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Abstract

An Integrated Retrieval Framework for Multiple Polarization, Multiple

Frequency Radar Networks

Radar networks form the backbone of severe weather and remote sensing in throughout

most of the world. These networks provide diverse measurements of weather phenome-

non, but ultimately are measuring indirect parameters rather than detecting the physics of

the situation. One of the long standing goals of weather remote sensing is to relate the

measurements from the various instruments to the physics that give rise to the measure-

ments. Weather radar networks give both a better spatial coverage than single radars, as

well as providing multiple looks at the environment. Newly developed radar networks have

started to incorporate multiple frequencies and multiple polarizations to take advantage

of attributes of different radar frequencies. Raindrops occupy different scattering regimes

based on the frequency of the radar being used. Based on this, multiple radars at differ-

ent wavelengths provide unique information about the microphysical characteristics of the

atmosphere. Nonetheless, very little work has been conducted on fusing multiple radar

measurements at heterogeneous frequencies to improve microphysical retrievals. This work

presents a forward variational algorithm for multiple radar fusion that retrieves microphysi-

cal parameters from the atmosphere. The single radar case and the multiple radar case will

both be addressed. Ground instrumentation will be used for verification, and the spatial and

temporal variability of precipitation microphysics will be discussed.
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CHAPTER 1

Introduction

“What you learn from others you can use to follow.

What you learn for yourself you can use to lead.”

— Richard Hamming, The Art of Doing Science and Engineering:

Learning to Learn

1.1. Motivation and Background

Weather radars are one of the best and most ubiquitous tools we currently have for

predicting weather across the globe. They have been deployed in many different forms to

address both operational and research interests for many different purposes. Most common

to the atmospheric science community are ground based radars that are used for operational

forecasting of the weather in nations around the world. These radars provide a real time

view of incoming weather over a large geographic area. The largest deployment of these

radars is the NEXRAD network of WSR-88D S-Band radars in the United States, although

smaller deployments exist for both operational and research purposes in most industrialized

nations. These radars form the backbone of the storm early warning and forecasting system

in the US. They are the primary way to detect tornadoes and other severe weather events.

In addition, they feed into most numerical weather prediction models allowing them the

ability to forecast at long temporal ranges. There has recently been a large expansion of the

capabilities of the NEXRAD system by converting them to dual-polarization radars allowing

for greatly increased capabilities in every aspect of operation.

In addition to the NEXRAD systems, many universities, government organizations, and

research labs deploy research radars used to conduct basic research on the atmosphere.

These radars are most commonly ground based, although many airborne systems exist and
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are actively fielded. These systems, based on the diversity of uses, tend to be more flexible.

This flexibility causes them to be the initial test ground for more advanced features before

they are deployed into larger operational networks. One of the larger research networks of

these instruments is owned by the Atmospheric Radiation Measurement Program (ARM)

funded by the Department of Energy (DOE). They operate multiple fixed sites around the

world, as well as multiple mobile instrumentation facilities, with very dense instrumentation

allowing for both short and long term field campaigns that attempt to answer basic science

questions. Many other deployments of research radars exist both domestically and abroad

however. This includes the numerous field campaigns conducted every year by the NASA

Global Precipitation Measurement (GPM) Ground Validation (GV) Program, such as the

Midlatitude Continental Convective Clouds Experiment (MC3E) and the Iowa Flood Studies

(IFLoodS) campaign.

There are also a large number of spaceborne radars that provide us with a global pic-

ture of weather. The most popular system was the Tropical Rainfall Measurement Mission

(TRMM), which has since been replaced with the Global Precipitation Measurement Mission,

a joint mission between NASA and the Japanese space agency (JAXA). This constellation

of satellites aim to track the global water budget. It contains two radars and multiple ra-

diometers on the core satellite and additional instrumentation on constellation satellites and

is capable of tracking the weather over the majority of the globe.

The longstanding goal of any remote sensing field is to link a physical phenomenon with

instrument measurements taken of that phenomenon. In the field of weather radar, the

ultimate goal is to use radar measured parameters to retrieve the microphysical properties

of the atmosphere. The microphysical properties of the atmosphere include many different

parameters. Among these are the temperature of the atmosphere and particles it contains.
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The microphysical parameterization of highest importance to us is the drop size distribution

of particles (DSD). This quantity tells us how many particles of each size there are in a volume

of the atmosphere. A related quantity is the drop shape relationship (DSR) of particles which

tells us the approximate shape of the particles as they change sizes. Another parameter of

interest is the species composition of these particles which differentiates between snow, ice,

graupel, rain, and various other sub-species. Estimation of each of these parameters has

spawned it’s own research subfield[3–5].

Microphysical properties of the atmosphere can be incorporated into forecasting and

numerical weather prediction (NWP) models. Any improvements in the microphysical pa-

rameterizations will yield large improvements in NWP which improves the forecasts that are

issued operationally. Estimation of these parameters is very difficult as there does not cur-

rently exist a reliable way to do in-situ measurements that is fielded by any major agency.

The relationships between microphysical parameters and remote sensing instrumentation

outputs are related by complex nonlinear functions, and based upon parameterizations, are

not usually invertible.

Estimating microphysical properties from radar data is not a new idea, and there are a

large number of papers on different algorithms[6–9]. The current most popular algorithms

for estimation of microphysical properties are primarily based upon empirical relationships

between scattering simulations and radar measured data, predominantly utilizing a power

law fit. Unfortunately, empirical models are usually tuned for a particular situation and

as the situation changes, they often give poor performance. The relationships are usually

calculated by using data captured at the ground by a disdrometer, a device capable of mea-

suring the drop size distribution at a small location in space, most often by using an optical

array, and calculating equivalent radar measured parameters based on T-Matrix scattering
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simulations[10]. These models are heavily dependent upon the assumptions that go into the

scattering simulation. To alleviate this, ensemble averages are used, which generalizes the

model allowing them to be used in more situations, but reducing their specificity in any

given situation. In addition, they only account for a spatially localized patch of data which

is not always capable of uniquely representing a microphysical situation. The topic of the

variability of these measurements is a longstanding question of interest to the field.

Even if the empirical models were flawless, the measurement process for radar encounters

many very significant sources of error that vastly degrades the performance of any empirical

algorithm, and indeed often make the measurements completely useless. As the electro-

magnetic waves from the radar propagate through the atmosphere, they encounter several

sources of distortion. These distortions can cause large errors and discrepancies in the mea-

sured parameters which have a very real and direct effect on the microphysical retrieval.

The predominant error source is attenuation. Attenuation is the reduction in the power of

the wave as some of the energy is absorbed by gases and liquids in the atmosphere. This

causes the returned wave to vary as a function of the atmospheric composition of the medium

before it. Heuristic based estimators of the DSD require that the beam has been corrected

for attenuation and any errors in this attenuation correction will cause large errors in the

retrieval of the microphysical properties. There are many other sources of error that we will

address in this work as well, all of which serve to obscure the true underlying microphysical

properties of the atmosphere when measured from a radar.

A relatively new development in the situation is the deployment of multiple networks of

radars operating at varying frequencies (heterogeneous networks) such as the ARM South-

ern Great Plains (SGP) facility in northern Oklahoma. These networks contain radars at

multiple frequencies, often with different scan strategies, strengths, and weaknesses. The
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different wavelengths of these radars cause drops to fall into different scattering regimes. We

can leverage the increased information this provides to improve our microphysical estimates

beyond the normal improvement we get from having multiple independent measurements.

Working with multiple frequencies however brings it’s own sets of challenges as each radar

frequency band, while providing different information, also suffers from differing sets of weak-

nesses. For instance, as the wavelength decreases we get an increased phase response, but

also get a larger amount of phase noise and attenuation.

Nonetheless, correlations between radar measurements and microphysical parameters in

the atmosphere do exist, and based on radar measurements we can infer information about

the atmosphere. In this work, we will discuss some of the information that we can extract

from radar measurements.

1.2. Problem Statement

Given the microphysical properties of a parcel of the atmosphere, we can calculate the

value of the measurements that a given radar would see. This is accomplished with the use

of scattering simulations and systems theory. Unfortunately, the inverse direction is not so

easy. Given a set of radar measurements, the retrieval of the microphysical properties of

the atmosphere is an ill-posed, under-constrained problem. We have essentially three mostly

independent parameters that are measured, and in return need to derive a non-parametric

probability distribution function of drop sizes, a drop shape relation, and a hydrometeor type

identification. To simplify the problem, we usually parameterize the drop size distribution

with a normalized gamma distribution. This reduces the large problem space of drop size

distribution estimation to the estimation of three parameters per range bin.
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Further complicating the retrieval of the microphysical parameterization are several

sources of error that are unavoidable. Along with the measurement error that is present

with any real world measurement, we also suffer from several other more significant errors

including attenuation, ground clutter, and backscatter differential phase, among others. The

most influential of these errors is attenuation. As radar waves propagate through an atmo-

spheric medium, some of the energy is absorbed by both the atmosphere, and precipitation.

The amount of attenuation is dependent both upon the radar wavelength and the precipita-

tion. Any algorithm designed to retrieve the microphysical parameterization needs to be able

to correct attenuation using measurements that are themselves corrupted by attenuation. If

our assumption of drop shape relationship is incorrect, then this problem becomes even more

difficult.

There appears to be some hope when one considers a network of radars operating at

different frequencies, as these provide independent overlapping views of the same precipi-

tation. Each radar provides information along a different path which suffers from different

attenuation sources yielding unique path integrated attenuations. If we assume our error

in estimating attenuation and correcting for it between each radar is independent of other

radars, then by integrating multiple views, we reduce the overall uncertainty about the mea-

surement as a function of the number of radars used. If the radars differ in frequency from

one another, we get additional information about the size distribution due to the transition

between Rayleigh and Mie scattering being frequency dependent, as well as the direct de-

pendency of phase shift on drop size relative to wavelength. This causes the ratio of returns

from different frequencies to provide us with estimates of some properties of the environment

such as liquid water content. In addition, different frequencies of radar benefit from differ-

ent unique characteristics. Lower frequency radars suffer much less attenuation than their
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shorter wavelength cousins. This makes them a much better estimator of returned power.

Higher frequency radars have a much more pronounced phase response in the presence of

precipitation making them a much better estimator of rainfall rates especially in light rain

scenarios. By combining multiple measurements at multiple frequencies we can attempt to

take advantage of the best characteristics of each radar. The samples from different radars

lay on incongruous spherical grids however, and so must be interpolated onto a common grid

before comparison. This provides yet another source of error that must be factored into the

retrieval. How to incorporate these multiple measurements has not been adequately worked

out in the literature and so the ideas in this proposal represent a major step forward in the

solution to that problem.

1.3. Research Objectives

The main objective of this research is to improve the retrieval of drop size distributions by

using multiple frequency heterogeneous dual-polarization radar networks. The development

of an algorithm capable of this has to solve several sub-problems. Therefore we can break

this goal up into several specific research objectives. These are:

(1) Improve current dual polarization single radar retrievals by using a variational scat-

tering based approach capable of correcting attenuation and retrieving the drop size

distribution, while ensuring physical self consistency.

(2) Develop a network microphysical retrieval algorithm that incorporates multiple fre-

quencies and polarizations, capable of working with non time-aligned, non-spacially

co-located radars.

(3) Incorporate non-radar instruments such as disdrometers into the retrieval to improve

estimates of the microphysical parameters as well as providing a verification source.
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(4) Characterize the spatial variability of rain microphysics for verification.

1.4. Overview of Dissertation

This document will begin with a discussion of some of the necessary background and

prior work in Chapter 2. We will then move on to the development of a single radar retrieval

algorithm that operates at multiple frequencies and is capable of retrieving the drop size

distribution in Chapter 3. Next, in Chapter 4 we will talk about our strategy for network

retrievals and detail a framework for multi-frequency radar network retrievals at multiple

frequencies. Then we will use our algorithm and ground disdrometers to characterize the

spatial and temporal variability of microphysics in Chapter 5. This will help with verification

and fundamental estimation of these parameters. Finally we will wrap up the discussion of

the retrievals and examine future directions this work should take. Following the main body

of the text, we will address some of the implementation and more practical issues such as

quality control and data selection in Appendix A, as well as giving technical descriptions of

the radars we will work with in this study.

8



CHAPTER 2

Prior Work and Background

What we usually consider as impossible are simply engineering

problems... there’s no law of physics preventing them.

— Michio Kaku

The algorithms covered in this dissertation bring together a large number of related but

independent theories from different fields. Before examining the multiple radar retrieval

algorithm, we need to understand what constitutes the microphysics of precipitation, how

the concepts work, and ultimately how microphysical retrievals operate, as well as why

multiple radars are beneficial to the solution. To develop this algorithm, we first address

how we go from a microphysical parameterization to the radar measured moments and why

the reverse process is ill-posed. Next is coverage of Bayesian multi-sensor fusion theory

to set the stage for the network paradigm. Some of the more practical applications of

microphysical estimation such as rain rate estimation will be covered, including algorithms

for microphysical estimation from ground instrumentation. We will briefly step through

some of the theory of sensor fusion. Then we will move on to addressing issues that arise

when it comes to using and comparing ground direct measurement instrumentation such as

disdrometers with remote sensing instruments such as radar. Finally, we conclude by looking

at some of the relevant work in the field, followed by a discussion as to the limitations of the

current research to set the stage for the development of this body of work.

2.1. Microphysical Explanation for Hydrometeor Formation

While there is a lot that the academic community still does not understand about some of

the details of formation of precipitation in the atmosphere, there is a fairly good understand-

ing of the fundamentals. There are different mechanisms for formation of hydrometeors, but
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the most important mechanism is the lifting of air. Start with a volume of air, and for

the sake of this discussion, assume this volume of air does not exchange energy with it’s

surroundings, that is, the behavior is adiabatic. Now take this parcel of air, and make it

warmer than the air that surrounds it. The ideal gas law is given as

(1) PV = nRT (Ideal Gas Law)

where P is the pressure of the air mass, V is it’s volume, n is the number of moles of the

constituent gases, R is the universal gas constant, and T is the temperature of the gas. As

we the temperature of the gas increases, the volume will increase proportionately, causing a

decrease in density, and thus an increase in buoyancy. This will cause the gas to rise. As

the gas rises, the temperature of the surrounding air decreases(up until the tropopause), as

does the pressure. This causes the parcel to expand even more to equalize the pressure. As

the parcel continues to rise, it’s temperature decreases. Up until now we have assumed all

of the moisture was in the form of water vapor, however by using the Clausius-Clapeyron

equation [11, 12]

(2)
des
dT

=
Lv(T )es
RvT 2

(Clausius-Clapeyron)

where es is the saturation vapor pressure, T is the temperature, Lv is the latent heat of

evaporation, and Rv is the water vapor gas constant, the transition from vapor to liquid water

can start to be examined. This equation gives the saturation vapor pressure as a function

of T . The relationship between saturation vapor pressure and temperature is exponential.
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Therefore as T drops, the saturation vapor pressure decreases significantly. So as the cloud

cools off, the relative humidity of the parcel increases exponentially. At some point, the

relative humidity will be close to 100%. When this happens, if there are cloud condensation

nuclei in the atmosphere, droplets will start to form. If there are not CCN, then this process

will wait until it is closer to 108% relative humidity. The difference of these two numbers is

governed by the Kelvin equation[13]

(3) ln
p

p0

=
2γVm
rRT

(Kelvin’s equation)

where p is the actual vapor pressure, p0 is the saturated vapor pressure, γ is the surface

tension, Vm is the molar volume of the liquid, R is the universal gas constant, r is the radius

of the droplet, and T is the temperature.

Now that there is liquid cloud droplets starting to form, what happens next? This is

where things start to diverge based upon conditions.

The drops eventually reach a size where upward air motion cannot hold them aloft. At

this point these drops start to fall. On the way down, they hit other drops. These collisions

can cause the two drops to merge(whereby a bigger drop accumulates smaller drops on it’s

fall) or on occasion can cause drops to break apart. The drops are held together into a

spherical shape at small sizes by the surface tension of water. As the drop grows, it starts to

change shape, becoming more oblate due to the aerodynamic drag upon the surface of the

drop. If the drop grows past a certain point, usually about 8 mm, the drop starts to have a

chance of being torn apart by the aerodynamic forces on the drop. When the drop breaks

apart, it yields several smaller drops of varying sizes. Additionally, if the air is dry, drops
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can start to evaporate reducing in size. If the drops all fully evaporate before hitting the

ground, the result will be Virga clouds.

The key takeaway point from this very brief overview of thermodynamics and cloud

microphysics is that these processes give us a wide variety of drop sizes. Instead of drops

asymptotically approaching a single size, there is a behavior where drops grow, and then

subsequently shatter into smaller drops. The upward motion of air as well tends to cause

sorting of drops which can cause the size distribution of raindrops to be more varied.

2.2. Microphysical Parameterizations

The number of free parameters needed to fully represent the physics of precipitation

makes any truly comprehensive approach intractable. The research community has turned

to bulk microphysical models to rectify this. These models reduce the behavior of a parcel

of atmosphere into a lower dimensional representation of the mean tendencies of the parcel.

When dealing with the distribution of the sizes of raindrops in particular, these models reduce

the expression for the number of drops of each size in a unit area into a three parameter

distribution. We also need to know how these bulk models translate to the measurements

present in radar data. We can use T-Matrix scattering theory [14] to simulate what a radar

would see when observing an arbitrary parcel of the atmosphere. However, to calculate dual

polarization radar measured parameters we also need to know how each drop deforms as

it falls due to static tension and aerodynamic drag, as well as it’s temperature. In actual

practice however, assumptions about shape and temperature are enforced. The goal of our

microphysical retrieval will be to retrieve the drop size distribution parameters.

2.2.1. Drop Size Distribution. The Drop Size Distribution (DSD) is a quasi-distribution,

In that it is unnormalized with respect to total energy, that represents the number of liquid
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drops as a function of drop size. A comparable concept exists that encompasses non-liquid

drops called a particle size distribution(PSD). In this work we will focus on liquid drops and

so we will only discuss the drop size distribution. Drop size distributions are most commonly

represented with a parametric distribution for both analytical, and empirical reasons. One of

the first popular parameterizations was as an exponential distribution [15]. The exponential

distribution is given by

(4) N(D) = N0 exp (ΛD) mm−1m−3

where Λ is the shape parameter, while N0 is the intercept parameter. This distribution

is most useful when the measurement period is sufficiently long (30 minutes or longer), or

the measurement area is sufficiently large. When the measurement period is smaller, the

exponential distribution tends towards a poor fit.

The most common parametrization of the drop size distribution for instantaneous mea-

surements is the gamma distribution developed by Ulbrich [16]. This three parameter model

is flexible and can accommodate a wide variety of environments, leading to it’s popularity.

The following equation gives the number of drops having a equivalent volume diameter D

per m−3 of the atmosphere.

(5) N(D;N0,Λ, µ) = N0D
µ exp(−ΛD) for 0 < D ≤ Dmax

The parameters of this distribution have units that are not particularly physically in-

tuitive and so an alternative normalized version of this model was created to more closely
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relate the parameters to physical measurements [17]. This normalized gamma distribution

is given as

(6) N(D;NW , D0, µ) = Nwf(µ)

(
D

D0

)µ
exp

(
−(3.67 + µ)(

D

D0

)

)

with

(7) f(µ) =
6

3.674

(3.67 + µ)(µ+4)

Γ(µ+ 4)

where NW is the intercept parameter of an equivalent exponential distribution with the

same water content and median drop diameter and is related to N0 by

(8) N0 = Nwf(µ)D−µ0 ; mm−1−µm−3

While D0 is the median drop diameter that satisfies

(9)
π

6

∫ D0

0

D3N(D)dD =
π

6

∫ Dmax

D0

D3N(D)dD

D0 gives the diameter at which half of the water is contained in drops less than diameter

D0 and half of the water is contained in drops larger than D0. µ is a shape parameter which

changes the form of the distribution. Examples of gamma distributions are shown in Figure

2.1 for various values of D0 and µ.

Shown in Figure 2.2 are example exponential distributions with the same liquid water

content as in Figure 2.1. The lines correspond to the exponential version of the lines in the
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Figure 2.1. Shown is example drop size distributions(DSD’s) with differing
median drop diameter(D0), and shape(µ) parameters. For all curves, the nor-
malized intercept parameter (Nw) is fixed to 1000. This shows that while both
D0 and µ change the shape of the distribution, µ has a much larger effect on
the amount of the distribution contained in the tails.

previous figure. These plots show two possible choices for representing the parameterization

of the distribution of raindrops. Given the same total volume of water in the air, there are

many physically plausible ways of distributing it into drop sizes.
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Figure 2.2. Example exponential distribution DSDs. Each line in this image
corresponds the exponential distribution with the same liquid water content as
in the previous figure. The shape parameter Λ is calculated so as to preserve
the liquid water content.

The instrument used to measure the drop size distribution of rainfall is called a disdrom-

eter. It proves estimates of DSD’s, and occasionally DSR’s, as a function of time. These

devices use a variety of methods, most commonly either laser or camera based, to count the

number of drops of each size, and measure their vertical velocity. Shown in Figure 2.3 is the

drop size distribution measured at a disdrometer over the course of a day taken in five minute
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Figure 2.3. Drop Size Distribution measurements from a disdrometer using
a Parsivel disdrometer from the IFLoodS Field campaign. The plot displays
24 hours of data, captured in five minute increments. The periods between
five and thirteen hours are the most active with the largest drops recorded
existing around the 4 mm mark.

intervals. From hours five to fifteen, large variations in the average drop size can be seen.

These measurements are taken at the ground and unfortunately not directly comparable to

radar. They do however give a good idea about the microphysical conditions immediately

above them. The data from disdrometers can be used to calculate various microphysical

parameterizations, and can contribute to restricting the free parameters for radar retrievals.

We can examine a shorter time instance to see the form of the DSD as shown in Figure

2.4. As mentioned above, the distribution more closely resembles the form of a gamma

distribution than that of an exponential distribution. This is expected due to the short five

minute time interval over which it was taken. If this sample was taken over a longer time

period (several hours for instance), then the DSD would more closely resemble an exponential

distribution.
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Figure 2.4. Single time estimate of a DSD from a disdrometer based upon
five minutes of sampling time. The distribution does appear ‘gamma-like’,
with most drops existing below the 1.5 mm mark. Based upon the absence of
large drops, it can be inferred the rain-type is stratiform and would result in
low reflectivities. The absence of large drops will cause a small Z + dr value.

