which is defined as the flame length generated by

the source node i.

P (i,j)
conv =


1 if d(i,j) ≤ d

(i,j)
conv

0 if d(i,j) > d
(i,j)
conv

(4.3)

The convection threshold distance (or flame length) can be described as a function of the fol-

lowing - (i) flame height generated at the source node h(i)
f (ii) inclination of the flame with respect

to the horizontal axis θ(i)
f ∈ [0, 90o] and (iii) effect of wind direction on the convection thresh-

old distance θ(i) ∈ [0, 360o]. The relation between these variables, shown in Eq. 4.4, defines the

convection distance model, which includes the effect of uncertainty in wind direction in the form

of a wind correlation coefficient F (i,j)
cc ∈ [0, 1], given by Eq. 4.5. Wind direction directly affects

the evaluation of effective flame length. If the wind direction and direction of target node are not

aligned the flame length is effectively reduced. Consider the case, if an east-west wind is blowing

and the target node is to the east of the source then the flame length will be in the opposite direction

resulting in zero effective flame length. To capture this effect the wind correlation coefficient is

introduced. It attains a maximum value of unity when there is perfect correlation between the wind

direction and the direction of edge from node i to j, given by φ(i,j), and a value of zero if the wind

direction is opposite to the direction of target node. The effect of wind correlation coefficient can

be best explained using Fig. 4.2. While keeping wind speed constant, the flame length is eval-
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uated for different wind directions for 2 cases of nodal heights. The wind correlation coefficient

is used to capture the uncertainty associated with local changes in wind direction in context of

flame length variation. All angles are measured anti-clockwise from the positive X-axis, including

the wind direction, such that a N-S wind would be represented by θ(i) = 270o and S-N wind by

θ(i) = 90o.

d(i,j)
conv =

F
(i,j)
cc .h

(i)
f

tan(θ
(i)
f )

(4.4)

F (i,j)
cc =


cos(|φ(i,j) − θ(i)|) if |φ(i,j) − θ(i)| < 90o

0 if |φ(i,j) − θ(i)| ≥ 90o
(4.5)

Figure 4.2: Variation of convection threshold distance (radial axis in m) for different wind directions (polar
axis in degrees) for two cases of different node heights - (i) 2.5 m and (ii) 5 m, when the angle between the
source and target ignitable element is 90o
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As described above, the convection threshold distance is a function of flame height h(i)
f and

flame angle θ(i)
f . The flame height is evaluated based on height of source node h(i), using Eq. 4.6,

where α is a constant. The flame angle is heavily influenced by wind speed vw as higher the wind

speed the lower the inclination of flame will be with respect to horizontal axis. The flame angle

is mapped linearly to wind speed such that vminw → θ
(i)
f,max and vmaxw → θ

(i)
f,min, using Eq. 4.7.

Since flame length is a function of flame angle, the length in turn is positively correlated to wind

speed as well, as shown from Fig. 4.3. The plot shows variation in flame length with variation in

wind speed while keeping the wind direction constant for two cases of different nodal heights. As

observed from the figure, both wind speed and height of source nodes are positively correlated to

flame length. All parameters used for the convection model are described in Table 4.2.

h
(i)
f = α.h(i) (4.6)

θ
(i)
f = m.vw + b (4.7)

Table 4.2: Convection model parameter values

Parameter Definition Value
α Flame height constant 1.3
m slope -2.065
b constant 90o

vminw Minimum wind velocity 0 mph
vmaxw Maximum wind velocity 65 mph
θ

(i)
f,min Minimum flame angle 30o

θ
(i)
f,max Maximum flame angle 90o
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Figure 4.3: Variation of flame length (x-axis) with varying wind speeds (y-axis) for two cases of different
node heights - (i) 2.5 m and (ii) 5 m

The convection model in this study does not account for all mechanisms involved in convective

heat transfer, but this was done deliberately to minimize processing time. A sensitivity analysis

on the effects of convection on community risk was conducted, which showed low sensitivity.

Therefore, a simplified model for convection can be used to reduce processing time significantly

without compromising accuracy. Other models can be used as substitution without altering the

fundamental principles of the proposed graph framework. In context of future work, convection

model can be substantially improved with the incorporation of wind field model to capture local

changes in wind field. However, in order to make the graph framework compatible it would have

to be modified into a dynamic framework from a static one. Since the scope of this study is limited

to static graph model further discussion on the dynamic framework is not included.
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4.2 Radiation Model
When an object burns, its surfaces tend to emit thermal radiation that can be transferred to

other nearby objects resulting in increase in their temperature, and subsequently, ignition in some

cases. Radiation is one of the fundamental mechanisms of heat transfer and plays a significant role

in the spread of wildfires. Ignitable elements in a community, such as houses, are a major source

of thermal radiation. When houses ignite, they emit thermal radiation that can be absorbed by

neighboring vegetation and other houses to cause further ignitions. In the past, some studies have

pointed out the importance of understanding the role of radiation in context of communities and

wildfires. One of the prominent study was done by Cohen [36] that looked into the effect of stray

vegetation around residential buildings for wildfire spread by means of radiation heat transfer.

To develop a theoretical understanding of the interactions between buildings and the vegetation

around it the problem is formulated as a parallel plate heat transfer problem, wherein both the

source (vegetation) and the sink (building) are represented as individual surfaces. The transfer of

thermal radiation flux between the building and vegetations are studied to better understand the

role of vegetation in wildfire ignition. The study showed that if the vegetation is within a particular

threshold distance of buildings, they can have significant contribution in the building’s ignition.

The radiation flux transfer is evaluated using Stefan-Boltzmann law, which states that the total

energy radiated per unit surface area of a black body per unit time is directly proportional to the

fourth power of the black body’s thermodynamic temperature, as shown in Eq. 4.8, where σ is the

Boltzmann constant, ε is the emissivity, A is the surface area and T is the absolute temperature of

surface. The net radiative heat transfer from surface 1 to surface 2 is given as the difference in heat

flux emitted by surface 1 and the heat flux emitted by surface 2 (shown in Eq. 4.9), where vf(1,2) is

the view factor when surface 1 is the source and surface 2 is the target and vf(2,1) is the view factor

when the roles of surface 1 and 2 are reversed. View factors determine the percentage of thermal

radiation received by the target surface considering the relative positioning and surface areas of the

source and target surfaces. Using the reciprocity law for view factors, as given by Eq. 4.10, the
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Eq. 4.9 can be reformulated as Eq. 4.11. The reciprocity law for view factors is discussed in detail

in the subsequent sections.

E = σ.ε.A.T 4 (4.8)

q(1,2) = A(1).E(1).vf(1,2) − A(2).E(2).vf(2,1) (4.9)

A(1).vf(1,2) = A(2).vf(2,1) (4.10)

q(1,2) = A(1).vf(1,2).σ.(ε(1).T
4
(1) − ε(2).T

4
(2)) (4.11)

In the aforementioned study [36], it was assumed that all surfaces are parallel to each other

when evaluating the radiation heat transfer between them. However, when considering heat transfer

between different ignitable elements (buildings/areas) in a community the parallel plate assumption

can be considered as an oversimplification. In reality, the presence of multiple surfaces on each

building makes the heat transfer calculations between different buildings is complex. Depending

on the structural boundaries of a building each one can have different number of surfaces and their

varying inclinations with respect to each other have an impact on the amount of radiation flux

transferred. In real life scenarios, each structure cannot be assumed a single homogeneous source

of thermal radiation. Each surface of an ignited structure is a potential source of radiation with

different properties, such as surface area and inclination. In this study, the effect of shape of each

ignitable element on thermal radiation transfer is considered in detail by evaluating each source-

target element pair interaction i.e. the radiation heat flux transfer between surfaces of different

buildings are calculated individually.

To better understand the radiation heat transfer between different ignitable elements, the bound-

ary of each element is first discretized into multiple surfaces, which generate independently dif-
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ferent heat flux on individual surfaces of the target element. When considering the heat transfer

interaction between two elements; one is considered as the source, which emits radiation, and the

other is considered as the target, which receives the radiation. Radiation flux incident on a surface

l ∈ F(n) = {1, .., l, .., Nl} of element n due to a burning surface k ∈ F(m) = {1, .., k, .., Nk} of el-

ement m is calculated using the Stefan-Boltzmann law, where the sets F(m) and F(n) represent the

surfaces of elements m and n. Nk and Nl are the total number of surfaces of respective elements.

The radiation flux (q(m,n)
(k,l) ) between different surfaces of elements is defined by rewriting Eq. 4.11,

as shown in Eq. 4.12, where A(m)
(k) is area of kth burning surface, vf (m,n)

(k,l) is the view factor from

the source to target surface, ε(m)
(k) is the emissivity of source surface, Tf is the flame temperature

and Ta is the temperature of the surroundings.

The cumulative incident heat radiation for each target surface is function of the inclination of

the source surface (Θ(m)
(k) ), target surface (Θ(n)

(l) ) and the distance between the surfaces (d(m,n)
(k,l) ). This

is reflected by the view factors (vf (m,n)
(k,l) ) calculated between different surfaces of elements m and

n. A part of incident heat radiation is absorbed by the surface and some part is reflected. The latter

is not accounted for in the heat flux equation, since reflected radiation will have minimal impact

on other surfaces of the same element or any other element for the given scenario.

q
(m,n)
(k,l) =

(
A

(m)
(k) .vf

(m,n)
(k,l) .σ.ε

(m)
(k) .((Tf )

4 − (Ta)
4)
)
{k∈F(m),l∈F(n)}

(4.12)

4.2.1 View Factors Calculation

View factors describe the fraction of radiation flux transferred from one surface to another

based on their relative positioning. View factors play a vital role when evaluating heat transfer

between different surfaces as they are unique to each interaction, and thus, have to be calculated

separately every time. The view factor for two differential areas dA(1) and dA(1) at a distance s

is given by Eq. 4.13, where Θ(1) and Θ(2) are the angle between corresponding surface normals

and the ray connecting the two surfaces. The generalized formulation for view factor from surface

1 to surface 2 can be written as Eq. 4.14. In context of ignitable elements, the view factor equa-
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tion is rewritten as Eq. 4.15 to evaluate view factors of all surfaces between different elements

individually.

dvf(1,2) =
cosΘ(1).cosΘ(2)

π.s2
dA(2) (4.13)

vf(1,2) =
1

A(1)

∮
A(1)

∮
A(2)

cosΘ(1).cosΘ(2)

π.s2
dA(2).dA(1) (4.14)

vf
(m,n)
(k,l) =

1

A
(m)
(k)

∫
A

(m)
(k)

∫
A

(n)
(l)

cosΘ
(m)
(k) .cosΘ

(n)
(l)

π(d
(m,n)
(k,l) )2

dA
(n)
(l) .dA

(m)
(k) (4.15)

The double area integral for view factors can be reduced to a contour double integral formula

(CDIF) [109] using Stokes’ theorem, such that when the contours of the source surface k of element

m and target surface l of element n are divided into segment vectors Γ
(m)
(k) ∈ [δ1, δ2, ..., δn(k)

] and

Γ
(n)
(l) ∈ [δ1, δ2, ..., δn(l)

], the view factor can be approximated by the discretization expression [110]

shown in Eq. 4.16.

vf
(m,n)
(k,l) =

1

2πA
(m)
(k)

∮
Γ
(m)
(k)

∮
Γ
(n)
(l)

ln(S(m,n))ds(l).ds(k) (4.16)

AP is the area of surface P , ΓP and ΓQ are the contours bounding surfaces P and Q, dsP and

dsQ are differential length vectors and S is the distance between differential elements of surface P

and Q. The discretization equation is further simplified as shown in Eq. 4.17, where the discretiza-

tion of surface Q is replaced by the mid-point of surface Q such that S(l)
m is given by the distance

between lth differential element of surface P and mid-point of surface Q. For the purpose of iden-

tifying pilot ignition, only a point on the surface needs to be ignited; therefore, discretization of the

target surface is not required. The formulation is solved using a 10-point Gauss quadrature scheme

for all calculations, as it provides sufficient accuracy [111].

vf
(m,n)
(k,l) =

1

2πA
(m)
(k)

n(k)∑
x=1

ln(S
(m,n)
(k,l) (x)).Γ

(m)
(k) (x) (4.17)
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4.2.2 Radiation Matrix

As described in the previous section, since each ignitable element is comprised of multiple

surfaces the radiation transfer between two elements would require calculation of each surface

interaction separately. To capture these interactions between multiple surfaces of each element

a radiation matrix is developed between elements m and n, where m is the source and n is the

destination element. All possible interactions between the different surfaces of both element are

taken into account in this formulation.
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Figure 4.4: Procedure shown for calculating net radiative heat flux exchange between two ignitable elements
such that element m is ignited.
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Figure 4.4 shows the thermal radiation interaction between two ignitable elements, where el-

ement m is considered as the ignited source and element n as the target. The difference in view

angles between the elements generate varied cumulative heat flux on each target element surface.

To quantify the effects of radiation between two ignitable elements m and n, the local radiation

matrix is defined as Rad[m,n] of size [kxl] such that each entry represents the net thermal flux

exchange between each possible source-target surface combination. The total radiation on the lth

surface of the target element is obtained as the summation along the rows of the lth column of

the radiation matrix. In case, the roles of ignitable elements m and n are reversed, the modified

radiation matrix can be directly calculated as Rad[2, 1] = Rad[1, 2]T .

Theorem 4.2.1 (Reciprocity theorem for view factors). The theorem relates the view factor of the

source surface with that of the incident surface in proportion to their respective surface areas, as

given by equation: A(m)
(k) .vf

(m,n)
(k,l) = A

(n)
(l) .vf

(n,m)
(l,k)

Corollary 4.2.1.1. If the roles of elements m and n are reversed such that element n is the

source and element m is the incident element, the radiation matrix Rad[n,m] can be evaluated

as Rad[m,n]T if the elements m and n have the same material properties.

Proof. Consider two ignitable elements, as shown in Fig. 4.4, such thatm is the source element and

n is the incident element. Each element is comprised of multiple surfaces, as shown in figure. The

radiation matrix Rad[m,n] is given by Eq. 4.12, which accounts for heat flux transfer between all

surfaces of elements m and n. Based on the interaction of elements shown in Fig. 4.4 the radiation

matrix can be established as shown in Eq. 4.18.

Rad[m,n] =



0 0 q
(1,2)
(1,3) q

(1,2)
(1,4)

0 0 q
(1,2)
(2,3) q

(1,2)
(2,4)

0 0 0 0

0 0 0 0


(4.18)

Assuming the flame temperature Tf and ambient temperature Ta to be a constant, Eq. 4.12 can

be rewritten as Eq. 4.19
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q
(m,n)
(k,l) =

(
A

(m)
(k) .vf

(m,n)
(k,l) .κ

)
{k∈F(m),l∈F(n)}

(4.19)

If the roles of ignitable elements m and n are reversed the radiation matrix Rad[n,m] is given

by Eq. 4.20.

