
DISSERTATION

INTEGRATED STATISTICAL MODELS IN ECOLOGY

Submitted by

Justin Van Ee

Department of Statistics

In partial fulfillment of the requirements

For the Degree of Doctor of Philosophy

Colorado State University

Fort Collins, Colorado

Fall 2023

Doctoral Committee:

Advisor: Mevin Hooten
Co-Advisor: Matthew Koslovsky

Kayleigh Keller
Andee Kaplan
Larissa Bailey



Copyright by Justin Van Ee 2023

All Rights Reserved



ABSTRACT

INTEGRATED STATISTICAL MODELS IN ECOLOGY

The number of endangered and vulnerable species continues to grow globally as a result

of habitat destruction, overharvesting, invasive species, and climate change. Understanding the

drivers of population decline is pivotal for informing species conservation. Many datasets collected

are restricted to a limited portion of the species range, may not include observations of other or-

ganisms in the community, or lack temporal breadth. When analyzed independently, these datasets

often overlook drivers of population decline, muddle community responses to ecological threats,

and poorly predict population trajectories. Over the last decade, thanks to efforts like The Long

Term Ecological Research Network and National Ecological Observatory Network, citizen science

surveys, and technological advances, ecological datasets that provide insights about collections of

organisms or multiple characteristics of the same organism have become prevalent. The conglom-

erate of datasets has the potential to provide novel insights, improve predictive performance, and

disentangle the contributions of confounded factors, but specifying joint models that assimilate all

the available data sources is both intellectually daunting and computationally prohibitive.

I develop methodology for specifying computationally efficient integrated models. I discuss

datasets frequently collected in ecology, objectives common to many analyses, and the method-

ological challenges associated with specifying joint models in these contexts. I introduce a suite

of model building and computational techniques I used to facilitate inference in three applied

analyses of ecological data. In a case study of the joint mammalian response to the bark beetle

epidemic in Colorado, I describe a restricted regression approach to deconfounding the effects of

environmental factors and community structure on species distributions. I highlight that fitting

certain joint species distribution models in a restricted parameterization improves sampling effi-

ciency. To improve abundance estimates for a federally protected species, I specify an integrated

ii



model for analyzing independent aerial and ground surveys. I use a Markov melding approach to

facilitate posterior inference and construct the joint distribution implied by the prior information,

assumptions, and data expressed across a chain of submodels. I extend the integrated model by

assimilating additional demographic surveys of the species that allow abundance estimates to be

linked to annual variability in population vital rates. To reduce computation time, both models are

fit using a multi-stage Markov chain Monte Carlo algorithm with parallelization. In each applied

analysis, I uncover associations that would have been overlooked had the datasets been analyzed

independently and improve predictive performance relative to models fit to individual datasets.

iii



ACKNOWLEDGEMENTS

I thank my committee, Dr. Kayleigh Keller, Dr. Larissa Bailey, and Dr. Andee Kaplan for

devoting your time to my professional development.

I thank my co-advisor Dr. Matthew Koslovsky for his collaboration and guidance. His enthu-

siasm for computational statistics inspired much of the work in my dissertation.

I thank my cohort, and especially Gray Stanton, for their insightful comments in class and their

willingness to help me through the most challenging courses of my academic career.

I thank the Hooten Lab: Dr. Lucy Lu, Dr. Clint Leach, Dr. Ann Raiho, Abbey Feuka, Hanna

McCaslin, Wilson Wright, and Michael Schwob. They have reviewed my manuscripts, critiqued

my presentations, and helped me become a better Bayesian.

I thank Dr. Jacob Ivan, Dr. Christian Hagen, Dr. David Pavlacky, Kent Fricke, Liza Rossi, Rus-

sell Martin, Kurt Kuklinski, Grant Beauprez, Dr. Dave Haukos, Dr. Andy Lawrence, Dr. Ashley

Tanner, and Dr. Blake Grisham, Jonathan Reitz, Troy Rintz, Dana Peterson, and Elisabeth Teige.

The zeal of my collaborators for wildlife conservation is unmatched, and I am proud of the work

we accomplished together.

I thank my parents, Verlan and Rebecca, for treating the outdoors like a subject as core to education

as mathematics, reading, and writing, but also valuing the traditional subjects so that completing

a dissertation in statistics someday was possible. I thank my four older siblings Noelle, Nathan,

Nicholas, and Noah who inspired my love for the natural world and encouraged me to pursue an

advanced degree in statistics. I thank my patient and loving wife Rachel who has faithfully sup-

ported me.

iv



I thank my advisor, Dr. Mevin Hooten. You have fostered my passion for statistics and ecology

and given me the tools to tackle any research question. Thank you for supporting me throughout

my studies and seeking collaboration opportunities catered to my career goals.

v



DEDICATION

All glory be to the Creator, may I be a good steward of His great earth.

vi



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x
LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Modeling Mechanistic Processes . . . . . . . . . . . . . . . . . . . . . . 5

1.1.1 Differential Equation Models . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.2 Royle-Nichols Occupancy Model . . . . . . . . . . . . . . . . . . . . . 6
1.1.3 Mixture Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Integrated Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.1 Joint Species Distribution Models . . . . . . . . . . . . . . . . . . . . 11
1.2.2 Integrated Population Models . . . . . . . . . . . . . . . . . . . . . . . 13
1.2.3 Markov Melding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3 Computational Methods and Aides . . . . . . . . . . . . . . . . . . . . . 17
1.3.1 Restricted Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.3.2 Tobit Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.3.3 Pólya-Gamma Data Augmentation . . . . . . . . . . . . . . . . . . . . 22
1.3.4 PX-DA for Abundance Estimation . . . . . . . . . . . . . . . . . . . . 24
1.3.5 Multistage MCMC Algorithms . . . . . . . . . . . . . . . . . . . . . . 26
1.3.6 Rcpp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Chapter 2 Community Confounding in Joint Species Distribution Models . . . . . . . . 29
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.1.1 Royle-Nichols Joint Species Distribution Model . . . . . . . . . . . . . 30
2.1.2 Community Confounding . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.2.1 Data Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.2.2 Modeling Interspecies Dependence . . . . . . . . . . . . . . . . . . . . 37
2.2.3 Priors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.3 Community Confounding . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.3.1 Restricted Regression Approach . . . . . . . . . . . . . . . . . . . . . 40
2.3.2 Measuring Confounding . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.4 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.5 Camera Trap Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.5.1 Study Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.5.2 Sampling Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.5.3 Model Fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

vii



Chapter 3 Melding Wildlife Surveys to Improve Conservation Inference . . . . . . . . . 57
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.2 Lesser prairie-chicken Conservation . . . . . . . . . . . . . . . . . . . . . 59
3.3 Survey Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.3.1 Aerial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.3.2 Ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.4.1 Aerial Distance Sampling Submodel . . . . . . . . . . . . . . . . . . . 63
3.4.2 N-mixture Submodel . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.4.3 Integrated Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.5 Posterior Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.6.1 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.6.2 Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.6.3 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Chapter 4 Data Assimilation with Melded Integrated Population Models . . . . . . . . . 81
4.1 Lesser Prairie-Chicken Conservation . . . . . . . . . . . . . . . . . . . . 84
4.2 Data Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.2.1 Ground Surveys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.2.2 Aerial Surveys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.2.3 Survival . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.2.4 Productivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.3.1 Aerial Distance Sampling Submodel . . . . . . . . . . . . . . . . . . . 92
4.3.2 N-mixture Submodel . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.3.3 Survival Submodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.3.4 Productivity Submodels . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.3.5 Population Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.4 Posterior Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.5.1 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Chapter 5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.1 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Appendix A Supplemental Material for Chapter 2 . . . . . . . . . . . . . . . . . . . . . . 155
A.1 Joint Occupancy Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

A.1.1 Royle-Nichols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
A.1.2 Probit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

A.2 MCMC Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
A.3 Asymptotic Equivalence of Poisson and Logistic Regression . . . . . . . . 160
A.4 Habitat Covariates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

viii



A.5 Species Design Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

Appendix B Supplemental Material for Chapter 3 . . . . . . . . . . . . . . . . . . . . . . 163
B.1 Model Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

B.1.1 Aerial Distance Sampling Submodel . . . . . . . . . . . . . . . . . . . 163
B.1.2 N-mixture Submodel . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
B.1.3 Spatio-temporal Tobit Submodel . . . . . . . . . . . . . . . . . . . . . 165
B.1.4 Simulation Study ADSM . . . . . . . . . . . . . . . . . . . . . . . . . 165
B.1.5 Simulation Study N-mixture Submodel . . . . . . . . . . . . . . . . . . 166

B.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
B.3 Covariates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
B.4 Comparison of ADSM Inference with WEST Annual Reports . . . . . . . 169
B.5 Inference For Covariate Associations . . . . . . . . . . . . . . . . . . . . 170

Appendix C Supplemental Material for Chapter 4 . . . . . . . . . . . . . . . . . . . . . . 172
C.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
C.2 Model Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

C.2.1 Aerial Distance Sampling Submodel . . . . . . . . . . . . . . . . . . . 175
C.2.2 N-mixture Submodel . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
C.2.3 Survival Submodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
C.2.4 Nesting Survival Submodel . . . . . . . . . . . . . . . . . . . . . . . . 177
C.2.5 Brood Survival Submodel . . . . . . . . . . . . . . . . . . . . . . . . . 177
C.2.6 Clutch Submodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
C.2.7 Hatch Submodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
C.2.8 Juvenile Survival Priors . . . . . . . . . . . . . . . . . . . . . . . . . . 179
C.2.9 Nesting and Re-nesting Propensity Priors . . . . . . . . . . . . . . . . . 179
C.2.10 Population Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

C.3 Varying Survey Effort on Posterior Inference for Vital Rates . . . . . . . . 180
C.4 Comparison of Integrated Population Model Posterior Inference with WEST

Aerial Survey Annual Reports . . . . . . . . . . . . . . . . . . . . . . . . 181
C.5 Annual Abundance and Vital Rates . . . . . . . . . . . . . . . . . . . . . 184
C.6 Submodel Posterior Inference . . . . . . . . . . . . . . . . . . . . . . . . 189

ix



LIST OF TABLES

2.1 Summary of simulations results. All results are averaged across 3 magnitudes of ran-
dom species effects and 50 simulated datasets. ESS Ratio is the effective sample size
of the restricted parameterizations over the unrestricted and the mean ESS is the av-
erage of the two. E (R2(x1)|Y ) is the posterior mean R2 of confounding for species
1 continuous habitat covariate. Rejection rate is the portion of times the the posterior
mean p-value from overall F-test of a linear relationship between x1 and ∆ was below
0.05. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1 State agency lesser prairie-chicken ground survey effort (km2) split by year and ecore-
gion. SOPR = Shinnery Oak Prairie Ecoregion, SSPR = Sand Sagebrush Prairie Ecore-
gion, MGPR = Mixed-Grass Prairie Ecoregion, and SGPR = Short Grass Prairie/Conservation
Reserve Program Mosaic Ecoregion. . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.2 Western EcoSystems Technology, Inc. lesser prairie-chicken aerial survey effort (km2)
split by year and ecoregion. Area surveyed is based on a strip width of 600×2 = 1200
m (Appendix C.1). SOPR = Shinnery Oak Prairie Ecoregion, SSPR = Sand Sagebrush
Prairie Ecoregion, MGPR = Mixed-Grass Prairie Ecoregion, and SGPR = Short Grass
Prairie/Conservation Reserve Program Mosaic Ecoregion. . . . . . . . . . . . . . . . . 89

4.3 Study areas, time periods, and sample sizes for LEPC survival studies. The last column
indicates the total number of individuals monitored in each study. . . . . . . . . . . . . 90

4.4 Study areas, time periods, and sample sizes for LEPC productivity studies. The last
column indicates the total number of females monitored in each study. Lawrence et
al. [1] did not analyze productivity data from the 45 females captured in New Mexico
in 2013-2015 but describes the study area, capture, and monitoring methods. Clutch
and hatch give the number of observations from each study used for estimation not the
number of eggs laid and hatched, respectively. . . . . . . . . . . . . . . . . . . . . . . 91

4.5 Markov chain Monte Carlo details for fitting submodels to lesser prairie-chicken data
sources. Retention is the percentage of samples kept of the total sample size after
burn-in. ADSM=aerial distance sampling submodel. . . . . . . . . . . . . . . . . . . 108

4.6 Temporal posterior correlations for annual growth and vital rates. Posterior correla-
tions are split by the group of datasets used to estimate the quantity. Posterior means
of Pearson correlation coefficients (95% credible intervals) shown. . . . . . . . . . . . 109

4.7 Markov chain Monte Carlo details for fitting submodels to simulated lesser prairie-
chicken datasets. Retention is the percentage of samples kept of the total sample size
after burn-in. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

B.1 Covariates available at following links: WEST (field-collected data from WEST aerial
surveys), NLCD (https://www.mrlc.gov/data/references/national-land-cover-database-
2011-nlcd2011), NRCS (https://www.nrcs.usda.gov/wps/portal/nrcs/site/national/home/),
NOAA (https://www.ncei.noaa.gov/access/monitoring/historical-palmers/maps). . . . . 169

B.2 Posterior means and credible interval for regression coefficients γ and α. . . . . . . . 171

x



C.1 Posterior means (95% credible intervals) for lesser prairie-chicken range-wide abun-
dance split by ecoregion and year. Posterior means derived from integrated population
model fit to aerial, ground and demographic surveys. SOPR = Shinnery Oak prairie
Ecoregion, SSPR = Sand sagebrush Prairie Ecoregion, MGPR = Mixed-Grass Prairie
Ecoregion, and SGPR = Short Grass Prairie/Conservation Reserve Program Mosaic
Ecoregion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

C.2 Posterior means (95% credible intervals) for female lesser prairie-chicken annual sur-
vival split by ecoregion and year. Posterior means derived from integrated population
model fit to aerial, ground and demographic surveys. SOPR = Shinnery Oak Prairie
Ecoregion, SSPR = Sand Sagebrush Prairie Ecoregion, MGPR = Mixed-Grass Prairie
Ecoregion, and SGPR = Short Grass Prairie/Conservation Reserve Program Mosaic
Ecoregion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

C.3 Posterior means (95% credible intervals) for male lesser prairie-chicken annual sur-
vival split by ecoregion and year. Posterior means derived from integrated population
model fit to aerial, ground and demographic surveys. SOPR = Shinnery Oak Prairie
Ecoregion, SSPR = Sand Sagebrush Prairie Ecoregion, MGPR = Mixed-Grass Prairie
Ecoregion, and SGPR = Short Grass Prairie/Conservation Reserve Program Mosaic
Ecoregion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

C.4 Posterior means (95% credible intervals) for second-year lesser prairie-chicken pro-
ductivity split by ecoregion and year. Productivity is the expected number of individu-
als produced per female that survive to sexual maturity. Posterior means derived from
integrated population model fit to aerial, ground and demographic surveys. SOPR =
Shinnery Oak Prairie Ecoregion, SSPR = Sand Sagebrush Prairie Ecoregion, MGPR
= Mixed-Grass Prairie Ecoregion, and SGPR = Short Grass Prairie/Conservation Re-
serve Program Mosaic Ecoregion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

C.5 Posterior means (95% credible intervals) for after-second-year lesser prairie-chicken
productivity split by ecoregion and year. Productivity is the expected number of indi-
viduals produced per female that survive to sexual maturity. Posterior means derived
from integrated population model fit to aerial, ground and demographic surveys. SOPR
= Shinnery Oak Prairie Ecoregion, SSPR = Sand Sagebrush Prairie Ecoregion, MGPR
= Mixed-Grass Prairie Ecoregion, and SGPR = Short Grass Prairie/Conservation Re-
serve Program Mosaic Ecoregion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

xi



LIST OF FIGURES

1.1 Illustration of fundamental versus realized niche for a simple community of two com-
peting species across an environmental gradient. . . . . . . . . . . . . . . . . . . . . . 12

1.2 Directed acyclic graph of example integrated population model. . . . . . . . . . . . . 13

2.1 Randomly selected sampling sites (gray circles) where passive infrared game cameras
were deployed in spruce-fir (green) and lodgepole pine (yellow) forests in Colorado,
USA, 2013–2014. Brown and orange are the approximate extents of spruce beetle and
mountain pine beetle impacts in spruce-fir and lodgepole pine forests, respectively, as
of 2014. Reprinted from “Mammalian responses to changed forest conditions resulting
from bark beetle outbreaks in the southern Rocky Mountains," by Ivan et al. [2] . . . . 45

2.2 Marginal posterior distributions of infestation regression parameters. Posterior dis-
tributions shown are from the probit SDM, unrestricted JSDM, and restricted JSDM.
DeadConif is the overstory mortality percentage, a proxy for severity of bark beetle
infestation. YSO1 is the linear effect of the number of years since a site was infested
with bark beetles. YSO2 is the quadratic effect. Figure created in R 4.1.2 [3]. . . . . . 49

2.3 Marginal posterior distributions of infestation regression parameters. Posterior distri-
butions shown are from the Royle-Nichols SDM, unrestricted JSDM, and restricted
JSDM. DeadConif is the overstory mortality percentage, a proxy for severity of bark
beetle infestation. YSO1 is the linear effect of the number of years since a site was
infested with bark beetles. YSO2 is the quadratic effect. Figure created in R 4.1.2 [3]. . 50

2.4 Posterior mean of species correlation matrix. Estimates are from the Royle-Nichols
unrestricted joint species distribution model. AM = American Marten, BB = Black
Bear, CY = Coyote, CM = Chipmunk spp., Ek = Elk, GM = Golden-mantled Ground
Squirrel, MS = Moose, MD = Mule Deer, PC = Porcupine, RF = Red Fox, RS = Red
Squirrel, SH = Snowshoe Hare, YM = Yellow-bellied Marmot. Figure created in R

4.1.2 [3]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.1 Map of Kansas lesser prairie-chicken aerial survey blocks and Kansas Department of
Wildlife and Parks ground monitoring sites. Golden fill indicates the block/site was
sampled during that year. The region encompassed by all three ecoregions in the map
is Kansas estimated occupied range. . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2 Directed acyclic graph of integrated model. Note that σ2
τ = (σ2,A

τ , σ2,G
τ )′. . . . . . . . . 70

3.3 Performance metrics for ADSM and full integrated model. Boxplots show empirical
coverage rates, posterior mean absolute errors, and posterior standard deviations for
aerial site densities. The red line is the targeted nominal coverage rate of 95%. . . . . . 74

xii



3.4 Impact on predictive performance of integrated model for differing scenarios of miss-
ing aerial survey data. In Scenarios 1-4, aerial survey data is available every year, twice
every three years, once every two years, and once every three years, respectively. The
left panel is the RMSE of site-level densities. The right panel is the RMSE of annual
abundance predictions divided by the population size. Dots above boxplots represent
outliers as defined as values which exceed 1.5 times the interquartile range over the
75th percentile. Dots positioned randomly within groups on x-axis to decrease overlap. 75

3.5 Posterior distributions of annual density for lesser prairie-chicken across Kansas esti-
mated occupied range and ground sites from 2005-2021. Red are the posterior annual
densities measured across the 21 ground sites estimated from the N-mixture submodel.
Green are the posterior annual densities for Kansas estimated occupied range inferred
from the aerial distance sampling submodel. Blue are the refined posteriors for Kansas
estimated occupied range derived from melding the aerial distance sampling and N-
mixture submodel densities into the spatial temporal tobit model. Posterior means of
each distribution are shown as dots. . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.6 Map of estimated lesser prairie-chicken densities across Kansas estimated occupied
range and ground sites from 2005-2021. Ecoregions are delineated by outline color in
the inset maps. Posterior mean densities are shown for each survey block and the 21
ground sites (circles). All densities estimates are from the melded model. . . . . . . . 78

4.1 Lesser prairie-chicken demographic and ground survey regions over aerial survey blocks
grouped by ecoregion. Demographic data acquired from Unger [4] were collected in
Beaver County, Oklahoma (orange circle, exact location not shown for data privacy
purposes). Texas Parks & Wildlife Department ground survey regions in Hemphill,
Gray, Bailey, and Gaines counties (gray circles) are also not shown. Ground survey
site in Cochran/Yoakum county represented by gray polygon between gray dots in
Texas Shinnery Oak Prairie. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.2 Directed acyclic graph of integrated population model for LEPC. All quantities in the
population model, NA

et , N
G
et , ρet, and ϕet, are non-invertible deterministic functions

of submodel parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.3 Posterior distributions of mean ecoregional survival split by sex. Color indicates which

data sources were used to facilitate posterior inference. The yellow posterior distribu-
tion is estimated in the first stage of the multistage MCMC algorithm with the survival
submodel (Section 4.3.3), and blue and red are the refined posterior distributions from
the second stage estimated with the IPM (Section 4.3.5). All three posterior distribu-
tions account for prior information specified in Section 4.3.3. . . . . . . . . . . . . . . 113

4.4 Posterior distributions of mean ecoregion productivity split by age class. We define
productivity as the expected number of off-spring produced per female that reach sex-
ual maturity. Color indicates which data sources were used to facilitate posterior infer-
ence. The yellow posterior distribution is estimated in the first stage of the multistage
MCMC algorithm with the productivity submodels (Section 4.3.4), and blue and red
are the refined posterior distributions from the second stage estimated with the IPM
(Section 4.3.5). All three posterior distributions account for prior information speci-
fied in Section 4.3.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

xiii



4.5 Posterior means and 95% credible intervals of annual ecoregional abundances. Color
indicates which data sources were used for posterior inference. The purple credible
intervals indicate the abundance estimates from the first stage of the MCMC algorithm
which fits the aerial surveys to the aerial distance sampling submodel (Section 4.3.1).
Blue and red denote the refined credible intervals from the second stage that condition
on the demographic surveys and demographic and ground survey survey, respectively.
The red and blue credible intervals account for the birds translocated from the SGPR
to the SSPR during the 2016-2019 translocation project (Section 4.3.5). The purple
credible intervals do not. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.6 Means, minima, and maxima of empirical coverage (Coverage), posterior mean abso-
lute error (MAE), and posterior standard deviation (SD) for abundance and vital rates.
Color indicates which datasets were used for posterior inference. Yellow and purple
indicate the performance metrics from the first stage of the MCMC algorithm using
either the simulated demographic or aerial data alone, respectively. Blue and red de-
note the metrics from the second stage that condition on either the simulated aerial
data alone or aerial and ground data, respectively. The horizontal red line indicates the
targeted nominal coverage rate of 95%. . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.7 Medians and interquartile ranges of root mean squared errors (RMSE) for LEPC abun-
dance and vital rates. Color indicates which datasets were used for posterior inference.
Blue corresponds to the predictive performance of the IPM when using aerial and de-
mographic data. Red is the predictive performance of the IPM when using aerial,
ground, and demographic data. The x-axis indicates the temporal frequency of aerial
survey effort. The left panels correspond to predictive performance in years during
which an aerial survey was conducted and the right panel is predictive performance in
years without an aerial survey. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

B.1 SGPR ecoregion annual density estimates of LEPC from 2012-2021. Posterior means
and 90% credible intervals of annual density estimated with the ADSM shown in red.
Mean estimates and 90% confidence intervals of annual density from Nasman et al.
(2021) are in turquoise. Note that density estimates from both models include obser-
vations of greater prairie-chicken in the northern region of the SGPR . . . . . . . . . . 170

C.1 Lesser prairie-chicken ecoregion annual abundance estimates from 2005-2022. Pos-
terior means and 90% credible intervals from integrated population model fit to the
ground, aerial, and demography data in red. Mean estimates and 90% confidence in-
tervals from [5] are in black. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

C.2 Posterior means and 95% credible intervals for ecoregion intercepts and covariate as-
sociations in lesser prairie-chicken survival submodel. Red indicates the credible in-
terval for the covariate association excluded 0. The parameter describing heterogene-
ity in monthly adult survival is ϕA. Sex∈ {0, 1} indicates if the individual is male.
Breed∈ {0, 1} indicates if the month is in the breeding season defined as March-June
[6]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

xiv



C.3 Posterior means and 95% credible intervals for ecoregion intercepts and covariate as-
sociations in lesser prairie-chicken aerial distance sampling and N-mixture submodels.
Red indicates the credible interval for the covariate association excludes 0. Parameters
describing heterogeneity in lesser prairie-chicken lek sizes and the number of lesser
prairie-chicken groups in the aerial distance sampling submodel are given by βλ and
βψ. Heterogeneity in lesser prairie-chicken lek sizes in the N-mixture submodel is
described by η. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

C.4 Posterior means and 95% credible intervals for ecoregion intercepts and covariate as-
sociations in lesser prairie-chicken productivity submodels. Red indicates the credible
interval for the covariate association excluded 0. Parameters describing heterogeneity
in clutch sizes, hatchability, and daily nesting survival rates given by δ, π, and ϕN ,
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

C.5 Posterior means and 95% credible intervals for ecoregion intercepts and covariate as-
sociations in lesser prairie-chicken survival submodel. Red indicates the credible in-
terval for the covariate association excluded 0. The parameter describing heterogene-
ity in monthly adult survival is ϕA. Sex∈ {0, 1} indicates if the individual is male.
Breed∈ {0, 1} indicates if the month is in the breeding season defined as March-June
[6]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

xv



Chapter 1

Introduction

Human population growth coupled with technological advancement since the mid-20th century

have elevated human impact on the earth to unprecedented levels [7]. Some argue for a new geo-

logical epoch called the Anthropocene in which human activity is a primary driver of the earth’s

ecosystems and climate [8]. The Anthropocene may also mark Earth’s biota entering a sixth “mass

extinction” where extinction rates are estimated at 100 times greater than their historical and pre-

historic averages [9]. Biodiversity underpins ecosystem services such as flood control, pollination,

soil enrichment, disease control, and air and water purification [10], and the loss of biodiversity

may reduce the productivity of these services with detrimental impacts to human well being [11].

With species declining and disappearing at accelerated rates [12], the need to document and un-

derstand drivers of biodiversity loss are greater than ever before.

Documenting the decline of biodiversity is challenging because many species experienced the

most precipitous declines prior to human monitoring. Population trajectories inferred from re-

cently collected data often show stability or even improvement [13], but can overlook long-term

declines that preceded data collection [14]. Declines may also be spatially heterogeneous, and

spatially restricted monitoring programs can wrongly conclude population stability while a sub-

population heads to extirpation [15]. When subpopulations are genetically distinct, extirpation of a

subpopulation reduces diversity and the species capacity to adapt to environmental changes thereby

increasing susceptibility to extinction [16]. Lastly, species are interdependent [17], and accessing

the health of species in isolation has the potential to overlook disruption of vital symbioses [18].

Determining the factors influencing biodiversity loss face similar hurdles. A short-term study

may fail to identify a driver of decline if the driver is constant over the period of observation or

if interannual fluctuations in population size swamp the signal of a weak yet persistent long-term

effect [14, 19]. Likewise, species phenology and morphology can vary spatially, and observed

resiliency to an ecological threat in one region may not accurately represent susceptibility in the
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larger population [20, 16]. Species responses to environmental stimuli are also mediated by their

community, which implies species-environment association should be examined in conjunction

with the species community [21, 22]. It follows that documenting and understanding declines of

biodiversity relies on spatially broad surveys of multiple species over long periods of observation

[23]. Rarely can such data be procured from one source.

Ecological data collection has proliferated over the last two decades [24]. Multi-agency moni-

toring efforts like Long Term Ecological Research Network and National Ecological Observatory

Network are increasingly common where thousands of scientists coordinate comprehensive sur-

veys over long time periods [25]. Data collection has been facilitated by technological advance-

ments such as data loggers, camera traps, telemetry, and environmental DNA [26, 27]. Publicly

collected data sources have also expanded with an increase in citizen science surveys [28].

When analyzed independently, the eclectic datasets can be insufficient for understanding pop-

ulation dynamics and informing conservation practices [29, 30]. Integrated models assimilate

multiple datasets in a cohesive framework and have been applied in econometrics, biostatistics,

meteorology, and oceanography [31, 32, 33, 34, 35]. In an integrated model, multiple datasets

are conditioned on common latent parameters. By simultaneously analyzing all the available data

sources, integrated models can compensate for deficiencies in the individual datasets [36, 37] and

have been shown to increase parameter precision, improve predictive performance, and provide

novel insights into population dynamics [38].

Integrated models pose one of the most promising avenues for capitalizing on the wealth of

data collected in the past few decades. Developing integrated models is challenging, and Zipkin et

al. [36] highlighted four commonly encountered difficulties in ecology:

1. Resolving mismatches in spatial and temporal scales of available data sources.

2. Addressing unbalanced data: uneven quantities and information content.

3. Accounting for sampling biases in one or more data source(s).

4. Optimizing model development and assessment when incorporating multiple data sources.
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In this dissertation, I discuss methods for addressing the methodological challenges discussed in

(1)-(3), and briefly comment on future work for addressing (4). I also address the computational

burden of fitting integrated models [39, 40], and describe a suite of methods I use for decreasing

runtimes.

I develop methodology for integrated models in the context of Bayesian hierarchical model-

ing. Hierarchical models decompose complex problems into tractable components that can col-

lectively account for uncertainty in the data, underlying processing, and parameters [41]. The

ability to explicitly model the mechanistic processes which generated the observed data is one of

the main features that popularized hierarchical models among ecologists [42], and the prevalence

of Bayesian methods in ecology today is epitomized by the number of books published on the

subject [43, 44, 45, 46, 47, 48, 49, 50, 42]. The Bayesian approach also admits mechanisms for

incorporating previous scientific findings into the model [51], which can be especially useful in

ecology where observations of certain phenomenon are limited and additional prior information is

needed for facilitating inference [52]. The hierarchical framework partitions the variability in the

process under study from the error resulting from imperfect observations of the process [53]. Most

pertinent to my work, Bayesian methodology accommodates a joint analysis of multiple datasets.

Across three analyses of multi-source ecological data, I specify Bayesian hierarchical models

(BHMs) for inferring trends in population dynamics while accounting for errors in the observa-

tional process. In Chapter 2, I specify a multispecies occupancy model for learning about the

joint mammalian response to the bark beetle epidemic in Colorado. Fueled by favorable climatic

conditions, bark beetle outbreaks have increased in range and severity in the subalpine forest of

Colorado’s Rocky Mountains in recent decades [2]. The loss of billions of trees situated on hun-

dreds of millions of acres is unmatched in recorded history [54] and understanding how species

are responding to this ecological catastrophe is vital to informing conservation. Ivan et al. [2]

fit independent models to assess the response of 13 mammals to regions impacted by bark beetle

infestation. I discuss how an independent analysis of each species has the potential to misidentify

species-environment associations and propose a model for understanding joint patterns in species
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distributions. I introduce the notion of community confounding where environmental factors and

species interdependence compete to explain patterns in species distributions and discuss its impli-

cations for model fitting and inference.

I develop two integrated models for facilitating joint inference from multiple surveys of lesser

prairie-chicken (Tympanuchus pallidicinctus; hereafter LEPC) in Chapters 3 and 4. The LEPC

is a federally endangered species [55] threatened by habitat destruction, degradation and climate

change [56, 57, 58, 59]. LEPC inhabitat four ecoregions across their range [60], and genetic ev-

idence suggests the populations inhabiting each ecoregion are genetically distinct [20]. In some

ecoregions, populations have been decimated [57, 61, 58], while in others, populations are growing

and home ranges expanding [62]. Another challenge is that LEPC populations have large interan-

nual fluctuations in abundance that make identifying trends difficult [6, 63]. Effective conservation

strategies rely on understanding ecoregional heterogeneity in LEPC demography [15, 16], and

quantifying species vulnerability depends on accurate assessment of long term trends [60].