2.2.2. Drop Shape Relationship. The shape of raindrops is governed by the con-

trasting forces of hydrostatic tension and the upward force exerted by the displacement of

air caused by the falling motion of the drop. When drops are small they encounter very

little air resistance and the hydrostatic tension dominates causing drops to be spherical. As

the drops grow in size, they pick up more speed and encounter a larger aerodynamic force.

This causes the drops to deform and become oblate spheroids. When the drops grow past a

certain point, usually reaching a maximum somewhere below 9 mm, the aerodynamic forces

dominate and cause the drop to break up into smaller drops. This deformation of the drops

is the primary motivation behind the development of dual polarization weather radar. The

increased axis ratio causes increased power returns in the horizontal direction. Measuring

the polarimetric variables allows algorithmsto estimate the average axis ratio of the drops

which gives a sense of the size of the drops. Combining this with an estimate of the number
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Figure 2.5. Drop shapes as diameter increases causing a “hamburger bun”
shape. The deformation is caused by the increase in aerodynamic drag on the
surface of the drop from passing through the air. As can be seen, as the drop
increases in size, the effect gets more pronounced. From [1]

of drops gives important parameters such as rain rate and liquid water content. Figure 2.5

shows an example of raindrop shapes as size increases.

The drop shape relationship (DSR) gives the ratio of the semi-major and semi-minor axes

of the raindrop as a function of drop size. Several different models exist and are usually based

upon empirical fits to data gathered in wind tunnels or controlled environments. The choice

of DSR can have a large influence on the results of any microphysical retrieval algorithm.

By changing the variation in the ratio of the major to the minor axis, the DSR changes how

the polarimetric variables respond to increases in drop size.

This work will primarily utilize three different models. The first is due to Pruppacher

and Beard [4]. It is given as

(10) r = 1.03− 0.062Deq
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This model will be referred to with the (pb) denotation. Following the work by Prup-

pacher and Beard, wind tunnel tests suggested another model attributable to Beard and

Chuang [18]

(11) r = 1.0048 + 5.7× 10−4Deq − 2.628 ∗ ×10−2D2
eq + 3.682× 10−3D3

eq − 1.677× 10−4D4
eq

which will be referred to as model (bc). More recently, Thurai and Bringi [19] used a

hose located on a bridge 80 m above a video disdrometer to determine the drop axis ratio

empirically. This model, denoted as (tb) is given as

(12)
b

a
=


1 : Deq < 0.7

−8.5× 10−3D4
eq − 0.1317D3

eq + 0.4698D2
eq − 0.5165Deq + 1.173 : 0.7 < Deq < 1.5

−4.095× 10−5D4
eq + 7.66× 10−4D3

eq − 3.99× 10−3D2
eq − 0.0625Deq + 1.065 : Deq > 1.5

Figure 2.6 shows the axis ratios for each of these models as a function of drop size. At

small drop sizes the Thurai and Bringi(tb) and Beard and Chuang(bc) models result in more

spherical drops, while the (bc) model predicts slightly more oblate drops for moderate to

large drop sizes. These differences manifest themselves in the radar measured parameters,

having the largest effect on the polarimetric measurements.

2.3. Moment Calculation

Given a drop size distribution and a drop shape relationship one can derive the radar

measured parameters for a given radar. The fields of interest will be radar reflectivity

at horizontal polarization(Zh), the differential reflectivity(Zdr) and differential phase(Φdp).

Reflectivity is defined to be
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Figure 2.6. Drop shape relationship axis ratios. At very large drop sizes, all
three relationships converge. The primary difference will be in how the ratio
is handled in the 0-4 mm range. It should be noted that the linear equation
in the Pruppacher and Beard model causes incorrect results below 0.5 mm.

(13) ζh =
λ4

π5|Kp|2

∫
D

|Shh(r,D)|2N(D)dD

Where Shh(r,D) is the backscattering cross section at horizontal polarization for a drop

of diameter D, located at range r, Kp is the dielectric constant of water, and λ is the radar

wavelength. Similarly, differential reflectivity is given by
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(14) ζdr =

∫
D
|Shh(r,D)|2N(D)dD∫

D
|Svv(r,D)|2N(D)dD

(7.9a)

where Svv(r,D) is the backscattering cross section at vertical polarization. Differential

reflectivity is then the ratio of the reflectivities at horizontal and vertical polarizations. It

depends directly upon the drop axis ratio and therefore upon the drop size, as these two

parameters are related through the drop shape relationship. One can also notice that Zdr is

independent of the number of drops.

The final radar measured parameter is the differential phase Φdp. This gives the cumu-

lative change in waveform phase between horizontal and vertical as the pulse propagates

through the atmospheric medium. Differential phase has the rather desirable attribute of

being immune to attenuation, as well as a good measure of attenuation. What the radar

measures however is not directly the differential phase but rather Ψdp which takes into ac-

count the forward propagation phase change, as well the backscatter differential phase δco.

They are related by

(15) Ψdp(r) = Φdp(r) + δco(r)

where

(16) Φdp(r) =

∫ r

0

Kdp(r)dr + δsys

Kdp denotes the specific differential phase and is given as
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(17) Kdp =
2π

k0

Re

∫
D

N(D)
[
ĥ · ~f(r,D)− v̂ · ~f(r,D)

]
dD

where δsys is a constant term representing the built in system phase, and f̂ is the forward

scattering radar cross section. This is usually an adjustable parameter(or can be compen-

sated for) and so from here on out will be assumed to be zero. Specific differential phase is

a spatially localized quantity. It can be hard to estimate however due to the co-mingling of

error sources and path integration. One of the most important differences with Kdp is that

it is a forward scattering quantity. The immunity to attenuation of the parameter allows it’s

use in correction of path integrated attenuation.

Shown in Figure 2.7 is the equivalent radar measured parameters calculated for the

drop size distribution shown previously based upon these equations. In the first panel, the

entire day is shown. In the remaining three panels, only the time periods of the day with

significant precipitation are shown. Additionally, in the final panel the rain rate for this

dataset is displayed. The data has a large amount of variability that is commonly seen in

data sampled from real sources.

In the above relationships, the radar parameters were written as a function of their back

and forward scattering cross sections S and f . We can evaluate these parameters numerically

based on the T-Matrix solution, also called the extended boundary condition method.

There are three fundamental scattering regimes. These are the Rayleigh, Mie, and Optical

regimes, each of which exhibits different behavior with respect to electromagnetic radiation.

We can normalize the size of a particle with respect to the wavelength of the radiation with

the equation
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Figure 2.7. Results of T-Matrix Scattering for the DSD shown in Figure 2.3.
Shown in the top two panels are the two reflectivity measurements. Shown
in the bottom two panels are the specific differential attenuation, and the
estimated rain rate.

α =
πD

λ

Where α is our dimensionless size parameter. We can split the different scattering regimes

into three different cases.
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α� 1 (Rayleigh Scattering)(18)

α ≈ 1 Mie Scattering(19)

α� 1 Optical Scattering(20)

In each of these regions, the behavior of the particle to electromagnetic waves is different.

For S-Band radars, the majority of particles will fall into the Rayleigh scattering regime. As

we get to C-band and higher, a larger fraction of the particles will be in the Mie region.

In the Rayleigh regime the backscattered cross section increases roughly as D6, that is

(21) |Shh|2≈ D6
eq

This is the region most lower frequency radars operate in. One must be careful when

using a Rayleigh assumption. The assumption that reflectivity scales as D6 is used implicitly

in much of the radar literature (Oftentimes reflectivity is even defined to be in terms of D6).

While this is correct at lower frequencies, at higher frequencies it can cause a significant

portion of mathematical assumptions utilized to be incorrect.

In the Mie region, the electromagnetic wave wraps around the particle and has a reflec-

tion in the drop causing a resonance region. These reflections cause constructive/destructive

interference. Instead of having a scaling of D6
eq, we get an oscillating behavior. These oscilla-

tions dampen as the particle size approaches the optical region. The Mie region represents a

significant difficulty in retrievals as it causes the relationship between radar measured param-

eters and drop size to no longer be invertible as the mapping is no longer one-to-one. Also
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the Mie region can cause ’weird’ behavior in polarimetric parameters that differ from long

held assumptions from using radars at S-Band. For instance, it is possible to get negative

specific differential phase values at higher frequencies. We will address these issues more in

Chapter 3 and Chapter 5.

2.4. Rain Rate Estimation

An important real parameter derived from weather radar observations with immediate

practical importance is the instantaneous rain rate over a given area. Rain rate is typically

measured in mm/hr and has huge implications for flooding, hydrology, droughts and severe

weather forecasting. If the drop size distribution in a volume of the atmosphere is known,

the instantaneous rain rate due to that volume can be calculated as

(22) R = 0.6π10−3

∫
D

v(D)D3N(D)dD; mm h−1

where v(d) is the downward velocity of a drop with diameterD. We usually model velocity

with a power law, and in the absence of vertical updrafts we assume terminal velocity can

be approximated by the formula

(23) v(D) = αD0.67

where α varies from 3.6 to 4.2 [1]. If we insert this back into our equation for rain rate

we get the relationship
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(24) R = αr

∫
D

D(3.67)N(D)dD;mmh−1

Which means that for a homogeneous grouping of drops of diameter D the rain rate will

scale as roughly D3.67. If we wish to estimate rain rate from the radar measured parameters

there are a few options. We can look at an approximation of the relationships between drop

size and radar measured parameters to get a feeling for which is most likely to make the best

estimate.

Zh ≈ nD6(25)

Kdp ≈ nD4.2(26)

If the precipitation in the atmosphere was composed entirely of homogeneous drop sizes

at a single time, any of these algorithms would be sufficient. However, due to variability in

the drop sizes, reflectivity will exhibit the most variability in the rainfall rate based upon

drop size distribution uncertainty as it has the largest exponent scaling. This suggests that

the dual polarimetric variables make much better estimators of rain rate, and indeed the

literature supports this view [20–22] .

Most commonly, rainfall is estimated using a power fit to empirical data based upon the

dual polarimetric variables. The two most popular dual polarimetric estimators are of the

form
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R(Kdp) = αKβ
dp; α ≈ 129f−β, β ≈ 0.85(27)

R(Zh, Zdr) = c1ζ
β
h ζ

κ
dr(28)

where ζh and ζdr are the reflectivity and differential reflectivity in linear units. These

relationships vary based upon region, time of year, etc. However disdrometers can be used to

measure the drop size distribution and simulate the radar data to empirically fit these rela-

tionships with some level of accuracy. This temporal and spatial/climatalogical localization

improves the performance of these rain rate estimators for a given time and region.

2.5. Bayesian Multi Sensor Fusion

Given multiple measurements of some underlying distribution, Bayesian estimation the-

ory provides a very natural way to fuse the different measurements. In this section we will

briefly cover the Bayesian methodology for data fusion.

Given a set of measurements Y = Y0, · · · , Y1 of some underlying parameter X then we

wish to form an estimate of the probability distribution of X based upon the measured Y ’s.

We can write out Bayes rule

(29) P (X|Y1, Y2, · · · , YK) =
P (Y1, · · · , YK |X)P (X)

P (Y1, · · · , YK)

where P (X) represents our prior, the belief before the measurements about the distri-

bution of the variable X and P (X|Y ) is the posterior, or the distribution of X after having

accounted for the measurement from Y . In this case P (Y ) only serves to normalize the
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distribution and so we will discard it. P (Y |X) represents the probability of us measuring Y

given the underlying variable X. Based on this we can write

(30) P (X|Y1, · · · , YK) ∝ P (X)
∏

P (Yk|X)P (X)

This gives us an equation to update our belief of our posterior value based upon new

measured values. We will use this to combine the measurements from multiple radars into one

estimate with associated density function. This theory is very simple, but very powerful. One

large assumption we are forced to make however is the prior distribution. This codifies pre-

experimental beliefs about what the correct answer should be. While Bayesian frameworks

can update and work beyond this, a common criticism of Bayesian methods is improper

choice of priors. Shown in Figure 2.8 is an example layout for a radar network.

2.6. Previous work on Microphysical Retrievals

There has been significant interest in microphysical retrievals over the decades, and ac-

cordingly there has been a large number of proposed algorithms. There are several different

taxonomies available for these algorithms and we will focus primarily on two dividing cri-

terion: whether the algorithm takes advantage of polarization, and whether the retrieval

uses a single or multiple radars. We start by dividing retrievals into single or multiple radar

retrievals, and then in each section focus on whether they take advantage of polarization or

not. This is just one choice of taxonomies, and there are many other ways of categorizing

retrievals.

2.6.1. Single Radar Retrievals. The vast majority of microphysical retrievals have

focused on single radar retrievals. Much of the early work in this area focused more on
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Figure 2.8. Conceptual layout of Multi-Frequency Radar Network. Each
radar has a different field of view of the storm due to their different locations,
while the different frequencies from each radar provide additional information
about the size distribution of the particles.

attenuation correction than the microphysics estimation. These two topics tend to be inter-

twined, as estimation of attenuation is required for the majority of microphysics estimation

schemes, and an accurate microphysics estimation helps to refine attenuation estimates. Un-

fortunately, the reverse is also true. As attenuation contaminates measurements, it makes

microphysical estimates more difficult, and to estimate the attenuation to fix this, a good

microphysical estimate is needed.

Some of the first work of note in the area was done in 1954 by Hitschfield and Borden [23].

In their seminal paper they present a multiple pass single polarization algorithm to estimate

attenuation. The algorithm briefly works as follows. The rain rate along a ray is estimated
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based upon measured reflectivity. They then relate attenuation to the rain rate and use their

rain rate estimate to correct the attenuation. Next they use this new reflectivity to estimate

rain rate, and thus attenuation, and re-correct reflectivity. This continues until the algorithm

stabilizes. Unfortunately, the algorithm only works for small amounts of attenuation, fails

at higher frequencies, and does not utilize polarimetric information to get a better rain

rate estimation. In addition, while attenuation and liquid water content are indeed closely

related, attenuation and rain rate do not share such a close linkage at higher frequencies.

More recently work by Gorgucci et al. [24] developed a heuristic estimation methodology

based upon self consistency from scattering simulations between the DSD parameters. This

algorithm estimates two of the DSD parameters, D0 and Nw, based upon the values of

Zh, Zdr, and Kdp. It is a three step algorithm. In the first step, for each range bin, an

effective slope of the drop shape relationship β is estimated. This is then used in a power

law formulation for D0 and Nw. Based upon these parameters, attenuation is then estimated

and corrected in all forward bins. Alternatively, an attenuation correction algorithm can be

applied to correct the data, and then the algorithm is used to estimate the parameters after

correction. The performance starts to suffer if the assumed µ value is wrong, or a different

drop shape relationship is present than the one assumed in the paper. A way around the

shape relationship constraint is to scatter for a larger number of shape relationships and µ

values. This has the upside of incorporating the variability caused by multiple different shape

relationships. The downside is it increases the average error by skewing the distribution away

from what would be a correct shape relationship if it were known.

Another algorithm by Le and Chandrasekar uses an iterative dual frequency dual polar-

ization approach for estimating the drop size distribution [6]. It utilizes a two pass approach,

where in the first pass it starts at the end of a ray and estimates the drop size distribution
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based upon the dual frequency ratio between the two frequencies and the dual polarization

parameters in the beams. This iterates backward from the end of the ray to the first range

bin calculating the DSD and attenuation at each bin. Then the forward pass calculates the

measured radar parameters based upon the drop size distribution. Cost functions repre-

senting the different between the measured and estimated retrievals are then minimized to

determine the stopping point of the algorithm. While this algorithm has better performance

than many others in literature, it is unsuitable for our purposes based upon a few points.

First, it heavily relies upon having colocated dual frequency, beam matched radars. This

allows it to work in spite of small calibration biases. We however need an algorithm designed

to work with single frequency radars, and radars that are not co-located or beam aligned.

Although this algorithm does have a single frequency fall-back option, we feel an algorithm

designed with the constraints of a single frequency should have the capability to perform

better.

Another important algorithm is due to Lim and Chandrasekar. It is an attenuation cor-

rection algorithm based upon the Z-PHI method [25]. It uses dual polarization parameters,

to estimate attenuation, and constraints the attenuation based upon the total change in

Φdp. It shows very good performance at attenuation correction, but does not attempt to do

any sort of microphysical retrieval. This leaves the possibility of separating the two stages,

but estimating the error structure of two uncoupled algorithms would be significantly more

difficult.

Finally, a newer algorithm due to Yoshikawa et. al. [26] uses a forward variational process

to constrain the choice of possible drop size distributions. This algorithm was devised for

X-Band radars, although it is not necessarily limited to any particular frequency. It has

multiple different phases to address source of different errors. Unfortunately, the algorithm
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was never tested on real radar data and so remains a theoretical algorithm. This is the base

algorithm we will start with here to extend, and so we will delay extended discussion of this

algorithm until Chapter 3.

Many additional algorithms exist for the calculation and retrieval of rain-rate, but as our

interest is in the more fundamental DSD parameters we will not address those here.

Most retrieval algorithms that attempt to estimate microphysical parameters here suffer

from inability to estimate µ, preferring to focus more on Nw and D0. This approach has

merit as µ has less physical meaning than the other parameters, and mostly focuses to shape

the distribution. Additionally, there is a good argument to be made for µ being purely a

mathematical artifact and not having any physical meaning.

2.6.2. Network Radar Retrievals. While a significant amount of work has gone

into microphysical retrievals for a single radar, very little work has been done to leverage the

mutual information from a network of radars operating at multiple frequencies. Most of the

research on networks of radars primarily focuses on “mosaicing” the radar data. This means

using same frequency radars and attempting to combine the radar measurements to get a

combination of the radar measured fields that better represent the atmosphere by canceling

things out like beam blockage. The most commonly used mosaic product is the NEXRAD

national mosaic which is a combination of all of the WSR-88D radars used in the CONUS

[27–29]. One large flaw with the mosaic method is it’s inability to be used with multi-

frequency data. As different frequencies return different measurements for the same drop

size distribution, any attempt to combine multi-frequencies is inherently flawed. The single

frequency constraint utilizes the assumption that the radars are sampling an underlying field

with varying sources of error, but that fundamentally they are all sampling the same field.

At multiple frequencies this assumption breaks down. For instance, in the Mie region, an
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X-Band radar will given a different Zdr value than an S-Band radar. Another source of error

is the phase measurements. Although Kdp is itself independent of direction, most estimation

procedures for Kdp use a path length approximation that causes Kdp to be correlated along

a ray artificially, but not laterally along azimuth. While the small errors in reflectivity may

be acceptable for more qualitative uses, the fundamental differences in the dual polarimetric

parameters at changing frequencies renders multi-frequency mosaic operations on the radar

measured parameters useless.

Most mosaic procedures primarily use the mosaic with a max operator to take the highest

measurement. A more sophisticated algorithm for single frequency networks is due to Lim

and Chandrasekar [30]. This algorithm uses a network of single frequency radars and relies on

the (very good) assumption that the specific attenuation at a given location will be the same

no matter the direction of propagation. By doing this, it can use multiple looks from different

radars to constrain the attenuation at every bin, yielding a accurate attenuation correction

algorithm. By using multiple radars to estimate the attenuation, estimating the intrinsic

radar parameters will most likely be possible. This algorithm does not however attempt

to estimate the microphysical parameters in any way. It also fails to address the multiple

frequency case. Nonetheless, this algorithm does lend support to multiple independent views

increasing the performance of a network retrieval over a single radar retrieval.

While not necessarily multi-radar, one promising development for multi-frequency re-

trievals is the use of the dual frequency ratio (DFR) for retrievals. The dual frequency ratio

is the ratio of retrieved horizontal power at two different frequencies. The ratio of the two

frequencies gives an idea of how where in the scattering spectrum the bulk of the drop sizes

are, allowing you to restrict D0 in particular[31–33]. An example of DFR between Ku and Ka

frequencies for a large amount of data is shown in Figure 2.9. A very pronounced (although
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not easily characterized) trend can be seen. Dual frequency ratio gives another piece of infor-

mation in constraining the microphysical parameters. Indeed, the new Global Precipitation

Measurement satellite constellation uses DFR on it’s Dual Frequency Precipitation Radar

(DPR) to improve the retrievals.

Figure 2.9. (Ku-Ka) Dual Frequency Ratio as a Function of D0. This shows
the relationship between reflectivities at the two frequencies is not a linear
relationship. The parameters are generated from the IFloodS disdrometer
dataset consisting of 17,000 minutes of binned histograms.
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2.7. Error Structure in Microphysical Retrievals

There are several sources of error in microphysical retrievals in a network environment.

Some of the more dominant errors are listed in Table 2.1. These error sources can be split

into three different categories. The first category is instrument error. This is the lowest level

of errors, caused by flaws in the instrumentation, or in it’s operation. The most significant

error in this category is the system bias error type. This is the calibration bias caused

by incorrect estimates of the different power and loss parameters. This can result from

incorrectly measuring these parameters, or more commonly from changing parameters due

to environmental effects such as aging, and changing temperatures. These errors manifest

themselves as a constant offset applied to the measured powers. The primary two biases that

will affect the retrieval is the bias in returned power at horizontal polarization, and the ratio

of this with the bias in returned power at the vertical polarization. Two related errors are

the instrument precision, and the instrument noise. These take the form of Gaussian zero

mean random noise signals added to the measurements. These error types are common to

all observational instruments. The final instrument error of note is the limited sensitivity of

the instrument. At further ranges, or lower returned powers, the measurement of returned

power will fall below the noise floor of the receiver. When this happens, we can not reliably

measure the signal. This has two primary effects on the radar measurements as it affects the

retrieval. The first is the imposition of a maximum range. Beyond a certain range, signals no

longer return enough power to be measured by the radar. The second effect primarily effects

higher frequency radars. At higher frequencies, attenuation is more severe. This reduces the

received power by the radar, causing more of the signal to fall below the noise floor. In this

way, the attenuation combined with the limited sensitivity cause portions of the return to

go “extinct”.
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Figure 2.10. Non-Coincident Sampling on a Polar Grid. No unique choice
of origins will cause the points to line up, making the comparison of non-
coincident grids challenging.