Rad[n,m] =



0 0 0 0

0 0 0 0

q
(2,1)
(3,1) q

(2,1)
(3,2) 0 0

q
(2,1)
(4,1) q

(2,1)
(4,2) 0 0


(4.20)

Since elements m and n have similar material properties their flame temperatures would also

be equal. Therefore, the heat flux q(n,m)
(l,k) can be written as given by Eq. 4.21.

q
(n,m)
(l,k) =

(
A

(n)
(l) .vf

(n,m)
(l,k) .κ

)
{k∈F(m),l∈F(n)}

(4.21)

By using the reciprocity theorem on Eq. 4.14, relation between q(m,n)
(k,l) and q(n,m)

(l,k) can be estab-

lished.

q
(m,n)
(k,l) = A

(m)
(k) .vf

(m,n)
(k,l) .κ = A

(n)
(l) .vf

(n,m)
(l,k) .κ = q

(n,m)
(l,k) (4.22)

The transpose of radiation matrix Rad[m,n] is given by Eq. 4.23. Using Eq. 4.20 the radiation

matrix Rad[m,n]T is observed to be equal to Rad[n,m].

Rad[m,n]T =



0 0 0 0

0 0 0 0

q
(1,2)
(1,3) q

(1,2)
(2,3) 0 0

q
(1,2)
(1,4) q

(1,2)
(2,4) 0 0


(4.23)
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Depending on the configuration of source and target elements all surfaces of the source ele-

ment do not transmit radiation to all surfaces of the target element. As seen from Fig. 4.4, only

specific source-target surface combinations interact during radiation transfer. To assess which com-

binations result in successful transmissions a radiation interaction matrix is developed. Once the

individual heat flux generated between different source-target surface combinations are calculated

these values are updated using the interaction matrix. The general steps involved in formulating

the radiation matrix are listed below.

o Evaluate the order of numbering for each element to obtain the direction of numbering, as it

plays an important role in subsequent calculations whether the numbering for an element are

marked in a clockwise or anti-clockwise manner. Based on Eq. 4.24, if A > 0 it represents

anti-Clockwise numbering and if A < 0 it represents clockwise numbering. x(v)
(p) and y(v)

(p) are

the X and Y coordinates of the vth node for the pth element.

A =
N∑
v=1

(x
(v+1)
(p) − x(v)

(p)).(y
(v+1)
(p) + y

(v)
(p)) ∀ {v ∈ [1, Nelement], p ∈ W(v)} (4.24)

o Find midpoint of all surfaces for both elements using the generalized X (Eq. 4.25) and Y

(Eq. 4.26) coordinate equations. The midpoint is used as a reference point for all surfaces.

xm
(v)
(p) =

1

2
(x

(v+1)
(p) + x

(v)
(p)) (4.25)

ym
(v)
(p) =

1

2
(y

(v+1)
(p) + y

(v)
(p)) (4.26)

n̂
(v)
(p) = [n̂x

(v)
(p) n̂y

(v)
(p) ] = A.[−dy(v)

(p) dx
(v)
(p)] (4.27)

46



o Find normal vector for all surfaces at the corresponding midpoints calculated in previous

step using Eq. 4.27, where n̂x(v)
(p) and n̂y(v)

(p) are the X and Y components of normal vector

for vth surface of pth element.

dx
(v)
(p) = x

(v+1)
(p) − x(v)

(p) (4.28)

dy
(v)
(p) = y

(v+1)
(p) − y(v)

(p) (4.29)

o Draw line segments joining the midpoints of all k surfaces of element m with all l surfaces

of element n and obtain their respective vector equations individually using Eq 4.30 and

Eq. 4.31, where xm(m)
(k) and ym(m)

(k) are the X and Y mid-point coordinates of kth surface

of source element m. Similarly, xm(n)
(l) and ym(n)

(l) are the coordinates of mid-points of lth

surface of target element n.

xr
(m,n)
(k,l) = xm

(m)
(k) − xm

(n)
(l) (4.30)

yr
(m,n)
(k,l) = ym

(m)
(k) − ym

(n)
(l) (4.31)

o Check all line segments generated from the source element m for intersection with any of its

other surfaces. For the thermal radiation, generated by any surface of the source element, the

propagation path should not be obstructed by any of the other surfaces of the source element.

The dot product of line segment with the normal vector of each surface is calculated, as

shown in Eq. 4.32, where p is varied to consider each surface of source element.

ts
(m,n)
(p,l) =

[xr
(m,n)
(p,l) yr

(m,n)
(p,l) ].[n̂x

(m)
(p) n̂y

(m)
(p) ]

−[xr
(m,n)
(k,l) yr

(m,n)
(k,l) ].[n̂x

(m)
(k) n̂y

(m)
(k) ]

∀ p ∈ F(m) (4.32)
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A variable Ms(m,n) is defined to indicate if a line segment is obstructed. If ts(m,n)
(p,l) is not

obstructed by any of the other surfaces of the source polygon Ms(m,n) = 1, else 0.

o Find the intersection point(s) for all line segments with each face of the destination element.

The line segment generated from each surface can be hindered by surfaces of the target

element. Similar to the previous step, the dot product of line segment with the normal vector

of each surface is calculated, as shown in Eq. 4.33, where q is varied to consider each surface

of target element.

td
(n,m)
(k,q) =

[xr
(n,m)
(k,q) yr

(n,m)
(k,q) ].[n̂x

(n)
(q) n̂y

(n)
(q) ]

−[xr
(n,m)
(k,l) yr

(n,m)
(k,l) ].[n̂x

(n)
(l) n̂y

(n)
(l) ]

∀ q ∈ F(n) (4.33)

Another variable Md(m,n) is defined to indicate whether the line segment is obstructed by

any of surfaces of the target element n before the line segment reaches its target surface. If

td
(n,m)
(k,q) is not obstructed by any of the other surfaces of the target polygon Md(m,n) = 1, else

0.

o A matrix is defined Ac(m,n) to assess whether the line segment generated from the source

reaches its target surface. The matrix is given by Eq. 4.34, where 1 indicates success-

ful transmission between a particular source-target combination and 0 indicates absence of

transmission.

Ac(m,n) = Ms(m,n) ∧Md(m,n) (4.34)

o The individual heat flux of each surface calculated using Eq. 4.35 is updated using the

interaction matrix defined in previous step.

q
(m,n)
(k,l) = Ac(m,n).q

(m,n)
(k,l) (4.35)
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4.2.3 Radiation Ignition

Once the total incident radiation flux for each target ignitable element surface q(m,n)
(k,l) is evalu-

ated, the surfaces are checked for the possibility of ignition. The total flux of each surface is used

to obtain the minimum residence time for flames (t(m,n)
(l) ) required for ignition. The residence time

is defined as the time for which the flames continue to emit heat flux. Depending on the incident

radiation flux, the flame is required to burn for a minimum residence time before it can cause igni-

tion, and this time is given by Eq. 4.36 [36], where FTP (n) is the flux time product of the material

of target element n, Q(m,n)
(l) is the total incident radiation on surface l calculated as the total sum

of all incident radiation flux to a surface (as shown in Fig. 4.4), Q(n)
cr is the minimum critical flux

required for ignition as a function of target element and c(n) is a constant derived based on material

properties of the target element. The total incident flux is required to be higher than the critical

flux for pilot ignition to occur.

t
(m,n)
(l) =


FTP (n).(Q

(m,n)
(l) −Q(n)

cr )c if q(m,n)
(l) > Q

(n)
cr

∞ otherwise
(4.36)

Based on the minimum residence time, probability of ignition due to radiation for surface l

(p(m,n)
(l) ) is calculated using Eq. 4.37, where t(m)

r is the residence time of each surface of source

element m and F (.) : R 7→ {0, 1} represents a cumulative density function (CDF) of a normal

distribution N (µ, σ2). The CDF is used to account for uncertainties associated with residence

time of the source element. Eq. 4.38 gives the radiation ignition probability (P (m,n)
rad ) between

elements m and n as the maximum of all surface probabilities of target element. The effects of

radiation within a community are restricted to a specific distance, as seen from previous wildfire

studies [36, 108, 112]. A threshold radiation distance (dth) is introduced to ensure elements at a

greater distance than the threshold distance are not affected by radiation. The distance d(m,n)
min is the

minimum distance between all possible node combinations of elements m and n, as given by Eq.

4.39. The functions max(.) and min(.) correspond to the highest and lowest values in a set/matrix.
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The mean residence time is calculated as µ = (tr,min + tr,max)/2. The parameter values used in

the model are shown in Table 4.3.

p
(m,n)
(l) =


1− F (t

(m)
r − t(n)

(l) ) if t(m)
r ≥ t

(n)
(l)

0 otherwise
(4.37)

P
(m,n)
rad =


max(p

(m,n)
(l) ) if d(m,n)

min < dth

0 otherwise
(4.38)

d
(m,n)
min = min(d

(m,n)
(k,l) ) (4.39)

Table 4.3: Radiation model parameter values

Parameter Definition Value Reference
Ta Ambient temperature of surroundings 300 K [36]
Tf Flame temperature 1000 K [36]
Q

(n)
cr Critical flux required for ignition (for wood) 13.1 kW/m2 [36]

FTP (n) Flux time product (for wood) 13500 kW/m2.s [36]
c Constant (obtained from experimental data) -1.828 [36]
dth Radiation threshold distance 30 m [36]
tr,min Lower bound on residence time 45 s -
tr,max Upper bound on residence time 240 s -
λ Standard deviation 65 s -
ε

(m)
(k) Emissivity (for wood) 0.84 -
σ Stefan-Boltzmann constant 5.67x10−8Wm−2K−4 -
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4.3 Ember Spotting Model
One of the most prominent modes of propagation for wildfires is spotting due to the embers

generated from fuels. The heat generated by ignited fuel heats up the air around it and creates an

updraft, generally referred to as a Convection Column. These updrafts launch embers generated

from the fuel into the atmosphere. Once the firebrands regain certain height based on their mass,

since heavier embers rise to lower heights than lighter embers, the winds carry the embers forward.

The embers follow a downward parabolic path, similar to projectile motion. A key difference in

case of embers is that their mass decreases while falling due to continuous combustion. Based

on the mass during landing, embers have a capacity to ignite fuel (if present) at the landing site.

The embers provide significant amount of complexity to understanding wildfires, as they tend to

travel farther downstream than the actual fire front, thereby resulting in multiple fire fronts. The

unpredictability and capacity of embers for destruction is a major concern. The literature on the-

oretical ember models is quite scarce to begin with. Although, some researchers have developed

stochastic models to capture distribution patterns of embers. Spotting has also been incorporated

in well-known wildfire propagation frameworks such as PROMETHEUS and FARSITE. However,

the limitation of these implementations lies in the fact that they are either entirely empirical in na-

ture or entirely deterministic. In addition, almost all models are framed in context of wildlands and

lack sufficient flexibility, making these models unsuitable in context of community propagation.

In this study, stochastic formulation of ember spotting is required such that probability distribution

of ember ignition can be obtained as a function of distance and direction from the fuel source.

Ember-driven fire ignitions are heavily influenced by a number of factors such as wind direc-

tion (θ), wind speed (vw), ember size and shape, among others, which are difficult to account for

deterministically. A separate probabilistic ember spotting model is formulated for the graph model,

which incorporates the effect of embers in regards to possible ignition as a combination of these

factors. The probability of ignition due to ember spotting P (i,j)
ember is given by Eq. 4.40, where P (i,j)

acc

is the relative probability of access for embers and g(i,j)(.) : R 7→ [0, 1] is the probability distri-

bution function between nodes i and j, given by a distribution function S(i, d(i,j), vw) (Eq. 4.41).
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The distribution is uniquely defined for each (i, j) node pair interaction as a function of volume of

source node i (V (i)
n ), the distance between nodes i and j (d(i,j)), and wind speed (vw).

P
(i,j)
ember = P (i,j)

acc .F
(i,j)
cc .g(i,j) (4.40)

g(i,j) = S(V (i)
n , d(i,j), vw); (4.41)

The probability of access (P (i,j)
acc ) is an indication of the ease with which an ember can ignite

an element based on its design, which may include material properties [32], layout design [33]

and other factors. In the proposed model, different type of elements are considered based on their

functions, for instance - commercial, residential, natural areas and others. Relative probabilities

are assigned to elements based on their functional classification (Table 4.4). The idea behind the

accessibility factor is that the same amount of embers would not have the same probability of

causing ignition to different type of areas. For instance, consider an area with vegetation and a

wooden house. If the same number of embers accumulate in both areas the chances of vegetative

area catching fire would be higher than the house. Similarly, a wooden house would have a higher

chance of ignition than a steel warehouse. In light of no literature on this concept, relative proba-

bilities were assigned in this study, but in the future it is hoped that these can be calibrated using

experimental studies.

The ember model developed by Martin and Hillen [113] is utilized to obtain the nodal ember

probability distribution (S(V
(i)
n , d(i,j), vw)). The authors utilized general concepts of birth-jump

processes [114] to formulate distribution functions for different ember spotting conditions. The

concept of birth-jump is used to describe processes in which growth and spatial spread cannot be

decoupled, as in the case of embers generated during wildfires. Other examples of birth jump

Table 4.4: Relative access probabilities for different type of ignitable elements

Landuse Building Natural area Leisure Shop Office

1.0 0.90 1.0 0.80 0.85 0.70
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processes include - distribution of pollen generated by flowers and scatter of confetti thrown in

air. The ember spotting can be theoretically categorized into four key phases - (1) Launching

phase (2) Transport and Combustion phase (3) Landing phase (4) Ignition phase. As described

earlier, launching phase involves embers being uplifted into the atmosphere, followed by transport

by winds during which combustion of embers also occurs. Finally, based on landing distribution of

embers the fuel is ignited. For this study, it is assumed that embers cause ignition of fuel at landing

site on contact; hence, micro level factors affecting ember ignition are not taken into account and

the ignition phase is considered equivalent to the landing phase. Within the three phases mentioned

different mechanisms were individually modeled by the authors and combined together to obtain

the ember probability distribution.

The launch phase of embers is described by launching distribution φ(z,m) such that it gives

the number of embers generated of mass m (in kg) at the height z (in m). It is assumed that the

height attained by embers is independent of their mass, thus, the distribution is given by Eq. 4.42.

The height distribution is assumed, as given by Eq. 4.43, since this kernel has been observed to be

a good fit for fire propagation [113].

φ(z,m) = Z(z)µ(m) (4.42)

Z(z) = λe−λz (4.43)

The mass distribution is assumed as shown in Eq. 4.44 such that 0 ≤ m ≤ mmax holds true.

The mass distribution was selected to fit the ember experiments conducted at NIST [87–91]. The

rate change of mass with time is assumed at a constant rate, as shown in Eq. 4.45.

µ(m) = am−0.5 (4.44)

dm

dt
= −κ (4.45)
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A Combustion operator C(m, t) was introduced to determine extent of combustion by tracking

the mass of embers with respect to time. The combustion operator C(m, t) gives the mass remain-

ing while the inverse operator C−1(m, t) gives the burnt out mass, such that relation Eq. 4.46 holds

true, which results in Eq. 4.47.

