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The rate of change of peak discharge, dQO/dx, and the rate of change
of peak depth, dHo/dx, of one-peak flood hydrographs are analyzed by using

the two De Saint Venant partial differential equations for unsteady free sur-
face flow. One-peak flood hydrographs and flood profiles along the channel
are approximated by Pearson Type III function, with three parameters: peak
discharge (or peak depth); time-lag of the rising limb of hydrograph; and
time-lag between the peak and the center of gravity of the hydrograph. The
volume of flood wave is related to these parameters by an approximation.

Six parameters, three for each discharge and depth hydrographs are related
by using the time-lag 6 between occurrences of peak discharge and peak
depth, as a basic parameter. The procedure of computing 6 by a trial-and-

erro/r method is outlined, as well as procedures to compute dQ /dx and
dH_/dx.

Les dérivées, dQ, /dx et dH /dx du débit et de la profondeur de pointe

d'une crue, possédant un seul max1mum sont etudle’es a l'aide des e’quatlons

aux dérlvees partielles de Saint-Venant pour un €coulement nonpermanent a
surface hbre L'hydrogramme et le profil du plan d'eau le long du canal,
sont exprlmes approximativement Jar des fonctions de Pearson dutroisieme
genre, dependant des trois parameétres suivants: le débit ou la profondeur
de pointe, le dé€lai de la branche ascendante de la courbe des debits de le
délai entre le maximum et le centre de gravit€ de cette meme courbe. Le
volume de la crue est exprimé en fonction de ces parameétres par une
approximation. Six parametres, ,tr01s pour L'hydrocgramme et trois pour
le profil du plan d'eau, sont relies entre eux en utlhsant comme parametre
de base, 1'1nterva11e de temps & séparant le débit et la profondeur de
pointe. Les procédés de calcul de 6 (par approximations successives),

de dQ_ /dx et de dH /dx sont expos€s.



1. Subject of paper. The rate of change of one-peak flood wave is ana- -
lyzed. The wave is approximated by an analytical expression with para-
meters determined from the initial wave conditions. The rate of change is
determined by using this expression.

Whether a wave becomes attenuated or amplified by progressmg de-
pends on three groups of parameters: (a) Characteristics of river channel;
(b) Lateral outflow or inflow; and (c) Initial characteristics of flood wave.

If these parameters are known, the rate of change of flood peak along the
channel may be determined.

2. Basic definitions and equations. Figure | demonstrates a gradually
varied wave at the time t = t o inthe form H, = f(x), or H, =1 (%},

with H H, Ho’ Z; X, defmed in the flgure. Figure 2 shows discharge
and denth hydrographs at the place x = X in the form Q = F1 (t), and

H=F, (t), with the base flow Q, and the base depth H, with other sym-
bols defined in the figure.

Inasmuch as the water depth is small in comparison with wave length *
the approximation of fléod wave motion by De Saint Venant continuity and
momentum partial differential equations is good. They are, respective-

ly, .

9A 2 "
'a“*c—+3§'+q’° (1)

which relates to the river channel section dx, with A = cross section,

q = lateral outflow per unit length (negative for laterzl inflow), with

9A /3t positive for rising water level, and 8Q/8x positive for increasing
discharge along the channel; and

oH

with: V = Q/A = mean velocity; g = acceleration of gravity; S, = fric-
tion slope taken as positive value; 9V /ot positive if the mean velocity

with time at a given place increases; and, SR

v* V&
a = H+z + azg (3)

- with @ and B velocity distribution coefficients.

The two independent variables are x and t, and discharge Q and depth
H are used here as two dependent variables to facilitate the determination
of rates of change of the peak: on/dx and dHo/dx. »

For a gradually varied wave, the friction slope S, in unsteady floy
may be replaced as approximation by the friction slopé in steady flow. The
friction slope S, may be determined by either of three equations: Darcy-
Weisback, Chézy and Manning. However, each of them introduces further
complication in eq. (2). With given initial and boundary conditions, it is
possible - at least theoretically - to determine Q = F, (x,t) and H = F, (x,1t)
from eqs. (1) and (2), and the two equations for differentials dQ and ~ dH.