The second category is observational sources of error. This is a large category, but

the most important ones to this work are attenuation from propagation, beam and time

mismatch between radars, and non uniform beam filling. Attenuation is the loss of power

caused by the absorption of energy from the hydrometeors. This is primarily governed by

the extinction cross section of the drop. Larger drops, and more numerous amounts of drops,

increase the attenuation experienced by the electromagnetic ray. As the frequency of the

electromagnetic waves increase, the attenuation of the waves increase as well. This makes

attenuation a much more significant problem for higher frequency radars, with X-Band and

above suffering particularly hard. Algorithms exist to help correct attenuation errors in many

different cases, but it is currently still very far from being solved for the general case. For

the network retrieval, beam and time mismatch are significant sources of error. The radar

measurements are taken on a spherical grid, and if two radars are at two different locations,

the grid points will not line up. An example of this is shown in Figure 2.10. In three
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Table 2.1. Many of the different sources of error in the retrieval process.
These are broken down into three different categories based on where they are
introduced in the retrieval process.

Sources of Retrival Error

Instrument Observational Retrieval

Instrument Precision Attenuation Improper Prior
System Biases Beam Mismatch Gridding Errors

Instrument Noise Time Mismatch Network Assumptions(IID)
Sensitivity Limits Beam Block Improper DSR

Non-Uniform Beam Filling Improper DSD Parameterization
Reflectivity Gradients Erroneous Covariance Estimates

dimensions, this effect is even more pronounced. This means that each radar is measuring a

slightly different thing. Due to the time it takes to scan a volume, these measurements are

likely not even at the same time. With proper scanning strategy design, these errors can be

minimized somewhat, but never entirely eliminated. As the beams are not along the exact

same orientation, the effects they suffer from propagation are different as well. Two errors

in this set are closely related. Non-Uniform Beam Filling(NUBF) and Reflectivity Gradients

are when the contents of a voxel measured by the radar is not spatially homogeneous within

the voxel. While this is strictly always the case, the normal assumption in radar is that the

variability is low enough that it does not induce significant errors. This is usually not that

outlandish of a suggestion, but at the edges of storms this can cause measurement errors. The

final error source is beam blockage. This is where the edge of a beam intersects with some

structure such as a tree, tower, or house. This causes the measurements to be erroneous.

Beam blockage has a larger effect on power measurements(as the power of the beam can

be partially, or wholly blocked), whereas phase measurements suffer less significantly.The

retrieval in this work will correct attenuation, and attempt to account for the time and

beam mismatch effects. The other errors are unfortunately outside the scope of this work.
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The third category is errors from the retrieval algorithm itself. These errors can be

split into improper assumptions, and procedural errors. The improper assumptions includes

choosing the wrong shape parameter for the retrieval, wrong temperatures, and incorrectly

estimating the covariances of the parameters. This includes extra assumptions of indepen-

dence that may not fully be warranted, as well as assuming a normalized gamma distribution

when the distribution may in fact be better represented by another form. Unfortunately,

these assumptions must be made to keep the solution to the problems tractable. Otherwise,

there are far too many free parameters for the constrained measurement set that the radar

records. The procedural errors are errors introduced by manipulations within the retrieval

process. One of the largest of these is gridding errors from the interpolation step in the

network retrieval stage. This is interpolation error when comparing non-coincident points.

Another source of error is imprecision in the scattering operations, and only being able to

account for liquid precipitation.

These errors all serve to reduce the accuracy of the microphysical estimation. In the

following chapters we will demonstrate how corrections for some of these errors have been

incorporated into the algorithms themselves, and hopefully show that the rest of the errors

that we are unable to fix do not serve to degrade the microphysical estimation significantly.

2.8. Spatial and Temporal Variability of Rain Microphysics

Finally, a factor that will play a large role in the interpretation and quality of results for

a microphysical retrieval is the spatial and temporal variability of the precipitation micro-

physics.

What is needed is a good way to link the variability of microphysics spatially and tem-

porally. One of the earliest works on this topic was due to Taylor [34] and resulted in the
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“Taylor Hypothesis”. The Taylor Hypothesis states that the atmosphere is made up of hori-

zontal sheets, stacked vertically, and that as they fall, they undergo an affine transformation.

This means no major morphology changes. While this is easily disproven over a large enough

vertical section of the atmosphere, if analysis is restricted to areas under the melting layer,

it can provide a useful simplification. The primary implication of this is as follows. If the

velocity of a storm is known, then a comparison at different times can be made by using the

spatial variability to move backwards. More specifically, the autocorrelation function with

respect to time has a link to the autocorrelation function with respect to space. This gives

us some hope for comparing aerial retrievals with ground truth measured at ground level

with a disdrometer or rain gage.

Most research on microphysical spatial variability has revolved around rainfall rates[35,

36]. While this work is interesting, it does not give us enough information about the vari-

ability of the underlying microphysical parameterizations. More recently there has been

some work on the variability of the microphysical parameterization itself [37], although this

particular study used a single polarization radar and some large assumptions about micro-

physics, limiting the accuracy and generalizablity. Less research has been done using dual

polarization radars [38], although some research has been done on the spatial variability of

the radar measurements themselves[39].

Fundamentally, truly characterizing the variability of the microphysics requires multiple

radars, and a network of ground instrumentation. This is very expensive, and so has not re-

ceived as much attention as it warrants. This situation was addressed in 2012 by the IFloodS

campaign, which provided a very robust dataset with respect to microphysical variability.

The spatial variability results from this campaign will be addressed in Chapter 5.
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2.9. Summary

This chapter laid out the framework needed to understand the rest of the discussion in

following chapters. In particular it discussed what a microphysical parameterization is, and

how to use the radar to measure indirect effects of the microphysical situation on the radar

wave. The physics behind precipitation formation was covered, to explain why a distribution

is required, and why the distribution is so much more complex than the radar measurements

see to indicate. Next single radar retrievals and multi-sensor Bayesian fusion based network

retrievals were discussed. Next, a discussion of prior work in microphysical retrievals, both

at the single and multi radar level was detailed. Following this, a breakdown of the different

sources of microphysical errors in the retrieval process was outlined before finally moving

on to a discussion of the spatial and temporal variability of precipitation microphysics and

the constraints and effects these will have on the radar retrieval. The following chapters will

lay out a methodology and algorithm for multi-frequency radar retrievals, and then address

results and spatial and temporal variability analyses.

41



CHAPTER 3

Single Radar Retrieval

“Begin at the beginning,” the King said gravely, “and go on till you

come to the end: then stop.”

— Lewis Carroll, Alice in Wonderland

This chapter addresses the issue of retrievals when only a single radar is present. The

retrieval for a single radar will form the first building block of the network retrieval covered

in the next chapter.

A radar network is made up of a constellation of single radars operating at possibly

different frequencies. The first step in our microphysical retrieval will be to work data form

each radar individually to correct for sources of error and find a microphysical estimation to

feed into our network retrieval. Attenuation and most sources of radar errors are localized

to a single radar, making this the best place to correct these errors before attempting to

combine the output of each radar into the network retrieval. In this chapter we explain and

demonstrate a single radar microphysical retrieval algorithm capable of retrieving the drop

size distribution from dual-polarized radar data at arbitrary frequencies based upon work

by Yoshikawa et al[26]. This algorithm will form the core of our network retrieval algorithm.

We will discuss some of the background, and then lay out the mathematical formulation for

the algorithm. Finally, we will look at some preliminary results, and point out weaknesses

in the current algorithm before discussing proposed additions to the algorithm.

3.1. Background

Given a small volume of atmosphere located at range r from the radar, we can describe the

distribution of raindrops in the volume using the normalized gamma distribution discussed

in chapter 2. In particular, assume that the distribution of the raindrops is given by
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(31) N(D;Nw, D0, µ) = Nwf(µ)

(
D

D0

)µ
exp (−(3.67 + µ)(

D

D0

))

with

(32) f(µ) =
6

3.674

(3.67 + µ)(µ+ 4)

Γ(µ+ 4)

where Nw is the intercept parameter of an equivalent exponential distribution with the

same water content and median drop diameter and is related to N0 by

(33) N0 = Nwf(µ)D−µ0 ; mm−1−µm−3

D0 is the median drop diameter, and µ is the shape parameter. This formulation is

covered in more detail in Chapter 2.

Given a set of three measurements, the distribution can be parameterized with the triplet:

(34) X(i, k) = (D0(i, k), Nw(i, k), µ(i, k)).

This gives the conditions in the volume given by the shell segment from ri to ri+1, and

angular extent φk to φk+1 and θk to θk+1

Along a radial direction from the radar, break the ray up into cells given by equal angular

width, and radial range from some central point, then form a vector of triplets as

(35) X(k) = (X(0, k), X(1, l), ...X(N, k))

This vector represents a simple microphysical parameterization of the precipitation present

in this volume of the atmosphere. Now place a radar at the center of this radial, whereit would
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typically measure a triplet of radar moments comprised of the horizontal reflectivity(Zh), the

differential reflectivity(Zdr), and the differential phase(Φdp). Again form a vector of these

triplets. If each element of the vector is given by

(36) Y(i, k) = (Zh(i, k), Zi,dr(k),Φdp(i, k))

then the associated ray of measurements is given by the vector

(37) Y(k) = (Y (0, k), Y (1, k), . . . , Y (N, k))

Y(k) arises from the drop size distribution X(k) and can be represented by

(38) Y(k) = FX(k)

where F is a operator defined by the equations (13, 14, 16).

Unless otherwise stated, we will primarily treat rays as independent, and so we will drop

the k subscript for now unless explicitly required.

Then we can define a microphysical retrieval as an estimation of the inverse operator

F−1 that satisfies

(39) X ≈ F−1Y

Unfortunately F is highly nonlinear, and non-invertible.

It should be noted that while this is the definition used for radar based retrievals, differ-

ent fields define the microphysical parameterization differently. In particular, atmospheric

modelers tend to incorporate temperature, species identification, and several other factors.

We, however, will just attempt to retrieve the parameters of the drop size distribution.
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Several confounding factors make the retrieval more significantly more difficult. To start

with, we must account for radar measurement errors, and so our radar measurement triplet

for a single gate becomes

(40) Y (k) = (Zh(i) + σZh
(i), Zdr(i) + σZdr

(i),Φdp(i) + σΦdp
(i))

where each of the σi’s are zero mean random variables with noise power given by γZh
, γZdr

, γΦdp
.

This measurement error can be reliably assumed to be constant in each bin over the course

of a sweep and known in advance. In addition to the measurement error, we must factor

in attenuation causing additional errors in measured powers. The radar also measures not

Φdp, but at each bin a certain amount of backscattered differential phase given by δhv. The

sum of these quantities is called Ψdp and is the actual quantity measured by the radar. This

means the triplet we actually measure is given by

Ẑh(i) =Zh(i) + σZh
(i) + ηh −

i∑
t=0

Ah(t)(41)

Ẑdr(i) =Zdr(i) + σZdr
(i) + ηdr −

k∑
i=0

Adr(i)(42)

Φ̂dp(i) =
i∑
t=0

Φdp(i) + σΦdp
(k) + δhv(k)(43)

where

ηh = Horizontal Calibration Bias

ηdr = Differential Calibration Bias

δhv(k) = Backscatter Differential Phase
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These equations illustrate several important points. First, errors in estimating attenu-

ation and differential phase propagates through to all future bins. Second, the differential

phase has a backscatter component that adds a noise-like response. If we want to calculate

the specific differential phase component, which is given as the range derivative of differential

phase, then the operation will amplify the effects of the backscatter phase. This means we

must deal with backscatter phase to get a good estimate of specific differential phase.

We can take great care in the calibration of the instruments and minimize the calibration

bias to 1dBZ and 0.2 dB for horizontal and differential reflectivity respectively. This will

still however cause some issues in the retrieval.

3.2. Algorithm Formulation

Having covered the basics of the retrieved signal and in particular, addressing the sources

of noise that can contaminate the measurements, we lay out an algorithm for the retrieval

of microphysical parameters using data from a single radar, at an arbitrary frequency. This

builds upon work by Yoshikawa et. al. [26].

3.2.1. Mathematical Formulation. The algorithm formulation we are going to use

is a greedy variational method. The algorithm attempts to find the parameterization of

the drop size distribution that best minimizes the cost function discussed below for each

individual bin.

We will use the following notation. We will represent the intrinsic radar parameters(those

unaffected by attenuation, calibration biases, or other sources of nosie) as Y (i) for a range bin

i. The radar measured variables(those directly from the radar, with all sources of noise) will

be represented by Ŷ (i), and our reconstructed estimate of the radar measured parameters
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will be given by Ỹ (i). Similarly we will represent the true drop size distribution by X(i) for

the ith range bin, and our estimate of the drop size distribution in the ith bin as X̃(i).

Our goal in this stage then is given a set of radar measurements Ŷ (i), to recover an

estimate of the drop size distribution ˜X(i) for each of the N range bins in a ray. Put another

way, for every i between 1 and N, we wish to find

(44) arg min
X̃(i)

(
Ŷ (i)−FX̃(i)

)

To find this we are going to set up a maximum likelihood based estimator. We start by

inserting the maximum likelihood estimate as

(45) p
(
Ŷ (i)|X(i)

)
= N

(
Ŷ (i)|FX̂(i),Σ

)

Which can be rewritten as

(46) p
(
Ŷ (i)|X(i)

)
= N

(
Ŷ (i)|Ỹ (i),Σ

)

Where N (x, µ,Σ) is the normal distribution with mean µ and covariance matrix Σ. Σ is

given by
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(47) Σ =


σZh

0 0

0 σZdr
0

0 0 σKdp


This arises by assuming that the covariances of the estimates are independent. We assume

that the covariance parameters are known based on empirical measurements. From here we

form the likelihood function.

(48) − ln p
(
Ŷ (i)|X(i)

)
≈
(
Ŷ (i)− Ỹ (i)

)T
Σ−1

(
Ŷ (i)− Ỹ (i)

)

Which reduces down to

(49)

J(X(i)) = − ln p
(
Ŷ (i)|X(i)

)
≈

(
Ẑh(i)− Z̃h(i)

)2

σ2
Zh

+

(
Ẑdr(i)− Z̃dr(i)

)2

σ2
Zdr

+

(
Φ̂dp(i)− Φ̃dp(i)

)2

σ2
Φdp

We then minimize this using any preferred optimization algorithm. For the purposes

of this research we have primarily stuck with the “Sequential Linear Least Squares”, a

constrained optimization technique.

3.2.2. Physical Realizability. One of the issues with microphysical retrievals is that

most algorithms assume some kind of independence between the two parameters D0 and Nw.

In actuality the two tend to be highly linked. This makes sense intuitively. Consider a fixed

water content in the atmosphere. If average drop sizes are large, there will be less of these

drops as they compete for the same water content. If there is a large number of drops, then
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we would expect this to be a limiting function on the upper size of the drops. We can verify

this empirically as well. In Figure 3.1 the two parameters D0 and Nw are plotted against

each other for the IFloodS field campaign.

Figure 3.1. DSD parameters from IFloodS. This figure shows the relation
of the main two parameters D0 and Nw. The region to which the parameters
are constrained can be seen very clearly. Nw is shown on a log scale, as will
be the case in most of this work.

We see that the behavior does indeed follow our intuition. This behavior seems to hold

true with very few outliers. We would like for our algorithm to preferentially select drop size
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distributions from within this region. With this in mind we can introduce a new cost term

as

(50) JDSD(X(i)) =
(Nw − N̂w(D0))2

α2
G

where N̂w is an estimator for Nw based upon D0. In the case of our IFloodS data, our

estimator is given by

(51) N̂w(D0) = 3.726D−0.366
0

The parameter αG is tuned empirically to prevent this cost term from becoming too

dominant. If we add this term into our cost function, we end up with the new cost function

(52)

J(X(i)) =

(
Ẑh(i)− Z̃h(i)

)2

σ2
Zh

+

(
Ẑdr(i)− Z̃dr(i)

)2

σ2
Zdr

+

(
Φ̂dp(i)− Φ̃dp(i)

)2

σ2
Φdp

+

(
Nw − N̂w(D0)

)2

α2
G

3.2.3. Backscatter Compensation. One of the major confounding factors, already

discussed is the backscattered component that we measure when attempting to measure Φdp,

given as δhv. This is the phase change the wave encounters as it is reflected back towards the

antenna by a hydrometeor. As δhv is such a big issue, it behooves us to attempt to estimate

it. We can model the backscatter differential phase of a single drop, and indeed of full drop

size distributions. We know that δhv depends on not only the wavelength of the radar, but

also the temperature, and the shape and size of the drop. We can plot δhv as a function of

drop diameter for different frequencies and temperatures. This is show in Figure 3.2.
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Figure 3.2. δhv for multiple frequencies and temperatures. The results de-
pendent very highly on both temperature and operating frequency. Note that
the backscatter differential phase can be negative as well as positive. Three
temperatures between 0 C and 10 C are shown.

For small to medium drop sizes, generally higher frequencies means a higher δhv. In the

resonance region around 5 mm we see that that δhv is actually higher at C-Band than at

X-Band. C-Band has a higher backscatter differential phase in the region 6-8 mm. This

makes up a very small percentage of drops in the real world. It does show that C-Band will

be particularly susceptible to large drops in the atmosphere.
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We can account for this in the algorithm by modifying our Φdp calculation to estimate

the backscatter differential phase term. This is left as an option, as some radars report a

filtered version of Φdp instead of the true Ψdp that they measure.

3.2.4. Algorithm Implementation Details. This subsection will discuss some of

the lower level implementation details of our implementation of the mathematical framework

from above. Fundamentally the algorithm is comprised to two inter-dependent parts. The

first is the forward scattering operation displayed in Figure 3.3 that implements equations 13,

14, and 16. The second part of the algorithm is the minimization of the forward variational

error as shown in Figure 3.4.

Both of these algorithms require certain a-priori assumptions. In particular, the choice of

drop shape relationship, drop temperature, and shape parameter. Unless otherwise specifies,

the algorithm implementation defaults to using the Beard and Chuang [18] drop shape

relationship at a drop temperature of 10◦ C. The shape parameter µ of the DSD will be

taken as a default of three.

The scattering operation itself uses an extension of a Python wrapper called PyTMatrix

[40] around a Fortran T-Matrix Scattering Library [10]. The parameters for creation of the

binned normalized gamma distribution DSD model are listed in Table 3.1.

The optimization process itself is very computationally intensive. To reduce this, a

downscaling factor is applied to reduce the radial resolution of the data by a factor of

df . This factor is variable, and depends upon the spatial variability of the radar data, as

well as the underlying radial sampling resolution of the radar. Test cases in this paper

most often use a downscaling factor of 2 or 4 depending on the original gate spacing. The

downscaling operation is applied using a simple mean filter. Empirical tests showed that the

downsampling had very little effect on the overall retrieval.
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Figure 3.3. Flowchart of the forward scattering process. The process starts
at the closest range bin to the radar and then proceeds radially outward. The
result of the process is the conversion of a set of disdrometer parameterizations
into a set of radar measured parameters.

A suitable minimization algorithm should not make a significant difference in the quality

of the retrieval, however it can have a large effect on the computational complexity. For

the single radar retrieval, a Truncated Newton Conjugate Gradient[41, 42] method is used.

This is a bounded retrieval algorithm which showed good computational performance on this

retrieval. The DSD parameters are bounded to the region (0, 6) in mm and dB respectively.

The retrieval has a tolerance of 5.0e−08 or a maximum of 100 iterations as it’s stopping

condition.
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Table 3.1. PyTMatrix Scattering Kernel Parameters. These parameters are
used to create a binned model of a normalized gamma distribution for pro-
cessing by the T-matrix code.

Scattering Parameter Value

DSD Resolution 0.26 mm

Dmax 8 mm

Orientation 20◦ Gaussian Canting

Orientation Averaging Canting Fixed Average

Figure 3.4. Single Radar Retrieval Implementation Flowchart. This shows
the algorithm flow for the single radar retrieval as it is implemented in this
work.
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3.3. Results

Fundamentally, one of the big difficulties in deriving retrieval algorithms is also the most

challenging limitations for evaluating the accuracy of the results of any retrieval; A lack of

ground truth data. What this means is that without actual DSD measurements in a cloud,

we must either rely on using synthetic data, or use more indirect methods.

Synthetic data can be generated by assuming a drop size distribution(DSD), drop shape

relationship, temperature, and using the T-Matirx method [10] to solve the forward scattering

problem as addressed in Chapter 2. Of particular importance is how to determine the

distribution of DSD parameters. It is important to choose parameters that are physically

realizable. Also we would like for the spatial variation to be representative of what is to

be expected from real world precipitation. Using data from disdrometers constrains the

choice of parameters to a physically realizable space. To account for the spatial variation

expected from real storms we use the method due to Chandrasekar et. al. [2]. This method

uses a retrieval algorithm to calculate an expected drop size distribution field. We can then

constrain the choice of DSD’s to within our physically realizable space based on disdrometer

data. Once we have a drop size distribution field, we can calculate the radar equivalent

parameters as well as applying different sources of error and noise.

Using synthetic data to validate our algorithm runs the risk as with all synthetic data,

of encoding the beliefs and assumptions of our model, into our data, causing the tests to

not represent a truly independent verification. The largest of these assumptions is that the

DSD is accurately represented by a gamma model. Although the gamma model is one of the

best models we currently have, recent research by Ignaccolo and Michele [43] has shown that

the gamma model fails to accurately represent the microphysics in over 55% of the authors
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captured data. Additionally, we often model the noise sources as independent, though this

is most likely not true for all but the most basic of sources.

While this does not invalidate using synthetic data to validate a model, what it does do

is inform us that we need more than just synthetic data to truly build confidence in any

retrieval framework. Using real data however brings it’s own set of challenges. In particular,

we do not have a ground truth field! If we don’t have ground truth, what do we compare our

retrieval with to estimate it’s accuracy? A common choice in the literature is to use a derived

rainfall field from the retrieval, along with ground based rain gages. Another method is to

use the retrieved results and compare them to the microphysical parameters from ground

disdrometers. An additional method is to compare the scattered results from the retrieved

parameters with the actual radar measurements.

In the following sections we will show results using several different evaluation method-

ologies to demonstrate the accuracy of our approach.