I develop an integrated model for assimilating observations from independent aerial and ground

surveys into a common model that provides joint inference on spatio-temporal trends in LEPC

abundance. Using recently proposed chained Markov melding [64], I show how to construct the

joint distribution of all inferential quantities implied by the specifications made across a chain

of submodels. The approach preserves the observational uncertainty of each survey and assimi-

lates surveys of varying spatial and temporal scales with possible sampling biases into a common

framework. By specifying an integrated model for both data sources, the abundance of LEPC in

unsampled regions and in years preceding aerial surveys could be inferred. I extend the previous

framework by linking the aerial and ground surveys to additional demographic surveys of LEPC

in population model for describing fluctuations in abundance driven by ecoregional and temporal

variability in survival and productivity. I highlight discrepancies in LEPC demography that would

have been overlooked had I not assimilated all the available data sources.

The remainder of Chapter 1 is split into three sections. In Section 1, I discuss including mecha-

nistic processes in BHMs, a common approach for Bayesian analysis of ecology data and feature of
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the BHMs presented in Chapters 2-4. Section 2 gives a brief history of the rise of integrated models

in ecology and describes adaptations relevant to my work. I conclude with a suite of computational

aides used to facilitate model fitting in Section 3.

1.1 Modeling Mechanistic Processes

Hierarchical models can be specified to reflect mechanisms in the system under study [65, 42].

Bayesian models are lauded for their ability to incorporate preexisting sources of information. If

the mechanisms of a social, economic, ecological, or physical system are well studied, it would

be remiss to ignore all the previous literature when designing a model [66, 67, 68]. Mechanisms

may also pertain to the sampling process, and the Bayesian framework accommodates the unique

observational errors arising from different survey methods. Mechanistic models incorporate prior

information into model design and are distinct from phenomenological models that infer the asso-

ciation among variables based solely on the fit to observed data (i.e., linear regression [69]).

Phenomenological models often suffer from confounding where multiple effects compete to

explain the same signal [70]. Because phenomenological models are naive to the system under

study, they can produce posterior inference that is scientifically untenable or counter-intuitive. By

prespecifying the known mechanisms in the system, it is often easier to discover novel mechanisms

[71, 72]. Furthermore, restricting or penalizing a model to adhere to certain mechanisms can also

improve prediction, reduce variance, and stabilize computation [73]. Mechanistic modeling facili-

tated my dissertation work and has been more broadly useful in hierarchical modeling of ecological

datasets. I, first, introduce differential equation models, which have become a common approach

for incorporating mechanisms into BHMs. Next, I provide examples from my dissertation work

where taking a mechanistic approach was inferentially or computationally fruitful.

1.1.1 Differential Equation Models

Classic mathematical models in ecology such as Lotka–Volterra, Malthusian growth, logistical

growth, ecological diffusion are rooted in differential equations, but only in the past decade have
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statistical models that account for uncertainty in differential equation parameters been proposed

in ecology [42, 65]. Statistical models that incorporate differential equations can better mimic

the system while still accounting for and propagating uncertainty. For example, the Malthusian

growth model describes the increase of a population over time when it is not influenced by carrying

capacity or density dependent interactions. The model depends on the population growth rate

and initial population size both of which are generally unknown and must be estimated with the

available data. Accounting for the uncertainty of these parameters in the differential equation

model properly propagates the uncertainty into the inferred population trajectories.

Differential equation models have been particularly useful for systems with well-structured de-

pendence across space and time. For example, Hooten and Wikle [74] used a reaction-diffusion

partial differential equation (PDE) to model the invasion of Eurasian Collared-Dove Streptopelia

decaocto in the United States from 1986-2003. Williams et al. [75] and Lu et al. [76] used

Reaction-diffusion PDEs to model the recolonization of Glacier Bay, Alaska by sea otters. Char-

acterizing these systems with a phenomenological model would require a massive number of pa-

rameters to capture complex spatio-temporal interactions. By specifying the structure of those

interactions with a PDE, Williams et al. [75] and Lu et al. [76] reduced the number of estimated

parameters improving computation and prediction.

Mechanistic BHMs also facilitate posterior inference. By mimicking the data generating pro-

cess, mechanistic models can provide inference for quantities that the observed data may not di-

rectly speak too. For example, Wilson et al. [77] specified a mechanistic spatial model for un-

derstanding heavy metal pollution. By including an advection-diffusion (PDE) for atmospheric

dispersion in their BHM, Wilson et al. were able to learn about temporal dynamics in mental

pollution, despite the fact that the data analyzed were only collected at one time point.

1.1.2 Royle-Nichols Occupancy Model

Mechanisms can also be incorporated in the sampling process. The Royle-Nichols occupancy

model [78] includes mechanisms governing species occupancy to improve inference. At first
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glance, it may sound dubious to learn about spatial heterogeneity in abundance from vectors of

binary data, but this is exactly what the Royle-Nichols occupancy model achieves. I introduce the

site-structured binary data commonly collected in ecology studies and present the standard models

used for drawing inference before describing the Royle-Nichols model.

In Chapter 2, I specify a joint species distribution model (JSDM) [21], for mammals in the

subalpine forest of Colorado. The data consists of binary vectors yik of length Ji, where i =

1, . . . , n and k = 1, . . . , K index sites and species, respectively. For simplicity, I will consider a

single species, (i.e., K = 1). Each datum, yij , corresponds to whether the species was detected at

site i during occasion j = 1, . . . , Ji. A popular model for analyzing such data is as follows:

yij ∼















Bern(pij), zi = 1

0, zi = 0

, (1.1)

zi ∼ Bern(ψi), (1.2)

h(pij) = w
′
ijα, (1.3)

g(ψi) = x
′
iβ, (1.4)

α ∼ N (µα,Σα), (1.5)

β ∼ N (µβ,Σβ). (1.6)

Hoeting et al. [79] and Mackenzie et al. [80] called equations (1.1)-(1.6) an occupancy model

because it partitions the observed 0s across an occupancy, equation (1.2), and detection, equation

(1.1), process. A surveyor may record a 0 (i.e., non-detection) at a site because either the species

does not the occupy the site or the species occupies the site but the surveyor failed to detect it.

The function g(·) relates xi, a p-dimensional vector of observed covariates for the ith obser-

vation including an intercept term, to the species latent probability of occupancy ψi and is often

referred to as a link function. Link functions transform the linear predictor to match the support

of the parameter. In the case of occupancy probability, the link function g(·) ensures that the

transformed linear predictor is bounded between 0 and 1, the support of ψi. Likewise, h(·) relates
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site and occasion specific covariates wij to the probability of detecting the species on occasion j

conditional on the species occupying site i.

Any function that maps the real number line to (0, 1) is suitable for h(·) and g(·), but in the

occupancy literature there is precedent for using the Probit link function [81, 82, 83]. Albert and

Chib [84] introduced a data augmentation scheme that simplifies fitting the occupancy model,

equations (1.1)-(1.6), using Probit link functions. Ease of implementation has popularized the

Probit link in the occupancy modeling literature [85, 86, 87, 88, 89, 90] but other computationally

efficient methods for fitting similar models exist [91, 92] (Section 1.3.3).

Royle and Nichols [78] considered an occupancy model that accounted for heterogeneity in

detection induced by variation in abundance. For a survey of site i on occasion j, the probability

of detecting any particular individual in the group of Ni individuals at site i is rij . Assuming

individuals are detected independently of one another, the probability of detecting at least one of

these individuals is

pij = 1− (1− rij)
Ni . (1.7)

Equation (1.7) reflects that the species is more likely to be detected at sites where it is more preva-

lent, (i.e., Ni larger implies larger pij). Royle and Nichols [78] recommended a Poisson model for

Ni with the linear predictor latent mean log(λi) = x
′
iβ.

By mimicking the mechanism of the sampling process (1.7), Royle and Nichols [78] could

measure the association between site level covariates xi and the species latent mean abundance

λi. The traditional occupancy model, equations (1.1)-(1.6), provides inference on the association

between xi and the species latent probability of occupancy ψi. Species abundance and occupancy

may be governed by different mechanisms, and inference from an intensity model can be distinct

from that provided by an occupancy model [93, 94, 95]. In Chapter 2, I discuss the inferential

implications of the two specifications when fitting occupancy data.
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1.1.3 Mixture Models

A mixture model represents a probability distribution as a weighted sum ofK other probability

distributions,

[θ] =
K
∑

k=1

wk[θ]k, (1.8)

where
∑K

k=1wk = 1, and I use the bracket notation [θ]k to represent the probability distribution

of θk [96]. If each component distribution [θ]k is specified to be normal, then equation (1.8) is a

Gaussian mixture model which has diverse applications in cluster analysis, anomaly detection, and

data augmentation [97, 98, 99]. Specification of mixture models is often motivated by the context.

Consider, for example, a model for adult heights. A Gaussian mixture can account for bimodality

in the observed heights induced by biological sex. Mixture models have also been used to model

highly complex distributions that do not follow any common parametric form (e.g., infinite mixture

models in a Dirichlet process [100, 101]).

In Chapter 3, I consider a mixture model for counts of LEPCs that was both biologically mo-

tivated and accommodated bimodality in the distribution of the counts. The data are counts of

LEPC groups during the breeding season, during which, male LEPCs congregate into groups of

4-100 individuals called leks to collectively attract females. Females will temporarily visit leks

but forage and travel in smaller groups. Occasionally, leks of less than 4 individuals are observed

as well as groups of multiple females. These observations blur the distinctions between lek and

non-lek observations and make it difficult to decipher whether a lek or non-lek is being observed.

I specified a mixture model for LEPC counts Nl with latent labels ωl:

Nl ∼















ZTP(λ1), ωl = 1

ZTP(λ0), ωl = 0

, (1.9)

ωl ∼ Bern(p), (1.10)

9



where l indexes LEPC groups, ZTP is an abbreviation for zero-truncated Poisson, and I have

omitted priors for λ1, λ0, and p for simplicity. Note that Nl is necessarily zero-truncated because if

a group exists it must contain at least one individual. I also evaluated a simpler model by specifying

Nl ∼ ZTP(λ) but found that the unimodel distribution was unable to characterize variability in the

observed counts and resulted in poor model fit. To account for the overdispersed counts, I also

considered a zero-truncated negative binomial model for Nl with overdispersion parameter θ. I

had difficulty implementing the negative binomial model because of convergence issues with the

overdispersion parameter θ. I did not have any issues with convergence fitting the ZTP mixture

model, equations (1.9)-(1.10). As I discussed with differential equation models, a mechanistically

motivated modeling approach can also improve computation.

1.2 Integrated Models

The Bayesian framework can assimilate multiple data sources into one cohesive model. I de-

fine integrated models as models that condition at least 2 datasets on common parameters, but

the framework has also been described as integrated analysis [31], integrated distribution mod-

els [102], shared parameter models [32], joint models [33], Markov combination [103], Bayesian

melding [104], data assimilation [34], data reconciliation [105], and data fusion [35]. The Bayesian

framework allows the total error in a model to be split across uncertainties in the data, process, and

parameters [41]. In many analyses, a single data source may be incapable of disentangling pro-

cess from observation error in the model specified [36]. By assimilating multiple data sources, the

uncertainty from each component of the model can be estimated with more precision [38].

The earliest applications of integrated modeling frameworks in the context of wildlife manage-

ment arose in fisheries science [106]. Fournier and Archibald [106] described a general model for

catch at age data in fisheries. A difficulty with analyzing these data is that variability in the number

of fish caught annually is both influenced by demographic processes as well as fishing effort. Tra-

ditional approaches for analyzing the observed counts muddled effort with demography and poorly

predicted the size of the fishery (i.e., stock assessment). Fournier and Archibald showed how to
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include data on fishing effort and the age of fish at harvest in a common model to improve stock

assessments. Integrated modeling frameworks have been adapted for other fields, and I describe

adaptations pertinent to my research.

1.2.1 Joint Species Distribution Models

Ecologists study how organisms interact with each other and their physical surroundings.

Species distributions are shaped by both environmental factors and their interactions with other

species [17]. Pulliam [107] proposed that the distribution of species is governed by three forces:

abiotic tolerance, dispersal, and biotic interactions. Abiotic tolerance refers to the set of envi-

ronmental conditionals across which a species can exist and is called the fundamental niche [17].

Species rarely occupy their entire fundamental niche because of geographic isolation or biotic

interactions. A species may not have dispersed to an environmentally habitable region or were

out-competed by other organisms in a subregion of their fundamental niche. The region a species

occupies is referred to as the realized niche [17]. Figure 1.1 illustrates this process for two com-

petiting species A and B. Based on physiological tolerances, species A and B have fundamental

niches across an environmental gradient that partially overlap. Assuming dispersal across the gra-

dient for both species, only the niche of species A is fully realized as it outcompetes species B

[17]. Biotic interactions can truncate a species realized niche to a subset of the fundamental niche

but mutualistic relationships can also expand species ranges relative to their fundamental niches.

For example, mutualistic relationships between algae, cyanobacteria, and fungi, known as lichen,

allow the species to survive in environments that they could not inhabit individually.

Because of limitations in data collection and computational power, statistical models have

lagged theory in the modeling of species distributions. Understanding the abiotic factors which

govern species distributions is a long standing objective of ecological research [108], and applica-

tions of species distribution modeling can be found as early as the 1920s [109]. Modern statistical

models for individual species distributions came in the 1970s [110] but only in the last decade,

have methods been proposed for the joint prediction and analysis of species distributions [22].
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Figure 1.1: Illustration of fundamental versus realized niche for a simple community of two competing
species across an environmental gradient.

JSDMs account for co-occurrence patterns in species distributions beyond what is explained by

shared environmental preferences [17]. Multiple frameworks have been proposed to account for

interdependence in species distributions [111, 89, 112], but most commonly a covariance matrix is

specified to explain additional structure in the residuals [22, 21]:

g(zi) = x
′
iβ + ϵi, (1.11)

ϵi ∼ N (0,Σ), (1.12)

where zi is a measure of prevalence (occupancy, density, abundance, etc.) for the K species in the

community at site i, xi is a P -dimensional vector of environmental covariates including an inter-

cept, and Σ is a K ×K species covariance matrix. Generally, the true state of ecological interest

zi is unobservable, and JSDMs may include another hierarchy to account for the observed data

collected at site i conditional on the true state zi. The off-diagonals of the species covariance ma-

trix, Σ, provide inference for patterns in co-occurrence. JSDMs exploit patterns in co-occurrence

to improve prediction [113]. In Chapter 2, I develop a JSDM for describing the joint mammalian

response to the bark beetle epidemic. I also describe confounding in JSDMs and its consequences

for inference and modeling fitting.
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1.2.2 Integrated Population Models

Besbeas et al. [114] introduced integrated population models (IPMs) for assimilating popu-

lation counts with demographic surveys to provide inference on population dynamics. IPMs are

popular in ecology [115] and especially for avian conservation [38]. A typical IPM assimilates

annual indices of population abundance, capture-recapture or telemetry data for learning about

survival, and productivity data to infer the number of new individuals born each year. A directed

acyclic graph (DAG) of an IPM is shown in Figure 1.2. In the IPM, survival, ϕ, and productivity,

ρ, rates (possibly age and sex specific) are linked to an index of population abundance N . Infor-

mation about the vital rates ϕ and ρ are primarily in the datasets R, J , and m, but counts of the

population size, y, also facilitate inference.

Figure 1.2: Directed acyclic graph of example integrated population model.

IPMs generally follow a state-space framework in which the latent demographic rates and

abundances are informed by observations indexed in time [38]. For each data source, a distribution

is assumed that relates the latent quantity of interest to the data collected. All latent quantities

are then joined in one cohesive model for demography. One populatar choice is the Leslie matrix
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model [116],
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where Nt = (N1t, . . . , NAt)
′ is the vector of female abundances in age classes a ∈ {1, . . . , A} in

year t and ρat and ϕat are the age specific productivity and survival in year t. The Leslie matrix

model is deterministic, and the predicted number of individuals in age class NA in year t + 1, for

example, is NAϕA + NA−1ϕA−1. In practice, a distributional assumption is made for each row of

the matrix to account for demographic stochasticity.

IPMs have been widely applied in conservation biology [63, 37, 117, 118, 119] because they

link changes in population size to annual fluctuations in productivity and survival and can decipher

which vital rate is more correlated with population growth [120, 121]. Wildlife managers use the

inference provided by IPMs to develop strategies that explicitly target boosting survival or produc-

tivity. A phenomenological model can estimate the association between the observed counts y and

a set of covariates but cannot identify whether the association is related to changes in productivity

or survival. This is problematic in cases where an environmental factor has conflicting effects on

productivity and survival. Inference from a phenomenological model may suggest the environmen-

tal factor has no influence on population growth even though it profoundly shapes demography. In

Chapter 4, I specify an IPM for LEPC.

1.2.3 Markov Melding

The previous two sections included examples of modeling frameworks for assimilating multi-

ple data sources. In this section, I describe a general technique for deriving joint inference from

a set of submodels linked by common quantities. The need to infer the posterior distribution im-
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plied by several separate analyses can arise in many contexts [122]. For example, suppose several

laboratories are conducting experiments on the same phenomenon but use different equipment or

suppose several researchers are studying unique sub-components of a larger object (i.e., genes on

a chromosome, subplots in a field, species in a community, etc.). Goudie et al. [123] introduced

Markov melding as a generic approaching for deriving the joint posterior distribution of all quan-

tities expressed across a collection of analyses.

Markov melding is an extension of Markov combination [103], a formula for calculating the

joint distribution implied by joining two or more other submodels. Dawid and Lauritzen [103]

proved Markov combination in a more general context, but I will define it in the context of BHMs.

Suppose there are M submodels with parameters ψ1, . . . , ψM and data Y1, . . . , YM and all models

share the common quantity θ. If the marginal distribution of θ is consistent across all submodels,

that is [θ] = [θ]1 = · · · = [θ]M , the Markov combination of all submodels is

[θ,ψ,Y ]comb = [θ]
M
∏

m=1

[ψm, Ym|θ], (1.14)

where ψ = (ψ1, . . . , ψM)′, Y = (Y1, . . . , YM)′, and Dawid and Lauritzen assumed the m submod-

els are independent conditional on θ.

Goudie et al. [123] relaxed the assumption of marginal consistency to introduce Markov meld-

ing. The method involves replacing the marginal distribution of θ in each submodel with a common

marginal denoted by [θ]pool. Instituting a common marginal of [θ]pool across all submodels, the joint

melded distribution is formed as

[θ,ψ,Y ]meld = [θ]pool

M
∏

m=1

[ψm, Ym|θ]m (1.15)

= [θ]pool

M
∏

m=1

[ψm, Ym, θ]m
[θ]m

, (1.16)

where [ψm, Ym, θ]m and [θ]m denote the joint and marginal distributions of θ in submodel m, re-

spectively. Unlike Markov combination, which forms the exact joint distribution of all parameters,
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Markov melding introduces a novel joint distribution by constraining each submodel to admit the

same marginal for θ. Goudie et al. [123] proved that the modified submodel joint distributions,

[ψm, Ym|θ]m[θ]pool, minimize the Kullback-Leibler divergence between their original submodel

joint distributions [ψm, Ym|θ]m[θ]m under that constraint that [θ]m = [θ]pool for m = 1, . . . ,M .

Thus, [ψm, Ym|θ]m[θ]pool is interpreted as the minimally modified submodel joint distribution that

admits [θ]pool as its marginal distribution for θ. Goudie et al. [123] proposed a number of options

for forming the pooled prior [θ]pool such that it summarizes the prior information expressed across

all M submodels.

Manderson and Goudie [64] extended Markov melding to scenarios where a chain of submod-

els is linked by multiple parameters. Let θm−1∩m denote a parameter common to the m − 1 and

mth submodels. Manderson and Goudie [64] introduced a chained melded joint distribution for

the vector of M − 1 quantities θ = (θ1∩2, θ2∩3, . . . , θM−1∩M)′, data Y , and submodel parameters

ψ,

[θ,ψ,Y ]meld = [θ]pool
[θ1∩2, ψ1, Y1]1

[θ1∩2]1

[θM−1∩M , ψM , YM ]M
[θM−1∩M ]M

(1.17)

×
M−1
∏

m=2

(

[θm−1∩m, θm∩m+1, ψm, Ym]m
[θm−1∩m, θm∩m+1]m

)

. (1.18)

Observe, equation (1.18), implies there may be prior dependence between the parameters θm−1∩m

and θm∩m+1. The chained melded joint distribution captures prior dependence between common

quantities within a submodel and reconciles differences in priors for the same common quantity

between two adjacent submodels [64]. Obtaining samples from [θ,ψ,Y ]meld is non-trivial and

relies on a multistage Markov Chain monte Carlo (MCMC) algorithm (see Section 1.3.5).

The IPM introduced in Section 1.2.2 falls under the chained Markov melding framework [64].

Although the model can be fit using conventional Bayesian methodology, the IPM can also be split

into three submodels for the productivity, count, and survival data as illustrated by the boxes in

Figure 1.2. Benefits of this approach include more flexibility in the prior specification for ϕ1, ϕA,

and ρ and decreased runtime through fitting a subset of the submodels in parallel (Section 1.3.5).
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In other contexts, chained Markov melding can facilitate joint inference from a sequence of sub-

models for which specification of unified integrated model is non-obvious. For example, suppose

the population counts, y, in Figure 1.2 are not observed but can be inferred from submodel derived

quantities. Previous approaches approximated the distribution of the derived quantity by matching

its first two moments to some parametric distribution [124, 117]. The joint distribution implied

by this approach is unclear, and minimizing the approximation error can be difficult for derived

quantities with complex distributions. The chained Markov melding approach forms a unified joint

distribution accounting for the contribution of each submodel and obviates approximation of the

submodel derived quantities.

In Chapters 3 and 4, I developed two integrated models for learning about trends in LEPC

abundance. In both analyses, counts of LEPC at the desired spatio-temporal scale are not observed,

and I derive counts at the desired unit from independent aerial and ground surveys. Using chained

Markov melding, I form the joint melded distribution for all parameters accounting for the data,

prior specifications, and assumptions across all submodels.

1.3 Computational Methods and Aides

BHMs give tremendous flexibility for specifying models that mimic natural phenomenon and

accommodate multiple data sources. Unfortunately, many models expressed in the previous sec-

tions are difficult to fit in practice. Common difficulties of fitting hierarchical models with MCMC

include computation time, convergence, and mixing. In this section, I discuss computational aides

for fitting BHMs with MCMC.
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1.3.1 Restricted Regression

Consider the model

y ∼ [y|µ,ψ], (1.19)

g(µ) =Xβ + η, (1.20)

η ∼ N (0,Σ), (1.21)

β ∼ N (µβ,Σβ), (1.22)

where g(·) is a link function, ψ are additional parameters for the data model, and Σ is a covariance

matrix. In the model, β are referred to as the fixed effects and η the random effects. The fixed

effects β explain variation in the transformed latent mean g(µ) that is in the direction of the design

matrix X , and the random effect, η, explains additional variation in g(µ) that is residual to the

variation explained byX . Reich et al. [125] showed that η is able to explain variation in µ that is

colinear toX which allows for confounding between η and β.

Hodges and Reich [126] suggested the non-confounded GLM

y ∼ [y|µ,ψ], (1.23)

g(µ) =Xβ + (I − PX)η, (1.24)

η ∼ N (0,Σ), (1.25)

β ∼ N (µβ,Σβ), (1.26)

where I is the identity matrix and PX =X(X ′X)−1X ′ is the projection matrix onto the column

space ofX . Model (1.23)-(1.26) restricts the random effect η to explain variation that is orthogonal

or residual to X and is called restricted regression. Orthogonalizing the fixed and random effects

reduces dependence in the Markov chain and generally improves mixing.

Over the past decade, restricted regression has garnered substantial attention in spatial statistics,

and some have cautioned against its application. Paciorek [127] highlighted that, if confounding
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exists, it may be inappropriate to attribute all contested variability in the latent mean µ to the fixed

effects. More recently, concerns regarding the coverage properties of the fixed effects estimator

under restricted regression have been expressed [128, 129]. For example, Zimmerman and Ver

Hoef [129] showed that applying any restricted regression method to a spatial general linear mixed

model (SGLMM) leads to frequentist coverage of the fixed effects that is lower than the corre-

sponding non-spatial model. Similarly, Khan and Calder [128] found that when fitting a restricted

version of the SGLMM with an intrinsic conditional autoregressive prior, credible intervals of

the fixed effects from the restricted model were generally nested inside those yielded by the non-

spatial model. Given these results, both Zimmerman and Ver Hoef [129] and Khan and Calder

[128] recommended reverting to inference from the non-spatial model, rather than that of the re-

stricted SGLMM, when, based on the scientific context, inference from the unrestricted SGLMM

was infeasible or counter-intuitive.

Hanks et al. [130] suggested a hybrid approach where the fixed effects, β, are derived from the

restricted SGLMM. This is possible because the restricted SGLMM is a reparameterization of the

unrestricted SGLMM. The hybrid approach provides improved computational stability but yields

the more conservative parameter estimates. While the above results regarding restricted regression

have all been in the context of spatial statistics, the results hold more broadly for general GLMs

as expressed in equations (1.19)-(1.22). In Chapter 2, I consider a model for describing the joint

response of mammals in the subalpine forest of Colorado to the bark beetle epidemic. I employ

restricted regression methods to orthogonalize the fixed and random effects to improve parameter

mixing and convergence.

1.3.2 Tobit Model

Tobit models were first proposed for handling censored data [131] and are commonly employed

in the context of nutrient monitoring. Dissolved phosphorus is an important indicator of health in

aquatic ecosystems but can be difficult to monitor because the concentration can be as low as 0.01

milligram per liter (mg/L). Many instruments are unable to discriminate concentrations below
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0.01 milligram per liter (mg/L) and will round any observations below the threshold to 0.01. A

vector of measurements of dissolved phosphorous across n = 7 sites on one stream could be

y = (0.01, 0.12, 0.17, 0.01, 0.01, 0.05, 0.01)′.

Consider estimating the posterior distribution of the true mean concentration of dissolved phos-

phorous in the stream, denoted by µ. A naive model would be

yi ∼ N (µ, σ2), (1.27)

µ ∼ N (µ0, σ
2
0), (1.28)

σ2 ∼ IG(q, r). (1.29)

Model (1.27)-(1.29) does not account for the censoring of observations below the detection thresh-

old and will result in a posterior distribution of µ that is both biased high and optimistic.

Let yO and yL denote the vectors of observed and latent measurements, respectively. The

quantities are related as follows:

yOi =















yLi , yLi > ξ

ξ, yLi ≤ ξ

, (1.30)

where ξ is the detection limit of the instrument. A tobit model in this context is

yOi =















yLi , yLi > ξ

ξ, yLi ≤ ξ

, (1.31)

yLi ∼ N (µ, σ2), (1.32)

µ ∼ N (µ0, σ
2
0), (1.33)

σ2 ∼ IG(q, r). (1.34)

20



For yOi < ξ, the latent measurement yLi is unobserved, and thus must be sampled. Conveniently,

the full-conditional distribution of yLi is a zero-truncated normal distribution with upper bound ξ,

mean µ, and variance σ2. By accounting for the censoring induced by the detection limit of the

instrument in the observational process, the tobit model corrects for the bias and optimism in the

posterior of µ.

The tobit model may be computationally appealing more broadly. In Chapters 3 and 4, I de-

scribe a model for densities of LEPC at n = 21 sites. At site i, the surveyor recorded the count

of birds Nil at each of Li leks on the survey route. The density for route i was then calculated

as Di =
∑Li

l=1Ni/Ai, where Ai is the area of site i. Assuming Li > 0 and Ni1, . . . NiLi
are

independently and identically distributed with finite variance, the distribution of Di is approxi-

mately normal by the central limit theorem when Li is large. I considered the simple spatial linear

regression model

D ∼ N (Xβ,Σ), (1.35)

β ∼ N (µβ,Σβ), (1.36)

σ2 ∼ IG(q, r), (1.37)

where Σ = σ2R andR is a known correlation matrix that accounts for spatial dependence.

Model (1.36)-(1.37) is easy to implement via MCMC since both β and σ2 have conjugate full-

conditional distributions. A normal model forD was not appropriate because at some routes Li =

0 and thus Di = 0. To account for the mixture of discrete and continuous support, I considered the
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following tobit model:

Di =















ζi, ζi > 0

0, ζi ≤ 0

, (1.38)

ζ ∼ N (Xβ,Σ), (1.39)

β ∼ N (µβ,Σβ), (1.40)

σ2 ∼ IG(q, r), (1.41)

where Σ = σ2R as before. The introduced parameter ζ, like yL in the previous example, is

partially unobserved. Unlike yL, ζ does not have meaningful interpretation. All densities,Di, were

perfectly observed, and there was no censoring of the response. The tobit model accommodated

the mixture of a discrete and continuous support while still retaining the conjugacy of β and σ2.

To implement the tobit, I needed to sample ζS , where S is the collection of sites at which

Di = 0. The full-conditional distribution of ζS is a truncated multivariate normal with upper

bound 0, conditional mean µS , and conditional variance ΣS defined as follows:

µS =XSβ +ΣS,−SΣ
−1
−S,−S(ζ−S −X−Sβ), (1.42)

ΣS = σ2
(

ΣS,S −ΣS,−SΣ
−1
−S,−SΣ−S,S

)

, (1.43)

where ΣS,−S , for example, denotes the submatrix of Σ with rows in S but excluding columns

in S . Because Σ is known, I calculated all matrix inverses and products a priori, and sampling

ζS was computationally inexpensive. For modeling LEPC densities, the improved mixing and

convergence rate induced by conjugacy of β and σ2 outweighed the burden of sampling ζS .

1.3.3 Pólya-Gamma Data Augmentation

Ecologists often analyze binary data (e.g., species presence-absence, breeding success, survival

analysis, etc.) [132], and are interested in the associations between covariates and quantities like
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probability of occupancy, reproduction, or survival motivating the binary regression model

yi ∼ Bern(ψi), (1.44)

logit(ψi) = x′
iβ, (1.45)

β ∼ N (µβ,Σβ), (1.46)

where i = 1, . . . , n indexes observations. The logit link function induces a non-tractable full-

conditional distribution for β that makes it difficult to fit the model with MCMC especially when

there are many covariates.

Polson et al. [91] introduced a data augmentation scheme that induces conjugacy of the regres-

sion coefficients β. Like the tobit model, Pólya-Gamma data augmentation involves introducing

auxiliary parameters. The auxiliary parameters must be sampled but the extra computational cost

is usually worth the improved mixing and convergence of β.

Pólya-Gamma data augmentation derives its name from the distribution of the auxiliary vari-

ables. Let ω ∼ PG(b, c), then

ω
D
=

1

2π2

∞
∑

k=1

γk
(k − 1

2
)2 + c2/(4π2)

(1.47)

where the γk ∼ G(b, 1) are independent gamma random variables and “D
=” indicates equality in

distribution. Pólya-Gamma data augmentation induces the following posteriors for the regression

coefficients and auxiliary variables

ωi|β ∼ PG(1,x′
iβ), (1.48)

β|y,ω ∼ N (Vωmω,Vω), (1.49)
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where

Vω = (X ′
ΩX +Σ

−1
β )−1, (1.50)

mω =X ′κ+Σ
−1
β µβ, (1.51)

Ω = diag(ω1, ..., ωn), (1.52)

κ = (y1 − 1/2, . . . , yn − 1/2)′ . (1.53)

In Chapter 3, I use Pólya-Gamma data augmentation to facilitate model fitting for a Binomial

regression model estimating the effect of land cover covariates on the number of LEPC groups in

a region.

