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ABSTRACT OF DISSERTATION

VORTEX PHASES IN TYPE-I SUPERCONDUCTORS

Su�ciently thin �lms of type-I superconductor in a perpendicular magnetic �eld

exhibit a triangular vortex lattice, while thick �lms develop an intermediate state.

To elucidate what happens between these two regimes, precise numerical calculations

have been made within Ginzburg-Landau theory at κ = 0.5 and 0.25 for a variety

of vortex lattice structures with one �ux quantum per unit cell. The phase diagram

in the space of mean induction and �lm thickness includes a narrow wedge in which

a square lattice is stable, surrounded by the domain of stability of the triangular

lattice at thinner �lms/lower �elds and, on the other side, rectangular lattices with

continuously varying aspect ratio. The vortex lattice has an anomalously small shear

modulus within and close to the square lattice phase.

Solutions of the Ginzburg-Landau equations have also been obtained for bulk sys-

tems and thin �lms for vortex lattices with one vortex but two �ux quanta per square

or triangular unit cell. These lattices of double �uxoid vortices are thermodynami-

cally unstable in bulk in both type-I and type-II superconductors, as expected. In

type-I �lms the situation is less clear, because the corresponding calculations for more

complicated vortex lattice structures are not yet possible.
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Department of Physics

Colorado State University
Fort Collins, CO 80523
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1 Introduction

Nearly a century ago Gilles Holst, a researcher in the laboratory of Kammerling

Onnes, discovered a new thermodynamic phase of matter [1]. On cooling a metal

below a critical temperature, Tc, Holst found its resistivity would suddenly drop, ap-

parently to zero. The initial phenomenon he observed gave the new phase its name,

superconductivity. The more complete phenomenology emerged over time: perfect

diamagnetism (Meissner-Ochsenfeld e�ect), a discontinuity in the speci�c heat at the

transition temperature, magnetic �ux quantization, and the magnetic response that

categorizes a superconductor as either type-I or type-II. In this last phenomenon a

type-I superconductor in an external magnetic �eld will undergo a �rst-order phase

transition with a discontinuity in the entropy at the phase change and a correspond-

ing latent heat. On the other hand, a type-II superconductor in an external magnetic

�eld undergoes a second-order phase transition with a continuous change in the en-

tropy and no latent heat associated with the phase change. Bulk samples of type-II

superconductors and, of particular interest to the present work, thin �lms of type-I

superconductors can exist in a state, called the mixed state, which is only partially

diamagnetic. Magnetic �ux penetrates the sample in microscopic �laments, at the

core of which the superconductivity goes to zero. As will be discussed in the following

sections these �ux lines are also referred to as vortices and the term vortex state is

synonymous with the mixed state. Bulk type-I samples do not show this behavior, but

depending on sample geometry and strength of the external magnetic �eld, will in a

single physical sample, separate into macroscopic normal regions and fully supercon-

ducting (i.e., perfectly diamagnetic) regions. This is referred to as the intermediate

state. In both cases, the mixed state and intermediate state, there is a threshold value
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for magnetic �eld magnitude above which superconductivity is completely destroyed.

This critical �eld value is sample and temperature dependent.

It is now known that the superconducting phase is due to an attractive potential

between electrons becoming strong enough at low temperatures that the electrons

form bound pairs, known as Cooper pairs. At the superconducting transition free

electrons will form Cooper pairs and the superconducting state can then be described

by a macroscopic wave function constructed from these Cooper pair states. It is in

this sense that we talk about superconducting electrons condensing from the normal

conduction electrons. Much like super�uid helium and Bose-Einstein condensates,

superconductors are an example of a macroscopic phenomenon due to quantum me-

chanics�in particular they are all examples of macroscopic coherent states. These

new phases of matter can be grouped together in a category referred to as quantum

liquids [2], and in each case the constituents that make up the quantum liquid con-

dense out of a normal �uid (conduction electrons in the case of superconductors) and

the new state exists as a mixture of normal and quantum �uid. More generally, this

description of a superconductor with coexistent normally conducting and supercon-

ducting electrons is referred to as the two-�uid model. The roots of this model can

be found in the work of Gorter and Casimir [3] as well as F. and H. London [4] from

the 1930s.

The actual microscopic mechanism in classical superconductors was explained

in 1957 by Bardeen, Cooper and Schrie�er [5] in their groundbreaking paper titled

simply �Theory of Superconductivity�. However, the work of this manuscript does

not make use of BCS theory; our work is based on the phenomenological theory of

Ginzburg and Landau [6]. Their work predates BCS by seven years and is still widely

applied in work on classic as well as high Tc superconductors, and is even used in

areas outside of condensed matter physics. At its core Ginzburg-Landau (GL) theory

postulates a complex order parameter�a macroscopic pseudo-wave-function�whose
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modulus squared is proportional to the superconducting electron concentration. In

1959 Gor'kov [7] showed that for temperatures close to Tc the Ginzburg-Landau equa-

tions (described in Sec. 2.6) can be derived from the BCS microscopic theory and that

the GL order parameter is equivalent to the BCS groundstate wave function. One

of the advantages of using GL theory rather than the BCS is that it is much easier

to work with for cases where the order parameter varies in space. Tinkham [8], in

1963, addressed such a problem and applied Ginzburg-Landau theory to very thin

�lms of type-I superconductors and showed that, contrary to the bulk case, �lms of

these materials can exist in the mixed state.

This is the primary focus of the current work: the mixed state in �lms of type-I

superconductors. Towards that end we revisit the problem of vortex lattices that carry

more than one �ux quanta per vortex in bulk samples; the method we employ for �lms

requires having a bulk �solution� as a starting point. For these two problems, multiply

quantized vortices in bulk and equilibrium vortex lattices in type-I �lms, we defer the

respective introductory material until those sections where we present our results.

We �rst review in Sec. 2 the macroscopic phenomenology relevant to the discussion of

the mixed state in bulk samples and in �lms. The material in this section follows the

presentations in the classic texts by De Gennes [9] and Tinkham [10]. In Sec. 3 we

discuss the vortex structure and the functional form for the �elds (order parameter

and local magnetic induction) that constitute superconducting vortices. Following

this, in Sec. 4, we give results speci�c for type-I and type-II bulk samples. While the

former are non-equilibrium states they are, as mentioned above, a precursor to our

work on �lms and show some interesting behavior we wish to report. We conclude

with a discussion of our work and results for �lms of type-I superconductors in Sec. 5.

Much of the technical detail, along with background material, has been placed in

Appendices A-K.
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2 Phenomenology

In this section we discuss some of the observed properties and behaviors of super-

conductors and two theories that explain them. In this section, unless otherwise

stated, we will use as our canonical geometry a long cylinder aligned with the z-axis

placed in a homogeneous longitudinal magnetic �eld Ha = Haẑ . The sample has a

demagnetization factor equal to zero, explained in Sec. 2.3.

First, a distinction must be made between a superconductor and a normal metal

with zero resistivity, i.e., a perfect conductor. Assume we have defect-free samples

of a superconductor and of a perfect conductor. Also, assume the perfect conductor

has a �nite resistivity above the superconductor's transition temperature Tc. If both

materials are in a zero magnetic �eld with a temperature below the critical value and

then a small magnetic �eld is applied, neither material will allow �ux penetration in

the interior. For the perfect conductor this is due to Faraday's law; the changing mag-

netic �eld induces screening currents to circulate. In the second case both materials

are above the critical temperature but with the same small applied magnetic �eld.

Magnetic �ux freely penetrates both samples. On decreasing the temperature below

Tc, the perfect conductor will show no change. The superconductor on the other

hand will expel all magnetic �ux from the interior (i.e., act as a perfect diamagnet).

The superconducting state is a function of temperature and magnetic �eld and does

not depend on the magnetic history of the sample. It is this behavior that justi�es

categorizing the superconducting state as a thermodynamic state. It must be said

that we assumed there are no impurities or defects in the sample and we will use this

assumption for the rest of this work.
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Finally, a note regarding terminology: in Sec. 2.6 we introduce the complex

Ginzburg-Landau order parameter, ψ. As mentioned in the introduction this is

equivalent to the BCS wave function and |ψ|2 is proportional to the superconducting

electron density. We will also use the term �order parameter� interchangeably with

�condensate wave function�.

2.1 Characteristic Length Scales

A superconductor is characterized in part by two length scales: the penetration depth,

λ, and the coherence length, ξ. The penetration depth describes the distance over

which the local magnetic induction decays at a normal/superconducting boundary.

The coherence length is the minimum distance over which the order parameter can

vary. A similar description due to Pippard [11] is that ξ is the distance over which

the condensate responds to a perturbation. In addition, it turns out that the mean

Cooper pair radius is approximately equal to ξ. Both λ and ξ are minimums at T = 0

with λ (T ) ∼= λ (0) [1− T/Tc]
−1/2 and ξ (T ) ∼= ξ (0) [1− T/Tc]

−1/2. However, the ratio of

these two lengths is approximately constant and de�nes the dimensionless Ginzburg-

Landau parameter, κ ≡ λ/ξ. As will be discussed in the following subsection for

κ < 1/
√

2 a material will be a type-I superconductor, for κ > 1/
√

2 a material will

be type-II.

2.2 Critical Temperature, Critical Fields

As the temperature is decreased below a critical value, Tc, a superconductor will

undergo a phase transition from the normal state to the superconducting state. In

the presence of an external applied magnetic �eld, Ha, a type-I superconductor will

change back to the normal state once Ha ≥ Hc. As mentioned in the introduction this

is a �rst-order phase transition. Hc is called the thermodynamic critical �eld. It is a
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function of temperature with a maximum at T = 0 and Hc decreases monotonically

to zero at T = Tc.

Type-II superconductors, on the other hand, undergo a second-order phase transi-

tion and exhibit a di�erent diamagnetic response. Starting from the superconducting

state with no applied �eld we then increase Ha. Once it reaches a value equal to

Hc1, called the lower critical �eld, �ux will begin to penetrate the sample in �laments

or �ux lines. As the external �eld is further increased, the density of �ux lines in-

creases, which in turn raises the mean induction for the sample, until the external

�eld reaches Hc2. Above this value the entire sample will go to the normal state with

mean induction B̄ = µ0Ha. For Ha < Hc1 the material is in the Meissner state, B̄ = 0

and magnetic susceptibility χ = −1 (units and magnetic conventions are discussed

in Appendices A and B). For the external �eld in the range Hc1 ≤ Ha ≤ Hc2 the

material is in the mixed state, B̄ < µ0Ha and χ > 0. For Ha > Hc2 the material

is in the normal state, B̄ = µ0Ha and χ = 0. Both Hc1 and Hc2 exhibit a similar

temperature dependence to Hc: maximum at T = 0 and decreasing as temperature is

increased. In Fig. 1 we show phase diagrams for type-I and type-II superconductors

as a function of temperature and applied �eld.

A type-I superconductor with volume V in the Meissner state will be lower in

free energy than the normal state by 1
2
µ0H

2
cV�this is the magnetic �eld energy

that has been expelled from the sample. The energy density 1
2
µ0H

2
c is referred to as

the condensation energy. For type-II superconductors we use the energy di�erence

between the normal state and the Meissner state as a de�nition for the thermodynamic

critical �eld in type-II materials. We set this energy di�erence equal to 1
2
µ0H

2
cV . In

type-II superconductors Hc lies between the lower and upper critical �elds, Hc1 ≤

Hc ≤ Hc2; however nothing unique happens at Ha = Hc.
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Figure 1: Ha-T Phase Diagrams

Ha-T phase diagrams for Type-I (upper) and Type-II (lower) superconductors.
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2.3 Intermediate State, Mixed State

The initial division between type-I and type-II materials was based on the observa-

tion that some superconductors in an external magnetic �eld exhibit only a partial

�ux expulsion, regardless of sample shape. These type-II superconductors can exist

somewhere between the normal state and the fully superconducting Meissner state.

Type-I superconductors in cylindrical geometries aligned with the magnetic �eld will

only exist in the normal state and the Meissner state. However in other geometries,

for example a slab, a type-I superconductor will break up into macroscopic fully su-

perconducting and normal regions. Here we examine some of the magnetic structures

that form when a superconducting sample as a whole has 0 < B̄ < µ0Ha.

At an interface between normal and superconducting regions there is an energy

associated with the surface area between the two regions. The energy per unit area,

or surface tension, can be positive or negative and the value of the GL parameter, κ,

determines the sign and relative strength of this surface tension. For type-I materials

the surface tension is positive and the overall energy can be reduced by decreasing

the interface surface area. For type-II materials the surface tension is negative and

maximizing the surface area is favored. At the critical value κ = 1/
√

2 the surface

tension is zero and there is no surface energy associated with the boundary between

normal and superconducting regions.

As an example of geometry e�ects on the magnetic structures, consider a disk with

a radius much larger than its thickness placed in an external magnetic �eld directed

normal to its two faces. There is a demagnetization factor n associated with di�erent

geometries (see �29 in reference [12]), ranging in value from zero for a very long, thin

cylinder (magnetic �eld directed along its axis) to n ≈ 1 for the case considered here.

A bulk superconductor in a weak external �eld acts as a perfect diamagnet and all

magnetic �ux is expelled. For the wide, thin disk this �ux expulsion would lead to

high magnetic �eld values around the edges, exceeding the critical �eld value. In
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addition the magnetic �eld energy density will be very large in these regions. So

it is energetically favorable for �ux to penetrate the sample �rst by reducing the

magnetic �eld energy density exterior to the sample and second by not maintaining

the superconducting state (i.e., superheating) in regions bordering areas where the

critical �eld value is exceeded. In type-I materials, with positive surface energy, it is

favorable to form large macroscopic regions of �ux penetration and complimentary

large regions whereB = 0. The sample breaks up into macroscopic normal regions and

macroscopic superconducting regions�it enters the intermediate state. On the other

hand, type-II materials, with negative surface energy, favor increasing the surface

area to volume ratio of �ux penetrating regions. The magnetic �ux will penetrate the

sample in thin �laments, or �ux lines, rather than macroscopic regions. This is the

mixed state, also referred to as the vortex state or Schubnikov phase.

The disk was used as an example to illustrate the di�erences between the inter-

mediate state and the mixed state, and the e�ects of sample shape. However type-II

superconductors of any shape (demagnetization factor 0 ≤ n ≤ 1) will exist in the

mixed state and never the intermediate state. Further, thin �lms of type-I supercon-

ductors can exist in the mixed state.

2.4 London Theory

In 1935 Fritz and Heinz London [4] proposed a model for superconductivity based on

the Drude model for normal conductors. In their theory the supercurrent is deter-

mined by the local vector potential

jS (r) = − 1

µ0

1

λ2
L

A (r) (1)

with B = ∇×A and where λL is a phenomenological parameter called the London

penetration depth. Taking the curl of both sides and applying Ampere's law leads to

9



the London equation

∇2B (r) =
1

λ2
L

B (r) . (2)

In this form the meaning of penetration depth is more clear, at the interface between

a superconductor and free space where Bext 6= 0, λL is the length scale over the �eld

decays inside the superconductor. For charge carriers with concentration n, mass m

and charge q, λL =
√
m/µ0nq2. More importantly the London equation shows that,

except close to a boundary, the induction inside a superconductor must be zero, i.e.,

it explains the Meissner e�ect. However, London theory does not allow for spatial

variation of the condensate and is best suited to describe the behavior of strongly

type-II superconductors.

2.5 Flux Quantization

A charged particle moving in a magnetic �eld has a velocity operator

v =
1

m
(−i~∇− qA) .

Anticipating the material in Section 2.6, ψ is the wave function (or order param-

eter) that describes the superconducting state and |ψ|2 = ns, the concentration of

superconducting charge carriers. Then ψ =
√
nse

iϕ and the current density is

j = qψ∗vψ =
qns
m

(~∇ϕ− qA) .

Rearranging we get an expression for the vector potential:

A =
~
q
∇ϕ− m

q2ns
j .

10



Now consider a superconductor in the shape of a ring with a large cross-section

placed in an applied �eld such that there is a non-zero magnetic �ux, Φ =
´
S

B · n̂ da,

through the center of the ring. Assume the ring is in the Meissner state. Then B

and j are zero at interior locations away from the ring surface. Applying Stokes's

theorem and taking a closed contour C through this Meissner state region we obtain:

Φ =
¸
C
∇ × B · dl =

¸
C

~
q
∇ϕ · dl. The phase must be single valued modulo 2π so

¸
C
∇ϕ · dl = p2π where p is an integer. This gives Φ = p2π~

q
and in 1948 when Fritz

London [13] examined this problem he predicted that the �ux through the ring would

be quantized in units of 2π~
e
. London assumed the charge carriers were individual

electrons (not Cooper pairs) and his predicted �ux quantum was two times too large.

In 1961 experiments [14, 15] showed the quantum of �ux for the ring con�guration is

Φ0 =
2π~
2e

= 2.07× 10−15 T m2 . (3)

London de�ned the �uxoid for a region as the sum of the �ux and of the contour

integral of the gauge-invariant supervelocity:

Φ′ ≡ Φ +
m

q

˛
C

Q · dl . (4)

The supervelocity is de�ned to be

Q ≡ 1

m
(~∇ϕ− qA) . (5)

With the correct assignment q = 2e it is the �uxoid that is quantized in supercon-

ductors. In cases where the contour C in Eq. (4) has
¸
C

Q · dl = 0 the associated �ux

will also be quantized. London de�ned the �uxoid before the full details of the mixed
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state were known but we will revisit the �uxoid in Sec. 3 and apply the concept to

vortices.

2.6 Ginzburg-Landau Theory

In 1950 Ginzburg and Landau [6] proposed their theory of superconductivity in which

they postulated the existence of a complex order parameter ψ (r)�a macroscopic

pseudo wave function�with |ψ (r)|2 proportional to ns, the superconducting electron

concentration. Further, they assumed a free energy density, F , as an expansion in

powers of ψ (r). This was based on Landau's general theory of second-order phase

transitions (see reference [16], chapter XIV) where there is a continuous change from

a more symmetric (less ordered) state to a less symmetric (more ordered) state.

However, the Ginzburg-Landau theory allows for both �rst and second-order phase

transitions. In both cases ψ gives a measure of the order in the superconducting

state, with |ψ| increasing as the temperature drops below Tc. Within GL theory, if

the spatial average over the sample
〈
|ψ (r)|2

〉
has a discontinuous jump from zero to

some �nite value at the transition then it is a �rst-order phase transition. On the

other hand, if this average of the order parameter varies continuously from zero at

the transition then the phase transition is of second order. Since the GL free energy

functional F is expressed as a �nite expansion then GL theory should only apply

when |ψ| is small, and in practice this means that the temperature must be close

to Tc. However, the advantages of GL theory are that it applies to both types of

superconductors, allows for a spatially varying condensate and is much easier to work

with than BCS theory. In the rest of section we present GL theory in the context of

the problems we will explore; for more general treatments see De Gennes or Tinkham

[10, 9].

In Ginzburg-Landau theory the free energy density is expanded in even powers of

|ψ| (F must be real and |ψ| is not analytic at ψ (0)) and additional terms are included
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for kinetic energy and magnetic �eld energy. In this manuscript we consider periodic

structures of in�nite extent. For this reason we work with the free energy per unit

cell or mean free energy density. The GL mean free energy density is

F̄ =
1

V

ˆ
V

d3r

{
α |ψ (r)|2 +

β

2
|ψ (r)|4 +

1

2m
|(−i~∇− qA)ψ (r)|2 +

1

2µ0

|B|2
}

(6)

α and β are phenomenological parameters, where α (T ) = α0 (T/Tc − 1) with α0 > 0,

and β is temperature independent. The modulus squared order parameter, |ψ|2, has

units of number density. If the temperature is above Tc then in equilibrium the

material will be in the (more symmetric, disordered) normal state and ψ = 0. In

the Meissner state ψ is uniform throughout the interior of a bulk superconductor and

B = A = 0. In this case the free energy is minimized if |ψ|2 = −α
β
and F̄Meissner = −α2

2β
.

Since the phase is constant we can take the Meissner state order parameter to be real

valued and de�ne

ψ∞ ≡
√−α

β
. (7)

The subscript on ψ∞ is to indicate that this is the value for the bulk interior. As

mentioned previously, we work primarily with the free energy per unit cell but it is

the integrand in Eq. (6) that is the actual free energy density.