3.3.1. Simulated Data Results. Currently, the only way to get an accurate measure

of retrieval accuracy with respect to the actual drop size distribution is to use synthetic

data. In this section, we will look at the results of the retrieval on synthetic data sets . This

allows us to characterize retrieval results as the different sources of distortion change and

attempt to estimate trends in behavior. The dataset we will use was generated by using a

retrieval algorithm based on Gorgucci [9]. The original fields were measured with the CSU-

CHILL radar. The resulting DSD parameterizations were constrained using several months

of disdrometer data obtained during GPM field campaigns to a physically realizable space.

This gives us the microphysical field shown in Figure 3.5.

Scattering calculations require several parameters be fixed a-priori. The default values

for these parameters, unless otherwise specified is shown in Table 3.2.

56



Figure 3.5. Microphysical parameter field derived from CSU-CHILL radar
measurements. This field provides the base for the simulated data results.

Table 3.2. Default scattering parameters for T-Matrix scattering for the
forward solution. Values are chosen based on commonly accepted values for
reasonable calibration of a radar.

Scattering Parameter Value

Zh noise variance 1dBZ

Zdr noise variance 0.2 dB

Φdp noise variance 1.5◦

Temperature 10◦C

Shape Relationship Beard and Chuang(BC) [18]

The values of these parameters were chosen based upon expected levels of error in radar

data, and so as to be comparable to other literature on microphysical retrievals [26]. These

parameters can have a large effect. Much of our synthetic results section will attempt

to calculate how much an error in fixing these values affects our retrieval accuracy. In this

subsection we will focus primarily on mean absolute error [44]. As we are primarily interested
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in the general trends each error source has on our retrieval, this should be enough. At S-

Band frequencies (2.7 GHz) with no noise added beyond attenuation, we get the equivalent

radar measured parameters that are shown in Figure 3.6.

Figure 3.6. Scattering simulation fields at S-Band for synthetic data. Shown
are both intrinsic and attenuated fields. At S-Band the degree of attenuation
is not significant however.

The first step of our retrieval is a down sampling step for computational reasons. In

our retrieval it is important to account for the effect the down sampling itself has on the

retrieval accuracy. We can characterize the effect this has by calculating the retrieval error of

a downsampled field with no sources of noise added. Without downsampling, the algorithm

is able to exactly retrieve the fields so any error is due purely to the effect of downsampling.

This error will be related to the spatial variability of the microphysics along the ray. For

instance, if we are down sampling by a factor of two, and two adjacent range bins differ

greatly, then any possible choice of retrieval will show a large error relative to one or the

other bin. The results of this are listed in row one, of Table 3.3. We can see that the mean
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absolute error we get from this is on the order of a hundredth of a millimeter for D0, and

roughly double that for Nw for the lower frequency bands, and higher for higher frequency

bands. We can compare this to the error of predicting one microphysical parameter in one

bin, by repeating the previous bin. The MAE error for our synthetic dataset is 0.022 for D0

and 0.03 for Nw using this method. Half of this error gives us the cost of using the mean

of the bins. We can see that these are similar to the numbers given in Table 3.3. We will

assume that this is a lower error bound for any down sampling retrieval strategy using this

dataset.

A much more realistic test is to add in standard levels of measurement and sampling

noise, and then see how well the retrieval performs. If we model our noise as zero mean

Gaussian noise, with standard deviances given in Table 3.2, and perform our retrieval, we

get the results given in row two of Table 3.3 for each frequency band.

We can see that we do get a significant increase in the error rates of the retrieved micro-

physical parameters as expected. Unless explicitly stated, all of the other error tests for the

synthetic data will have this same level of noise added, and as such, each increase in error

rate should have the Additive noise case as it’s lower bound.

While there exists a large number of ways to calibrate the power received by weather

radars, all of the popular methods are costly, time consuming, or inaccurate. More frequently,

the calibration procedures are done infrequently. What this means for us is that it is common

for radar data to have a constant offset applied to Zh and Zdr that biases the data away

from it’s true value. We can usually correct for some of this error in post-processing, but

inevitably some of the error will remain in the data. In rows three and four we calculate the

retrieval accuracy for each frequency band with a fixed amount of calibration error added. In

the third row we show results when reflectivity has 1dB of positive bias added. In row four we
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Table 3.3. Scattered Simulation Retrieval Mean Absolute Error (MAE).

S −Band C −Band X −Band Ku−Band

D0 Nw D0 Nw D0 Nw D0 Nw

Base 1.33e-02 1.97e-02 1.52e-02 2.3e-02 1.6e-02 2.63e-02 7.3e-02 0.11

Additive Noise 0.16 0.38 0.16 0.38 0.14 0.33 0.27 0.45

1 db Zh bias 0.16 0.38 0.16 0.37 0.16 0.33 0.46 0.59

0.2 db Zdr bias 0.28 0.57 0.25 0.52 0.24 0.50 0.41 0.71

Wrong Shape 0.17 0.44 0.15 0.41 0.14 0.38 0.18 0.40

Wrong µ = −1 0.22 0.60 0.43 0.60 0.46 0.62 0.60 0.74

Wrong µ = 1 0.22 0.41 0.22 0.40 0.22 0.39 0.31 0.48

Wrong µ = 5 0.19 0.48 0.19 0.47 0.17 0.43 0.22 0.46

Wrong µ = 7 0.24 0.57 0.23 0.56 0.22 0.54 0.22 0.50

show the case where differential reflectivity has 0.2dB added in separately. These correspond

to realistic levels of calibration error for well calibrated radars. While occasionally radars

can have higher errors, we assume we can fix it down to these levels in post processing.

In row five labeled ”Wrong Shape” we retrieve assuming the Beard and Chuang [18] DSR,

but calculate the scattered values using the Thurai and Bringi [19] DSR. The improper choice

of DSR’s will most heavily effect Zdr in the forward scattering case. Finally in the last several

rows we calculate the retrieval error by scattering with a different µ value than our retrieval

algorithm assumes. We show several values in increments of two around the retrieval assumed

value of three.

We see that in all cases, our retrieval is fairly resilient to these error sources. In particular,

we seem to be very resilient to reflectivity calibration. Differential reflectivity calibration has

a much more significant effect. For most sources of error, the lower a frequency, the less it

appears to affect the data, with Ku suffering the most significant degradation. In particular

we notice that when the actual µ is much lower than we expect, we experience the most

significant errors.
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We can see that a reflectivity calibration error of 1 dBZ did not have a large effect. A

natural question then is what level of calibration error at horizontal will cause the accuracy

of the algorithm to degrade? We can vary the level of calibration introduced to examine how

the error structure changes as the calibration error increases. We can see in Figure 3.7 the

retrieval behavior as the calibration error increases.

We can see that the error in estimation for the bottom three frequencies remains fairly

low, although it does increase as a function of the bias for both D0 and Nw. The error for D0

barely increases, while the error for Nw see less than a 50% increase. The error for X-Band

increases the quickest of the lowest three frequencies.

The Ku band retrieval however appears to be considerably more sensitive to calibration

biases. The error for both of the microphysical parameters increases very quickly compared

to the other three frequencies. The errors increase by a factor of three for Nw and more than

a factor of six for D0. The Ku band radar operates with more of it’s DSD spectrum in the

Mie band, and as such, we expect the resonances created in that region to create more of a

difficulty with the retrieval.

Similarly we can look at the behavior as the differential reflectivity calibration error

increases. The results for this are shown in Figure 3.8. The results for increasing differential

calibration bias are a little more predictable. We see all the frequencies have a similar

behavior, showing a nearly linear increase in error as a function of the bias.

It is possible to shine a little more light on the situation by looking at two more error

metrics, the normalized standard error (NSE) and the normalized bias (NB) of the retrieval.

NSE is given in Table 3.4, while NB is given in Table 3.5.

The normalized standard error measure tells a slightly different story. While negative

values of µ remain the largest error case, there is an increased level of uniformity between
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Figure 3.7. Mean Absolute Error as a function of reflectivity calibration
error. Ku shows more serious degredatoin than the three lower frequencies.
The other three frequencies show limited degredation as a function of the
calibration.

the frequencies for most of the other cases. This suggests that for the MAE case, a few

outliers are causing a disproportionate amount of the error.
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Figure 3.8. MAE as a function of differential reflectivity calibration error.
The behavior of the four frequencies shows a much more similar behavior than
the results from the reflectivity claibration case.

Table 3.5 which shows the normalized bias in the retrieval paints a much prettier picture.

While again, the negative value of µ contains significant errors, having a bias of about 20%,

the rest of the error sources do not appears to cause too much of a degredation. The Ku band

suffers more severely than the other frequencies in the bias cases, but has similar performance
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Table 3.4. Scattered Simulation Retrieval Normalized Standard Error (NSE)

S −Band C −Band X −Band Ku−Band

D0 Nw D0 Nw D0 Nw D0 Nw

Base 9.2e-03 7.6e-03 1.00e-02 8.4e-03 1.0e-02 9.4e-03 4.0e-02 4.0e-02

Additive Noise 0.11 0.14 0.11 0.14 0.096 0.13 0.19 0.18

1 db Zh bias 0.11 0.14 0.11 0.14 0.10 0.12 0.31 0.22

0.2 db Zdr bias 0.19 0.20 0.18 0.20 0.15 0.17 0.26 0.24

Wrong Shape 0.11 0.17 0.11 0.16 0.09 0.15 0.12 0.15

Wrong µ = −1 0.29 0.24 0.30 0.23 0.31 0.24 0.41 0.30

Wrong µ = 1 0.14 0.16 0.15 0.16 0.15 0.15 0.24 0.20

Wrong µ = 5 0.13 0.19 0.13 0.18 0.12 0.17 0.15 0.19

Wrong µ = 7 0.16 0.22 0.16 0.22 0.15 0.21 0.15 0.20

Table 3.5. Scattered Simulation Retrieval Normalized Bias (NB) results.

S −Band C −Band X −Band Ku−Band

D0 Nw D0 Nw D0 Nw D0 Nw

Base 4.8e-04 7.2e-05 9.60e-05 4.7e-04 3.8e-04 -1.9e-04 4.1e-02 2.7e-03

Additive Noise 3.5e-03 -0.02 -1.9e-03 -0.02 -5.5e-03 -0.01 -0.06 0.05

1 db Zh bias -1.7e-04 -0.06 -0.02 -0.05 -0.04 -0.03 0.22 0.12

0.2 db Zdr bias -0.18 0.19 -0.17 0.18 -0.14 0.15 -0.24 0.2

Wrong Shape 0.05 -0.08 0.03 -0.07 0.02 -0.06 -0.01 -0.04

Wrong µ = −1 -0.28 0.21 -0.29 0.21 -0.30 0.22 -0.40 0.28

Wrong µ = 1 -0.11 0.09 -0.11 0.08 -0.13 0.13 -0.22 0.15

Wrong µ = 5 0.08 -0.10 0.08 -0.10 0.07 -0.10 -0.01 -0.04

Wrong µ = 7 0.13 -0.16 0.13 -0.17 0.12 -0.16 0.06 -0.11

for the other cases. Again the increased error with respect to the calibration bias is likely

due to pushing it into nonlinearities in the scattering regime.

While we have looked primarily at the absolute error to get a sense of the magnitude of the

distortions created in the retrieval, it is instructive to look at the actual values of the retrieval

error. In particular, if we compare the errors of the two microphysical parameters as shown

in Figure 3.9, we see an interesting trend. There is a pseudo-linear negative trend between

64



the two parameters. This means as we make an increasing level of error in estimating one

parameter, we expect to make an error in the opposite direction in the other microphysical

parameter. While this is not strictly positive for the results of the retrieval itself, what it does

do is reduce errors in some derived applications of the retrieval. For instance, if estimating

rain rate from the retrieval, we can expect these offsetting errors to reduce the overall level

of error we would have expected by looking purely at the MAE results.

Based on this error analysis using synthetic data, this retrieval should be able to return

the drop size distribution parameters within an error bound of 0.2 for the median drop

diameter D0, and within 0.4 for the normalized intercept parameter Nw given in logarithmic

units.

3.3.2. Single Radar Matching. One of the measures of success for a retrieval algo-

rithm is how well the retrieved drop size distribution parameters can reconstruct the signal

that the radar measures. With real radar measurements, we have no way of knowing with

certainty the microphysical situation in the atmosphere, and as such we cannot directly com-

pare the retrieved DSD. Instead, we must use more indirect comparisons. As such we can

perform the microphysical retrieval, then calculate the radar equivalent measurements for

that microphysical field. By comparing the radar measured field, and our re-scattered field,

we can get a sense of how well the microphysical field represents the radar measured data.

One issue with fitting measured data is the issue of noise. To perfectly reconstruct data,

the algorithm would have to generate a DSD that explains the noise, as well as the true

signal. As the noise is a random signal with little to no correlation with the underlying

signal, this is not likely what we wish to recreate. Unfortunately, separating out the noise

from the true signal is not a trivial(or necessarily even possible) operation. As such, the
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Figure 3.9. Simulated Data Microphysical Errors from the two DSD param-
eters. There is a very well defined negative correlation between the errors in
the two parameters. This indicates that the errors will offset each other for
derived products such as rain-rate.

comparison with measured data will have some baseline level of error that is unavoidable.

As shown in the previous section, the algorithm is fairly resilient to noise sources however.

The verification of this algorithm will use three radars operating at different frequencies

as examples. It will cover S, X, and Ku-Band radars.
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3.3.2.1. NPOL(S-Band) IFloodS. The first radar examined is NASA’s Polarimetric Radar

(NPOL). This is a deployable S-Band radar that is deployed to various field campaigns to

provide ground validation for the various GPM-GV field campaign. More details about

NPOL are in Appendix A. The data file demonstrated here is a Range-Height Indicator

scan (RHI) from the IFloodS field campaign.

The radar measured moments can be seen in figure 3.10. This is a storm with both

stratiform and convective regions. The melting layer is visible around 3.5 km. Additionally,

the radar experiences beam blockage and ground clutter for the first few degrees. At a range

of 35 to 45 kilometers there is a strong precipitation core that reaches down to ground level.

As the radar cannot directly measure the underlying DSD field, a microphysical retrieval

is performed on the data, and then the results are put through the T-Matrix scattering

process to estimate the radar measured parameters based upon that microphysical parame-

terization. This gives the results in figure 3.11. In the left column is the scattered moments

of the retrieved DSD, while in the right column is the radar measured parameters.

It is evident in these images that the ground clutter at low elevations is causing the

retrieval to return erroneous results. Once out of ground clutter however the microphysical

retrieval accurately reproduces the measured radar fields. In the twin core structure, it is

even able to return a representative DSD parameterization above the melting layer (ML).

This is likely due to strong updrafts causing the return in the core to be liquid, despite

being above the ML. Reflectivity and Differential Reflectivity show a high level of agreement

between the two. Although Φdp is not shown here, it too agrees fairly well. Instead of Φdp,

Kdp is shown. The algorithm matches the reconstruction between Φdp, not Kdp and so we

allow Kdp to differ between the retrieval and the measured field. As Kdp is an estimated

quantity for the radar a difference between the two is not an error. It is evident in the
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Figure 3.10. NPOL IFloodS RHI Situational Overview. The melting layer is
visible around 3.5 km. In the upper panels are the two power measurements.
In the lower left is the radar derived Kdp measurement. The bottom right
panel shows normalized coherent power, also commonly called signal quality
index (SQI).

storm cores that the retrieval algorithm provides a much finer spatial localization of Kdp

than that recorded by the radar. The estimation method the radar uses for Kdp is based on

an extended version of the Z−Φ method [1] due to Wang et. al. [45]. This algorithm, while

better than most, does introduce a level of spatial smoothing common to the vast majority
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Figure 3.11. Results of microphysical retrieval process for NPOL IFloodS
test scan. The left panes show the T-Matrix scattered parameters based on
the retrieved microphysical parameters. The right panel shows radar measured
parameters.

of Kdp estimation algorithms. Reducing the spatial smoothing action of most estimation

algorithms by reducing the path length they estimate over, results in a higher susceptibility

to backscatter differential phase as discussed in Chapter 2.

More specifically, Figure 3.12 shows the retrieval results for a single ray at an elevation

of 2.3◦. There are several features of note in this plot. The first is the behavior over the first

12 km. This part of the scan is heavily degraded by ground clutter and shows reduced ρhv

and NCP values. As such, the algorithm filters many of these range bins out and so does

not suffer from attempting to estimate the erroneous Φdp shown. This can be seen in the

form of ”holes” in the graph. The retrieval is to capture all major trends in the data. The
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Figure 3.12. NPOL Single Ray Retrieval. Shown is a single ray of the
retrieval corresponding to 2.4◦. Overlaid is the radar measured parameters.
The beginning of the ray shows some ground clutter, which the microphysical
retrieval rejects.

Φdp profile appears to properly reject the backscatter differential phase while still capturing

the underlying signal.

Figure 3.13 shows quantitative results for how well the retrieved parameterizations re-

produced the radar measured fields. Results are shown for four different statistical metrics

as discussed in Appendix A. The error is shown for each retrieved ray, with increasing ray

70



numbers corresponding to increasing elevations of the radar. The results in this graph are

restricted to rays above the ground clutter and beam blockage.

Reflectivity can be seen to have a very low level of error by all of the metrics, as well as

having no apparent bias. Differential Reflectivity has a very low NSE error, with a low level of

bias that slow goes negative at increasing elevations. This is not completely surprising. The

scattering operations are calculated based upon a horizontally pointing radar. Correcting

this can be accomplished by generating a new set of scattering tables at each elevation angle,

or calculating a bias offset term. A similar effect on the normalized bias can be seen in Φdp.

Some of this error can be attributed to including the melting layer in these calculations

however. The MAE error shows that reflectivity, and differential reflectivity errors are both

less than the assumed level of measurement noise for a radar.

Finally the MASE metric shows that the retrieval is indeed adding information beyond

a naive predictor.

While it is instructive to see the metrics for each individual ray, the number that is more

useful to compare with other retrievals is the composite number over all of the rays. This

composite scores for the entire scan are given in Table 3.6. This table reaffirms the small

negative bias in the differential reflectivity reconstruction. This is due to the elevation angle.

Errors are small for all parameters, with no appreciable bias for reflectivity or differential

phase. The mean absolute error shows low error levels for both reflectivity and differential

reflectivity. The differential phase mean absolute error is somewhat higher, but can somewhat

be attributed to backscatter differential phase. Finally, as noted before, the MASE error

shows the retrieval is indeed adding information over a naive estimator.

Shown in Figure 3.14 is the retrieved drop size distribution parameterization. The first

few degrees are contaminated by the ground clutter and beam blockage. The bottom of the
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Figure 3.13. Error Metrics for NPOL IFloodS Single Radar Retrieval. The
increase in ray number corresponds to an increase in elevation. As expected,
an increase in elevation is correlated with an increase in error. This is caused
by the geometry of the drops changing due to a difference in angle of view.

melting layer is visible around 3km, as a region with significantly larger drops that are fewer

in number. This matches what would be expected. As frozen particles melt, they are often
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Table 3.6. NPOL IFloodS Entire Retrieval Error Metrics. This shows the
recreation error with respect to the four metrics(Normalized Standard Error,
Normalized Bias, Mean Absolute Error, Mean Absolute Scaled Error). The
error metrics are taken using the entire retrieval as input.

Moment NSE NB MAE MASE

Zh 0.0058 -0.0048 0.54 0.21

Zdr 0.083 -0.18 0.13 0.39

Φdp 0.21 -0.0048 2.9 0.87

larger in size than the equivalent completely liquid particles. After they are able to pick

up a certain amount of fall velocity, they often break apart into more numerous amounts of

small droplets. In the two cores we see a large number of medium sized drops. This matches

with expectations for a strong updraft. In the updraft, vertical velocities are high enough to

keep larger drops suspended long enough for them to grow to larger sizes. In addition, the

updraft lofts air up allowing for an increased rate of drop formation. The areas above and

to either side of the cores are likely either frozen particles, or areas where smaller drops were

ejected from the core and have much slower fall velocities. The lowered fall velocity would

decrease the rate at which these drops are able to grow by collision/coalescence.

Finally Figure 3.15 shows a scatterplot of the microphysical parameterization. The data

follows the general trend expected for the data to maintain physical realizability. It also

shows instances where the optimization fails to completely converge and forces Nw to 6 to

try and match ground clutter. The observed trend is consistent with both theoretical and

empirical expectations.

This subsection shows the algorithm returns a physically plausible microphysical parame-

terization that is capable of recreating the radar measured scene. Data matched not only the

radar measured parameters, but the parameterization matched expectations about the phys-

ical behavior of the microphysics relative to the storm features. In particular, it was shown
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Figure 3.14. NPOL retrieved Drop Size Distribution parameters. The top
pane shows the median drop diameter, while the bottom parameter shows the
normalized intercept parameter. The effect of strong beam blockage is visible
at low elevations.

that the behavior right below the melting layer was consistent with physical expectations,

as was the behavior in two updraft towers. The auxillary benefit of finer Kdp localization

was also seen in the displayed parameters.

3.3.2.2. NASA D3R(Ku-Band). The NASA Dual-frequency Dual-polarized Doppler Radar(D3R)

is a Ku/Ka band solid state pulse compression radar operated by NASA as part of it’s GPM
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Figure 3.15. Self Consistency of DSD Retrieval. The overall trend is con-
sistent with both theoretical and empirical expectations about the behavior
of the two parameters with respect to each other. Outliers are visible where
the optimization failed to converge, causing Nw to be set to six, which is the
maximum value allowed.

Ground Validation Field Campaigns[46]. This subsection will show results from the Ku

band radar using data from the IFloodS field campaign discussed at more length in Appen-

dix A. In particular we will use an RHI scan from the 29th of May 2013 at 22:41Z. This is

closely temporally and spatially matched to the NASA NPOL S-Band scan displayed above.

The primary metric we will be evaluating in this section is the ability of the microphysical

parameterization to reconstruct the radar measured moments.
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Figure 3.16. D3R(ku) Radar Measured Parameters. The first two panes
show the power measurements, while the third shows differential phase. The
melting layer is visible at about 3 km. There is some beam blockage at low
elevations, caused by a feature visible at 10 km. All measurements are directly
from the radar with no corrections applied.

Figure 3.16 shows the radar measured moments. This scan shows the two convective

cores spaced 10 km apart as seen in the NPOL scan, with the melting layer visible just above

3km. . It does shows a weaker Zdr signature, primarily due to differential attenuation, and a

significantly higher Φdp as expected from a higher frequency. Additionally, these scan show a

much higher attenuation than the S-Band case. In particular, after the second core the signal

is almost completely extinct. Also visible is high level of clutter and anomalous propagation

close to the radar, extending to about 4 km. For the retrieval results presented here, this
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clutter has been filtered out as it does not represent liquid precipitation. Additionally, at

10 km a feature can be seen which causes beam blockage at lower elevations.