1.3.4 PX-DA for Abundance Estimation

Ecologists are often interested in counts such as clutch sizes, parasite loads, and local abun-

dance. Abundance estimation is a heavily researched topic in ecology and many survey methods

have been proposed [133]. Three popular survey methods for estimating abundance are capture-

recapture, N-mixture, and distance sampling [42]. Models for analyzing each of these surveys

leverages information about observed or captured individuals to make inference about the number

of unobserved/uncaptured individuals.

Consider a distance sampling model for observations of a single species along a transect. The

data consist of n distances d where n is itself a random quantity. The object of inference is N ,

the true number of individuals in the survey region. Following Royle et al. [134] and Hooten and
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Hefley [42], consider the model

yi ∼















Bern(pi), zi = 1

0, zi = 0

, (1.54)

log(pi) = −
d2i
σ2
, (1.55)

zi ∼ Bern(ψ), (1.56)

ψ ∼ Beta(a, b), (1.57)

where i = 1, . . . , n indexes individuals. Analogous to the occupancy model, equations (1.1)-(1.6),

the observational component, equation (1.54), accommodates zero-inflation where yi = 0 because

either the individual does not occupy the survey region or the individual does occupy the survey

region but went undetected. The probability of detection for individual i is modeled as a function

of di, the distance the individual was observed from the transect at the time of survey. In addition

to distance, other traits might also impact detectability. For example, in Chapter 3, I consider a

distance sampling model for aerial surveys of LEPC groups. I found that the count of birds in the

group was an important predictor of detectability.

The crux of fitting model (1.54)-(1.57) is that the data only include observations for the detected

individuals (i.e., y = 1). Royle et al. [134] introduced parameter expanded data augmentation

(PX-DA) and inflating the dataset, y, with M − n pseudo-individuals where yi = 0 for i =

n+ 1, . . . ,M . Because the pseudo-individuals are unobserved, a prior distribution is specified for

the unknown individual distances di for i = n + 1, . . . ,M . Assuming individuals are randomly

distributed in the survey region, a reasonable prior for the unknown distances is di ∼ U(0, νd) for

i = n+ 1, . . . ,M , where νd is an upper detection limit.

Royle et al. [134] referred toM as the superpopulation size and interpreted zi to be the indicator

on whether individual i of the superpopulation occupied the survey area. The true number of

individuals in the survey region can be calculated as the derived quantityN =
∑n

i=1 zi. A heuristic

for the PX-DA distance sampling model is that characteristics of the observed individuals help
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to decipher whether it is more likely that a psuedo-individual did not occupy the survey region,

zi = 0, or the psuedo-individual did occupy the survey region, zi = 1, but went undetected yi = 0.

Psuedo-individuals with characteristics similar to those of detected indivudals are more likely to

be classified as not occupying the survey region because if these psuedo-individuals did occupy

the region, they likely would have been detected.

Both hyperparametersM and νd must be specified a priori. The superpopulation sizeM should

be chosen large enough to capture variability in N but not so large as to impose an unnecessary

computational burden. Likewise, νd should be larger than any of the observed distances, but larger

values of νd require larger M and hence more computation. Increasing νd enlarges the survey area

and will increase both the posterior variance and mean of N . Because inference on N depends on

νd, it is preferable to consider inference on the derived quantity density D = N/2νdνl, where νl is

the length of the survey transect. The derived density D is generally unaffected by choice of νd.

1.3.5 Multistage MCMC Algorithms

Due to dependence in the Markov chain, MCMC algorithms are difficult to parallelize [135,

136, 137]. Lack of parallelization often precludes MCMC from being competitive with other meth-

ods for drawing inference from Bayesian models such as The EM algorithm [138] and Integrated

Nested Laplace Approximation (INLA) [139]. A variety of multistage MCMC algorithms includ-

ing Recursive Bayes (RB), Proposal-RB, Sequential Monte Carlo (SMC), and Markov melding

have been proposed to alleviate the computation burden of MCMC [140, 141, 142, 143, 144, 64].

The computational benefits offered by these multistage algorithms are diverse [145]. For ex-

ample, Lunn et al. [141] used Proposal-RB to fit a hierarchical model for a meta-analysis in two

stages. By splitting the MCMC algorithm into stages, the first stage could be parallelized across

the J studies in the meta-analysis resulting in shorter computation time overall. Hooten et al.

[143] considered a hierarchical point process model for animal telemetry data. The observational

component point process model required calculation of computationally expensive integral. Us-

ing Proposal-RB, Hooten et al. [143] obviated calculation of the integral in the 2nd stage of the
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MCMC algorithm. Taylor et al. [146] developed a multistage algorithm for recursively updating

posterior quantities in a record linkage model for streaming data.

Another potential benefit of fitting a hierarchical model in stages is that conjugacy of cer-

tain parameters may be preserved or induced. For example, McCaslin et al [147] introduced

Transformation-assisted Recursive Bayes (TARB) that induces conjugacy at one stage of the algo-

rithm by transforming the parameter of interest and specifying a temporary prior. In Chapters 3

and 4, I develop integrated models for LEPC abundance that are linked on submodel derived quan-

tities. I implement a multistage MCMC algorithm that allows several of the submodels to be fit in

parallel. The multistage algorithm also dodges costly Metropolis-Hastings updates for parameters

with low acceptance rates.

1.3.6 Rcpp

The computational methods described have wide applicability and aide fitting complex models

for multiple data sources. Nonetheless, even after employing the suite of methods described above,

the computation time required to fit a MCMC algorithm undesirable may be undesirable. One

solution is to transition our MCMC algorithm to a higher-level computer language.

In 2011, Eddelbuettel and Francois [148] launched Rcpp, an R package for incorporating

C++ objects and code into the R environment. Using Rcpp, programmers can seamlessly export

functions and code from C++. Programmers implementing novel MCMC algorithms in R can

code computationally burdensome portions of their MCMC algorithm in C++. Because R is a

interpreted language, rather than compiled, its memory allocation routines are not suited for large,

nested “for” loops, and the largest computation gains often result from coding the entire MCMC

algorithm in Rcpp.

I code several of the MCMC algorithms presented in Chapter 3 and 4 using Rcpp and find

the resulting algorithms to be orders of magnitude faster than those coded in R. For example, in

Chapter 3, I implement an extension of the tobit model, equations (1.39)-(1.41), to infer spatio-

temporal variability in LEPC density. Fitting the model via MCMC with an algorithm coded in R
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required over 300 minutes per 100, 000 MCMC iterations. Fitting the analogous MCMC algorithm

coded in Rcpp took only 30 minutes per 100, 000 iterations.
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Chapter 2

Community Confounding in Joint Species

Distribution Models

2.1 Introduction

Historically, species distributions have been modeled independently from each other due to

unavailability of multispecies datasets and computational restraints. However, ecological datasets

that provide insights about collections of organisms have become prevalent over the last decade

thanks to efforts like The Long Term Ecological Research Network (LTER), National Ecological

Observatory Network (NEON), and citizen science surveys [149]. In addition, technology has

improved our ability to fit modern statistical models to these datasets that account for both species

environmental preferences and interspecies dependence. These advancements have allowed for the

development of joint species distribution models (JSDMs) [150, 21, 89] that can model dependence

among species simultaneously with environmental drivers of occurrence and/or abundance.

Species distributions are shaped by both interspecies dynamics and environmental preferences

[17, 151, 152, 153]. JSDMs integrate both sources of variability and adjust uncertainty to reflect

that multiple confounded factors can contribute to similar patterns in species distributions. Some

have proposed that JSDMs not only account for biotic interactions but also correct estimates of

association between species distributions and environmental drivers [154, 21], while others claim

JSDMs cannot disentangle the roles interspecies dependence and environmental drivers [17]. We

address why JSDMs can provide inference distinct from their concomitant independent SDMs,

how certain parameterizations of a JSDM induce confounding between the environmental and

random species effects, and when deconfounding these effects may be appealing for computation

and interpretation.
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Because of the prevalence of occupancy data for biomonitoring in ecology, we focus our

discussion of community confounding in JSDMs on occupancy models, although we also con-

sider a JSDM for species density data in the simulation study. The individual species occupancy

model was first formulated by MacKenzie et al. [80] and has several joint species extensions

[155, 156, 86, 157, 87, 158, 89]. We chose to investigate the impacts of community confounding

on the probit model since it has been widely used in the analysis of occupancy data [83, 86, 89]. We

also developed a joint species extension to the Royle-Nichols model [78] and consider community

confounding in that model.

We use the probit and Royle-Nichols occupancy models to improve our understanding of mon-

taine mammal communities in what follows. We show that including unstructured random species

effects in either occupancy model induces confounding between the fixed environmental and ran-

dom species effects. We demonstrate how to orthogonalize these effects in the model and compare

the resulting inference compared to models where species are treated independently.

Unlike previous approaches that have applied restricted regression techniques similar to ours,

we use it in the context of well-known ecological models for species occupancy and intensity.

While such approaches have been discussed in spatial statistics and environmental science, they

have not been adopted in settings involving the multivariate analysis of community data. We

draw parallels between restricted spatial regression and restricted JSDMs but also highlight where

the methods differ in goals and outcomes. We find that the computational benefits conferred by

performing restricted spatial regression also hold for some joint species distribution models.

2.1.1 Royle-Nichols Joint Species Distribution Model

We present a JSDM extension to the Royle-Nichols model [78]. The Royle-Nichols model

accounts for heterogeneity in detection induced by the species’ latent intensity, a surrogate related

to true species abundance. Abundance, density, and occupancy estimation often requires an explicit

spatial region that is closed to emmigration and immigration. In our model, the unobservable

intensity variable helps us explain heterogeneity in the frequencies we observe a species at different
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sites without making assumptions about population closure. In the Model section, we further

discuss the distinctions between abundance and intensity in the Royle-Nichols model.

The Royle-Nichols model utilizes occupancy survey data but provides inference distinct from

the basic occupancy model [80]. In the Royle-Nichols model, we estimate individual detection

probability for homogeneous members of the population, whereas in an occupancy model, we esti-

mate probability of observing at least one member of the population given that the site is occupied.

Furthermore, the Royle-Nichols model allows us to relate environmental covariates to the latent

intensity associated with a species at a site, while in an occupancy model, environmental covari-

ates are associated with the species latent probability of occupancy at a site. Species intensity and

occupancy may be governed by different mechanisms, and inference from an intensity model can

be distinct from that provided by an occupancy model [93, 94, 95]. Cingolani et al. [94] proposed

that, in plant communities, certain environmental filters preclude species from occupying a site

and an additional set of filters may regulate if a species can flourish. Hence, certain covariates that

were unimportant in an occupancy model may improve predictive power in an intensity model.

2.1.2 Community Confounding

Species distributions are shaped by environment as well as competition and mutualism within

the community [159, 160, 153]. Community confounding occurs when species distributions are

explained by a convolution of environmental and interspecies effects and can lead to inferential

differences between a joint and single species distribution model as well as create difficulties for

fitting JSDMs. Former studies have incorporated interspecies dependence into an occupancy model

[155, 156, 86, 157, 87, 158, 89], and others have addressed spatial confounding [92, 161, 83, 149],

but none of these explicitly addressed community confounding. However, all Bayesian joint oc-

cupancy models naturally attenuate the effects of community confounding due to the prior on the

regression coefficients. The prior, assuming it is proper, induces regularization on the regression

coefficients [162] that can lessen the inferential and computational impacts of confounding [70].

Furthermore, latent factor models like that described by Tobler et al. [89] restrict the dimension-
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ality of the random species effect which should also reduce confounding with the environmental

effects.

We address community confounding by formulating a version of our model that orthogonal-

izes the environmental effects and random species effects. Orthogonalizing the fixed and random

effects is common practice in spatial statistics and often referred to as restricted spatial regression

[125, 126, 163, 130, 70]. Restricted regression has been applied to spatial generalized linear mixed

models (SGLMM) for observations y, which can be expressed as

y ∼ [y|µ,ψ], (2.1)

g(µ) =Xβ + η, (2.2)

η ∼ N (0,Σ), (2.3)

where g(·) is a link function, ψ are additional parameters for the data model, and Σ is the co-

variance matrix of the spatial random effect. In the SGLMM, prior information facilitates the

estimation of η, which would not be estimable otherwise due to its shared column space with β

[163]. This is analogous to applying a ridge penalty to η, which stabilizes the likelihood. Another

method for fitting the confounded SGLMM is to specify a restricted version:

y ∼ [y|µ,ψ], (2.4)

g(µ) =Xδ + (I − PX)η, (2.5)

η ∼ N (0,Σ), (2.6)

where PX = X(XX)−1X ′ is the projection matrix onto the column space of X . In the unre-

stricted SGLMM, the regression coefficients β and random effect η in (2.1) compete to explain

variability in the latent mean µ in the direction of X [70]. In the restricted model, however, all
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variability in the direction ofX is explained solely by the regression coefficients δ in equation (2.4)

[130], and η explains residual variation that is orthogonal to X . We refer to β as the conditional

effects because they depend on η, and δ as the unconditional effects.

Restricted regression, as specified in equation (2.4), was proposed by Reich et al.[125]. Reich

et al. [125] described a disease-mapping example in which the inclusion of a spatial random effect

rendered one covariate effect unimportant that was important in the non-spatial model. Spatial

maps indicated an association between the covariate and response, making inference from the spa-

tial model appear untenable. Reich et al. [125] proposed restricted spatial regression as a method

for recovering the posterior expectations of the non-spatial model and shrinking the posterior vari-

ances which tend to be inflated for the unrestricted SGLMM.

Several modifications of restricted spatial regression have been proposed [163, 164, 165, 166,

167]. All restricted spatial regression methods seek to provide posterior means E (δj|Y ) and

marginal posterior variances Var (δj|Y ), j = 1, ..., p that satisfy the following two conditions

[128]:

1. E (δ|Y ) = E (βNS|Y ) and,

2. Var (βNS,j|Y ) ≤ Var (δj|Y ) ≤ Var (βSpatial,j|Y ) for j = 1, ..., p,

where βNS and βSpatial are the regression coefficients corresponding to the non-spatial and unre-

stricted spatial models, respectively.

The inferential impacts of spatial confounding on the regression coefficients has been debated.

Hodges and Reich [126] outlined five viewpoints on spatial confounding and restricted regression

in the literature and refuted the two following views:

1. Adding the random effect η corrects for bias in β resulting from missing covariates.

2. Estimates of β in a SGLMM are shrunk by the random effect and hence conservative.

The random effect η can increase or decrease the magnitude of β, and the change may be galva-

nized by mechanisms not related to missing covariates. Therefore, we cannot assume the regres-

sion coefficients in the SGLMM will exceed those of the restricted model, nor should we regard the
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estimates in either model as biased due to misspecification. Confounding in the SGLMM causes

Var (βj|Y ) ≥ Var (δj|Y ), j = 1, ..., p, because of the shared column space of the fixed and random

effects. Thus, we refer to the conditional coefficients as conservative with regard to their credible

intervals, not their posterior expectations.

Reich et al. [125] argued that restricted spatial regression should always be applied because

the spatial random effect is generally added to improve predictions and/or correct the fixed ef-

fect variance estimate. While it may be inappropriate to orthogonalize a set of fixed effects in an

ordinary linear model, orthogonalizing the fixed and random effect in a spatial model is permis-

sible because the random effect is generally not of inferential interest. Paciorek [127] provided

the alternative perspective that, if confounding exists, it is inappropriate to attribute all contested

variability in y to the fixed effects. Hanks et al. [130] discussed factors for deciding between

the unrestricted and restricted SGLMM on a continuous spatial support. The restricted SGLMM

leads to improved computational stability, but the unconditional effects are less conservative under

model misspecification and more prone to type-S errors: The Bayesian analogue of Type I error.

Fitting the unrestricted SGLMM when the fixed and random effects are truly orthogonal does not

introduce bias, but it will increase the fixed effect variance. Given these considerations, Hanks

et al. [130] suggested a hybrid approach where the conditional effects, β, are extracted from the

restricted SGLMM. This is possible because the restricted SGLMM is a reparameterization of the

unrestricted SGLMM. This hybrid approach leads to improved computational stability but yields

the more conservative parameter estimates. We describe how to implement this hybrid approach

for joint species distribution models in the Community Confounding section.

Restricted regression has also been applied in time series applications. Dominici et al. [168]

debiased estimates of fixed effects confounded by time using restricted smoothing splines. Without

the temporal random effect, Dominici et al. [168] asserted all temporal variation in the response

would be wrongly attributed to temporally correlated fixed effects. Houseman et al. [169] used

restricted regression to ensure identifiability of a nonparametric temporal effect and highlighted

certain covariate effects that were more evident in the restricted model (i.e., the unconditional ef-
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fects’ magnitude was greater). Furthermore, restricted regression is implicit in restricted maximum

likelihood estimation (REML). REML is often employed for debiasing the estimate of the variance

of Y in linear regression and fitting linear mixed models that are not estimable in their unrestricted

format [170]. Because REML is generally applied in the context of variance and covariance esti-

mation, considerations regarding the effects of REML on inference for the fixed effects are lacking

in the literature.

In ecological science, JSDMs often include an unstructured random effect like η in equation

(2.1) to account for interspecies dependence, and hence can also experience community confound-

ing between X and η analogous to spatial confounding. Unlike a spatial or temporal random

effect, we consider random species effects to be inferentially important, rather than a tool solely

for improving predictions or catch-all for missing covariates. An orthogonalization approach in

a JSDM attributes contested variation between the fixed effects (environmental information) and

random effect (community information) to the fixed effect.

We describe how to orthogonalize the fixed and random species effects in a suite of JSDMs

and present a method for detecting community confounding. In the simulation study, we test the

efficacy of our method for detecting confounding, show that community confounding can lead to

computational difficulties similar to those caused by spatial confounding [130], and highlight that,

for some models, restricted regression can improve model fitting. We also investigate the infer-

ential implications of community confouding and restricted regression in JSDMs by comparing

outputs from the SDM, unrestricted JSDM, and restricted JSDM of the Royle-Nichols and probit

occupancy models fit to mammalian camera trap data. Lastly, we discuss other inferential and

computational methods for confounded models and consider their appropriateness for joint species

distribution modeling.
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2.2 Model

2.2.1 Data Model

The probit and Royle-Nichols occupancy models were developed for analyzing multispecies

binary detection data, yijk, arising from a zero-inflated Bernoulli process with probability of suc-

cess pijk, where i = 1, . . . , n, j = 1, . . . , Ji, and k = 1, . . . , K correspond to sites, occasions,

and species, respectively. Occupancy data of this form have traditionally been analyzed in a latent

variable framework [79, 80, 171]. In what follows, we let zik ∼ Bern(ψik) be an indicator on

whether species k occupies site i. Given a site is occupied, we detect species k on occasion j with

some probability pijk, such that (yijk|zik = 1) ∼ Bern(pijk), but if species k is absent from the

site, we have zero probability of detecting it, P (yijk = 0|zik = 0) = 1.

The probit occupancy model is so named because it links ψik and pijk to occupancy and de-

tection covariates xik and wijk, respectively, with the standard normal CDF Φ. The probit link

function can be paired with data augmentation [84, 81, 82, 83] to yield efficient Gibbs samplers

for the occupancy and detection regression coefficients β and α, respectively.

Royle and Nichols [78] introduced a method for analyzing occupancy data that explicitly mod-

eled the probability of detecting species k at a site as a function of a surrogate related to the true

species abundance. Assuming there are Nik individuals of species k in sample region i and that all

individuals in species k on the sample unit have identical detection probabilities and are detected

independently of other individuals, the probability of detecting at least one of these individuals can

be expressed as

ρijk = 1− (1− rjk)
Nik , (2.7)

where rjk is a binomial sampling probability that a particular individual of species k is detected

on occasion j. While the Royle-Nichols model facilitates inference on number of individuals of

species k, Nik, at each site when all the assumptions are met, we do not interpret them as such
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because sites are not necessarily closed in camera trap studies due to mobile species with home

ranges larger than the sampling radius of the camera. Note that ρijk in equation (2.7) corresponds

to the species probability of detection conditional on an intensity process. This is distinct from pijk

in the probit model that is conditional on an occupancy process.

The nonlinear function of rjk and Nik in equation (2.7) involves more parameters than would

be identifiable in a typical occupancy model, especially when the individual detection probability

is heterogeneous across occasions (e.g., rjk are heterogeneous). In the heterogeneous case, rjk is

connected to covariates with the logit link function:

logit(rjk) = f(wjk,αk), (2.8)

where f(wijk,αk) is a linear function of the detection covariates wijk and regression parameters

αk.

2.2.2 Modeling Interspecies Dependence

We extend both occupancy models to account for interspecies dependence by including ran-

dom species effects in their process models. Following Royle and Nichols [78], we assume

Nik ∼ Pois(λik), where λik is mean intensity of species k at site i. We let λ denote the vector

of site specific intensities stacked across the K species in the community. To model interspecies

dependence, we specify the conditional multivariate normal distribution:

log(λ) ∼ N (Xβ + η,Σλ), (2.9)

η ∼ N (0,Σspp ⊗ In), (2.10)

where X is a block-diagonal matrix of the K species design matrices, β = (β′
1, . . . ,β

′
K)

′ is a

stacked vector of species specific regression coefficients, η represents the random species effects,
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and Σspp is a species covariance matrix, and Σλ is a matrix that allows for additional covari-

ance structures such as spatial dependence. For our purposes of comparing the SDM, unrestricted

JSDM, and restricted JSDM for differences galvanized by community confounding, we assumed a

simple independent structure for log(λ) and set Σλ = τI .

In the probit model, we include a random species effect in the latent probability of occupancy:

Φ(ψ) = Xβ + η, where ψ is a vector of site specific occupancy probabilities stacked across the

K species in the community andX , β = (β′
1, . . . ,β

′
K)

′, and η are defined as above.

In both occupancy models, η allows for dependence between all K species in the commu-

nity at each site. In the probit model, η characterizes interspecies dependence in the probability

of occupancy, whereas in the Royle-Nichols model interspecies dependence is characterized in

the species latent intensities. Just as certain environmental features may not preclude species oc-

cupancy but can curb intensity, some species may coexist in a region but not be able to jointly

flourish [172]. Hence, interspecies dependence on latent intensity is conceptually distinct from

interspecies dependence on probability of occupancy and may lead to inferential differences in η

in the two occupancy models.

Tobler et al. [89] developed a joint occupancy model that accounts for community structure

using a latent variable approach. They express the latent probability of occupancy of species k at

site i as

Φ(ψik) = x
′
iβk + l

′
iθk, (2.11)

where l′i is a vector of length T of latent variables, and θk are species specific regression coef-

ficients. The latent variable model (LVM) is a computationally efficient and implicitly accounts

for community structure. Other occupancy models have included interspecies dependence in the

structure of the regression coefficients. Known as multispecies models, these models assume the

species specific regression coefficients βk stem from a common multivariate normal distribution

βk ∼ N (µ,Σβ) where µ is the typical response of a species to covariates x and Σβ allows for
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dependence in different species response to the same covariates [173]. In our study of mammalian

camera trap data, each species is modeled with unique covariates, and we do not consider shared

environmental responses.

Scheffe [174] stipulated that the levels of a random effect are draws from a population, and the

draws are not of interest in themselves but only as samples from the larger population, which is

of interest. In more recent literature, the term random effect is used more broadly. Hodges and

Clayton [175] categorized modern definitions of a random effect into three different varieties. The

definition commonly used in spatial statistics is, the levels of the effect arise from a meaningful

population, but they are the whole population and these particular levels are of interest. We adopt

this definition for the random species effects in equation (2.9). In practice, some levels of the

population will likely not be included in the random species effects. For example, in Ivan et al.

[2], cameras were baited and arranged to capture all members of the mammalian community, but

several species were excluded from the random species effects due to a lack of detections.

2.2.3 Priors

We specified normal priors for the regression coefficients, β, in the intensity and occupancy

processes of the Royle-Nichols and probit models, respectively to facilitate comparison with the

occupancy and spatial confounding literature. We also specified normal priors for the detection

coefficients, α, in the observation model and the conjugate Inverse-Wishart prior for the species

covariance matrix Σspp. A more general alternative to the Inverse-Wishart prior is to apply a

Cholesky decomposition, Σspp = LD−1L′, where L is lower diagonal with ones along the diag-

onal and D is diagonal with positive diagonal elements, and specify priors for the lower diagonal

elements of L and diagonal elements of D [176]. We found the Inverse-Wishart prior suitable for

our inferential goals, but see Chan and Jeliazkov [176] for alternative covariance matrix priors.

The joint posterior distribution associated with our model is
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[α,β,λ,N ,Σspp|Y ] ∝

K
∏

k=1

(

n
∏

i=1

(

Ji
∏

j=1

(

[yijk|Nik,αk]

)

[Nik|λik]

)

[αk][βk]

)

[λ|β1, · · · ,βK ,Σspp][Σspp].
(2.12)

See Appendix A.1 for the full statements of both the joint probit and Royle-Nichols occupancy

models.

2.3 Community Confounding

2.3.1 Restricted Regression Approach

We fit a restricted version of the each JSDM that orthogonalizes the fixed and random species

effects. In the Royle-Nichols model, we express the species latent intensity and occupancy process

conditionally as

log(λ) ∼ N (Xδ + (I − PX)η, τ
2I), (2.13)

η ∼ N (0,Σspp ⊗ In), (2.14)

where PX is the projection matrix onto the column space of X . Likewise, in the probit model we

specify Φ(ψ) = Xδ + (I − PX)η and retain the same prior for η as in (2.14). This specification

forces the random species effects to explain patterns in the community that are orthogonal to the

fixed effects. The latent variables and fixed effects in the LVM can also be orthogonalized. Writing

equation (2.11) in matrix form, we have

Φ(ψk) =X
′δk +Lθk, (2.15)
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where X and L are the matrices of covariates and latent variables vertically stacked across sites,

respectively. If we assume common covariates across all K species, we can specify a restricted

LVM as follows:

Φ(ψk) =X
′δk + (I − PX)Lθk. (2.16)

However, if covariates differ by species, i.e., X = Xk, then the posterior distribution of latent

variables will differ by species. To retain a common posterior distribution of latent variables across

all species, the latent variables need to be orthogonalized against all covariates among the k species,

LR =
K
∏

k=1

(I − PXk
)L. (2.17)

The specification of equation (2.17) is more restrictive than the orthogalization in the Royle-

Nichols and probit model, and so we omit the LVM from our case study.

Hanks et al. [130] showed that the restricted, equation (2.13), and unrestricted, equation (2.9),

generalized linear mixed models GLMM are reparameterizations of the same model and derived

the following relationship between the unconditional δ and conditional β fixed effects:

δ ≡ β + (X ′X)−1X ′η. (2.18)

Using equation (2.18), one can easily sample both sets of fixed effects by fitting either the restricted

or unrestricted parameterization. We can also sample the covariance structure of the restricted

random species effect from either model fit by drawing samples from the distribution
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Σ
−1
spp,R ∼ Wishart(Sν + η′(I − PX)η, ν + n). (2.19)

Hence, regardless of which model is fit, we can obtain both the unconditional and conditional

habitat effects as well as the unrestricted and restricted species covariance matrices.

2.3.2 Measuring Confounding

Hefley et al. [70] showed how to assess confounding in SGLMM models by computing the

Pearson correlation coefficient between each pair of covariates and eigenvectors from the spectral

decomposition of the spatial covariance matrix. Likewise, Prates et al. [167] proposed a test for

spatial confounding that can be calculated prior to model fitting. We propose another approach

relevant to our method that aids in interpretation. We compute the coefficient of determination of

each covariate for species k regressed on the estimated random species effects. Because the latent

intensities are unknown, the coefficents of determination of all covariates are derived quantities

and can be computed at each iteration of the MCMC algorithm:

R2(l)(xk) =
SSR(l)(xk)

SST (xk)
=

(

∆
(l)θ̂(l) − x̄k

)′ (

∆
(l)θ̂(l) − x̄k

)

(xk − x̄k)
′ (xk − x̄k)

, (2.20)

where x̄k = (x̄k, . . . , x̄k)
′ is the mean of the covariate xk for species k repeated n times, ∆(l) =

(

η
(l)
1 , . . . ,η

(l)
K

)

is a matrix of the random species effects sampled for MCMC iteration l, and θ̂(l)

are estimated regression coefficients relating the estimated species intensities at iteration l to xk.

The posterior mean E (R2(xk)|Y ) provides a measure of community confounding for the covariate

xk and can help identify which fixed effects will vary between the unrestricted and restricted

models. Furthermore, we can use the global F-test of the linear relationship between xk and ∆ to

determine if confounding exists.
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2.4 Simulation Study

We performed a simulation study to investigate the effects of community confounding and or-

thogonalization of the fixed and random species effects on model fitting. Specifically, we compared

the effective sample sizes of β and η for three different models for confounded and unconfounded

data with unrestricted and restricted parameterizations. The effective sample size (ESS) is the

number of independent MCMC samples of a quantity and is a metric for measuring the sampling

efficiency of an MCMC algorithm. Higher ESS are preferable as posterior distributions of quanti-

ties of interest can be obtained in fewer iterations.

We considered three models: The joint probit occupancy model, joint Royle-Nichols model,

and joint normal model, which is derived from the scenario where λ in the Royle-Nichols is known

(e.g., species density data). For each model, 150 datasets were generated with the fixed and random

species effects independent and another 150 datasets were generated with confounding between the

fixed and random species effects. To induce confounding between the fixed and random species

effect, we expressed one covariate of the first species as a linear combination of the random species

effects (i.e., x1 = ∆θ).

Because the ratio of the random effects and random error magnitude is known to affect the

severity of confounding in the spatial context [126, 130, 167], we varied the magnitude of the

random species effect in each model while holding the random error magnitude constant. Specif-

ically, each dataset was subdivided into thirds with 50 datasets simulated to have small, medium,

and large random species effects relative to the random error.

All 900 simulated datasets across models and confounding levels were for K = 2 species

across n = 50 sites with J = 10 occasions per site for the occupancy models. The correlation

between the two species was allowed to vary for each dataset. Each habitat design matrix included

an intercept and one continuous covariate. Each MCMC algorithm was run for a burn-in period

of L = 10000 to ensure convergence. The next L = 10000 iterations were used to calculate the

posterior quantities in Table 2.1. Code for performing the simulation study in R is available in the

supplementary electronic files.
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Table 2.1: Summary of simulations results. All results are averaged across 3 magnitudes of random species
effects and 50 simulated datasets. ESS Ratio is the effective sample size of the restricted parameterizations
over the unrestricted and the mean ESS is the average of the two. E

(

R2(x1)|Y
)

is the posterior mean R2

of confounding for species 1 continuous habitat covariate. Rejection rate is the portion of times the the
posterior mean p-value from overall F-test of a linear relationship between x1 and ∆ was below 0.05.

Model Data β ESS Ratio β Mean ESS η ESS Ratio η Mean ESS E (R2(x1)|Y ) Rejection Rate

Normal Unconfounded 18.69 5143 6.20 5670 0.04 0.01
Normal Confounded 8.67 4219 5.79 4800 0.51 0.87
Probit Unconfounded 1.73 959 1.08 534 0.04 0.00
Probit Confounded 1.96 444 1.23 293 0.19 0.63
Royle-Nichols Unconfounded 0.81 232 0.98 307 0.04 0.00
Royle-Nichols Confounded 0.80 186 0.98 301 0.18 0.51

For both β and η, ESS was lower on average for the confounded data than the unconfounded

data for all three models demonstrating the negative impacts confounding can have on model fit-

ting. For all three models, the computational impact of fitting the restricted parameterization did

not differ depending on whether confounding exists or not. In the case of the normal and probit

models, fitting the restricted parameterization improved ESS for both β and η, although the gains

were much greater for the normal model. On the other hand, the restricted parameterization of the

Royle-Nichols model did not improve ESS for β or η. The success of our method for detecting

community confounding differed across models. The method was most powerful for the normal

model followed by the probit and Royle-Nichols models.