The continuity equation involves the cross-section area, while the
momentum equation is based on the rate of change of energy line. For
irregular channel shapes with changing slope SO the bridge between these
two basic equations makes the first complexity in analysis. Assuming the -
area-cdepth function in the form A = pHS, the rates of change of p, s, and
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S0 with x provide the needed bridge between the two equations.

3. Expression for the rate of change of peak discharge. Introducing
9A/ot from eq. (1) into eq. (2) by replacing 8V /at and taking that at the peak
discharge hydrograph 9Q/dt = 0, and 9Q/dx = dQ/dx, then

-

dQ,, dQ, gAZq { 9H

& - & - BQ ax T 5 (4)
m ‘ :
1
with all values given at the time of maximum discharge Q__ of initial dis-
charge hydrograph for a given channel position. If (0H /3% + S ) is
positive, on/dx < 0, and the wave attenuates. The € sum offenergy
slope and friction slope determines whether a wave attenuates quickly or

slowly, or amplifies.

Using the relationship A = pHS and eq.(3), the rate of change of peak
discharge becomes.

dQ,, dQ, gAa
& - & @R |

~ OH aQ:n :
- - 2 g =
SO)+(1 aqu) e 0 %+sllnHi‘
q

, (5)
with Kq = Qm/Aq \/qu the ratio of mean velocity to theoretical clerity for

the depth H of small disturbances at the time of and given x. For a
prismatic channel with p' = s' = 0 the last term in eq. (5) vanishes.

If the term [(1 -a s qu) qu/ax:‘I is negligible in comparison with
AS = Sf - So’ a flood attenuates. Insomuch as this term may be either
positive or negative, and non-negligible, a‘flood movement may be associa-
ted with an increase of discharge. If on/dx is positive, the peak discharge
increases with distance. This increase ~has a limit, because the friction
slope increases with an increase of Q__, so that after a sufficient increase
the difference AS becomes equal to thé negative value of the term and the
wave progresses with constant peak discharge. The change of one factor
affects the others, because So’ p's s' and qu/E)x are interrelated. For

a diverging channel (S_ increasing, p'> o, s' > 0), the attenuation rate
dQ _/dx decreases, and for a converging channel, there is an increase in

att@nuation. If these factors change sufficiently in the case of divergence
the peak discharge may start to increase.

4. Expression for the rate of change of maximum depth. For the time of
maximum depth Hm’ of initial depth hydrograph at a given position x, the

value 9H/9t = 0, and 9H/9x = dHO/dx. As 9A/d8t = 0 for H = H_. eq. (1)
gives 9Q/9x = - q. In this case eq. (2) gives
dH : 0Q, aQ? ‘
2 _4) —B- = - _B h __“h p' -
(@ s K3 -1) 55 (S; - S,) + =t = = eg—+ s'lnH_)
_ h gAh

4B %hg (6)

2
gAY




with de/dx = dHO/dx and various values in eq. (6) relate to the position of A
time occurrence of Hm for given x. In the case of a prismatic channel with

no lateral flow (p', s', and q are zero), only the first three terms of eq. (6)

are present. The complexity of egs. (5) and (6) as applied to natural channels

with changing factors So’ p, s, f, q, a, B, along the channel generally

justifies an approximation in the analysis of effect of these factors on the rate

of change of flood peak.