Figure 3.17. D3R(ku) Retrieved Microphysical Parameterization Results.
The top pane shows median drop diameter, while the bottom pane shows
the normalized intercept parameter. Similar features can be seen as in the
S-Band case. The extinction that happens at 37 km causes the signal to be
unretrievable.

The retrieved microphysical parameterization, as shown in Figure 3.17 shows primarily

stratiform type rain in the early ranges with increasing median drop diameters in the two

convective towers. As convective storms have higher median drop diameters than their

stratiform counterparts, this matches what a visual identification confirms.
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Figure 3.18. D3R(ku) Retrieved Scattered Moments. The left panes show
the recreated measurements based on T-Matrix scattering of the retrieved
microphysical parameterization. The right panes show the equivalent radar
measured fields. There is good morphological agreement, although the area in
the melting layer shows anomalies as expected.

The retrieval results after scattering are shown in Figure 3.18 in the left panes, while

the radar measured parameters are in the right panes. After accounting for downsampling,

the radar is able to recreate the fields well. In particular the areas below the melting layer

shown a very high level of agreement. The convective towers are well represented, and the

area below the melting layer is accurately reproduced. There is some anomalous results in

the melting layer, but as the algorithm is designed to work only in liquid precipitation, this

is not of concern.

Figure 3.19 shows retrieval comparisons for a single ray taken at 1.4◦. The plots display

good agreement on all parameters. At about 24 km the plots shown a short lived deviation.

This is most likely due to non-uniform beam filling at the edge of the convective tower.

Of more interest for evaluating the algorithm is the overall error metric results. Table

3.7 lists the NSE and NB scores for the comparison of the retrieved fields with the radar
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Figure 3.19. D3R(ku) Ray Retrieval at 1.4◦. The top two panes show reflec-
tivity and differential reflectivity, while the bottom shows differential phase.
Good agreement is seen between all the parameters, with only a small devia-
tion at about 24 km.
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measured fields. These error metrics use the data under 3 km and before 32.5 km. These

restricts the effect of the melting layer and areas where the beam has gone extinct, or entered

a low signal to noise region as this can cause radar measurements to be inaccurate. Both

of the power fields, reflectivity and differential reflectivity, show very good with results with

no major biases or significant errors(both are under 1% recreation error). The differential

phase field shows only a 4% normalized standard error, but it does have a 19% normalized

bias. Some of this can be due to the high level of clutter seen at the beginning of the rays,

as well as some effect of system phase, which has not been completely accounted for.

Table 3.7. D3R(Ku) Overall Error Metrics. The comparison is based on
data under 3 km in height, and within 32.5 km of the radar to avoid errors
due to the melting layer and frozen precipitation, as well as signal extinction.

Zh Zdr Φdp

NSE 0.003 0.047 0.040

NB 0.008 0.0197−0.188

Overall this scan demostrates the algorithm’s ability to work on higher frequency radars.

The microphysical field calculated did indeed recreate the radar measured fields with a high

level of accuracy, showing very few errors, and only a small level of bias in the differential

reflectivity field.

3.3.3. Cross Radar Comparisons. Another way to gauge the accuracy of the single

radar retrieval is to compare retrievals between two radars with overlapping measurement

areas. A comparison of the retrievals for the IFloodS case showing retrievals from both the

S-Band NPOL, and the Ku-Band D3R radars is shown in Figures 3.20 and 3.21. A good

agreement in storm morphology can be observed. In particular the agreement in the median

drop diameter fields is very good above the beam blockage contamination. The normalized
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intercept parameter graphs also show a good agreement on the storm morphology, though

the Ku-Band radar estimates an area of slightly higher values in the storm center. This is

possibly due to signal to noise ratio (SNR) issues as the area has a lower reflectivity than

much of the surrounding storm.

Figure 3.20. D3R-NPOL median drop diameter comparison. Data is shown
for microphysical retrievals from the IFloodS case described in the text. The
morphology matches, as well as overall values.

Figure 3.22 shows the statistical distribution of microphysical parameters between the

two retrievals. There is a good agreement between the two distributions in general. However,

D3R does appear to classify far fewer regions as very low Nw. Again, this is believed to be
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Figure 3.21. D3R-NPOL normlized intercept parameter comparison. Over-
all morphology agrees, though absolute values differ in the lower signal to noise
region seen between twenty and thirty kilometers.

due to the lower signal to noise ratio in the fainter portions of the storm between twenty

and thirty kilometers.

3.3.4. Comparison with Ground Instrumentation. Most of the comparisons used

so far to show validity of the retrieval have been forced to use indirect comparisons to show

that the retrieved DSD adequately captures the radar measured parameters. This evaluation

framework has it’s limitations. In particular, it assumes uniqueness of the mapping between

DSD fields, and radar fields. Due to noise in the measurements, evaluating the recreation
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Figure 3.22. D3R-NPOL Microphysics Retrieval Comparison. While overall
morphology agrees, the lower portion of the curve shows some disagreement
between the two frequencies of retrieval. In particular, the higher frequency
displays a smaller number of low intercept parameter values.

of the radar measure fields involves a noisy comparison as well. This sub-section will use

another indirect comparison, although indirect in a different way.

Disdrometers as discussed in Chapter 2 are a ground based instrument that uses a variety

of techniques to count rain droplets as they pass through a sensor area, giving the size of each

drop, and often the speed. These are usually binned measurements and so the histogram
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of the counts over a time period gives us an approximation of the drop size distribution for

that time period passing through the sensor. Using the velocity, the data can be normalized

to get a ”representative sample” of the drop size distribution immediately above the sensor.

Unfortunately, what disdrometers do not measure is the drop size distribution in the

air. This makes it somewhat hard to directly compare radar data with disdrometer data.

This subsection will use disdrometers to compare with radar returns to provide another

verification point keeping this in mind. It is important to remember that the measurement

from the disdrometer is not measuring the same area, time, and distribution, that the radar

is seeing. As the precipitation falls to the ground, it undergoes changes. Most comparisons of

disdrometers with radars assume the Taylor Hypothesis[34], which loosely states that a storm

is made up of multiple horizontal sheets that are acted upon by an affine transformation as

they fall. Then given sufficient sampling, one could recreate the above earth conditions

by working backwards, and thus time and space will act as a proxy for each other. While

we know this is not true, modeling the storm dynamics as drops fall is not feasible. Then

comparing radar and disdrometer data will have a certain amount of intrinsic error in the

comparison. The closeness of the comparison is somewhat correlated with the spatial and

temporal variability of the microphysical structure, and will be addressed more in Chapter

5.

The data this comparison will use is from a Parsivel Laser Disdrometers as seen in Figure

3.23 to provide the ground data. A case from IFloodS that took place on May 26th, 2013 is

shown in Figure 3.24.

Applying the methodology given in Bringi and Chandrasekar[1] to the disdrometer mea-

sured DSD’s from two disdrometers gives the D0 and Nw time series shown in Figure 3.25 in

panels (a) and (b). Displayed are the time series for two different co-located disdrometers. In
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Figure 3.23. Parsivel Disdrometer at IFloodS Courtesy of Iowa Flood Cen-
ter. This type of disdrometer uses an optical array to measure the drop size
distribution as well as the velocities.

Figure 3.24. Drop Size Distribution Example from Parsivel from May 26th, 2013.

Panel (c), the overall parameterization is shown. The two disdrometers, denoted APU3 and

APU4, are located about 100 meters apart. The two disdrometers show good agreement for
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most time periods, although there are some time periods where the agreement between the

disdrometers suffers, such as the time between 16Z and 18Z. Panel (d) shows the difference in

microphysical estimates between the two disdrometers. Although most of the points match

between the two instruments, there are a significant number of points with large differences.

Some of this is explained by spatial and temporal variability of the microphysics, and the

rest should be due to sampling errors and wrong-distribution errors.

Figure 3.25. Microphysical Parameterization Time Series from Two Dis-
drometers. Shown in the left panels is the time series of the estimated mi-
crophysical parameterization. Panel (c) shows the self consistency comparison
of the two disdrometers. Panel (d) shows the relative errors between the two
disdrometers.

To characterize the between device sampling error, Table 3.8 shows the error rates using

disdrometer APU3 to predict APU4. The normalized errors are less than four percent, with

a between instrument bias of up to twenty percent. Mean absolute error is shown as well
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for comparison with other algorithms. These numbers form a target for a radar retrieval to

reach when compared with a disdrometer.

Table 3.8. Between Disdrometer Error for Co-located Disdrometers. This
compares the error between co-located disdrometers 3 and 4. Shown are results
for both the native time sampling of 1-minute increments, as well as a 7 minute
windowed average.

NSE 1-minute NSE 7-minute NB 1-minute NB 7-minute

D0 0.0156 0.024 0.155 −0.215

Nw 0.0399 0.005 −0.195 0.026

The disdrometer dataset from IFloodS contains data that is sampled in 1 minute intervals.

This provides for a very noisy dataset with a large variance, much too noisy to characterize

the large spatial area that the radar measurements cover. Also, due to not knowing the

exact fall trajectory of the drops, there is a variable time delay between disdrometer and

radar measurements. For instance, in the one minute period that the disdrometer samples

data over, the average distance a 1 mm drop will fall is 123 meters, while a much larger 4

mm drop will fall about 500 meters. To slightly minify the effect of these two error sources,

we will downsample the disdrometer data using a sliding average with a width of 7 minutes

centered around the time of each radar sample. Each data point will be the average of two

minutes into the future to account for the time taken to sample the volume by the radar,

as well as 4 minutes into the past to capture some of the variability due to the fall speed.

To illustrate the effect this has on the data, original, and temporally averaged data for the

median drop diameter of APU4 is shown in Figure 3.26.

Figure 3.26 shows the decrease in variance in the data due to downsampling, while the

mean is maintained. All radar comparisons will be made to this new averaged time series.

For each radar file with data near the disdrometer, the retrieval algorithm was run and the
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Figure 3.26. Median Drop Diameter: The Effect of Temporally Downsam-
pling on Time Series. While the mean stays the same, as expected, the av-
eraging operation decreases the variance. This helps to reduce the effect of
errors caused by limited sampling resolution.

microphysical parameterization performed. To compare the radar data with the disdrometer

the radar data must be similarly averaged, or else it is likely the bin being compared, did not

actually have any drops falling on the disdrometer. After the retrieval, an annular region is

averaged centered over each disdrometer consisting of 3km in range, and 8 degrees in azimuth,

which corresponds to between 2km and 3.3km for the disdrometer results presented here.

There were 134 radar files with data over the disdrometer in the time period of interest.

Shown in Figure 3.27 is the results of comparing the time series from the disdrometer with

the time series from the radar retrieval. Good agreement can be seen between the retrieval

and the disdrometer. The general behavior matches well, although the variance of the radar
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Figure 3.27. A Comparison of D0 Between the Radar Retrieval and Dis-
drometer APU4 Measured DSD based on 134 radar sweeps.

retrieval estimates is significantly higher. Some of this is due to temporal averaging of the

radar data. In particular, a persistent half-millimeter under-estimate takes place around

16:30Z in the figure and appears to last for several time steps. It is not known whether this

is a mistake from the radar retrieval, or due to the spatial variability of the microphysics.

Unfortunately, the comparison of the retrieval with Nw is not quite as good. As shown

in Figure 3.28, the comparison of the retrieved intercept parameter with that from the

disdrometer has a larger absolute error. Again the mean of the data appears correct, but

the retrieval shows larger fluctuations in it’s estimate of Nw. Part of this could be due to

spatial variability. The phase response at S-band is also lower and so estimation of Nw is

expected to be harder at this lower frequency than some of the higher frequencies.
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Figure 3.28. A Comparison of Nw Between the Radar Retrieval and Dis-
drometer APU4 Measured DSD.

Table 3.9. Relative Disdrometer Locations with Respect to NPOL. Disdrom-
eters three and four are co-located. While other disdrometers exist, these are
teh only ones within range of both NASA radars during the field campaign.

Range(km) Azimuth(◦)

APU2 15.2 128.7

APU3 24.6 129.9

APU4 24.9 130.5

APU5 48.1 131.8

For a more comprehensive look at the performance, this analysis was repeated for five

of the disdrometers, including a pair of co-located disdrometers. The relative locations of
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these disdrometers with respect to the radar is shown in Table 3.9. Disdrometers two and

five are located at their own sites, while disdrometers three and four are co-located (Within

a kilometer of each other). This means while the general trend for all disdrometers should

match loosely, the two co-located disdrometers will have a much higher agreement in their

measurements. Also, the difference between the two co-located disdrometers gives us a rough

measure of sampling error and spatial variability effects on estimation.

Table 3.10. Radar Retrieval Error with respect to Disdrometer. The two
error metrics shown are the ones most commonly used to estimate the error
between radar retrievals and ground instruments.

Nw NSE Nw NB D0 NSE D0 NB

APU2 0.030 −0.0052 0.0238 −0.1922

APU3 0.029 −0.082 0.019 −0.058

APU4 0.026 0.1104 0.0187 −0.086

APU5 0.038 −0.044 0.039 −0.229

Finally, the composite results for all disdrometers is shown in Table 3.10. The table

shows the results are on par with the previously shown between disdrometer errors for 1

minute sampling. Also displayed in Table 3.8 is cross-disdrometer results for the 7-minute

sequences used in this analysis. The error between the radar retrieval and the disdrometer

results are higher for the 7 minute case, which is expected. The temporal averaging reduces

the effect of spatial variability on the disdrometers.

Although this analysis was only for a single frequency of radar, it shows the radar retrieval

has very good agreement with ground instrumentation with errors of between 2% and 4%

with biases of between 0.4% and 22%. In particular, the retrieval does a much better job of

retrieving a D0 profile in agreement with disdrometers than it does with Nw. It is expected
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as frequency of the radar increases, the estimation of Nw should improve due to the increased

phase response upon which the Nw estimation is very sensitive.

3.4. Summary

This chapter laid out a retrieval framework for estimating microphysical parameteriza-

tions of liquid precipitation from radar observations based on solving the forward variational

problem. The framework applies to arbitrary frequency radars. An error characterization

was given based on different possible sources of noise and contamination using a simulated

dataset. The algorithm was shown to be very resillient to realistic levels of measurement

noise in the three radar parameters. It was also shown to work even in the presence of

reasonable calibration errors in the radar measurements. The algorithm was then applied

to several real datasets for different frequency radars. The ability of the retrieved drop size

distribution to recreate the radar measured fields was used as a performance metric. The

retrieved fields in all cases showed good agreement with radar measured fields. Finally a

comparison between a series of radar retrievals and ground instrumentation showed very

good agreement between the retrieval derived parameters, and the parameters measured at

the ground.
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CHAPTER 4

Network Retrieval

“Diversity and independence are import because the best collective

decisions are the produdct of disagreement and contest, not consensus

or compromise”

— James Surowiecki, The Wisdom of Crowds

4.1. Introduction and Background

The core subject of this dissertation is the improvement of microphysical retrievals by

leveraging radar networks instead of single radar measurements. First, a justification of why

a network approach offers improvements is provided, followed by discussion of one of the

common problems when working with networks of radar instrumentation, non-coincident

grids. An algorithm for generating network datasets from single radar measurements is

developed, creating a way to characterize the performance of a network retrieval. Following

this, a framework for multi-frequency non-colocated radar networks is presented. Results

are shown for the test dataset, along with error characterization.

4.1.1. Benefits of a Network Approach. Ultimately, the goal of a network re-

trieval is to retrieve more accurate values than is possible from a single radar. Fundamen-

tally, the network retrieval brings us three different advantages. The first benefit is to reduce

errors by having multiple measurements from different angles of each range bin. Multiple

measurements helps to cancel out the effect of measurement noise from any given radar.

Additionally, based on independence of path integrated attenuation, multiple measurements

of the same range bin helps to offset errors due to attenuation mis-estimation. For single

frequency networks the intrinsic field can be assumed to be the same. This means each
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radar provides an independent estimate of the same quantity. Indeed, the different between

each radar also provides an additional quantity of information. By estimating attenuation,

accurate rain rates can be calculated [47].

The second benefit is to help offset beam blockage, blind regions, and other areas where

signal is not available to a single radar. This is a common issue with most radars in opera-

tional and research use. Full beam blockage eliminates the possibility of any measurement

happening past the blocked location, while partial beam blockage corrupts the power mea-

surements from the radar, causing them to be severely underestimated. Networks extend the

range beyond what any one radar can manage, while being significantly more cost effective.

This is one of the core tenents of the Collaborative Adaptive Sensing of the Atmosphere

(CASA) program[48]. Multiple radars provide an increased field of view, as well as minimiz-

ing blind regions due to blockage and curvature of the earth effects(where the beam curves

upward relative to the earth, causing low lying atmospheric phenomenon to be invisible to

the radar.)

The third is to leverage the information returned from measurements at different fre-

quencies. Each frequency has it’s own benefit and by leveraging a range of frequencies we

can get a better retrieval than the single frequency retrieval. For instance, low frequency

radars suffer from very low levels of attenuation relative to higher frequency radars. Where

a high frequency radar would record inaccurate measurements due to attenuation, the lower

frequency radar will provide much more accurate measures. For this reason, lower frequen-

cies often have a much higher coverage area. On the other hand, due to the increased phase

response at higher frequencies, estimation of rain rates and phase effects can be significantly

more accurate at high frequencies. Higher frequency radars can also be operated at lower

powers and generally at higher range resolutions. In Chapter 5, an explanation for the
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benefits of multiple frequency measurements of the same field will be explained based upon

different scattering regimes.

Averaging, while straight forward, is not necessarily the most elegant, or intelligent, way

of combining this data as shown in the next section. An ideal fusion strategy needs a more

nuanced approach to combining the parameters that uses the physics of the measurements.

4.1.2. Objective Analysis: Coming to a Common Grid. One of the crucial steps

in any network rterieval is to bring the measurements from the different radars onto a

common grid. As each radar is located at a different location, it is geometrically impossible

to use a spherical grid. The most common choice of grids is the common cartesian grid.

To convert measurements taken on a spherical grid to a cartesian grid adds errors to the

underlying measurement due to the interpolation process. This process is called Objective

Analysis [49].

There exists a large number of different methodologies for gridding radar data, but the

vast majority follow the “Region of Influence” approach. Simply put, to determine the value

at a grid point on the cartesian grid, you find all radar measurements for that field within

a distance ri denoted the region of influence (ROI). Then the value of the measurement at

that grid point is the weighted average of all of the points within the ROI. The weighting

function varies, but is usually similar to the form

(53) wi,j =
f(r2

i,j)∑
iwi,j

where the distance ri,j is the distance from the ith point within the region of influence to

the grid point j. For instance, the very common Cressman interpolation kernal is given by
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(54) wi,j = exp
−r2

i,j

κ

with κ representing the fall-off parameter that controls how tight the spatial weighting

is.

a common extension to the traditional objective analysis algorithms is the addition of

an adaptive ROI that changes based on proximity to the radar. Close to a radar, points are

very dense and a large ROI causes an excessive amount of smoothing. Far from the radar

however, points become much more sparse and often a nearby point cannot even be located

within the ROI leading to “holes” in the interpolation. The same ROI used in different

locations then gives different results. Newer algorithms allow the ROI to increase as grid

points move further away from the nearest radar. This approach performs significantly

better as can be seen in the results by Trapp and Doswell [49]. These same algorithms

can be used to merge multiple radars at low frequencies(Primarily S-Band) by treating the

measurements of each radar as a cloud of points. Some algorithms, such as the Barnes[50]

and Cressman[51] interpolation algorithms that are most commonly used, are based around a

ROI based interpolation scheme, with iterative updates to minimize the interpolation error

in the reconstructed field. This however only works for the scalar quantities such as the

power measurements and Kdp. When attempting to grid Φdp, the path dependence of the

parameter makes ROI based approaches useless. Similarly for velocity, which is a vector

quantity, the gridding operators do not have the capability to handle the gridding of vector

data. There are other approaches for vector quantities not covered here as this work does

not utilize velocity in any meaningful way.
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The multi-frequency case further complicates the problem. The objective analysis algo-

rithms all assume a true underlying field, that the radar measurements are approximations

of. While this is true of the microphysical fields, it is not true of the radar measured pa-

rameters at multiple frequencies. Given the same microphysics, different frequencies will

take different measurements. Indeed, the difference in measurements for differing frequen-

cies is something that both this work, and the greater literature will seek to exploit. This

means that any algorithm that attemps to merge multiple frequency radar data at different

locations must work at the microphysical level, and not at the radar measurement level.

As the relation between the different frequency measurements is highly nonlinear, it is not

feasible to renormalize the data for any networks except possibly lower frequency S-band

and X-band combined networks. The resonance properties at C-band, as well as the very

high nonlinearities at higher bands makes this approach nontractable.

In this work, a different approach will be taken. Multiple radar observations will be used

to derive co-estimates of microphysical parameters that work for each radar.

4.2. Generation of a Network Dataset from a Single Radar

The same troubles with characterizing a retrieval algorithm that presented themselves

in Chapter 3 with respect to the lack of ground truth, also complicate the analysis of the

network retrieval algorithm. This section lays out a methodology for generating network

datasets with arbitrary characteristics from an underlying radar scan, essentially turning

the data from one low frequency radar into a network of multi-frequency radars suitable

for analysis. This type of dataset is vital for accurate error characterization of the network

retrieval algorithm, and forms an important tool for cross comparing radars in a network

setup.
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Figure 4.1. Base Microphysical Parameterization Derived from S-Band
Radar Observations by a microphysical retrieval based on data originally sam-
pled by CSU-CHILL. This dataset is courtesy of Le and Chandrasekar and
based upon work by Lim and Chandrasekar [2].

Lim and Chandrasekar showed a method for simulating X-Band radar measurements

based on measurements at S-Band [52]. Their work showed three different methods for

generating X-Band measurements. The first relied on modeling the nonlinearities between

S-Band and X-Band Zdr and then frequency scaling the phase measurements, while assuming

reflectivity was constant between the two. This gives the intrinsic fields, which can then be

attenuated based on the relationship between Kdp and attenuation. Their second method

used a look-up table to find microphysical tuples that matched the measured parameters.