2.5 Camera Trap Survey

2.5.1 Study Area

We analyzed data arising from a study area comprised of subalpine forests in the state of Col-

orado between 2590 and 3660 m elevation (Figure 2.1). Sites were restricted to public lands

managed by the United States Forest Service, National Park Service, Bureau of Land Manage-

ment, and Colorado State Forest Service. Forests in our study area were primarily composed of

Lodgepole pine (Pinus contorta), Engelmann spruce (Picea engelmannii), and subalpine fir (Abies

lasiocarpa). Lodgepole pine was dominant at lower elevations as well as higher elevations that

were drier and/or on south-facing slopes; high elevation regions that had cool north-facing slopes
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were co-dominated by Engelmann spruce and subalpine fir. Lodgepole pine is restricted to the

northern two-thirds of Colorado, so all sites in the southern region of the study area were En-

gelmann spruce, subalpine fir co-dominated. Quaking aspen (Populus tremuloides), Douglas-fir

(Pseudotsuga menziesii), bristlecone pine (Pinus aristata), limber pine (Pinus flexilis), and blue

spruce (Picea pungens) were also present at some sites. Mean July and January temperature across

the study area were 14◦C and -6.1◦C respectively. All camera data were collected during summers

2013-2014.

Figure 2.1: Randomly selected sampling sites (gray circles) where passive infrared game cameras were
deployed in spruce-fir (green) and lodgepole pine (yellow) forests in Colorado, USA, 2013–2014. Brown
and orange are the approximate extents of spruce beetle and mountain pine beetle impacts in spruce-fir and
lodgepole pine forests, respectively, as of 2014. Reprinted from “Mammalian responses to changed forest
conditions resulting from bark beetle outbreaks in the southern Rocky Mountains," by Ivan et al. [2]
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2.5.2 Sampling Design

The primary goal of Ivan et al. [2] was to assess mammalian responses to bark beetle outbreaks,

thus sites were randomly selected to facilitate inference on the beetle outbreak covariates. Beetle

outbreak covariates included the number of years since the initial outbreak (YSO) and the severity

of the outbreak measured by mean overstory mortality (severity). The sample of n = 300, 1 km2

sites was evenly split across the two dominant forest types, spruce-fir and lodgepole pine. Addi-

tional environmental covariates were collected at each site, and a description of these is included

in Appendix A.4.

Passive infrared camera traps (Reconyx PC800, Holmen, Wisconsin, USA) were deployed

near the center of each site. Cameras were approximately 0.5 m above the ground and pointed

toward a lure tree 4–5 m away [177]. The setup was designed to maximize detections of both large

and small-bodied mammals in the local community while minimizing attraction of individuals

from outside the sampling region of the site. The sampling regions were likely not closed to

immigration/emigration; thus, we interpret elevated detections at a site as more individuals using,

as opposed to occupying, that site [178]. For additional details regarding the sampling design and

study area see Ivan et al. [2].

2.5.3 Model Fitting

We fit both the Royle-Nichols and probit occupancy models to the camera trap data binned into

20 two-day occasions because simulations showed this was the number of replications needed to

identify a quadratic effect of occasion on individual detection probability. Not all cameras were

operational for the entire 40 day sampling period, and thus the number of occasions varied from

7-20. We discarded four sites at which the camera was operational for less than one occasion. We

also discarded another 12 sites that had been infested by bark beetles for more than 10 years. Ivan

et al. [2] truncated the bark beetle infestation covariate at 10 years because estimates of response

curves beyond 10 years would be unreliable with so few sites. The final sample size was n = 284

sites. We built distribution models for the 13 species for which Ivan et al. [2] performed a single
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species analysis; several rare species were excluded from analysis due to insufficient detections.

We note, however, that these rare species parameters may be identifiable in the joint model as has

been the case in previous studies [179, 173, 150, 180, 181, 182]. Our final dataset then included

3692 unique encounter histories at n = 284 sites, stacked across K = 13 species.

Ivan et al. [2] used a sequential procedure similar to that described in Lebreton et al. [183] to

select the covariates in the occupancy and detection processes for each species. We adopted their

detection model and used the same covariates but a different set of basis functions for YSO. Ivan et

al. [2] treated YSO as a grouping variable and considered probability of use response curves that

allowed for cubic associations and delayed responses to bark beetle infestation. Multiple response

curves were model averaged to produce predictive YSO response curves for each species. We used

orthogonal polynomial basis functions for the YSO variable in the species intensity models. The

basis functions included a linear (YSO1) and quadratic (YSO2) effect. Appendix A.4 provides a

full description of the intensity and detection models. All continuous covariates were scaled to

have mean 0 and variance 1.

We fit all models using MCMC. To improve mixing and predictive ability, we regularized the

coefficientsβ andαwith informative priors: β ∼ N (0, I) andα ∼ N (0, I) [162]. We specified a

vague prior of Σ−1 ∼ Wishart(15, (15I)−1) for the species variance-covariance matrix [184]. For

the Royle-Nichols model, we used Gibbs sampling based on conjugate priors for parameters Σspp,

η, and β and Metropolis-Hastings updates for N , λ, and α. Derivations of the conjugate full-

conditional distributions are provided in Appendix B.2 with details about the Metropolis-Hastings

updates. We tuned the Metropolis-Hastings updates so that acceptance rates varied between 20-

40% for α, N , and λ. Using data augmentation [84, 81, 82, 83], all the parameters of the probit

model can be sampled with Gibbs updates.

We set τ 2 = 2.25 in both equations (2.9) and (2.13). This choice was supported by the asymp-

totic equivalence between Poisson and logistic regression. In a generalized occupancy model, the

latent probability of occupancy is specified as logit(ψi) ∼ N (x′
iβ, τ

2). Hanson et al. [185] in-

vestigated the relationship between the prior on β and induced prior on the latent probability of
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success ψi in logistic regression; their work showed that specifying an uninformative normal prior

on β (i.e., setting τ 2 large) induces a U-shaped prior for ψi with most of the density concentrated

near 0 and 1. Broms et al. [157] recommended setting τ 2 = 2.25 in occupancy models, which

results in a relatively flat prior for ψ. For rare species, λi in equations (2.9) and (2.13) is analogous

to ψi, and specifying a variance of τ 2 = 2.25 is minimally informative.

Baddeley [186] motivated the asymptotic equivalence of Poisson and logistic regression in

a spatial context where counts of points from a non-homogeneous Poisson process are recorded

in a lattice; they showed that, as the grid cells of the lattice become infinitesimally small, the

inference yielded from Poisson and logistic regression are equivalent. This result can be applied

more generally to any dataset where there is a high proportion of zero counts. We demonstrate

the asymptotic equivalence between Poisson and logistic regression in the Royle-Nichols model in

Appendix A.3.

We ran the MCMC algorithm for L = 50000 iterations, and discarded the first 12500 iterations

as burn-in. We fit an SDM, unrestricted JSDM, and restricted JSDM of both the Royle-Nichols

and probit occupancy models. The Results section presents inference for regression coefficients

for all six model fits.

2.5.4 Results

Ivan et al. [2] fit SDMs to infer changes in mammalian use of stands impacted by the bark

beetle epidemic. The impact of bark beetle damage was measured by years since initial infestation

(YSO) and severity of outbreak quantified by mean overstory mortality (DeafConif). The posterior

distributions of the regression coefficients varied between the probit SDM and unrestricted JSDM,

although the magnitude of difference differed by species (Figure 2.2). The posterior variances of

the SDM regression coefficients were smaller than the unrestricted JSDM but also closer to zero.

Posterior variances and means of the restricted probit JSDM regression coefficients quite similar

to those from unrestricted JSDM. The only noticeable difference between the unrestricted and
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restricted regression coefficients was that the restricted coefficients had slightly smaller posterior

variances on average.
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Figure 2.2: Marginal posterior distributions of infestation regression parameters. Posterior distributions
shown are from the probit SDM, unrestricted JSDM, and restricted JSDM. DeadConif is the overstory
mortality percentage, a proxy for severity of bark beetle infestation. YSO1 is the linear effect of the number
of years since a site was infested with bark beetles. YSO2 is the quadratic effect. Figure created in R 4.1.2
[3].

As with the probit modeling results, posterior distributions of the regression coefficients in

the Royle-Nichols SDM were more concentrated near zero than those of the JSDM (Figure 2.3).

Also, posterior distributions of the restricted JSDM regression coefficients were slightly tighter

and centered closer to zero.

We calculated the unrestricted and restricted posterior correlation matrices for both the probit

and Royle-Nichols models. Pairwise differences between each entry of the posterior mean of the

four correlation matrices were bounded between (−0.2, 0.2), so only the correlation matrix of the

unrestricted Royle-Nichols model is shown (Figure 2.4). The posterior distributions of the pairwise

correlations all overlapped zero except for the pairwise correlations between coyotes and golden-
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Figure 2.3: Marginal posterior distributions of infestation regression parameters. Posterior distributions
shown are from the Royle-Nichols SDM, unrestricted JSDM, and restricted JSDM. DeadConif is the over-
story mortality percentage, a proxy for severity of bark beetle infestation. YSO1 is the linear effect of the
number of years since a site was infested with bark beetles. YSO2 is the quadratic effect. Figure created in
R 4.1.2 [3].

mantled ground squirrels, coyotes and red squirrels, and golden-mantled ground squirrels and red

squirrels. In the restricted probit JSDM, the correlations between coyotes and snowshoe hares, and

snowshoe hares and red squirrels also did not overlap zero.

We calculated the posteriorR2 of confounding for each covariate in each species specific model

as described in (2.20). All posterior R2 were below 0.05 for both the Royle-Nichols and probit

models giving no indication of community confounding for all covariates considered.
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2.6 Discussion

We found that confounding between the fixed and random species effects can reduce sampling

efficiency in MCMC algorithms and that orthogonalizing the fixed and random species effects can

alleviate this problem when fitting some joint species distribution models. In the simulation study,

we discovered that, even when the data were not confounded, orthogonalizing the fixed and random

species effects still conferred a computational benefit for the normal and probit model. This was

also true for our case study where the mean effective sample size of the conditional habitat effects

β in the probit model was 32% larger when fit with the restricted parameterization. The effective

sample size of η in the probit model was 3% greater for the restricted parameterization.

The case study indicated that inference on species-environment associations in occupancy mod-

els can change based on whether the distribution model accounts for community structure. Orthog-

onalizing the fixed and random species effects in the probit and Royle-Nichols model slightly re-

duced but did not nullify the differences as in the case for normal data. The similarity between the

restricted and unrestricted JSDM coupled with the lack of evidence for community confounding

suggests additional mechanisms lead inference in SDMs and JSDMs to differ, a finding consistent

with Caradima et al. [187]. Overall, there was still large agreement in posterior inference pro-

duced by the SDM and JSDMs for both occupancy models. In additional simulation studies on

the probit and Rolye-Nichols occopancy models, we found that community confounding can lead

to more large differences between the SDM and unrestricted JSDM and that the restricted JSDM

again mitigates but rarely nullifies these differences.

We were also interested in whether the Royle-Nichols model could identify additional associ-

ations compared with the probit model. The Royle-Nichols model measures associations condi-

tional on an intensity process rather than an occupancy, and intensity is likely a function of addi-

tional factors beyond those influencing occupancy [93, 94, 95]. For the camera trap data, the op-

posite was true, in that the probit model identified more environmental-species and species-species

associations. One possible explanation for this is that the probit model is more parsimonious which

sharpens posterior distributions.
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A related method to restricted regression, which orthogonalizes the fixed and random effects,

is principal components regression, which performs an orthogonalization procedure solely among

the fixed effects. To motivate their similarities, consider a simpler case where the latent intensities,

λ, of the K species in our community were known. We could construct K regression models for

predicting each species intensity as follows:

λk =Xkβk +Λ−kηk + ϵ, (2.21)

where Λ−k = (λ1, . . . ,λk−1,λk+1, . . . ,λK) is a matrix of the K − 1 other species intensities. If

Xk and Λ−k were highly collinear, principal component regression might be applied. Principal

components regression is so named because it decomposes the variation explained byXk and Λ−k

into p = p1 + p2 principal components, Γk = (γ1, . . . ,γp)k, where p1 and p2 are the number

of columns of Xk and Λ−k respectively. The p principal components retain all the information

explained byXk and Λ−k but are orthogonal. The regression model

λk =Wkθ + ϵ, (2.22)

Wk = (Xk,Λ−k)Γk, (2.23)

often improves sampling efficiency and can recover the posterior means and variances of βk and

ηk in equation (2.21). However, inference on βk and ηk is often adjusted by truncating off the last

p− r, for r < p, eigenvectors of Γk and employing the new design matrix

W ⋆
k = (Xk,Λ−k)Γ

⋆
k, (2.24)

Γ
⋆
k = (γ1, . . . ,γr) . (2.25)
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By retaining only the first r principal components, the smallest sources of variation are ignored

in the estimation of βk and ηk. Jeffers [188] implemented this approach truncating off the last 7

of 13 principal components to adjust the estimates of regression coefficients relating various tree

characteristics to maximum compressive strength. Other studies have selected a subset of principal

components based on their strength of association with the response variable [189, 190, 191, 192].

In some cases, the coefficient estimates from these reduced rank approaches appeared more tenable

than those from the full rank specifications based on known physical relationships between the

predictors and response. Thus, like restricted regression, principal components regression can

used for solely computation purposes or to adjust inference.

Recently, concerns regarding the coverage properties of the fixed effects estimator under re-

stricted regression have been expressed [128, 129]. For example, Zimmerman and Ver Hoef [129]

showed that applying any restricted regression method to a SGLMM leads to frequentest coverage

of the fixed effects that is lower than the corresponding non-spatial model. Similarly, Khan and

Calder [128] found that when fitting a restricted version of the SGLMM with an intrinsic condi-

tional autoregressive prior, credible intervals of the fixed effects from the restricted model were

generally nested inside those yielded by the non-spatial model. Given these results, both Zimmer-

man and Ver Hoef [129] and Khan and Calder [128] recommended reverting to inference from the

non-spatial model, rather than that of the restricted SGLMM, when inference from the unrestricted

SGLMM appears untenable.

We did not observe the same pattern in our restricted JSDM but found the length of credible

intervals of the restricted regression coefficients to generally be between that of the SDM and un-

restricted JSDM. Nonetheless, if higher coverage is desired, one can always extract the conditional

coefficients from the restricted JSDM while still benefiting from the increased stability that results

from orthogonalizing the fixed and random effets. When deciding between inference from the re-

stricted and unrestricted JSDM, one should also consider the random species effects η. Because

the random effect η is rarely of interest in spatial applications, there has been little investigation on
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the inferential impacts of restricted regression on η. Such investigation, however, may be helpful

in determining the appropriateness of restricted regression for JSDMs.

There are several conceptual facets to consider regarding the applications of restricted regres-

sion in joint species distribution modeling. Frequently, JSDMs are described as accounting for

residual correlations between species that cannot be explained by the environmental covariates

[17, 187, 89]. We have shown, however, that in some JSDMs, the random species effect can ex-

plain variation that is collinear with environmental covariates. Only in the restricted JSDM, does

the random species effect explain variation that is residual to the environmental covariates attribut-

ing all contested sources of variation to the fixed effect. Yet, given that species environmental

requirement can fluctuate based on their symbiotic relationships, one might argue that interplay

between the environmental effects and interspecies dependence is ecology warranted. Therefore,

any method that removes the conditional nature of these effects like restricted regression is inap-

propriate.

JSDMs have been described as correcting our knowledge of species-environment relationship

by accounting for interspecies dependence [17]. Poggiato et al. [17] argued that JSDMs help us

better quantify uncertainty regarding species-environment relationships, but they cannot explain

discrepancies in a species theoretical and realized niche. We agree that phenomenological JSDMs

should not be used to disentangle the marginal effects of environment and interspecies dependence

on species distributions and would recommend the development of mechanistic models to investi-

gate interspecies-environment associations.

Experimental methods and modeling techniques for alleviating confounding have been pro-

posed in ecology. Hefley et al. [72] showed that replicate populations can help disentangle con-

founded fixed and random effects. In the context of joint species distribution modeling, replication

involves analyzing several communities simultaneously, which is often infeasible. Hefley et al.

[72] also recommended explicit population models rather than phenomenological regression-based

models for analysis of temporally confounded count data. Similarly, Fieberg et al. [71] advocated

for mechanistic models guided by causal diagrams for analyzing temporally confounded animal
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movement data. An avenue of future research for joint species distribution modeling is to compare

inference from phenomenological regression-based models, such as the one proposed here, with

that of models that explicitly include ecological mechanisms such as competitive exclusion, mutu-

alism, and predation. Because community and temporal confounding have the same mathematical

framework, mechanistic models are a promising solution for confounded multispecies data.

In summary, we specified a JSDM that accounts for interspecies dependence at the intensity

level, and examined how inference from the joint model differed from the joint probit model. We

performed a simulation study on three JSDMs to examine the computational difficulties associ-

ated with community confounding and investigated whether orthogonalizing the fixed and random

species effect could alleviate these difficulties. Further, we considered how inference in both oc-

cupancy models differed depending on the assumed community structure. Lastly, we discussed

how joint species distribution modeling is distinct from spatial and time series applications in that

the random effect is almost always of inferential interest, and hence, adjustments to the regression

coefficients, β, and random effects, η, should both be considered. Our main conclusion is that,

even for researchers who desire inference solely on the conditional relationship between the fixed

species-environment and random species effects, fitting the JSDM with a restricted parameteriza-

tion can give computational benefits.
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Chapter 3

Melding Wildlife Surveys to Improve Conservation

Inference

3.1 Introduction

Integrated models that allow for the unified analysis of multiple datasets have been described

as integrated analysis [31], integrated distribution models [102], shared parameter models [32],

joint models [33], Markov combination [103], Bayesian melding [104], data assimilation [34],

data reconciliation [105], and data fusion [35] and have applications in econometrics, biostatistics,

conservation biology, atmospheric sciences, and oceanography. The joint likelihood of integrated

models conditions multiple datasets on link parameters in a way that can often improve predictive

performance and parameter precision [38].

Markov combination [103] facilitates joint inference on a link parameter expressed in several

submodels but is not applicable when the prior marginal distributions of the link parameter differ

across submodels. Goudie et al. [123] introduced Markov melding for combining related submod-

els that have differing marginal distributions for the link parameter. In this setting, the joint model

is constructed through marginal replacement, where the prior marginal distributions for the link pa-

rameter across submodels are replaced with a common pooled prior marginal distribution. Markov

melding facilitates joint inference on a link parameter in one submodel that can be expressed as

non-invertible functions of other submodel parameters. For example, suppose we have submodels

for learning about adult and juvenile survival, but we are interested in learning about aggregate

survival, which is a weighted average of the two. Markov melding uses marginal replacement to

form a melded posterior distribution for the link parameter that accounts for its implied prior and

likelihood in each submodel. Recently, Manderson and Goudie [64] proposed chained Markov
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melding, an extension that facilitates joint inference for a sequence of submodels connected by

multiple link parameters.

The earliest applications of integrated modeling frameworks in the context of wildlife man-

agement arose in fisheries science [106], but wide adoption of the framework in the broader fields

of conservation biology and ecology began in the early 2000s [31, 193]. In particular, integrated

population models (IPMs), which are an application of integrated models, have been used to un-

derstand population dynamics for species of conservation concern [38, 193]. Despite the success

of IPMs, few other integrated modeling approaches have been proposed in conservation biology.

One persistent challenge is the lack of spatial and temporal conformity across datasets. Additional

methodological challenges include differences in the quantity or observational uncertainty of the

data sources, and sampling bias in one or more datasets [102, 194, 36]. Such challenges are en-

countered when developing integrated models for species of conservation concern (SCC) because

of their elusiveness, restricted range, or small population size [195].

We developed an integrated model that facilitates joint inference of aerial and ground surveys

of LEPC, an SCC that has experienced range and population declines since the 1980s [56, 57, 59].

Joint modeling of these data is challenging because LEPC are simultaneously monitored by several

entities who operate independently in different regions. As a result, the surveys vary in their spatial

and temporal resolutions, sample size, and observational uncertainties. Additionally for some

surveys, LEPC were preferentially sampled in regions presumed to have high abundances which

may bias inference [196].

We facilitated shared inference of multiple LEPC surveys by chained Markov melding [64]

density estimates derived from submodels describing the observation processes of the aerial and

ground surveys into a joint response model. Melding refines the submodel density estimates to

those that agree with the spatio-temporal patterns observed in both surveys. By joining the sub-

models through derived quantities, we addressed the differences in the spatial and temporal scales

of the surveys. Accommodating these differences in scales with a traditional integrated model is

difficult because density is a non-invertible function of submodel parameters. Our modeling ap-
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proach attenuated the impacts of potential sampling biases and accounted for the distinct sources

of observational error so that all data sources can be assimilated to improve predictive perfor-

mance. Lastly, the Markov melding approach improved computation by enabling submodel spe-

cific data augmentation techniques and avoiding high-dimensional parameter updates by fitting the

integrated model in stages.

The paper is organized as follows. In Section 3.2, we provide a brief history of LEPC conser-

vation and discuss current needs for informing management. Section 3.3 details the sampling pro-

tocols of the aerial (3.3.1) and ground (3.3.2) surveys. Section 3.4 describes submodels accounting

for the observation process of each survey and a joint response model for linking inference across

surveys. In Section 3.5, we describe the Markov melding techniques used to facilitate posterior

inference for our integrated model. Section 3.6 includes the results our simulation study and LEPC

abundance analysis. Section 3.7 concludes with a discussion of our findings.

3.2 Lesser prairie-chicken Conservation

The LEPC is a member of the family Phasianidae and is indigenous to the southern Great

Plains of the United States. Like other species in its family, the LEPC has experienced range and

population declines since the 1980s primarily due to habitat loss, degradation, and fragmentation

[56, 57, 59], but curtailment of natural fires, overgrazing, and climate change have also contributed

[58].

We studied spatio-temporal patterns in LEPC abundance across the state of Kansas because

an estimated 70% of the total LEPC population resides in the state [60]. Our modeling ap-

proach, however, can accommodate data sources from the other states in the LEPC range. In

Kansas, LEPC inhabit Sand Sagebrush Prairie (SSPR), Mixed Grass Prairie (MGPR), Shortgrass

Prairie/Conservation Reserve Program Mosaic (SGPR) ecoregions, which cover the southwest,

southeast, and northern regions of western Kansas respectively.

Recently, the United States Fish and Wildlife Service listed the LEPC for federal protections

under the Endangered Species Act [55]. The Northern Distinct Population Segment, which encom-
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passes the SSPR, MGPR, and SGPR ecoregions, is categorized as threatened. Improved estima-

tion of spatio-temporal population change, especially range-wide, would help inform conservation

practices for the species [60].

Population monitoring of LEPC relies on spring counts of individuals on leks [61]. A lek is an

aggregation of males defending a small territory and communally calling and performing displays

to attract and mate with females [58]. Leks are generally located in sparse vegetation on hilltops

and ridgelines and commonly include more than 10 individuals which makes detection by audio

and visual cues of the otherwise cryptic individuals easier [58].

Historically, LEPC populations have been monitored using counts of individuals at leks from

ground surveys conducted by state wildlife agencies. Lack of spatial randomness in the ground

surveys, however, makes inferring species-habitat associations difficult and density estimates im-

precise and potentially biased [196]. Since 2012, several entities have collectively supported an-

nual range-wide aerial surveys of LEPCs. The aerial surveys follow a spatially random sampling

design and have thereby improved range-wide density estimates [61, 197]. Two drawbacks of the

aerial surveys is that they encounter fewer individuals per unit of area searched and have higher

operating costs. These limitations have led managers to consider integrated models that could

leverage ground survey data and reduce reliance on aerial surveys.

Over the last two decades, there have been numerous studies related to LEPC conservation

but few have assimilated multiple data sources due to the methodological challenges described

by Zipkin et al. [36]. Ross et al. [63] developed an IPM for assimilating count, survival, and

fecundity data that suggested observed declines in LEPC abundance following droughts [198]

were driven by higher juvenile and chick mortality. The findings of Ross et al. [63] prompted

managers to consider habitat improvements that focus on increasing and maintaining grasslands

that can buffer the population against the harmful effects of severe drought. By melding available

data sources, we improve spatio-temporal density estimates and facilitate prediction at unsampled

regions to identify vulnerable populations and prioritize landscapes for conservation action. Our
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approach can also quantify the inferential cost and reduced predictive performance associated with

less frequent aerial surveys. In what follows, we describe the aerial and ground survey protocols.

3.3 Survey Protocols

3.3.1 Aerial

The Kansas estimated occupied range (EOR) for LEPC was partitioned into nA = 299, 15 ×

15 = 225 km2, survey blocks [61]. A spatially random subset of blocks were selected for sampling,

and the subset selected differed by year (Figure 3.1). No blocks were surveyed in 2019. Two

Figure 3.1: Map of Kansas lesser prairie-chicken aerial survey blocks and Kansas Department of Wildlife
and Parks ground monitoring sites. Golden fill indicates the block/site was sampled during that year. The
region encompassed by all three ecoregions in the map is Kansas estimated occupied range.

north-south oriented, 15-km transects were surveyed by helicopter in blocks selected for sampling.

Selected transects were surveyed once during the LEPC breeding season (March 15-May 15) and
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within 0.5 hours prior to and 2 hours after sunrise to maximize detection of individuals present

at leks. The helicopter was operated by one pilot and three observers. As the pilot flew at a

speed of 60 km per hour and altitude of 25 meters above ground, observers attempted to visually

locate prairie-chicken. When one or more prairie-chicken were located, the pilot navigated to the

location and recorded the geographic coordinate and number of individuals observed. For an in-

depth description of the aerial survey protocol and design, see Nasman et al. [197] and Van Pelt et

al. [60].

3.3.2 Ground

Kansas Department of Wildlife and Parks (KDWP) preferentially located 21 ground survey

routes for monitoring LEPC in representative, high quality LEPC habitat across Kansas EOR.

Each route was approximately 16 km long and the ground survey attempted to census all leks

within 1.6 kilometers of the road for a region of approximately 51.2 km2. Routes were surveyed

(March 20-April 20) and within 0.5 hours prior to and 1.5 hours after sunrise.

All routes were surveyed at least twice per year in two parts. First, the listening portion of

the route was conducted; leks were audibly detected and their locations approximated, but not

confirmed. On the same morning, the surveyor navigated to each lek detected, prompted the in-

dividuals to take flight (flushed), and recorded the count of individuals and location. Surveyors

also revisited sites at which leks were previously recorded because LEPC are known to return to

historical lek sites [58]. The ground survey is a census of the leks in the survey area but it is not

a census of the population because some individuals may not be present at their lek at the time it

was flushed.

3.4 Methods

In northwestern Kansas, the LEPC EOR overlaps with the range of its sister species the greater

prairie-chicken (Tympanuchus cupido; hereafter GEPC). Species verification was sometimes in-

feasible for the aerial and ground surveys and observations of GEPC are included in both datasets.
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We proposed distance sampling (Section 3.4.1) and N-mixture (Section 3.4.2) submodels that an-

alyzed counts of prairie-chicken (LEPC and GEPC). We then derived the block-level densities of

LEPC in northwestern Kansas by multiplying the combined LEPC and GEPC density estimates

by known LEPC proportions (Section 3.4.3). The spatio-temporal submodel assimilates the LEPC

density estimates derived from the other two submodels in a joint response that induced the inte-

grated model. The integrated model accounted for the uncertainty in both datasets, the underlying

ecological processes, and the parameters.

3.4.1 Aerial Distance Sampling Submodel

We developed a distance sampling model to describe the observational uncertainty associated

with aerial surveys of prairie-chickens. We let vitl represent the number of observers who detected

group l = 1, . . . , LAit in sampling region i = 1, . . . , nA during year t = 1, . . . , TA. Assuming

all observers had equal skill in detecting prairie-chicken groups and observers detected the groups

independently, a model for vitl is

vitl ∼ Binomial(Bitl, ρitl), (3.1)

where Bitl is the total number of observers for which group l was visible and ρitl is the observer

detection probability for group l, assumed to be identical for all observers. The visibility of group

l to each observer depended on their distance from the transect, ditl, and side of the transect, ϵitl

(ϵitl = 1 indicates group on left side). Groups more than 7 meters left of the transect were visible

to both the front and rear left-hand side observers; groups within 7 meters of the transect were only

visible to the front left-hand side observer; and groups more than 7 meters right of the transects

were only visible to the right-hand observer. Hence, Bitl = 2 for ϵitl = 1 and ditl > 7, but Bitl = 1

otherwise. Detected prairie-chicken groups were announced only after they were out of view for

all observers to ensure independent detections.

We modeled the detection probability of group l, ρitl, as a function of the group’s distance

from the transect at detection, ditl, count of individuals at detection, NA
itl, and ecoregion, such that
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logit(ρ) =
(

Xρ,N
A,d

)

βρ, where Xρ is a binary matrix with unique intercepts for each ecore-

gion, and (·) denotes a column-wise bind of the listed matrices. The regression model provides

additional flexibility for estimating the detectability of prairie-chicken groups, and the entries of

βρ are identifiable under the double observer design [199]. We treat detections of the two left-hand

observers as fully independent but alternative approaches that allow for dependence in detectability

as a result of unmeasured covariates and animal movement have been proposed [200, 201]. Under

our modeling framework, we assume that heterogeneity in prairie-chicken group detectability is

well characterized by distance from the transect and size of the group. We also assumed groups

are stationary, but note that there were a small number of transiting individuals.

Some groups for which vitl = 0 were not in the dataset because they went undetected. To

account for these missed individuals, we employed a parameter expanded data augmentation (PX-

DA) approach [134]. Specifically, we augmented the dataset with many undetected groups and let

zitl ∈ {0, 1} indicate whether group l belonged to the sample population of groups in region i. If

a group was detected (i.e., vitl > 0), then it must be part of the sample population in region i (i.e.,

zitl = 1).

For undetected groups, zitl, NA
itl, ditl, and ϵitl were all unknown and hence estimated. To denote

the observed and unobserved components of partially latent parameters, we use the superscripts

o and u, respectively. Heuristically, we conceptualize the model as proposing groups of prairie-

chicken that the aerial survey may have missed; we proposed a group of prairie-chicken with count

NA,u
itl , distance from the transect duitl, and on side ϵuitl of the transect, and then used the observations

from our detected groups (i.e., NA,o, do, ϵo) to determine if group l could have been part of

our sample population (i.e., zuitl = 1) but went undetected (i.e., vitl = 0). We chose the prior

distributions for ditl and ϵitl to induce a uniform distribution of groups within the survey region.

See Appendix B.1.1 for a full description of prior distributions. Royle et al. [134] referred to the

total number of both observed and unobserved groups as the super-population, and the size of the

super-population, M , must be specified a priori. Appendix B.2 discusses recommendations for

choosing M . We calculate the total number of groups in the sample population of region i during
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year t as the derived quantity LAit =
∑M

l=1 zitl. Note that in this data augmentation framework LAit

includes the detected groups as well as groups that may have existed in the survey region but went

undetected.

The aerial survey was conducted during the breeding season to maximize detection of leks, but

smaller, non-lekking groups as well as individual prairie-chicken were also detected. We accounted

for the occurrence of lek and non-lek observations in the observed prairie-chicken counts using a

zero-truncated Poisson (ZTP) mixture model

NA
itl ∼















ZTP(λit), for ωitl = 1

ZTP(λ0), for ωitl = 0

, (3.2)

ωitl ∼ Bernoulli(pω), (3.3)

where ωitl is the indicator of whether group l is a lek, λit is the mean number of individuals per

lek in region i during year t, and λ0 is the homogeneous mean number of individuals for non-lek

observations. Both distributions in the Poisson mixture, equation (3.2), are zero-truncated because

if a group exists, it must have ≥ 1 individuals.