C−1(C(m, t), t) = m (4.46)

C−1(m,
x

w
) = m+ κ(

x

w
) (4.47)

The landing distribution L(x,m) determines the number of embers of mass m (in kg) at a

distance x (in m) at time t (in s) and can be approximated as the asymptotic landing distribution,

as given by Eq. 4.48. Based on the principle of birth jump processes, the launching distribution

(φ(z,m)) of embers can be correlated to the landing distribution. The derivation of correlation

between the two distributions has been described in detail in [113] and is given by Eq. 4.49, where

vt is the terminal velocity of embers and vw is the horizontal wind speed.

L = lim
t→∞

L(x,m, t) (4.48)

L = Nφ

(
|vt|

x

vw
, C−1(m,

x

vw
)

)
(4.49)

The probability of an ember to cause ignition at the landing site is strictly correlated to the

amount of mass present in an ember during the landing phase. If m represents the mass of embers

the total landing mass of embers (M ) can be calculated as given by the general Eq. 4.50, which is

solved to obtain Eq. 4.51, wherein the index i is added since number of embers generated can vary

for different nodes in a graph. Using the landing mass the probability of ignition S is obtained

by formulating an ignition function E, which can be defined in a number of ways, specifically

based on experimental studies conducted on embers. A viable choice for an ignition function can
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be defined as a piecewise linear function to obtain the ember probability function S, as shown in

Eq. 4.52. The ember probability function can be written as S(V
(i)
n , d(i,j), vw) since the number of

embers generated is a function of volume of a node.

M(x) =

∫ mmax

0

mL(x,m)dm (4.50)

M(i, x, vw) = N (i)
e λa

(
exp−λ|vt|

x
w

)(
2

3
m

3
2
max −

2κxm0.5
max

vw
+

(
4

3

κx

vw

)1.5)
(4.51)

S(i, x, vw) = E(M(i, x, vw)) =


M(i,x)
mmin

if M(i, x) ≤ mmin

1 if M(i, x) > mmin

(4.52)

N
(i)
e is the number of embers generated by node i and given by Eq. 4.53 as a function of its

fuel volume (V (i)). N∗e and V ∗ are scaling parameters. The fuel volume of a node (V (i)
n ) is the

amount of ignitable fuel present at a node and it is calculated assuming equal distribution between

all nodes of an ignitable element. It is given by Eq. 4.54, where V (m)
w is the total fuel volume of

element m (ignited or source element), W(m) is the node set of element m and N(m) is the total

number of nodes. In this study, stray vegetation around the elements is not marked explicitly in the

community layout; therefore, the entire volume of elements is considered as fuel volume to offset

the absence of vegetation and to keep the analysis on the conservative side. For best practice, the

fuel volume at each node would have to be considered explicitly based on nature of the element.

Ne(i) = V (i)
n

(
N∗e
V ∗

)
(4.53)

V (i)
n =

(
V

(m)
w

N(m)

)
i∈W(m)

(4.54)
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To calibrate the ember distribution model, previous experimental investigations on ember spot-

ting are used [87, 90, 115]. The experiments comprised of burning individual tree samples under

constant wind and collecting generated embers to determine their respective mass distribution. N∗

is the number of embers collected and V ∗ is the volume of tree used in the experiment (Eq. 4.55),

which is calculated assuming a cylindrical configuration. r∗ and h∗ are the radius and height of

tree used. The values of all parameters are shown in Table 4.5.

V ∗ = π(r∗)0.5h∗ (4.55)

Table 4.5: Ember model parameter values

Parameter Definition Value Reference
mmin Minimum ember mass observed 0.001 kg [87]
mmax Maximum ember mass observed 0.004 kg [87]
a Mass distribution parameter 7.91 [87]
vt Ember terminal velocity -4.3 m/s [116]
κ Ember combustion rate 0.00005 m/s2 [113]
λ Ember decay rate 0.01 m/s2 [113]
N∗ Reference number of embers 100 [87]
r∗ Reference radius 2 m [87]
h∗ Reference height 5.2 m [87]

Figure 4.5 shows the effect of three key parameters - Fuel volume of node, distance between

nodes and wind speed, on the ember distribution obtained from the discussed formulation. The em-

ber distribution model discussed is only one such model. There exist several other variations based

on the underlying assumptions considered in formulating the model. These include consideration

of (1) change in shape of embers (2) variation in wind speed with height (3) change in ember paths

midflight and several others. Hence, the ember model can be further modified to include other

factors.

One of the biggest limitations of the discussed ember model is that it is highly sensitive to

changes in wind speed. In actual wildfires, severe fluctuations in the local wind field occurs due to

56



0 200 400

x(m)

0

0.2

0.4

0.6

0.8

1

S

(V
n
(i) = 100 m3, v

w
 = 5 m/s)

(V
n
(i) = 100 m3, v

w
 = 15 m/s)

(V
n
(i) = 100 m3, v

w
 = 30 m/s)

(V
n
(i) = 150 m3, v

w
 = 5 m/s)

(V
n
(i) = 150 m3, v

w
 = 15 m/s)

(V
n
(i) = 150 m3, v

w
 = 30 m/s)

(V
n
(i) = 200 m3, v

w
 = 5 m/s)

(V
n
(i) = 200 m3, v

w
 = 15 m/s)

(V
n
(i) = 200 m3, v

w
 = 30 m/s)

Figure 4.5: Ember ignition probabilities as a function of distance x for different values of volume V (i)
n and

wind speed vw

change in temperature gradient with time. As a result, embers in most cases are observed to fly in

different directions than the dominant wind direction. A prominent example of this phenomena is

the generation of fire vortices, which are observed in high intensity wildfires. These vortices tend

to distribute embers in all directions irrespective of the dominant wind direction over the area. The

graph model in this study has been formulated in a way that any changes to the wind field can be

incorporated seamlessly and phenomena such as fire vortices can be modeled as well. In order to

utilize the full potential of the formulated graph model the ember model would have to be coupled

with a computational fluid dynamics model to keep track of the local changes in wind, which would

update the ember model at each time step. Since the scope of this study is kept restricted to static

version of the graph model this aspect is not discussed in this study.

4.4 Community Model Validation
The proposed graph model and its sub-models would require validation before the study can be

considered complete. All the three sub-models for different heat transfer modes were formulated

using existing validated theories and models from wildfire literature. The basis for each model is
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described in their subsequent sections. The graph model as a whole was tested on the commu-

nity of Oakland (California, USA) to simulate conditions similar to the infamous 1991 Oakland

wildfire, as discussed in Section 5.4 of Chapter 5. The case study is conducted to draw out mean-

ingful results that may confirm the applicability of the proposed model. The observations from the

analysis conducted reaffirmed some of the long-stated findings from previous studies. The results

provided a better understanding of the effects of intrinsic factors, which relate to factors that are

naturally present in a community, and mitigation factors, which can be altered to regulate vulnera-

bility of the community, on communities. There still exist certain aspects of the graph model that

still need to be validated, which primarily require a dynamic version of the graph model.

58



Chapter 5

Community Vulnerability and General Observations

5.1 Introduction
The problem of wildfire propagation constitutes a parallel replication flow problem, similar to

the principle involved in disease transmission. In case of disease spread, viruses can spread through

short-range, as well as, long range modes by means of either physical contact or through airborne

vectors. Similarly, depending on wind conditions, wildfires also propagate both short- and long-

range distances at the same time using radiation, convection and embers modes of heat transfer. As

described in the previous chapter, considering different modes of heat propagation between nodes

of different ignitable elements the probability of ignition can be calculated between them. By

combining the individual probabilities calculated between individual elements the total probability

of ignition from a particular source to a target element can be calculated, since the probability

of ignition due to any of the modes is mutually exclusive to one another. Thus, vulnerability of

a element can be defined as the probability of wildfire reaching it once a fire has been initiated

from single or multiple sources. In this chapter, description on the theoretical formulation and the

algorithms used to evaluate community vulnerability have been detailed. Followed by application

of the vulnerability framework on Oakland, CA, to better understand the mechanisms of wildfire

propagation inside communities.

5.2 Vulnerability Evaluation
Based on the above discussion, in order to evaluate vulnerability of a target element high prob-

ability paths need to be identified between source and target elements as the fire would travel the

paths of least resistance. These paths would entail the highest likelihood of wildfire propagation

and are referred to as Most Probable Paths (MPP) in the study. The first step to evaluating vul-

nerability is to assess the total probability of propagation along an MPP, which is calculated as
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the product of the edge weights (Eq. 5.1), such thatM(x) is the adjacency list of xth MPP given

by M(x) = {(n(1) → n(2)), ..., (n(NM(x)
−1) → n(NM(x)

))}, where NM(x)
is the total members in

adjacency listM(x) and ni are the individual nodes in the corresponding MPP.

P
(x)
MPP =

∏
(i→j)∈M(x)

P
(i,j)
tr (5.1)

Once the fire is initiated from a single or multiple sources, the wildfire is not restrained to

a single path, instead, multiple surrogate paths are expected to reach a target ignitable element;

hence, the total probability of fire reaching a particular element is defined as the mean probability of

K MPPs P (s)
m (Eq. 5.2). K is a user defined number that determines the different number of paths

considered from single or multiple sources to a target element. Due to computational limitations,

K = 10 is used for all analysis in this study. By increasing the number of parallel paths, accuracy

of the model can be improved at the cost of increased computation time. A community layout

with high density would require a low K value, and vice-versa. It would be the users’ decision to

balance this trade-off.

P (s)
m =

1

K

K∑
x=1

P
(x)
MPP (5.2)

A wildfire entering a community has multiple source nodes (initial point of fire origin in the

community) at the wildland-urban interface, or some even inside the community, due to ember

spotting from wildlands [92, 108, 112]. The final step in evaluating vulnerability of a particular

element is to account for the presence of multiple sources. Eq. 5.3 is used to calculate the total

vulnerability (V (z)) of destination node z ∈ W(m), where Wm is the node set for element m,

P
(s)
i is the ignition probability of source node s and S is the node set of all sources. The term

ignition probability P (s)
i for a particular source node is introduced to take into account the spatial

characteristics of each source. Since probability of ignition for each source is correlated to wind

conditions and wildland vegetation in the vicinity of the community (Fig. 5.1), these conditions

need to be considered while evaluating ignition probability for each source. The wildfire is required
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to reach the target from only one of the sources for pilot ignition; the vulnerability is defined as

the maximum probability from all source nodes. The total vulnerability of a community is further

defined using the individual element vulnerabilities using Eq. 5.4, where NW(m)
is the total number

of nodes in element m. Vulnerability of community and its components (elements) can be defined

in several forms and the approach discussed in this study is one such possibility.

V (z) = max

(
P

(s)
i .P (s)

m

)

{s∈S}
(5.3)

Vavg =
1

NWNW(m)

NW∑
m=1

(NW(m)∑
z=1

V (z)

)
(5.4)
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Figure 5.1: Procedure for evaluating probability of ignition for any source node s inside the community due
to the wildlands Ω ( c©OpenStreetMap contributors [107])
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5.2.1 Shortest Path Algorithm

The theoretical formulation of vulnerability discussed above is strictly contingent on finding

the most probable paths (MPP) within a given community layout. The MPPs are obtained by solv-

ing the maximization problem shown in Eq. 5.5, where the main objective is to maximize P the

cumulative product of edge weights a(i,j) within individual propagation pathsM(x) to determine

path x with maximum value for P . In context of graph theory, there has been significant research

on algorithms to determine shortest path for both directed and undirected graphs. The Shortest Path

problem is an optimization problem that has been studied extensively over the years. The Short-

est Path problem has applications in many different areas including operations research, robotics,

transportation and communications. In graph theory, the shortest path problem is defined as the

problem of finding a path between two vertices in a graph between ignitable elements such that the

sum of the weights (costs) of edges comprising the path is minimized and can be summarized as

shown in Eq. 5.6, where D is the cumulative sum of edge weights to be minimized. Weights can

be distance, time, cost or any other measuring criterion depending on the nature of the problem

involved. By introducing a modification, the shortest path algorithms can be used to evaluate most

probable paths as well. If the weights of a graph are modified by taking the modulus natural loga-

rithm the shortest path problem can be rewritten as Eq. 5.7, which is converted to a maximization

problem since logarithm functions are monotonically decreasing. Using the product property of

logarithms the edge weight summation is converted to a product (Eq. 5.8). Using Eq. 5.5 and Eq.

5.8 a correlation can be established between P and D∗, as shown in Eq. 5.9. Thus, by modifying

the edge weights P (i,j)
tr in the formulated wildfire graph G shortest path algorithms can be applied

to obtain the most probable paths.

max
x

{
P =

∏
(i→j)∈M(x)

a(i,j)

}
(5.5)

min
x

{
D =

∑
(i→j)∈M(x)

a(i,j)

}
(5.6)
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max
x

{
D∗ =

∑
(i→j)∈M(x)

|log(a(i,j)|)
}

(5.7)

max
x

{
D∗ =

∣∣∣∣log( ∏
(i→j)∈M(x)

a(i,j)

)∣∣∣∣} (5.8)

P = e|D
∗| (5.9)

To identify most probable path Dijkstra’s shortest path algorithm [117] is used. In 1956, Dutch

computer scientist, Edsger Dijkstra, introduced Dijkstra’s Algorithm, a graph search algorithm

that solves the single-source shortest path problem for a graph with non-negative edge weights.

The single-source shortest path is a variation of the shortest path problem in which finding the

shortest path from the source vertex (node) to all other vertices in the graph is considered. For a

directed graph G ∈ V , E such that V are the vertices and E are the edges with A as the adjacency

matrix. The Dijkstra’s algorithm is used to create a spanning tree T from a vertex, such that the

total distance between the vertex and any other node in T is the minimum distance. To create the

spanning tree T the following steps are considered according to Djkstra’s algorithm:

1. Dijktra’s algorithm starts from the initial node selected as the source node (v0). All nodes

are initially marked as unvisited and assigned to set U .

2. The Initial node is set as the current node and assigned a distance value of zero. For all other

nodes a value of infinity is assigned.

3. For the current node, distances are calculated to all of its unvisited neighbors, which is

defined as the sum of distance to the current node and the distance from it to the neighboring

node. If the distance is lower than previously set distance value for the node then it is updated

by the recent value.

4. Once distances to all unvisited neighbors of the current node have been calculated the current

node is set to be visited and removed from set U .
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5. The algorithm is stopped when the destination node has been removed from the unvisited

set (U ) or when no possible path can be found between the initial and destination node, i.e.

smallest distance between them is infinity.

6. If termination does not occur, the node in set U with the shortest total distance is marked as

current node and the process repeated from step 3.