Writing ψ = |ψ| eiϕ and looking at the kinetic energy, 1
2m
|(−i~∇− qA)ψ|2 =

1
2m

[
~ (∇ |ψ|)2 + (~∇ϕ− qA)2 |ψ|2

]
. The �rst term gives the additional energy due

to variations in the magnitude of the order parameter. The second term gives the

gauge invariant form of the kinetic energy of the supercurrents. From Eq. (5) the

gauge invariant supervelocity is Q = 1
m

(~∇ϕ− qA), so that the supercurrent energy

can be written 1
2
mQ2 |ψ|2, and q

m
(~∇ϕ− qA) |ψ|2 = qQ |ψ|2 gives the supercurrent,

j.

13



The free energy can be written in reduced units (see appendix A)

F̄ =
1

V

ˆ
V

d3r

{
1

2
− |ψ|2 +

1

2
|ψ|4 +

∣∣∣∣(− iκ∇−A

)
ψ

∣∣∣∣2 + |B|2
}

(8)

where a constant term is included so the Meissner state has F̄ = 0 (in reduced energy

density units 1
2

= 1
2
µ0H

2
c ). We assume the material is otherwise non-magnetic so

the normal state free energy is constant. Eq. (8) applies to the bulk case and we will

modify this free energy functional for the �lm case in Sec. 5. Calculating the variation

δF with respect to δψ and δA and setting equal to zero gives the Ginzburg-Landau

equations (
− i
κ
∇−A

)2

ψ = ψ
(
1− |ψ|2

)
(9)

∇× (∇×A) = − i

2κ
(ψ∇ψ? − ψ?∇ψ)− |ψ|2 A . (10)

In working with Ginzburg-Landau theory solving the coupled nonlinear GL equations

for ψ and A (or Q) is the crux of the problem. Note that the right hand of (10) side

is the de�nition of the supercurrent so this is a statement of Ampere's law. Also, if

the order parameter is uniform then Eq. (10) reduces to j = − |ψ|2 A, and we recover

the London equation Eq. (1).

We employ two gauge invariant versions of the GL energy and GL equations when

calculating energies for superconductors in the mixed state. Both versions use a real

valued order parameter, either f = |ψ| or ω = |ψ|2. In the low induction regime,

where vortices are spaced far apart, we assume radial symmetry for all �elds. Then

we use the order parameter magnitude f and we have

F̄ =
1

V

ˆ
V

d3r

{
1

2
− f 2 +

1

2
f 4 +

1

κ2
|∇f |2 + f 2 |Q|2 + |B|2

}
(11)

1

κ2
∇2f = f |Q|2 − f + f 3 (12)
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∇×B = −f 2Q . (13)

As the induction rises the vortex density increases and the vortices begin to

overlap. Repulsive forces then become signi�cant and the free energy can be mini-

mized by particular arrangements of vortices. We can no longer assume radial sym-

metry and the vortices form a �ux line lattice. In this regime we use the modulus

squared order parameter ω = |ψ|2 and our working equations are

F̄ =
1

V

ˆ
V

d3r

{
1

2
− ω +

1

2
ω2 +

1

4κ2

|∇ω|2
ω

+ ω |Q|2 + |B|2
}

(14)

1

2κ2
∇2ω = −ω + ω2 + ω |Q|2 +

1

4κ2

|∇ω|2
ω

(15)

∇×B = −ωQ (16)
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3 Vortex Structure

Superconductors are unique among super�uids in that the condensate carries a net

charge. While in motion the superconducting condensate generates a magnetic �eld

and in turn is subject to magnetic forces. At equilibrium vortices in superconductors

exist only if there is a non-zero applied magnetic �eld. The vortices are line singular-

ities where the order parameter magnitude, |ψ|, is zero and its phase, ϕ, is unde�ned.

Moving out from the core |ψ| will rise to a maximum on a length scale according to

the coherence length, ξ. In addition, on making a complete circuit around the core,

the phase of the order parameter can only change by 2πp. The integer p determines

the number of �ux quanta associated with the vortex. The local magnetic induction,

B (r), will have a maximum at the vortex core and then decrease over a length scale

described by the penetration depth λ. In Fig. 2 we show the di�erent vortex pro�les

for di�erent values of κ = λ/ξ. The condensate circulates around the vortex core

generating a superconducting current or supercurrent, j (r) and Ampère's law tells us

that j ∼ −∂B
∂r
. The supercurrent magnitude will rise from a zero value at the core

then moving outward will rise to a local maximum (approximately at r = ξ) and then

drop o� to zero, see Fig. 3. The order parameter and local magnetic induction are

roughly complements of each other. It is this coupled behavior that makes the terms

�vortex� and ��ux-line� interchangeable for superconductors. In general no magnetic

�eld line has an endpoint (in the absence of magnetic monopoles) and superconduct-

ing vortices must begin and end on the sample surface (or form closed loops within

the sample).

This section is intended as a bridge between the background material and the

presentation of our methods and results. The structure of a vortex, especially at
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positions close to the core, is important to our development of an Ansatz for multiply

quantized vortices. The con�gurations we examine in this work are for supercon-

ducting �lms of thickness d parallel to the xy-plane and centered at z = 0. The

applied magnetic �eld is normal to the �lm surface, Ha = Haẑ, and the sample will

have mean induction B̄ = B̄ẑ. Depending on context we may work with Carte-

sian, (x, y, z), or cylindrical, (r, θ, z), coordinates. In general we will use (r⊥, z), with

r⊥ = xx̂ + yŷ, and express vector quantities like the local induction as B (r⊥, z) =

B⊥ (r⊥, z) +Bz (r⊥, z) ẑ. In cases with radial symmetry vector quantities will be de-

composed as V (r) = Vr (r⊥, z) r̂+Vθ (r⊥, z) θ̂+Vz (r⊥, z) ẑ. Finally, we note that the

behavior near the core is a crucial boundary condition and we have summarized this

behavior for |ψ|, B, etc. in Table 1.
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Figure 2: Vortices with κ = 0.1 and κ = 50

Two plots illustrating the relative di�erence in the radial dependence of the order
parameter (f (r) = |ψ (r)|) and local induction for isolated p = 1 vortices with
di�erent κ values. The data comes from our circular cell computational method,
details for which are in Sec. 4.6.1. For the upper plot B̄ = 0.01µ0Hc2, in the lower
plot B̄ = 0.005µ0Hc2.
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Figure 3: j (r), for κ = 2 and κ = 50

Supercurrent for isolated p = 1 vortices with κ = 2 (upper plot) and κ = 50 (lower
plot). The dashed line indicates the position r = ξ, the current maximum lies just
beyond this location. In both plots B̄ = 0.005µ0Hc2.
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r⊥ → 0

ψ (r⊥, θ) rp⊥e
ipθ

A (r⊥)
(

1
2
Bz (0) r⊥ − C1r

2p+1
⊥

)
θ̂

Bz (r⊥) Bz (0)− C2r
2p
⊥

Q (r⊥)
(

1
2
Bz (0) r⊥ − p

κr⊥

)
θ̂

j (r⊥) r2p−1
⊥ θ̂

Table 1: Summary of near-core behavior for bulk samples.

The near-core behavior of the p-quanta vortex gives crucial conditions on the math-

ematical �elds we use in describing the vortex state. From Appendix E we have

the result for small r⊥ that ψ (r⊥, θ) = crp⊥e
ipθ, and from Appendix F that B (r⊥) =

B (0)− 1
2κ
|ψ (r⊥)|2. With ∇×A = B, the reduced unit de�nition of Q (Eq. (18)), and

applying Ampère's law, we summarize the small r⊥ behavior for the physical �elds of

interest. The values of the constants C1 and C2 in A and Bz are not important but

both are positive and C2/C1 = 2p+ 2.
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3.1 The Fluxoid

In Sec. 2.5 we introduced �ux quantization for holes in superconductors. Fritz London

[13] �rst de�ned the �uxoid, Φ′, associated with an island of normal region in the

superconducting state as the sum of the �ux through this hole and the contour integral

of the supervelocity in a region surrounding the hole. The London �uxoid as de�ned

in Eq. (4) actually simpli�es to

Φ′ ≡ ~
2e

˛
∇ϕ · ds (17)

�a contour integral over the phase of the order parameter. Since the order parameter

must be single valued the order parameter phase change for a complete circuit is
¸
∇ϕ · ds = 2πp with p an integer (in topology p is the winding number of the line

defect). This gives the quantization condition on �uxoids: Φ′ = pΦ0. We can de�ne

the �uxoid as a vector quantity, Φ′, if we assign it a direction along the vortex core.

In this work we will only consider cases for Φ′ = Φ′ẑ. If we take the contour integral

in Eq. (17) around the singularity (i.e., the vortex core) we then get the �uxoid that is

associated with the vortex. In this work when discussing p-quanta vortices we mean

vortices that have an associated �uxoid with Φ′ = pΦ0.

3.2 Periodicity

With both �lm and bulk samples we consider the sample is large enough in the r⊥-

plane that we can ignore the lateral boundaries and treat the sample as in�nite in

extent. In the mixed state we consider a uniform distribution of identical p-quanta

vortices parallel to the z-axis. In other words we have a periodic arrangement of

vortices giving a 2D lattice. In this lattice we restrict ourselves to one vortex per

primitive unit cell. With each vortex there is pΦ0 of magnetic �ux hence the primitive

cell area is S = pΦ0/B̄. In addition, we treat all �elds (induction, order parameter,
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supercurrents, etc.) as periodic. Our calculations begin with choices for the GL

parameter κ, vortex multiplicity p, lattice type (square, triangular, etc.) and mean

induction B̄. In general we use a �ux line lattice (FLL) in the xy-plane with primitive

lattice vectors R10 = x1x̂ and R01 = x2x̂ + y2ŷ where |R10 ×R01| = x1y2 = S.

We determined the periodicity starting from the �lm interior but it holds for the

free space region outside the sample and it is worth noting that for any z-position

1
S

´
S

B (r⊥, z) · ẑ da = B̄. Finally, when we work with the FLL model we use the

order parameter modulus squared ω = |ψ|2. We have included mesh plots of the local

induction and order parameter for di�erent con�gurations in Figs. 29�32.

In Abrikosov's [17] ground breaking work on type-II superconductors he found

that a bulk sample near Hc2 will have a minimum free energy if the unit cell is a

square. In that case the primitive lattice vectors are R10 =
√
Sx̂ and R01 =

√
Sŷ.

Later Kleiner et al. [18] found that the close packed triangular lattice, with x2 = 1
2
x1

and y2 =
√

3
2
x1, is slightly lower in energy and gives the true minimum.

In the low induction regime the inter-vortex spacing, ∼
√
S, is large and the �elds

will be nearly radially symmetric. We can replace the unit cell with an equal area

circular cell (CC) that has a radius, R, de�ned by πR2 = S. In this regime we

assume the physical quantities will be fully radially symmetric, e.g., B = B (r⊥, z)

and j⊥ = jθ (r⊥, z) θ̂, and we use the order parameter f = |ψ|.

3.3 Supervelocity

The supercurrents that circulate around a vortex are given by j = − |ψ|2 Q. The

supervelocity of the condensate, introduced in Sec. 2.6, is an important quantity in

our work and we repeat its de�nition (this time in reduced units)

Q (r⊥, z) ≡ A (r⊥, z)−
1

κ
∇ϕ (r⊥, z) . (18)
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While Q can have a z-dependence, we only consider equilibrium cases where Q (r⊥, z) =

Q⊥ (r⊥, z), i.e., Qz = 0 which in turn means jz = 0 and ∂ϕ
∂z

= κAz. Close to a vor-

tex core all �elds will be radially symmetric and the order parameter phase will be

ϕ = pθ. Then ∇ϕ = p
r⊥
θ̂ and the supervelocity will be dominated by the phase gra-

dient: Q ≈ − p
κr⊥

θ̂. From this it is obvious that Q is singular at r = 0. However, the

two physical quantities involving the supervelocity, the current − |ψ|2 Q and (reduced

unit) kinetic energy density term |ψ|2 |Q|2, are dominated by the small-r⊥ behavior

of the order parameter, and both go to zero as r⊥ → 0. Also, from Eq. (18), if we

exclude the singularities, ∇ ×Q = B. Examining the curl at a vortex core and ap-

plying Stokes's theorem we �nd ∇×
(
− p
κr⊥

θ̂
)

= −p2π
κ
δ2 (r⊥) ẑ. In reduced units (see

Sec. A.2) we have Φ0 = 2π
κ
. For a lattice of p-quanta vortices, the complete expression

for the curl of the supervelocity is

∇×Q = B− pΦ0

∑
m,n

δ2 (r⊥ −Rmn) ẑ . (19)

In the vortex lattice the magnetic �ux through the 2D primitive unit cell is given by
´
S

B · ẑda = B̄S = pΦ0, where S is the area of the unit cell. Then from Eq. 19 we

�nd
´
S

(∇×Q) · ẑda = B̄S − pΦ0 = 0. Again applying Stokes's theorem we �nd
¸
C

Q · dl = 0 for any contour that encloses an area nS and includes n vortices. In

the language of �uid dynamics Q is the velocity �eld of the �uid (the condensate),
¸
C

Q · dl is the circulation and ∇×Q is called the vorticity of the �uid. In general

the circulation is non-zero but it vanishes for a contour enclosing a unit cell.

The supervelocity can be split into two parts:

Q (r⊥, z) = QA (r⊥) + q (r⊥, z) (20)

where

QA (r⊥) ≡ B̄

2
ẑ × r⊥ −

1

κ
∇ϕ (r⊥) . (21)
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QA is called the Abrikosov supervelocity and is part of the solution to the linearized

GL equation (see Appendix F). Eq. (20) de�nes q and it can be described as the

variation of the supervelocity from QA. We then have

∇×QA = B̄ẑ − pΦ0

∑
m,n

δ2 (r⊥ −Rmn) ẑ (22)

and

∇× q = B (r⊥, z)− B̄ẑ . (23)

Finally, the average vorticities of these velocity �elds over the unit cell vanish:
´
S
∇×

QA · ẑda = 0 and
´
S
∇× q · ẑda = 0.
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4 Bulk Samples

The iterative methods we employ to solve the GL equations for the mixed state in

type-I �lms, which are discussed in Sec. 5, require having a convergent result for bulk

samples. The bulk result may not be an equilibrium solution but it satis�es the GL

equations for our choices of κ, B̄, vortex lattice type, etc. In a certain sense one could

say we start with d→∞ and then relax the result to the appropriate �nite thickness.

In this section on bulk samples we present our methods to acquire these convergent

(if not equilibrium) results. In addition, we present some interesting results for the

bulk case and �ll in missing information on lattices of doubly quantized vortices in

bulk type-II superconductors.

In bulk type-II superconductors, mixed states in which the vortices carry more

than one �ux quantum are unstable with respect to the usual vortices that carry

a single �ux quantum. Near the upper critical �eld this result was established by

Abrikosov [17], while near the lower critical �eld it is implied by Matricon's [19]

calculations for isolated vortices. As far as we are aware, there have been no explicit

calculations within Ginzburg-Landau theory for lattices of multiply quantized vortices

at magnetic �eld values between these two limits, but since there is no reason to

believe that such lattices should be stable at intermediate �elds, there has been no

reason to carry out the calculations.

The formal developments we present are an extension of Brandt's work in Ref. [20].

In Sections 4.2 and 4.3 we describe how Brandt's Ansatz and iteration scheme for

singles are modi�ed for doubles. In Sections 4.4 and 4.5 we discuss algorithm issues

and programming details. We present alternative methods to �nding the solutions

to the GL equations in Sections 4.6 and 4.7. In Sec. 4.8 we o�er illustrative results
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for order parameter and magnetic induction pro�les, as well as the Gibbs free energy,

for doubles and singles in a type-II superconductor. In Appendix H we discuss the

solutions of the linearized GL equations, which serve as initial values for the iterative

calculations.

In Sec. 3 we introduced our notation on vector quantities. In bulk samples all �elds

are uniform in the z-direction, and in this section we simplify the notation by dropping

the subscript on the position vector in the xy-plane: r = r⊥. In addition any vector

quantity in bold is assumed to be in the xy-plane, e.g., Q = Q⊥. The one exception

is for the induction, which in a few instances has been written in bold. However, in

bulk it is always true, for the sample setup we consider, that B (r) = B (r) ẑ.

4.1 Overview

Our goal is to �nd the solution to the two GL equations. They are coupled, second

order, non-linear partial di�erential equations. In gauge invariant form and in terms

of the real valued �elds f (r) = |ψ (r)| and Q (r) we have

1

κ2
∇2f = f |Q|2 − f + f 3 (24)

∇× (∇×Q) = −f 2Q . (25)

These are local equations but their solution gives a stationary point for the overall

free energy of the sample. We start with a choice of GL parameter κ, mean sample

induction B̄ and vortex lattice type. We express f (or ω = f 2) and Q as expansions

of orthogonal basis functions. We iteratively solve for the coe�cients corresponding

to these basis functions such that they satisfy Eq. (24) and Eq. (25). In order that we

�nd the minimum of the free energy we need a good initial guess; that initial guess

is the solution to the linearized GL equation.
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4.2 Form of the Solutions to the GL Equation

Consider a vortex in which the phase of the order parameter changes by 2πp on circling

the vortex core. If that core is at the origin, then the order parameter behaves as

ψ ∼ rpeipθ as r → 0 (see Appendix E) and the modulus squared order parameter as

ω ≡ |ψ|2 ∼ r2p. Brandt [20] thoroughly worked out the singles case and we include

part of his Ansatz for reference.

ω (r) =
∑
K

aK [1− cos (K · r)] (26)

B (r) = B̄ +
∑
K

bK cos (K · r) . (27)

In this work we focus on the p = 2 case. Brandt's work suggests that for a �ux line

lattice with one vortex per primitive cell we adopt the Ansatz

ω (r) =
∑
K

aK [1− cos (K · r)]2 (28)

in which r is a two-dimensional vector and where K runs over reciprocal lattice vectors

excluding the origin (as will be the case for all sums over K henceforth). This form

satis�es the requirements of periodicity and fourth-power behavior near vortex cores.

It turns out to be useful to express this with only �rst powers of cosines,

ω (r) =
∑
K

aK

[
3

2
− 2 cos (K · r) +

1

2
cos (2K · r)

]
. (29)

In Appendix F we show for small r the induction satis�es B (r) ≈ B (0)− 1
2κ
ω (r),

so B (0)−B (r) ∼ r4. This small-r behavior suggests the form for the deviation from

mean induction, b (r) = B (r)− B̄,
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b (r) =
∑
K

bK

[
2 cos (K · r)− 1

2
cos (2K · r)

]
(30)

again, with only �rst powers of cosines). Note that B (0) = B̄ + 3
2

∑
K bK.

As discussed in Sec. 3.3, the supervelocity can be decomposed as Q (r) = QA (r)+

q (r), see Eqs. (20)�(23), and the deviation from the Abrikosov form has the property

that ∇× q (r) = b (r). This last relation implies

q (r) =
∑
K

bK
ẑ×K

|K2|

[
2 sin (K · r)− 1

4
sin (2K · r)

]
. (31)

The mean induction B̄ �xes the area of the lattice unit cell, through S = 2Φ0/B̄.

The unit cell has primitive lattice vectors R10 = x1x̂, R01 = x2x̂ + y2ŷ and in

those terms S = (R10 × R01) · ẑ = x1y2. The general reciprocal lattice vector is

Kmn = 2π [my2x̂+ (mx2 + nx1) ŷ] /S.

As will be detailed in the following sections, there are additional challenges when

solving for the doubly quantized vortices compared to the singles case. These chal-

lenges only increase when looking at higher quanta vortices and we do not go beyond

p = 2. However, knowing the behavior at the vortex core we can write the Ansatz for

triply quantized vortices:

ω (r) =
∑
K

aK

[
5

2
− 15

4
cos (K · r) +

3

2
cos (2K · r)− 1

4
cos (3K · r)

]
(32)

b (r) =
∑
K

bK

[
15

4
cos (K · r)− 3

2
cos (2K · r) +

1

4
cos (3K · r)

]
(33)

q (r) =
∑
K

bK
ẑ×K

|K2|

[
15

4
cos (K · r)− 3

2
cos (2K · r) +

1

4
cos (3K · r)

]
(34)

Then in this case we have S = 3Φ0/B̄ = x1y2. In a similar fashion the higher order

Ansätze can be constructed.
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4.3 GL Equations and Iterative Solution Scheme

The Ginzburg-Landau mean free energy density F̄ , referenced from the Meissner

state, may be expressed in gauge-invariant form as

F̄
(
T, B̄

)
=

〈
1

2
− ω +

1

2
ω2 +

|∇ω|2
4κ2ω

+ ω |Q|2 + |B|2
〉

(35)

where the angular brackets denote integration over a two-dimensional unit cell, 〈· · · 〉 =

1
S

´
S
· · · dx dy. Extremalization of F̄ leads to the Ginzburg-Landau equations, Eqs. (15)

and (16), and following Brandt we add stabilizing terms (2κ2ω and ωB, respectively)

to both sides of these equations yielding:

(
−∇2 + 2κ2

)
ω = 2κ2

[
2ω − ω2 − ω |Q|2 − |∇ω|

2

4κ2ω

]
(36)

(
∇2 − ω

)
B = (ω − ω)B + (∇ω ×Q) · ẑ . (37)

where ω is the mean value of the order parameter. Getting Eq. (37) from Eq. (16) is

not obvious and we derive the result in Appendix I. Brandt describes these versions

of the GL equations as inhomogeneous London-like equations.