We treated ωitl as a latent variable because it was often infeasible to determine the lek status of

a prairie-chicken group from the air. For monitoring purposes, KDWP defines a lek as 3 or more

individuals on a display site [202]. In our case, the latent lek indicators ωitl accommodated the

bimodality of the count data and carried fewer assumptions regarding the composition of a lek.

Mean lek size varies temporally and with environmental factors [6, 57]. We specified a het-

erogeneous mean lek size across sites i and years t, λit, which we modeled with covariates (i.e.,

log(λ) = Xλβλ). The design matrix Xλ includes unique intercepts for each ecoregion and ad-

ditional continuous covariates. The covariates capture heterogeniety in mean lek size related to

landcover, habitat patch size, anthropogenic disturbance, and climatic stochasticity. See Appendix

B.3 for a description of all covariates, and how they were collected.

65



We specified a binomial model to account for variability in the number of prairie-chicken

groups such that

LAit ∼ Binomial(M,ψit), (3.4)

where ψit is the probability that a group belonged to the sample population of region i during year

t. The parameter ψit controls the number of prairie-chicken groups within a region, with greater

ψit implying more groups. Heterogeneity in prairie-chicken use of habitat within the EOR has also

been documented [203], motivating the logit model, logit(ψ) = Xψβψ. We chose the same suite

of covariates for explaining heterogeneity in the number of groups as those used for explaining lek

size (i.e.,Xψ =Xλ).

We specified diffuse exchangeable Gaussian priors for the regression coefficients βρ, βλ, and

βψ. We used a vague Uniform(0, 1) prior for the proportion of prairie-chicken groups that are leks,

pω, and an informative Gamma(1.78, 0.675) prior for the mean number of individuals for non-lek

observations λ0. A full description of the priors is provided in Appendix B.1.1.

3.4.2 N-mixture Submodel

We developed a submodel for describing observational uncertainty in KDWP prairie-chicken

ground surveys. We let Fitlj denote the ground count of male prairie-chicken on occasion j at

lek site l in sampling region i during year t. To account for variability in the counts induced by

imperfect male lek attendance, we adopted a N-mixture model [204],

Fitlj ∼ Binomial(NG
itl, p) for j = 1, . . . , Jitl, (3.5)

where p represents the homogeneous probability that a male belonging to lek site l was present

at the lek when it is surveyed. We assumed a Poisson model for the latent lek abundances,

NG
itl ∼ Poisson(exp (w′

itη)), where wit is the same set of covariates used in the aerial model

but with unique measurements because the aerial and ground sample regions differed. Note that
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zero abundances, Nitl = 0, were possible because surveyors revisited historical lek sites that may

not have been visited by any individuals in year t. It follows that exp (w′
itη) is the expected num-

ber of individuals per lek site rather than the expected number of individuals per active lek, and

the regression coefficient η dictates the relationship between the expected number of individuals

at a lek site and the covariates associated with that lek site. We specified a diffuse exchangeable

Gaussian prior for η and a vague Uniform(0, 1) prior for the male lek attendance probability p (see

Appendix B.1.2 for more details of the prior specification).

3.4.3 Integrated Model

We induced an integrated model for the aerial and ground surveys by specifying a spatio-

temporal submodel that couples the survey specific density estimates in a joint response. While

density is not a parameter in either the aerial distance sampling submodel (ADSM) or N-mixture

submodel, each submodel includes density as a derived quantity. For the ADSM, samples of block-

level LEPC density in the aerial lattice are obtained by

yAit = f(NA,o
it , zoit,N

A,u
it , zuit) =

M
∑

l=1

NA
itlzitlκi/S

A, (3.6)

where SA is the prespecified area of the sampling region (Appendix B.2) and κi is the proportion

of LEPC in sampling region i [5]. Proportions vary from 0.001-1 for blocks in the SGPR but equal

1 for all blocks in the MGPR and SSPR. Likewise, for the N-mixture submodel,

yGit = g(NG
it ) =

LG
it
∑

l=1

2NG
itlκi/S

G
i , (3.7)

where SGi is area of survey route i, LGit is the number of lek sites at site i in year t, and the 2

assumes equal sex ratios in the LEPC population [205]. Equation (3.7) also assumes no females

were present at the time the lek site was flushed which is a common assumption but could lead to

inflated estimates of yGit . Both yAit and yGit are unobserved because they are functions of, at least

partially, unobserved submodel parameters.
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Given the annual density estimates for the nA = 299 aerial blocks arranged in a lattice as well

as the nG = 21 ground survey routes (Figure 3.1), we proposed a joint response model for annual

density at the nA + nG = 320 sampling regions. Omitting the superscripts A and G, we let yit

represent the density of LEPC in sampling region i during year t. Because some sampling regions

can have a LEPC density of exactly zero, we considered the following tobit model [131]:

yit =















ζit, for ζit > 0

0, for ζit ≤ 0

, (3.8)

ζt ∼ N (ξt, σ
2
dRd(ϕ)). (3.9)

Tobit models are often used in the context of censoring where the true state of interest, ζt,

is only observable in a certain range. Our density data were not censored explicitly, but the to-

bit model accounted for the mixture of discrete and continuous components in the response and

promoted conjugacy of the latent states ζit and ξit. Both ζit and ξit may be viewed as the latent

density of LEPC in a region with negative values indicating the relative probability that the density

is zero. To account for spatial structure, we assumed an exponentially decaying correlation matrix

Rd(ϕ), where the entry in the ith row and jth column is defined as rd(i, j, ϕ) = exp(−dij/ϕ), dij

is the Euclidean distance between sampling regions i and j in meters, and ϕ is the spatial range

parameter.

We accounted for temporal dependence by specifying autoregressive random effects in (9)

ξt ∼ N ((ξt−1,Wt−1)α,Στ ), (3.10)

where Wt−1 is a matrix of covariates measured across all sampling regions in year t − 1, and

we modeled the initial state as ξ0 = X0γ. Many environmental factors known to be associated

with LEPC density were constant over the T = 17 years considered in our analysis, and so the

set of covariates used in Wt is reduced from those in X0 (see Appendix B.3). In addition to the
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landcover and climatic covariates used in the ADSM and N-mixture submodel, we also included

a binary covariate that indicated whether a survey block or ground site was north of Interstate 70.

LEPC to GEPC ratios decrease sharply north of Interstate 70 [5], and the binary covariate was

helpful for explaining spatial heterogeneity in LEPC density that was difficult to characterize with

the other covariates. We considered a block diagonal structure for Στ with distinct covariance

matrices σ2,A
τ RA

τ and σ2,G
τ RG

τ for the aerial and ground survey regions, respectively. We letRA
τ =

(diag(A1)− ρA)−1, where A is the adjacency matrix from the aerial survey lattice, which has

entries a(i, j) = 1 if blocks i and j are neighboring and a(i, j) = 0 otherwise, and diag(A1)

denotes the diagonal matrix of the row sums of A. We specified ρ → 1 to induce an intrinsic

conditional autoregressive covariance matrix that allows for dependence among regions organized

in a lattice [206]. For the ground sites, we designated a simple diagonal structureRG
τ = I . We used

diffuse exchangeable Gaussian priors for the regression coefficients γ and α, a discrete uniform

prior for ϕ, and vague inverse-gamma priors for the variance parameters σ2
d, σ2,A

τ , and σ2,G
τ .

The joint posterior distribution associated with our full integrated model is

[βλ,βρ,βψ,γ,α,η, ζ, ξ,ω, pω, p, σ
2,A
τ , σ2,G

τ , σ2
d, ϕ,N

A,u,NG, zu,du, ϵu|NA,o, zo,do, ϵo,v,F ] (3.11)

∝
TG

∏

t=1

nA

∏

i=1

M
∏

l=1

(

[vitl|N
A
itl, zitl, ditl, ϵitl,βρ][N

A
itl|βλ, λ0, ωitl][ωitl|pω][zitl|βψ]

)

[βλ][βρ][βψ][d
u][ϵu][λ0][pω] (3.12)

×
TG

∏

t=1

nG

∏

i=1

(

LG

it
∏

l=1

(

Jitl
∏

j=1

[Fitlj |N
G
itl, p]

)

[NG
itl|η]

)

[η][p] (3.13)

×
TG

∏

t=1

(

[NG
t ,NA

t , zt|ξt, σ
2
d, ϕ][ξt|ξt−1,α, σ

2,A
τ , σ2,G

τ ]

)

[γ][α][σ2
d][σ

2,A
τ ][σ2,G

τ ][ϕ], (3.14)

where we use the bracket notation to denote probability distributions [96]. The joint distributions

of the ADSM, N-mixture submodel, and spatio-temporal tobit submodel (STTM) are given by

equations (3.12), (3.13), and (3.14), respectively. The three submodels induced the integrated

model through the link parameters yAit = f(NA,o
it , zoit,N

A,u
it , zuit) and yGit = g(NG

it ). A directed

acyclic graph of our integrated model is shown in Figure 3.2, and a full model statement with

priors is provided in Appendix B.1.3.
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Figure 3.2: Directed acyclic graph of integrated model. Note that σ2
τ = (σ2,A

τ , σ
2,G
τ )′.

3.5 Posterior Inference

The crux of fitting our integrated model was that the link parameters yA and yG are non-

invertible functions of the submodel parameters z, NA, and NG. We adopted a chained Markov

melding approach [64] that facilitated joint inference for yA and yG accounting for the data, prior

information, and assumptions in all three submodels. We derive the joint melded distribution for

y = (yA
′
,yG

′
)′ as follows [64]:

[y, ·]meld = [y]pool[·|y]ADSM[·|y]STTM[·|y]N-mix, (3.15)

= [y]pool
[·,yA]ADSM

[yA]ADSM

[·,y]STTM

[y]STTM

[·,yG]N-mix

[yG]N-mix
, (3.16)

where “·” is a placeholder for all parameters other than y in the joint and conditional distributions,

[y]pool is the pooled prior marginal distribution, and [·,y]M and [y]M denote the joint and prior

marginal distribution of y in submodel M, respectively. In the first equality, equation (3.15),

we perform marginal replacement to establish a common prior marginal distribution for y across

all submodels [123]. Equation (3.15) is the minimally modified joint distribution with marginal
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[y]pool. Note that neither of the conditional distributions [·|y]ADSM or [·|y]N-mix in equation (3.15)

have an analytical closed form because both f and g are non-invertible in equations (3.6) and (3.7),

respectively. We therefore rewrite the joint melded distribution as a product of the submodel joint

distributions over the prior marginals for posterior inference, equation (3.16).

Another difficulty in posterior inference is that all three submodel marginal distributions in

equation (3.16) are analytically intractable. Goudie et al. [123] recommended approximating the

submodel marginal distributions with kernel density estimators, but this approach can lead to nu-

merical instabilities in implementation [207]. We obviated approximating the submodel marginal

distributions by constructing [y]pool using chained product of experts (PoE) pooling [64],

[y]pool =
1

K
[yA]ADSM[y]STTM[y

G]N-mix, for K =

∫

[yA]ADSM[y]STTM[y
G]N-mixdy. (3.17)

Under PoE pooling, the melded posterior for y is proportional to a product of the submodel joint

distributions, which simplifies implementation. One caution regarding PoE is that the pooled prior

is often unintuitive and may not be a good summary of the submodel marginal distributions [123].

We simulated draws from [yA]ADSM, [y]STTM, and [yG]N-mix using standard (forward) Monte Carlo

methods and found that the implied prior marginals were vague because the specified priors for

submodel parameters βλ, α, η, etc., were also vague. Because of the limited impact of prior infor-

mation and pooling function on posterior inference for y, we used PoE pooling for computational

convenience, but see [123] for a suite of other pooling options.

Targeting [y, ·]meld with a standard MCMC algorithm would involve computationally infeasible

block updates for NA, NG, and z because yA = f(NA, z) and yG = g(NG). We avoided high-

dimensional parameter updates by targeting the melded posterior with a multistage MCMC algo-

rithm. We sampled from [yA, ·]ADSM and [yG, ·]N-mix using two independent Metropolis-Hastings-

within-Gibbs algorithms. We promoted conjugacy of the linear predictor, βψ, using Pólya-Gamma

data augmentation [91], which can improve sampling efficiency in ecological binary regression

models [92]. Appendix B.2 includes additional implementation details for the first-stage sampler.
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In the second-stage, density samples from the first-stage were used as the proposals in the

STTM, equation (3.14). For MCMC iteration k in the second-stage, we drew a sub-sample denoted

by yX,(⋆), X ∈ {A,G} from the first-stage samples of submodel M, M ∈ {ADSM,N-mix},

randomly with replacement, and the Metropolis-Hastings ratio was

[yX,(⋆), ·]STTM[y
X,(⋆), ·]M[yX,(k−1), ·]M

[yX,(k−1), ·]STTM[yX,(k−1), ·]M[yX,(⋆), ·]M
=

[yX,(⋆), ·]STTM

[yX,(k−1), ·]STTM
,

where yX,(k−1) is the current value of yX in the chain. The refined samples from the second-stage

constitute draws from [yX , ·]meld. A heuristic for the multistage MCMC algorithm is that it further

refines [yX , ·]M by selecting samples that conform with the spatio-temporal trends observed in

both datasets. To improve mixing, we updated the elements of yX one at a time. See Appendix

B.2 for a complete description of the second-stage sampler and implementation details.

3.6 Results

3.6.1 Simulation Study

We assessed the impacts of Markov melding on predictive performance and inference for a

simplified version of our integrated model. Using the STTM (Section 3.4.3), we simulated a net-

work of densities at which we generated distance sampling or N-mixture survey data. We rounded

the densities simulated from the STTM to the nearest whole number and let that represent the

number individuals available for detection at each site. For the aerial sites, we then located simu-

lated individuals uniformly within the survey area. We fit the simulated aerial survey data using a

simplified single observer distance sampling model with half-normal detection function (see Ap-

pendix B.1.4). Distances and the parameters of the detection function were specified such that on

average, the observer detected half of the individuals in the survey region. At the ground sites, we

set the simulated number of individuals equal to NG
it and drew counts for J = 4 occasions using a

simplified N-mixture model (Appendix B.1.5) with p = 0.5.
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We simulated datasets under three different sample size ratios, and also considered datasets

simulated with and without preferential sampling. The sample ratios varied from 5 to 20 times

more aerial sites than ground sites, with the number of ground sites fixed at nG = 10. For each

sample size ratio, we generated 400 datasets. Each dataset in the STTM consisted of 300 locations.

For half of the datasets, we randomly drew a sub-sample of locations for the aerial and ground sites.

For the other half, we drew a random sub-sample of aerial sites, but selected the 10 ground sites

from the set of 300 that had the highest expected mean density given by ζ0 =X0γ (Model B.1.3).

The motivation behind our preferential sampling mechanism is that the ground sites in the LEPC

case study were opportunistically located based on habitat characteristics known to be associated

with higher LEPC density (e.g., large grassland patches and low anthropogenic disturbance).

We obtained posterior inference for all 2× 3× 200 = 1200 datasets using the Markov melding

techniques described in Section 5 of the manuscript (Posterior Inference) with PoE pooling. The

first-stage MCMC algorithm fit the simplified N-mixture and aerial distance sampling submodels

in parallel for 10, 000 iterations. The second stage fit the STTM for 20, 000 iterations. For each

model fit, we calculated the mean empirical coverage rate, mean absolute error of the posterior

mean, and posterior standard deviation of aerial sites densities (Figure 3.3). The results did not

differ by sample size ratio or sampling regime. In each case, inference from the integrated model at

the aerial sites maintained the same empirical coverage rate of the ADSM but reduced uncertainty

and bias. Metrics for the ground sites, not shown, were similar to the aerial sites. The coverage

rates for ground sites mimicked those obtained from the N-mixture model in the first-stage but the

refined second-stage estimates from the STTM had lower uncertainty and bias.

3.6.2 Sensitivity Analysis

We performed a sensitivity analysis to assess the inferential cost of conducting aerial surveys

less frequently. We considered four different scenarios of missing aerial survey data, but assumed

that ground data were available for all ground sites across the 17 years. For each scenario, we

simulated 35 datasets from the STTM (Section 3.4.3) using the design and covariance matrices
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Figure 3.3: Performance metrics for ADSM and full integrated model. Boxplots show empirical coverage
rates, posterior mean absolute errors, and posterior standard deviations for aerial site densities. The red line
is the targeted nominal coverage rate of 95%.

from the LEPC case study. All parameters in the STTM were set to the posterior mean calculated

from the fitting the integrated model to the LEPC data. We simulated data for the aerial and

ground surveys and fit the integrated model using the same submodels and approach as described

in Section 3.6.1. Figure 3.4 provides the root mean squared error (RMSE) for site level densities

and annual abundances for each scenario.

All scenarios with missing aerial survey data resulted in substantially higher site level RMSEs

than Scenario 1 where aerial surveys were conducted every year. Site level RMSEs were similar

for all scenarios for years in which an aerial survey was conducted but much higher in years with

no aerial survey because of increased uncertainty. For annual abundance estimation across the

EOR, predictive performance was similar across the scenarios with the caveat that Scenarios 2-4

occasionally yielded poor predictive performance. As aerial survey effort decreased, the chances

of poor predictive performance increased.

Overall, site level density estimates were more sensitive to reduced survey effort than range-

wide abundance estimates. Reduced aerial survey effort may be adequate for monitoring range-

wide populations but could struggle to document fluctuations in the LEPC that are spatially het-

74



0.15

0.20

0.25

1 2 3 4

Scenario

R
M

S
E

 (
S

it
e

 L
e

v
e

l)

0.20

0.25

0.30

0.35

0.40

1 2 3 4

Scenario

R
M

S
E

 (
E

O
R

)

Figure 3.4: Impact on predictive performance of integrated model for differing scenarios of missing aerial
survey data. In Scenarios 1-4, aerial survey data is available every year, twice every three years, once every
two years, and once every three years, respectively. The left panel is the RMSE of site-level densities.
The right panel is the RMSE of annual abundance predictions divided by the population size. Dots above
boxplots represent outliers as defined as values which exceed 1.5 times the interquartile range over the 75th
percentile. Dots positioned randomly within groups on x-axis to decrease overlap.

erogeneous. From a conservation perspective, spatially coarse abundance predictions can be prob-

lematic as they have the potential to overlook the contribution of vulnerable subpopulations.

While range-wide predictive performance was similar across all scenarios, Scenarios 2-4 oc-

casionally performed very poorly. LEPC populations follow a boom-or-bust life history strategy

[198], which results in large inter-annual variation in abundance that makes prediction difficult.

In 2013, a bust was observed that reduced the estimated Kansas LEPC population size by 14%.

Without aerial survey data, it would have been difficult to quantify the magnitude of the bust. Thus,

reduced aerial effort sampling regimes risk misestimating LEPC boom and busts.

3.6.3 Case Study

The melded density estimates for the Kansas EOR from the integrated model are similar to

the density estimates of the ADSM but have reduced uncertainty and are shifted slightly for some

years (Figure 3.5). Shifts in the melded posterior tend to mirror trends estimated from the ground
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Figure 3.5: Posterior distributions of annual density for lesser prairie-chicken across Kansas estimated
occupied range and ground sites from 2005-2021. Red are the posterior annual densities measured across
the 21 ground sites estimated from the N-mixture submodel. Green are the posterior annual densities for
Kansas estimated occupied range inferred from the aerial distance sampling submodel. Blue are the refined
posteriors for Kansas estimated occupied range derived from melding the aerial distance sampling and N-
mixture submodel densities into the spatial temporal tobit model. Posterior means of each distribution are
shown as dots.

surveys. For example, from 2015-2016 there was an estimated decline in LEPC densities according

to the aerial survey data, but densities increased across the ground sites. The melded posterior for

2016 incorporates trends from the ground survey and shifts the posterior right. The largest fluctua-

tion in LEPC density was in 2013 following the extreme drought conditions of 2011 and 2012 [57].

Both the raw aerial and melded density estimates show a decline, but the fluctuation in the melded

estimates is more nuanced. In general, the melded densities estimate have a smoother temporal

trajectory compared to the raw aerial estimates. In Appendix B.4, we compare the estimates of our

ADSM with those of Nasman et al. [197]. We provide posterior inference for covariate effects in

the STTM in Appendix B.5.
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The integrated model facilitates inference for LEPC density at unsampled regions via the joint

melded distribution so that annual density estimates across Kansas EOR during years which no

aerial survey was conducted (2005-2011 and 2019) can still be inferred. The Kansas EOR density

estimates from 2005-2011 exhibit greater uncertainty but have long right tails to reflect higher

densities observed at the ground survey regions. A map of estimated LEPC across Kansas EOR is

given in Figure 3.6. The southwest region of the SGPR consistently boasted the highest densities

followed by the western portion of the MGPR. The SSPR had the lowest densities and show a

decreasing pattern over time. Mean estimates were higher in the northern region of the SGPR from

2005-2011 but have large uncertainty because of no aerial or ground surveys during that period

(Figure 3.1).

3.7 Discussion

We demonstrated a flexible approach for joint inference from multiple surveys. The need to

incorporate mixed surveys into a unified statistical analysis is a common challenge in ecology.

Integrated distribution models leverage presence only, detection/nondetection, and count data to

infer species latent point patterns [102, 194]. Liu et al. [208] developed models for inferring animal

trajectories from GPS and “Dead-Reckoning” tags. Their model is an adaptation of Bayesian

melding models that were originally proposed in atmospheric sciences for linking observations

from monitoring stations and the outputs of deterministic climate models to a common Gaussian

process [104, 209].

Markov melding handles the observational process and spatial support of each data source in

separate submodels which can accommodate more complex distributional assumptions. Further-

more, Markov melding facilitates joint inference on quantities that are multivariate non-invertible

functions of submodel parameters. This quality is especially appealing in ecology where many

popular models provide inference on the parameter of interest through derived quantities. Markov

melding may also reduce computation time when submodels handling the observational uncer-

tainty of each dataset are fit in parallel.
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Figure 3.6: Map of estimated lesser prairie-chicken densities across Kansas estimated occupied range and
ground sites from 2005-2021. Ecoregions are delineated by outline color in the inset maps. Posterior mean
densities are shown for each survey block and the 21 ground sites (circles). All densities estimates are from
the melded model.
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The integrated model allowed us to reduce uncertainty in annual density estimates by refin-

ing the initial density posterior distributions from the submodels to concur with spatio-temporal

trends observed across both datasets. Through the melded joint distribution, the integrated model

also provided inference for density at unsampled regions that account for the contributions of

both datasets. Inferring annual density estimates from the ground sites alone would be inaccu-

rate because of preferential sampling [196]. The historical density estimates of the integrated

model, however, accounted for the uncertainty in both datasets and leveraged trends in temporal

dependence and covariate associations learned from the aerial survey data. The historical density

estimates, which provide insights about longer scale trends in LEPC density, are important for

assessing recovery of the species [60].

We developed a modeling approach for integrating inference from aerial and ground surveys

of LEPC in Kansas, but our approach can be generalized to accommodate other surveys. Most im-

mediately, our approach can accommodate the ground surveys from the other states in the LEPC

range. Ground surveys are distinct by state, but each survey produces estimates of density in a par-

ticular region and our approach can accommodate differences in observational error. Furthermore,

we could extend our current model to account for population dynamics by including an additional

submodel that characterizes changes in site-level counts due to annual variability in survival, fecun-

dity, and immigration. The extended IPM could produce spatio-temporal predictions that explicitly

account for the contributions of recruitment and survival which could help understand the driver

of population change and inform conservation practices for the species [60].

Accounting for observational error is often a necessity when developing models for SCC [53].

By taking a Markov melding approach, we showed how surveys with unique observational uncer-

tainties and scales can be incorporated into a joint response. Furthermore, we facilitated computa-

tion by fitting the model in stages which obviated high-dimensional parameter updates and induced

conjugacy for several parameters in the submodels. Another computational advantage of Markov

melding is that it enabled model specific data augmentation strategies such as PX-DA in the ADSM

and tobit regression in the STTM. Our scalable approach for joint Bayesian inference serves as a
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foundation for developing future integrated models for mixed surveys of wildlife abundance in

other studies.
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Chapter 4

Data Assimilation with Melded Integrated

Population Models

Documenting the decline of a species is challenging because many species experienced the

most precipitous declines prior to human monitoring. Population trajectories inferred from re-

cently collected data often show stability or even improvement [13], but can overlook long-term

declines that preceded data collection [14]. Declines may also be spatially heterogeneous, and

spatially restricted monitoring programs can wrongly conclude population stability while a re-

gional population heads to extirpation [15]. Ideally, data for informing species conservation would

be range-wide, collected over a long time period following standardized design-based sampling

protocols that include randomization and consistent sampling methods with only minimal obser-

vational uncertainty. Rarely are such data available from one source [210]. Integrated models have

been proposed for drawing from the strengths of many datasets to provide inference in scenarios

where the individual datasets are insufficient.

One popular adaptation of integrated models in conservation biology is integrated population

models (IPMs). IPMs were first proposed in the 1980s [106], but wide adoption of IPMs in the

broader fields of conservation biology and ecology began in the early 2000s [31, 193]. Schaub et

al. [38] describe IPMs as integrated models that link changes in population abundance and vital

rates in a common model to account for the likelihoods of all existing datasets. These datasets

often include capture-recapture data, birth rates, movement, and population counts to learn about

survival, recruitment, immigration and emigration, and abundance, respectively. By assimilating

all data sources into one model, IPMs have been shown to promote parameter identifiability and

precision [114, 120] and provide inference on demographic causes of population change [38].

In ornithology, IPMs have informed conservation practices for numerous species of conser-

vation concern [117, 211, 212, 213, 214, 215]. These IPMs adopted a state-space framework in
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which observed indices of abundance are linked to vital rates in a Leslie matrix model [116],
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whereNt = (N1t, . . . , NAt)
′ is a vector of female abundance in age classes a ∈ {1, . . . , A} at time

t and ρat and ϕat are the age-specific productivity and survival in year t, respectively. All quantities

in the Leslie matrix are generally unknown but informed by a variety of datasets. For example,

Schaub et al. [211] used the number of fledglings produced from surveyed broods, number of

occupied territories, survival data, and age-at-death data to inform latent quantities.

In some cases, data sources might not be available for learning about the desired quantities

directly but are derived as submodel outputs. For example, Schaub et al. [124] specified a Bayesian

state-space IPM to understand local population dynamics in Eurasian wrynecks (Jynx torquilla).

Because count data were not directly available for wrynecks, Schaub et al. [124] fit a Bayesian

dynamic occupancy model [216] to infer annual trends in wryneck occupancy, which they treated

as an index of abundance. The annual number of occupied sites along with its posterior standard

deviation were treated as fixed parameters in a log-normal distribution and used as a population

index and a measure of the observational error, respectively. King et al. [117] fit a generalized

linear model (GLM) to derive annual log abundances of northern lapwings (Vanellus vanellus).

King et al. [117] used the Monte Carlo estimate of the mean log abundance and variance from

the GLM as fixed parameters in a log-normal distribution to approximate the observational error

of the population counts in a Bayesian state-space IPM. While these approximate approaches for

including the observational error of the count data into an IPM may not impact inference, a more

cohesive approach would derive the joint distribution of all quantities that explicitly accounts for

the uncertainty in each data source.
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We present a Markov melding approach to integrated population modeling that allows quanti-

ties associated with population dynamics to be derived from complex non-invertible functions of

submodel parameters [123]. Manderson and Goudie [64] were the first to propose Markov meld-

ing in the context of IPMs with an extension called chained Markov melding. Chained Markov

melding reconciles differences in the marginal distributions for parameters linking a sequence of

submodels to construct a unified joint distribution. The joint distribution provides inference for

latent quantities of interest and accounts for the data, assumptions, and priors across all submod-

els. Manderson and Goudie [64] facilitated efficient posterior sampling with a parallel multistage

MCMC algorithm.

We demonstrate the chained Markov melding approach to integrated population modeling in a

case study of LEPC abundance. The LEPC is a federally protected species [55]. Understanding

drivers of LEPC demography is key to informing conservation [58]. Integrated population mod-

eling of LEPC data is challenging because data informing population abundance come from mul-

tiple surveys with different designs. Data documenting annual fluctuations in LEPC recruitment

are not directly available but rather inferred from several datasets and additional prior information

[63, 217] on LEPC productivity.

Aerial and ground surveys have complementary strengths and weaknesses [60, 61]. Aerial

surveys follow a spatially random sampling design that provides inference on range-wide LEPC

abundance [61, 5]. Two shortcomings of aerial surveys are that they have only been conducted

since 2012 and observe relatively few LEPC in low density regions. Ground surveys have a long

history and observe more individuals per unit of area than the aerial surveys. Inferring range-wide

abundance from the ground surveys is questionable because individuals counted may not be from

the local population [218] and the ground sites were preferentially located in regions known to

have high LEPC densities [196].

Over the past two decades, there have been numerous studies informing LEPC conservation,

but few have assimilated multiple data sources. Persistent challenges to data assimilation for LEPC

include differing sample designs across surveys and uneven observational uncertainties or sampling
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biases across datasets [36]. Ross et al. [63] developed an IPM for assimilating count, survival, and

productivity data from Kansas that suggested observed declines in LEPC abundance following

droughts [198] were driven by increased juvenile mortality. The findings of Ross et al. [63]

prompted managers to consider habitat improvements that focus on increasing and maintaining

grasslands that can buffer the population against the harmful effects of severe drought [219]. Van

Ee et al. [220] proposed an integrated model for melding inference from aerial and ground surveys

to improve predictive performance in Kansas.

We propose an IPM for melding inference from range-wide LEPC ground, aerial, and demo-

graphic surveys spanning five states. To our knowledge, this is the first IPM developed for the

entire distribution of a federally protected species. By taking a flexible Markov melding approach

to posterior inference, we assimilate a diverse assemblage of datasets collected over the last two

decades into one cohesive framework. Equipped with this wealth of data, we provide annual esti-

mates of population vital rates and identify life history strategies for four ecoregions. We derive the

contribution of each data source to posterior inference and account for varying effort across sur-

veys and years. In a simulation study, we quantify decreases in predictive performance associated

with reduced aerial survey effort to inform future monitoring of LEPC.

In Section 4.1, we provide background for LEPC conservation. Section 4.2 includes a descrip-

tion of the data used to fit our IPM. In Section 4.3, we specify models for analyzing each data

source independently and then a population model for inducing joint inference on submodel de-

rived quantities. We describe the chained Markov melding approach used to facilitate posterior

inference for our IPM in Section 4.4. Section 4.5 is a summary of the results; and Section 4.6 is a

concluding discussion of our findings.

4.1 Lesser Prairie-Chicken Conservation

The LEPC is a member of the family Phasianidae and endemic to the southwestern Great

Plains. The LEPC has experienced occupied range and population declines since the 1980s pri-

marily due to habitat loss and fragmentation but habitat degradation from curtailment of natural
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fires, overgrazing, oil and gas, transmission, and wind energy development, and climate change

are also drivers of the decline [58, 1, 4, 56]. LEPC inhabit four ecoregions [60]. The Shinnery Oak

Prairie Ecoregion (SOPR) exists in northwestern Texas and eastern New Mexico; the Sand Sage-

brush Prairie Ecoregion (SSPR) covers portions of southeastern Colorado, southwestern Kansas,

and the northwestern Oklahoma panhandle; the Mixed-Grass Prairie Ecoregion (MGPR) spans

southern Kansas, western Oklahoma, and the northeastern Texas panhandle; and the Short-Grass

Prairie/Conservation Reserve Program Mosaic Ecoregion (SGPR) is in northwestern Kansas with

a small section in eastern Colorado (Figure 4.1).