Dijkstra’s algorithm is used to evaluate the shortest path between the source and sink. To de-

termine K-shortest paths Yen’s algorithm [118] is used. In case of the proposed wildfire graph

framework, certain modifications are made to increase the accuracy of the algorithm. Since each

element in the community is a collection of nodes of similar properties (ignition likelihood primar-

ily), a element can be essentially represented as a complete graph. Due to similar properties within

a element internal edge weights are always unity (as shown in Eq. 4.1), Yen’s algorithm could pro-

vide superfluous paths. Thus, the algorithm is modified such that multiple paths through different

nodes of the same element are removed from the K-shortest path list. The wildfire graph G is for-

mulated from the nodes of ignitable elements present in a community. Each element is represented

by a set of nodes (W(k)). Once a path is found to the destination node, any paths found after it that

comprises of any nodes belonging to same elements are removed from the shortest path list. Since

the nodes of each element form a complete graph there would be no point in keeping multiple paths

with different nodes of the same element, as they would result in the same vulnerability and thus

introduce bias. An algorithm flowchart of Yen’s algorithm is shown below.
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Result: Determine K shortest paths

// Shortest path from source to target

A[0] = Dijkstra(Graph, source, sink) ;

// Initialize variable to store Kth shortest path

for k = 1 to K do
// Loop to control node range from first to last node in the previous k-shortest path

for i = 0 to size(A[k − 1])− 2 do
// Spur node obtained from previous k shortest path (k-1)

spurNode = A[k-1].node(i) ;

// The sequence of nodes from the source to the spur node of the previous k-shortest path

rootPath = A[k-1].nodes(0, i) ;

for each path p in A do

if rootPath == p.nodes(0, i) then
// Remove links that are part of the previous shortest paths sharing same root path

remove p.edge(i,i + 1) from Graph ;

end

end

for each node rootPathNode in rootPath except spurNode do

remove rootPathNode from Graph ;

end

// Calculate the spur path from the spur node to the sink

spurPath = Dijkstra(Graph, spurNode, sink) ;

// Entire path is made up of the root path and spur path

totalPath = rootPath + spurPath; // Add the potential k-shortest path to the heap

B.append(totalPath) ;

// Add back the edges and nodes that were removed from the graph

restore edges to Graph ;

restore nodes in rootPath to Graph ;

if B is empty then

break ;

end

// Sort the potential k-shortest paths by cost

B.sort() ;

// Add the lowest cost path becomes the k-shortest path

A[k] = B[0] ;

B.pop() ;

return A ;

end

end

Algorithm 1: Yen’s Algorithm
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5.2.2 Polar Fragility

Wind conditions have a significant impact on wildfire intensity and behavior, as observed from

different wildfire cases seen in the past. Wind speed, on one hand, has a directly proportional

effect on the intensity. Higher the wind speed higher the rate of spread will be. On the other hand,

the effect of wind direction has a significant impact on the direction of propagation, however, the

effect is not so straight forward as it depends on the community layout. There might be multiple

favorable directions of wind that might accentuate wildfire spread for a particular community lay-

out and these directions would vary depending on the characteristics of each layout. To understand

wildfire behavior, considering the effects of wind conditions is vital. To represent vulnerability as

a function of wind speed and direction a unique fragility curve is introduced, referred to as Polar

fragility in the study. The individual data points in the polar fragilities represent the mean proba-

bility of fire reaching a house in the community from the wildland urban interface for a particular

wind direction. These fragilities are formulated by varying the wind direction at specific intervals,

which in this case is selected to be 30o, and calculating the mean vulnerability of community, as

described in the previous section. For each wind direction a new graph is formulated by updating

the nodal probabilities. Based on the framework discussed in Chapter 4, wind direction has an ef-

fect on Convection and Ember modes of heat transfer. Therefore, for each wind direction selected,

the convection and ember probabilities have to be updated between each ignitable element in the

community layout. Once all probabilities are updated and a new graph has been formulated, the

shortest path algorithms are applied again to obtain the new vulnerability of each element, and

thereafter, the new mean vulnerability of the community for the wind direction chosen.

A part of Hacienda Heights (HH) in Los Angeles (California) is used as a test case to demon-

strate the importance of the concept. The layout is chosen to represent a typical medium density

community. Fire pathways are identified for a target element from a source element for different

wind directions (Fig. 5.2). For wind direction parallel to the line segment joining source and tar-

get elements, a high vulnerability is to be expected (V = 0.90 for θ = 300o and vw = 15m/s).

However, a relatively high vulnerability is observed for other wind directions as well (Fig. 5.2(c)).
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Wind direction is measured anti-clockwise from the positive x-axis, such that a N-S wind would

be represented by θ = 270o and S-N wind by θ = 90o. The fire utilized inherent path redundancy

present in the community layout to its advantage. The effect of wind direction on vulnerability

is seen to be negligible for wind speeds 15 m/s and 5 m/s. In these cases, ember and radiation

modes, both, played a dominant role, thereby providing sufficient buffer to each other. A strong

dependency of wildfire propagation on community layout is known to exist [92, 112]. For low

wind speed (vw = 2m/s), wind direction governs vulnerability to a great extent, since the effect

of ember and convection modes are reduced. As a result, for wind directions not parallel to line

segment connecting the source and target elements, the fire has to rely only on radiation mode.

Discontinuities in the community layout inversely affects radiative propagation [112,119], thereby

reducing the vulnerability. Based on the polar fragilities, the net vulnerability of a community can

be evaluated as given by Eq. 5.10, for a particular range of wind directions.

Figure 5.2: Calculation of vulnerability of destination element (D) due to source element S for a part
of an actual community Hacienda Heights, Los Angeles, CA. (a) Fire pathways shown for wind direction
θ = 300o (b) Fire pathway shown for wind direction θ = 60o (c) Fragility curve to represent variation in
vulnerability of element D for different wind directions (θ) and wind speed vw ( c©OpenStreetMap contrib-
utors [107])

Vtotal =
1

π

∫ 360o

0o
Vavg(θ)dθ (5.10)
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5.3 Intervention Framework
Community vulnerability is a function of the topographic features and the meteorological con-

ditions, but it is also affected by the response of community to the wildfire. Fire mitigation efforts

are an integral part of evaluating community vulnerability. To get an accurate account of it some

form of fire mitigation needs to be modeled with the wildfire propagation model. Intervention

measures can be primarily classified into two types - (1) Passive and (2) Active strategies. The

former includes, but not limited to, measures like cleaning ignition zone around houses of mulch

and unnecessary vegetation, implementing fire-proof roofing and others. Passive intervention pri-

marily deals with fire mitigation measures that are effective pre-ignition i.e. before a house catches

fire. On the other hand, Active strategies refer to measures that are activated/effective post-ignition

i.e. once a house catches fire, such as automatic sprinkler systems. Both strategies are essential

to mitigate wildfire risk, however, in this study the intervention framework developed pertains to

primarily the effect of passive strategies. In order to implement active strategies, the exact time

frame for ignition is required. Since the proposed graph model is formulated in a way so as to make

it static i.e. time independent, active strategies cannot be yet implemented. A dynamic variant of

the proposed graph model would be required to implement the effect of active strategies, and as

mentioned in earlier sections, the scope of this study is restricted to static formulation.

In this study, a passive intervention framework is implemented to account for different fire

mitigation efforts adopted by communities. The general steps involved in modeling the effect of

passive strategies in context of the graph model are listed below:

o The graph model is implemented to obtain a directed cyclic graph (G) for the community

layout.

o A term µ is defined to represent intervention strength possessed by a community. An ap-

propriate value for µ is defined for the given community to reflect fire mitigation capacity in

terms of percentage of ignitable elements. In other words, intervention strength is defined as
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the percentage of houses in a community on which some form of intervention has been ap-

plied. Therefore, higher the value higher the number of elements protected in a community.

o Based on the strength of fire mitigation chosen (µ), a percentage of the total ignitable el-

ements present in the community µ.NW are chosen at random, assuming a uniform distri-

bution such that each element has an equal likelihood of being selected, to create the set

{WM |S /∈ WM}, where S is the set of source nodes. The elements incorporated into the

newly formed set are the houses on which intervention is applied. In a particular commu-

nity, for µ < 100% there can be several possibilities of intervention strategies based on

which elements are selected.

o When an ignitable element is protected by some form of intervention measure its capacity for

ignition and its capacity for transmission of fire should reduce. The inflow and outflow for

each node of the elements in the formulated setWM , which represent the elements selected

for intervention, are altered to modify the original graph (G), as shown in Fig. 5.3. Equation

5.11 represent the change in indegree and outdegree of each node for the selected elements.

n is the total number of nodes in graph G.

a(v,j) = α.a(v,j) a(j,v) = β.a(j,v) ∀ {v ∈ W(l)
M |l = 1 : NWM

, j = 1 : n} (5.11)

o α represents the scaling factor for outflow from node v to other nodes j, which would be

affected by factors such as sprinkler systems and others. β represents the scaling factor for

inflow to node v from other nodes j, which would include effect of fire-proof paint and

barriers and others. α and β are mitigation scaling factors that are assumed to be 0.10 and

0.75. The former value is assumed based on the fire mitigation capacity of sprinklers [120].

Ideally, both the mitigation factors should have been assumed as 0, however in reality such

is not the case. No matter how much protection is given to a structure if there are significant

sources present in the vicinity the target structure will most likely get ignited. On the other

69



Hardened structureHardened structure

Probability of 
ignition 
between 
elements

Probability of 

Incoming Edges

Outgoing Edges

!"#$%&'
!"#(%&'

!"&%#)' !"&%#*'

!"&%#' + ,- !"&%#'

!"#%&' + .- !"#%&'

,/and ./are scaling parameters

Pre-emptive 
Strategies

Active 
Strategies

Figure 5.3: Active and Passive intervention formulations applied to the graph theory model

hand, the transmission capacity of a structure to spread the fire onwards can be significantly

reduced, therefore β >> α.

o Once the graph G is modified, the vulnerability framework, discussed in previous section, is

applied to obtain the new vulnerabilities of each individual ignitable element and the mean

vulnerability of the community.

5.4 Community Analysis Results
To identify and understand the underlying sources of community vulnerabilities for wildfire,

the 1991 Oakland Hills wildfire is considered as a case study. The infamous wildfire, also known

as the ’Tunnel Fire’, resulted in 25 fatalities, 150 casualties and approximately US$ 1.5 billion in

economic losses, making it one of the most destructive wildfires in history [121]. Figure 5.4 shows

the affected region and the origin of the wildfire. The fire started as an incompletely extinguished

grass fire. However, it quickly escalated to a firestorm when seasonal northerly winds, commonly
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referred to as ’Diablo’ winds, entered Oakland hills (at a speed > 100km/hr) and reignited the

brush fire. The winds propelled the wildfire rapidly in the south-west direction. By noon, the

wildfire had crossed two highways and reached Piedmont (South of Oakland hills), after which the

winds shifted towards south-east [122, 123]. The graph model is tested on Oakland to understand

the level of vulnerability posed to the community in case of a similar event. Second, the model

is utilized to identify vulnerability factors of communities to WUI fires. For the tests, conditions

similar to that of the 1991 wildfire are simulated. The analysis is performed in two steps by

dividing the regions into - (a) OI and (b) OII (Fig. 5.4), for which the wind directions are chosen

to be θ = 225o and θ = 300o, and the wind speed to be vw = 29.058 m/s (104.42 km/h) [122,123].

Figure 5.4: Region of Oakland affected by the 1991 wildfire along with the point of origin. Two regions are
selected for analysis (a) Region OI with wind direction θ = 225o and (b) Region OII with wind direction
θ = 300o. For both regions vulnerability for each element is calculated from the source in their respective
layouts. Significantly high vulnerability of all elements observed in both layouts in absence of any fire
mitigation ( c©OpenStreetMap contributors [107])

5.4.1 Community inherent vulnerability

The respective vulnerability maps obtained for both regions of Oakland are shown in Fig. 5.4.

The total vulnerability, which is calculated as the mean vulnerability of all ignitable elements in

the community, for region OI is observed to be V = 0.9772 and for region OII to be V = 0.9815.
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Without any form of fire mitigation, internal or external, the vulnerability of wildfire propagation

is found to be sufficiently high for both regions of Oakland. This can be attributed to high path

redundancy present in the communities due to significant clustering of elements and absence of

discontinuities. The vulnerability of Hacienda Heights (HH) (from Section 5.2.2) for θ = 300o

(maximum effect seen for this direction) and vw = 29.058m/s is calculated to be V = 0.9326.

Even though the fuel density I of region OI is lower than HH (Table 5.1), the vulnerability for

OI is relatively the highest. The fuel content percentage I of each community is measured as the

ratio of the total ignitable area to the total analysis area (Eq. 5.12). NW is the total number of

elements, A(m)
w is the area of element m and A∗ is the total area of the region used for analysis.

This shows that the layout structure of communities, indeed, plays a role in determining the level

of vulnerability for communities [124], in addition to wind speed and wind direction (from Section

5.2.2).

I =

∑NW
m=1 A

(m)
w

A∗
(5.12)

Table 5.1: Details for each community layout

Location Total Nodes Total Ignitable Elements Fuel Density
Hacienda heights 1304 156 16.37%
Oakland (OI) 7445 636 12.82%
Oakland (OII) 9326 845 18.03%

5.4.2 Effect of Individual Ignitable Elements

Eigenvector and Bonacich Centrality

To better understand the effect of layout characteristics of a community on fire propagation,

the importance of individual elements is classified using specific Centrality measures, as defined in

traditional graph theory. Primarily, elements which assert global influence on the wildfire network

are identified using Eigenvector centrality. The eigenvector centrality (Ce
w(m)) is calculated as the
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mean of nodal eigenvector centralities (Ce
n(v)) of all nodes z that belong to nodal set W(m) (Eq.

5.13).

Cw
e (m) =

∑z∈W(m) Cn
e (z)

NW(m)

(5.13)

!"# !$# !%#

Figure 5.5: Eigenvector centrality of region OII for wind directions (a)θ = 300o (b)vw = 60o (c)vw = 180o

( c©OpenStreetMap contributors [107])

The most influential elements are observed at the wildland-urban interface (Fig. 5.5(a)) and

the position of these elements changed in correlation to the wind direction (Fig. 5.5(b) and Fig.

5.5(c)). This can be explained by high wind speed conditions that allow the elements at the inter-

face to connect to maximum elements by dispersing embers in the direction of wind. Due to high

directionality in the graph, the edge nodes have the highest contribution to the network. For the

1991 Oakland wildfire, the location of origin of fire (Fig. 5.4) coincided with the highest centrality

elements (Fig. 5.5(a)) that probably maximized the spread capacity of the wildfire. The global

elements ignite other elements, which further distribute the fire throughout the community. This

transition is observed by evaluating Bonacich centrality [125] (Fig. 5.6) for different values of

attenuation factor β ∈ [0, 1], such that β = 1 corresponds to eigenvector centrality and β = 0
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corresponds to degree centrality. The Bonacich centrality is calculated in the same element as

well. A uniform spread pattern is seen for OII , which is to be expected due to high ember dispersal

capacity of all elements under high speed winds and homogeneous density of the community.