The �rst GL equation leads to an iterative equation for aK. We multiply Eq. (36)

by cos (K · r) and integrated over the unit cell. The orthogonality relation

〈cos (K · r) cos (K′ · r)〉 =
1

2
δK,K′

enables us to do the integral on the left analytically. Rearranging leads to an identity

which we treat as a step in an iterative solution for aK,

aK :=
2κ2

|K|2 + 2κ2

〈(
−2ω + ω2 + ωQ2 +

(∇ω)2

4κ2ω

)
· cos (K · r)

〉
+

1

4
aK/2 . (38)

If K/2 is not a reciprocal lattice vector then aK/2 ≡ 0. Eq. (38) should be compared
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with the corresponding relation for singly quantized vortices, Eq. (11) in Ref. [20],

the only di�erence is the last term and a factor of two on the integrand.

The next step in the iterative scheme is to rescale all of the aK by the same factor,

so as to minimize F . This goes through without modi�cation from Brandt's version

aK := aK
〈
ω − ωQ2 − g

〉
/
〈
ω2
〉
. (39)

Similarly, we multiply Eq. (37) by cos (K · r) and integrate over the unit cell leading

to the iterative solution for bK

bK := −〈[(ω − ω)B (r) + (∇ω ×Q) · ẑ] cos (K · r)〉(
|K|2 + ω

) +
1

4
bK/2 . (40)

Again, if K/2 is not a reciprocal lattice vector then the coe�cient bK/2 ≡ 0.

The GL equations are solved, in principle, by cycling through Eqs. (38), (39),

and (40) until the coe�cients converge to the desired level of precision. In practice

we �nd that the equations as written do not usually converge to a physical solution;

however, by �mixing� the aK that comes out of (38) with the value from the prior

iteration (and likewise for the bK produced by (40)) the convergence of the algorithm

is much improved, though at the cost of more iterations. We have not attempted to

determine optimal mixing parameters. Taking 90% of the prior iteration plus 10% of

the current iteration is su�cient for every calculation we have carried out so far. We

validated our implementation by comparing results to other minimization methods

(described in Sec. 4.7).

Even with mixing, it is crucial to have a good initial guess for the aK and bK.

Brandt has demonstrated [20] that the solution of the linearized GL equations for

the aK, together with bK = 0 for all K, serves well for the initial values for single,

and we �nd the same to be true for doubles. Constructing solutions to the linearized

GL equations for doubles in terms of the aK is not trivial, and we detail our method
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in Appendix H. The solution to the linearized GL equations is used to begin the

iteration cycle in Eq. (39).

4.4 Implementation Issues

In order to have a �nite computational problem the expansions for ω, b, and q must

be truncated; and the iterations involve integrals over the unit cell which must be

numerically evaluated. These two issues are related. For singles, it is su�cient to

carry out the quadrature by summation of values on a grid aligned with the primitive

lattice vectors, and to include in the expansions only |K| ≤ Kmax with Kmax chosen

so that the number of reciprocal lattice vectors is slightly less than the number of

points in the integration grid (this comes from the Nyquist criterion, see Brandt [20]).

For doubles the situation is more complicated.

Observe that the expansion (29) for ω can be rearranged so that it has nearly the

same form as for singles,

ω (r) =
∑
K

[
2aK −

1

2
aK/2

]
[1− cos (K · r)] . (41)

When K is a fundamental, as de�ned following Eq. (38), aK/2 ≡ 0. Eqs. (28), (29)

and (41) are identical for in�nite sums, but they are di�erent when truncated. As

discussed in Appendix H, the aK that solve the linearized GL equations for doubles do

not fall o� in a Gaussian manner like they do for singles; however, the 2aK− 1
2
aK/2 are

approximately Gaussian (see Fig. 27). This motivates the following truncation scheme

for constructing ω when evaluating the integrals over the unit cell: use Eq. (41), in-

cluding in the sum reciprocal lattice vectors with |K| ≤ Kmax except for fundamentals

with Kmax/2 < |K| ≤ Kmax. Expressions analogous to Eq. (41) exist for b and q,

namely

b (r) =
∑
K

[
2bK −

1

2
bK/2

]
cos (K · r) (42)
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q (r) =
∑
K

[
2bK −

1

2
bK/2

]
sin (K · r)

ẑ×K

|K2| , (43)

and we apply the same truncation scheme.

We conclude this section with a warning. It is tempting to de�ne cK ≡ 2aK −
1
2
aK/2, dK ≡ 2bK− 1

2
bK/2, and carry out iterative calculations for those quantities, by

moving the 1
4
aK/2 from the right side of Eq. (38) to the left (and likewise for Eq. (40)):

the resulting equations have exactly the form of Eqs. 11 and 13 from Ref. [20] for the

iterations of the coe�cients for singles. Doing this invariably leads to a �singles-like�

solution (ω ∼ r2 and B (0) − B (r) ∼ r2 for small r) which is inconsistent with the

assumed forms of B̄, QA and S; in addition this unphysical solution is a free energy

saddle point rather than a minimum.

4.5 Programming Details

The method outlined in Sec. 4.3 involves calculations of quantities like ω (r), B (r),

Q (r), etc. on a �nite grid and numerical integrations (in cases where analytic inte-

grals do not exist, e.g.,
〈
ω |Q|2

〉
). We implemented these calculations and the entire

iterative algorithm using Matlab®. Our code is written in Matlab m-�les, meaning

they are executed as scripts. We did compare a simple loop implementation in Matlab

to a vectorized implementation in GNU Octave and found only a slight improvement

in execution speed. Our working version is in Matlab as a mix of vectorized and

for-loop calculations, all contained in 10 m-�les and a total of 1008 lines of code.

4.6 Low Induction Regime and the Circular Cell

For bulk type-II superconductors the triangular lattice is the lowest energy lattice.

However, as one goes to a lower mean induction the vortices get further and further

apart. The area of a unit cell for a lattice of p-quanta vortices (one vortex per unit

cell) is given by S = pΦ0/B̄ and the inter-vortex spacing has x1 ∝ 1/
√
B̄. Once x1 is
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much larger than λ and ξ, most of the unit cell, aside from the near core region, has

B (r)→ 0 and |ψ (r)| → ψ∞ (see Eq. (7)). In this limit the vortex-vortex interaction

goes to zero and the relative positions of vortices is less important, i.e., B (r) ≈ B (r)

and |ψ (r)| ≈ |ψ (r)| for all locations. The area of the core region (r < max (λ, ξ))

relative to the area, S, of the unit cell area gets quite small. Ideally we would have �ne

sampling at the core and coarse sampling between vortices where di�erent r values

give nearly identical contributions to the free energy. Alternatively, we can replace

the unit cell in Cartesian coordinates with a radially symmetric unit cell in cylindrical

coordinates. The radius of this circular cell (CC) is de�ned by πR2 = S. In addition

to the small r behavior summarized in Table 1 on page 20 we have conditions at the

cell boundary, r → R:

1. df
dr
→ 0.

2. j = dB
dr
→ 0. In cylindrical coordinates we have ∇× (Bẑ) = −dB

dr
θ̂ = j.

3.
¸

A (r) · dl = pΦ0 for a circular contour of radius R, so A (R) = B
2
R.

4.6.1 Fourier Ansatz

For the �ux line lattice (FLL) in Cartesian coordinates we use a Fourier Ansatz where

orthogonality of the basis functions is fundamental to the implementation. For the

circular cell we have f (r) = |ψ (r)|, B (r) = B (r) ẑ, A = A (r) θ̂ and j = j (r) θ̂.

Again, we follow Brandt [21] and below we reproduce his singles Ansatz. The order

parameter is expanded in terms of the unknown coe�cients fG and the basis functions

fm (r):

f (r) =
M∑
m=1

fG fm (r) (44)

fm (r) = sin (Gmr) , Gm =
π (2m− 1)

2R
. (45)
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For the induction terms it will prove useful later if we de�ne the induction basis

functions br,n (r) and bz,n (r),

br,n (r) = sin (Knr) , Kn =
πn

R
(46)

with bz,n (r) = 1
r
d
dr

[rbr,n (r)], or

bz,n (r) =
1

r
[sin (Knr) +Knr cos (Knr)] . (47)

Then the magnetic related �elds are expanded in terms of the unknown coe�cients

aK

B (r) =
N∑
n=1

aKbz,n (r) +B (48)

A (r) =
N∑
n=1

aKbr,n (r) +
B

2
r (49)

Q (r) =
N∑
n=1

aKbr,n (r) +
B

2
r − p

κr
, (50)

where p is the �uxoid multiplicity. Finally, the supercurrent (with a sign correction

to Brandt's [21] Eq. (10) ) is

j (r) =
N∑
n=1

aK
(1 +K2

nr
2) sin (Knr)−Knr cos (Knr)

r2
. (51)

While it is confusing to use aK for the FLL order parameter and aK for the CC

induction terms, in both cases we maintain Brandt's original de�nitions. With this

Fourier CC Ansatz the �rst GL equation, Eq. (12) can be written in polar coordinates

as: 1
κ2

(
d2f
dr2

+ df
dr

)
= fQ2 − f + f 3. Similar to the �ux line lattice a stabilizing term
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is added to give:

(
− d2

dr2
+ κ2

)
f = κ2

(
−fQ2 + 2f − f 3

)
+
df

dr
. (52)

The second GL equation becomes simply

j = −f 2Q . (53)

An integral over the unit cell involves 2π
´ R

0
· · · r dr and sines and cosines are not

orthogonal. However, the GL equations apply locally and we can use an integral where

the basis functions are orthogonal,
´ R

0
· · · dr, to isolate the fG and aK coe�cients.

Doing so gives

fG :=
2

G2
m + κ2

ˆ R

0

[
κ2
(
−fQ2 + 2f − f 3

)
+
df

dr

]
sin (Gmr) dr . (54)

The iteration expression for the aK comes from isolating an aKK
2
n sin (Kr) term in

Eq. (51). We de�ne j2 = j −∑N
n=1 aKK

2
n sin (Knr)

j2 (r) =
N∑
n=1

aK
sin (Knr)−Knr cos (Knr)

r2
(55)

to get

aK :=
1

K2
n + 1

{
aK − 2

ˆ R

0

[
f 2Q+ j2

]
sin (Knr) dr

}
. (56)

To evaluate the numerical integrals in Eqs. (54) and (56) we grid with uniform spacing

and ri = (i− 1/2) R
Nr

with i = 1, 2, . . . , Nr.

Doubly quantized vortices will have small r behavior f (r) ∼ r2 and B (0)−B (r) ∼

r4 (see Table 1 on page 20). This behavior motivates our choice of an Ansatz for

f (r) and B (r), which then determines (along with boundary conditions) A(r) from

B = 1
r
d
dr

(rA) and j(r) = −dB
dr
. We still use Eqs. (44) and (48)�(50) but rede�ne the
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basis functions to match the correct near core behavior. First for the order parameter

fm (r) = 1− cos (Gmr) , Gm = m
π

R
. (57)

While for the induction we de�ne the basis functions for doubles as

br,n (r) = sin (Knr)− 1
8

sin (2Knr) (58)

and

bz,n (r) =
1

r

[
sin (Knr)− 1

8
sin (2Knr) +Knr cos (Knr)− 1

4
Knr cos (2Knr)

]
(59)

where Kn = πn
R

as in the singles case. We write out the supercurrent expression

explicitly as

j(r) =
N∑
n=1

aK
1

r2

[(
1 +K2

nr
2
)

sin (Knr)−Knr cos (Knr)

−
(

1
8

+ 1
2
K2
nr

2
)

sin (2Knr) + 1
4
Kr cos (2Knr)

]
. (60)

The fG iteration for doubles is

fG :=
2

G2
m + κ2

ˆ R

0

[
κ2
(
−fQ2 + 2f − f 3

)
+
df

dr

]
cos (Gmr) dr . (61)

For the aK iteration we again isolate an aKK
2 sin (Kr) term but we rede�ne j2 as

j2 (r) =
N∑
n=1

aK
1
r2

[sin (Knr)−Knr cos (Knr)

−
(

1
8

+ 1
2
K2
nr

2
)

sin (2Knr) + 1
4
Knr cos (2Knr)

]
. (62)

Then the update step for the aK coe�cients is identical to Eq. (56). In practice for
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inductions B̄ . µ0Hc2/10 we use the Fourier circular cell rather than the FLL to

calculate and compare free energies of singly and doubly quantized vortices.

4.6.2 Bessel Circular Cell Ansatz

For doubly quantized vortices the second GL equation iteration step for the aK ,

Eq. (56) with Eq. (62), is unwieldy and we were interested in �nding an alternative.

As mentioned above, sines and cosines are not orthogonal over the circular unit cell.

A more natural choice of basis functions are the Bessel functions of the �rst kind, Jn,

with
´ R

0
Jn
(
αnm

R
r
)
Jn
(αnp

R
r
)
r dr = δmp

R2

2
J2
n+1 (αnm), where αnm is themth zero of Jn.

We �rst implemented this for the simpler, singly quantized case. Since the analytic

integrals we evaluate involve no mixing of order parameter and magnetic terms we

left the �rst GL equation iteration for the fG unchanged (the order parameter Ansatz

is not changed). So our Bessel circular cell Ansatz is:

B (r) =
M∑
m=1

dmJ0

(α1m

R
r
)

+ B̄ (63)

A (r) =
M∑
m=1

dm
R

α1m

J1

(α1m

R
r
)

+
B̄

2
r (64)

Q (r) =
M∑
m=1

dm
R

α1m

J1

(α1m

R
r
)

+
B̄

2
r − 1

κr
(65)

j (r) =
M∑
m=1

dm
α1m

R
J1

(α1m

R
r
)
. (66)

The above equations satisfy all the boundary conditions for the vortex core, r → 0 (see

Table Table 1 on page 20), and at the cell edge, r → R. We were also fortunate in that

J0 is orthogonal over the zeros of J1:
´ R

0
J0

(
α1m

R
r
)
J0

(
α1n

R
r
)
r dr = δmn

R2

2
[J0 (α1m)]2.

We mentioned that the Fourier Ansatz supercurrent, Eq. (56), is unwieldy and we
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suggest comparison with the Bessel Ansatz, Eq. (66). Using the second GL equation

Eq. (37) we arrived at the iterative equation to update the dm coe�cients:

dm =
−
´ R

0

(
(2f∇f ×Q) · ẑ +

(
f 2 − f̄ 2

)
B
)
J0

(
α1m

R
r
)
r dr

[J0 (α1m)]2
((

α1m

R

)2
+ f̄ 2

) (67)

where the integral is evaluated numerically on a uniform grid. Even though f (r) uses

a di�erent set of basis functions it is calculated on the same grid as the induction terms

and we are able to use the results of the fG iterations without additional calculations.

For the singles we do achieve matching between the Fourier Ansatz and the Bessel

Ansatz when comparing free energies.

Unfortunately, for doubly quantized vortices with a Bessel Ansatz we ran into

obstacles that we could not surmount. For doubles we have f (r) ∼ r2 and B (0) −

B (r) ∼ r4. In this coordinate system we have B = 1
r
d
dr

(rA) and j = −dB
dr
, so

A (r) ∼ r + Cr5 and j (r) ∼ r3. Note that J0 is unique among the integral Jn in

that at r = 0 it is a maximum with J0 (0) = 1 (Jn (0) = 0 for all other n). We

again were fortunate with the singles Bessel Ansatz because the small r-behavior for

J0 (0) − J0 (r) ∼ r2 exactly matches our induction B (0) − B (r) ∼ r2, and B (0) is

a maximum. Our e�orts to use combinations of Jn and Jm that matched the small

r conditions on B, A and j along with the requirements that B = 1
r
d
dr

(rA) and

j = −dB
dr

proved unsuccessful and we abandoned this approach for doubly quantized

vortices. Our primary goal with the Bessel Ansatz was to simplify the iteration step

for the induction terms in the doubles case, Eq. (56) with Eq. (62). However, it is a

novel approach and in the singles case matches the Fourier Ansatz results.

4.7 Other Minimization Methods

In general there are many methods that could be used to minimize the Ginzburg-

Landau free energy functional. We chose Brandt's iterative method [20, 21] because
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he has long worked in this �eld, his results are found to be in good agreement with

experiment, and is relatively easy to implement and modify. However, we have ex-

plored other methods and while we did not end up replacing the Brandt iterative

method these alternatives were used in part as a validation of our results.

The primary alternative we used was a conjugate gradient algorithm from Hager

and Zhang [22], but we also used a Newton's method implementation. For a general

background on optimization we refer to Nocedal and Wright [23]. The methods are

both direct minimizations of the GL free energy functional, F̄ , with respect to the

aK and bK coe�cients from our Ansatz. We de�ne a vector of these coe�cients,

v ≡ {aK} ∪ {bK} and a corresponding gradient ∇v = Σiι̂i
∂
∂vi

. The scalar valued

function F̄ = F̄ (v) is a minimum at v = v∗ and

∇vF̄ |v=v∗ = 0 (68)

Newton's method starts from an initial guess for a solution v0 and has an update

step:

v := v −H−1∇vF̄

whereH is the Hessian matrix, withHij = ∂2F̄
∂vi∂vj

(note that it is symmetric). We don't

explicitly calculate the inverse Hessian but �nd u such that ∇vF̄ = Hu (sometimes

written as a backslash, or left division: u = H \∇vF̄ ). This system of linear equations

could be solved via Gaussian elimination for the unknown ui but in practice we use

a Cholesky factorization. Each iteration requires a calculation of ∇vF̄ and H. It is

well known that Newton's method is best suited if the initial choice for v is close to

the solution. As such we used it to test perturbed solutions from our Brandt based

scheme. In addition the calculation step u = H \∇vF̄ is costly.

Hager and Zhang have made their above cited CG_Descent algorithm freely avail-

able and we use their C-code implementation. In brief, with CG_Descent the user
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(in this case, us) writes the code for the function to be minimized (called the cost

function) and the code for its gradient. These are then passed in as pointers to

function to the CG_Descent routine. The two user supplied functions have �xed ar-

gument lists. In our case we need to carry along data besides the vector of coe�cients

that vary in size and value for di�erent minimization calls�for example the set of K

vectors. Our solution to the �xed argument list was to save the CG_Descent �le as

a C++ �le and change the pointer to function with a pointer to base class. The calls

to the cost function and its gradient in our C++ base class have the same arguments

as the C version but all the other required data is included as class data members.

We then inherit from this base class depending whether we are doing singles or dou-

bles and whether a �ux line lattice or a circular cell. Some of the issues we ran into

with the Brandt method were also issues for CG_Descent. For example, �ne sample

spacing means quadrature on a large grid and a large number of coe�cients. While

the CG_Descent is compiled code, Matlab's internal optimizations of our implemen-

tation of the Brandt scheme were able to match it in performance (execution time for

CG_Descent was typically 1.5�2 times as long). In the end, we use the CG_Descent

as a validation of our Matlab scripts when going to a new calculation regime or a

change in Ansatz.

4.8 Results

To illustrate the e�ectiveness of the calculational scheme described in the previous

sections, we will present results for κ = 1, 4 and 10 for triangular arrays of both doubly

and singly quantized vortices. In comparing doubles with singles it is important to

do the calculations on an equal footing; with this in mind, in order to have the same

spacing between real-space grid points in both calculations we use about twice as many

grid points for doubles than for singles. For B̄ greater than about µ0Hc2/5 we typically

use 32 points along each primitive lattice vector for singles and 46 for doubles. Singles
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and doubles then have the same Kmax but the doubles calculation includes twice as

many reciprocal lattice vectors as the singles calculation. A typical singles calculation

converges in about 50 iterations while the doubles require about four times as many.

At lower inductions the area of the vortex core becomes considerably less than the area

of the unit cell, and in order to represent the solutions well the real-space sampling

needs to be re�ned by increasing the number of grid points per unit cell edge to 64 or

96 for singles and with proportionally increased numbers for doubles. The growth in

the number of grid points and reciprocal lattice vectors puts a practical lower limit

on the mean induction of about µ0Hc2/10. Below this value we use the circular cell

to calculate free energies.