In 2023, the United States Fish and Wildlife Service (USFWS) listed the LEPC for federal

protections as two population segments under the 1973 Endangered Species Act [55]. The northern

population segment, which encompasses the SSPR, MGPR, and SGPR ecoregions, is classified as

threatened, and the southern population segment in the SOPR is endangered. Life-history strategies

and drivers of population decline vary by ecoregion [221, 222, 223], and populations may be locally

adapted for the ecoregions they inhabit [20]. Modeling frameworks to inform LEPC conservation

must account for spatial heterogeneity in vital rates so that conservation practices can be curtailed

to each ecoregion [60].

LEPC population monitoring is coordinated across several federal and state conservation agen-

cies. Colorado Parks and Wildlife (CPW), Kansas Department of Wildlife and Parks (KDWP),

Oklahoma Department of Wildlife Conservation (ODWC), Texas Parks and Wildlife Department

(TPWD), and New Mexico Department of Game and Fish (NMDGF) have monitored LEPC pop-

ulations with ground surveys as early as the 1940s. Ground surveys were used as an index of abun-

dance but did not provide inference on range-wide abundance because of sampling biases [218].

Lack of spatial randomness in the state ground surveys also made inferring species-habitat asso-

ciations difficult. Since 2012, the Western Association of Fish and Wildlife Agencies (WAFWA),

USFWS, CPW, KDWP, ODWC, TPWD, and NMDGF have collectively supported annual range-

wide aerial survey of LEPC conducted by Western EcoSystems Technology, Inc. (WEST). While

the aerial surveys have provided inference on range-wide abundance [61, 5], their cost has led re-
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searchers to consider integrated models that could leverage multiple datasets and reduce reliance

on annual aerial surveys.

Several universities and non-profit organizations have conducted demographic studies of LEPC

[224, 225, 4, 222, 223, 226, 1, 227, 221, 228, 229]. Researchers tagged individuals to estimate

spatial-temporal variability in survival and productivity. Researchers visited nesting females to

collect data on nest success, clutch size, and hatchability. The ensuing broods were also monitored

to document chick survival.

4.2 Data Sources

We compiled data from studies across the LEPC occupied range. Most data compiled were

collected in the last decade, but some data sources were collected as early as 2001. We acquired

annual range-wide counts of LEPC from state and federal wildlife agencies. Demographic data

related to LEPC survival and productivity were provided by universities in Colorado, Kansas,

Oklahoma, New Mexico, and Texas. A map of the aerial, ground, and demographic survey regions

is shown in Figure 4.1. The map shows the total area surveyed from 2001 to 2022, but note that

a reduced number of sites were surveyed annually. An animation of the annual survey effort is

available in the supplementary files.

4.2.1 Ground Surveys

Historically, LEPC populations were monitored using lek counts from ground surveys con-

ducted by the five state wildlife agencies in which the LEPC occurs. In some states, ground surveys

began as early as the 1940s, but standardized protocols were not established in most states until the

early 2000s. Population monitoring of LEPC relies on spring counts of individuals on leks [61]. A

lek is an aggregation of males defending a small territory and communally calling and performing

displays to attract and mate with females [58]. Leks are generally located in sparse vegetation on

hilltops and ridgelines and can include more than 10 individuals, which makes detection by audio

and visual cues of the otherwise cryptic individuals easier [58, 230].
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Figure 4.1: Lesser prairie-chicken demographic and ground survey regions over aerial survey blocks
grouped by ecoregion. Demographic data acquired from Unger [4] were collected in Beaver County, Ok-
lahoma (orange circle, exact location not shown for data privacy purposes). Texas Parks & Wildlife De-
partment ground survey regions in Hemphill, Gray, Bailey, and Gaines counties (gray circles) are also not
shown. Ground survey site in Cochran/Yoakum county represented by gray polygon between gray dots in
Texas Shinnery Oak Prairie.
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Ground surveys were completed from 30 minutes before sunrise to 2 hours after when LEPC

leks are most active during March 15 to May 15. The spatial coverage of ground surveys varied by

state, but in each state, surveyors attempted to census leks within a prespecified region. Most land

in the LEPC range is privately owned, and state wildlife agencies opportunistically collected data

along public roads and in regions where they were granted access. KDWP surveyed 21 routes (6

SSPR, 8 SGPR, and 7 MGPR) annually. Each route was approximately 16-km long, and ground

surveyors attempted to census all leks within 1.6 km of the road for a region of approximately 51.2

km2. Likewise, ODWC annually surveyed five 51.2 km2 MGPR regions. TPWD monitored five

LEPC survey regions (2 MGPR, 3 SOPR) varying from 37.2 to 272.3 km2. NMDGF surveyed 31

sites in the SOPR for a total area of 141 km2. CPW surveyors visited unique sites each year, and

the total area covered varied annually. We used ground surveys from each state starting in 2005,

and Table 4.1 provides the total area surveyed in each ecoregion annually.

Table 4.1: State agency lesser prairie-chicken ground survey effort (km2) split by year and ecoregion. SOPR
= Shinnery Oak Prairie Ecoregion, SSPR = Sand Sagebrush Prairie Ecoregion, MGPR = Mixed-Grass Prairie
Ecoregion, and SGPR = Short Grass Prairie/Conservation Reserve Program Mosaic Ecoregion.

Year 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 Total

SOPR 251 212 208 254 250 250 254 251 283 291 335 397 401 360 360 360 360 426 5505
SSPR 289 289 289 289 289 289 289 289 289 1808 1245 1488 637 739 1158 1270 1856 1319 13951
MGPR 893 893 893 893 893 893 836 893 893 893 893 893 841 841 893 893 893 893 15906
SGPR 104 155 155 155 155 155 310 434 434 372 434 434 434 434 258 434 434 434 5720

Total 1470 1481 1544 1591 1587 1587 1689 1866 1898 3363 2907 3171 2313 2374 2669 2957 3543 3071 52068

Surveyors recorded the number of individuals on leks passively with binoculars or by navigat-

ing to the lek and prompting the individuals to take flight (flush). Because the number of individ-

uals attending a lek varies, surveyors attempted to record multiple counts per lek with replicate

counts spaced at least one day apart. Most leks were counted twice, but many leks only received

one count. Ground surveys are considered a census of the leks in the survey area, but not a census

of the population because some individuals may not be present at their lek at the time it was flushed

and some individuals may not attend any leks. The lek counts do not represent the local or regional
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abundance of LEPC but provide an estimate of relative change for estimating trends in population

growth rates [231, 63, 217].

4.2.2 Aerial Surveys

The aerial survey was designed to obtain unbiased estimates of LEPC abundance across the

entire range. Surveyors partitioned the LEPC estimated occupied range into 225 km2 (15 × 15-

km) survey blocks [61]. A spatially balanced subset of blocks was selected for sampling in each

ecoregion [232], and the subsets selected differed by year. The LEPC estimated occupied range

used for extrapolating range-wide abundance also varied. Due to lack of funding, no blocks were

surveyed in 2019. Table 4.2 gives the annual area surveyed in each ecoregion.

In survey blocks selected for sampling, a helicopter crew flew two north-south 15-km transects

at a speed of 60 km per hour and altitude of 25 m above ground. Transects were flown once each

year. Observers scanned the ground for groups of LEPC (where a group is defined as 1 or more

individuals). When a group was spotted, the crew navigated to the location the group was first

spotted and recorded the location and number of individuals observed. Like the ground surveys,

aerial surveys were conducted during the LEPC breeding season (March 15 - May 15) and from 30

minutes before sunrise to 2 hours after to maximize detection of individuals present at leks. For an

in-depth description of the aerial survey protocol and design, see Nasman et al. [5] and McRoberts

et al. [233].

Table 4.2: Western EcoSystems Technology, Inc. lesser prairie-chicken aerial survey effort (km2) split by
year and ecoregion. Area surveyed is based on a strip width of 600× 2 = 1200 m (Appendix C.1). SOPR =
Shinnery Oak Prairie Ecoregion, SSPR = Sand Sagebrush Prairie Ecoregion, MGPR = Mixed-Grass Prairie
Ecoregion, and SGPR = Short Grass Prairie/Conservation Reserve Program Mosaic Ecoregion.

Year 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 Total

SOPR 3132 3204 3204 3204 3204 3708 3852 0 3888 3852 3780 35028
SSPR 1368 2700 2700 2700 2700 2592 2556 0 2484 2484 2520 24804
MGPR 3240 3600 3564 3636 3564 3924 4212 0 4428 4644 4320 39132
SGPR 3708 3384 3384 3384 3384 3420 3456 0 3564 3492 3780 34956

Total 11448 12888 12852 12924 12852 13644 14076 0 14364 14472 14400 133920
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4.2.3 Survival

We compiled survival data for 653 individuals from several studies conducted between 2008-

2019 across all five states and four ecoregions. The captured individuals were banded with ei-

ther a very-high-frequency (VHF) necklace style radio-transmitter or 22-g, rump-mounted satellite

transmitter (platform transmitter terminal [PTT], Microwave Telemetry, Columbia, MD, USA) and

their sex, age, and other morphological data were recorded. Biologists approximated the locations

of individuals banded with VHF transmitted via triangulation and recorded the spatial locations

logged for individuals banded with PTTs. Biologists attempted to verify the survival status of

individuals at least once each month. Because of emigration out of the study region and failed

transmitters, some banded individuals were censored before a mortality event was observed. De-

tailed descriptions of the capture methods, monitoring protocols, and study areas for all survival

data are available from the sources cited in Table 4.3.

Table 4.3: Study areas, time periods, and sample sizes for LEPC survival studies. The last column indicates
the total number of individuals monitored in each study.

Sources States Ecoregions Years Males Females Total

Grisham and Boal [221] TX SOPR 2008-2011 45 57 102
Harryman et al. [228] TX SOPR 2015-2017 19 6 25
Kunkel [226] NM SOPR 2016-2017 38 17 55
Lawrence et al. [1] NM SOPR 2013-2015 114 64 178
Robinson et al. and Parker et al. [229, 227] KS, CO SSPR, MGPR, SGPR 2013-2019 24 269 293

Total 240 413 653

4.2.4 Productivity

We compiled productivity data for 457 females from several studies conducted between 2001-

2018. Movement patterns of tagged females were examined to determine nest initiation. At the

nest, biologists recorded the number of eggs and floated 3-4 eggs to estimate nest incubation and

predict hatch date. In some cases, incubation date was also inferred from the movements patterns of

the female. Biologists returned to the nest at the predicted hatch date or if location data indicated

a female had departed the nest. A nest was recorded successful (≥1 egg hatched) if biologists
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found pipped egg shells in the nest or egg shells with intact membranes. Because females may

attempt multiple nesting events per year and several females were monitored across multiple years,

there were more nesting attempts than females. The number of eggs hatched was only recorded

for successful nests and was also not available for all studies. The number of females, nesting

attempts, clutch counts, and hatch events recorded in each study are summarized in Table 4.4.

We acquired data for estimating brood survival from Lautenbach [234]. In 2013 and 2014,

Lautenbach [234] monitored the broods of 45 successfully hatched nests across the SSPR, MGPR,

and SGPR of Kansas and Colorado. For each brood, the number of chicks hatched was recorded.

Biologists visited broods at least weekly until 60 days post hatch. On each visit, biologists flushed

the brood and recorded the number of chicks observed.

Table 4.4: Study areas, time periods, and sample sizes for LEPC productivity studies. The last column indi-
cates the total number of females monitored in each study. Lawrence et al. [1] did not analyze productivity
data from the 45 females captured in New Mexico in 2013-2015 but describes the study area, capture, and
monitoring methods. Clutch and hatch give the number of observations from each study used for estimation
not the number of eggs laid and hatched, respectively.

Sources States Ecoregions Years Females Nest Clutch Hatch

Grisham et al. [224] NM SOPR 2001-2010 152 205 134 0
Grisham et al. [225] TX SOPR 2008-2011 30 42 36 16
Unger [4] OK MGPR 2013-2016 21 33 23 6
Lautenbach et al. [222] KS, CO SSPR, MGPR, SGPR 2013-2016 187 253 248 78
Kunkel [226] NM SOPR 2016-2017 9 12 0 0
Lawrence et al. [1] NM SOPR 2013-2015 45 60 44 22
Parker et al. [227] KS MGPR 2017-2018 13 27 28 10

Total 457 632 513 132

4.3 Methods

We developed an IPM for linking submodel derived quantities in a common model for LEPC

population dynamics. We specified submodels for describing the observational uncertainty of each

dataset and derived the joint distribution of the parameters implied by the submodel assumptions,

data, and prior information with chained Markov melding. By taking a Markov melding approach,
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we could adopt submodels previously proposed for analyzing the LEPC datasets while still facil-

itating joint inference. We proposed a population model using the Leslie matrix, equation (4.1),

concept to explain underlying demographic variation in the LEPC population and link inferential

quantities of interest from count and demographic submodels. Some parameters in the Leslie ma-

trix are complex derived quantities of multiple submodels, and we show how to facilitate posterior

inference in this context.

In northwestern Kansas and eastern Colorado, the LEPC EOR overlaps with the range of the

greater prairie-chicken (Tympanuchus cupido; hereafter GRPC). Species verification was infeasi-

ble for the aerial and ground surveys and observations of GRPC were included in both datasets.

We proposed distance sampling (Section 4.3.1) and N-mixture (Section 4.3.2) submodels that an-

alyzed counts of prairie-chicken (LEPC and GRPC). We then derived the block-level abundances

of LEPC in northwestern Kansas and eastern Colorado by multiplying the combined LEPC and

GRPC abundances estimates by known LEPC proportions (Section 4.3.5).

4.3.1 Aerial Distance Sampling Submodel

We developed a distance sampling model for inferring abundance from aerial surveys with

imperfect detection of prairie-chicken groups. The distance sampling model has previously been

described in Van Ee et al. [220]. The helicopter crew included three observers and a pilot. The pilot

sat in the front-right seat and their detections of prairie-chicken groups were not used for model

fitting. The rear-right observer cannot see directly forward and scanned the ground 7 m right and

beyond of the flight transect. Likewise, the rear-left observer scanned 7 m left and beyond of the

transect. The front-left observer scanned the ground within 7 m of the transect and 7 m left and

beyond of the transect. Detected prairie-chicken groups were announced only after they were out

of view for all observers to ensure independent detections.

We let vitl denote the number of observers who detected group l = 1, . . . , LAit in block i =

1, . . . , nA during year t = 1, . . . , TA. Assuming all observers had equal skill in detecting prairie-

chicken groups and that groups were detected independently, we modeled the number of detections
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for group l as

vitl ∼ Binomial(Oitl, ζitl) (4.2)

where Oitl ∈ {1, 2} was the number of observers for which group l was visible and ζitl was

the observer detection probability for group l, which we assumed to be equal for all observers.

Groups located 7 m left and beyond of the transect were visible to both left-hand side observers

and Oitl = 2, but for all other groups Oitl = 1. We specified that the detectability of prairie-

chicken groups varied based on their ecoregion, distance from the transect, ditl, and size, Nitl.

Our logistic regression model was logit(ζ) =
(

Xζ ,N
A,d

)

βζ , where Xζ is a binary matrix with

unique intercepts for each ecoregion, and (·) denotes a column-wise bind of the listed matrices.

The entries of βζ are not uniquely identifiable under a traditional single observer design but

provide additional flexibility for estimating the detection function in a double observer framework.

We treat detections of the two left-hand observers as fully independent but alternative approaches

that allow for dependence in detectability as a result of unmeasured covariates and animal move-

ment have been proposed [200, 201]. Under our modeling framework, we assumed that hetero-

geneity in prairie-chicken group detectability was well characterized by distance from the transect

and size of the group. We also assumed groups were stationary, but note that there were a small

number of transiting individuals.

We adopted a parameter expanded data augmentation approach [134] to account for undetected

prairie-chicken groups in the aerial survey region. We assumed a super population of M > LAit

groups existed in the survey region of each block, and let zitl ∈ {0, 1} indicate whether group l

was available for detection. For all detected individuals (i.e., vitl = 1), we knew zitl = 1, but for

undetected individuals zitl was unknown and had to be estimated. Royle et al. [134] referred to the

groups for which zitl = 1 as the sample population and recommended the sum of the sample group

counts as an estimate of abundance for the survey region. Note that the estimated abundances are

insensitive to the super population size as long as M is specified to be large. Considerations for

selecting M are discussed in Appendix C.1.
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For undetected groups, NA
itl and ditl were unknown and hence estimated. The side the group

was located on, denoted by ϵitl, was also unknown and estimated. We use the superscripts o and

u to denote the observed and unobserved components of partially latent parameters, respectively.

Heuristically, we conceptualized the model as proposing groups of prairie-chicken that the aerial

survey may have missed; we proposed a group of prairie-chicken with count NA,u
itl , distance from

the transect duitl, and on side ϵuitl of the transect, and then used the observations from our detected

groups (i.e., NA,o, do, ϵo) to determine if group l could have been part of our sample population

(i.e., zuitl = 1) but went undetected (i.e., vitl = 0). We chose the prior distributions for ditl and ϵitl

to induce a uniform distribution of groups within the survey region. See Appendix C.2 for a full

description of all prior distributions and model specifications.

We assumed the distribution of the sample population indicators differed by block and year by

letting

zitl ∼ Bernoulli(ψit), for l = 1, . . . ,M, (4.3)

where ψit is the probability that a group belonged to the sample population of block i during year t.

The parameter ψit controls the number of prairie-chicken groups within the sampling region, with

greater ψit implying more groups. Heterogeneity in prairie-chicken occupancy within the EOR has

been documented [203], motivating the logit model, logit(ψ) = Xψβψ. The design matrix Xψ

includes unique intercepts for the four ecoregions and an additional six continuous covariates. The

covariates capture heterogeneity in the number of groups related to landcover, habitat patch size,

anthropogenic disturbance, grassland restoration, and drought. See Appendix B.3 for a description

of all covariates, and how they were collected.

The aerial survey was conducted during the breeding season to maximize detection of leks,

but smaller, non-lekking groups as well as individual prairie-chicken were also detected. We

accommodated the lek and non-lek observations in the observed prairie-chicken counts using a
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zero-truncated Poisson (ZTP) mixture model

NA
itl ∼















ZTP(λit), for ωitl = 1

ZTP(λ0), for ωitl = 0

, (4.4)

ωitl ∼ Bernoulli(pω), (4.5)

where λit/(1− e−λit) is the mean number of individuals per lek in region i during year t, λ0/(1−

e−λ0) is the homogeneous mean number of individuals for non-lek observations, and ωitl is the

indicator of whether group l is a lek. Both distributions in the Poisson mixture, equation (4.4), are

zero-truncated because if a group exists, it must have ≥1 individuals.

Mean lek size varies temporally and with environmental factors (6, 57). We specified a het-

erogeneous mean lek size across sites i and years t, λit, which we modeled with covariates (i.e.,

log(λ) = Xλβλ). We used the same suite of covariates for explaining heterogeneity in lek size as

those used for explaining variability in the number of groups (i.e.,Xλ =Xψ). We treated ωitl as

a latent variable because it was often infeasible to determine the lek status of a LEPC group from

the air. For monitoring purposes, KDWP defines a lek as 3 or more individuals on a display site

[202]. In our case, the latent lek indicators ωitl accommodated the bimodality of the count data and

carried fewer assumptions regarding the composition of a lek.

4.3.2 N-mixture Submodel

We developed a submodel for describing observational uncertainty in prairie-chicken ground

surveys. We let Gιtlj denote the ground count of prairie-chickens on occasion j at lek site l in

sampling region ι during year t. To account for variability in the counts induced by imperfect lek

attendance, we adopted an N-mixture model [204],

Gιtlj ∼ Binomial(NG
ιtl, pe) for j = 1, . . . , Jιtl, (4.6)
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where pe represents the homogeneous probability that an individual belonging to lek site l in ecore-

gion e was present at the lek when it is surveyed. We assumed a Poisson model for the latent lek

abundances NG
ιtl ∼ Poisson(w′

ιtη), where wιt is a vector of the covariates used in Section 4.3.1.

Note that zero abundances, Nιtl = 0, were possible because surveyors revisited historical lek sites

that may not have been visited by any individuals in year t. It follows then thatw′
ιtη is the expected

number of individuals per lek site rather than the number of expected individuals per active lek.

4.3.3 Survival Submodel

We developed a staggered entry, known-fate model [235] to infer trends in adult LEPC survival.

Let slemt ∈ {0, 1} represent the state (one for alive, zero for dead) of individual l from ecoregion e

in month m of year t. We adopted a binary regression model for the observed fates,

sletm ∼ Bernoulli(ϕAletm), (4.7)

where ϕAletm is the adult monthly survival. Under 5% of individuals had partial encounter histories

where a live individual was censored but reentered the study in a later month. Following previous

studies of LEPC survival [1, 221, 228, 226], we fit our known-fate model to the censored individ-

uals using the methods of Cooch and White [236] and White and Burnham [237], which ignore

fates missing as a result of censoring.

LEPC have similar survival for all individuals past sexual maturity [219], and we let ϕA denote

the survival for all adult individuals. Individuals entered the study in different months. We modeled

heterogeneity in individual monthly survival probabilities as

logit(ϕAletm) = µ
ϕA

el + β
ϕA

1 SEXl + β
ϕA

2 BREEDm + β
ϕA

3 (SEXl × BREEDm) + β
ϕA

4 PDSIetm, (4.8)

where µϕ
A

el is the mean survival for individual l in ecoregion e, SEXl indicates the sex of individual

l, BREEDm is the indicator of whether or not the observation fell in the breeding season, defined as

March-June [6], and PDSIetm is the Palmer Drought Severity Index for ecoregion e during month

m of year t.
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We modeled the µϕ
A

el hierarchically based on the individual’s ecoregion, µϕ
A

el ∼ N (µϕ
A

e , σ2
ϕA).

The hierarchical formulation allows individual monthly survival to deviate from the mean response

but shrinks the survival probability of individuals with few observations toward the overall ecore-

gion mean µϕ
A

e . We assumed σ2
ϕA and βϕ

A

were the same for all ecoregions and specified a vague

inverse-gamma prior for the variance parameter and diffuse normal priors for the regression coef-

ficients. Based on previous studies of LEPC survival [238, 239], we specified informative normal

priors for the µϕ
A

. We set the prior means equal to the means reported by Hagen et al. [238] and

Lyons et al. [239] but set the prior variance equal to double the variance reported. The 95% prior

credible intervals for monthly survival were (0.79, 0.96), (0.89, 0.97), and (0.88, 0.98) for females

in the SOPR, SSPR, and MGPR, respectively. No prior information was available for the SGPR

ecoregion, and we set a less informative 95% prior credible interval for female monthly survival of

(0.75, 0.99). Exact prior specifications are given in Appendix C.2.

4.3.4 Productivity Submodels

We proposed a known-fate model for describing variability in LEPC nesting survival. Let

Fletd ∈ {0, 1} be the indicator on the fate (one for alive, zero for failed) of a nest initiated by

female l in ecoregion e on day d = 1, 2, . . . , Di of year t. As described in Section 4.2.4, not all

nests are visited daily and Fletd can be unknown for a sequence of days. We assumed that Flet1 = 1

and FlitDlet
is known. We modeled the fate histories of nests with the binary autoregressive process

Fletd ∼















Bernoulli(ϕNletm) , Flet,d−1 = 1

0 , Flet,d−1 = 0

, (4.9)

where ϕNletm is the daily nesting survival. We modeled heterogeneity in female daily nesting sur-

vival as

logit(ϕNletm) = µϕ
N

el + βϕ
N

1 AGEl + βϕ
N

2 PDSIetm, (4.10)
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where AGEl is the indicator on the age class of female l (after-second-year or second-year).

We modeled the µϕ
N

el hierarchically based on the females ecoregions, µϕ
N

el ∼ N (µϕ
N

e , σ2
ϕN ). We

specified a vague inverse-gamma prior for the variance parameter σ2
ϕN and diffuse normal priors

for the regression coefficients βϕ
N

. Informed by preliminary work on LEPC daily nesting survival

[240, 241, 242, 243], we set 95% prior credible intervals for daily nesting survival of second-year

females at (0.958, 0.996), (0.931, 0.993), (0.931, 0.996), and (0.955, 0.994) in the SOPR, SSPR,

MGPR, and SGPR ecoregions, respectively. For each ecoregion, the prior mean equaled the rate

reported in the previous study, but we set the prior variance at double the uncertainty previously

reported.

We let Cletm denote the clutch size of a nest of female l in ecoregion e during month m of year

t. We accounted for spatial and temporal heterogeneity in clutch sizes with the Poisson regression

model

Cletm ∼ Poisson(δletm), (4.11)

log(δletm) = µδe + βδ1AGEl + βδ2PDSIetm, (4.12)

where µδe is the log transformed mean clutch size for ecoregion e. There were only 7 observations

of clutch sizes in the SSPR, and to reduce uncertainty, we specified the common distribution µδe ∼

N (µδ, σ2
δ ) for ecoregion means. We used a diffuse normal prior for µδ and regression coefficients

βδ and a vague inverse-gamma prior for the variance parameter σ2
δ .

We let Hletm be the number of eggs hatched from a nest of female l in ecoregion e during

year t. To account for spatial and temporal heterogeneity in hatchability, we specified a Binomial

regression model

Hletm ∼ Binomial(Cletm, πletm), (4.13)

logit(πletm) = µπe + βπ1 AGEl + βπ2 PDSIetm, (4.14)
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where µπe is the logit transformed mean hatch probability for nests in ecoregion e. As with clutch

sizes, we had few observations in the SSPR, and we let µπe ∼ N (µπ, σ2
π) to reduce uncertainty. We

used diffuse normal priors for the µπ and regression coefficients βπ and a vague inverse-gamma

prior for the variance parameter σ2
π.

We adopted the model of Lyons et al. [244] for estimating brood survival from repeated counts

of unmarked chicks. Let yld ∈ {0, 1, 2, . . . } be the number of living chicks counted in a brood of

female l on day d ∈ {1, 2, . . . , 60}. Note that the number and times of counts differed for each

brood. We assumed the number of chicks alive at hatch is known for each brood and denoted it by

Bi0. Further, we assumed that females do not adopt chicks from other broods. Following Lyons et

al. [244], we proposed the brood survival model

yld ∼ Binomial(Bld, q), (4.15)

Bl,d+1 ∼ Binomial(Bld, ϕ
B
d ), (4.16)

where Bld is the number of chicks alive in the brood of female l on day d, ϕBd is the daily survival

for all broods on day d, and q is the probability of detecting a chick assumed to be equal across all

occasions and broods. Following Pitman et al. [241], we assumed different daily survival for the

early and late brood rearing periods defined as hatch to 14 days post-hatch and 15–60 days post-

hatch, respectively. We set a uniform prior for chick detection probability q. We set an informative

Beta(290.40, 15.28) prior for daily survival in the early period and informative Beta(437.23, 9.84)

for the late period. We set the prior means equal to the rates reported by Pitman et al. [241] and

set the prior variances at double the variances reported. The informative priors implied 95% prior

credible intervals for daily survival of (0.92, 0.97) and (0.96, 0.99) for the early and late brood

rearing period, respectively.

4.3.5 Population Model

We specified a population model following the structure of the Leslie matrix, equation (4.1),

to link quantities from the count and demographic submodels and learn about annual patterns
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in LEPC abundance, survival, and productivity. We derived the estimated annual abundance of

LEPCs in each ecoregion as

NA
et =

∑

i∈e(i)

M
∑

l=1

NA
itlzitlκi, (4.17)

where
∑

i∈e(i) is the sum over all blocks in ecoregion e and κi is the proportion of LEPC of all

prairie-chicken in block i [5]. Proportions vary from 0.001-1 for blocks in the SGPR but equal 1

for all blocks in the SOPR, SSPR, and MGPR. Likewise, for the ground surveys, we derived an

index of ecoregional annual abundance as

NG
et =

∑

ι∈e(ι)

LG
ιt
∑

l=1

NG
ιtlκι, (4.18)

where
∑LG

ιt

l=1 is the sum over all LGιt lek sites in sample region ι during year t and
∑

ι∈e(ι) is the sum

over all ground sampling regions that belong to ecoregion e. We refer to the derived abundances

from the ground surveys as an index of abundance because sites were preferentially located. Fol-

lowing Ross et al. [63] and Fritts et al. [217], we assumed the ground surveys were indicative of

demographic patterns in the broader population and could be used to infer trends in LEPC survival

and productivity. We inferred range-wide abundances from the aerial abundances alone.

We derived the annual ecoregion survival for each sex as

ϕAket =
12
∏

m=1

ϕAketm, (4.19)

where ϕAketm is the mean monthly survival for an individual of sex k. We defined productivity as

the expected number of individuals produced per female surviving to their first breeding season.

Productivity is a function of female nesting and renesting propensity, nest survival, clutch size,

hatchability, brood survival, and juvenile survival. Following Hagen et al. [6] and Cummings et al.

100



[245], we derived the productivities

ρaet =

(

ξ1e +
(

1− (ϕNaet)
24
)

ξ2e

)

(ϕNaet)
24
δaetπaet(ϕ

B
1 )

14
(ϕB2 )

16
ϕJe , (4.20)

where ρaet is the mean productivity of females in age class a in ecoregion e during year t; ξ1e and ξ2e

are ecoregion specific nesting and renesting propensities; ϕB1 and ϕB2 are the daily chick survival for

the early and late brood rearing period; and ϕJe is the ecoregion specific juvenile survival defined

as the probability a juvenile survives from 30 days post hatch to sexual maturity. To calculate the

mean nesting success rate, we raised daily nesting survival to the mean number of exposure days

(i.e., termination minus incubation date) for successful nests [246]. We calculated the mean annual

daily nesting survival ϕNaet, clutch size δaet, and hatchability πaet using equations (4.10), (4.12), and

(4.14), respectively, but replaced the monthly PDSI value with the breeding season average for that

year.

We did not have data to facilitate posterior inference for quantities ξ1e , ξ2e , and ϕJe , but prior

information was available. We specified informative Beta priors for ξ1e and ξ2e based on pre-

vious studies [225, 240, 241, 242, 247]. As before, we matched the prior means to those re-

ported by previous studies but increased prior uncertainty by doubling the prior variance. The

95% prior credible intervals for nesting propensity were (0.53, 0.86), (0.86, 0.97), (0.37, 0.86),

and (0.70, 1.00) in the SOPR, SSPR, MGPR, and SGPR, respectively. The 95% prior credible

intervals for renesting propensity were (0.00, 0.21), (0.21, 0.43), (0.00, 0.66), and (0.01, 0.27).

Priors for ϕJe were informed by Cummings et al. [245], and the 95% prior credible intervals were

(0.68, 1.00), (0.33, 0.83), (0.54, 0.87), and (0.30, 0.77).

We completed our population model by allowing for demographic stochasticity. We adopted

a Poisson-Binomial IPM to describe changes in abundance because of interannual variation in
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survival and productivity [38],

NX
et = NX

♀et,ASY +NX

♂et,ASY
+NX

♀et,SY +NX

♂et,SY
, (4.21)

NX

♂e,t+1,ASY
∼ Binomial

(

NX

♂et,ASY
+NX

♂et,SY
, ϕA

♂et

)

, (4.22)

NX
♀e,t+1,ASY ∼ Binomial

(

NX
♀et,ASY +NX

♀et,SY , ϕ
A
♀et

)

, (4.23)

NX
e,t+1,SY ∼ Poisson

(

NX
♀et,SY ρet,SY +NX

♀et,ASY ρet,ASY

)

, (4.24)

where X ∈ {A,G} indicates which survey the abundance is derived from, and SY and ASY are

abbreviations for the age classes second-year and after-second-year, respectively. We assumed

equal sex ratios at birth (i.e., NX

♂et,SY
= NX

♀et,SY = NX
et,SY /2). The population model connects all

posterior quantities of interest into one cohesive IPM. Figure 4.2 gives a directed acyclic graph of

the full IPM.