!"# !$# !%# !&#

Figure 5.6: Bonacich centrality of region OII for (a)β = 0.75 (b)β = 0.50 (c)β = 0.25 (d)β = 0.10
( c©OpenStreetMap contributors [107])

Degree Centrality

To better realize the participation role of each ignitable element, total degree centrality [126]

is utilized. For a directed graph, the indegree (Cn
d,i(v)) of each node v is calculated as the sum

of all edge weights incident on the node, and outdegree (Cn
d,o(v)) as the sum of all edge weights

originating from node v. The total degree (Cn
d (v)) is calculated as the sum of indegree and out-

degree. To calculate degree centralities for element m the nodal degree centralities is readjusted

first, as shown in Eqs. 5.14 and 5.15. When calculating element degree centralities, the edges

corresponding to internal propagation are removed as they provide no relevant information. The

element centralities are then calculated as the sum of adjusted nodal degree centralities (Eq. 5.16)

for all z nodes that belong to the nodal set of element m, as given by Eq. 5.17.

Cn∗
d,i(v) = (Cn

d,i(v)−NW(m)
)
{v∈W(m)}

(5.14)
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Cn∗
d,o(v) = (Cn

d,o(v)−NW(m)
)
{v∈W(m)}

(5.15)

Cn∗
d (v) = Cn∗

d,i(v) + Cn∗
d,o(v) (5.16)

Cw
d (m) =

z∈W(m)∑
Cn∗

d (z) (5.17)
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Figure 5.7: Degree centrality of region OI for wind speeds (a)vw = 29.058 m/s (b)vw = 10 m/s (c)vw = 5
m/s (d)vw = 1 m/s ( c©OpenStreetMap contributors [107])

The effect of ember mode dominates over the short-range modes (convection and radiation)

due to high wind speed and a large number of elements contributes equally to ember dispersion

(Fig. 5.7(a) and Fig. 5.8(a)). Most houses in Oakland during the 1991 fire comprised of wooden

shingle roof, which were identified as the main factor that led to significant increase in ember

generation [127]. As a result, the embers completely overwhelmed all suppressive actions and

spread rapidly. Therefore, degree centrality is clearly related to wind speed. The total degree

centrality is observed to decline with decrease in wind speed and the centrality of elements also

shifts (Fig. 5.7 and Fig. 5.8). The correlation (Kendall rank) of degree centrality is observed to
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Figure 5.8: Degree centrality of region OII for wind speeds (a)vw = 29.058 m/s (b)vw = 12.5 m/s
(c)vw = 10 m/s (d)vw = 5 m/s (e)vw = 1 m/s ( c©OpenStreetMap contributors [107])

reduce for region OI (Table 5.2) and OII (Table 5.3) as the difference in wind speed increases.

This highlights the fact that elements which contribute more for a particular mode might not be

significant contributors with respect to other modes. To develop effective fire mitigation strategies,

the elements would need to be classified for each mode separately.

Table 5.2: Kendall rank correlation (τ ) for degree centrality of region OI at different wind speeds

Wind Speed 29.058 m/s 10 m/s 5 m/s 1 m/s
29.058 m/s 1.0 0.045 0.035 0.035
10 m/s 0.045 1.0 0.04 0.010
5 m/s 0.035 0.04 1.0 0.067
1 m/s 0.035 0.010 0.067 1.0

Table 5.3: Kendall rank correlation (τ ) for degree centrality of region OII at different wind speeds

Wind Speed 29.058 m/s 10 m/s 5 m/s 1 m/s
29.058 m/s 1.0 0.75 0.543 0.381
10 m/s 0.75 1.0 0.697 0.464
5 m/s 0.543 0.697 1.0 0.707
1 m/s 0.381 0.464 0.707 1.0
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Transitivity

The transitivity, also commonly know as clustering coefficient, is a measure of the ability of the

nodes to form triplets. When transitivity is applied to both regions of Oakland no clear pattern is

observed (Fig. 5.9(a) and Fig. 5.10(a)). At high wind speeds, since the ember mode is dominant,

each element is able to form triplets easily. As a result, a uniform distribution of centrality is

observed. When transitivity is applied to both regions without the effect of wind (Fig. 5.9(b) and

Fig. 5.10(b)), an interesting pattern is observed. That is, elements with high volume and situated in

high density regions exhibited high transitivity, which is to be expected as they have higher capacity

to spread fire. However, in region OII , elements with significantly low area situated close to other

larger elements also showed high transitivity (Fig. 5.10(b)). It has already been well established

that low intensity exposure from easily ignitable objects, such as garbage, mulch and vegetation, in

the vicinity of households tend to maximize the probability of ignition [12,18,32,92]. The ordered

set of elements with area smaller than 10th percentile yields mean transitivity of 0.3620 for region

OI and 0.3928 for region OII , which corresponds to 86th and 90th percentile of the transitivity

distributions observed, indicating high transmission capacity of low area elements.

!"# !$#

Figure 5.9: Transitivity of region OI for (a)vw = 29.058 m/s and (b)vw = 0 m/s ( c©OpenStreetMap
contributors [107])
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Figure 5.10: Transitivity of region OII for (a)vw = 29.085 m/s and (b)vw = 0 m/s. The magnified snap-
shot shows certain ignitable elements with low area to exhibit high transitivity values ( c©OpenStreetMap
contributors [107])

5.4.3 Effect of Fire Intervention

Fire intervention (mitigation) is characterized by two components - (1) Intervention strength

(µ), which is related to number of ignitable elements under the effect of some form of fire mitiga-

tion, and (2) Strategy efficiency (η), which is related to the change in vulnerability as the location

of elements under fire mitigation are altered. To observe the effect of these factors the framework

discussed in Section 5.1 is implemented on both regions of Oakland OI and OII for N = 100

iterations and µ ∈ [0, 100%] under original wind conditions (vw = 29.058m/s), to obtain respec-

tive vulnerability distributions (Fig. 5.11(a) and Fig. 5.11(b)). Intervention strength has a direct

impact on vulnerability, which reaffirms the theory that management of WUI fires is only possible

by regulating fire management at the individual structural level [7, 12, 112, 124, 128]. The mean

vulnerability for different µ values is observed to be in range [0.089, 0.977] for region OI and

[0.049, 0.982] for region OII . Fire intervention is observed to be more effective for region OI than

region OII , which can be attributed to the difference in topographic features of the region layouts.

Region OI has a relatively constricted layout (less redundant paths), whereas, the layout of region

OII is more spread out (more redundant paths). For each intervention strength µ, some strate-

gies (iterations) provides better resistance from wildfire than others, suggesting the importance of
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strategy efficiency. Depending on the location of elements chosen for intervention, a spread in

vulnerability (η) is observed. Therefore, given a particular community layout, optimal fire inter-

vention configurations can be evaluated to minimize the effect of wildfires on communities.

!"# !$#

Figure 5.11: Vulnerability distributions obtained for N = 100 iterations at different intervention strengths
(µ) for (a) region OI (b) region OII . The lower and upper edges of the box correspond to the 25th and 75th
percentile, the center dot represents the median and circular markers represent the outliers

During the Oakland fire, all suppressive actions taken by firefighters proved ineffective through-

out the day. It was not until the evening when wind speed gradually reduced and at some point

stopped completely, firefighters were able to stop the fire [122, 123]. The intervention framework

is applied to both regions at different wind speeds for µ = 50% (Fig. 5.12). At high wind speeds

(vw = [30, 15] m/s), the effect of intervention is nearly constant for both regions, followed by im-

provement for medium wind speeds. For low wind speeds, the effect is quite significant to the point

that some of the configurations result in near zero vulnerabilities. This explains how firefighters

were ultimately able to control the 1991 Oakland fire. Strong correlation between wind speed and

intervention strength (Fig. 5.11(a) and Fig. 5.11(b)) is to be expected. Interestingly, the effect of

strategy, which is measured as standard deviation of vulnerability distribution (η), is observed to

be maximum for specific range of wind speeds (Fig. 5.12).
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Figure 5.12: Effect of fire intervention (mitigation) showed for (a) region OI and (b) region OII of Oakland
at intervention strength µ = 50% for different wind speeds to highlight significance of intervention strategy.
Vulnerability distributions are calculated for N = 100 iterations at each wind speed and the efficiency of
strategy η is measured as the standard deviation for each distribution

5.4.4 Effect of Wildlands

All analysis conducted to this point only considered sources at the wildland urban interface

(Fig. 5.4). During the 1991 fire, high speed winds resulted in ignition of several structures in

the community by embers generated from the wildlands, which is a familiar observation in high

intensity WUI fires [92, 127]. To observe the effects of these internal sources, a source selection

framework is developed and implemented. The steps involved in the framework are listed below:

o Initial source location is selected.

o A temporary second source is placed at a randomly selected ignitable element {m ∈ NW}.

o Probability of ignition due to wildland nodes for every element (Eq. 5.18) is calculated, as

shown in Fig. 5.1. For each node of an element the probability of ignition is calculated as

the maximum of ignition probabilities from all boundary nodes of wildland (Ω). g(b,s) is the

ember ignition probability function, as discussed in Section 4.3.

P
(s)
i = max

(
F (b,s)
cc .g(b,s)

)

{b∈Ω,s∈n}
(5.18)
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o The ignition probability for the selected source is utilized with Eq. 5.3 to determine the

vulnerability of each node in the graph, followed by the mean vulnerability of the community

using Eq. 5.4.

o The element that results in the maximum vulnerability of the community is added as the next

source location.

o The above process is repeated for l number of iterations to obtain l source locations.

o The process is stopped when increment in total vulnerability is reduced below a threshold

percentage (< 1%).

For both regions of Oakland, the framework is applied for different iterations, such that the

increase in vulnerability is reduced to less than 1% for further iterations. Specific configurations for

fire intervention strength µ = 50% are selected for both regions, such that the initial corresponding

vulnerabilities (before applying the framework) are calculated to be V = 0.541 for region OI

and V = 0.610 for region OII . The maximum vulnerability (after 5 iterations) is evaluated to be

V = 0.774 for region OI and V = 0.733 for region OII . Even though the effect of fire intervention

is evaluated to be higher for region OI than region OII , the effect of additional sources result

in higher vulnerability for the former region. Region OI has a higher percentage of wildland

vegetation surrounding it than region OII , as a result, the wildlands are able to generate internal

sources further deep into the community. During the first hour of the Oakland fire, a similar

pattern of internal sources was observed (Fig. 5.13) and the vulnerability for this configuration

is calculated to be V = 0.7933. Two of the actual observed internal source locations coincide

with the optimal internal source locations calculated from the framework (Fig. 5.14(e)). The

internal source framework shows that just by igniting five critical elements in the community,

the vulnerability can be increased significantly even after considering 50% intervention strength.

Wildlands surrounding communities worsen the problem by creating additional internal sources

and these need to be accounted for proper community risk assessment [124]. Furthermore, by

determining the most effective source locations, the number of sources to be considered while
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Figure 5.13: Vulnerability distribution of region OI for source locations observed during 1991 Oakland fire
(Reconstructed from [129]) ( c©OpenStreetMap contributors [107])

calculating the vulnerability are significantly reduced without compromising on accuracy. This

results in significant reduction in computation time.

5.4.5 Identifying Flow Paths

The flow paths of radiation and convection modes are strictly dependent on community lay-

out, unlike ember paths, which are more or less independent of community layout at high wind

speeds. Instead, they are function of individual element properties. Betweenness centrality is used

to identify most probable paths (MPP) within the communities for short-range propagation modes

(radiation and convection). Betweenness centrality is a measure based on the shortest path between

nodes (69). The application of betweenness to wildfire graphs, can determine the pattern of maxi-

mum flow paths within a community. However, the traditional definition of betweenness does not

suffice in this case. Betweenness centrality measures the connectivity of a graph assuming an un-

biased directionality in flow. There are only specific nodes in wildfire network that generate flow.

By including other non-source nodes the centrality measure is diluted. The betweenness centrality

measure for wildfire propagation in a community can be considered a sub-case of betweenness in

a typical graph. To identify the maximum flow paths the normalized centrality (Cn) is defined as

shown in Eq. 5.19, where σ(i,j) is the shortest number of paths between nodes i and j, σ(i,j)(z) is

number of those paths passing through node z, S is the source node set, NS is the total number
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Figure 5.14: Total community vulnerability shown at each element when that specific element is considered
as a source. With each iteration the element which results in maximum community vulnerability is added
to the list of sources. The figures show the change in community vulnerability for region OI as sources are
added for iteration (a)i = 1 (b)i = 2 (c)i = 3 (d)i = 4 (e)i = 5 ( c©OpenStreetMap contributors [107])

of sources considered for analysis and N∗ is the normalization constant (Eq. 5.20). Since each

ignitable element is a complete directed graph, ignition of any node would cause ignition of its

respective element, therefore, the betweenness of an element (Cw
b∗(m)) is calculated by Eq. 5.21.

Cn
b∗(z) =

1

N∗

NS∑
s=1

(∑
i �=z �=j σ

(s,j)(z)

σ(s,j)

)

{s∈S,(z,j)∈V}
(5.19)

N∗ =
(NS)(n−NS − 1)

2
(5.20)

Cw
b∗(m) =

z∈W(m)∑
Cn

b∗(z) (5.21)

The identified paths for both regions of Oakland and region of Hacienda Heights (for θ = 300o)

are shown in Fig. 5.15. These are identified by selecting ignitable elements with centrality above

a certain threshold (Cw
b > 0.075). The betweenness values are highest for HH, followed by region

OI , and finally region OII . High centrality values for HH (Cw
b ∈ [0, 0.84]) suggest higher use

of flow paths, which coincide with the fact that the intervention framework has the most impact

on HH (V (µ = 50%) = 0.403 for θ = 300o) among the 3 test regions. On the other hand,

region OII shows lowest centrality values (Cw
b ∈ [0, 0.73]), which implies that the wildfire spread
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Figure 5.15: Maximum probability flow paths at wind speed vw = 29.058 m/s, considering only short-range
propagation modes - radiation and convection, for regions (a) Hacienda Heights (vw = 300o) (b) Oakland
region OI (c) Oakland region OII ( c©OpenStreetMap contributors [107])

throughout the community via multiple paths in the region. This indicates a closeness among path

probabilities; hence, intervention had the least effect, as the fire is able to find surrogate paths much

easily. Identification of high probability paths can aid in improving the efficiency of fire mitigation

strategies.

5.4.6 Computational resources and observations

All analysis in this study are performed on an Intel Xeon E5-2620 v3 12-core processor. The

primary computation, which pertains to calculation of vulnerability, either of a single element or

all elements in a community, is divided into two phases - (a) Graph formulation of community

by identifying ignitable elements (phase-I) (2) Calculation of vulnerability for each element using
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shortest path algorithms (phase-II). The first phase is conducted by CPU parallel computing, while

the latter without. Due to high information overhead, GPU parallel computing cannot be utilized

for this step. Information overhead relates to the latency introduced in processing time due to large

amount of information transfer to the processing unit. Since the CPU is located closer to the GPU

the information overhead is relatively low, and as expected, the overhead increases exponentially as

the amount of information transfer increases. For the proposed graph algorithm significant amount

of information needs to be transferred first in order to develop the graphs for communities.