5. Fitting of Pearson Type III function. Flood wave functions Q= f1 (Q, H)
and H = fz (Q, H) are approximated here by Pearson Type III function

| -[(t-t,)-(x-x,)/C,]1/G
Q=@+ Qe 1 TN [k (et /m - (ex) o m)™S
and .
-[(t-t,)-(x-x,)/C,]/D
H=H +He LEty)beoea) 1€ [1+ (t-t,)/a - (x-xz)/Cza]a/D (8)

Wher-ét1 and t,, x, and x, are values for time and channel position, res-

2
pectively, at which initially the maximum discharge and the maximum depth
occur, C1 and C2 are celerities of any discharge and any depth, respective-

ly; and G, m, D and a are parameters of initial waves as defined in fig. 2.
If the same coordinate system (x, t) is used for both egs. (7) and (8),
then X, "Xy =< Coé.

For the position x = Xy =X, and ty = 0, the discharge and depth hydro-
graphs are

Q=Q,+ Qe G 1+ L)m/C (9)
and
H=H + Hoe—(t_é)/D [1+ (t-6)/a]?/P (10)

For the time t = t, = ts and Xy = 0, the discharge and depw profiles
along the channel are
%1C /G
Q=Q + Qe : (1 - x/Cirn) m/G (11)

and ' '
(x+ C_ 8)/C,D
_ o) 2 _ a/D
| H= Hb+ H e [1 (x+CO<S)/C2a] (12)
It follows from fig. 2 that 6 = a - m, with §> 0, so that a>m.

The integral of (Q - @ _) dt from t = - m to infinity gives the flood
volume, W, above the base flow. The integration of eq. (9) gives

mfG
I

W |G
QOG m

1+ -g—) | (13)
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Equation (13) may be approximated by

w 5 m '
= 2 m (14)
QG 73 G

Taking Hb =0, C2 = Co = constant, and dx = Co dt, then the integration of

Adx by using eq. (12) gives for H =0

as/D

r

eD
sa

Ws
E 7&70C0 D

{438

: (15)

6. Approximate relationships for parameters of discharge and depth

"hydrographs. Six parameters of the initial discharge and depth hydro-

graphs are: Qm’ Hm’ m, a, and G, D, all of which are interrelated. It is

supposed that either Qm’ m, and G, or Ho’ a and D are parameters of

the hydrograph, initially known. To determine the other three parameters,
it is here supposed that Qo, m and G are known. From fig. 2

a=m+ 6. (16)

The relation of Q and H is determined by assuming that Qb 0,

= 0 or relat1ve1y small and that at the time t = & (peak depth) the
ex?ergy slope is Sf So’ so that Qh h w/RhS By putting the hydraulic

radius Ry = n Hj withn <1, and taking Q from eq. (9) witht = 6 and
Qb = 0, as equal to the above value of Qh’ and using A = pHS, then

1+

"6/G( 1/2

Qe = = gl (2s +1)/2 o 1/2 (17)

HO O

where k is the friction coefficient in Chezy formuls.
By using eq. (15), eq. (14) as an approximation of ["-function, then

72
D= 4 s W : (18)

2 2
25 Ah Co (m + 6)
with values A, s and C_ at the peak depth. Equations (16) through (18) en-

able the computation of H , a and C for given Q m and G, when 6 and C

~are know, and W compute% by eq. (14).

7. Expressions for determination of 6§, Assuming that the rate of change
of kinetic energy head, 9 (@ V?/2g)/90x, for the position of peak discharge is
small and negligible in comparison with the bottom slope S_ and with the
rate of change dH_/98x, then the peak discharge w:ith the frittion slope

(S0 - 8Hq/8x) may be expressed by Chezy formula as
1/2

(19)

; oH
3 ) 1/2 (2s +1)/2 )
Q, =k A, vV RSy = pkn Hy S, ——ﬂax

with Rq =n H_ determined from A = pHs, So assumed to be constant

5



The gradient 8H_/8x is determined from eq. (12). As the gradient of
(a VZ/Zg) is positivéq around Qo’ because V increases in the direction of

flow at the position of maximum discharge, as shown in fig. 3, its neglect
gives a value of & somewhat different from the actual 6. The value QO in

eq. (19) is at x = 0 of eq. (11). Taking C, = C, = constant, and C_é also a

constant in eq. (12), then

9H SH
9 - - 9
gl C_D (20)

with Co at the time of Qo' The value . Hq from eq. (10), fort =0, H =0,
is

H, = He 8/D (4 - 5/a) 2/D (21)