Ross et al. [63] proposed a Poisson-Binomial IPM for understanding changes in relative LEPC

female abundance. Their IPM linked survival and productivity data with ground surveys in Kansas.

Ross et al. [63] split productivity into fecundity and chick survival. Fecundity was defined as num-

ber of hatched chicks produced per female and accounts for the contributions of nesting initiation,

nesting survival, clutch size, and hatchability in our productivity submodel. Chick survival was

the number of hatched chicks that survived to the next breeding season and accounts for brood

and juvenile survival. Ross et al. [63] also assumed equal survival and productivity across age

classes and ecoregions in Kansas, whereas we allowed for unique vital rates in each ecoregion and

productivity to differ by age class.

Abadi et al. [120] demonstrated the Poisson-Binomial population model, equations (4.21)-

(4.24), can be extended to account for the demographic contributions of immigration and emi-

gration. Genetic evidence suggests that movement between ecoregions is limited [20], and we

assumed the effect of immigration and emigration on population demography was negligible. One

violation of this assumption was the 2016-2019 translocation project that moved a total 411 indi-

viduals from the SGPR to the SSPR [62]. Because the number of translocated birds in each age
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Figure 4.2: Directed acyclic graph of integrated population model for LEPC. All quantities in the population
model,NA

et ,N
G
et , ρet, and ϕet, are non-invertible deterministic functions of submodel parameters.

and sex class is known, we adjusted the SGPR and SSPR annual abundances accordingly without

including a stochastic element for immigration and emigration.

We derived annual population growth rates for each ecoregion as ret = NA
e,t+1/N

A
et . We used

the abundances inferred from the aerial survey for deriving growth rates because they provided

an unbiased estimate of the true ecoregional abundance unlike the ground abundances that were

preferentially sampled. Following Ross et al. [63], we also calculated the posterior temporal

correlation between re and the vital rates ϕA♀e, ϕ
A

♂e
, ρe,SY , and ρe,ASY . The posterior correla-

tions between annual vital rates and growth rates helped quantify the relative drivers of population

change in each ecoregion [248, 249].

4.4 Posterior Inference

Abundances derived in equations (4.17) and (4.18) were not corrected for survey effort and can

bias posterior inference for annual survival and productivity. For example, if survey effort is greater

for year t than t + 1 in ecoregion e, the posterior expectations of ϕAket and ρaet will be biased low.
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We standardized abundances in equations (4.21)-(4.24) by multiplying the ecoregional densities in

year t + 1 by the area surveyed in year t. The derived abundances represent the expected size of

the population in year t+ 1 assuming survey effort had been constant.

One could consider multiplying all annual densities by a common area, but such an approach

would bias posterior variances and muddle the contributions of the aerial and ground data on

posterior inference for survival and productivity. The posterior variances of the parameters in the

Poisson-Binomial IPM, equations (4.21)-(4.24), are inversely related to the size of the population

index NX
et . Intuitively, monitoring a larger population provides greater insights into dynamics,

and see Appendix C.3 for a statistical derivation. By multiplying the annual density estimates by

survey effort, we properly adjusted the uncertainty of the posterior distributions.

Manderson and Goudie [64] introduced chained Markov melding for reconciling differences

in prior information expressed in a sequence of submodels linked by common quantities. The

approach facilitates inference when the linking quantities are expressed as deterministic non-

invertible functions of submodel parameters. In such scenarios, capturing the prior and posterior

correlation among parameters is not possible with standard Bayesian methodology. We extended

the framework of Manderson and Goudie [64] by proposing an IPM composed of two chains of

submodels that intersect in a common population model.

We let ϕ and ρ be the vectors of annual survival and productivity across all sex and age classes,

respectively. We derived the joint melded distribution for θ = (NA′
,NG′

,ϕ′,ρ′)′ as follows [64]:

[θ, ·]meld = [θ]pool[·|θ]ADSM[·|θ]pop[·|θ]N-mix[·|θ]surv[·|θ]prod, (4.25)

= [θ]pool[·|N
A]ADSM[·|θ]pop[·|N

G]N-mix[·|ϕ]surv[·|ρ]prod, (4.26)

= [θ]pool
[·,NA]ADSM

[NA]ADSM

[·,θ]pop

[θ]pop

[·,NG]N-mix

[NG]N-mix

[·,ϕ]surv

[ϕ]surv

[·,ρ]prod

[ρ]prod
, (4.27)

where [θ]pool is the pooled prior marginal distribution, and [·,θ]M and [θ]M denote the joint and

prior marginal distribution of θ in submodel M, respectively. We abbreviate the aerial distance

sampling, N-mixture, population, survival, and productivity submodels as ADSM, N-mix, pop,
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surv, and prod, respectively. We use the “·” notation to denote data and all parameters other than θ

in the conditional distribution [·|θ]M.

In the first equality, equation (4.25), we performed marginal replacement to establish a com-

mon prior marginal distribution for θ across all submodels [123]. Goudie et al. [123] proved that

marginal replacement minimizes the Kullback–Leibler divergence between the melded distribution

and original joint distribution under the constraint that the updated joint distribution admits [θ]pool

as a marginal. Therefore, we can view equation (4.25) as the minimally modified joint distribution

with marginal [θ]pool. Equation (4.25) also assumed conditional independence among all datasets

given the link parameters [θ]. This assumption was violated in practice as the same females tagged

for survival analysis were also monitored for productivity data. In addition, birds tagged for sur-

vival analysis were often captured at ground survey sites where lek counts were recorded. Abadi

et al. [120] showed that assuming conditional independence among the count, survival, and pro-

ductivity datasets when individuals occur in multiple datasets generally has negligible impacts on

posterior inference.

Moving from equation (4.25) to (4.26), we removed independent variables from the submodel

conditional distributions. In equation (4.26), the conditional distributions [·|NA]ADSM, [·|NG]N-mix,

[·|ϕ]surv, and [·|ρ]prod are unknown because the linking quantities are non-invertible functions of

submodel parameters. Therefore, in equation (4.27), we expressed the joint melded distribution as

a product of the submodel joint distributions over the marginal distributions for posterior inference.

The joint melded posterior, equation (4.27), is highly flexible and allows us to incorporate prior

dependence among the quantities expressed in θ while still accounting for prior information in-

cluded at smaller time scales in the other submodels. For example, we could specify prior density

dependence by putting a joint prior onN , ϕ, and ρ that has non-zero covariance. For our purposes,

we assumed independent priors in the population model (i.e., [θ]pop = [N ]pop[ϕ]pop[ρ]pop).

Manderson and Goudie [64] propose several methods for forming the pooled prior marginal

distributions. Following Van Ee et al. [220], we used chained product of experts (PoE) for the
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ecoregional abundances.

[N ]pool =
1

K
[NA]ADSM[N ]pop[N

G]N-mix, K =
∑

N

[NA]ADSM[N ]pop[N
G]N-mix. (4.28)

Under PoE pooling, the pooled prior marginal distribution forN cancels with its submodel marginal

distributions. All submodel marginal distributions for N are analytically intractable and need to

be estimated for implementation. Goudie et al. [123] recommended approximating the submodel

marginal distributions with kernel density estimators, but this approach can lead to numerical in-

stabilities in implementation [207]. By using chained product of experts (PoE), we obviate ap-

proximating the submodel marginal distributions.

The submodel marginal distributions [ϕ]surv and [ρ]prod are also non-tractable because of the

complex transformations in equations (4.19) and (4.20). We chose [ρ]pool = [ϕ]surv[ρ]prod and

under PoE pooling forN , the joint melded posterior, equation (4.25), can be written

[θ, ·]meld ∝ [·,NA]ADSM[·,N
G]N-mix[N

A,NG|ϕ,ρ]pop[·,ϕ]surv[·,ρ]prod. (4.29)

The choice of pooled prior [ρ]pool = [ϕ]surv[ρ]prod in equation (4.29) is referred to as dictatorial

pooling and assumes prior information from one submodel is authoritative [123]. Dictatorial pool-

ing is appealing for ρ in the LEPC case study because prior information is available for quantities

influencing productivity (e.g., nesting survival, nesting propensity, juvenile survival, etc.) but not

productivity itself. We let the hierarchical prior in the productivity submodels dominate the con-

tribution of prior information in the joint distribution. In situations where prior information is also

available for productivity directly or when the productivity and survival priors are dependent, see

Manderson and Goudie [64] for alternative pooling functions.

We proposed a parallel multistage MCMC algorithm for drawing samples of θ from the joint

melded distribution, equation (4.29). In the first stage, we fit the aerial distance sampling, N-

mixture, survival, and productivity submodels in parallel using standard Metropolis-Hastings within

Gibbs algorithm. We promoted conjugacy of the regression coefficients βψ, βϕ
A

, βϕ
N

, and βϕ
π
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using Pólya-Gamma data augmentation [91]. First stage samples of annual ecoregion productivi-

ties were generated using equation (4.20) with a random value of ξ1e , ξ2e , and ϕJe drawn from their

prior distributions each iteration of the MCMC algorithm. The productivity submodel can also be

parallelized by fitting brood, nesting, clutch, and hatch data independently. For the LEPC case

study, we used a unified productivity MCMC algorithm for fitting the nesting survival, clutch, and

hatch submodels. We used a separate MCMC algorithm for brood survival because the algorithm

required many more iterations to converge (Table 4.5).

In the second-stage, we used samples of θ derived from the first-stage as the proposals in the

population model, equations (4.21)-(4.24). For MCMC iteration k in the second-stage, we drew

a sub-sample denoted by θ(⋆) from the first-stage samples randomly with replacement, and the

Metropolis-Hastings ratio was

[NA(⋆)
,NG(⋆)

|ϕ(⋆),ρ(⋆)]pop

[NA(k−1),NG(k−1)|ϕ(k−1),ρ(k−1)]pop

, (4.30)

where θ(k−1) is the current value of θ in the Markov chain. Because we draw θ from the first-stage

samples, the proposal distribution for θ cancels with the submodel joint distributions in equation

(4.29). The refined samples from the second-stage constitute draws from [θ, ·]meld. The dimension

of θ is large. We improved parameter mixing and MCMC convergence by updating the elements

of the subvectors NA, NG, ϕ, and ρ one at a time. We provide a complete description of our

multistage MCMC algorithm in Appendix C.1.

We discarded a portion of samples from each MCMC algorithm as burn-in and thinned the

remaining sample for proposals of θ in the population model (Table 4.5). The potential scale re-

duction factor for all parameters from the first stage was less than 1.1 indicating convergence [250].

We coded our multistage MCMC algorithms in both R and C++ using the R package Rcpp. Fit-

ting the aerial distance sampling submodel constituted a computational bottleneck, and we coded

its MCMC algorithm in C++ to decrease runtime [148]. We assessed the effect of the ground

surveys on posterior inference for survival and productivity by fitting our IPM to the aerial counts
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alone. Section 4.5 shows posterior inference for vital rates and abundance when we fit the IPM to

subsets of the available data sources.

Table 4.5: Markov chain Monte Carlo details for fitting submodels to lesser prairie-chicken data sources.
Retention is the percentage of samples kept of the total sample size after burn-in. ADSM=aerial distance
sampling submodel.

Model Language Run Time (hrs) Iterations Burn-in Retention Posterior Sample

ADSM (4.3.1) C++ 4.3 70, 000 20, 000 40% 20, 000
N-mixture (4.3.2) R 1.4 200, 000 100, 000 20% 20, 000
Survival (4.3.3) R 1.2 11, 000 1, 000 100% 10, 000
Nest, Clutch, Hatch (4.3.4) R 1.9 11, 000 1, 000 100% 10, 000
Brood Survival (4.3.4) C++ 0.2 1, 000, 000 100, 000 1% 10, 000
Population (4.3.5) C++ 6.5 100, 000, 000 500, 000 0.01% 10, 000

4.5 Results

On average, male annual survival was 15% greater than female survival when fitting the IPM to

all available data sources (Figure 4.3). Survival was similar for the MGPR and SGPR but 13% and

15% greater for males and females in the SOPR, respectively. Survival in the SSPR was 3% greater

for males and females than in the MGPR and SGPR. The posterior variance of all distributions

decreased in the second stage when conditioned on the aerial surveys, and posterior means were

similar. Assimilating the ground surveys increased female survival by 2%, but decreased male

survival by 8% on average across ecoregions.

After-second-year females had 20% greater productivity than second-year females on average

(Figure 4.4). Productivity was again similar across the SSPR, MGPR, and SGPR, but lower in

the SOPR (−19% and −21% for after-second-year and second-year females, respectively). The

marginal posterior distributions for productivity estimated from the demographic data alone have

large uncertainty. The productivity posterior distributions are functions of the quantities ξ1e , ξ2e ,

and ϕJe which were only informed by prior information (Section 4.3.5). Refining the posterior

distributions by filtering for the samples of productivity that conformed with the aerial surveys

substantially reduced uncertainty and increased posterior means by 12% for both age classes. Con-
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ditioning productivity on the ground surveys further reduced uncertainty and increased posterior

means by another 4%.

Female and male survivorship were strongly correlated with annual growth rates in the SOPR

and SSPR, respectively, when we fit the IPM to both the aerial and ground surveys (Table 4.6).

These associations vanished when fitting the model to the aerial counts alone. Annual growth rates

in the MGPR and SGPR were not correlated with female survival. There was a negative association

between growth rates and male suvival in the SGPR when we fit the IPM to both the aerial and

ground surveys.

Across all model fits to both the full and reduced datasets, there was strong evidence for the

contributions of after-second-year and second-year female productivity on annual growth rates.

Posterior correlations for productivity and growth rates increased when we fit the IPM to both the

aerial and ground surveys. Annual growth rates in the SOPR were most strongly correlated with

productivity, but for all ecoregions, the posterior probability that the correlation was greater than 0

was 1.

Table 4.6: Temporal posterior correlations for annual growth and vital rates. Posterior correlations are split
by the group of datasets used to estimate the quantity. Posterior means of Pearson correlation coefficients
(95% credible intervals) shown.

Data Sources Ground, Aerial, Demographic Aerial & Demographic Ground, Aerial, Demographic Aerial & Demographic

Ecoregion Male Survival Female Survival

SOPR 0.25 (-0.07, 0.55) -0.13 (-0.55, 0.32) 0.43 (0.06, 0.72) -0.11 (-0.46, 0.27)
SSPR 0.56 (0.31, 0.77) 0.13 (-0.34, 0.56) 0.09 (-0.24, 0.40) 0.05 (-0.41, 0.48)
MGPR 0.16 (-0.2, 0.48) -0.02 (-0.48, 0.44) -0.06 (-0.48, 0.38) -0.07 (-0.49, 0.36)
SGPR -0.26 (-0.48, 0.00) 0.02 (-0.44, 0.47) 0.12 (-0.21, 0.43) -0.01 (-0.41, 0.40)

Ecoregion After-Second-Year Female Productivity Second-Year Female Productivity

SOPR 0.93 (0.87, 0.97) 0.81 (0.61, 0.93) 0.89 (0.80, 0.95) 0.79 (0.59, 0.92)
SSPR 0.82 (0.65, 0.93) 0.53 (0.11, 0.83) 0.72 (0.51, 0.87) 0.52 (0.11, 0.82)
MGPR 0.74 (0.48, 0.91) 0.58 (0.20, 0.84) 0.84 (0.69, 0.94) 0.68 (0.36, 0.89)
SGPR 0.70 (0.28, 0.92) 0.51 (0.09, 0.81) 0.90 (0.80, 0.96) 0.60 (0.22, 0.85)

Figure 4.5 shows the annual ecoregion abundance for the aerial survey period (2012-2022). On

average, abundance was greatest in the SGPR and lowest in the SSPR. Integrating the demography

data decreased uncertainty and also highlighted interannual variability in abundance. Integrating
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the ground surveys further reduced uncertainty. All ecoregions show a decrease in annual abun-

dance in 2012-2014 followed by a period of growth from 2015-2017.

In Appendix C.1, we provide the annual ecoregion abundances posteriors from 2005-2011 and

compare our posteriors from 2012-2022 with the estimates of Nasman et al. [5]. All ecoregion

abundances show a sharp decline from 2005-2011. The abundances estimates from our IPM fit to

all available datasets were similar to those of Nasman et al. [5] but had less uncertainty. In Ap-

pendix C.5, we provide posterior means and 95% credible intervals for annual abundance, survival,

and productivity in each ecoregion.

4.5.1 Simulation Study

We assessed the impacts of assimilating more data sources on predictive performance and

posterior inference for a simplified version of our melded IPM over a period of T = 20 years.

Using the submodels described in Sections 4.3.3 and 4.3.4, we simulated survival and productivity

data. All parameters were set to their posterior means obtained from fitting the submodels to the

LEPC datasets. We calculated annual survival using equation (4.19) and the simulated monthly

survival. We calculated annual productivity using equation (4.20) with η1e , η2e , and ϕJe fixed at

their prior means. We then set the initial abundance of LEPC in each ecoregion at the posterior

mean abundance of LEPC in 2011 inferred from our IPM, and simulated annual abundance in each

ecoregion for T = 20 years using the Poisson-Binomial population model, equations (4.21)-(4.21),

and simulated vital rates.

Following Van Ee et al. [220], we simulated data for simplified distance sampling and N-

mixture submodels as a representation of the aerial and ground surveys. Full model specifications

are available in Appendix B.1. We set the maximum number of individuals available for detection

for each survey equal to the simulated range-wide density multiplied by the mean ecoregion survey

effort for each method (Tables 4.1 and 4.2). The detection parameters in the survey submodels were

specified so that posterior standard deviations for annual LEPC densities approximated those from
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the real data analysis. We fit the simplified IPM to the simulated datasets with the same methods

described in Section 4.4. Table 4.7 provides the model fitting details for each submodel.

Table 4.7: Markov chain Monte Carlo details for fitting submodels to simulated lesser prairie-chicken
datasets. Retention is the percentage of samples kept of the total sample size after burn-in.

Model Language Iterations Burn-in Retention Posterior Sample

Distance Sampling (Appendix B.1.4) R 2, 000 0 100% 2, 000
N-mixture (Appendix B.1.5) R 30, 000 0 7% 2, 000
Survival (4.3.3) R 1, 000 100 100% 900
Nest, Clutch, Hatch (4.3.4) R 2, 000 100 100% 1, 900
Brood Survival (4.3.4) C++ 20, 000 10, 000 19% 1, 900
Population (4.3.5) R 500, 000 0 2% 10, 000

In our simulation study, we accessed predictive performance and posterior inference when the

survival and productivity submodels were misspecified. We simulated all datasets as previously

described with the exception that we added extra temporal variability to annual vital rates. We

performed 70 simulations and in half of the simulations, we simulated extra temporal variability in

LEPC vital rates.

Coverage rates and posterior mean absolute error (MAE) were similar for annual survival re-

gardless of which datasets were used for posterior inference (Figure 4.6). The IPM slightly de-

creased posterior standard deviations and including ground surveys in the IPM further reduced

uncertainty. Reduction in the uncertainty of annual survival from including additional data sources

did not depend on whether the demographic submodels were misspecified or not. Overall, model

misspecifation increased MAE and decreased coverage.

Coverage rates for productivity were high. Recall productivity is a function of the quantities

ξ1e , ξ2e , and ϕJe which are only informed by prior sources of information. As a result, uncertainty

for annual productivity is large, yielding large coverage rates. Both MAE and posterior standard

deviation decreased in the IPM and further reductions were achieved when ground surveys used.

As with survival, model misspecifation increased MAE.
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Coverage rates were similar for abundance, but including demography and ground data reduced

posterior standard deviations and MAE. Metrics were similar regardless of whether the data were

simulated with model misspecifation or not.

We also assessed the predictive performance of our IPM for reduced aerial survey effort. We

simulated datasets as described above but fit the IPM without the density samples derived from the

distance sampling model in selected years. We considered four scenarios: aerial surveys conducted

every year, every 2 out of 3 years, every other year, and once every 3 years. For each scenario, we

performed 30 simulations.

Predictive performance for survival, ϕ, was unaffected by the temporal frequency of aerial sur-

vey effort or whether an aerial survey was conducted that year. Including the ground surveys in

the IPM decreased root mean squared error (RMSE) by 5% on average. Predictive performance

for productivity, ρ, decreased as aerial survey effort decreased, but there was little difference in

RMSE for years with an aerial survey versus without. On average, RMSE was 15% lower for pro-

ductivity when we included the ground surveys in the IPM. Predictive performance for abundance

N decreased with reduced aerial survey effort and was lower in years without an aerial survey.

Including ground surveys in the IPM decreased RMSE for abundance by 8% on average.
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Figure 4.3: Posterior distributions of mean ecoregional survival split by sex. Color indicates which data
sources were used to facilitate posterior inference. The yellow posterior distribution is estimated in the first
stage of the multistage MCMC algorithm with the survival submodel (Section 4.3.3), and blue and red are
the refined posterior distributions from the second stage estimated with the IPM (Section 4.3.5). All three
posterior distributions account for prior information specified in Section 4.3.3.
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Figure 4.4: Posterior distributions of mean ecoregion productivity split by age class. We define productivity
as the expected number of off-spring produced per female that reach sexual maturity. Color indicates which
data sources were used to facilitate posterior inference. The yellow posterior distribution is estimated in the
first stage of the multistage MCMC algorithm with the productivity submodels (Section 4.3.4), and blue and
red are the refined posterior distributions from the second stage estimated with the IPM (Section 4.3.5). All
three posterior distributions account for prior information specified in Section 4.3.4.
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Figure 4.5: Posterior means and 95% credible intervals of annual ecoregional abundances. Color indicates
which data sources were used for posterior inference. The purple credible intervals indicate the abundance
estimates from the first stage of the MCMC algorithm which fits the aerial surveys to the aerial distance
sampling submodel (Section 4.3.1). Blue and red denote the refined credible intervals from the second stage
that condition on the demographic surveys and demographic and ground survey survey, respectively. The
red and blue credible intervals account for the birds translocated from the SGPR to the SSPR during the
2016-2019 translocation project (Section 4.3.5). The purple credible intervals do not.
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Figure 4.6: Means, minima, and maxima of empirical coverage (Coverage), posterior mean absolute error
(MAE), and posterior standard deviation (SD) for abundance and vital rates. Color indicates which datasets
were used for posterior inference. Yellow and purple indicate the performance metrics from the first stage
of the MCMC algorithm using either the simulated demographic or aerial data alone, respectively. Blue and
red denote the metrics from the second stage that condition on either the simulated aerial data alone or aerial
and ground data, respectively. The horizontal red line indicates the targeted nominal coverage rate of 95%.
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Figure 4.7: Medians and interquartile ranges of root mean squared errors (RMSE) for LEPC abundance
and vital rates. Color indicates which datasets were used for posterior inference. Blue corresponds to
the predictive performance of the IPM when using aerial and demographic data. Red is the predictive
performance of the IPM when using aerial, ground, and demographic data. The x-axis indicates the temporal
frequency of aerial survey effort. The left panels correspond to predictive performance in years during which
an aerial survey was conducted and the right panel is predictive performance in years without an aerial
survey.
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4.6 Discussion

We demonstrated a flexible approach for facilitating posterior inference from an IPM composed

from a chain of submodels. By linking the aerial and ground surveys to a common population

model, we reduced bias and uncertainty for vital rates and abundance relative to submodels which

analyzed the data sources independently. In the simulation study, we found our IPM was robust

to model misspecification. We discovered that assimilating the ground surveys into the IPM was

especially helpful for predicting abundance when aerial surveys were conducted less frequently

and that abundance could still be reliably inferred in years during which no aerial survey was con-

ducted. IPMs have been lauded for their ability to promote parameter identifiablility and provide

novel insights into population dynamics [124]. Assimilating both aerial and ground surveys into

our IPM allowed us to identify drivers of population growth that would have been overlooked had

we fit the IPM to the aerial surveys alone.

We accounted for the effect of varying effort across years and surveys on posterior inference by

weighting trend estimates by the area surveyed. Zipkin and Saunders [36] highlighted that address-

ing uneven quantities and information contents in multiple data sources is a persistent challenge

for integrated modeling. Van Ee et al. [220] developed a spatio-temporal model for facilitating

joint inference from aerial and ground surveys of LEPC in Kansas. Van Ee et al. [220] also took

a chained Markov melding approach so that the observational uncertainty of each survey could

be propagated into a spatio-temporal model for LEPC densities. In the model of Van Ee et al.

[220], the contribution of each survey to posterior inference was controlled by the number of sites

sampled.

In our IPM, the contribution of aerial and ground surveys was not governed by the number of

sites, but rather, the number of individuals encountered (see Appendix C.3). The intuition for this

result is that sampling regions without LEPC provide no information about trends in demography.

The contribution of the ground surveys to posterior inference may seem large given the aerial sur-

vey searches nearly 10 times more area annually. While aerial surveys cover a wide region, many

of the areas surveyed have low densities, resulting in relatively few birds encountered. Ground
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surveys are primarily restricted to densely populated areas, where a relatively large number of

birds were counted per unit of area searched. As a result, the number of birds encountered by each

method is comparable, and this gives the data sources similar power to shape posterior inference

for population vital rates.

We assumed that the preferentially sampled ground surveys were representative of trends in the

broader LEPC population by linking them to vital rates. Linking multiple datasets directly to the

parameter of interest generally improves posterior inference relative to more indirect approaches

that facilitate joint inference through covariate effects or covariance structure [210]. In the context

of integrated distribution models, Pacifici et al. [210] showed that predictive performance can de-

crease when assimilating a data source of poor quality: large uncertainty or systematic bias. The

mean posterior correlation between annual ecoregion abundance estimates from the aerial distance

sampling and N-mixture submodel was 0.38 indicating synchrony between estimated trends. We

conclude, as have previous analyses [63, 217], that LEPC ground surveys are suitable for estimat-

ing vital rates.

Our results corroborate previous findings by Ross et al. [63] and Hagen et al. [6] that LEPC

growth rates are more sensitive to productivity than survival. Demography differed by ecoregion.

In the MGPR and SGPR, growth rates were predominately driven by the productivity of second-

year females. Growth rates in the SSPR and SOPR showed the strongest associations with the pro-

ductivity of after-second-year females and weaker associations with survival. Because of greater

survival, more females reach their second and third breeding season in the SOPR and SSPR ele-

vating the importance of after-second-year over second-year female productivity in driving growth

rates [251]. We only observed positive correlations between growth rates and survival in the SOPR

and SSPR. The mean annual densities (birds/100 km2) of LEPC over the last decade were 8, 4,

10, and 29 in the SOPR, SSPR, MGPR, and SOPR, respectively. The elevated importance of sur-

vival in the SSPR and SOPR is likely a function of lower population densities that limit breeding

opportunity and thereby productivity but potentially increase survival.
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A lack of association between annual growth rates and female survivorship in the MGPR and

SGPR was also identified by Ross et al. [63]. One explanation is that LEPC females may have

increased survivorship in low growth years due to a boom-or-bust fecundity life history strategy.

We found a negative association between survivorship and productivity in all ecoregions, with

the highest female survival observed during the extreme, rangewide drought of 2011-2013 [57].

Nesting and brood rearing subjects females to avian and mammalian predators [238, 221], and dif-

ferences in male and female survivorship were completely explained by elevated female mortality

during the breeding season in our survival submodel (Appendix C.6). Females are also more likely

to engage in long distance movements than males, and long distance movements were most com-

mon during the breeding season, which could also contribute to lower female survival [252]. In

the SOPR, Grisham et al. [221] observed that females did not incubate eggs during drought condi-

tions, which increased female survival in drought years. This reproductive strategy may be unique

to the SOPR and could explain greater female survival in the ecoregion [221, 251]. More broadly,

elevated female survival during drought could be a function of early nest failure and abandonment

that reduces females vulnerability to predators, hyperthermia, and dehydration [221, 253].

Because LEPC only live a few years, Hagen et al. [6] and Ross et al. [63] hypothesized

that populations can exhibit large interannual swings driven by variability in productivity. Using

the aerial survey data alone, the annual ecoregion abundance estimates were relatively flat from

2012-2022 and year-to-year fluctuations were masked by large uncertainty. Including the ground

surveys, posterior distributions for annual abundances sharpened across all ecoregions and periods

of growth and decline were more easily identified. Ground surveys also influenced posterior infer-

ence for annual productivity with the largest influences in the SOPR and SSPR. On average, aerial

surveys detected 40.9 and 22.7 individuals annually in the SOPR and SSPR, respectively, and the

lack of detections heightens the influence of the ground surveys on posterior inference for vital

rates in these ecoregions.

We assessed the predictive performance of our IPM for reduced aerial survey effort. RMSE for

survival was similar across all scenarios of aerial survey effort likely because interannual variability
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in LEPC survival is small. RMSE for productivity and abundance was sensitive to the degree of

aerial survey effort, and predictive performance decreased precipitously when the amount of effort

was reduced to one aerial survey every three years. While including the ground surveys in the IPM

did decrease RMSE for abundance and productivity, overall, it did not appreciably attenuate the

increase in RMSE induced by reducing aerial survey effort to once every third year. We conclude

that current ground surveys are a valuable supplement to the aerial surveys but insufficient for

estimating LEPC abundance on their own.

The number of endangered and vulnerable species continues to grow globally [7, 8], and multi-

group monitoring efforts are often necessary for understanding the drivers of species decline [254].

Joint analysis of all the available datasets generally improves prediction and provides novel insights

into population dynamics [38, 255, 256, 220], but specifying computationally feasible models that

assimilate datasets with mismatching spatial or temporal scales, unique observational uncertainties,

and sampling biases is difficult [36].

We developed an IPM for inferring spatial heterogeneity in population dynamics of a federally

endangered across its entire range. By taking a Markov melding approach, we were able to mimic

modeling frameworks previously proposed for analyzing the individual datasets while still deriving

a joint posterior distribution that accounted for the contributions of all datasets and prior informa-

tion. Because the approach fits the submodels in parallel, we reduced computation time, relative

to an IPM that is fit to all datasets simultaneously. Our approach allowed us to model population

trends informed by two distinct surveys, and by capitalizing on the strengths of each survey, we

improved parameter precision for vital rates and provided inference for range-wide abundance over

a longer time period. The ability to induce joint inference for a collection of related submodels

is a powerful tool, and we have shown how the Markov melding approach can both simplify and

streamline model development.
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Chapter 5

Conclusion

I developed computationally efficient integrated models for drawing inference from multi-

source ecological data. A common theme across all analyses was the need for ecological inference

that could not be inferred from a single source. In Chapter 2, I assessed the impact of the bark

beetle epidemic on mammals in the Rocky Mountains. By modeling the multispecies data jointly,

I was able to estimate the impact of bark beetle infestation conditional on co-occurrence patterns

in the mammalian community. In Chapter 3, I sought to improve historical inference for LEPC

abundance and provide a future framework for predicting LEPC abundance. By assimilating data

from preferential surveys of LEPC, I reduced the uncertainty associated with abundance of LEPC

in unsampled regions. I extended the previous model to included additional demography surveys

of the species in Chapter 4. I linked quantities from the demographic and abundance submodels in

a common mechanistic model to understand drivers of LEPC abundance.