The run times for the different community layouts are shown below in Table 5.4. These were

found to be reasonable from a practical application point of view, given the size of communities

shown. An important point to note is that the run times shown below are only for calculating

vulnerability of all elements of a community for a particular configuration. For certain steps, such

as evaluation of fire intervention efficiency, multiple configurations have to be considered, which

requires multiple runs of phase-II, and thus, increased computation time.

Table 5.4: Computational details for the test cases

Location Total Nodes Total Ignitable Elements Phase-I Phase-II
Hacienda heights 1304 156 300± 20 secs 15± 5 secs
Oakland (OI) 7445 636 720± 20 secs 65± 5 secs
Oakland (OII) 9326 845 660± 20 secs 95± 5 secs

The observed processing time can be considered practical for small-medium communities,

however, for communities with households in the order of 100,000 might be a problem. For sig-

nificantly large communities, the graph formulation step would require significant computational

resources. To make the proposed model applicable for such situations a few modifications can be

made. If Parallel computing can be utilized in this step the processing time can be brought within

practical range. Consider a graph G for a community such that V = {v1, ..., vn} is the node set

and E ⊆ VxV is the edge set. If the community is divided into a MxN grid, such that each cell is

represented by subgraph G(m,n) with V(m,n) as the node set and E(m,n) as the edge set, such that Eq.
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5.22 and Eq. 5.23 are satisfied. For each subgraph the nodes can be classified into - (1) Boundary

nodes and (2) Intermediary nodes. The former refers to nodes closest to the local cell boundaries

and the latter to the remaining nodes (Fig. 5.16). An Adjacency matrix A(m,n) ∈ NVb
(m,n)

xNVb
(m,n)

be formulated for each subgraph, whereNVb
(m,n)

is the total number of boundary nodes within a cell

and a(k,l)
(m,n) is the maximum probability of fire reaching from the kth boundary node to lth boundary

node of cell (m,n).

G = ∪Mm=1

(
∪Nn=1 G(m,n)

)
(5.22)

Vr = ∪Mm=1

(
∪Nn=1 Vb(m,n)

)
(5.23)

Using the Adjacency matrices of each cell and the Adjacency matrix of G a new graph Gr can

be formulated, which satisfies Gr ⊂ G, such that the node set is given by Vr (Eq. 5.7) and the edge

set by Er. The corresponding Adjacency matrix for graph Gr is defined by Eq. 5.24, where a(i,j)
(m,n)

is the maximum probability of fire reaching node j if the fire started at node i for the subgraph in

cell (m,n) and a(i,j) is the probability of fire reaching node j from node i based on the original

(unreduced) graph. The reformulated graph is a a simpler representation of the original graph.

In case of significantly large communities, this reformulation of the community graph will aid in

reducing the processing time significantly. The separate subgraphs can be run all at once using

parallel computation, which was not possible before, to formulate the adjacency matrix of each

sub graph. The developed subgraphs are used to obtain the reduced graph Gr, which is used to

obtain the individual vulnerabilities of each node. Due to substantially lesser number of nodes in

the reduced graph the processing time for vulnerability calculation will be much more manageable.

a(i,j)
s =


a

(i,j)
(m,n) if {v(i)

(r) ∈ Vb(m,n) : v
(j)
(r) ∈ Vb(m,n)}

a(i,j) if {v(i)
(r) /∈ Vb(m,n) : v

(j)
(r) ∈ Vb(m,n)}

(5.24)
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Figure 5.16: Community layout showing spatial discretization (Map data c©OpenStreetMap contributors
[107])

There can be other elements for reducing the computation time. Phase-I includes formulation

of the graph by calculating the weights of each edge. The weights are calculated by combining the

results from the heat transfer models of Conduction, Convection, Radiation and Embers. About

95% of the computation time for phase-I is attributed to the radiation model. Based on the frame-

work discussed in Section 4.2, the view factor calculation between surfaces of incident and target

elements require substantial computational resources. Therefore, replacing the model by a suitable

approximation can result in significant reduction in overall computation.

87



Chapter 6

Risk Assessment and Intervention Strategy

Optimization

6.1 Risk Framework
Every natural hazard has certain characteristics, based on which their risk is quantified and

communicated. For earthquakes, risk is communicated through magnitude of the shaking, hur-

ricanes by wind velocity and storm surge, floods by measured depth of water, and so on. For

wildfires, researchers have developed detailed frameworks to quantify the potential of fire spread

in wildlands; however, there is currently no standardized method of risk assessment or communi-

cation that can be applied nationwide to WUI communities [94]. Several researchers have looked

into application of risk analysis for quantifying risk of communities to wildfires [130–133], but

comprehensive theoretical frameworks are yet to exist. Available frameworks only account for

risk from the perspective of wildlands and do not take into consideration the susceptibility of the

community based on its own characteristics. A comprehensive definition of wildfire risk entails

assessment of two key components - (1) probability of a wildfire event and (2) susceptible assets

to wildfire [12].

Under the framework implemented in this study, the community risk is reclassified into three

stages of wildfire - (1) Probability of wildland ignition (P (Z(t))) (2) Probability of wildfire that

started in wildland to reach a specific wildland-urban interface (P (Y (t)|Z(t))) (3) Susceptibility of

community provided that a wildfire reached the wildland-urban interface (P (X(t)|Y (t))). Using

these three stages the net risk of a community (R(t)) for a particular day t can be defined as given

by Eq. 6.1. Since susceptibility of a community can be defined as the mean probability of fire

reaching a house and causing ignition from the boundary of surrounding wildland urban interface,
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the risk can be defined as the mean probability of fire reaching a house from the initial ignition

point in the wildlands.

R(t) = P (Z(t) ∩ Y (t) ∩X(t)) = P (Z(t)).P (Y (t)|Z(t)).P (X(t)|Y (t)) (6.1)

The general definition of risk for any hazard is characterized by 3 components - (1) Hazard,

which is defined as the temporal probability of occurrence for a hazard of a particular intensity,

(2) Vulnerability, which is defined as the degree of exposure, and (3) Amount of elements-at-risk,

which is also known as exposure. In this study, the daily probability of ignition from the National

Fire Danger Rating System (NFDRS) is used as the probability of occurrence. The terms Vulner-

ability and Elements at risk are coupled to form the vulnerability term. This is because for other

hazards a typical prototype structure has a distinct value for vulnerability (probability of failure,

obtained from fragility functions). This is because for other hazards a typical prototype structure

has a distinct value for vulnerability (probability of failure, obtained from fragility functions). For

example, a moment frame on soil type D subjected to specific earthquake excitation will perform

the same way regardless of its location (i.e. as long as the building is the same and the load is the

same, it does not matter where the building is placed). For wildfire, the vulnerability of a specific

type of building will vary depending on its location and orientation within the community. Based

on the framework discussed, the three input components shown in Eq. 6.1 have to be determined

to evaluate wildfire risk for a community. The derivation of each component is described in the

subsequent sections.

6.1.1 Background and modeling details

Parts of four different communities - (1) Oakland (California), (2) Jackson (Wyoming), (3)

Steamboat Springs (Colorado), and (4) Austin (Texas), from the U.S. are chosen for the analysis.

The communities are selected due to their close proximity to wildlands and difference in commu-

nity layout. Each community possess a unique geographical layout, such that effect of community

characteristics can be drawn out. Suitable graphs are developed for each community by identifying
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and classifying ignitable elements. The details on individual graphs formulated for each commu-

nity is shown in Table 6.1. Since the focus of this study is to draw out a comparison between the

selected communities, all elements in each community are assumed to be identical in nature i.e.

possess same material properties.

Table 6.1: Details for each community layout

Location Total Nodes Total Ignitable Elements
Austin 11359 805
Jackson 11238 1605
Oakland 9326 845
Steamboat Springs 8068 1032

Each community has a unique footprint attributing to structure density, community layout, veg-

etation distribution and others. The individual community layouts are shown in Fig. 6.1. Based on

vegetation alone communities can be classified into different types. In order to do a comparative

study between the communities, individual vegetation (trees and shrubs) are not modeled exclu-

sively. This is done to normalize the features of all communities such that the stochastic nature

of vegetation does not affect the analysis. Although the proposed model can capture presence of

discrete vegetation surrounding the houses, the community layout in this study is derived from

openstreetmap.org, which had no information available on the location of discrete vegetation near

the houses. To circumvent this problem in the future, GIS data can be used in conjunction with

image pattern recognition algorithms to identify stray vegetation, which can be overlaid to ob-

tain accurate representation of the community data. Once the vegetation is mapped out it will be

incorporated into the community graph in the form of set of ignitable elements such that individ-

ual nodes would represent parts of vegetation and properties of vegetation would be assigned to

nodes. The analysis of the updated graph would provide vulnerability estimate while considering

the distribution of vegetation inside community.

The fire intervention framework discussed in Section 5.3 is applied to account for cumulative

effect of vegetation around houses. The intervention framework is incorporated to model the resis-
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Figure 6.1: Community layouts for (a) Austin (Texas) (b) Jackson (Wyoming) (c) Oakland (California) (d)
Steamboat (Colorado) (Map data c©OpenStreetMap contributors [107])

tance provided by the communities, which entails fire mitigation efforts by fire fighters and private

home owners. An intervention strength of µ = 50% is used for all cases, which indicates 50% of

all elements in the communities are altered by adjusting the edge weights P (i,j)
tr to induce effect of

fire mitigation. The location of these elements in each community is selected to represent the mean

case. The wildlands govern vulnerability of a community significantly, understandably it would
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govern the risk as well. Hence, a framework is implemented to account for the wildland vegetation

surrounding the respective communities for each test case.

6.1.2 Wildland Ignition Probability

Wildland ignition probability has been the focus of numerous studies over the years. For this

study, the Wildland Fire Assessment System (WFAS) developed by the USFS [134] was used. The

WFAS performs daily fire danger forecasts with data from the National Digital Forecast Database

for different locations across the US. The Fire danger rating level takes into account current and

antecedent weather, fuel types, and both live and dead fuel moisture [40]. It primarily utilizes

two performance indexes - (1) Burning Index (BI) and (2) Energy Release Component (ERC), in

conjunction to determine fire danger levels at a location. The danger rating is normalized across

different fuel models, indexes, and station locations. It is based on the primary fuel model cat-

aloged for the station, the fire danger index selected to reflect staffing levels, and climatological

class breakpoints. Staffing class are decided by local station managers from historical fire weather

climatology and represent percentile values for the performance index selected for a specific day.

Linear interpolation is used to determine probability of ignition (P (Z)), as given by Eq. 6.2, where

pku(d) and pkl (d) are appropriate upper and lower percentiles allotted on a daily basis by station

managers and vku(d) and vkl (d) are the performance index values corresponding to the percentiles

selected. The slope m(d) is given by Eq. 6.3 and the constant by Eq. 6.4.

Figure 6.2: Sample wildfire ignition data from WFAS Archives

The wildfire ignition probability for a particular region is calculated based on the daily data

obtained from WFAS archives. The staffing specs shown in Fig. 6.2 is used to calibrate Eq.
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6.2. The parameters - vku(d), vkl (d), pku(d) and pkl (d) are obtained from the data sheet such that

vku(d) and vkl (d) represents the upper and lower performance index and pku(d) and pkl (d) are the

corresponding upper and lower percentiles. A dominant performance metric each day is selected

based on which the calibration parameters are opted. There are 2 key performance metrics - ERC

(Energy Release Component) and BI (Burning Index). Values between stations are estimated with

an inverse distance-squared technique on a 10-km grid. Once Eq. 6.2 is suitably calibrated it is used

to obtain the ignition probability corresponding to the observed value of the dominant performance

index (I).

P (Z) =
1

100
(m(d).I(d) + c(d)) (6.2)

m(d) =
(vku(d)− vkl (d))

(pku(d)− pkl (d))
(6.3)

c(d) = vku(d)−m(d).pkl (d) (6.4)

The daily probability of wildland ignition for each of the selected communities for the years

2007, 2012 and 2017, and the months May to September are shown in Fig. 6.3, Fig. 6.4, Fig. 6.5

and Fig. 6.6.
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Figure 6.3: Probability of ignition (Pi) in months May-September for years 2007, 2012 and 2017 for Austin
(Texas)

Figure 6.4: Probability of ignition (Pi) in months May-September for years 2007, 2012 and 2017 for
Jackson (Wyoming)
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Figure 6.5: Probability of ignition (Pi) in months May-September for years 2007, 2012 and 2017 for
Oakland (California)

Figure 6.6: Probability of ignition (Pi) in months May-September for years 2007, 2012 and 2017 for
Steamboat Springs (Colorado)
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6.1.3 Community Susceptibility

The susceptibility of a community is defined as the mean vulnerability of all ignitable com-

ponents within the community. The mean is one possible performance metric that is used in this

study; however, it can be replaced by a weighted mean such that the weights for each ignitable

component corresponds to its importance in a community. The definition of importance could vary

depending on the focus of the analysis, but the alternative formulation could be used to account

for high-value resources within a community. The vulnerability of each ignitable component in

a community is evaluated based on the graph developed for the community layout based on the

framework discussed in Chapter 4. An important component in evaluating the vulnerability of a

community is to input the wind conditions correctly, as they are unique to each location. Daily

Wind data is extracted from the archives of NOAA’s National centers for environmental informa-

tion. Based on the location, daily maximum sustained wind speed is used for evaluating vulner-

ability. Mean and peak wind speeds were disregarded in this study since the former would have

given a conservative while the latter an overestimate value of the vulnerability. Since, sustained

wind speed is calculated by averaging over a 1-min period, it provides a better estimate. Hourly

data could also be used to capture changes in wind behavior so that more refined wildfire behavior

is captured. However, the intent of this study is not to simulate a particular incident but to provide

a generalized framework that can be utilized for any cases so as to highlight the underlying wildfire

patterns while evaluating wildfire risk. Fig. 6.7, Fig. 6.8, Fig. 6.9 and Fig. 6.10 shows a sample

of the community vulnerabilities obtained for the four regions selected in this study. The total vul-

nerability evaluated daily for each community for the intended years and months are shown in Fig.

6.11, Fig. 6.12, Fig. 6.13 and Fig. 6.14. The derivation of the final component i.e. the wildland

propagation probability P (Y (t)|Z(t)) is discussed in the next section.

6.1.4 Wildland Propagation Probability

The wildland component P (Y (t)|Z(t)) can be calculated based on the wildland propagation

framework discussed in Chapter 3. The wildland model can be used to determine the probability of
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wildfire reaching the wildland-urban boundary by performing Monte Carlo simulation to generate

random cases and determine the required probability. Since the focus of this study is primarily

towards community, the probability of fire reaching the interface, once initiated, is assumed to be

unity for all cases (P (Y (t)|Z(t)) = 1). This also provides a more conservative value of risk.