In Fig. 4 we show the order parameter and induction along a line connecting two

adjacent vortices at B̄ = µ0Hc2/2 for both doubles and singles with κ = 1. As one

would expect, the vortex cores for doubles are wider than for singles. In Figs. 5, 6

and 7 we present the Gibbs free energy density G̃ in the full range of applied �elds

Hc1 ≤ Ha ≤ Hc2 for triangular singles and doubles (see Appendix C, Eq. (113) for

a de�nition of G̃). The applied �eld Ha is calculated in the same manner as in

Refs. [24, 20], based on the virial theorem of Doria, Gubernatis, and Rainer [25].

These results con�rm that doubles are thermodynamically unstable in bulk type-II

superconductors.
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Figure 4: Cross-section κ = 1

Cross-section for κ = 1 and B̄ = 0.5Hc2 along the R10 direction (i.e., y = 0). The
solid lines are for singly quantized vortices and dashed lines for doubly quantized
vortices.
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Figure 5: Gibbs Energy, κ = 1

Gibbs energy density, G̃, for κ = 1 and referenced from the normal state, i.e.,
G̃N = 0 for all Ha. The solid line is the Meissner state energy. The dot-dash line is
for singles with Hc1 = 0.58, the dashed line is for doubles with Hc1 = 0.60 (Hc2 = κ
in reduced units). In this and the following Gibbs energy �gures notice that the
Meissner↔Mixed↔Normal transitions occur such that dG̃/dHa is constant, which is
a characteristic of a second-order phase transition (no latent heat). But the
Meissner↔Normal transitions (Hc = 1/

√
2 in reduced units) have a discontinuous

dG̃/dHa, indicative of a �rst-order phase transition, in this case with 1
V
Lf = 1

2
µ0H

2
c .

Also, in this plot, and subsequent plots with di�erent κ, the Meissner and normal
states will di�er in Gibbs energy density by G̃M − G̃N = H2

a − 1
2
.
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Figure 6: Gibbs Energy , κ = 4

Same as Fig. 5 but with κ = 4. The lower critical �elds are Hc1 = 0.26 for singles,
and Hc1 = 0.32 for doubles.
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Figure 7: Gibbs Energy, κ = 10

Same as Fig. 5 but with κ = 10. The lower critical �elds are Hc1 = 0.16 for singles,
and Hc1 = 0.20 for doubles.
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In Figs. 8, 9 and 10 we plot the magnetization as a function of applied �eld, and

for both singles and doubles we �nd
´
M dH = −1

2
µ0H

2
c (SI units). The magnetic

susceptibility is de�ned as χ = ∂M
∂Ha

, and in the region Hc1 ≤ Ha ≤ Hc2 the suscepti-

bility is positive (we plot −M) and, except just above Hc1, the susceptibility is lower

for doubles. For Ha < Hc1 the sample is in the Meissner state and χ = −1 while

just above Hc1 we have χ→ +∞. This theoretical in�nite susceptibility is derived in

many works (e.g., De Gennes [9] Sec. 3-2) and we will brie�y summarize De Gennes's

analysis. Just above Hc1 few �ux lines have penetrated the sample and the vortex

spacing is very large (i.e.,
√
S � λ, ξ). There is virtually no interaction between vor-

tices and minimal cost to adding more �ux lines. A small change in the applied �eld

can make a large change in the induction. However, as the applied �eld and vortex

density increases repulsive forces come into play and there is a higher cost to adding

more vortices (increasing B̄). In the region Hc1 � Ha < Hc2, as mentioned above,

doubly quantized vortices have lower susceptibility than singles. This is indicative of

the greater repulsion between vortices for doubles in this regime.
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Figure 8: Magnetization Curve, κ = 1

Magnetization curve for κ = 1. The thick solid line is for singles with Hc1 = 0.58,
the thick dashed line for doubles with Hc1 = 0.60. The thin solid line is for a
Meissner↔Normal transition at Ha = Hc.
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Figure 9: Magnetization Curve, κ = 4

Magnetization curve for κ = 4. Thick solid line is for singles Hc1 = 0.26, the thick
dashed lines for doubles with Hc1 = 0.32. The thin solid line is for a
Meissner↔Normal transition at Ha = Hc.
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Figure 10: Magnetization curve, κ = 10.

Magnetization curve for κ = 10. The thick solid line is for singles Hc1 = 0.16, the
thick dashed line is for doubles with Hc1 = 0.20. The thin solid line is for a
Meissner↔Normal transition at Ha = Hc.
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The calculations also yield convergent results for type-I superconductors but in

such cases all vortex states are unstable with respect to the Meissner state. Even

so, it is instructive to look at these results. Fig. 11 shows the order parameter and

induction plots for κ = 0.5. The Gibbs free energy, Fig. 12, does show that vortex

states are unstable with respect to the Meissner state but that doubles are lower in

energy than for singles. Also, in this non-equilibrium case we have Hc2 ≤ Ha ≤

Hc1. Finally, the magnetization plot for type-I singles and doubles, Fig. 13, shows

a negative susceptibility for all values of applied �eld. However, even in this non-

equilibrium path from Meissner state to normal state we have
´
M dH = −1

2
µ0H

2
c .

We show in Appendix C.2 that the area under the magnetization curve is equal

to the di�erence in free energy between the Meissner and normal states, i.e., the

condensation energy.

To conclude this section on bulk superconductors, we have produced precise nu-

merical solutions to the GL equations consisting of in�nite lattices of singly and

doubly quantized vortices in bulk superconductors. The calculations can be carried

out e�ciently for mean inductions down to about 1% of the upper critical value.

Although such solutions of the GL equations never globally minimize the GL free

energy for bulk superconductors, we expect they will be useful as starting points for

solving the GL equations in �lm geometry.
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Figure 11: Cross-section κ = 0.5

Cross-section for κ = 0.5 and B̄ = 0.5Hc2. The solid lines are for singly quantized
vortices and dashed lines for doubly quantized vortices.
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Figure 12: Gibbs Energy, κ = 0.5

Mean Gibbs free energy density, G̃, for κ = 0.5 referenced from normal state, i.e.,
G̃N = 0 for all Ha. The solid line is the Meissner state energy. The dot-dash line is
for singles in the mixed state between Hc1 = 0.86, the dashed line is for doubles in
the mixed state with Hc1 = 0.83, and Hc2 = κ = 0.5 in both cases. See Fig. 5 for
more details. Note: with κ < 1/

√
2 the vortex state in bulk samples is always

unstable with respect to the normal or Meissner states, but we �nd a lattice of
doubly quantized vortices is lower in Gibbs energy than a lattice of singles.
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Figure 13: Magnetization Curve, κ = 0.5

Magnetization curve for κ = 0.5 in bulk. The thick solid line is for singles in the
mixed state with Hc1 = 0.86 , the dashed lines is for the mixed state of doubles with
Hc1 = 0.83, and Hc2 = κ = 0.5 in both cases. The thin solid line is for a
Meissner↔Normal transition at Ha = Hc. Even though the mixed state is a
non-equilibrium phase all three curves have −

´
M dH = 1

2
, which in standard units

gives 1
2
µ0H

2
c , the Condensation Energy. A reminder: in reduced units for all κ,

Hc2 = κ and Hc = 1/
√

2 (see Appendix A.2 ).
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5 Films

As mentioned in the introduction, thin �lms of a bulk type-I superconductor subject

to a perpendicular magnetic �eld can behave like bulk type-II superconductors, in

that they develop a vortex lattice in which each vortex carries a single �ux quantum.

Pioneering theoretical treatments by Tinkham [8] and Maki [26] applied Ginzburg-

Landau theory in the vicinity of the critical �eld where the order parameter vanishes

and showed that the transition between normal state and superconducting state is

continuous, just as in bulk type-II materials. Lasher [27] established that a triangular

vortex lattice is favored near the upper critical �eld for su�ciently thin �lms and found

that a sequence of vortex structures, starting with a square lattice and continuing

to more complicated structures, develops with increasing thickness en route to the

intermediate state. Some years later Callaway [28] pointed out that Lasher had not

considered the most general Abrikosov-type solutions to the linearized GL equations,

and he carried out a comprehensive analysis of the phase diagram for periodic vortex

arrays close to the upper critical �eld. In the low-�eld limit, Pearl's [29, 30] treatment

of isolated vortices within London theory shows that vortices in a su�ciently thin

�lm have a long-range repulsion; this repulsion should lead to the development of

a triangular vortex lattice. Remarkably, the structure of the vortex phase diagram

at intermediate magnetic �eld strengths, where solution of the full GL equations is

required, has remained an open theoretical problem. That problem is partially solved

in the present work.

On the experimental side, magnetic decoration experiments on type-I �lms of

Pb, Sn, and In by Dolan and Silcox [31, 32, 33] in the mid-1970s could distinguish
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between lattices of single �uxoid vortices (which appear to be disordered due to

pinning), intermediate state �ux structures, and what they referred to as �transitional�

or �multi�uxoid� structures. Within linearized GL theory one can construct a �ux

structure phase diagram with the GL parameter κ on one axis and the product of

�lm thickness and the square root of the magnetic �eld on the other [27]; Dolan and

Silcox's results were reasonably consistent with this phase diagram. However, there

have been no experimental observations of the distinct single-�uxoid vortex lattice

structures predicted by linearized GL theory. In fact it is not obvious whether the

vortex structures found by Lasher and Callaway at intermediate thicknesses survive

on reducing the magnetic �eld. The calculations within the full GL theory presented

in this work o�er detailed guidance for experimental studies of such structures in

type-I �lms.

Interesting experimental results have also appeared at very low �elds. Hasegawa et

al. [34] applied electron holography to examine the magnetic �eld in the space above

�ux structures in Pb �lms. They found evidence for vortices with more than one �ux

quantum (which they denoted MQF-A) as well as �ux structures that seemed more

likely to be associated with normal regions of �nite cross-section (which they denoted

MQF-B). �Multiply-quantized� (also known as �giant�) vortices are known to arise in

various circumstances. Holes in a superconductor parallel to the �eld trap vortices

with greater �uxoid number as their radii increase [35]. Arrays of holes (�antidots�)

can trap multiple �ux quanta per hole under appropriate conditions [36]. The repul-

sion of vortices from a �lm edge can lead to the formation of an equilibrium giant

vortex in the center of a small, thin disk [37] and in other laterally con�ned geome-

tries [38]. Metastable giant vortices develop in �eld-cooling of small cylinders [39].

None of these seem relevant to the experiment of Hasegawa et al., and the search

for stable lattices of multiply-quantized vortices in the phase diagram for type-I �lms

without lateral con�nement or defects was another motivation for the present work.
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It is noteworthy that a bulk GL superconductor with κ = 1/
√

2 and at the critical

�eld exhibits massive (in fact complete) degeneracy with respect to vortex con�gu-

rations [40]. Luk'yanchuk [41] has carried out a thorough analysis of corrections to

the GL functional, together with deviations of κ and the magnetic �eld from their

critical values, in breaking the degeneracy. He noted that demagnetization e�ects

also break the degeneracy, but did no calculations along those lines. A �lm geometry

corresponds to maximum demagnetization, so it may be interesting to compare the

vortex phase diagram for �lms with κ ≈ 1/
√

2 with the phase diagrams that follow

from the analysis by Luk'yanchuk.

In the present work we take the �rst steps towards �lling out the magnetic �ux

structure phase diagram for the minimal model, isotropic Ginzburg-Landau theory,

of thin �lm type-I superconductors. The competition between various phases is del-

icate, so precise and accurate free energy calculations for di�erent �ux structures

are necessary. Consequently, we have followed the approach pioneered by Brandt for

vortex lattices in bulk [42] and, more recently, thin �lm [43] GL superconductors.

The squared magnitude of the order parameter, the supervelocity, and the magnetic

�eld are represented as linear combinations of appropriate basis functions. The GL

equations then become a set of nonlinear equations which are solved by iteration.

Sec. 5.1 describes the computational method in more detail. Brandt's papers are

quite explicit, so we may be brief, and highlight the modest changes we made to

Brandt's algorithm for thin �lm superconductors. The present calculations are re-

stricted to magnetic �ux structures consisting of singly-quantized vortices in periodic

structures with one vortex per unit cell. We have found that the functional form

chosen for the magnetic �eld in Ref. [43]limits the accuracy of the magnetic �eld

and consequently the free energy, and we o�er a correct and computationally conve-

nient alternative. Sec. 5.2 presents the principal results of the calculations, which are

based on evaluating the free energy for a large number of points in the space of vortex
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lattices structures, �lm thickness, and applied magnetic �elds (or, equivalently, mean

inductions). Phase diagrams, free energy densities, and vortex lattice shear moduli

are given for κ = 0.5 and 0.25. Other values of the GL parameter could have been

considered but the calculations become signi�cantly more challenging at smaller val-

ues of κ; and with results for just two values, some trends with variation of κ may

be deduced. Sec. 5.3 o�ers various decompositions of the free energy density to facil-

itate the physical interpretation of the �ux structure phase diagram. In Sec. 5.5 we

summarize the results and note their limitations, indicate some directions for future

theoretical work, and o�er suggestions for experiments.

5.1 Computational Method

In order to avoid unnecessary repetition of material presented in Ref. [43], we will

start by presenting only as much of it needed to make our further developments

intelligible. We will �rst describe in detail our method for lattices of singly quantized

vortices then follow with the details for lattices of doubly quantized vortices.

The standard reduced units are employed, de�ned in Appendix A.2. Note that in

these units the upper critical mean induction is κ, and we will sometimes refer to a

�reduced� induction B̄/κ which in SI units would be de�ned as B̄/µ0Hc2. We consider

in�nite �lms with −d/2 < z < d/2. We use our work on bulk samples in Sec. 4 as

the basis for our work on �lms. One di�erence is that with a �nite thickness sample

we still have B̄ = B̄ẑ, but locally B× ẑ 6= 0. Therefore the variation of the induction

is a vector quantity

b = B− ẑB̄ . (69)

A key step in Brandt's approach is to decompose the supervelocity as Q = QA + q

(see Sec. 3.3) with

b = ∇× q . (70)
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As with the bulk case we let S denote both the unit cell area and the unit cell itself,

depending on context; for the former, S = pΦ0/B̄. Note that the mean induction can

be expressed as B̄ = 1
S

´
S

dxdyB(x, y, z) · ẑ for any value of z. The free energy per

unit volume of superconductor referenced from the normal state is

F̃
(
T, B̄

)
= 1

Sd

´
S

dxdy
´ d/2
−d/2 dz

[
−ω + 1

2
ω2 + |∇ω|2

4κ2ω
+ ωQ2 + b2

]
+ 2

Sd

´
S

dxdy
´∞
d/2

dz[B2 − B̄2]
(71)

where the contribution of the �rst two terms in the �rst integral is the condensation

free energy Fcond, that of the next two terms is the kinetic energy of the supercurrent

Fkin, that of the last term is the internal �eld energy Fmag, and that of the second

integral is the stray �eld energy Fstray. In order to determine the phase diagram we

will compare the minimum F for di�erent vortex lattice structures with the same

value of B̄ (and hence S). While the physical �elds now have a z-dependence, the

problem is the same as for the bulk case, namely, to determine ω, q and b that

minimize the free energy.

5.1.1 Singly quantized vortices

We �rst consider the lattice of singly quantized vortices. Brandt's Ansatz for ω, q

and b is as follows:

ω (r) =
∑

K⊥,Kz

aK⊥Kz [1− cos (K⊥ · r⊥)] cosKzz (72)

q (r) =
∑

K⊥,Kz

bK⊥Kz

ẑ×K⊥
K2
⊥

sin (K⊥ · r⊥) cosKzz (73)

bz (r) =
∑

K⊥,Kz

bK⊥Kz cos (K⊥ · r⊥) cosKzz (74)

b⊥ (r) =
∑

K⊥,Kz

bK⊥Kz

K⊥Kz

|K⊥|2
sin (K⊥ · r⊥) sinKzz . (75)
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Here K⊥ is the set of reciprocal lattice vectors for the vortex lattice and Kz =

(2π/d)n with n running over the whole numbers. Several features of this Ansatz

are worth noting. Only two sets of expansion coe�cients, aK⊥Kz and bK⊥Kz , are

required because b and q are linked by (70). The periodicity of the ω combined

with the quadratic behavior of ω near the vortices suggests the form of expansion

for the r⊥ dependence in (72), while the boundary condition for the order parameter

at a superconductor-insulator interface makes the cosine expansion natural for the

z dependence. Eq. (73) leads to supercurrents with, as one would anticipate, only

in-plane components, as well as with the appropriate periodicity and behavior near

vortex lines. The motivation for the z dependence of the expansions for b and q is

that q and bz are even functions of z while b⊥ is an odd function.

Inserting (72) and (73) into the �rst GL equation and applying orthogonality

of trigonometric functions leads to coupled nonlinear equations for the expansion

coe�cients aK⊥Kz and bK⊥Kz which can be readily cast in the form of equations for

the aK⊥Kz suitable for solution by iteration: see Eq. (83) below. More equations must

come from the second GL equation inside the �lm, together with ∇× b = 0 outside

the �lm and the boundary conditions on the induction. The induction above the �lm

satis�es

Bz = B̄ +
∑
K⊥

bs
K⊥

cos K⊥ · r⊥e−K⊥(z−d/2) (76)

B⊥ =
∑
K⊥

bs
K⊥

K⊥
K⊥

sin K⊥ · r⊥e−K⊥(z−d/2) , (77)

and the continuity-of-Bz boundary condition may be expressed as

bs
K⊥

=
∑
Kz

bK⊥Kz cos dKz/2 . (78)

It is convenient to derive the equations for the expansion coe�cients by direct min-

imization of the free energy (including the stray �eld energy) with respect to the
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bK⊥Kz . Below we reproduce Eqs. (19) through (22) of Ref. [43]

∂ 〈b2〉
∂bK⊥Kz

= bK⊥Kz

(1 + δn,0)K2
⊥ + (1− δn,0)K2

z

2K2
⊥

∂ 〈ωQ2〉
∂bK⊥Kz

=
PK⊥n

K2
⊥

1

d

∂ 〈Fstray〉
∂bK⊥Kz

= bs
K⊥

2 cos (πn)

dK⊥

PK⊥n = 〈ω [QyKx −QxKy] sin (K⊥ · r⊥) cosKzz〉 .

From these equations and with ∂F̃
∂bK⊥Kz

= 0 at the solution Brandt obtains his Eq. (23)

for the bK⊥Kz iterations

bK⊥Kz :=
−2PK⊥n + c 〈ω〉 bK⊥Kz − 2

d
K⊥b

s
K⊥

cos (πn)

δn,0K2
⊥ + 1

2
(1− δn,0)K2

z + c 〈ω〉 .

In these equations the integer n refers to the Kz = (2π/d)n index.

In order to carry out a calculation of the expansion coe�cients it is necessary

to truncate the expansion, setting aK⊥Kz and bK⊥Kz to zero for K⊥ and Kz outside

some range. It is also necessary to approximate the integrals that appear in the it-

eration equations as �nite sums. Those integrals arise from applying orthogonality

relations and, ideally, the coe�cient truncation and numerical integration could be

done consistently, so that the trigonometric functions retained in the expansion are

orthogonal with respect to the numerical integration. This is done naturally for the

z coordinates of the integration, by making the simplest choice of uniform spacing.

In the xy plane Brandt employs a rectangular grid for integration but a circular do-

main for the allowed K⊥ values. Though a rectilinear domain for K⊥ would be more

consistent we have followed Brandt's choice, on the grounds that when K⊥ is large

the expansion coe�cients ought to be small.
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What is there to object to in the method described above? In brief, Eq. (73)

(and its corollaries Eqs. (74) and (75)) impose periodic boundary conditions in the z

direction which are not physically appropriate. According to (75), as the �lm surface

is approached from within, b⊥ (r) → 0. This leads to a discontinuity in b⊥ across

the �lm boundary, as can be seen from Eq. (77), and that discontinuity implies a

sheet current density at the �lm surface which is inconsistent with the GL (or even

London) theory description of a superconductor.

The consequences of this �aw in the Ansatz are surprisingly di�cult to see�no

clear sign of it appears in the results presented by Brandt in Ref. [43], many of which

we reproduced independently. When we implemented that method the �rst suggestion

of a problem came when we compared two calculations of the supercurrent which

should have given the same results, namely j = −ωQ and j = ∇×B = ∇× b. An

example is shown in Fig. 14, for a system at fairly low mean induction. Note that the

supercurrent calculated according to ∇×B actually circulates in the wrong direction

for some values of z. A hint that the problem was the form of the z dependence in

Eqs. (73)�(75), and not simply an error in our implementation as we �rst supposed,

was that the disagreement become more evident as the maximum value of Kz was

increased.