The third approach used a full microphysical retrieval, and then T-Matrix scattering. In

what follows we extend this method significantly to handle the network approach.

The first step is to perform a microphysical retrieval at S-Band to get the field of param-

eters. While an accurate retrieval is desired, small errors are acceptable for this use case.

The goal of the microphysical retrieval is to get a microphysical field that represents the

true spatial variability of the radar parameters instead of being a purely synthetic spatial
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allocation of rain. In this case, a different algorithm than the single radar retrieval algorithm

developed in Chapter 3 is used. This is to prevent the encoding of a-priori assumptions.

The results of this step are shown in Figure 4.1. This is based upon a dataset provied by

Minda Le and Chandrasekar.

Figure 4.2. Microphysical region that will be cross-gridded to non-colocated
spherical coordinate systems representing each radar. Data is located on a
spherical grid.

Next, the area in the square region is isolated as the area of interest. This is chosen as a

60 km square (3600 km2 area) to mimic several operational multi-frequency networks. It is

also chosen as a region with both active and quiet areas. In particular, it is chosen such that

some of the radars will experience significant path integrated attenuation at areas where

other radars will experience very little. There is also a mix of weaker areas and stronger

areas making this a good test case. The isolated region is shown in figure 4.2.

The next step is taking this square region (where the samples are still on a spherical

coordinate system) and choosing the placement of the radar network. In figure 4.3, four
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radar positions are displayed with 40 km range rings displayed around each radar point.

Each of these radars is 20 km from grid center located at rotations of 90◦ from north.

Next, new spherical grids are created centered at each radar position. For the test setup

here, a 120◦ degree section of this grid at one degree angular increments, and 100 m range

increments is used. This limits the data processing required as the area of interest is the

center region. However, this limitation is not required and could be arbitrarily removed

depending on user needs. This 120◦ field of view from each radar gives us a large amount

of overlap, while also providing areas where less than the full four radars have data. This

is desired for the test case, as operational radars often have blind spots, and indeed this is

touted as the benefit of a radar network.

The benefit of this spherical-to-spherical conversion is a lower overall error than the

intermediate step of converting to a Cartesian grid. Every interpolation step adds an amount

of error. Most interpolation algorithms are low-pass filters, and the averaging process removes

higher frequency spatially localized information. By limiting the number of intermediate

steps, the end to end error will be reduced in most cases. In addition, the microphysical

parameters D0 and Nw are linked, and gridding each one individually introduces errors that

move the distribution away from a physically realizable one. For dense griddings, this is not

a strong source of error, but the more interpolation steps involved, the more change that

these two parameters lose their underlying relationship to each other.

The results of the spherical-to-spherical cross gridding are shown in Figure 4.4. Shown

is the microphysical field for each radar overlaid on top of one another. It is clear that there

is very good agreement, with edges of each radar’s field of view not showing any perceptible

difference from the next radar.
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Figure 4.3. Locations and fields of view of the four simulated radars. The
image shows the median drop diameter field. The four colored dots show the
location of each radar. The simulated network will have a 120 degree field of
view for each radar centered on grid center. Shown on the map is a range ring
of 40 km centered on each radar. The underlying data is on a spherical grid.
Finally a 10 km range ring is shown in the center to represent a hypothetical
intensive operations period area(IOP).

The next step is to use T-matrix scattering to calculate the radar measured parameters

at each of these bins. For this, frequencies for each radar must be chosen. In this case,

radar 1, the southern-most radar, will be S-Band. Rotating around the circle clockwise
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Figure 4.4. Overlapping microphysics from each radar grid showing good
agreement between new coordinate systems. Left panel shows the median drop
diameter, while the right panel shows the normalized intercept parameter on
a log scale. Radar Z-order is determined by frequency, with higher frequency
being displayed at higher relative layering.

will be radar 2 at C-Band, radar 3 at X-Band, and radar 4 at Ku-band located in the

easternmost position. Each radar ray is independent, and path integrated variables such

as path integrated attenuation(PIA), path integrated differential attenuation(PIDA), and

Φdp are calculated, as well as the point measurements of Zh, Zdr, and Kdp. Both intrinsic

fields(Those without attenuation), as well as the radar measured fields(fields with attenuation

applied) are calculated. It is important to note that these fields will not match the underlying

field this dataset was derived from due to the differing frequencies, locations, and path

integrations.

Shown in Figure 4.5 is the result of the entire network generation process. By column,

each of the radar measured parameters is shown, while by row each of the different radars is

displayed. A few things become immediately evident. First, the morphology of reflectivity
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Figure 4.5. Radar measured fields for each radar in the network generated
by the algorithm. There are four radars of differing frequencies going down
the page, in the order of (S,C,X,Ku). The radar measured fields Zh, Zdr Kdp

and Φdp are displayed column wise for each radar.

matches on all of the radars, with differences due primarily to attenuation. Examining Ku-

Band Reflectivity, the region located at around 200◦ experiences heavy attenuation as it goes

through a storm core, ultimately resulting in an extinct signal. Although this is synthetic

data, and so extinction could be accounted for and fixed(As there is no simulated noise floor),

any value of reflectivity below zero is truncated out of the dataset in the retrieval process to

simulate more realistic conditions. A similar phenomenon exists for Zdr linked to differential
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attenuation, as can be seen on the Ku-Band plot. As frequency increases, the attenuation is

expected to increase. We see visually noticeable attenuation effects in the X-band as well.

The next major difference is the phase components. As expected, higher frequencies

have significantly higher phase responses. For lower frequencies (X and below), a usual

and safe assumption is that Kdp scales linearly with frequency. As Kdp is not affected by

attenuation, it is commonly used to correct attenuation at higher frequencies, as well as

provide a measurement immune to calibration biases of the radar. This dataset provides a

multi-frequency dataset for the network retrieval, as well as ground-truth to characterize the

performance and errors in the retrieval.

Shown in figure 4.6 is another overlaid plot for reflectivity and differential reflectivity

for all of the radars. In the top row, the intrinsic variables are plotted. These are the

values of the field, that have not had attenuation applied. Large discontinuities are noted in

both reflectivity and differential reflectivity. This means, even given a perfect attenuation

correction algorithm and a perfect Kdp estimation algorithm, the underlying fields will not

match. This has one very large consequence for this work. Any attempt to merge multiple

measurements from each radar must be done on a common field. The intrinsic fields for each

radar, are not the same. This means, to combine multiple radars at different frequencies,

we must work in the microphysical domain, as this is the common field from which these

measurements are derived.

An idea to get around this requirement is to try to work with derivative scaled fields. For

instance, one could scale Kdp by frequency, and try to estimate the nonlinear relationship

between differential reflectivity at the different frequencies and work with a scaled version

of the radar measured parameters. Unfortunately, even if restricted to a normalized gamma

distribution, the relationship between parameters at each frequency varies highly based on
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Figure 4.6. The two power measurements overlaid for all four radars, both
intrinsic in the top row, and measured in the bottom row. This demonstrates
why merging must be done at the microphysical level, instead of the radar
measurement level.

temperature, and shape relationship. This means multi-frequency “point-cloud” approaches

are inadequate for multiple frequency cases. While this is true at lower frequencies(Ku and

below), it is even more true when Mie scattering at higher frequencies gets involved. While

Mie scattering can cause resonance regions in C-Band, and nonlinearities at X-Band and

Ku-Band, at higher frequencies the results get even more complicated. As we will show in
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Chapter 5, at Ka-Band it is possible to get negative Kdp’s, and phase components no longer

scale linearly with frequency. Even power measurements at higher frequencies suffer due to

the Mie regime resonances, causing the relationships to be very challenging to predict.

4.3. Network Retrieval Framework

The problems with combining multiple frequency radar measurements at the moment

level was described above. It is much more natural to combine the radar measurements

at the microphysical level, where the underlying fields match. Unfortunately, radars don’t

measure the underlying microphysical field. However, the correct microphysical retrieval

should minimize the observed error between all radars involved. Additionally, there should

be one unique microphysical field with this property as the radar measurements are all

derived from the same microphysical observations, corrupted by noise and measurement

error, and passed through nonlinear processes. The network retrieval framework in this

work will leverage this to combine multiple radar measurements.

The network retrieval framework can be split up into the following steps

(1) Single Radar Retrieval to estimate intrinsic fields for each radar.

(2) Definition of analysis grid.

(3) For every grid point, find covering patch points of each radar.

(4) Minimize fusion cost function subject to patch point weighting.

We’ll start with a mathematical definition of the framework before moving on to imple-

mentation details.

4.3.1. Mathematical Development of the Framework. Assume a network of n

radars, indexed by i, each operating at a frequency fi, located at cartesian points li = (x, y, z)
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with at least partially overlapping fields of view. Each radar yields a series of measurements

over a spherical grid centered at point pi with indices ri(j, k), θi(j, k) given by the tuples

(55) Ỹi(j, k) = (Z̃h,i(j, k), Z̃dr,i(j, k), K̃dp,i(j, k))

Where each of these measurements is contaminated by attenuation and measurement

error as given in equations 13, 14, 16. The first step is to pass these through the single

radar retrieval developed in Chapter 3. This is used to calculate three things. First is an

estimate of the intrinsic radar fields, free of attenuation and measurement noise. The second

is estimation of a spatially localized Kdp. Third is the recreation error described later on

in section 4.3.2, which gives a measure of the confidence of the estimation of each of the

intrinsic fields. Additionally, a microphysical parameterization is provided, but not utilized

yet in this retrieval to keep it as general as possible. It is possible to substitute in another

algorithm capable of estimating the intrinsic fields accurately, as well as a good spatially

localized estimate of Kdp at this point. Denote estimates of the intrisic microphysical field

for each radar i at grid point j, k by

(56) Ŷi(j, k) = (Ẑh,i(j, k), Ẑdr,i(j, k), K̂dp,i(j, k))

Next, define a cartesian analysis grid with resolution δx, δy indexed by (u, v). For sim-

plicity, it will be assumed that δx = δy = δg for the rest of this explanation. Then for every

point (u, v) in the analysis grid define the set
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(57) ζi(u, v) = {qi|(u, v) ∈ H(qi)}

where

(58) qi = (p1, p2, p3, p4)

is a tuple of four points on the spherical grid defined for radar i, and

(59) H(qi) = {
|qi|∑
i=1

αixi | (∀i:αi ≥ 0) ∧
|qi|∑
i=1

αi = 1}

is the convex hull of the set of points. This gives the set of points of each radar that form

the covering patches. Then form the set

(60) χ(u, v) = {min(H(ζi(u, v)))∀i ∈ N4}

where min denotes the minimum area covering. This is the set of bounding patches from

each set of radar measurements with the smallest area. Each point in qi corresponds to the

nearest corner point in the bounding patch. These represent the points of four independent

measurements from each of the n radars. The goal is to find the microphysical parameters

(D0, Nw) that best explains all of these measurements. An alternative approach would be to

use the nearest neighboring point to the analysis grid point from each radar. Unfortunately,
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this fails in areas of high spatial variability, and is also highly sensitive to noise and errors in

each grid point. By using the minimally covering patch, the variability of the measurement

is taken into account, as well as reducing the errors from the single radar retrieval, as well

as anomalous errors due to underlying instrument measurement errors.

Next we setup the cost function based on minimizing the MSE error between the measure-

ments, scaled by a weighting function discussed in the next subsection. This cost function

takes the form

Jn(χ(u, v)) =

i=4,t=4∑
i=1,t=1


(
Z̄h(fi, D0, Nw)− Z̃h,i(pi,t)

)2

wh,i(pi,t)



+

i=4,t=4∑
i=1,t=1


(
Z̄dr(fi, D0, Nw)− Z̃dr,i(pi,t)

)2

wdr,i(pi,t)



+

i=4,t=4∑
i=1,t=1


(
K̄dp(fi, D0, Nw)− K̃dp,i(pi,t)

)2

wdp,i(pi,t)



(61)

Where the Z̄h(fi, D0, Nw) denotes the results of scattering at frequency fi the microphys-

ical parameters D0 and Nw for the relevant radar parameter (One of reflectivity, differential

reflectivity, and specific differential phase). The tilde notation Z̃ denotes the intrinsic field

estimate from the single radar retrieval. The weighting functions in the denominators will

be addressed in the next subsections.

Given this cost function, the solution for the network retrieval G at each grid point (u, v)

is given by

109



(62) G(u, v) = arg min
D0,Nw

Jn(χ(u, v))

The network retrieval process is shown graphcially in the flowchart in Figure 4.7 for a

four radar, four frequency case such as that in the test case developed above.

To modify the network retrieval to use an alternative single radar retrieval, or algorithm

capable of estimating intrinsic fields, requires only modifying the inclusion of the recreation

error described below. Additionally, as the radar combines the measurements at the mi-

crophysical level using the output after scattering, it is not limited to Rayleigh scattering

regimes like many other algorithms. This means it is possible to incorporate elements such

as negative Kdp’s at higher frequencies such as Ka. It also does not rely on a-priori gridding

of the data. In addition, there should be some level of resistance to errors caused by advec-

tion and differences in temporal sampling between the radars by using the covering patch

approach instead of the nearest neighbor estimation.

4.3.2. Recreation Error. An important aspect of the single radar retrievals is how

well does the estimated microphysics represent the measured radar parameters. Parameter-

izations which more closely resemble the radar measured moments have a higher likelihood

of being correct than microphysical parameterizations that do not closely match the radar

parameters. This can be used as a thresholding parameter to denote success of the retrieval,

or as a measure of confidence in a more probabilistic sense. For the single radar retrieval, a

recreation error term for the ith radar, and the point (j, k) is defined as

(63) re(fi, j, k) = max
(
rhe (fi, j, k), rde(fi, j, k), rpe(fi, j, k)

)
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Figure 4.7. Flowchart of overall network retrieval process for a four fre-
quency four radar network. This process scales out to n radars.
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where the three arguments are the component recreation error of reflectivity, differential

reflectivity, and differential phase respectively. The component recreation errors are of the

form

(64) rhe (fi, j, k) =
Zhm(fi, j, k)− Ẑhm(fi, j, k)

Zhm(fi, j, k)

This represents the normalized error of the recreation of each of the radar measured

parameters. If used as a threshold for the network retrieval algorithm to filter out data used

in the fusion process, a cutoff value must be established. Empirically, for the radars used in

the test dataset, and the D3R/NPOL case, a value of 0.3 was found empirically to work. This

will be dependent upon the noise in the radar measurements however. A particularly noise

phase measurement, as seen on some cheaper radars, can cause the phase term to dominate.

In this case, a rescaling of the phase term by the expected noise power is suggested. If used

as a confidence parameter in a Bayesian update step, the recreation error needs to be scaled

by the expected variance of the measurement.

The recreation errors for each radar in the test dataset are shown in Figure 4.8. In

general, the single radar retrievals accurately represent the radar measured parameters. In

low signal regions however, there is a noticeable increase in recreation error, especially for

the S-Band radar. This is likely due to the phase terms being so small that any deviation is

a significant error percent wise. This could be detected and accounted for by an automatic

adjustment. Alternatively, the approach taken here was to allow those values to be filtered

out, instead placing more trust in higher frequency measurements that had a stronger phase

response in those regions. The second significant area of error is around the extinction point

to the southwest of Radar 4, displayed in the bottom right panel. Right before the signal
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Figure 4.8. Recreation error re for the four radars in the test dataset. In
order the frequencies of the radars are (S,C,X,Ku)-Band. Recreation errors
are generally low, although there are significant increases in very low signal
regions, as well as in regions of extinction at higher frequencies.

goes extinct, errors start to significantly increase. This is likely due to declining signal level.

The further radialy from the radar along these rays have no signal and so a recreation error

cannot be calculated(or alternatively, can be assumed infinite).
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4.3.3. Weighting Function. The final key piece of the network retrieval is the weight-

ing functions wh, wd, and wp in the cost function. Assuming all measurements were truly

independent, these could be calculated by calculating the local linearizatino of the jacobian

of the scattering function and estimating an inverse operator at that point. Unfortunately,

this is both computationally expensive, does not adequately factor in non random errors

or recreation errors, and is numerically highly unstable. This also assumes the estimated

intrinsic field contains only minor errors, or else the estimation of the local linearization of

the jacobian is incorrect.

A more tractable and stable approach is to use a combination of estimated variance of

the instrument measurement error, recreation error, and distance from the grid point. Given

the set of parameters rei(pt) denoting the recreation error described above, r((u, v), (pt)) the

distance from the analysis grid point to the radar measurement at pt, and the estimated

instrument variance, which is assumed to be known (and on the order of (0.8, 0.2, 1.5) for

(Zh, Zdr, Φdp) for most radars) the weight parameters can be written as

wh,i(pt) =


αh,ir((u, v), (pt))

βσγh, if rei(pt) ≤ 0.3

νh,i expρrei(pt) r((u, v), pt)
βσγh , else

The weight parameters are of the same form for each measurement. The parameters

(α, β, γ) can be tuned based on an optimization specific to each radar network, or empirically

set based on assumed prior knowledge.

4.4. Results

The test case used to evaluate this retrieval will be the generated test case shown pre-

viously in this chapter. This is a four frequency, non co-located case with radars at S,C,X,
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and Ku-Band. Figure 4.9 shows the median drop diameter retrieval results from applying

the network retrieval to this dataset. The resolution grid is chosen to be the study area

listed above, where the resolution grid points have a uniform spatial resolution of 500 m.

The first panel shows network retrieval, while the second panel shows the ground truth.

The following four panels show the four component single radar retrievals. Examining the

component retrievals show a large number of visually discernable regions of error. Most of

the retrievals over-estimate the region of large median drop diameter in the southeast corner

of the image. Also, the component retrievals appear more granular, having a higher level

of spatial variation. The network retrieval successfully reduces this over estimation of D0

in the southeast corner, while also having a spatial variability that more closely matches

the ground truth. The Ku-Band radar shows an area of significantly higher errors in the

southeast corner where the signal goes extinct. This area of high error does not propagate

into the network retrieval as the recreation error filter removes it. The region in the lower

left that is displayed as missing data is due to no radar field of view containing data in that

region.
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Figure 4.9. Median Drop Diameter retrieval results. The first pane is the retrieved field. The second pane is
the ground truth field. The following four panels are the single radar retrievals of median drop diameter for each
of the four individual radars.
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Figure 4.10. Normalized Intercept Parameter retrieval results. The first pane is the retrieved field. The second
pane is the ground truth field. The following four panels are the single radar retrievals of the normalized intercept
parameter for each of the four individual radars.
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Figure 4.10 shows similar results for the normalized intercept parameter Nw. Again, the

spatial variability of the network retrieval appears more in line with the ground truth, while

rejecting an area of high error caused by signal extinction in the Ku-Band retrieval. The

spatial variability of the component retrievals appears much higher, especially in the upper

left region of the images. Each of the component retrieval exhibits a very “spotty” return,

with high bin to bin variability. The network retrieval successfully removes the spurious

variability, while correctly retrieving the natural variability of the underlying field.

Figure 4.11 shows a histogram of the errors in the median drop diameter retrieval for

each of the component radars, normalized to provide a density estimation. The errors for

the component radars S, C, and X are centered around zero showing little to no systematic

bias in the retrieval. The Ku band radar has a bimodal distribution due to the large errors

encountered around the region of signal extinction, causing a Gaussian distribution to be a

poor fit. Overlaid on each histogram is a gaussian fit to the distribution. The parameters

for these fits are shown in Table 4.1. We can see that the lowest three frequency radars all

have a standard deviation of D0 error of between 1.44 and 1.63.

Similarly, Figure 4.12 shows histograms of the errors in estimating the normalized in-

tercept parameter Nw for each of the component radars. Again, the three lower frequency

radars all display no appreciable bias in the results, with the X-Band radar showing the

tightest coupling of errors around zero. The coefficients for the Gaussian fits overlaid on

the histograms are shown in row two of Table 4.1. A similar behavior is seen in Ku for this

parameter as that seen for D0.

The distribution of errors for the network retrieval is shown in Figure 4.13. While each of

the component retrievals can only fairly be evaluated over their individual fields of view, the

network retrieval errors may be taken over the entire domain where data is present within
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Figure 4.11. Normalized histograms of single radar retrieval errors for the
median drop diameter parameter. Overlaid are gaussian approximations to
the distribution.

the area of study. A Gaussian fit to each of the distributions is overlaid on the plots, with

coefficients given in Table 4.2. While there is a very tiny increase in the mean value of

the error, the standard deviation of the error decreases significantly compared to any of the

component retrievals.
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Figure 4.12. Normalized histograms of single radar retrieval errors for the
normalized intercept parameter. Overlaid are gaussian approximations to the
distribution.

Additionally, by incorporating multiple different radars, the field of view of the network

retrieval is significantly increased over the individual component radars.

While the distribution of the errors in the retrieval gives a good measure of the per-

formance of the retrieval within the dataset, the measure is not scale independent. This

precludes future comparison with other retrievals. Table 4.3 contains the error metric scores
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Table 4.1. Coefficients of a Gaussian fit to the distribution of errors in single
radar retrievals. µ is the mean of the distribution, while σ is the standard
deviation. It is clear there is a good fit for three of the component radars,
whereas extinction in the Ku-Band radar causes a bimodal distribution

S −Band C −Band X −Band Ku−Band

µ σ µ σ µ σ µ σ

D0 -0.0015 0.144 0.0029 0.163 0.0057 0.154 0.203 0.575

Nw -0.012 0.274 -0.013 0.287 -0.0157 0.237 1.044 1.044

Figure 4.13. Normalized histograms of network retrieval errors. Overlaid
are gaussian approximations to the distribution.

Table 4.2. Coefficients of a Gaussian fit to the distribution of errors in the
network retrieval. The NTR exhibits a slight increase in the mean error, with
a significant decrease in the standard deviation of the errors.

Parameter µ σ

D0 -0.011 0.085

Nw 0.022 0.134
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for four of the commonly used metrics for retrieval success. As expected from the distribution

of errors, the three low frequency radars have negligable bias. Even the Ku band radar has

a low bias despite the area of signal extinction causing extraneous errors. The following dis-

cussion will refer primarily to the three lowest frequency radars unless explicitly mentioned.