Figure 6.7: An example of Vulnerability map for Austin (Texas)
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Figure 6.8: An example of Vulnerability map for Jackson (Wyoming)

Figure 6.9: An example of Vulnerability map for Oakland (California)
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Figure 6.10: An example of Vulnerability map for Steamboat Springs (Colorado)

Figure 6.11: Community vulnerability (V ) in months May-September for years 2007, 2012 and 2017 for
Austin (Texas)
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Figure 6.12: Community vulnerability (V ) in months May-September for years 2007, 2012 and 2017 for
Jackson (Wyoming)

Figure 6.13: Community vulnerability (V ) in months May-September for years 2007, 2012 and 2017 for
Oakland (California)
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Figure 6.14: Community vulnerability (V ) in months May-September for years 2007, 2012 and 2017 for
Steamboat Springs (Colorado)
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6.2 Case Study: Risk Analysis of Archetypal Communities in

United States
The risk of each test community is calculated per day for the months May to September, as per

the discussed framework. Fig. 6.15, Fig. 6.16, Fig. 6.17 and Fig. 6.18 show daily risk values for

the months May-September for the years 2007, 2012 and 2017 for the four communities selected.

The risk values for each day of the months are calculated based on the daily wind and ignition

probability data obtained from the Fire Danger data (as discussed in Section 6.1.2). Mean risk

values (Rm) for each month are also shown, which are defined as the average of risk for each day

(R(t)), as given by Eq. 6.5. Based on the risk patterns observed for all communities it is evident

that even if the chance of a wildfire ignition is high enough it may not necessarily result in high risk

for communities. Unfavorable wind conditions result in high vulnerability of communities which

are observed to affect the risk in several cases from the results. Some of the most destructive

wildfires in history were accompanied by strong seasonal winds - (1) The Oakland wildfire (1991)

by El Diablo winds [127], (2) The Thomas fire (2017) by Santa Ana winds [135], and (3) Australia

Bushfires by Foehn winds [136]. The graph model is formulated in a way so as to incorporate all

types of wind conditions ranging from mild to extreme events. For a given spatial resolution, the

ignition transfer probabilities (Ptr(i, j)) can be updated based on the wind field pattern observed.

For varying wind events no changes are required in the model formulation; however, the temporal

resolution of the analysis would have to be increased, for instance using hourly wind data instead

of daily wind data. Both probability of ignition and vulnerability of communities need to be

considered to quantify wildfire risk. Based on the mean risk observed for different months of each

community, Jackson is observed to have the highest overall risk and Steamboat to have the lowest,

while Austin and Oakland showed intermediate risk relative to the other communities.

R(t) =
1

t

∫ t

0

R(t)dt (6.5)
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Figure 6.15: WUI fire risk in months May-September for years 2007, 2012 and 2017 for Austin (Texas)
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Figure 6.16: WUI fire risk in months May-September for years 2007, 2012 and 2017 for Jackson
(Wyoming)
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Figure 6.17: WUI fire risk in months May-September for years 2007, 2012 and 2017 for Oakland (Califor-
nia)
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Figure 6.18: WUI fire risk in months May-September for years 2007, 2012 and 2017 for Steamboat (Col-
orado)
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Steamboat exhibited both lower ignition probabilities (Fig. 6.6), as well as, lower community

vulnerability (Fig. 6.14). The latter is specifically lower for steamboat due to the absence of sig-

nificant wildland vegetation in the vicinity of the community, which limited the entry points for the

wildfire. The discontinuous layout of the community further reduced the vulnerability. Among the

four communities, Steamboat has the lowest amount of wildland vegetation (in terms of volume)

near the communities that enable the wildfire to create internal sources in the communities. These

internal sources allow the wildfire to reach deeper parts of the communities and spread more easily.

Wildfire risk is function of both wildland ignition probability and community vulnerability. To un-

derstand the correlation of risk with these two key parameters, the Pearson correlation coefficient

is calculated for each community separately (Table 6.2). For all communities, except Jackson,

the correlation is observed to be stronger between risk and community vulnerability than risk and

wildland ignition. This suggests that wildfire risk can be better regulated for these communities

by controlling the community vulnerability. However, in case of Jackson the correlation between

risk and wildland ignition is higher, which suggests that risk in this case is primarily governed by

the wildlands. A different perspective would be that it would require much more effort to bring

down the risk for Jackson below a certain threshold, since it is situated in a high fire vulnerability

region. Hence, the risk can be quantified based on two types - communities where wildfire risk

can be regulated with more measures in the community and those where wildlands should be the

focus.

Table 6.2: Pearson correlation values between risk (R), vulnerability of community (V ) and probability of
wildland ignition (Pi), for each community

Correlation Austin Jackson Steamboat Oakland
R and Pi 0.5886 0.8304 0.5158 0.3075%
R and V 0.8407 0.3601 0.9534 0.8572%
V and Pi 0.0878 -0.1781 0.2409 -0.14%

As discussed in Chapter 5, wind conditions have a severe effect on the vulnerability of commu-

nities. Polar fragilities for the test communities are calculated to show their respective sensitivity
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to wind direction (Fig. 6.19). These fragilities are formulated by varying the wind direction at an

interval of 30o and calculating the mean vulnerability of community. Wind direction is measured

anti-clockwise from the positive x-axis, such that a N-S wind is represented by θ = 270o and S-N

wind by θ = 90o. The individual data points in the polar fragilities represent the mean probability

of fire reaching a house in the community from the wildland urban interface for a particular wind

direction. For each wind direction, a new graph is formulated by updating the nodal probabilities,

followed by most probable path (MPP) calculation to determine mean community vulnerability.

For a community with a uniform fragility curve, which is defined as similar vulnerability across

different wind directions, would suggest uniformity across community layout both in terms of fuel

density and material property, while a non-uniform fragility curve would suggest bias in certain

directions. For each community the dominant wind directions are observed to be different, which

is to be expected given the different layouts of the communities (Fig. 6.1). Jackson is observed to

have the least effect of wind direction, while Oakland is observed to have the most. During the 1991

Oakland wildfire, the situation was worsened by the seasonal Diablo winds which entered Oakland

from the dominant direction shown in fragility curve (θ = 240o). The mean vulnerability for the

1991 wildfire is calculated to be 0.79. On September 2017, a fire ignited in the same location in

wildlands of Oakland as it did in the infamous 1991 Tunnel fire [137]. However, this time the fire

agencies were able to suppress the fire before it reached the internal parts of a community due to

controlled wind conditions and prompt actions of the firefighters. The vulnerability is observed to

be 0.25 which represents 68.3% reduction in vulnerability just due to the absence/presence of cer-

tain wind conditions. Ideally, the difference in building material used for reconstructing Oakland

after the 1991 wildfire would also have an impact on reducing the vulnerability of the commu-

nity. However, due to unavailability of data associated with the material changes the material of

all households is assumed to be the same as pre 1991 wildfire. Hence, the analysis presented does

not account for reduction in risk due to change in materials.
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Figure 6.19: Polar fragilities for (a) Austin (Texas) (b) Jackson (Wyoming) (c) Oakland (California) (d)
Steamboat Springs (Colorado) at wind speed Vw = 15 m/s

6.3 Intervention Strategy Optimization

6.3.1 Intervention Framework

The passive intervention framework, discussed in Section 5.3, takes into account the effect of

fire intervention strategies applied at individual ignitable elements on WUI fire behavior. Some

possibly effective strategies to reduce propagation of wildfire include installation of sprinkler sys-

tems and removal of unnecessary vegetation and mulch in the vicinity of households. The effects

of such strategies were specifically prevalent in the 2016 McMurray wildfire, where majority of the

houses that survived followed this practice. The effectiveness of such strategies is coming to light

and is gaining attention all over the world. However, if one is to ask the question what fraction of

households need to follow this strategy, or other effective strategies for that matter, to bring down

the risk of overall community below a certain threshold, there does not exist any answers. There

are currently no theoretical frameworks that can determine the efficacy of intervention measures

on communities in a quantifiable manner. An optimization framework is discussed to identify the

optimal number and location of households such that the community risk can be reduced below

a certain threshold. Even though the main hindrance in practical application of such approaches

is that the primary responsibility lies in the hands of individual household owners, perhaps in the

future with some strong scientific evidence, a middle ground can be reached, and wildfire policies

can be modified appropriately.
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The passive intervention formulation describes the general mechanism of intervention strate-

gies applied to graph theory model. The scaling factors α and β for the active and passive inter-

vention strategies represent the cumulative effect of all strategies applied to a particular element.

This formulation is used to conduct general investigations on the effects of intervention. The gen-

eral formulation is extended in this chapter to provide a more comprehensive understanding on the

effects of different intervention strategies on the community. There are several possible passive

intervention strategies, but in this study the following four have been considered - (1) Vegetation in

defensible space (2) Roofing material (3) Siding material (4) Presence of decking. These strategies

have been a subject of extensive research by the Wildfire Research (WiRe) team from University of

Colorado (CU), Boulder, CO. To quantify the effectiveness of each intervention measure, an effec-

tiveness score, provided by the WiRe team, is assigned, as shown in Table 6.3. The scores shown in

the table were provided by the Wildfire Research (WiRe) team from University of Colorado (CU),

Boulder, CO. Each score represents the options available within a particular type of intervention

strategy. For instance, in case of Defensible Space the scores [0, 100] corresponds to the absence

and presence of ignitable fuel within 10m of a household (ignitable element). The Roof type scores

corresponds to ignitable wooden and non-ignitable roofing. The siding material scores correspond

to non-ignitable and ignitable siding. For the decking, the scores correspond to the absence and

presence of ignitable wooden decking. In this study, only two sub-categories of each intervention

strategy are considered, however, any number of classifications can be considered within the scope

of the proposed framework (as discussed below) even within a particular strategy.

Table 6.3: Effectiveness of different intervention measures

Index Variable Effectiveness Score (sn)
1 Defensible Space [0,100]
2 Roof type [0,200]
3 Siding material [0,60]
4 Decking [0,50]
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The ignition transfer probability, shown in Eq. 4.1, represents the edge weights between differ-

ent ignitable elements of the wildfire graph G. To consider the effect of intervention measures the

ignition equation is modified by introducing individual scaling factors corresponding to each mode

of heat transfer, as shown in Eq. 6.6. βc is the scaling factor corresponding to convection, betar is

the scaling factor corresponding to radiation and betae is the scaling factor corresponding to ember

mode of heat transfer. The modified equation is similar in concept to the intervention equation (Eq.

5.11), in which only a single scaling factor was used to model the effect of intervention measures.

By dividing the scaling factors into individual components, the effect of intervention measures on

individual modes can be accounted for.

P
(i,j)
total = (βc.P

(i,j)
conv) ∪ (βr.P

(i,j)
rad ) ∪ (βe.P

(i,j)
ember) (6.6)

Each of the scaling factor are formulated in a similar manner, as shown in their respective

equation below (Eq. 6.7, Eq. 6.8 and Eq. 6.9). The scaling factor corresponding to a particular

mode is calculated as a summation over all the intervention strategies that have an effect on that

particular mode. lc, lr and le are sets of intervention strategies that impact the different modes.

From the equations below it can be observed that all intervention strategies have an impact on the

convection and amber mode, however, in case of radiation mode, the effect of roofing strategy is

not considered. By segregating the effect the impact of intervention strategies can be captured

much accurately. λlc , λlr and λle are the normalization constants for each mode of heat transfer

to maintain the relative sensitivity between them. plc , plr and ple are the normalized effectiveness

score calculated as sn/(max sn). In this case, there are only two values in a tuple corresponding

to each intervention type (Table 6.3). Hence, all normalized effectiveness scores are simplified to

[0, 1]. Λlc , Λlr and Λle determine the presence or absence of a particular intervention strategy. The

variables take only two values - 0 to represent absence and 1 to represent presence. Even if all

four intervention strategies considered in this study are applied to a house, in reality, it would not

reduce the ignition probability to zero. Therefore, a reduction factor R is introduced to ensure that
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even after applying all intervention strategies the edge weights between elements P (i,j)
tr do not fall

below a certain threshold. A value of R = 0.80 is used for all analysis in the study.

βc = 1−R.
[ ∑
lc∈[1,3,4]

λlcplcΛlc

]
(6.7)

βr = 1−R.
[ ∑
lr∈[1,3,4]

λlrplrΛlr

]
(6.8)

βe = 1−R.
[ ∑
lc∈[1,2,3,4]

λlepleΛle

]
(6.9)

The equations for the normalization constants pertaining to different modes (λlc , λlr and λle)

are given in Eq. 6.10, Eq. 6.11 and Eq. 6.12. The constants are obtained by normalizing the

maximum effectiveness score value (slc , slr and sle) among the intervention list (lc, lr and le) by

the summation of scores of all intervention strategies within the list.

λlc =
max{lc∈[1,3,4]}(slc)∑

lc∈[1,3,4] slc
(6.10)

λlr =
max{lr∈[1,3,4]}(slr)∑

lr∈[1,3,4] slr
(6.11)

λle =
max{le∈[1,2,3,4]}(sle)∑

le∈[1,2,3,4] sle
(6.12)

6.3.2 Optimization Framework

The idea behind the proposed optimization framework is to determine optimal intervention

strategy, which is represented as the set Λ = {Λ(1),Λ(2),Λ(3),Λ(4)}, such that both, mean commu-

nity vulnerability and intervention cost, which is the total cost of applying intervention strategies

to complete or some parts of a community, are minimized. The optimization problem is formulated

so as to minimize the fitness function shown in Eq. 6.13, which is a weighted linear combination

110



of normalized community vulnerability and normalized intervention cost. The two quantities are

normalized so as to remove any bias since there minimum and maximum bounds are different.

Vavg is the mean vulnerability of the community and Vmax is the maximum vulnerability observed

when no form of any intervention is applied to the community. Ctotal is the total cost of applying

a particular intervention strategy to a community and Cmax is the total cost of intervention when

all intervention are applied to all elements of a community. The weight factors λV ∈ [0, 1] and

λC ∈ [0, 1] represent the priority/importance given to each component (vulnerability and cost)

under the constraint λV + λC = 1.

min
Λ

{
Fitness = λV .

Vavg(Λ)

Vmax
+ λC .

Ctotal(Λ)

Cmax

}
(6.13)

The ‘Covariance Matrix Adaptation Evolution Strategy’ (CMA-ES) [138] is a stochastic method

of optimization for continuous non-linear, non-convex functions. CMA-ES has been found to be

flexible and efficient [139], and has been successfully used in other optimization problems [140].

CMA-ES is an Evolutionary type optimization, similar to Genetic algorithm, which means it is

based on the basic principles of evolution (i.e. the interaction between generation, selection and

mutation). The overall idea behind CMA-ES is the same as other evolution strategies except the

method of generating population (‘population’ is referred to the different cases generated) the

method of selection and the method of mutation differs. The CMA-ES algorithm exploits two

different concepts – Maximum Likelihood Principle and Evolution Paths.