Our solution is to replace the cosine expansion for the z-dependence of q with

an expansion in terms of Legendre polynomials of even order, since the latter form a

complete, orthogonal set of even functions over a �nite interval that allow for nonzero

derivatives at the ends of the interval. Instead of Eqs. (73)�(75), take

q (r) =
∑
K⊥,l

bK⊥l
ẑ×K⊥
K2
⊥

sin K⊥ · r⊥P2l (2z/d) (79)

bz (r) =
∑
K⊥,l

bK⊥l cos K⊥ · r⊥P2l (2z/d) (80)
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b⊥ (r) =
∑
K⊥,l

bK⊥l
−K⊥
K2
⊥

sin K⊥ · r⊥
2

d
P ′2l (2z/d) (81)

There is an additional bene�t of the Legendre polynomial expansion for the accuracy

of the calculations. A numerical scheme for z integration which maintains orthogo-

nality of the Legendre polynomials is appropriate for the iterative calculation of the

b coe�cients, namely, Gauss-Legendre quadrature. The abscissas for Gauss-Legendre

quadrature are at zeros of Pn (where n is larger than the highest order used in the

Ansatz), and these zeros are more numerous near the �lm surfaces where the most

rapid changes occur for b and q. Finally, the Legendre polynomials are optimal for

our purposes, compared to other sets of polynomials, because they are orthogonal

with respect to a constant weight function, just like the trigonometric functions.

We now present the full scheme for generating solutions to the GL equations for

�lms. We use 〈· · · 〉U to denote the volume average over a unit cell by numerical

quadrature in which the z abscissas are uniformly spaced, while 〈· · · 〉G is the same,

except it employs Gauss-Legendre quadrature for the z coordinate. Angle brackets

without a subscript refers to an analytic expression for the volume average over the

unit cell. Before beginning the iterative calculations a set of initial aK⊥Kz and bK⊥l

coe�cients must be chosen; we will discuss that choice following the iteration scheme.

For the order parameter coe�cients we use Brandt's iteration scheme, without

modi�cation, but for completeness we include it here. De�ning

g = |∇ω|2/4κ2ω (82)

the �rst GL equation leads to the iteration

aK⊥Kz :=
4〈(ω2 − 2ω + ωQ2 + g) cos K⊥ · r⊥ cosKzz〉U

(δKz ,0 + 1)((K2
⊥ +K2

z )/2κ2 + 1)
. (83)

This is always followed by an iteration to minimize F by multiplying all the aK⊥Kz
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by the same factor,

aK⊥Kz := aK⊥Kz〈ω − g − ωQ2〉U/〈ω2〉U . (84)

This step was introduced by Brandt in solving the GL equations in bulk supercon-

ductors; if omitted, the calculations generally do not converge.

Next comes the iteration for the bK⊥l. Our modi�cation of the expansions for b

and q require corresponding changes to the iteration scheme compared to Ref. [43]. It

is convenient to construct some auxiliary quantities such as the stray-�eld expansion

coe�cients

bs
K⊥

=
∑
l

bK⊥l (85)

(compare Ref. [43] Eqs. (10) and (21)); a quantity that arises from ∂〈ωQ2〉/∂bK⊥l,

DK⊥l = 〈ω [QyKx −QxKy] sin K⊥ · r⊥P2l (2z/d)〉G (86)

(compare Ref. [43] Eqs. (20) and (22)); and

SK⊥l =
l∑

l′=0

bK⊥l′2l
′ (2l′ + 1) +

∑
l′=l+1

bK⊥l′2l (2l + 1) (87)

which appears in

∂〈b2〉/∂bK⊥l = 2SK⊥l/(dK⊥)2 + bK⊥l/(4l + 1) (88)

These last two expressions are rather more complicated than the corresponding Eq. (19)

of Ref. [43] because, unlike sines and cosines, the P2l and P ′2l are not mutually or-

thogonal. The second sum in Eq. (87) is �nite on account of the truncation of the

expansion.
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With these de�nitions the revised iteration scheme is

bK⊥l :=
−2SK⊥l − 2DK⊥l − 2K⊥b

s
K⊥
/d+ c 〈ω〉 bK⊥l

K2
⊥/(4l + 1) + c 〈ω〉 (89)

where the constant c and the order parameter mean 〈ω〉 =
∑

K⊥
aK⊥0 are included

to stabilize the iterations (compare Ref. [43] Eq. (23)).

The algorithm is started with an initial guess for the aK⊥Kz and bK⊥l coe�cients.

Convergence to the physical solutions is not guaranteed, and in fact it is essential to

have good initial values. We have used bulk solutions [20] as initial values for aK⊥0

and bK⊥0, with the other coe�cients initially zero. One repeatedly cycles through

Eqs. (83), (84), and (89) until F has converged to an absolute tolerance of 1× 10−10

or better, which typically requires about 200 iterations. This is slower convergence

than is achieved with the cosine Ansatz for the z dependence for the supervelocity.

A possibly related matter is that we have not found a suitable expression for the

�mixing parameter� c that works well�large enough to maintain stability of the

iteration scheme, small enough to allow for reasonably quick convergence�over the

entire range of parameters that we have studied. What we do instead is to adjust c

during the iteration cycle by monitoring the evolution of Fmag and Fstray. We have

found when either of those �eld energies increases excessively it is a sign that an

instability is developing. A scheme that works reliably is that when either Fmag and

Fstray increases by more than 50% following (89) then c is multiplied by 10 and the

b-iteration is re-run; independently, every 30 iterations c is divided by 2.

Although our calculations do not converge as rapidly as those reported in Ref. [43]

they always lead to solutions with lower free energies, typically by 0.5% or less (with

the same number of coe�cients included in both calculations). These small di�erences

are enough to produce noticeable changes in the phase boundaries. Our calculations

also have the appealing feature that increasing the l cuto� for the bK⊥l always gives
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an improved solution; the same is not true of increasing the Kz cuto� for the bK⊥Kz .

Repeating the calculations presented in Fig. 14 yields supercurrent densities from

−ωQ and ∇×B which are nearly coincident, and which are close to the −ωQ values

displayed in that �gure.

All of the results presented in the following sections are for calculations at κ = 0.5

and 0.25; even with just those two values for the GL parameter some trends with

decreasing κ are evident. Calculations at small κ are considerably more challenging:

we have not yet been able to obtained converged solutions at κ = 0.1.
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Figure 14: Supercurrent density components

Supercurrent density components jx and jy calculated from −ωQ (crosses) and
∇×B (circles) from solutions by the method of Ref. [43] for a system with κ = 0.5,
B̄ = 0.4/κ, d = 4.3, and a 32× 13× 9 grid for real-space sampling. The vortex
lattice is triangular, with one primitive translation being x1x̂. In these plots
y = 0.017x1, with z = 0.89d/2 for (a) and (b) and z = 0 for (c) and (d).
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5.1.2 Doubly quantized vortices

The Ansatz for lattices of doubly quantized vortices in bulk is modi�ed for �lms as

follows:

ω (r) =
∑

K⊥,Kz

[
2aK⊥,Kz −

1

2
aK⊥/2,Kz

]
[1− cos (K⊥ · r⊥)] cos (Kzz) (90)

bz (r) =
∑
K⊥,l

[
2bK⊥l −

1

2
bK⊥/2,l

]
cos (K⊥ · r⊥)P2l (2z/d) (91)

b⊥ (r) =
∑
K⊥,l

[
2bK⊥l −

1

2
bK⊥/2,l

] −K⊥
K2
⊥

sin (K⊥ · r⊥)
2

d
P ′2l (2z/d) (92)

q (r) =
∑
K⊥,l

[
2bK⊥l −

1

2
bK⊥/2,l

]
ẑ×K

K2
⊥

sin (K⊥ · r⊥)P2l (2z/d) (93)

We then obtain the �rst GL equation iteration for the aK⊥Kz coe�cients:

aK⊥Kz :=
2〈(ω2 − 2ω + ωQ2 + g) cos K⊥ · r⊥ cosKzz〉U

(δKz ,0 + 1)((K2
⊥ +K2

z )/2κ2 + 1)
+

1

4
aK⊥/2,Kz (94)

If K⊥/2 is not a reciprocal lattice vector then aK⊥/2,Kz ≡ 0. As in the singles case

Eq. (94) is followed by Eq. (84).

The iterative equation for bK⊥l involves several auxiliary quantities (the derivations

of the following equations are in Appendix J.3). Replacing Eq. (87) is

SK⊥l =
l∑

l′=0

(
17

4
bK⊥,l′ − bK⊥/2,l′ −

1

4
b2K⊥,l′

)
2l′ (2l′ + 1)

+
∑
l′=l+1

(
17

4
bK⊥,l′ − bK⊥/2,l′ −

1

4
b2K⊥,l′

)
2l (2l + 1) (95)

and replacing Eq. (86) is the expression

DK⊥,l =

〈
ω(ẑ ·K⊥ ×Q)

[
4 sin(K⊥ · r⊥)− 1

2
sin(2K⊥ · r⊥)

]
P2l (2z/d)

〉
G

(96)
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The stray-�eld coe�cients, replacing Eq. (85), are given by

bsK⊥ =
∑
l

2bK⊥l −
1

2
bK⊥/2,l

Then the desired iterative equation, replacing Eq. (89), is

bK⊥l : =
1

1 + c 〈ω〉
4

17

{
bK⊥/2,l + b2K⊥,l +

17

4
c 〈ω〉 bK⊥l

+
4l + 1

K2
⊥

[
−2SK⊥l/d

2 −DK⊥l − 2K⊥

(
2bsK⊥ −

1

4
bs2K⊥

)
/d

]}
(97)

The discussion in Sec. 4.4 concerning truncation schemes for the sums representing

ω, b, and q is equally germane in �lm geometry. The calculations for double �uxoid

vortex lattices converge more slowly, by roughly a factor of �ve, than for single �ux-

oid vortices. That is not unexpected, given that it holds for the bulk calculations.

Furthermore, there is a narrower range of parameters in which we have been able to

obtained converged results at all; surprisingly, we have encountered di�culties with

mean inductions too close to the upper critical value, for which the single �uxoid

vortex lattice calculations readily converge.

5.2 Phase Diagrams and Physical Properties

5.2.1 Phase Diagrams

We have carried out a series of calculations at various values of B̄ and d, and for

several kinds of vortex lattices including triangular, square, rectangular (at various

aspect ratios) and two classes of oblique lattices which we will refer to as rhombohedral

(which interpolate between triangular and square at �xed unit cell area, maintaining

equality of the primitive vector lengths) and sheared-triangular (which interpolate

between triangular and rectangular at �xed unit cell area, keeping one primitive
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vector �xed). The common feature of the structures considered is that they have one

vortex per unit cell, and consequently the coe�cients in the expansion of the order

parameter (72) are known for a bulk system just below the upper critical �eld [44].

The vortex structure with lowest free energy turns out to be either triangular, square,

or rectangular.

Figs. 15 and 16 show the resulting phase diagrams for κ = 0.5 and 0.25. The

phases found at the upper critical �eld extend to lower �elds, but with the phase

boundaries shifting to larger thicknesses as B̄ is reduced. At su�ciently low B̄ the

interval of thickness where the square lattice is stable is seen to vanish on the κ = 0.25

phase diagram; and the same almost certainly holds for κ = 0.5, but at a lower value of

B̄ than we have considered. Contours of constant aspect ratio within the rectangular

phase are shown as dotted lines. On the κ = 0.5 phase diagram we have included a

dashed line where we speculate that the rectangular phase ends and more complicated

structures with more than one �ux quantum per unit cell begin; in drawing that line

we are assuming that the aspect ratio within the rectangular phase is constant at the

boundary with the adjacent phase.

Within linearized GL theory dB̄1/2 is constant on every phase boundary [27]. That

is not a terrible approximation, but the numerical results are noticeably di�erent, with

the domain of stability of the triangular phase reduced compared to the linearized GL

theory. The critical endpoint for the square to rectangular transition is a qualitative

feature that only emerges from the full GL treatment.
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Figure 15: Vortex lattice phase diagram, κ = 0.5

The triangular-square transition is discontinuous while the square-rectangular
transition is continuous. Inside the rectangular phase, the dotted lines labeled 0.6
and 0.4 are contours of constant aspect ratio. The dashed line corresponds to the
aspect ratio of 0.38, which is the smallest aspect ratio for which a rectangular lattice
is stable at the upper critical �eld (B̄/κ = 1), following Callaway [28].

70



1 1.5 2 2.5

0.4

0.6

0.8

1

d

B̄
/
κ

κ = 0.25

0.6

0.4

Figure 16: Vortex lattice phase diagram, κ = 0.25

Same as Fig. 15, but for κ = 0.25. Note the critical endpoint for the
square-rectangular transition at d ≈ 2.1.
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Our results for double �uxoid vortex lattices are very limited compared to those

for single �uxoid vortices and lattices of doubles do not appear in the phase diagrams

in Figs. 15 and 16. In the portion of parameter space where states of one �ux quantum

per primitive cell are not the equilibrium �ux con�guration, there are many competing

states, and those with one double �uxoid vortex per primitive cell form a small subset.

In fact, Callaway's results[28] suggest that such states are never the global free energy

minimal close to the upper critical �eld. Consequently there is no point in doing

extensive calculations to arrive at a phase diagram for double �uxoid vortex lattices

analogous to Fig. 15. What we can do, instead, is o�er some support for the speculated

phase boundary in Fig. 15 between the single �uxoid vortex lattice structures and

�ux structures with more than one �ux quantum per primitive cell, by showing that

the double-�uxoid vortex lattices have greater free energy in the region of parameter

space we claim the single �uxoid lattices are stable.

In Figs. 17 and 18 present free energy densities referenced to the normal state

as a function of �lm thickness for a κ = 1/2 superconductor at mean inductions

which are 90% and 70%, respectively of the critical value. Triangular and square

lattices of single and double �uxoid vortices are compared. (The minimum free energy

rectangular lattices of single �uxoid vortices lie close enough to the square lattices for

this purpose.) At 90% of the critical B̄, the speculated boundary between rectangular

vortex lattice and more complicated structures is at d ≈ 3.2, while a double �uxoid

structure does not yield a lower free energy than the single �uxoid square lattice until

d > 4.5. At 70% of the critical B̄, the corresponding values are d ≈ 4.0 and d > 4.5.

If that trend continues, it is possible that at su�ciently small B̄ and large d the phase

diagram Fig. 15 will require revision; however we have not been able to carry out the

double �uxoid vortex lattice calculations at low enough mean induction to make a

de�nite claim.
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Figure 17: F vs. d, Singles and Doubles b = 0.9

Free energy densities of several vortex lattice structures as a function of �lm
thickness at mean induction B̄ = 0.9µ0Hc2 for κ = 0.5. Triangle symbols are for
triangular lattices and square symbols are for square lattices; open symbols are for
single-�uxoid vortices and solid symbols are for double-�uxoid vortices. Lines are
guides to the eye.
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Figure 18: F vs. d, Singles and Doubles b = 0.7

Same as Fig. 17, but for mean induction B̄ = 0.7µ0Hc2.
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5.2.2 Free Energies

The lattices that do appear as the equilibrium state in our phase diagrams can be

categorized by whether they have a rectangular or rhombohedral primitive unit cell.

Recall that the primitive lattice vectors are R10 = x1x̂ and R01 = x2x̂ + y2ŷ and for

a �xed mean induction the unit cell area, x1y2, is constant. We can then di�erentiate

the two types by noting that rectangles have x2 = 0 and rhombs have x2
2 +y2

2 = x2
1. A

square lattice is a special case that is both a rectangle and a rhomb, and the triangular

lattice is a special case rhomb that has the largest nearest neighbor distance for a �xed

unit cell area. With both types of lattices we can subcategorize them by the ratio

y2/x1; squares have y2/x1 = 1 and triangles have y2/x1 =
√

3/2. In general we always

assume the long side of the unit cell lies along x1 (so x1 ≥ x2, y2). For rhombs y2/x1 is

the sine of the angle between R10 and R01 but we will refer to this ratio as the aspect-

ratio of the unit cell. A rectangular lattice that starts as a square and undergoes a

sequence of pure shears will get wider and shorter with a decreasing aspect ratio and

a decreasing nearest neighbor distance. A sequence of rhombs that start as a square

lattice will also have decreasing aspect ratio but the nearest neighbor distance will

rise to a maximum for the triangular lattice and then monotonically decrease.

It is of interest to look at the free energies that underlie the phase diagrams, to see

the scale of the free energy di�erences. In the lower panel of Fig. 19, F is presented

as a function of mean induction for κ = 0.5 and d = 2.4, while Fig. 20 does the same

for κ = 0.25 and d = 0.94 (the latter thickness is chosen so that the phase transi-

tions in the two �gures are at roughly the same values of B̄/κ). The rhombohedral

lattice free energies, not shown in those �gures, are nearly degenerate with the free

energies of square and triangular lattices at the ∆ ↔ � phase transition, and close

to the transition their free energies almost linearly interpolate between square and

triangular lattice free energies.

75



Looking in more detail at the free energies underlying our κ = 0.5 phase diagram

(Fig. 15) we focus on three di�erent points where we have either a rectangle, square or

triangle as the equilibrium lattice. In Fig. 21 we plot at d = 2.5 and B̄/κ = 0.99 the

mean free energy density as a function of aspect ratio. Here the rectangular lattice

with y2/x1 = 0.5 is the lowest energy con�guration, while the rhomb minimum is only

slightly higher in free energy and lies at y2/x1 = 0.46. Also, the triangular lattice,

with largest nearest neighbor distance, is a local maximum. From this point as we

reduce B̄/κ or d the rectangle minimum shifts towards y2/x1 = 1, which we show

in Fig. 22 at the point d = 2.4 and B̄/κ = 0.80 where squares are the equilibrium

lattice. The continuous change in aspect ratio is accompanied by a continuous change

in free energy for the equilibrium rectangular lattices, i.e., these are a second-order

phase changes. Moving from this second point on the phase diagram we examine

the free energies at the point d = 2.4, B̄/κ = 0.70 in the triangular phase shown

in Fig. 23. Here the rectangular lattices have monotonically decreasing free energy

as a function of aspect ratio but their minimum is still higher in energy than the

triangular lattice. Near the square-triangle line the free energy di�erences between

the two phases are extremely small. However, our data suggests that for rhombs in

the range
√

3/2 ≤ y2/x1 ≤ 1 the free energy is either monotonically increasing or

decreasing, and that squares and triangles are the only possible equilibrium rhombs.

5.2.3 Shear Moduli

Shear moduli have been evaluated for the three lattice structures which appear on

the phase diagram; see the upper panels of Figs. 19 and 20. For triangular lattices

the only shear modulus is c66 = 1
2
(c11− c12). For square lattices there are two distinct

types of shear, with moduli c66 and 1
2
(c11 − c12): the former preserves equality of

primitive lattice vector length, while the latter preserves orthogonality of primitive

lattice vectors. We present both on the �gures because the latter vanishes at the
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continuous square-rectangular transition and the former is anomalously small at the

discontinuous triangular-square transition. For the rectangular lattices we considered

only the shear mode which preserves orthogonality of primitive lattice vectors; the

corresponding modulus is 1
2
((c11 + c22)/2 − c12). In every case the shear modulus is

calculated by evaluating the energy di�erence between the reference lattice structure

and a slightly sheared lattice. One can see in the �gures the small domains of metasta-

bility for the triangular and square lattice phases. It is also apparent that the vortex

lattices at these values of κ and d are anomalously soft for a wide range of mean

inductions. Details of how the moduli are de�ned and calculated are in Appendix D.
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Figure 19: Shear moduli, κ = 0.5

Shear moduli and free energies per unit volume for triangular, square, and
rectangular lattices, at κ = 0.5 and d = 2.4, for mean inductions around the domain
of stability of the square lattice. Free energies are referenced to value for the square
lattice; on that graph the triangular lattice values are the triangles and the
minimum-F rectangular lattice values are the circles. The vertical dashed segments
in both plots indicate the transition between triangular and square lattices, to make
clear the discontinuity in shear modulus. On the shear modulus plot, triangles are
c66 for the triangular lattice, diamonds are c66 for the square lattice, squares are
1
2
(c11 − c12) for the square lattice, and circles are 1

2
((c11 + c22)/2− c12) for the

minimum-F rectangular lattice. Both F and c are in units of µ0H
2
C .
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Figure 20: Shear moduli, κ = 0.25.