The normalized standard error in the single radar retrievals is also low, in the range of 5-8

%. The mean absolute error indicates most of the expected errors in D0 estimation should

be less than 0.1mm, and less than 0.2 dB for the normalized intercept parameter. Finally

the MAPE metric is provided for reference.
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Table 4.3. Single Radar Retrieval Error Metrics for Network Retrieval Dataset

S −Band C −Band X −Band Ku−Band

D0 Nw D0 Nw D0 Nw D0 Nw

NSE 0.059 0.077 0.063 0.071 0.048 0.065 0.167 0.213

NB -8.3e-04 -4.67e-03 -1.72e-03 -4.5e-03 3.06e-03 -6.2e-03 0.11 0.067

MAE 0.109 0.198 0.105 0.208 0.09 0.163 0.308 0.550

MAPE 0.063 0.087 0.067 0.073 0.469 0.081 0.174 0.211
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Table 4.4 lists the same error metric scores for the combined network retrieval. The

error in D0 is halved over any of the other radars, with an even better improvement for the

normalized intercept parameter. Biases did slightly increase, but are both under 1% which

is acceptable. Finally, the mean absolute error indicates that errors in D0 estimation should

be primarily less than 0.055 mm, while errors in Nw being predominantly below 0.1 dB.

Overall, each of metrics improved by about a factor of two when using the network retrieval

as compared with the single radar retrievals. Finally, the MAPE score is shown for reference.

Table 4.4. Network Retrieval Overall Error Measures.

Parameter NSE NB MAE MAPE

D0 0.031 -0.0057 0.055 0.032

Nw 0.034 -0.007 0.096 0.036

The grid resolution for this test case was set at 500m in both directions to match a

common grid size used for network radar mosaics. The retrieval however is not limited to

any particular resolution. Figure 4.14 shows the retrieval at 500 m, 250 m, and 100 m

resolutions. There is an increase in quality seen moving to 250 meters resolution, and a

visual improvement in quality moving to 100 m. In this way the retrieval can match an

analysis grid of interest. However, accuracy will not particularly change with higher spatial

resolutions beyond a point. The original radar retrievals are conducted at a range resolution

of 400 m and an angular resolution of 1◦. This means as the resolution increases, the choice of

corner points starts to become the same between different resolution grid points. While this

provides a more visually pleasing image, it does not increase the accuracy of the retrieval,

as at this point, data is merely being replicated.
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Figure 4.14. The retrieval grid can have arbitrary resolution and grid spac-
ing. In this example, three different resolution grids are chosen. The top grid is
500m resolution, while the middle is 250m resolution, and the bottom retrieval
is at a resolution of 100m.

4.5. Summary

This chapter presented a framework for microphysical retrievals using a multiple fre-

quency non-colocated radar networks. The formulation used radar measured parameters to

estimate a global microphysical parameterization by combining radar measurements at a

microphysical level. The accuracy of the method was demonstrated on a simulated network
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dataset using four radars, each at a different frequency. It was shown that the algorithm

is capable of handling many of the major network error sources such as beam blockage,

extinction of the signal at higher frequencies, disagreements between individual radars, and

differences in the intrinsic field due to scattering regime and path integrated effects. In this

case, the network approach decreased relevant error metrics by a factor of two on average,

with a larger coverage area than any individual radar in the network. It was also shown that

the retrieval is able to avoid propagation of errors from mis-estimated intrinsic fields.

This approach extends to larger networks with an arbitrary number of radars at different

frequencies. Additionally, by utilizing a covering patch approach to fusion instead of a

traditional cloud of points approach, a small level of tolerance to advection and temporal

errors is introduced. While this work used the single radar retrieval in Chapter 3 as a

base for the intrinsic field estimation, the network formulation here is not bound to this

constraint. In place of the recreation error provided by the single radar retrieval for use in

the weighting function of the cost equation, a constraint based on internal self consistency

of the measurements could likely be used.

In addition, a new methodology for creating synthetic test sets for radar networks from

a single radar was developed. This method grids data sampled onto a spherical grid, onto

another coincident spherical grid. In the process, data can be adjusted to simulate arbitrary

frequency radars.
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CHAPTER 5

Contributions of Non-Radar Ground

Instrumentation

“No one is actually dead until the ripples they cause in the world die

away..”

— Terry Pratchet, Reaper Man

Although the focus of this work is radar retrievals, other instruments that are deployed

to measure the atmosphere can contribute significantly to the estimation of microphysics,

and aid the radar retrieval in multiple ways. One of the more commonly used companion

instruments is networks of dual tipping bucket rain gauges. These gauges can be used both

to validate radar derived estimates of precipitation from the national NEXRAD network, as

well as be incorporated into the estimation of rain rates directly[53]. While in general the

estimated rain rate at a rain gauge will be more accurate than a radar estimate, it also only

measures a small area and can be subject to it’s own sources of error. A radar may have a

higher average level of error at any given point, but will have a significantly larger coverage

area. Furthermore, networks of radars can be deployed to estimate precipitation over very

large coverage areas with high temporal resolution [54].

These rain gauges, although useful, typically only measure instantaneous and cumulative

rain rates, not microphysical parameterizations. Another instrument, called a disdrometer,

can be deployed to measure the drop size distribution of rainfall. The three most popular

types of these are the Joss-Waldvogel (JWD), Autonomous Parsivel Unit (APU), and 2-D

Video Disdrometer (2DVD) shown in Figure 5.2.

Each of these instruments provides a binned DSD over some sampling period. A common

sampling period for field projects is one or five minute intervals. Estimates of DSDs were
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Figure
5.1. (a) Joss
Waldvogel
Disdrometer
(Courtesy
nasa.gov)

Figure
5.2. (b) Au-
tonomous
Parsivel Unit
(Courtesy
nasa.gov)

Figure
5.3. (c) 2D
Video Dis-
drometer
(Courtesy
nasa.gov)

Figure 5.4. The three most common disdrometer types used in operational
and research settings. The Joss-Waldvogel is an acoustic-impact device. The
Parsivel unit is based upon the use of a laser coupled to an optical measurement
array. Finally, the Video Disdrometer uses orthogonal line scan cameras.

used as a verification source in Chapter 3. The rest of this chapter will show how ground

instrumentation can contribute to the network retrieval by constraining parameters, and

providing increased information about the microphysical fields.

5.1. Drop Size Distribution Constraints

One of the best uses for disdrometers in the network retrieval is as a source of addi-

tional constraints on the DSD parameterization. These constraints limit the search space of

possible DSD parameterizations, as well as increasing the accuracy by providing increased

information about the scattering parameters. This section will address three key constraints

that disdrometers can provide.

The 2DVD disdrometer type operates by using orthogonal line scan cameras. This allows

it to take images of drops as they fall through a collection area. These images can be

processed to calculate drop axis ratios for drops of different sizes, as well as estimating the

range of canting angles. These results can be used to choose between the different drop shape
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relationships (DSR) described in the literature. These drop shape relationships can vary by

location and time, and consensus in the community has not been reached on the best model.

The Thurai and Bringi [19] DSR was derived through the use of a 2DVD. These instruments

are commonly deployed during NASA GPM-GV field campaigns, as well as other research

field campaigns.

Figure 5.5. DSD distribution during IFloodS Field Campaign as derived
from Autonomous Parsivel Units. A power law fit to the data is overlaid with
the displayed parameterization.
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A second constraint provided by disdrometers is a restriction of the physically realizable

regions in the parameter space. It is known that the entire parameter space for (D0, Nw)

is not reachable by physically realistic drops. However, the constrained area can vary by

geographic region, time of year, and storm type [55]. By deriving a more accurate bound

on this physically realizable region, the cost function in both the single and the network

retrieval can be augmented. Figure 5.5 shows the distribution of DSD parameters during

the IFloodS field campaign measured by the network of APU’s. A power law fit to the data

is overlaid on the data based on the Levenberg-Marquardt algorithm described in Appendix

2. The fit to the data was incorporated into the single radar retrieval in the NPOL IFloodS

example in Chapter 3. In general, the effect on bins that were retrieved accurately without

the additional constraint is negligible. The addition of the constraint however did help to

remove several anomalous results where the retrieved DSD was not physically realizable.

The third constraint of interest to the retrieval process is the selection of the shape

parameter µ. In the implementation of the retrievals in this work, the value of µ defaults to

a value of 3. Chapter 3 characterized the performance of the single radar retrieval for differing

values of µ, showing a modest decrease in retrieval accuracy as the true value of µ diverged

from the assumed value. The measured DSD at the disdrometer can be used to select a more

accurate value of µ for each portion of the storm within range of the disdrometer.

The procedure for retrieving µ from the disdrometer measurements is covered in Bringi

and Chandrasekar [1]. First, liquid water content is estimated. Next, the value of D0 is given

as the drop size diameter value for which half of the water content is above, and half of the

water content is below. Next, the normalized intercept parameter Nw is derived based on

it’s relation with the liquid water content and median drop diameter. Finally, µ is chosen

130



so as to minimize the error between the modeled normalized gamma distribution with those

parameters, and the actual measured histogram of drop sizes.

5.2. Spatial and Temporal Variability of Microphysics

One of the topics of interest in the atmospheric remote sensing community is how the

distributions of microphysical parameters are structured, and how they vary. For instance,

it is known that different climatic regions have different drop size distributions, and that the

parameterization of these DSD’s can vary on a seasonal scale. In addition, there is a high

amount of variability between the DSDs encountered in convective storms compared to those

sampled in stratiform type storms. Even the variability of the parameters differs between

the two storm types. Indeed, classification schemes for these storms based on differences in

DSD parameters have been proposed Penide et al. [56].

The spatial and temporal variability of the microphysics has a large effect on the single

radar retrieval in Chapter 3, and the network retrieval developed in Chapter 4. The down-

sampling operation in the single radar retrieval relies on neighboring range samples to have

a high level of correlation. If this does not hold, the decimation filter, which is a low pass

filter, will cause excessive loss of spatially localized features. This degrades the overall

estimation, and can cause large iterative errors to develop. The degree to which the down-

sampling operation affects the end result is directly related to the spatial variability of the

microphysics.

The network retrieval is affected by the variability in two different ways. First, the

fusion of measurements from the corners of the covering patch assumes the variability of the

region covered by the patch is such that the measurements are all highly correlated with

the retrieved microphysical parameters. This is implicit in the assumption that there is a
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(D0, Nw) field that minimizes the disagreement between the different radar measurements,

and thus the cost function. Second, the time that each radar samples a given area is different

than the time that the other radars sample that area. While this difference can be minimized

with creative scanning strategies, it can never be fully eliminated. If the storm has a high

enough level of temporal variability, advection will dominate the measurements and the

radars will essentially be measuring completely different fields.

The following subsections lay out a framework for estimating this spatial variability using

radars and disdrometers. We will then compare the variabilities, and discuss a relevant theory

behind comparing ground and aerial observations.

5.2.1. Taylor Hypothesis. Taylor was one of the first individuals to study the issue of

comparing ground based measurements with radar observations of the atmosphere [34]. A key

insight of the work was that if you assume that the atmosphere consists of vertically stacked

stratified layers, and assume that operations on these layers are affine transformations, then

differences in spatial location are equivalent to differences in time, and are related by the

autocorrelation function of the storm structure. More specifically, given a storm with mean

velocity η, the temporal correlation of the storm at time τ is equal to the spatial correlation

of the storm at spatial lag r = ητ . If one then factors in the affine transformation condition,

changes in time can be directly compared to changes in space, and thus to changes in height.

It is known that storms change morphology as they precipitate out of the atmosphere due

to a large number of physical processes, such as sedimentation, evaporation, and collision-

coalescence. While the affine transformation condition is unrealistic in the most general case

[57], it can be valid on small enough spatial and temporal scales.

132



5.2.2. Variability of Scattered Moments. Based on the Taylor hypothesis, there

is a link between the temporal and spatial variability of the microphysics. There are two

different methods to compare the variability of the measurements. The correlations can be

compared in the radar measurement domain by simulating scattering on the disdrometer

measurements, or alternatively on the microphysical fields after a radar retrieval has been

performed. First we will address the results in the radar measurement domain.

Data from 30 days of the IFloodS campaign for both disdrometer and S-Band radar

(NPOL) measurements were chosen as the dataset. For each disdrometer, radar measure-

ments were simulated using the PyDisdrometer package at S-Band frequency. Then the

average of the daily autocorrelations over the scattered parameters was calculated to give a

temporal decorrelation time, defined as the lag where the autocorrelation drops below 1/e.

Next, the cross correlation between each pair of disdrometers was calculated for the three

radar scattered parameters. A trend line was fit to this data, and the decorrelation distance

was determined, again with a 1/e threshold.

Next the radar data above each disdrometer in the lowest elevation scan was processed

in a similar way to calculate temporal and spatial decorrelation times/distances for the

corresponding radar measurements. The results of this are shown in Table 5.1.

In general the results from the radar have a much larger correlation distance, and longer

correlation time, with the exception of Kdp. This is likely due to a larger measurement

area for the radar compared to the cross section of the storm sampled by the disdrometer.

Unfortunately, the placement of the disdrometers was not optimal for this type of study, as

large distances existed between many of the disdrometers. The maximum distance between

disdrometers was over 100 km, although many pairs and triplets of co-located (within 500

meters) disdrometers are included in the dataset. A likely explanation for the higher temporal
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Table 5.1. Scattered Moment Autocorrelation Times and Distances. Au-
tocorrelations are calculated over 30 days of data from the NASA IFloodS
campaign. The decorrelation value is taken to be 1/e.

Spatial Average (km) Temporal Average (min)

APU Zh 3.75 10.74

Radar Zh 12.27 19.73

Overall Zh 8.68 15.60

APU Zdr 2.33 8.32

Radar Zdr 5.60 10.37

Overall Zdr 4.05 9.35

APU Kdp 3.30 13.32

Radar Kdp 8.00 4.34

Overall Kdp 5.53 10.06

correlation in Kdp for the disdrometer is the path specific nature of Kdp estimation. As the

storm moves, the estimation algorithm can have significantly varying Kdp.

Figure 5.6 shows the distribution of spatial cross correlations between each pair of dis-

drometers, and between each pair of radar points. As expected, there is a sharp drop off with

distance, with radar having a higher correlation with distance. Similarly, Figure 5.7 shows

the results for differential reflectivity. A sharper gradient is observed with the correlations,

but the the general trend as well as the increased correlations for the radar measurements

remain. Finally, Figure 5.8 shows comparable results for specific differential phase, which

exhibits similar trends to the previous two plots.

5.2.3. Variability of Microphysical Parameters. Another way to evaluate the

variability of the microphysics is to use disdrometer estimates of the microphysical param-

eters, and results from a radar microphysical retrieval. For this analysis, we will use the
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Figure 5.6. Spatial Correlation Distribution for Zh based on a month of
radar and disdrometer data. Radar measured moments are used for the radar
label, while T-Matrix scattered radar moments are used from the disdrometer
to compare disdrometer based correlations.

IFloodS dataset, although this time we will restrict the analysis to a 90 minute window

during which a storm passed over one of the disdrometers on June 29th, 2013. The disdrom-

eter measurements will be used to calculate a temporal correlation length, while the radar

retrieval measurements will be used to calculate a spatial correlation distance.

The Drop Size Distribution from the APU01 disdrometer for the 90 minute period is

shown in Figure 5.9. This shows the majority of the DSD is under 2mm drop size, although

portions of the time have drops approaching 6 mm.

Next the microphysical parameters are estimated using the approach described in Ap-

pendix B. This gives a microphysical parameterization at 1 minute increments over the 90
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Figure 5.7. Spatial Correlation Distribution for Zdr based on a month of
radar and disdrometer data. Radar measured moments are used for the radar
label, while T-Matrix scattered radar moments are used from the disdrometer
to compare disdrometer based correlations.

minute period. The results of this operation are shown in Figure 5.10. The time period

starts out with larger drops detected, before the median drop size decreases as the trailing

stratiform portion of the storm passes over the disdrometer.

The autocorrelations for each of these figures are shown in Figures 5.11 and 5.12, with

the decorrelation threshold displayed as the strong bar. The median drop diameter exhibits

a correlation time of 15 minutes for this case, while the normalized intercept parameter

decorrelates significantly more quickly with a time of only 3 minutes.

The spatial autocorrelation function of the radar retrieved microphysical parameteriza-

tion using a combined S-Band/Ku-Band network retrieval is shown in Figures 5.13, and 5.14,
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Figure 5.8. Spatial Correlation Distribution for Kdp based on a month of
radar and disdrometer data. Radar measured moments are used for the radar
label, while T-Matrix scattered radar moments are used from the disdrometer
to compare disdrometer based correlations.

along with decorrelation threshold 1/e. The median drop diameter becomes decorrelated at

a lag of 10, which corresponds to 5 km. Similarly, the normalized intercept parameter be-

comes decorrelated at a lag of 3, which corresponds to a distance of 1.5 km. Similarly to the

temporal result, the variability in Nw appears to be significantly larger than that of D0.

Next, one can examine the differences between the two correlation scales. Starting with

the relationship assumed by the Taylor hypothesis

(65) r(D0) = ητ(D0)
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Figure 5.9. Drop Size Distribution from APU01 on June 29th around 21Z.
Intensity of the diagram is drop count per bin on a log10 scale.

this can be rearranged to give

(66)
r(D0)

τ(D0)
= η
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Figure 5.10. Microphysical Parameterization from APU01 on June 29th
around 21Z. The top panel shows the median drop diameter, while the bottom
parameter shows the normalized intercept parameter.

with a similar rearrangement for the normalized intercept parameter. In other words, the

temporal and the spatial correlations are related to each other by the storm velocity η. While

this relationship was only strictly formulated for the 2D Space-Time autocorrelation function,

we will apply it to the 1D case. Solving for η using the above calculated decorrelation

times and distances gives values of η = (5.5, 8.3) m/s for the two parameter pair (D0, Nw)

139



Figure 5.11. Temporal autocorrelation for the median drop diameter pa-
rameter. The strong bar corresponds to the decorrelation threshold 1/e. The
decorrelation threshold is crossed at 15 minutes.

respectively. The average storm motion from radar measurements at the height of the melting

layer, which is assumed to be the dominant generating physical driver, was about 6 m/s.

This is surprisingly good agreement.

140



Figure 5.12. Temporal autocorrelation for the normalized intercept param-
eter. The strong bar corresponds to the decorrelation threshold 1/e. The
decorrelation threshold is crossed at 3 minutes.

5.2.4. Multi-Frequency Scattering Results. The final contribution of ground in-

strumentation considered here is based upon the use of scattering results to find new relation-

ships between multiple frequency observations of the same underlying microphysical fields.

A lot of assumptions go into the empirical relations used by researchers in the field. A large

number of these assumptions are derived from years of working with S-Band radar data.
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Figure 5.13. Spatial Autocorrelation for radar retrieved median drop di-
ameter at a height of 1km. Each lag corresponds to 500m distance. The
measurements become decorrelated at 5km.

Many of these relations have become canon, and unfortunately are used in situations where

they are not necessarily true. This subsection will examine some of these assumptions as

they relate to relations between radar moments as frequencies change.

To show the effect of changing frequency, the entire disdrometer dataset from IFloodS

was passed through PyDisdrometer to generate equivalent radar measurements at Ku and
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Figure 5.14. Spatial Autocorrelation for radar retrieved normalized inter-
cept parameter at a height of 1km. Each lag corresponds to 500m. The
measurements become decorrelated at 1.5km.

Ka frequencies. Scattering was done on the binned model, and then D0 was subsequently

estimated for the purposes of labeling. Figure 5.15 and Figure 5.16 show the reflectivity of

this dataset as a function of median drop diameter for Ku and Ka. Overall, the trend is as

expected, however the Ka does exhibit a much higher variability in reflectivity at large drop

sizes. This is due to resonances in the Mie Region.
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Figure 5.15. Reflectivity at Ku as a function of median drop diameter.

Figure 5.17 shows the dual frequency ratio of the two reflectivities. This is just the ratio

of the two frequencies(or the difference in log domain). This shows that Ka has a slightly

higher reflectivity for smaller drops, but as the drop size increases beyond 1.5 mm, the trend

reverses and Ku has a much higher measured reflectivity. Many different retrieval algorithms,

including those used on the GPM satellite, leverage the dual frequency ratio of co-located,

beam-aligned radar systems.

There is more to be gleaned from this dataset however than somewhat well known results

for DFR. Figure 5.18 shows the differential reflectivity at Ka band. It shows increasing Zdr

at small drop sizes, before plateauing at 0.5 dB. This is caused by resonances in the Mie

region. As verification for this Figure 5.19 shows reflectivity and differential reflectivity from

the D3R radar’s Ka band during IFloodS. This shows that the differential reflectivities do

144



Figure 5.16. Reflectivity at Ka as a function of median drop diameter.

indeed plateau, although from the radar measurements at about 0.75 dB. The difference

is likely due to a difference of drop shape relationship. This implies that power law type

relationships for rain-rate estimation at Ka will run into estimation issues when based purely

on Zdr as some have proposed.

Next, Kdp shows some very interesting behavior that flies in the face of commonly held

dogma. Figure 5.20 shows the specific differential phase results for the dataset. The inter-

esting part of this graph is the negative Kdp values. These are generally not present at any

of the lower frequencies for liquid precipitation, and indeed many algorithms do not even

allow values of Kdp to be negative.

Finally, Figure 5.21 shows the ratio of specific differential phases between the two fre-

quencies. It is generally assumed that Kdp scales linearly with frequency. This mostly holds
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Figure 5.17. Dual Frequency Ratio(DFR)(Ku-Ka) for the IFloodS disdrom-
eter dataset. This is repeated here for reader convenience.

true for lower frequencies. At Ka however this assumption fails. The ratio of the two fre-

quencies used for scattering is roughly 2.7, and so the ratio of Kdp would be expected to be

2.7. Instead, the figure shows that the ratio is not constant, and changes with drop size.

This result is not completely unknown to the literature, but is not as widely disseminated

as it should be.
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Figure 5.18. Differential reflectivity at Ka for the IFloodS dataset based on
T-Matrix Scattering of the binned histogram. The differential reflectivity has
the interesting feature of maxing out at a value of 0.5 dB.

5.3. Summary

Although not as commonly deployed as radar networks for research and operational

purposes, this discussion has shown that ground measurements of drop size distributions

using disdrometers has a place not only as a verification tool for radar retrievals, but also as

a source of information for the instrument fusion in both the single and networked radar cases.
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Figure 5.19. Reflectivity vs differential reflectivity from D3R’s Ka band
radar during IFloodS. Results are based on T-Matrix Scattering.