I.ntroducing the values a and D from egs. (16) and (20), and H_ from
eq. (17) into eq. (21) Hq becomes a function of known parameters 6 — and of

8Hq/8x. Putting these values Hq and 6Hq/8x into eq. (19), for known Q,»
p, k., n, S , m and G, é-value can be determined if C0 is known. Using

CO = ‘\/qu and A = pHs, 6 can be determined by a trial-and-error pro-

gedure. Assuming a value §, H0 is computed by eq. (17), a is computed
by eq. (16), D by eq. (18), and Hq by eq. (21). Using the expression for

s, * vV qu, then qu/ax is computed by eq. (20). Putting these values

into eq. (19), Q value is obtained and compared with Qo' Then the correc-
tion for & is applied.

From eq. (9), by using Qh at the maximum depth, and 6 replacing t

Q, @yl

ot aG
which is given as soon as 6 is known. The rates of change of peak discharge
and peak depth of egs. (5) and (6) can be computed from the known & by using
eqs. (20) and (22), respectively.

The above expressions and computational procedures enable the
approximate determination of rate of change of flood peaks along the channel,
by starting from the initial hydrographs at a given channel position under
the assumption that flood hydrographs and flood waves along the channel
may be reasonably approximated by Pearson Type III function. The above
analysis is the part of a study underway, which has as objectives of routing
floods by investigating how the three parameters in Pearson Type III func-
tion change along the channel under various channel conditions.

A
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CKOPOCTb M3BMEHEHUA MWUKA MABOILKA B PYCIJIE

AnHOTauUug
B noxnane npupeneH aHanIH3 CKOpPOCTH H3MEHEHHS MaKCHMAbLHBIX pacxoaa dﬁg dx i
rnyGHHbBI dHa/dX , ONHOMUKOBBLIX MABOAKOBHIX I'HAporpadoB Ha OCHOBE HCIONIL30BAHUA

nByx ypapHeHusi Cen-BeHaHa B yacCTHBIX NpPOU3BOAHBLIX MUl HEYCTAHOBHBIUEOCH MOTOKA CO
ceo6onHo#t moBepxHOCThIO. 'mAporpadsl ONHONKKOBLIX NMABOOKOB U NMPodu/IM HABOOKOB BAOIL
pycna amnpoxcumupyioTcs no kpubo# [lupcona Il Tuma ¢ Tpems mapameTpaMH: MakCHMAalb-
Helil pacxon (unu mMakcumanemas rny6una); 3aMmennieHne HapacTaHHS NaBOAKAa MO ANMHE
pycna M OTCTaBaHHe BO BPeMEeHH MexXAy NHXOM H LUeHTpoOM TsxecTu ruaporpada, ITyrem
npu6IHXKEeHHS YCTaHOB/IEHO COOTHOWEHHe MeXAy o6beMOM MaBOAKOBOH BOJIHLI MU 3THMH Iapa-
MeTpaMi,

HalineHo cooTHoweHue MexOy WeCTbIO MapaMeTpaMH MO TPU ANd Kaxnoro ruaporpada pac-
xoda ¥ riayGuHBI MyTeM HCNONb30BaHHS B KayeCTBe OCHOBHOIO lapaMeTpa OTCTaBaHHe

MO BpeMEeHH MexXOy MAaKCUMa/IbHbIM PacXOOOM ¥ MaKCUManbHOW riaybuuolt, OmucaHa MeTo-
OuKa pacudeTa d MeTodAOM npo6 M owHu6OK, a Takxe MeTOONUKA pacyeTa an/dX

H dHO/O(X .

Tun., Ne 2 Jlerropucmnonkoxa
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