Same as Fig. 19, but for κ = 0.25 and d = 0.94.
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Figure 21: F̃ vs. y2/x1, b = .99

Free energy for κ = 0.5, d = 2.5, B̄/κ = 0.99 (see phase diagram in Fig. 15) as a
function of aspect ratio y2/x1 and referenced from the minimum. Sheared rhombs
are plotted as solid lines with ♦, and rectangles are plotted as dashed lines with �.
The minimum F̃ = −5.46× 10−5 occurs for rectangles with y2/x1 = 0.5. Note that
y2/x1 = 0.866 (the triangular lattice) is a local maximum.
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Figure 22: F̃ vs. y2/x1, b = .80

Same as Fig. 21 but for κ = 0.5, d = 2.4, b = 0.80. Minimum F̃ = −2.10× 10−2

occurs for the square lattice. Here, as in Fig. 21, the triangular lattice is a local
maximum.
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Figure 23: F̃ vs. y2/x1, b = .70

Same as Fig. 21 but for κ = 0.5, d = 2.4, b = 0.70. Minimum F̃ = −4.70× 10−2

occurs for the triangular lattice.
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5.3 Free Energy Decompositions

The preceding section presented the main physical results of the calculations, but

further insight might be gained by comparing not just F for di�erent lattice structures

but also various �components� of the free energy.

One decomposition is into the condensation, kinetic, and magnetic terms described

following Eq. (71). Let us �rst consider κ = 0.5, B̄/κ = 0.825, and d = 2.0, which

is in the triangular phase but not far from the square phase. For a bulk system at

the same GL parameter and mean induction, the square lattice has lower free energy

density than the triangular lattice. Why is the relative stability reversed? In Table

2 on page 84 we present the di�erences in free energy density components between

the �lm and the bulk system for both triangular and square vortex lattices. The

signs of all those di�erences may be understood as a consequence of suppression of

the order parameter in the �lm compared to the bulk. However, the exchange of

stability is a more subtle matter, since that depends on the di�erence (triangular

minus square lattice values) of those free energy density di�erences. Alternatively,

we can compare the triangular and square lattice free energy density components for

�lms of di�erent thickness, as presented in Table 3 on page 84. It is then evident that

with increasing thickness, the transition to the square vortex lattice is favored only

by the condensation term.

We can also examine the z-dependence of the free energy density, integrating in

Eq. (71) only over x and y and dividing only by S to de�ne F (z). (Fstray is taken as

a z-independent contribution to F (z).) Figure 24 on page 85 compares square and

triangular vortex lattices for κ = 0.5 just below the upper critical �eld for d = 1.5,

2.0, and 2.5. The triangular lattice has lower total free energy only for d = 1.5.

However, in every case F (z) is lower for the triangular lattice when z ≈ d/2, and,

with decreasing z, F (z) decreases more rapidly for the square lattice than for the

triangular lattice. Figure 24 on page 85 is thus consistent with the interior of the
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�lm being more bulk-like than the surface; and in fact F (0) approaches F for a bulk

system with as d increases. In terms of the free energy components, the condensation

term is nearly independent of z, as is ω (as pointed out by Brandt for �lms of type-II

superconductors [43]). The kinetic term is responsible for the z-dependence seen in

Figure 24 on page 85, since the magnetic term is smaller at the surface, where the

�eld lines spread out, than in the center of the �lm.

1 �

104 ∆Fcond 161. 180.

104 ∆Fkin -116. -129.

104(∆Fmag + ∆Fstray) -25.5 -29.0

Table 2: Film Minus Bulk Energy Terms

Film minus bulk energy terms for κ = 0.5, B̄/κ = 0.825 and d = 2.0.

d = 2.0 d = 2.33 d = 2.6

104 ∆Fcond -4.44 -2.64 -1.37

104 ∆Fkin 6.55 5.29 4.42

104(∆Fmag + ∆Fstray) -2.31 -2.60 -2.81

Table 3: F ∆ vs. �

Di�erences in free energy density terms (triangular lattice minus square lattice) at
κ = 0.5 and B̄/κ = 0.825 for several values of d. Note that ∆F < 0 for d = 2.0 but
is positive at the other thicknesses.
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Figure 24: F̃ (z) for κ = 0.5

Free energy density dependence on z for �lms of various thickness with κ = 0.5 and
B̄ = 0.99/κ, for square and triangular vortex lattices (indicated by the squares and
triangles).
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5.4 Low Induction Regime

The work of Hasegawa et al. [34] suggests for the �lm model we adopt that multiply

quantized vortices may be found in the low induction regime. Our goal was to adapt

the circular cell method for bulk samples, Sec. 4.6.1, to �lms in the same manner as

we did for the �ux line lattice. In this manner we hoped to explore the possibility of

the stability of doubly quantized vortices in type-I �lms. We did develop complete

Ansätze for singly and doubly quantized vortices, along with an iteration scheme

much like the FLL for �lms described in Sec. 5.1. Our results for the �lm circular

cell were successful with singly quantized vortices. However, our e�orts for doubly

quantized vortices yield convergent results that are not physically sensible. We have

included the details for our work on the CC in �lms in Appendix K but at this point

it is still an open problem.

5.5 Conclusions

We have improved Brandt's method [43] for solving the GL equations for thin-�lm

superconductors in perpendicular magnetic �elds, and applied it to a series of cal-

culations for various vortex lattice structures with one vortex per primitive cell in

type-I superconductor �lms of intermediate thickness (d ∼ λ). The phase diagrams

presented in Sec. 5.2 are the �rst step beyond the linearized theory towards the de-

velopment of an accurate equilibrium �ux structure phase diagram for �lms of type-I

GL superconductors. The results suggest that non-triangular �ux lattice structures

(square and rectangular) may arise at mean inductions well below the upper critical

value. For future work we wish to carry out similar calculations for �ux structures

with more that one vortex per primitive cell, as well as lattices of multiply-quantized

vortices and various intermediate state models; these will require di�erent expansions

for the in-plane variation of ω, q and b but Legendre function expansions for the z

dependence should still be applicable.
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The anomalous softness of the vortex lattice in and near the domain of stability

for the square vortex lattice o�ers hope that some features of the theoretical phase

diagram might be observed in critical current measurements, in the form of a �peak

e�ect� [45] well below the upper critical �eld. However, quantitative comparison

between the theoretical phase diagrams and experimental results will necessarily be

complicated by anisotropy and, possibly, thermal �uctuations [46].
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A Units

A.1 CGS to SI

quantity CGS SI

B 1 Gauss (G) 10−4 Tesla (T)

H 1 Oersted 103/4π A/m

M 1 emu/cm3 103 A/m

Φ0
hc
2e

= 2× 10−7 G · cm2 2π~
2e

= 2× 10−15 T ·m2

µ0 1 4π × 10−7 N/A2

Table 4: CGS to SI Units

Much of the classic literature uses CGS units, when using real units we use SI and
this combined with the de�nitions for magnetic �eld and magnetic induction can lead
to confusion.
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A.2 Reduced Units

We use Abrikosov's [17] reduced units scheme, below are the conversions from SI

units. The key constants are the penetration depth λ, the thermodynamic critical

�eld Hc and the Meissner state order parameter ψ∞ =
√
−α
β

(α < 0, see Sec. 2.6).

� Length: r′ := 1
λ
r

� Derivatives: ∇′ := λ∇

� Magnetic Field: H′ := 1√
2HC

H

� Magnetic Induction: B′ := 1
µ0
√

2HC
B

� Vector Potential: A′ := λ
µ0
√

2HC
A

� Current: j′ := 1
λ
√

2HC
j

� Free Energy Density: F ′ := 1
µ0H2

C
F

� Order Parameter: ψ′ := ψ/ψ∞

The primes are dropped from equations used in this manuscript. In these units, one

has:

� Coherence Length: ξ ⇒ 1
κ

� Thermodynamic Critical Field: HC ⇒ 1√
2
for all values of κ

� Upper Critical Field: HC2 ⇒ κ

� �The� Condensation Energy: 1
2
µ0H

2
c ⇒ 1

2

� Condensate Energy density: α |ψ|2 + β
2
|ψ|4 ⇒ −|ψ|2 + 1

2
|ψ|4 (for Meissner state

this is −1
2
)

� Kinetic Energy density: 1
2m
|(−i~∇− qA)ψ|2 ⇒

∣∣(− i
κ
∇−A

)
ψ
∣∣2
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� Magnetic Field Energy density: 1
2µ0
|B|2 ⇒ |B|2

� Flux Quantum: Φ0 ⇒ 2π
κ

� Gibbs Free Energy density: G⇒ F − 2HaB̄ (see Sec. C)

SI Reduced units

κ 0.44 0.44

µ0Hc 15.3 mT 1/
√

2

λ 110 nm 1

ξ 250 nm 2.27

µ0H
2
c 186 J/m3 1

Table 5: Values for Pb

In this work we present results for a type I superconductor with κ = 0.5. It is useful
to use lead as an example of how our results will compare to real unit values. For
this table we assume the temperature is ninety percent of Tc.
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B Magnetic Fields

Even without superconductivity there is mixed usage in the terminology for the vector

�elds associated with magnetism: �magnetic �eld�, �magnetic induction�, �magnetic

�ux density�, etc. We have tried to be consistent and call B the magnetic induction

and H the magnetic �eld. While the mean dipole moment per unit volume in super-

conductors has a di�erent source than in normal magnetic materials this quantity is

still called the magnetization, M. From this magnetization we then have the mag-

netic susceptibility tensor: χij = ∂Mi

∂Hj
. We also make some simplifying assumptions in

our work: we have a static magnetic �eld and no electric �eld, ∂H
∂t

= 0, ∂E
∂t

= 0 and

E = 0. As usual the induction can be determined from a vector potential, A, such

that B = ∇×A and from Maxwell's equations we have ∇ ·B = 0. Also, we assume

the superconducting materials, when in the normal state, are otherwise non-magnetic

with permeability µ = µ0. In this case the usually de�ned magnetic susceptibility is

zero. However, there is a large diamagnetic response with superconductors and while

there are no microscopic magnetic dipoles inside the sample we can thermodynami-

cally de�ne M, H and χ for the superconducting state (see Eqs (118), (117) and (119)

in Appendix C). Lastly, we consider a single current density j and do not separate

that into free and bound currents. With these de�nitions and using the London gauge

, ∇ ·A = 0, we have the following equations in SI units:

B = µ0 (H + M)

∇×B = µ0j

−∇2A = µ0j

(98)
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and in reduced units:

B = H + M

∇×B = j

−∇2A = j

(99)

These equations apply to the �lm and to the free space outside the sample where

M = j = 0. Finally since much of the literature uses CGS units we include the same

equations for CGS:

B = H + 4πM

∇×B = 4π
c

j

−∇2A = 4π
c

j

(100)
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C Thermodynamics

The superconducting state is determined by temperature and magnetic �eld and does

not depend on the magnetic history of the sample (in the absence of defects or im-

purities). Therefore it is correct to call it a thermodynamic state. Ginzburg-Landau

theory is based on a free energy density expanded in powers of an order parameter.

This free energy is a function of temperature and magnetic induction B. In deter-

mining the equilibrium phase of the mixed state in �lm and bulk superconductors

it is more useful to have a the free energy as a function of the externally applied

magnetic �eld Ha. There are many versions of free energy used in the literature with

a variety of notations. This section is intended as a coherent summary of the thermo-

dynamics of superconductors for the con�gurations we consider (based on Landau,

Pittaevskii and Lifshitz [12]) and with clear de�nitions of the thermodynamic vari-

ables and quantities of interest. A note on the particulars of the systems we work

with: we treat the sample macroscopically and with �elds parallel to the z-axis: mean

induction B̄ = B̄ẑ, external applied �eld Ha = Haẑ and magnetization M = Mẑ.

The magnetic susceptibility is then a simple scalar: χ = ∂M
∂Ha

.

C.1 Thermodynamic Potentials

In GL theory we start from free energy F = F
(
T, B̄

)
, but in order to be able to make

comparisons to experiment it is more useful if we have an energy as a function of the

applied �eld, Ha. That is, we would like to get the Gibbs free energy G = G (T,Ha)

where B̄ and Ha are conjugate thermodynamic variables. We can write these energies
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as volume integrals of free energy densities F and G:

F =

ˆ
F
(
r, T, B̄

)
d3r G =

ˆ
G (r, T,Ha) d

3r

Where F
(
r, T, B̄

)
is the GL free energy functional. We will be working with struc-

tures that are periodic with unit cell volume V so we can work with mean densities:

F̄
(
T, B̄

)
=

1

V

ˆ
V

F
(
r, T, B̄

)
d3r Ḡ (T,Ha) =

1

V

ˆ
V

G (r, T,Ha) d
3r

The thermodynamic state of the system can then be determined from these mean free

energy densities.

Now, we would like to establish how we can get the Gibbs energy from F̄ . In

addition, we will de�ne two new thermodynamic potentials and determine how we

can get quantities like Ha,M , etc. from these potentials. First, we assume a constant

pressure and volume (i.e., no p dV work) and with entropy density s we have

dF̄ = −sdT + Ha · dB̄ . (101)

Then we can de�ne the Gibbs energy density by a Legendre transformation

Ḡ (T,Ha) ≡ F̄
(
T, B̄

)
−Ha · B̄ , (102)

which gives us

dḠ = −sdT − B̄ · dHa (103)

and we note that in the Meissner state

Ḡ (T,Ha)B̄=0 = F̄ (T, 0) . (104)
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We assume the sample is non-magnetic so in the normal state the energy comes

solely from the magnetic �eld energy. Also, in the normal state B̄ = µ0Ha and

Ha · B̄ = 1
µ0
B̄2 = µ0H

2
a . So the normal state free energies are

F̄N
(
T, B̄

)
=

1

2µ0

B̄2 , (105)

ḠN (T,Ha) = −1

2
µ0H

2
a (106)

and Eq. (104) also applies (in this case B̄ = 0 requires that Ha = 0) and

ḠN (T,Ha = 0) = F̄N
(
T, B̄ = 0

)
. (107)

The free energy di�erence in zero �eld between the normal state and the Meissner

state is what de�nes the thermodynamic critical �eld for type-II superconductors,

F̄N (T, 0)− F̄ (T, 0) =
1

2
µ0H

2
c . (108)

Also, for the Gibbs energy from Eqs. (104) and (107) we �nd that

ḠN (T, 0)− Ḡ (T,Ha)B̄=0 =
1

2
µ0H

2
c . (109)

The free energy F̄ , by our de�nition in Eq. (101), includes the �eld energy

F̄N
(
T, B̄

)
. This �eld energy is present whether our sample is there or not. We

would like to rede�ne what is our thermodynamic system and exclude the normal

state �eld energy. This leads us to new free energy de�nitions

F̃
(
T, B̄

)
≡ F̄

(
T, B̄

)
− F̄N

(
T, B̄

)
(110)
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and

G̃ (T,Ha) ≡ Ḡ (T,Ha)− ḠN (T,Ha) . (111)

We can then get the di�erential form of these energies:

dF̃ = dF̄ − 1

µ0

B̄ · dB̄ dG̃ = dḠ+ µ0Ha · dHa

dF̃ = dF − (Ha + M) · dB̄ dG̃ = −sdT − B̄ · dHa + µ0Ha · dHa

dF̃ = −sdT −M · dB̄ (112)

dG̃ = −sdT − µ0M · dHa (113)

We started from the free energy density F
(
r, T, B̄

)
and then derived several re-

lationships and de�ned some new quantities. To be clear F is the Ginzburg-Landau

free energy density from Eq. (6) and we repeat the de�nition

F
(
r, T, B̄

)
= α |ψ|2 +

β

2
|ψ|4 +

1

2m
|(−i~∇− qA)ψ|2 +

1

2µ0

|B|2 . (114)

Our F̃
(
T, B̄

)
is a mean free energy density and we de�ne a local version

F̃
(
r, T, B̄

)
= α |ψ|2 +

β

2
|ψ|4 +

1

2m
|(−i~∇− qA)ψ|2 +

1

2µ0

|b|2 (115)

where b (r) = B (r)− B̄.

From the de�nitions for F̃
(
T, B̄

)
and G̃ (T,Ha) (Eq. (110) and Eq. (111)) and

from Eq. (115) it is clear that the normal state will have a zero energy for any

value of B̄ or Ha. For this reason we sometimes refer to these energies, F̃ and G̃,

as referenced from the normal state. In the Meissner state we have Ḡ (T,Ha)B̄=0 =

F̄ (T, 0) = −1
2
µ0H

2
c for any value of Ha. We say that F and G are referenced from the

Meissner state. More fundamentally, the di�erence between
[
F̄ , Ḡ

]
and

[
F̃ , G̃

]
comes

from a change in the de�nition of the thermodynamic system. F̄
(
T, B̄

)
includes the
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energy of the superconductor's diamagnetic response and the energy in creating the

magnetic �eld, F̃
(
T, B̄

)
only includes the energy of the diamagnetic response.

In GL theory we start from an assumed mean induction and then �nd a mini-

mum for the functional F̄
(
T, B̄

)
= 1

V

´
V
F
(
r, T, B̄

)
d3r. Then to get Ḡ (T,Ha) =

F̄
(
T, B̄

)
−Ha · B̄ we need to know the applied �eld Ha. Rather than calculate the

derivative ∂F̄
∂B̄

numerically, in practice it is easier for us to calculate Ha via the virial

theorem method of Klein and Pöttinger [24] where

Ha · B̄ =
1

V

ˆ
V

α |ψ|2 + β |ψ|4 +
1

2m
|(−i~∇− qA)ψ|2 +

1

2µ0

|B|2 d3r . (116)

In our work the macroscopic �elds are all aligned with the z-axis. so we can divide

the integral by the mean induction to get Ha. We have con�rmed that, from solutions

to our iteration scheme, this does match the result from the thermodynamic relation

(
∂F̄

∂B̄

)
T

= Ha . (117)

Finally, to get the magnetization and susceptibility from the thermodynamic relations:

−
(
∂F̃

∂B̄

)
T

= − 1

µ0

(
∂G̃

∂Ha

)
T

= M (118)

− 1

µ0

(
∂2G̃

∂H2
a

)
T

= χ (119)

and in reduced units:

1

2

(
∂F̄

∂B̄

)
T

= Ha (120)

−1

2

(
∂F̃

∂B̄

)
T

= −1

2

(
∂G̃

∂Ha

)
T

= M (121)
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−1

2

(
∂2G̃

∂H2
a

)
T

= χ (122)

C.2 Magnetization Work

We wish to calculate the work done (at constant temperature) in magnetizing a

superconducting sample from the Meissner state in zero applied �eld to the normal

state. We integrate Eq. (113) from Ha = 0 to Ha = Hc2:

−µ0

ˆ Hc2

0

M (Ha) dHa = G̃ (Hc2)− G̃ (0)

At Hc2 the mixed state is in equilibrium with the normal state and G̃ (Hc2) =

G̃N (Hc2). By de�nition G̃N (Ha) = 0. At the lower limit we have G̃ (0) = Ḡ (0) −

ḠN (0) from the de�nition of G̃ in Eq. (111). While Eq. (109) tells us that Ḡ (0) −

ḠN (0) = −1
2
µ0H

2
c .

−µ0

ˆ Hc2

0

M (Ha) dHa = 0−
[
−1

2
µ0H

2
c

]

−µ0

ˆ Hc2

0

M (Ha) dHa =
1

2
µ0H

2
c (123)

This gives us the result that the area under the magnetization curve is equal to the

condensation energy. This will be of practical value in our work as a validity check

on our results. In reduced units we have:

−
ˆ Hc2

0

M (Ha) dHa =
1

2
(124)
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D Elasticity Theory

In comparing stability of di�erent lattice types it is useful to compare various shear

moduli. To be clear, we are talking about shear, stresses and strains in the �ux line

lattice not the crystal lattice. In this section we present background in linear elastic

theory and follows Landau and Lifshitz [47]. We consider a deformation inside a

body which changes a position from r to r′ (r1 = x, r2 = y and r3 = z ) and de�ne

the displacement u = r′ − r. For small deformations the strain tensor is de�ned as

uij = 1
2

(
∂ui
∂rj

+
∂uj
∂ri

)
and is dimensionless. The total force on the body can be written

as a volume integral over a force density, F =
´

f dV . Then the force density can be

written as the divergence of a rank 2 tensor, fi =
∂σij
∂rj

where σij is the strain tensor

with units force/area (or energy/volume). There is an implied summation when using

subscripts. For small deformations in a solid body Hooke's Law is

σij = Cijklukl . (125)

Both the strain and stress are symmetric rank two tensors with six independent

components each and Cijkl is the elasticity tensor with units force/area. The elasticity

tensor is a rank four tensor with 81 components but symmetry requirements for the

stress and strain tensor reduces the number of terms to 36 and requirements on the

associated strain energy reduces the number of independent terms in Cijkl to 21.The

full 6x6 matrix representation of Hooke's Law can be found in many texts (e.g. [48])

but in our two dimensional vortex lattices require only a 3x3 matrix. We ignore any
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tilting of the �ux lines along the z-direction. So Hooke's law becomes:


σxx

σyy

σxy

 =


C11 C12 C16

C12 C22 C26

C16 C26 C66




uxx

uyy

2uxy

 . (126)

The stress and strain, as second-order tensors, must transform as σ′ij = QikQjlσkl

and u′ij = QikQjlukl, where Qij is an orthogonal tensor with QilQjl = δij. In this

work we are primarily interested in three lattices: triangular, square and rectangular.