The role of Maximum Likelihood is to maximize the probability of selection of correct values

and search domain. Initially a test population is chosen at the beginning of the algorithm by

assuming a particular distribution. After the 1st iteration the Maximum Likelihood principle is

used to update the parameters of the distribution i.e. the mean and the variance, such that the

likelihood of the correct values of the previous iteration tends to increase. Similarly, to increase

the likelihood of the correct search domain the covariance matrix of the distribution is updated.

This process of updating not just the population but also the search domain is highly beneficial.

The second key concept is exploiting the use of Evolution or Search Paths by recording them.
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Evolution paths basically give an idea in which direction the favorable solutions can be found

based on the results from the previous step. Thus, it gives a correlation between consecutive steps.

These evolution paths are actually serving dual purpose. First, it is used in the adaptation process of

the Covariance matrix instead of focusing on the variance of a single successful step. This enables

a faster and a more efficient improvement in moving towards a favorable direction. The second is

the use of evolution path to control the step size. The advantage of step size control is to avoid

premature convergence, which is a common problem of concern in most evolutionary algorithms.

Premature convergence is basically the convergence of the program on local solutions rather than

the global. This takes place mainly due to lack of genetic variation among the population generated

(i.e. all the members of the population have identical properties). To further increase the accuracy

and robustness of CMA-ES certain modifications were made. Details on the optimization and its

modifications are given in [140]. CMA-ES, alone, was used to minimize the formulated fitness

function. However, due to high non-linearity in the problem the optimization was observed to be

ineffective.

Lemma 6.3.1. The optimal value of optimization variable Λ for minimization problem given in

Eq. 5.20 for λV = 1 is Λ = {1, 1, 1, 1} and for λV = 0 is Λ = {0, 0, 0, 0}

Proof. For λV = 1 the weight factor for cost (λC) is 0, therefore, the fitness function becomes

solely dependent on community vulnerability and the optimization is reduced to min
[ Vavg
Vmax

]
. It

has already been shown in Fig. 5.11 that community vulnerability is inversely proportional to

intervention strength, therefore, minimum vulnerability will be observed at maximum intervention

strength, which corresponds to Λ = {1, 1, 1, 1}. Similarly, for λV = 0 the optimization is reduced

to min
[
Ctotal

Cmax

]
and the optimal strategy would correspond to minimum intervention strength, which

is given by Λ = {0, 0, 0, 0}.

Corollary 6.3.1.1. Optimization can be conducted by discretizing the variable space into 2n − 2

spaces.

Proof. For the optimization set Λ = {Λ(1),Λ(2),Λ(3),Λ(4)} the number of possible combinations

(2|Λ|) come out to be 16. All possibilities are listed in Fig. 6.20. Each combination represents an
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intervention strategy applied to an ignitable element. Assuming a solution Λ′ to be one of the 16

strategies applied to all homes. Based on the lemma 6.3.1 the potential solution will lie somewhere

between the optimal solutions for λV = 1 and λC = 0. Therefore, Λ′ can be an optimal solution

for 1 > λV > 0. In other words, optimal solutions for 1 > λV > 0 would either be equal to or

lie in the neighborhood of Λ′. If the cases Λ′ = {1, 1, 1, 1} and Λ′ = {0, 0, 0, 0} are excluded,

since they represent the boundary cases for which optimal strategy is already known, 14 individual

optimizations can be conducted by assuming different values of Λ′ as the initial solution.

Figure 6.20: List of different intervention strategies Λ

CMA-ES is utilized to conduct the minimization by segregating the domain into 14 different

sections. For each section, an independent optimization is conducted assuming a different initial

solution. The list of initial solutions for the different sections are shown in Fig. 6.20. A test

optimization is conducted on a part of Steamboat Springs (Colorado) community. The layout of
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the community is the same as the one shown in Fig. 6.1(d). For different combinations of the

importance factors (λV and λC) optimization is conducted by segregating the domain. The optimal

cases found for each case are shown in Fig. 6.21. It is observed that at high wind speed cases

(> 10m/s) for all combinations of importance factors the optimal case is always comprised of

applying some form of intervention to all elements of the community, as opposed to selective

elements only. However, as shown in Fig. 6.21, the optimal intervention strategy Λ can vary for

different importance factor values. For instance, for λV = 0.20 (and λC = 0.80) the optimal

strategy is Λ = {1, 0, 0, 0}, on the other hand, for λV = 0.60 (and λC = 0.40) the optimal strategy

is Λ = {1, 1, 0, 0}.

Figure 6.21: Optimal cases for different importance factor combinations for Steamboat Springs (Colorado)

6.3.3 Optimization Tests

The discussed intervention optimization was applied to the four communities shown previ-

ously in Section 6.1.1. Wind speed of 30 m/s and the wind directions for each community is
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chosen based on Fig. 6.19, such that maximum vulnerability is observed in each case. Based on

the results from the previous section, it is found that the optimal case is always found among the

16 possible intervention strategies applied at the same time to the entire community. Different

intervention strategies are applied one at a time on the entire community and vulnerability analysis

is conducted. Corresponding to the intervention strategy applied, the total cost of intervention is

calculated. By combining the vulnerability and cost values for a specific combination of the impor-

tance factors, the fitness diagram is created. The corresponding vulnerability, total cost and fitness

diagrams evaluated for each of the 4 communities are shown in Fig. 6.22, Fig. 6.23, Fig. 6.24 and

Fig. 6.25. An important point to note is that the fitness diagram obtained for each of the analysis

shown is for λV = 0.50 and λC = 0.50. As observed from the different diagrams, it is clear that ef-

fectiveness of each intervention strategy is different for each location. In order to achieve the same

vulnerability different intervention strategies can be adopted for different communities. An opti-

mal solution for one community might not be optimal for a different one. Furthermore, depending

on the importance factors chosen this variation would be further accentuated. Hence, interven-

tion strategies need to be customized based on the characteristics of a location and a one size fit

all approach would be unsuitable. The results of the optimization show the need for individual

community analysis since every community is unique.
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Figure 6.22: Vulnerability, intervention cost and total fitness digram shown for Austin

Figure 6.23: Vulnerability, intervention cost and total fitness digram shown for Jackson
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Figure 6.24: Vulnerability, intervention cost and total fitness digram shown for Oakland

Figure 6.25: Vulnerability, intervention cost and total fitness digram shown for Steamboat
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Chapter 7

Conclusions and Future Work

In light of the increasing potential risk to communities, effective strategies for wildfire man-

agement are required. Current strategies mainly entail fire suppression and fuel management in

wildlands. There exists laws mandating mitigation requirements at the community level in certain

places. For instance, the California 1992 Bates Bill, which was passed after the destruction from

the 1991 Oakland Tunnel fire and the 1996 California Fire Plan, which is a cooperative effort be-

tween the State Board of Forestry and Fire Protection and California Board of Forestry, aimed at

developing fire hazard maps. Researchers have identified that current tactics of severe fire suppres-

sion have led to significant rise in frequency of high intensity fires; thus, fire management focus

needs to be shifted towards communities. Mitigation strategies geared towards complete contain-

ment of wildfires within the wildlands are nothing short of unrealistic. Therefore, the primary goal

has to be on making communities resilient, with the purpose of minimizing potential losses. To

better understand what factors govern the impact of WUI fires, tools to assess and quantify the risk

to communities are required.

The observations from the analysis conducted in this study reaffirmed some of the long-stated

findings from previous studies. We were able to quantify and understand the effects of intrinsic

factors, which relate to factors that are naturally present in a community, and mitigation factors,

which can be altered to regulate vulnerability of the community. The intrinsic factors were pri-

marily identified as - (1) Wind speed (2) Wind direction (3) Community layout and (4) Wildland

vegetation in the vicinity of the communities. High speed winds were found to strongly affect the

generation of embers, which allowed the fire to spread easily. The discontinuities in the community

layouts adversely affected fire propagation; however, the effect was minimal for high wind speeds.

The wildlands surrounding the communities led to the creation of additional sources in the interior

of communities, which caused significant increase in vulnerability. This increase was, however,

a function of which structures the embers ignited. By igniting certain structures in the commu-

118



nity, the probability of wildfire propagation can be substantially increased. Certain structures have

higher geographical contribution to fire spread than others.

To manage community vulnerability, mitigation factors such as presence of stray vegetation

inside communities, layout and material properties of individual structures, and resources available

for fire suppression, are critical. The effect of these factors was quantified in terms of mitigation

strength, which was measured as the number of houses under some form of fire mitigation, and

strategy efficiency, which was related to the selection of such houses. Both components were

found to be strongly correlated to vulnerability; however, the effect of strategy was restricted to

low to mid-range wind speeds only. Furthermore, depending on the wind conditions during a WUI

fire, the community needs to have a certain level of resilience at the individual structural level, in

order to have a fighting chance. These measures could include integration of fire-proof materials in

household design, adoption of automatic sprinkler systems and/or management of stray vegetation

in the household ignition zone. Essentially, a major responsibility of fire management lies within

the hands of home owners; therefore, programs such as Fire Adapted Communities, Fire Adapted

Communities Learning Network, Firewise Communities USA, and FireSmart Canada need to be

implemented rigorously, which is going to require a paradigm shift in current fire management

policies.

Using the formulated vulnerability model, wildfire risk for four different communities around

the U.S. is evaluated using, local wind data, community buildings layout, and the probability of

ignition in the wildland. It is observed that community risk is community specific and a function

of different environmental and community parameters. A recently published study [141] found

that California, Texas and Colorado experienced highest building losses due to wildfires among

all states in the U.S. Interestingly, Wyoming is observed to have received significantly reduced

losses. The analysis presented based on certain communities selected in the mentioned states

present an antithesis to this observation. This leads to the conclusion that a generalized view

point cannot be formulated for all communities based on cumulative analysis of large number

of communities. Each community has a unique footprint as each community presents unique
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characteristics, especially pertaining to their distinctive layout. There have been several valuable

studies that have provided insightful information on the general trends of wildfire risk, but specific

analysis of individual communities is also required such that custom intervention measures can

be developed according to community properties. The results presented in this study highlight

the importance of individual community risk analysis. This work lays the foundation for future

studies that can aid in determining specific drivers for wildfire mitigation contingent on community

characteristics.

This study was an attempt to start a dialogue in a new direction of quantifying wildfire risk to

communities. There are assumptions and limitations in this study that hinder the "exact" applica-

bility of the results to the evaluated communities. Due to the complexity of the wildfire problem the

scope for this study had to be restricted. For instance, the formulated graph model was developed

to be static in nature. The analysis did not include the presence of fences in backyards that have

been shown to have an impact on fire propagation. The internal vegetation within the communities

is not modeled exclusively. The proposed model is capable of incorporating the mentioned factors,

however the purpose of this study is to lay the foundation. A generalized quantification framework

for overall risk of communities is necessary to determine critical parameters for different types of

communities. Even though the presented graph model is in its stage of infancy, once expanded, its

application can be further extended to study other aspects of fire management, including but not

limited to, sustainable urban planning and optimal firefighter mitigation strategies. The interven-

tion strategy optimization provides a glimpse of the potential applications of the proposed graph

model. By quantifying optimal strategies, changes in fire policies can be approached in a system-

atic fashion as it will allow policy makers, planners, and resource managers to develop long-term

solutions to make communities more adaptable to wildfires. Specific design guidelines can be es-

tablished, similar to design philosophies for other hazards, that are exclusive to each community

and account for the mentioned critical variables.
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Appendix

LIST OF NOTATIONS

Parameter Definition
E Total edge set of graph G
F(.) Set of surfaces for ignitable element (.) = m,n
G Graph of a community
M(x) Adjacency list of x MPP
V Total node set of graph G
W(k) Node set of ignitable elements k
α Intervention scaling factor for active strategies
β Intervention scaling factor for passive strategies
ε

(m)
(k) Emissivity of surface k
η Fire intervention (mitigation) strategy efficiency
Θ

(m)
(k) Inclination of source surface k

Θ
(n)
(l) Inclination of target surface l

θ
(i)
f Flame angle for node i
θ(i) Wind direction at node i
θ

(i)
f Flame angle for node i
θ(i) Wind direction at node i
λw Scaling factor to account for wind effect
λt Scaling factor to account for topography effect
µ Fire intervention strength
φ(i,j) Angle of edge joining node i to j w.r.t x-axis
A Adjacency matrix
A(x, y, t) State of cell at coordinates (x, y) at time t
A

(m)
(k) Area of surface k

A
(m)
w Area of ignitable element m

a(i,j) (i,j) entry of adjacency matrix A
Cd(z)n Total degree centrality of node z
Cn
d,i(z) Indegree of node z

Cn
d,o(z) Outdegree of node z

Cw
d,i(m) Indegree of ignitable element m

Cw
d,o(m) Outdegree of ignitable element m

Cd(m)w Total degree centrality of ignitable element m
Cn
e (z) Eigenvector centrality of node z

Cw
e (m) Eigenvector centrality of ignitable element m

Cn
b (z) Betweenness centrality of node z
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Parameter Definition
Cn
b∗(z) Normalized betweenness centrality of node z

Cw
b∗(m) Normalized betweenness centrality of ignitable element m

c(n) Constant
d

(m,n)
(k,l) Distance between surfaces k and l
dth Threshold distance for radiation
d(i,j) Distance between nodes i and j
d

(i,j)
conv Convection threshold distance
FTP (n) Flux time product
F

(i,j)
cc Wind correlation coefficient
h

(i)
f Flame height
I Fuel Density (in %)
K Number of shortest paths
NW Total number of ignitable elements in graph G
NM(x)

Total members in adjacency listM(x)

NS Number of nodes in set S
NW(m)

Number of nodes in ignitable element m
N∗ Normalization constant for betweenness centrality
n Total number of nodes in graph G
P

(i,j)
acc Probability of access
P

(i,j)
tr Probability of fire transfer from node i to j
P

(i,j)
cond Probability of fire transfer by conduction from node i to j
P

(x)
MPP Total probability of MPP x
P

(s)
m Mean probability of K shortest paths for source node s
P

(s)
i Probability of ignition for source node s
Q

(n)
cr Critical flux for ignition

q
(m,n)
(l) Total radiation heat flux on surface l
q

(m,n)
(k,l) Radiation heat flux from surface k of element m to surface l of element n
Rad[m,n] Radiation matrix between source element m and target element n
S Ember spotting probability distribution function
T n(z) Transitivity of node z
Tw(m) Transitivity of ignitable element m
Tf Flame temperature
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Parameter Definition
Ta Temperature of surroundings (Ambient temperature)
t
(n)
(l) Minimum residence time for flames required for ignition
t
(m)
r Residence time of each surface of ignited ignitable element m
V

(i)
n Fuel volume of source node i
V (z) Total vulnerability of node z
Vavg Mean vulnerability of community
Vtotal Total vulnerability calculated over a range of wind directions
vf

(m,n)
(k,l) View factor between surfaces of different ignitable elements

vw Wind speed
X

(i,j)
conv The event of ignition due to convection from node i to j

X
(i,j)
rad The event of ignition due to radiation from node i to j

X
(i,j)
ember The event of ignition due to ember spotting from node i to j
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