The single and network radar retrieval algorithm makes some a-priori assumptions about

parameters such as the shape relationship and shape parameter µ. Ground instrumentation

serves as an anchor allowing estimation of these parameters to be input into the retrieval

process. Additionally, the region of physically realizable DSD’s that is used as a term in

the cost function of the single radar retrieval benefits from a more accurate geographically

localized estimation of the distribution. This can be used either to augment the cost function

of the retrieval, or as a verification source for the retrieval.

There remains an open question in the field as to how best link the measurements at

the ground to measurements taken at higher altitudes by radars. Results were given show-

ing a possible approach to tie together the two measurements by using the autocorrelation

functions of each instrument along with the storm velocity to compare variabilities in both

space and time. While this does not solve the spatial and temporal variability issues, it does

provide a method by which the measurements can be linked and compared.
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Figure 5.20. Specific Differential Phase at Ka for the IFloodS dataset. Of
particular importance is the prevalence of negative Kdp values, which are not
present at lower frequencies for liquid water.

Finally the scattering combined with disdrometer and radar measurements showed how

new insights can be gained by cross comparing the different datasets. In particular, this

section looked at how the behavior of the radar measurements changes with frequency as

the frequency increases.
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Figure 5.21. Ratio of Kdp between Ku and Ka for the IFloodS dataset. Data
is generated based on T-Matrix Scattering.
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CHAPTER 6

Summary and Conclusions

“The fact that we live at the bottom of a deep gravity well, on the

surface of a gas covered planet going around a nuclear fireball 90

million miles away and think this to be normal is obviously some

indication of how skewed our perspective tends to be.”

— Douglas Adams

Radar networks are making up an increasingly large portion of both the operational

remote sensing capabilities of the world, as well the research networks. Networks such as

NEXRAD have shown the benefits of combining multiple radars to get an increased field

of view as well as well as multiple independent measurements of the atmosphere. Quasi-

operational networks such as CASA demonstrate the benefit of incorporating different fre-

quency radars into the equation. Utilizing lower cost, smaller radars for a network allows for

increased spatial and temporal sampling. Finally, networks such as the temporary networks

set up during the NASA GPM-GV field campaigns, and the more permanent Southern Great

Plains facility operated by the Department of Energy’s Atmospheric Radiation Measurement

(ARM) program have shown that having multiple frequencies allows for discovering more

information about precipitation. While a large amount of work has gone into utilizing multi-

frequency information to calculate the drop size distribution parameters, the majority of it

has focused on the beam-aligned case using dual frequency ratios. For instance, this is the

approach used by the newly launched GPM-Core satellite.

This work presents two new algorithms for microphysical retrievals. In Chapter 3 a

radar retrieval was formulated that uses information from a single radar to solve the forward
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variational scattering problem. The algorithm provides an estimate of the underlying mi-

crophysical parameters D0 and Nw that give rise to the radar measurements. The algorithm

was shown to be accurate at a wide range of frequencies with low levels of error. An error

characterization was given based on common error sources in radar measurements using both

simulated data as well as data from operational research networks. The retrievals gave very

good agreement both with recreating the radar measured fields, as well as when compared

to estimates of the microphysical parameters measured at the ground by disdrometers.

Next, in Chapter 4 a framework for using non-colocated multiple frequency dual-polarized

radar networks was developed. The framework works at the microphysical level, and extends

the results from the single radar retrievals, while also admitting other intrinsic field estima-

tion algorithms to be used. The benefits of combining measurements at the microphysical

level was examined. To characterize the performance of the algorithm, a method of generat-

ing simulations of network radar data from a single radar measurement file was given. This

method allows arbitrary locations and frequencies of radars to be generated.

Finally, Chapter 5 shows how ground instrumentation can be used to improve the retrieval

performance. In particular, it was shown how the information provided by the different dis-

drometers can help to constrain the parameter space for the retrieval, while also eliminating

some of the necessary a-priori assumptions that go into the retrieval. Then, a comparison of

spatial and temporal variability between ground instrumentation, radar measurements, and

retrieval results was examined.
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6.1. Future Work

There are several desirable modifications that could be made to the retrieval process

to improve performance in real world scenarios. The following are suggested improvement

areas:

• Incorporate a hydrometeor identification algorithm to differentiate between liquid

precipitation and frozen precipitation, or sources of clutter. This would reject some

of the more spurious cases of error that can be caused by hydrometeors such as

melting hail that are not easily detected by the simple quality control filters used

in this work.

• Early in development of the retrieval algorithm, it was found that when the cali-

bration of a radar is significantly off, the retrieval has issues with convergence as

no DSD could adequately explain the radar measurements. This can be turned

around and an optimization algorithm developed to recalibrate the radar based on

minimization of global cost functions in the DSD retrieval optimization.

• Preliminary results exist on operational radar networks using the network retrieval

framework. These networks however do not contain disdrometers and so it is hard

to fully characterize the performance of the algorithm. A full characterization in a

multi-frequency radar network with supporting ground instrumentation is required

in the future.

• Currently the algorithm is computationally intensive. There exists a number of

trade-offs that can reduce the computation time, at the expensive of memory and

accuracy. A study detailing these trade-offs could reduce the computation time of

the algorithm significantly.
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• Currently the disdrometers are primarily used for verification of the algorithm and

constraint of some of the a-priori assumptions. However a ground disdrometer

provides a valid estimate of the microphysical field. It should be possible to directly

incorporate this into the retrieval process, either at the minimization of the cost

function, or through Bayesian fusion of multiple instruments
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APPENDIX A

Description of Field Experiments and Datasets

“Everything went great right up to the explosion. ”

— Andy Weir, The Martian

The proper development and evaluation of this algorithm requires a rich dataset. In

this appendix we will discuss two different field projects that CSU participated in, and the

resulting dataset that we will use to test and validate our algorithm. The first dataset is

from the MidLatitude Continental Convective Clouds Experiment, while the second one is

the Iowa Flooding Experiment. After discussing both field campaigns we will provide some

description of the various instruments we will use. We will conclude with a discussion of

some of the algorithms that we used to derive auxillary data.

A.1. Midlatitude Continental Convective Clouds Experiment

The Midlatitude Continental Convective Clouds Experiment(MC3E) was a joint field ex-

periment between NASA and the Department of Energy(DOE). The field project took place

during the summer of 2011 in northern Oklahoma centered around the DOE Atmospheric

Radiation Measurement (ARM) Climate Research Facility’s Southern Great Plains(SGP)

site. The purpose of the experiment was primarily to study convective initiation of thunder-

storms in the mid-latitudes at multiple scales. The experiment consisted of a dense network

of active and passive instruments. The roster of instruments includes three X-SAPR X-band

radars, one C-SAPR C-band radar, the NASA NPOL S-Band radar, as well as an array of

rain gauges and disdrometers. In addition to the ground radars and disdrometers, multiple

radiometers, cloud radars, and millimeter wave instrumentation was available. The NASA

ER-2 and University of North Dakota Citation aircraft were also flying coordinated flights.
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The radars had an overlapping field of view providing us with a good dataset for multi-

frequency analysis. The layout of the subset of the instruments that we are most interested

in is shown in figure A.1.

Figure A.1. MC3E Instrument Layout. Shown are the ground scanning
radars and several auxillary instruments.

While this dataset provides the ideal setup, unfortunately there are some issues with the

data quality and operational status of the radars. A large portion of the ground instrumen-

tation was purchased with recent stimulus funding and scaled up very quickly. This causes

some issues with calibration. Fortunately, the majority of these issues can be fixed in post
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processing with some care. More issues exist with the operational status of the instrumen-

tation. Instruments were frequently broken. Despite all of this, the MC3E dataset provides

a huge opportunity for research. The dataset was able to capture many different convective

cases, as well as some stratiform cases. There was hail, rain, tornadoes, and every variation

of weather one could expect from a summer in the midwest.

A.2. Iowa Flood Experiment

The Iowa Flooding experiment(IFLOODS) was a joint experiment between NASA and

the Iowa Flood Center to study variability of rainrate at sub 1km scales. There was a variety

of instrumentation, though the core of the experiment was the combination of NASA’s NPOL

radar, the NASA D3R radar, and a very dense array of disdrometers and rain gauges aligned

along a radial. Four X-Band radars were also present from the University of Iowa, but initial

analysis of the data quality showed it was of unacceptable quality and so we will not for now

include it into this analysis. A map showing the layout of some of the instrumentation by

the Iowa Flood Center is shown in Figure A.2.

The primary reason for our interest in the IFLOODS dataset is the dense sampling of

disdrometers. This allows us a very good dataset with a large amount of ground truth to

test our algorithm with. The disdrometers are arrayed along a radial of the radar to the

southeast displayed in yellow in Figure A.2. The NASA NPOL and D3R radars are located

in the center of the image. The range rings are spaced 25 km. An array of tipping bucket

rain gauges are displayed to the northeast as well, although these are out of range of the

D3R radar.

A.3. Radar Descriptions

A listing of the different radars and some of their specifications is shown in Table A.1.
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Figure A.2. IFLOOD Instrument Layout. Courtesy of Iowa Flood Center
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X-SAPR C-SAPR NPOL CSU-CHILL(S) CSU-CHILL(X) D3R(Ku)

Antenna Diameter 2.4m 4.27m 8.5m 8.5m 8.5m 1 m

Antenna Beam Width 0.9◦ 0.98◦ 0.9◦ 1.0◦ 0.33◦ 0.86◦

Antenna Gain 45 dBi 45 dBi 43 dBi 43 dBi 53 dBi 43 dBi

Polarization type Sim Sim Sim + Alt Sim + Alt Sim Sim/Alt

Operating Frequency 9.5GHz 5.625 GHz 2.725 GHz 2.725 GHz 9.41GHz 13.91 GHz

Transmitter Peak Power 200kW 250kW 850 kW 1MW/channel 25kW 160 W

Minimum Pulse Width 200ns 200ns 200ns 0.2-1.6µs - 0-100µs

Max PRF 5kHz 5kHz - 1250 MHz 2GHz 2 kHz

Receiver Dynamic Range 80dB 80dB - 80 dB 90dB 90 dB

Max Range 40km 120km 300km 300 km - 40 km

Table A.1. Radar Characteristics1
6
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A.4. Error Metrics

The literature on forecasting uses a large number of different error metrics, each with

their own strengths and weaknesses. As we do not have access to the original datasets and

algorithms most papers have utilized, comparing the results between papers is not necessarily

straightforward. Additionally, each metric sometimes has slightly different implementations

with regards to some of the implementation details such as missing data.

We will use the following error metrics. A more detailed discussion of each metric can

be found in the literature[44].

Let

(67) ~Y = (Y0, Y1, ...Yi, ..., Yn)

senote a series of measurements and

(68) ~F = (F0, F1, ..., Fi, ..., Fn)

denote the output of an estimator for the series ~Y . The error term for each retrieval

point is then

(69) ei = Yi − Fi

The error metrics used here are almost all normalized error metrics. The scale the error

to the value being forecasted. This is a desirable trait, as otherwise the error metric used
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is dependent on the scale of the data being used, making it impossible to cross compare

performance over different cases and with other algorithms.

A.4.1. Mean Square Error (MSE). Mean square error is one of two non-normalized

metrics used in this work, and is only included for completelyness. In general, it highly

depends on the underlying data field, and cannot be compared across multiple studies. The

formula for it is given as

(70) MSE =
1

n

n∑
i=1

e2
i

In general, this work will not use MSE to draw any conclusions, and just provides it for

reference.

A.4.2. Mean Absolute Error (MAE). The second non-normalized metric is the

mean absolute error. This metric gives us the error expected for a given dataset, but again

is scale dependent so it cannot be cross compared between studies easily. It is calculated as

(71) MAE =
1

n

n∑
i=1

|ei|

What the MAE scores provides is a good way to compare performance on the same

dataset between different algorithms and test conditions over the same underlying dataset.

A.4.3. Mean Absolute Scaled Error (MASE). Mean Absolute Scaled Error (MASE)

is one of the more interesting metrics included here. Although not as common as any of the

other metrics discussed, it has quite a few desirable conditions. Simply put, the MASE score
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of a predictor is how much better it does than a naieve one step predictor. This means it has

a level of scale invariance. A score of 1 for MASE denotes that the estimator has the same

performance as a one-step estimator that uses the previous value of the measurement. Scores

lower denote a better estimator, while scores higher denote a worse estimator. This score

metric works best when there is a measure of wide sense stationarity in the measured se-

quence. Unfortunately, as no other papers report MASE scores, there is no way of comparing

it with the literature on microphysical retrievals.

The formula for MASE score is given as:

(72) MASE =
1

n

n∑
i=1

|ei|
1

n−1

∑n
i=2|Yi − Yi−1|

A.4.4. Normalized Standard Error (NSE). Normalized Standard Error (NSE),

also called Normalized Absolute Error, is a scaled error metric commonly used in much of

the retrieval work in the literature. Although several different forms are all called by the

same name, the one used here will be given by

(73) NSE =
1
n

∑n
i=1|ei|

1
n

∑
Yi

A.4.5. Normalized Bias (NB). The second metric most commmonly seen in the re-

trieval literature is the Normalized Bias (NB). It provides a good measure of systematic over

or under estimates of parameters. The form for NB used in this work is
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(74) NB =

∑n
i=1 ei∑n
i=i Yi
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APPENDIX B

Tool Development and Open Source Contributions

of This Work

“Empowerment of individuals is a key part of what makes open source

work, since in the end, innovations tend to come from small groups,

not from large, structured efforts.”

— Tim O’Reilly

This work, as in most dissertation level research efforts, included a significant amount of

custom designed software. What is different in this research is the outlook we took on the

software development. Most academic software is written in a haphazard manner, designed

to be used to develop results for the next journal paper, before being discarded. This leads to

very large amounts of time being wasted re-implementing the software by other researchers.

In addition, this allows the all too common defense when results can’t be recreated that ”You

implemented the algorithm incorrectly”. There are many reasons for the situation to be as

it is. These usually stem from lack of funding and time to polish software to be released to

the world, as well as the issue of responsibility if the software turns out to be incorrect.

When software is released, it is often passed along through e-mails, or if one is lucky, on

an academic website. These efforts are great, but can be very cumbersome to maintain. If a

user wishes to ask a question, it needs to go through e-mail. If multiple users have the same

question, it entails multiple similar responses by the authors of the software. It also makes

it very hard to have a community of users that can help support each other. This can be a

major impediment to openly releasing code on the internet for other researchers to utilize.

Partially in response to this, the academic community has started to release code on social

version control sites such as Github or Bitbucket.These sites provide code hosting, version

171



control, and community features such as wiki’s, documentation, issue and bug tracking, as

well as the ability to contribute back to other peoples code bases. This makes it much more

simple for users to contribute back bug fixes, and interact with the authors of the software.

In addition, there are traffic tracking metrics that show level of interest in a project, views,

and how many people have downloaded the code to modify. This allows for metrics that

can be presented to funding agencies and universities to help support the writing of this

software. These systems have had a major impact on how academic code is written and

shared recently.

Another confounding factor is the lack of recognition for software writers. Time spent

providing and supporting software is essentially a sunk cost, in that it does not count towards

publication records or many other metrics used for career progression in academia. This stops

many well-meaning academics from being able to contribute to the advancement of the field

in a much more concrete way than publishing papers.

Recently, there has been a large push to rectify this by issuing Digital Object Identi-

fier(DOI) numbers. These traditionally have been used by papers to provide a unique string

to identify electronic documents. Many different open source companies have started issuing

these numbers to allow an easier way to cite, and track citations of, academic open source

software. In this way, one can get ”citations” for your software, which provides a useful

metric for advancement in the academic field.

In this appendix, we will detail two different libraries created as part of this work that

have been subsequently open sourced and released to the academic community. These li-

braries are supported and documented, and available publically on Github. The first library,
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PyDisdrometer is a library for working with disdrometer data that has seen uptake by dif-

ferent research groups and organizations, while the second PythonRadarTools is a smaller

set of tools released to the community that is brand new.

B.1. PyDisdrometer

PyDisdrometer is an open source python library created at CSU as part of this research to

enable researchers to work with and process disdrometer data. Disdrometers, as mentioned

earlier in this dissertation, are ground based devices that measure the drop size distribu-

tion(DSD) of hydrometeors at ground level. This software fills a major gap as there is no

previously existing open source software to work with disdrometer data that we are aware

of.

PyDisdrometer is object oriented and revolves around the concept of the DSD as a class.

Modules that are responsible for reading in file formats all return an instantiation of a

DropSizeDistribution class object. This object is self contained and contains methods that

are able to operate on the object itself, allowing for a much more straightforward API. This

allows functions access to internal data about the drop size distribution, minimizing the

number of parameters that must be passed to any given function.

PyDisdrometer is designed to perform several different tasks. These include:

• File Processing

• Microphysics Parameter Estimation

• Radar Scattering Simulation

• Generation of optimal dual and single polarization rain rate estimators.

In the following section we will discuss the architecture of PyDisdrometer and discuss

the implementation of this functionality.
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B.1.1. PyDisdrometer Architecture.

B.1.1.1. File Input/Output. PyDisdrometer currently has file readers for several major

formats. This includes the following:

• Joss-Waldvogel

• Parsivel TeleFormat

• Parsivel NASA Ground Validation(MC3E/IFloodS/IPHEX campaigns, Wallops Ex-

perimental)

• 2D Video Disdrometer NASA Ground Validation(MC3E/IFloodS/IPHEX field cam-

paigns)

Each of these data formats provides a slightly different set of metadata. PyDisdrometer

attempts to fill in as much derived data as possible. Currently NASA Ground Validation(NASA-

GV) format files do not actually provide the rain rate as reported by the disdrometers. For

these, methods are provided that calculate rainrates based on the vertical velocity relation-

ships given in [1] as

(75) v(D) = 9.65− 10.3 exp (−0.6D) ms−1

which lets us estimate the rain rate as

(76) R = 0.6π ∗ 10e−3

∫ Dmax

0

v(D)D3N(D)dD mmh−1

If a file includes the vertical velocity, then this is used to calculate the rain rate in

preference over the terminal velocity assumption.

A second issue used in several of the file readers is that of drop bounces. This occurs when

drops strike the disdrometer and then bounce into the sampling area. This is detectable by
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comparing the measured velocity with the terminal velocity. Based on the method by Tokay

et. al.[58], all drops whose velocity deviates by more than 50% from terminal velocity are

eliminated from the measurements. This processing can only take place on files where the

drop velocity is reported individually for each bin.

All file readers return a DropSizeDistribution object.

B.1.1.2. Scattering. DropSizeDistribution objects have the ability to calculate radar mea-

sured parameters based on the binned drop size distribution. The scattering code is based on

the T-Matrix technique[14], and utilizes the PyTMatrix library[40] written by Jussi Leinonen,

which wraps an earlier Fortran library written by Michael Mishchenko[10].

Scattering is accomplished using the DropSizeDistribution.calculate radar parameters func-

tion. It contains different options for simulating scattered radar data from the drop size

distribution. The primary option to change is the wavelength of the radar frequency to

simulate. As it uses the PyTMatrix library for scattering, any of the built in frequencies

listed in table B.1 are accepted.

Table B.1. PyDisdrometer Frequency List. Frequencies are drawn from un-
derlying PyTMatrix library.

Option wavelength
wl S 11.0 cm
wl C 5.53 cm
wl X 3.33 cm
wl Ku 2.2 cm
wl Ka 84.3 cm
wl W .319 cm

The second major option is the Drop Shape relationship. Three different options are

supported and listed in table

These shape relationships are shown in figure B.1.
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Table B.2. Drop Shape Relationships

Shape function Shape Relationship
DSR.pb Pruppacher and Beard[4]
DSR.bc Beard and Chuang [18]
DSR.tb Thurai and Bringi [19]

Figure B.1. Drop Shape Relationships

Scattering is performed on the binned histogram itself(rather than on the estimated para-

metric distribution) which allows us to handle distributions that do not fit the normalized

gamma assumption. Based on the underlying T-Matrix code many different dual-polarization

parameters are estimated and stored in a self describing dictionary inside the DropSizeDis-

tribution object. These are listed in table B.3.

B.1.1.3. Rain Rate Estimator Fitting. PyDisdrometer has the ability to calculate power

law fits for coefficients for rain rate estimators. This includes all permutations of Zh, Zdr and

Kdp. A common mistake when estimating these fits is the linearization of the equations by
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Table B.3. PyDisdrometer Radar Moments

Radar Moments
Reflectivity Differential Reflectivity Specific Differential Phase
Attenuation Differential Attenuation Linear Depolarization Ratio

Backscatter Differential Phase

taking the logarithm of both sides. While this approach works if there are no error sources of

any kind in the measurements, it incorrectly weights the variance of the error. To accurately

fit the parameters, PyDisdrometer uses a solution of the nonlinear least squares minimization

of the equation

(77) S(β) =
m∑
i=1

(yi − f(xi, β))2

The algorithm used for this is Levenberg-Marquardt[59]. This provides a more accurate

solution to the equation. All rain rate estimators will be of the form

(78) R = aZα
hZ

β
drK

γ
dp

where each of the parameters α, β, γ are allowed to be zero if explicitly set by the user.

This has the effect of removing that parameter from the estimation. This process has proven

to be very accurate in practice based on disdrometers from several different field campaigns

that were co-located with rain gauges.

B.1.1.4. Microphysics Estimation. Disdrometers return binned drop counts and not mi-

crophysical parameters, nor parameterized distributions. PyDisdrometer implements several

algorithms to estimate different microphysical parameters. These are called from the Drop-

SizeDistribution.calculate dsd parameterization function.
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We can start by calculating the total liquid water content of the distribution as

(79) W =
π

6
ρw

∫ Dmax

0

D3N(D)dD

where ρw is the density of water.

The mass weighted median drop diameter(Dm) is given as:

(80) Dm =
〈D4〉
〈D3〉

where 〈·N〉 represents the Nth moment of the distribution. We calculate a related quan-

tity, the median drop diameter(D0) as the value that solves

(81)
π

6

∫ D0

0

D3N(D)dD =
1

2
W

We calculate the normalized drop total as

(82) Nt =

∫ Dmax

0

N(D)dD

Finally we calculate the normalized intercept parameter as

(83) NW =
256

πρw

W

D4
m
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