These lattices have symmetries and corresponding requirements on the transformation

tensors, Qij, that further reduce the number of elastic moduli. In all three lattices of

interest C16 = C26 = 0. Both triangular and square lattices have C22 = C11. Finally,

we are concerned with constant volume deformation, that is pure shears, where the

strain tensor is trace-less and uyy = −uxx.

For triangular lattices C66 = (C11 − C12) /2


σxx

σyy

σxy

 = C66


2 0

−2 0

0 1


 uxx

2uxy

 (127)

square lattices 
σxx

σyy

σxy

 =


(C11 − C12) 0

− (C11 − C12) 0

0 C66


 uxx

2uxy

 (128)

and rectangular lattices


σxx

σyy

σxy

 =


(C11 − C12) 0

− (C22 − C12) 0

0 C66


 uxx

2uxy

 . (129)
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D.1 Thermodynamics

Work is done when deforming a solid body this leads to an energy change, called the

strain energy, ∆Fstrain ≡ 1
2
σijukl. Then for Helmholtz free energy density F , and

Gibbs free energy density G: (
∂F

∂uij

)
T,B̄

= σij (130)

(
∂G

∂σij

)
T,H

= −uij . (131)

In the elastic regime we have the Hooke's Law relationship σij = 1
2
Cijkluij and

∆Fstrain = 1
2
Cijkluijukl. Our interests are in how sti� or soft the vortex lattice is

for small deformations.

The strain energies for the lattices of interest are:

∆F
(TRI)
strain = 2C66u

2
xy (132)

∆F
(SQ)
strain = (C11 − C12)u2

xx + 2C66u
2
xy (133)

∆F
(RECT )
strain =

[
1

2
(C11 + C22)− C12

]
u2
xx + 2C66u

2
xy (134)

D.2 Calculating Shear Moduli

A lattice unit cell is de�ned by the vectors R10 = x1x̂ and R01 = x2x̂ + y2ŷ and

has area S = |R10 ×R01| = x1y2. A simple shear that takes the lattice to R′01 =

(x2 ± δy2) x̂+ y2ŷ (these are small deformations: δ � 1) can be used to calculate C66

(R′10 = R10). In this case u = ±δyx̂, uxx = uyy = 0, uxy = ±1
2
δ and C66 = 1

δ2
∆Fstrain.

All rectangular unit cells have x2 = 0 and a rectangle to rectangle pure shear has

R′10 = x1 (1 + δ) x̂ and R′01 = y2

(
1

1+δ

)
ŷ. Again we have δ � 1 so R′01 ≈ y2 (1− δ) ŷ.

For this case u = δxx̂− δyŷ, uxx = δ, uyy = −δ, uxy = 0. Squares are a special case

of rectangles with y2 = x1. We attempt to compare shear moduli for the lattices on
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an equal footing and with the triangular case having C66 = (C11 − C12) /2, we de�ne

CSQ = (C11 − C12) /2 and CRECT = 1
4

(C11 + C22) − 1
2
C12. Then CSQ = 1

2δ2
∆F

(SQ)
strain

and CRECT = 1
2δ2

∆F
(RECT )
strain .

In order to calculate the moduli we �rst run our iteration scheme, with �xed κ

and B̄, to convergence for lattices de�ned by [R10,R01] and [R′10,R
′
01]. These results

yield the strain energy: ∆Fstrain = F ′ − F .
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E Small r⊥ Behavior for ψ

We reproduce a derivation due to Tinkham [10] Sec. 5.1. We start by assuming for a

p-quanta vortex the order parameter has the form ψ = crn⊥e
ipθ, n > 0 for small values

of r⊥. In this region all �elds are radially symmetric and we have A = A (r⊥) θ̂ and

Bz = 1
r⊥

∂
∂r⊥

(r⊥A)

A (r⊥) =
1

r⊥

ˆ r⊥

0

r′Bz (r′) dr′ (135)

Near the core, this becomes

A (r⊥) =
1

2
Bz (0) r⊥ (136)

and the supervelocity (see Sec. 3.3) is:

Q (r⊥) =
1

2
Bz (0) r⊥ −

p

κr⊥
(137)

Applying the �rst GL Equation Eq. (12):

1

κ2
n2rn−2

⊥ = crn
(

1

2
Bz (0) r⊥ −

p

κr⊥

)2

− crn⊥ + cr3n
⊥ (138)

Grouping like powers:

1

κ2

[
p2 − n2

]
rn−2
⊥ −

(
1 +Bz (0)

p

κ

)
rn⊥ +

1

4
B2
z (0) rn+2

⊥ + r3n
⊥ = 0 (139)

As r → 0, this is dominated by the �rst term. For this to vanish p = n and we

conclude that for a p-quanta vortex that ψ (r⊥) = crp⊥e
ipθ
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F Linearized GL Equation

In this section we derive necessary relationships for our method in Appendix H

for �nding ωA for doubly quantized vortices. The full treatment for the linearized

Ginzburg-Landau equation can be found in Abrikosov [17]. Our version is intended

to generalize some of Abrikosov's �ndings for the p-quanta vortex. We don't rederive

one of these results but assume a priori

Hc2 =
√

2κHc (140)

where in reduced units we have Hc = 1√
2
and Hc2 = κ.

In high induction regimes, Hc2−Ha � 1, where the superconducting state is just

beginning to nucleate the order parameter will be small and the �rst GL equation

simpli�es to (
− i
κ
∇−A

)2

ψA = ψA (141)

We use the subscript �A� to indicate these �elds are for the linearized GL equation

(often the solution here is referred to as the Abrikosov solution). This equation is

equivalent to Schrödinger's equation for a charged particle in a magnetic �eld. In this

limiting case the induction in the sample will be nearly uniform, ∇×A = κẑ (Hc2 = κ

in reduced units) and we can choose a gauge so A = κ
2
ẑ × r⊥ = κ

2
(−yx̂+ xŷ). Then

Πx = − i
κ
∂
∂x

+ κ
2
y, Πy = − i

κ
∂
∂y
− κ

2
x and Πz = 0. a = Πx + iΠy, a

† = Πx − iΠy and[
a, a†

]
= 2. Then the �Hamiltonian� above becomes Π2 = a†a+ 1

(
a†a+ 1

)
ψA = ψA
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(
a†a
)
ψA = 0

with ψa corresponding to the lowest Landau level. In that case applying the lowering

operator gives aψA = 0. Then expressing the order parameter as ψA = |ψA| exp [iϕ]

we get (
− i
κ

∂

∂x
− Ax +

1

κ

∂

∂y
− iAy

)
|ψA| exp [iϕ] = 0 .

Applying the operators and grouping the terms as pure real or pure imaginary leads

to

(
−Ax |ψA|+ |ψA|

1

κ

∂ϕ

∂x
+

1

κ

∂ |ψA|
∂y

)
+ i

(
−Ay |ψA|+ |ψA|

1

κ

∂ϕ

∂y
− 1

κ

∂ |ψA|
∂x

)
= 0

The real part and imaginary part must both equal zero. This gives the following

relationships:

∂ |ψA|
∂y

= κ |ψA|
(
Ax −

1

κ

∂ϕ

∂x

)
∂ |ψA|
∂x

= κ |ψA|
(
−Ay +

1

κ

∂ϕ

∂y

)
Taking derivatives of the modulus squared ∂|ψA|2

∂y
= 2 |ψA| ∂|ψA|

∂y
and ∂|ψA|2

∂x
= 2 |ψA| ∂|ψA|

∂x
.

Then substitute in the above ∂|ψA|
∂x

and ∂|ψA|
∂y

:

∂ |ψA|2
∂y

= −2κ |ψA|2
(
−Ax +

1

κ

∂ϕ

∂x

)

∂ |ψA|2
∂x

= 2κ |ψA|2
(
−Ay +

1

κ

∂ϕ

∂y

)
The supercurrent is j = |ψA|2

(
−A + 1

κ
∇ϕ
)
and ωA = |ψA|2

jx = − 1

2κ

∂ωA
∂y
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jy =
1

2κ

∂ωA
∂x

equivalently:

j = − 1

2κ
∇ωA × ẑ (142)

Equation (142) tells us that the supercurrent is perpendicular to the order parameter

gradient, or in other words the lines of current lie on the contours of constant ωA. The

last equation can be written as j = ∇×
(
− 1

2κ
ωAẑ

)
. Further, with B = Bẑ, Ampère's

law in reduced units is j = ∇× (Bẑ) and we obtain:

∇×
[(
B +

1

2κ
ωA

)
ẑ

]
= 0

So the local induction is equal to − 1
2κ
ωA plus the gradient of some function f (r⊥, z)

(this is not the order parameter magnitude). Bẑ = − 1
2κ
ωAẑ+∇f , where f = f (r⊥, z)

is some unknown function with ∇⊥f = 0.

B (r⊥) = − 1

2κ
ωA (r⊥) +

∂f

∂z

∂f
∂z

must be a constant and with ωA (0) = 0:

B (r⊥) = B (0)− 1

2κ
ωA (r⊥) (143)

This is true at all locations and for �ux lines of any multiplicity. In the high induction

regime the validity of the Linearized GL Equation, Eq. (141), comes from the fact

that the order parameter magnitude is small. This is also the case close to the core

of a vortex at any induction. So, in this region, r⊥ � λ, ξ, we have:

B (r⊥) ≈ B (0)− 1

2κ
ω (r⊥) (144)
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For the special case κ2 = 1
2
we have Hc1 = Hc2 = Hc, and in reduced units Hc2 = κ.

The above derivations for ωA were for Ha ≈ Hc2 and in general for the mixed state

Hc1 ≤ Ha ≤ Hc2. Also in general, at the vortex core (again in reduced units)

B (0) ≤ Hc2 - otherwise the superconductivity would be suppressed in a �nite radius.

Of course B (0) must be larger than the lower critical �eld. So B (0) = κ for this

special case κ2 = 1
2

1√
2
B (r⊥) = 1− ω (r⊥) (145)

This special case also has the odd result that for a constant applied �eld, Ha = Hc,

all vortex states are degenerate in free energy. This value of κ straddles the line

between type-I and type-II. Luk'yanchuk [41] showed that this degeneracy is lifted by

including higher order terms in the Ginzburg-Landau free energy functional, Eq. (6).

We keep to the standard GL functional but as a test of our model Eq. (145) is quite

useful.

Finally, a useful result from Eq. (142):

QA =
1

2κ

∇ωA × ẑ
ωA

(146)

where QA is the Abrikosov supervelocity. Note that QA is independent of 〈ωA〉.
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G Fourier Expansion for QA

Much of this appendix is reformulating results from Brandt [42, 43]. Brandt only

considered singles and we wish to generalize his results because having a Fourier

expansion for the Abrikosov supervelocity, QA, is key to our solution of the linearized

GL equation for doubles in Appendix H.

The supervelocity, Q, is the velocity �eld for the condensed state. Multiplied by

the charge and density of superconducting electrons it gives the supercurrent. From

section 2.6 in reduced units the supervelocity is de�ned Q ≡ A− 1
κ
∇ϕ, with the order

parameter phase, ϕ, being indeterminate at the vortex core. For small r⊥ ϕ = pθ

and we can say about its gradient that ∇ϕ = p
r⊥
θ̂ = −pr⊥×ẑ

r2⊥
. This tells us that Q is

singular at r = 0. However, the two physical quantities involving the supervelocity,

the current − |ψ|2 Q and kinetic energy density term |ψ|2 |Q|2, are dominated by the

small r⊥ behavior of the order parameter and both quantities go to zero as r⊥ → 0.

The curl of a gradient is zero except that ∇ϕ is singular at a vortex core. Stokes's

theorem yields the result that ∇×∇ϕ = p2πδ2 (r⊥ −Rmn) ẑ, where Rmn is a lattice

vector of the vortex array. With 1
κ

= Φ0/2π in reduced units (see Appendix A) this

gives ∇×Q = ∇×A− pΦ0δ2 (r⊥ −Rmn) ẑ. So at all points , except for r⊥ = Rmn,

B = ∇×Q. Further, the average value of the curl of the supervelocity over the unit

cell is: 1
S

´
S

(∇×Q) · ẑ dx dy = B̄ − pΦ0 = 0. This is true at any induction.

Separating the induction in the sample B (r⊥, z) = B̄ẑ+b (r⊥, z) leads to a similar

separation for the supervelocity Q (r⊥, z) = QA (r⊥) + q (r⊥, z) so that ∇ × QA =[
B̄ − pΦ0δ2 (r⊥ −Rmn)

]
ẑ and ∇ × q = b. Here we've generalized the Abrikosov

supervelocity, QA, to any case where the induction is uniform across the sample. QA,
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is singular at the vortex cores r⊥ = Rmn and it can be expressed as:

QA (r⊥) = ẑ ×
[
B̄

2
r⊥ −

p

κ

∑
m,n

r⊥ −Rmn

|r⊥ −Rmn|2

]
(147)

This is identical in form to the supervelocity for the linearized GL equation with the

mean induction, B̄, replacing the upper critical �eld value. If we set b = 0 then we

get solutions identical to the linearized GL equation di�ering only in that the unit cell

area is larger by a factor κ/B̄ with the order parameter di�erent by a scaling factor.

Just as we generalized the supervelocity we also generalize the order parameter ωA, it

must satisfy Eq. (146) and we set the mean value of the order parameter, 〈ωA〉 = 1.

The important result is:

ωAQA =
1

2κ
∇ωA × ẑ (148)

Taking the Fourier transform of Eq. (147)

QA (r⊥) = ẑ ×
∑

Kmn 6=0

iB̄
Kmn

K2
mn

exp [iKmn · r⊥] (149)

where Kmn are the reciprocal lattice vectors.

109



H Solving the Linearized GL equation in Terms of

the aK

In his pioneering work on vortex lattices in superconductors, Abrikosov [17] showed

that for an applied �eld just below Hc2, the �rst GL equation (when expressed as

an equation for the order parameter) has the form of Schrödinger's equation for a

charged particle con�ned to a plane and subject to a magnetic �eld. With an assumed

periodicity of the vortex lines and one �ux quantum per vortex, an analytic solution

ψA exists and can be expressed [17, 18, 49] in terms of a Jacobi theta function,

ψA (x, y) = e−πy
2/x1y2ϑ1

(
π

x1

(x+ iy) ,
x2 + iy2

x1

)
(150)

where ϑ1 (z, τ) ≡ 2
∑∞

n=0 (−)n eiπτ(n+ 1
2)

2

sin(2n+1)z and the lattice parameters x1, x2

and y2 were de�ned just below Eq. (31). With this form for ψA its modulus squared,

ωA ≡ |ψA|2, is expressed as a double sum. This leads [42] to the Fourier like expansion

of real terms, ωA =
∑

K a
A
K [1− cos (K · r)], with aAK = − (−)m+mn+n e−K

2
mnS/8π. Note

that the sum over K is still a double sum over m and n.

Lasher [50] pointed out that for vortices of multiplicity p, ψ
(p)
A (r) =

[
ψA
(
r/
√
p
)]p

is a corresponding solution of the linearized GL equations. In principle one could use

this form to determine aAK for doubles in the expansion (28), starting from (150), but

we did not attempt to carry that through.

We have taken an alternative approach based on numerical solution of a linear

system for the aAK derived from the linearized GL equations. Combing Eq. (148) and
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Eq. (149)

1

2κ
∇ωA × ẑ = −ωA

[ ∑
Kmn 6=0

iB̄
Kmn

K2
mn

exp [iKmn · r⊥]

]
× ẑ (151)

Combining with (29), then applying uniqueness of Fourier series leads to the linear

system

∑
Ki

Ajia
A
Ki

= −〈ωA〉 (152)

with

Aji ≡ Cji − δKi,Kj

1

2B̄κ
|Kj|2 + δKi,Kj/2

1

8B̄κ
|Kj|2 (153)

and

Cji ≡ −
|Kj|2 −Ki ·Kj

|Kj −Ki|2
− |Kj|2 + Ki ·Kj

|Kj + Ki|2

+
|Kj|2 − 2Ki ·Kj

4 |Kj − 2Ki|2
+
|Kj|2 + 2Ki ·Kj

4 |Kj + 2Ki|2
(154)

We follow Brandt's convention that 〈ωA〉 = 1, so (3/2)
∑

K a
A
K = 1.

The in�nite system of equations (152) could be rendered �nite by setting aAK = 0

for |K| > Kmax; however, this is not a good closure assumption because of slow

convergence with increasing Kmax. Eq. (153) shows the strong connection between

aAK and aAK/2 previously mentioned in Sec. 4.4. In particular, forKmax/2 < |K| ≤ Kmax

the corresponding aAK are connected to coe�cients associated with vectors beyond the

cuto�. In addition, as |Kj| → ∞, Cji → −3/2, which leads to aAK ≈ aAK/2/4 at large

|K|. (For large |Kj|,
∑

Ki
Cjia

A
Ki
≈ −(3/2)

∑
K a

A
K = −〈ωA〉, hence the latter two

terms on the right side of Eq. (153) must sum to zero.) We therefore set aA2K = aAK/4,

aA4K = aAK/16, and so on for Kmax/2 < |K| ≤ Kmax and this leads to a modi�ed linear
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system with coe�cients A′ji. For i such that Kmax/2 < |Ki| ≤ Kmax,

A′ji = Aji +
∞∑
l=1

4−lCj,2li (155)

with K2li ≡ 2lKi. We truncate the sum at l = 4 after �nding no change in the results

for aAK when further terms are included.

In Figs. 25 and 26 we show the results of numerically solving the linear system

for κ = 1 and Kmax = 36. In the former only aAK for fundamental reciprocal lattice

vectors are shown; while in the latter aAK for reciprocal lattice vectors that are powers

of two times several di�erent fundamentals are displayed, showing that aAK ≈ aAK/2/4

holds even for |K| not very large.

Finally, let us note that as a check on this approach to solving the linearized GL

equations we have carried an analogous analysis for singles. The numerical results

from solving the corresponding linear equation for the aAK match the exact, analytic

results.
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Figure 25: aAK Fundamentals

Solutions to the linear system for the aAK associated with fundamental reciprocal
lattice vectors. See Appendix H.
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Figure 26: aAK Families

Solutions to the linear system for the aAK associated with eight fundamental
reciprocal lattice vectors and those vectors multiplied by powers of two. The lines
are guides to the eye connecting aAK, a

A
2K, a

A
4K,. . .
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Figure 27: aAK and cAK

Upper plot shows all aAK from our solution to the linear system. Lower plot shows
cAK = 2aAK − 1

2
aAK/2.
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I Second GL Equation Iteration

In this section we will derive the second GL equation iteration step. Brandt [20]

gives the starting step, his Eq. (10), and result, Eq. (13), but its not entirely clear

that one follows from the other. Also, the earlier result appears to di�er from a later

result, Eq. (B12) in [21]. However, in both papers there is a typo in the expansion of

∇ω ×Q. For those reasons we wish to show the full derivation. We start from the

second GL equation, Eq. (16)

∇×B = −ωQ

take the curl of both sides

∇× (∇×B) = ∇× (−ωQ)

∇ [∇ ·B]−∇2B = ∇× (−ωQ)

∇2B = ∇× (ωQ)

Expand the right hand side

∇2B = ∇ω ×Q + ω∇×Q

∇2B = ∇ω ×Q + ω∇×
(

A− 1

κ
∇ϕ
)

∇2B = ∇ω ×Q + ω∇×A− 1

κ
ω∇×∇ϕ

∇2B = ∇ω ×Q + ωB− 1

κ
ω∇×∇ϕ
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We must consider the term ω∇ × ∇ϕ. Away from a vortex core the curl of the

phase gradient will be zero. Near the core we have ∇ϕ =
(
p
r
θ̂
)
and ω = cr2p (see

Appendix E). The phase is unde�ned at the vortex core and as r → 0, |∇ϕ| → ∞.

The curl of this gradient gives a delta function but we wish to show that ω∇×∇ϕ

is well behaved at all locations.

ω∇×∇ϕ = ∇× (ω∇ϕ)−∇ω ×∇ϕ

ω∇×∇ϕ = c
[
∇×

(
r2pp

r
θ̂
)
− 2pr2p−1r̂ ×

(p
r
θ̂
)]

ω∇×∇ϕ = c
[
∇×

(
pr2p−1θ̂

)
− 2p2r2p−2ẑ

]
For the �rst term in brackets we have ∇×

(
pr2p−1θ̂

)
= p1

r
∂
∂r

(rr2p−1) ẑ = 2p2r2p−2ẑ.

We obtain the result (true at all locations):

ω∇×∇ϕ = 0 (156)

Returning to the derivation,

∇2B = ∇ω ×Q + ωB ,

we add a stabilizing term, −ωB to both sides

(
∇2 − ω

)
B = ∇ω ×Q + (ω − ω) B .

ω is the mean value of the order parameter. We use this expression only in the bulk

case where B = Bẑ and ∂ω
∂z

= 0 (in equilibrium, in all cases, Qz = 0). We then obtain

a London like inhomogeneous equation:

(
∇2 − ω

)
B =

(
∂ω

∂x
Qy −

∂ω

∂y
Qx

)
+ (ω − ω)B (157)
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It is this equation which is the basis for both Brandt's original iteration equation for

singles and our iteration equation for doubles.

For the singly quantized vortices

B (r) = B̄ +
∑
K

bK cos (K · r)

and with 〈cos (K · r) cos (K′ · r)〉 = 1
2
δKK′ , we �nd

−1

2

(
|K|2 + ω

)
bK =

〈[(
∂ω

∂x
Qy −

∂ω

∂y
Qx

)
+ (ω − ω)B

]
cos (K · r)

〉
.

Yielding the correct iteration equation for singles:

bK = − 2

|K|2 + ω

〈[(
∂ω

∂x
Qy −

∂ω

∂y
Qx

)
+ (ω − ω)B

]
cos (K · r)

〉
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J Free Energy Functional Integrals and Gradient

In this appendix we de�ne, derive and summarize several of the quantities and rela-

tions used in Sec. 5. The primary purpose is show the derivations for the expressions

used in the iterative bK⊥l coe�cient updates described in Sec. 5.1. The free energy

functional, referenced from normal state, with just induction term dependencies is:

Fb = 〈ωQ2 + b2
⊥ + b2

z〉+ 1
d
FStray.

J.1 Orthogonality

First we repeat the conventions used for averaging over the unit cell. The angle

bracket notation is used for averaging over the unit cell area, �lm thickness or both.

〈. . .〉xy ≡
1

S

ˆ
S

. . . dx dy (158)

〈. . .〉z ≡
1

d

ˆ d/2

−d/2
. . . dz (159)

〈. . .〉 ≡ 1

Sd

ˆ d/2

−d/2

ˆ
S

. . . dx dy dz (160)

We then have the following orthogonality relations for the basis functions we

employ:

〈cos (K⊥ · r⊥) cos (K′⊥ · r⊥)〉xy =
1

2
δK⊥,K′⊥ (161)

〈sin (K⊥ · r⊥) sin (K′⊥ · r⊥)〉xy =
1

2
δK⊥,K′⊥ (162)

〈cos (Kzz) cos (K ′zz)〉z =
1

2
δKz ,K′z (1 + δKz ,0) (163)

119



〈
P2l

(
2

d
z

)
P2l′

(
2

d
z

)〉
z

= δll′
1

4l + 1
(164)

Recursively applying the recurrence relations for Legendre polynomials gives the

following two identities:

〈
d

dz
P2l

(
2

d
z

)
d

dz
P2l′

(
2

d
z

)〉
z

=
2

d2
2n (2n+ 1) , n = min (l, l′) (165)

〈
d2

dz2
P2l

(
2

d
z

)
P2l′

(
2

d
z

)〉
z

=
2

d2
[2l (2l + 1)− 2l′ (2l′ + 1)] , l ≥ l′ (166)

J.2 Singles

For the lattice of singly quantized vortices in �lms we use Brandt's Ansatz [43] for

the order parameter unchanged but we do modify the induction terms. We repeat

our Ansatz for b and q from Sec. 5:

bz (r⊥, z) =
∑
K⊥,l

bK⊥l cos (K⊥ · r⊥)P2l (2z/d) (167)

b⊥ (r⊥, z) =
∑
K⊥,l

bK⊥l
−K⊥
K2
⊥

sin (K⊥ · r⊥)
2

d
P ′2l (2z/d) (168)

q (r⊥, z) =
∑
K⊥,l

bK⊥l
ẑ×K

|K2| sin (K⊥ · r⊥)P2l (2z/d) (169)

We then obtain the following analytic derivatives for the energy components:

〈
b2
z

〉
=

1

2

∑
K⊥,l

b2
K⊥l

1

4l + 1
(170)

〈
b2
⊥
〉

=
1

d2

∑
K⊥

1

K2
⊥

Nl−1∑
l=0

bK⊥l

[
l∑

l′=0

bK⊥l′2l
′ (2l′ + 1) +

Nl−1∑
l′=l+1

bK⊥l′2l (2l + 1)

]
(171)
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1

d
Fstray =

1

d

∑
K⊥

1

K⊥

(
bSK⊥

)2
, bSK⊥ ≡

∑
l

bK⊥,l (172)

Since we minimize the free energy functional directly with respect to bK⊥l we need

the following gradient terms:

∂

∂bK⊥l

〈
b2
z

〉
= bK⊥l

1

4l + 1
(173)

∂

∂bK⊥l

〈
b2
⊥
〉

=
1

d2

2

K2
⊥

[
l∑

l′=0

bK⊥l′2l
′ (2l′ + 1) +

Nl−1∑
l′=l+1

bK⊥l′2l (2l + 1)

]
(174)

∂

∂bK⊥l

1

d
Fstray =

2

d

1

K⊥
bSK⊥ =

2

d

1

K⊥

∑
l′

bK⊥,l′ (175)

While the supercurrent energy term, 〈ωQ2〉G, and its gradient must be integrated

numerically we can somewhat simplify the latter's form. First note that

∂

∂bK⊥l

〈
ωQ2

〉
= 2

〈
ωQ · ∂q

∂bK⊥l

〉
G

(176)

∂

∂bK⊥,l
q =

ẑ×K

K2
⊥

sin (K⊥ · r⊥)P2l

(
2

d
z

)
(177)

∂

∂bK⊥,l

〈
ωQ2

〉
G

=
2

K2
⊥

〈
ω (QyKx −QxKy) sin (K⊥ · r⊥)P2l

(
2

d
z

)〉
G

(178)

and with the de�nition DK⊥l ≡
〈
ω (QyKx −QxKy) sin (K⊥ · r⊥)P2l

(
2
d
z
)〉

G
we obtain

∂

∂bK⊥,l

〈
ωQ2

〉
G

=
2

K2
⊥
DK⊥l (179)

J.3 Doubles

For the doubly quantized vortices in �lms we again repeat our Ansatz for the induction

terms,
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bz (r⊥, z) =
∑
K⊥,l

[
2bK⊥l −

1

2
bK⊥/2,l

]
cos (K⊥ · r⊥)P2l (2z/d) (180)

b⊥ (r⊥, z) =
∑
K⊥,l

[
2bK⊥l −

1

2
bK⊥/2,l

] −K⊥
K2
⊥

sin (K⊥ · r⊥)
2

d
P ′2l (2z/d) (181)

q (r⊥, z) =
∑
K⊥,l

[
2bK⊥l −

1

2
bK⊥/2,l

]
ẑ×K

K2
⊥

sin (K⊥ · r⊥)P2l (2z/d) (182)

The orthogonality relationships and Legendre polynomial identities from Sec. J.1

allow us to analytically integrate the following free energy terms:

� 〈b2
z〉 = 1

2

∑
K⊥,l

[
2bK⊥l − 1

2
bK⊥/2,l

]2 1
4l+1

� 〈b2
⊥〉 = 1

d2

∑
K⊥,l,l′

1
K2
⊥

[
2bK⊥,l − 1

2
bK⊥/2,l

] [
2bK⊥,l′ − 1

2
bK⊥/2,l′

]
ml,l′

� ml,l′ ≡ min (2l, 2l′) (min (2l, 2l′) + 1)

� 1
d
Fstray = 1

d

∑
K⊥

1
K⊥

(
bSK⊥

)2
, bSK⊥ ≡

∑
l

[
2bK⊥,l − 1

2
bK⊥/2,l

]
The remaining free energy term, 〈ωQ2〉G, must be evaluated numerically.

J.3.1 Gradient

The (possibly tedious) details of the calculation of the free energy gradient with

respect to the bK⊥l coe�cients for doubles is included below.

First for the bz energy:

� ∂
∂bK′⊥,l′

〈
b2z
〉
=
∑

K⊥,l

[
2bK⊥,l − 1

2bK⊥/2,l
]

1
4l+1

[
2 ∂
∂bK′⊥,l′

bK⊥,l − 1
2

∂
∂bK′⊥,l′

bK⊥/2,l

]
� ∂

∂bK′⊥,l′

〈
b2z
〉
=
∑

K⊥,l

[
2bK⊥,l − 1

2bK⊥/2,l
]

1
4l+1δl,l′

[
2δK,K′ − 1

2δK/2,K′
]

� ∂
∂bK′⊥,l′

〈
b2z
〉
=
∑

K⊥

[
2bK⊥,l′ − 1

2bK⊥/2,l′
]

1
4l′+1

[
2δK,K′ − 1

2δK,2K′
]
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� ∂
∂bK′⊥,l′

〈
b2z
〉
= 1

4l′+1

∑
K⊥

[
2bK⊥,l′ − 1

2bK⊥/2,l′
] [
2δK,K′ − 1

2δK,2K′
]

� ∂
∂bK′⊥,l′

〈
b2z
〉
= 1

4l′+1

{
2
[
2bK′⊥,l′ −

1
2bK′⊥/2,l′

]
− 1

2

[
2b2K′⊥,l′ −

1
2bK′⊥,l′

]}
� ∂

∂bK′⊥,l′

〈
b2z
〉
= 1

4l′+1

{
4bK′⊥,l′ − bK′⊥/2,l′ − b2K′⊥,l′ +

1
4bK′⊥,l′

}
� ∂

∂bK′⊥,l′

〈
b2z
〉
= 1

4l′+1

{
17
4 bK′⊥,l′ − bK′⊥/2,l′ − b2K′⊥,l′

}
� ∂

∂bK′⊥,l′

〈
b2z
〉
= 1

4l′+1

{
17
4 bK′⊥,l′ − bK′⊥/2,l′ − b2K′⊥,l′

}
∂

∂bK⊥,l

〈
b2
z

〉
=

1

4l + 1

{
17

4
bK⊥,l − bK⊥/2,l − b2K⊥,l

}
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Next for the b⊥ energy:

� ∂

∂(bK,l)
′′
〈
b2⊥
〉
=

1
d2
∑

K,l,l′
1
K2
⊥

{[
2δK,K′′δl,l′′ − 1

2δK,2K′′δl,l′′
] [
2bK,l′ − 1

2bK/2,l′
]
+[

2bK,l − 1
2bK/2,l

] [
2δK,K′′δl′,l′′ − 1

2δK,2K′′δl′,l′′
]}
ml,l′

� ∂

∂(bK,l)
′′
〈
b2⊥
〉
=

1
d2

{∑
K,l′

1
K2
⊥

[
2δK,K′′

[
2bK,l′ − 1

2bK/2,l′
]

−1
2δK,2K′′

[
2bK,l′ − 1

2bK/2,l′
]
ml′′,l′

]
+
∑

K,l
1
K2

[
2bK,l − 1

2bK/2,l
] [
2δK,K′′ − 1

2δK,2K′′
]
ml′′,l

}

� ∂

∂(bK,l)
′′
〈
b2⊥
〉
=

2
d2
∑

l′

[
4

(K′′)2
bK′′,l′ − 1

(K′′)2
bK′′/2,l′

− 1
4(K′′)2

b2K′′,l′ +
1

4(K′′)2
bK′′,l′

]
ml′′,l′

� ∂
∂bK,l

〈
b2⊥
〉
= 2

d2K2
⊥

∑
l′
[
4bK,l′ − bK/2,l′ − 1

4b2K,l′ +
1
4bK,l′

]
ml,l′

� ∂
∂bK,l

〈
b2⊥
〉
= 2

d2K2
⊥

∑
l′
[

17
4 bK,l′ − bK/2,l′ − 1

4b2K,l′
]
ml,l′

∂

∂bK⊥,l

〈
b2
⊥
〉

=
2

d2K2
⊥

∑
l′

[(
17

4
bK⊥,l′ − bK⊥/2,l′ −

1

4
b2K⊥,l′

)
ml,l′

]
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Then the stray �eld energy:

� ∂
∂bK⊥l

1
d
Fstray = 2

d

∑
K′⊥

1
K′⊥
bSK′⊥

∂bS
K′⊥

∂bK⊥l

� ∂
∂bK⊥l

1
d
Fstray = 2

d

∑
K′⊥

1
K′⊥
bSK′⊥

[
2δK⊥,K′⊥ −

1
2
δK⊥,K′⊥/2

]
� ∂

∂bK⊥l

1
d
Fstray = 2

d

∑
K′⊥

1
K′⊥
bSK′⊥

[
2δK⊥,K′⊥ −

1
2
δ2K⊥,K

′
⊥

]
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� ∂
∂bK⊥l

1
d
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d

[
1
K⊥
bSK⊥2− 1

2K⊥
bS2K⊥

1
2

]
� ∂
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1
d
Fstray = 2
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1
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4
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∂
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(
1

d
Fstray

)
=

2

dK⊥

[
2bSK⊥ −

1

4
bS2K⊥

]
(185)

Finally, the supercurrent energy and gradient integrals must be done numerically

but we can somewhat simplify the gradient expression:

� ∂
∂bK⊥l

〈ωQ2〉 = 2
〈
ωQ · ∂q

∂bK⊥l

〉
� ∂

∂bK⊥l
q = ẑ×K

K2
⊥

[
2 sin (K⊥ · r⊥)− 1

4
sin (K⊥ · r⊥)

]
P2l

(
2
d
z
)

� ∂
∂bK⊥l

〈ωQ2〉 = 2
K2
⊥
〈ω(QyKx−QxKy)[2 sin(K⊥·r⊥)− 1

4
sin(2K⊥·r⊥)]P2l( 2

d
z)〉

� DK⊥,l ≡ 〈ω(QyKx−QxKy)[4 sin(K⊥·r⊥)− 1
2

sin(2K⊥·r⊥)]P2l( 2
d
z)〉

G

∂

∂bK⊥l

〈
ωQ2

〉
=

1

K2
⊥
DK⊥,l (186)

In the above equations terms like b2K⊥,l, b
S
2K⊥

and sin (2K⊥ · r⊥) that have 2|K⊥| >

KMAX are set to zero. These arise from fundamental K that are excluded due to the

coupling between coe�cients while working with a �nite set of vectors (see discussion

on truncation issues in Secs. 4.4 and H).

The order parameter iterations use the �rst GL equation and our doubles im-

plementation with Eq. (90) leads to the iteration update Eq. (94) that follows quite

simply from Brandt's [43] singles implementation.
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K Circular Cell for Film Samples

Going from the bulk circular cell to the �lm circular cell is very similar to the case

of the �ux line lattice. In Sec. 4.6.1 we de�ned the bulk CC Ansätze for singles

and doubles in terms of the order parameter basis functions fm (r), Eqs. (45), (57),

and the induction terms basis functions br,n (r) and bz,n (r), Eqs. (46), (58), and

Eqs. (47), (59), respectively. Then we can write the order parameter for singles and

doubles in the �lm generically as an expansion of basis functions with the unknown

coe�cients fG,Kz ,

f(r, z) =
∑
Kz=0

∑
m=1

fG,Kz fm (r) cos (Kzz) , Kz = l
2π

d
(187)

where as in the FLL case we use cos (Kzz) for the z-dependence of the order param-

eter.

The induction terms are expanded in terms of the unknown coe�cients an,l and

we use Legendre functions for the z-dependence

Bz (r, z) =
∑
l=0

∑
n=1

an,lbz,n (r)P2l

(
2

d
z

)
+B (188)

br (r, z) = −
∑
l=0

∑
n=1

an,lbr,n (r)
d

dz

[
P2l

(
2

d
z

)]
(189)

A (r, z) =
∑
l=0

∑
n=1

an,lbr,n (r)P2l

(
2

d
z

)
+
B

2
r (190)

Q (r, z) =
∑
l=0

∑
n=1

an,lbr,n (r)P2l

(
2

d
z

)
+
B

2
r − p

κr
(191)
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where in the last term p is the �uxoid multiplicity. Finally, the supercurrent

j (r, z) =
∑
l=0

∑
n=1

an,l

{
−br,n (r)

d2

dz2

[
P2l

(
2

d
z

)]
− d

dr
[bz,n (r)]P2l

(
2

d
z

)}
(192)

As we discussed in Sec. 4.6.2 in cylindrical coordinates the Bessel functions are

the natural choice of basis functions for the radial dependence. But it seems for

p > 1 there is not tractable combination of Bessel functions that meet the near core

requirements. In the free space outside the �lm the requirements are simpler:

1. Bz (r, z) must be continuous at the �lm boundary, |z| = d/2

2. In addition, we assume no sheet currents so br (r, z) must also be continuous at

the �lm boundary

3. As z →∞, B (r, z)→ B̄ẑ

4. No �ux passes through the sides of the circular cell so br (R, z) = 0

5. It is a source free region so ∇2B = 0

From these conditions we can conclude that for a �xed z-position Bz (r, z) is maximal

at r = 0, and for any z that br (0, z) = 0. So in the space external to the �lm we have

br (r, z) =
∑
m=1

cmJ1 (lmr) exp

(
−lm

(
z − d

2

))
(193)

bz (r, z) =
∑
m=1

cmJ0 (lmr) exp

(
−lm

(
z − d

2

))
(194)

lm ≡ α1n/R (195)

with Bz (r, z) = B̄ + bz (r, z). Using the Bessel functions in this coordinate system
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allows an analytic integral for the stray �eld energy

1

d
FStray =

2R

d

∑
m=1

c2
m

α1m

J2
0 (α1m) . (196)

However the unknown cm coe�cients must be determined from a numerical inte-

gral based on matching Bz across the �lm boundary:

cm =

[
R2

2
[J0 (α1m)]2

]−1 ˆ R

0

bz

(
r,
d

2

)
J0

(
α1m

r

R

)
rdr . (197)

With this scheme we are successful for the singly quantized vortices - success being

de�ned as convergent solutions that are physically reasonable and match FLL calcu-

lations for B̄ that is not too low (regions where the FLL and CC are both applicable).

However, with doubly quantized vortices in the �lm CC we did not succeed. The iter-

ations do converge, but they consistently converge on a non-physical result. For any

combination of κ, B̄ , number of coe�cients, etc. we get results that are characterized

by a local minimum (a dip) in the �lm for Bz (r, z) at r = 0, see Fig. 28.

In our implementation of the CC in �lms we use the same code for singles and

doubles with the appropriate substitution for bz,n (r) and br,n (r). The �lm implemen-

tation uses the same code from the bulk case for the radial dependency and in bulk

we do not see the �dip� for doubles. At this point it is still an open problem and it

appears that it is an error in our algorithm and not in its implementation.

127



0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
B

z(r
,0

)

r

Figure 28: Film Circular Cell

Results for circular cell in �lm with parameters: κ = 0.5, b = 0.1, d = 3. We plot
Bz (r) at the midplane, z = 0, for a singly quantized vortex (solid line) with a
circular cell radius R = 8.9, and a doubly quantized vortex (dashed line). At r = 0
the double shows the local minimum, or �dip�, that is characteristic of our unphysical
results for doubly quantized vortices in �lms using the circular cell method.
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Figure 29: Doubles Bz for κ = 0.5

Bz for a bulk sample with p = 2, κ = 0.5 and B̄/µ0Hc2 = 0.3.
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Figure 30: Bzfor κ = 0.5

Bz (x, y) for a bulk sample with κ = 0.5, B̄/µ0Hc2 = 0.3 and a triangular lattice.
Singles are shown in the upper plot with Bz (0) = 0.80, doubles in the lower plot
with Bz (0) = 0.78. The vortex spacing for singles is x1 = 9.8.
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Figure 31: ω for κ = 0.5, Singles

ω (x, y) for a bulk sample with κ = 0.5, B̄/µ0Hc2 = 0.3 and a triangular lattice of
singly quantized vortices. The underlying contours are drawn at 0.1 intervals
starting from 0.
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Figure 32: ω for κ = 0.5, Doubles

Same as for Fig. 31 but for a lattice of doubly quantized vortices.
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