Each analysis presented implementation challenges. Confounding in the joint distribution

model resulted in poor parameter mixing and algorithm instability. I described a restricted re-

gression approach for orthogonalizing the fixed and random effects to stabilize model fitting. In

Chapter 3 and 4, I specified joint models for LEPC abundance that could not be fit with standard

Bayesian methodology. I implemented Markov melding and demonstrated its flexibility for draw-

ing inference from a chain of submodels. By taking a Markov melding approach, I was able to

induce joint inference across several datasets whilst preserving the original submodels that were

aided by a variety of data augmentation schemes. The Markov melding approach may be practi-

cally useful to practitioners. Developing a cohesive integrated model for all data sources is daunt-

ing, but submodels suited for the individual datasets are easier to specify. Markov melding forms

the joint distribution implied by the submodels and bypasses specification of one unified model.
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5.1 Future Directions

Many integrated modeling frameworks lack formal model selection criterion [36, 115]. In the

Markov melding framework, one approach would be to maximize the model selection criterion for

each submodel. A challenge with this approach is propagating the model selection uncertainty into

the melded joint distribution. Consider the general Markov melding framework presented in Sec-

tion 1.2.3 with datatsets Y = (Y1, . . . , YM ) and linking parameter θ, and suppose multiple variants

of each submodel are under consideration. Let Ml denote the lth variant, l ∈ {1, . . . ,ml}, of

submodel m. Consider a Bayesian model averaging approaching to incorporating model selection

uncertainty into the joint melded distribution.

Following Hooten and Hefley [42], the model averaged posterior distribution of θ in submodel

m is given by

[θ|Ym] =
Lm
∑

l=1

[θ|Ym,Mml]P (Mml|Ym), (5.1)

where P (Ml|Ym) is the posterior probability of model variant Mml given the dataset Ym. Using

Bayes rule, we can reexpress the model probability as

P (Ml|Ym) =
[Ym|Mml]P (Mml)

∑Lm

l=1[Ym|Mml]P (Mml)
, (5.2)

where P (Mml) is the prior probability for variant l of submodel m and [Ym|Mml] is the marginal

distribution Ym given variant Mml. The marginal distribution [Ym|Mml] is sometimes called the

“evidence,” and variants that give a higher density to the observed data are more likely to have

generated the data.

Calculating [Ym|Mml] requires marginalizing over the link parameter

[Ym|Mml] =

∫

[Ym, θ|Mml]dθ. (5.3)
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The integral in equation (5.3) is generally intractable, and a variety of methods have been pro-

posed for approximating the marginal distribution [Ym|Mml] [257, 258]. For simplicity, assume

[Ym|Mml] is known. The melded model averaged joint distribution can be expressed

[θ,Y ]meld = [θ]pool

M
∏

m=1

[θ, Ym]m
[θ]m

(5.4)

= [θ]pool

M
∏

m=1

Ln
∑

l=1

[θ, Ym|Mml]P (Mml)

[θ|Mml]
, (5.5)

but a method for obtaining posterior samples of θ is this context is unclear. A future avenue

could be investigating efficient algorithms for propagating model selection uncertainty into the

joint melded distribution for θ and Y .
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Appendix A

Supplemental Material for Chapter 2

A.1 Joint Occupancy Models

A.1.1 Royle-Nichols

yijk ∼ Bernoulli(ρijk), ρijk = 1− (1− rjk)
Nik , logit(rjk) = g(j,αk),

Nik ∼ Pois(λik),

log(λ) = N (Xβ + η, τ 2I),

η ∼ N (0,Σspp ⊗ In),

α ∼ N (µα,Σα),

β ∼ N (µβ,Σβ),

Σ
−1
spp ∼ Wishart(S/ν, ν).
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A.1.2 Probit

yijk ∼















Bernoulli(pijk), zik = 1

0, zik = 0

,

Φ(p) =Wα,

zik ∼ Bernoulli(ψik),

Φ(ψ) = N (Xβ + η, I),

η ∼ N (0,Σspp ⊗ In),

α ∼ N (µα,Σα),

β ∼ N (µβ,Σβ),

Σ
−1
spp ∼ Wishart(S/ν, ν).

A.2 MCMC Implementation

For the sites at which we never detected species k, we sample Nik using a Poisson Gibbs

update.
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∝
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[yijk|Nik,αk]
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∏
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{1− (1− rij)
Nik}yijk{(1− rij)

Nik}1−yijk
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(

λik
)Nik

Nik!
,

For yik = 0, we have,

∝

(
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∏
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(1− rij)

)Nik (

λik
)Nik

Nik!
,

∝
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Nik!
,

∝
exp
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j=1(1− rij)λik)

)Ni

Nik!
,

= Pois

(

Ji
∏

j=1

(1− rij)λik

)

.

For any other sequence of detections, the full-conditional distribution for Nik is not tractable, and

we use Metropolis-Hastings based on the following MH ratio:

MH =

(

∏Ji
j=1[yijk|N

(⋆)
ik ,α

(l−1)
k ]

)

[N
(⋆)
ik |λ(l−1)

ik ][N
(⋆)
ik |N (l−1)

ik ]
(

∏Ji
j=1[yijk|N

(l−1)
ik ,α

(l−1)
k ]

)

[N
((l−1)
ik |λ(l−1)

ik ][N
(l−1)
ik |N (⋆)

ik ]
,

where the distribution [N
(⋆)
ik |N (l−1)

ik ] is the proposal; we used a zero truncated Poisson to ensure

that Nik > 0 at sites for which there was at least one detection.

The full-conditional distribution for λ is also irregular, and we update the λik using Metropolis-

Hastings with a normal random walk proposal. The MH ratio is as follows:

MH =
[N

(l−1)
ik |λ(⋆)ik ][λ

(⋆)
ik |β

(l−1)
k , η

(l−1)
ik ]

[N
(l−1)
ik |λ(l−1)

ik ][λ
(l−1)
ik |β(l−1)

k , η
(l−1)
ik ]

,
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[

log λik|βk, η
(l−1)
ik

]

= N (x′
ikβ

(l−1)
k + η

(l−1)
ik , τ 2).

The priors for β, η, and Σspp are conjugate, and the full-conditional distributions are tractable.

Below are the derivations.

[β|·] ∝ [λ|β,η,Σspp][β],

∝ exp

(

−
1

2
(log(λ)− (Xβ + η))′(τ 2I)−1(log(λ)− (Xβ + η))

)

× exp

(

−
1

2
(β − µβ)

′
Σ

−1
β (β − µβ)

)

,

∝ exp

(

−
1

2
(−2β′((τ 2I)−1(log(λ)− η) +Σβ

−1µβ) + β
′(X ′(τ 2I)−1X +Σβ

−1)β)

)

,

=⇒ [β|·] = N (A−1b,A−1),

where,

A−1 = τ−2X ′X +Σβ
−1,

b = τ−2X ′(log(λ)− η) +Σβ
−1µβ.
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[η|·] ∝ [λ|β,η,Σspp][η],

∝ exp

(

−
1

2
(log(λ)− (Xβ + η))′((τ 2I)−1(log(λ)− (Xβ + η))

)

× exp

(

−
1

2
(η(Σspp ⊗ In)

−1η)

)

,

∝ exp

(

−
1

2
(−2η′((τ 2I)−1(log(λ)−Xβ) + η′((τ 2I)−1 + (Σspp ⊗ In)

−1)η)

)

,

=⇒ [η|·] = N (A−1b,A−1),

where,

A−1 = τ−2I + (Σspp ⊗ In)
−1,

b = τ−2(log(λ)−Xβ).

Denote ∆ =

(

η1 . . . ,ηK

)

n×K

.

[Σspp|·] ∝ [η|Σspp][Σspp],

∝ |Σspp ⊗ In|
− 1

2 exp

(

−
1

2
(η′(Σspp ⊗ In)

−1η)

)

× |Σspp|
−(ν+K+1)/2 exp

(

−
1

2
tr(SΣ−1

spp)

)

,

∝ |Σspp|
−n

2 |In|
−K

2 exp

(

−
1

2
(η′(Σ−1

spp ⊗ In)η)

)

× |Σspp|
−(ν+K+1)/2 exp

(

−
1

2
tr(SΣ−1

spp)

)

, Props. of ⊗,

∝ |Σspp|
−(ν+n+K+1)/2 exp

(

−
1

2
∆

′
∆Σ

−1
spp

)

exp

(

−
1

2
tr(SΣ−1

spp)

)

, Prop. of vec

∝ |Σspp|
−(ν+n+K+1)/2 exp

(

−
1

2
tr(∆′

∆Σ
−1
spp)

)

exp

(

−
1

2
tr(SΣ−1

spp)

)

, Prop. of trace

∝ |Σspp|
−(ν+n+K+1)/2 exp

(

−
1

2
tr([∆′

∆+ S]Σ−1
spp)

)

,

=⇒ [Σspp|·] = Inv-Wishart(ν + n,∆′
∆+ S).
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A.3 Asymptotic Equivalence of Poisson and Logistic

Regression

Consider the models,

yi ∼ Bernoulli(ρi), ρi = 1− (1− r)zi ,

zi ∼ Bernoulli(ψi), logit(ψi) = x′
iβ,

where zi = I(Ni > 0),

(Model A)

yi ∼ Bernoulli(ρi), ρi = 1− (1− r)Ni ,

Ni ∼ Pois(λi), log(λi) = x′
iβ.

(Model B)

ℓA(β|Y ) =
n
∑

i=1

(

yi log

(

ρi
1− ρi

)

+ log(1− ρi) + zi log

(

ψi
1− ψi

)

+ log(1− ψi)

)

=
∑

zi=1

(

yi log

(

r

1− r

)

+ log(1− r) + log

(

ψi
1− ψi

)

+ log(1− ψi)

)

+

∑

zi=0

log(1− ψi).

We denote n0 = n−
∑n

i=1 zi and let n0 −→ ∞. Then

ℓA(β|Y ) ≈
∑

zi=0

log(1− ψi) ≈ −
∑

zi=0

ψi,
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Name Discription

Aspen Percent of canopy cover that is Aspen
Bare Percent bare ground of all material < 0.25 m in height
Canopy Percent canopy cover (all species pooled)
DeadDown Percent of ground cover due to dead and down trees
ELEV Elevation of site (meters)
Habitat Binary indicator of whether site was lodgepole pine or spruce-fir dominated
ShrubHt Shrub height (meters)
TWIP Topographic wetness index plus an index of soil moisture based on slope, basin characteristics, and solar radiation
TPI Topographic position index of concavity or convexity to indicate position along a slope from valley to ridge top
UCCover Percent of shrub cover due to coniferous species
UDCover Percent of shrub cover due to deciduous species
WILD Binary indicator of whether site was located in a federally designated wilderness or not

where the approximation follows from the Taylor series expansion of log(1− x) when x is small.

Next, observe

ℓB(β|Y ) =
n
∑

i=1

(

yi log

(

ρi
1− ρi

)

+ log(1− ρi) +Ni log(λi)− λi)

)

=
∑

Ni>0

(

yi log

(

ρi
1− ρi

)

+ log(1− ρi) +Ni log(λi)− λi)

)

+

∑

Ni=0

−λi

Again, let n0 −→ ∞. Then

ℓB(β|Y ) ≈ −
∑

Ni=0

λi ≈ −
∑

zi=0

ψi,

for ψi small. Hence, the likelihoods are approximately equal for n0 −→ ∞, and inference on β

will be similar for models A and B.

A.4 Habitat Covariates

For details on how habitat covariates were collected, see Ivan et al. (2018).
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Species Intensity Detection

American Marten Bare, WILD QUAD
Black Bear TWIP, ELEV, WILD LIN
Chipmunk Canopy, TWIP, TPI LIN
Coyote ShrubHt, Bare, TWIP, TPI CONT
Elk UCCover, Bare, TWIP, TPI QUAD
Golden-mantled Ground Squirrel Aspen, Bare LIN
Moose Aspen, ShrubHt, TWIP, ELEV QUAD
Mule Deer UDCover, DeadDown, Bare CONT
Porcupine Habitat, Bare, WILD LIN
Red Fox Aspen, DeadDown, TPI, WILD LIN
Red Squirrel Habitat, Bare, WILD LIN
Snowshoe Hare Habitat, Aspen, Bare CONT
Yellow-bellied Marmot WILD CONT

A.5 Species Design Matrices

In addition to the covariates shown in the table, each design matrix in the intensity model also

included a species specific intercept as well as the bark beetle covariates (severity, YSO1, and

YSO2). We specified the following for our detection model:

logit(rj) =































α0 ,CONT

α0 + α1j ,LIN

α0 + α1j + α2j
2 ,QUAD

.

We centered the occasions to have mean 0 in the linear model and used orthogonal polynomial

basis functions for the quadratic model.
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Appendix B

Supplemental Material for Chapter 3

B.1 Model Statements

B.1.1 Aerial Distance Sampling Submodel

vitl ∼ Binomial(Bitl, ρitl),

Bitl =















































2, for ditl > 7, ϵitl = 1, and zitl = 1

1, for ditl > 7, ϵitl = 0, and zitl = 1

1, for ditl ≤ 7 and zitl = 1

0, for zitl = 0

,

logit(ρ) =
(

Xρ,N
A,d

)

βρ, βρ ∼ N (0, 2.25I),

NA
itl ∼















ZTP(λit), for ωitl = 1

ZTP(λ0), for ωitl = 0

,

ωitl ∼ Bernoulli(pω),

ditl ∼ Unif(0, νd),

zitl ∼ Bernoulli(ψit),

ϵitl ∼ Bernoulli(0.5),

logit(ψ) =Xψβψ,βψ ∼ N (0, 2.25I),

log(λ) =Xλβλ,βλ ∼ N (0, 10I),

λ0 ∼ Gamma(1.78, 0.675),

pω ∼ Uniform(0, 1).
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We set an informative prior for λ0 so that the mean size of a non-lek group observations was

1.2 and resulted in a prior probability of approximately 0.95 that a non-lek observation contains

fewer than 4 individuals. The variance of λ0 implied the prior probability of a non-lek observation

having less than 10 individuals was nearly 1.

B.1.2 N-mixture Submodel

Fitlj ∼ Binomial(NG
itl, p) for j = 1, . . . , Jitl,

NG
itl ∼ Poisson(exp(w′

itη)) for l = 1, . . . , LGit ,

η ∼ N (0, 10I),

p ∼ Uniform(0, 1).
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B.1.3 Spatio-temporal Tobit Submodel

yit =















ζit, for ζit > 0

0, for ζit ≤ 0

,

ζt ∼ N (ξt, σ
2
dRd(ϕ)),

ξt ∼ N ((ξt−1,Wt−1)α,Block-Diagonal(σ2,A
τ RA

τ , σ
2,G
τ RG

τ )),

ξ0 =X0γ,

γ ∼ N (0, 100I),

α ∼ N (0, 100I),

σ2
d ∼ IG(0.01, 100),

σ2,A
τ ∼ IG(0.01, 100),

σ2,G
τ ∼ IG(0.01, 100),

ϕ ∼ Discrete-Uniform(1, 1001, 2001, . . . , 99001).

B.1.4 Simulation Study ADSM

vitl ∼















Bernoulli(exp (−d2/σ2)), zitl = 1

0, zitl = 0

,

zitl ∼ Bernoulli(ψit),

ψit ∼ Unif(0, 1),

ditl ∼ Unif(0, 1),

σitl ∼ Unif(0, 10).
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B.1.5 Simulation Study N-mixture Submodel

Fitj ∼ Binomial(NG
it , p) for j = 1, . . . , 4,

NG
it ∼ Poisson(µit),

µit ∼ Gamma(0.01, 0.01),

p ∼ Uniform(0, 1).

B.2 Implementation

We set νd = 600 which results in an approximate survey region of S = 2×2×15×0.6 = 36 km2

per survey block. We augmented our dataset to allow for M = 20 groups per survey region. Both

νd and M were adequately large to accommodate uncertainty in the maximum detection distance

and true number of LEPC groups in the sample population of each survey region [134]. Both

νd and M can be set larger with no inferential impact on density but will increase computational

burden because of the expanded parameter space.

The first-stage algorithm targeted samples from the joint distribution of the ADSM and N-

mixture submodel with two independent Metropolis-Hastings-within-Gibbs algorithms. The full-

conditional distributions of the parameters βλ,βρ,NA,u,du, ϵu, and NG were non-tractable, thus

we used a Metropolis-Hastings algorithm. To improve mixing, we updated the elements of each

vector-valued parameter individually. We used normal random walk proposals for βλ, βρ, and

η, and tuned the proposals such that acceptance rates varied between 20-40%. Proposals for

NA,u, zu,du, ϵu, and NG were generated from their prior distributions. The full-conditional dis-

tributions of ω, pω, zu, and p were tractable, and we sampled directly from them using Gibbs

updates. We obtained samples of βψ using Pólya-Gamma data augmentation [91]. We also con-

sidered Pólya-Gamma and Albert-Chib [84] data augmentation strategies for the linear predictor

βρ but found neither improved sampling efficiency.
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The second-stage MCMC algorithm melded the submodel density samples yAit and yGit into the

joint response spatial-temporal tobit model (STTM). Keeping notation general, we suppress the

superscripts A and G, and let M denote a generic submodel (in our case either the ADSM or

N-mixture submodel). To meld the density samples, we drew a sub-sample of yit from [y
(⋆)
it , ·]M,

denoted by y(⋆)it , from the first-stage randomly with replacement, and the Metropolis-Hastings ratio

was

[y
(⋆)
it |·]STTM

[y
(k−1)
it |·]STTM

, (B.1)

where [y
(⋆)
it |·]STTM is the conditional distribution of y(⋆)it given the current value of all other param-

eters in the STTM. Letting θ(k) denote the value of parameter θ at iteration k, we have that for

y
(⋆)
it = 0,

[y
(⋆)
it |·]STTM = P(ζit ≤ 0|ζ(k−1)

−it , ξ
(k−1)
t , σd

2,(k−1), ϕ(k−1)) = Φ(0|µ̃(k−1), σ̃2,(k−1)), (B.2)

and if y(⋆)it > 0, then

[y
(⋆)
it |·]STTM = N (µ̃(k−1), σ̃2,(k−1)), (B.3)

where Φ is the cumulative distribution function of the standard normal distribution and

µ̃(k−1) = ξ
(k−1)
it + rd,i−i(ϕ

(k−1))
(

Rd,−i−i(ϕ
(k−1))

)−1
(

ζ
(k−1)
−it − ξ(k−1)

−it

)

, (B.4)

σ̃2,(k−1) = σ
2,(k−1)
d

(

rd,ii(ϕ
(k−1))− rd,i−i(ϕ

(k−1))
(

Rd,−i−i(ϕ
(k−1))

)−1
rd,−ii(ϕ

(k−1))
)

. (B.5)

The acceptance rates of our Metropolis-Hastings algorithms for yAit and yGit were 11% and 45%,

respectively.

For yit > 0, ζit is known and ζit = yit, but for yit = 0, ζit is latent and must be sampled from

its full-conditional distribution. We sampled the vector of latent quantities ζut with a Gibbs update
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because its full-conditional distribution is multivariate normal truncated at 0. The full-conditional

distributions of ξt, γ, and α are multivariate normal and were sampled from using Gibbs up-

dates. We also used Gibbs updates for the variance parameters σ2,A
τ , σ2,G

τ , and σ2
d which have

inverse-gamma full-conditional distributions. A Metropolis-Hastings algorithm was employed for

updating ϕ. We precalculated the exponentially decaying distance correlation matrices, R(ϕ),

associated with each support value of ϕ to improve computation.

We coded our multistage MCMC algorithm in Rcpp to decrease runtime [148]. The first-stage

sampler which targets the posteriors of the ADSM and N-mixture submodel were run in parallel

for 100, 000 iterations. We discarded the 10, 000 iterations as burn-in and drew randomly with

replacement from the remaining sample for proposals of yA and yG in the STTM. The second-

stage sampler was run for 80, 000 iterations after of burn-in of 20, 000. Total run times for the

first and second stages were 129 and 111 minutes, respectively (2.5 Ghz 28-core Intel Xeon W

processor). The potential scale reduction factor for all parameters from the first and second stage

was less than 1.1 indicating convergence [250].

B.3 Covariates

We selected a parsimonious suite of covariates previously shown to be associated with lesser

prairie-chicken demography, occupancy, and abundance that quantified differences in landcover,

habitat patch size, anthropogenic disturbance, grassland restoration and drought. Table B.1 pro-

vides a description of each covariate and indicates its source. All covariates were measured at

the 15 × 15-km survey block resolution except for Palmer Drought Severity Index (PDSI), which

was extracted from National Oceanic and Atmospheric Administration climate divisions. All con-

tinuous covariates except for PDSI were standardized to have mean 0 and variance 1. To derive

covariate values for the ground sites, we calculated a weighted average of the survey block covari-

ate values based on the percentage of area the ground survey region included each block. Only

PDSI was temporally indexed. All other covariates were static and measured in 2012.
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Table B.1: Covariates available at following links:
WEST (field-collected data from WEST aerial surveys),
NLCD (https://www.mrlc.gov/data/references/national-land-cover-database-2011-nlcd2011),
NRCS (https://www.nrcs.usda.gov/wps/portal/nrcs/site/national/home/),
NOAA (https://www.ncei.noaa.gov/access/monitoring/historical-palmers/maps).

Name Description Source

Ecoregion Ecoregion identifier (1 = SOPR, 2 = SSPR, 3 = MGPR, 4 = SGPR) WEST
Development Percentage of area (%) with anthropogenic development. NLCD
CRP Percentage of area (%) enrolled in the Conservation Reserve Program. N/A
Grassland patch size Average size (km2) of grassland landcover patches. NLCD
Shrubland Percentage of area (%) dominated by shrubs, including trees <5 m tall. NLCD
Woodland Percentage of area (%) with tree canopy cover >1%. NRCS
PDSI Palmer Drought Severity Index averaged over March, April, and May. NOAA

B.4 Comparison of ADSM Inference with WEST Annual

Reports

Western EcoSystems Technology, Inc. (WEST) uses the aerial survey data to infer annual

fluctuations in ecoregion wide LEPC densities. We compared the unrefined density estimates from

our ADSM with the density estimates reported by Nasman et al. [197]. Figure B.1 shows the

SGPR ecoregion annual density estimates along with their associated uncertainties. Note that the

estimates of Nasman et al. [197] are calculated for the full SSPR, MGPR, and SGPR ecoregions,

which span Kansas, Colorado, Oklahoma, and Texas, whereas our density estimates are clipped to

Kansas. Therefore, only the density estimates for the SGPR are directly comparable across models

because the ecoregion is only in Kansas. Neither set of estimates shown were adjusted for the

occurrence of greater prairie-chicken in the northern region of the SGPR.

In general, mean annual density estimates for the SGPR were similar across the two models,

but the ADSM resulted in smoother temporal process and had less uncertainty than the distance

sampling model of Nasman et al. [197]. We included covariates in our ADSM that quantified het-

erogeneity in landscapes and climatic factors such as drought to facilitate learning about shared pat-

terns in LEPC density across Kansas EOR. Consequently, SGPR annual density estimates from the

ASDM are informed by trends observed across all ecoregions. This may explain the reduced un-
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certainty of the ADSM estimates compared with those inferred from the distance sampling model

of Nasman et al. [197], which treated ecoregions independently.

The largest discrepancy in annual density estimates between the ADSM and Nasman et al.

[197] was for the SGPR ecoregion in 2016. Nasman et al. [197] estimated a decline whereas our

ADSM estimated an annual density similar to 2015. Our ADSM included PDSI as a covariate

which was estimated to have a positive association with LEPC density (i.e., higher densities fol-

lowing wetter years). PDSI was above average for 2016 (i.e., a relatively wet year), which could

explain the higher density estimates that resulted from our ADSM in 2016.

SGPR
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Figure B.1: SGPR ecoregion annual density estimates of LEPC from 2012-2021. Posterior means and
90% credible intervals of annual density estimated with the ADSM shown in red. Mean estimates and
90% confidence intervals of annual density from Nasman et al. (2021) are in turquoise. Note that density
estimates from both models include observations of greater prairie-chicken in the northern region of the
SGPR

B.5 Inference For Covariate Associations

Posterior mean LEPC densities were highest in the SGPR ecoregion and lowest in the SSPR

(Table B.2). The MGPR ecoregion had interemediate LEPC densities. LEPC densities were lower
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in regions with a higher percentage of anthropogenic disturbance and tree canopy cover. LEPC

density was positively associated with the percentage of area enrolled in the Conservation Reserve

Program (CRP), percentage of area dominated by shrubs, and average size of grassland landcover

patches. Density in the SGPR decreased sharply north of Interstate 70.

Table B.2: Posterior means and credible interval for regression coefficients γ and α.

Covariate Parameter Posterior Mean Credible Interval (90%)

SSPR γ0 0.029 (-0.147, 0.197)
MGPR γ1 0.286 (0.165, 0.418)
SGPR γ2 0.602 (0.488, 0.718)
Development γ3 -0.103 (-0.133, -0.073)
CRP γ4 0.069 (0.046, 0.094)
Grassland patch size γ5 0.273 (0.206, 0.341)
Shrubland γ6 0.191 (0.126, 0.257)
Woodland γ7 -0.084 (-0.133, -0.041)
I-70 γ8 -0.383 (-0.462, -0.309)
PDSI α1 0.001 (-0.004, 0.005)
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Appendix C

Supplemental Material for Chapter 4

C.1 Implementation

We set νd = 600, which resulted in an approximate survey region of S = 2×2×15×0.6 = 36

km2 per survey block. We augmented our dataset to allow for M = 20 groups per survey region.

Both νd and M were adequately large to accommodate uncertainty in the maximum detection

distance and true number of lesser prairie-chicken groups in the sample population of each survey

region [134]. Both νd andM can be set larger with no inferential effect on density but will increase

computational burden because of the expanded parameter space.

The first-stage algorithm targeted samples from the joint distribution of the aerial distance

sampling, N-mixture, survival and productivity submodels with standard independent Metropolis-

within-Gibbs samplers. The full-conditional distributions of the parameters βλ, βζ , η, βδ, µδ, B,

NA,u, du, ϵu, andNG were non-tractable. We used a Metropolis-Hastings algorithm to obtain pos-

terior samples of each quantity. To improve mixing, we updated the elements of each vector-valued

parameter individually. We used normal random walk proposals for βλ, βρ, βδ, and η, and tuned

the proposals such that acceptance rates varied between 20-40%. Proposals for NA,u, zu,du, ϵu,

and NG were generated from their prior distributions. The full-conditional distributions of ω,

pω, zu, ϕB1 , ϕB2 , µδ, µπ, µπe , µϕ
N

e , µϕ
N

el , µϕ
A

e , µϕ
A

el , σ2
π, σ2

δ , σ2
ϕN , σ2

ϕA , q, and pe were tractable, and

we sampled directly from them using Gibbs updates. We obtained samples of βψ, βδ, βϕ
N

, and

βϕA using Pólya-Gamma data augmentation [91]. We also considered Pólya-Gamma and Probit

[84] data augmentation strategies for the linear predictor βζ but found neither improved sampling

efficiency.

In the second-stage of the MCMC algorithm, we drew sub-samples of NA
et , N

G
et , ϕ

A
ket and

ρaet for proposal in the population model. We introduce the notation NX
et (S) to denote the abun-

dance of individuals inhabiting a region of size S in ecoregion e during year t for survey method

X ∈ {A,G}. To update the aerial and ground abundances, for MCMC iteration l, we drew a sub-
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sample of the annual ecoregional abundance NX
e,t+1

(⋆)
(SXe,t+1) randomly with replacement from

the first-stage, where SXe,t+1 is the total area of ecoregion e during year t + 1 for method X . For

aerial surveys, SAe,t+1 equals the total area covered by all blocks in the sampling frame of ecore-

gion e during year t + 1 and represents the total area of the ecoregion. For ground surveys, SGe,t+1

equals the total area covered by all ground sampling regions in ecoregion e during year t + 1

which is much less than the total area of the ecoregion. We then calculated the estimated density

Y X
e,t+1

(⋆)
= NX

e,t+1
(⋆)
(SXe,t+1)/S

X
e,t+1. Finally, we calculated the approximate number of birds en-

countered by multiplying the annual ecoregional density estimate by the survey effort for method

X , NX
e,t+1

(⋆)
(SXe,t+1) = Y X

e,t+1
(⋆)
SXe,t+1, where SXe,t+1 is the area surveyed (Tables 4.1 and 4.2). We

then drew

NX
e,t+1,SY

(⋆)
(SXe,t+1) ∼ Poisson(NX

♀et,ASY
(l−1)

(SXe,t+1)ρet,ASY
(l−1) +NX

♀et,SY
(l−1)

(SXe,t+1)ρet,SY
(l−1)), (C.1)

NX
♀e,t+1,ASY

(⋆)
(SXe,t+1) ∼ Binomial(NX

♀et,ASY
(l−1)

(SXe,t+1), ϕ
A
♀et

(l−1)
), (C.2)

and calculated

NX

♂e,t+1,ASY

(⋆)
(SXe,t+1) = NX

e,t+1

(⋆)
(SXe,t+1)−NX

♀e,t+1,ASY

(⋆)
(SXe,t+1)−NX

e,t+1,SY

(⋆)
(SXe,t+1). (C.3)

The Metropolis-Hastings ratio was

[NX
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, (C.7)

where equation (C.4) is a Poisson probability mass function and equations (C.5)-(C.7) are Binomial

probability mass functions. For adult survival, we drew a sub-sample, ϕAket
(⋆), from the first-stage
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randomly with replacement, and the Metropolis-Hastings ratio was
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X∈A,G
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X
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A
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(l−1)
]

)

. (C.8)

Likewise, for productivity, we drew a sub-sample, ρaet(⋆), from the first-stage randomly with re-

placement, and the Metropolis-Hastings ratio was

∏

X∈A,G
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 . (C.9)
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C.2 Model Statements

C.2.1 Aerial Distance Sampling Submodel

vitl ∼ Binomial(Bitl, ζitl), (C.10)

Oitl =















































2, for ditl > 7, ϵitl = 1, and zitl = 1

1, for ditl > 7, ϵitl = 0, and zitl = 1

1, for ditl ≤ 7 and zitl = 1

0, for zitl = 0

, (C.11)

logit(ζ) =
(

Xζ ,N
A,d

)

βζ , βζ ∼ N (0, 2.25I), (C.12)

NA
itl ∼















ZTP(λit), for ωitl = 1

ZTP(λ0), for ωitl = 0

, (C.13)

ωitl ∼ Bernoulli(pω), (C.14)

ditl ∼ Unif(0, νd), (C.15)

zitl ∼ Bernoulli(ψit), (C.16)

ϵitl ∼ Bernoulli(0.5), (C.17)

logit(ψ) =Xψβψ,βψ ∼ N (0, 2.25I), (C.18)

log(λ) =Xλβλ,βλ ∼ N (0, 10I), (C.19)

λ0 ∼ Gamma(1.78, 0.675), (C.20)

pω ∼ Uniform(0, 1). (C.21)

We set the informative prior for λ0 so that the mean size of a non-lek group observations was

1.2 and resulted in a prior probability of approximately 0.95 that a non-lek observation contained
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fewer than 4 individuals. The variance of λ0 implied the prior probability of a non-lek observation

having less than 10 individuals was nearly 1.

C.2.2 N-mixture Submodel

Gi′tlj ∼ Binomial(NG
i′tl, pe) for j = 1, . . . , Ji′tl, (C.22)

NG
i′tl ∼ Poisson(exp(w′

i′tη)) for l = 1, . . . , LGi′t, (C.23)

η ∼ N (0, 10I), (C.24)

pe ∼ Uniform(0, 1). (C.25)

C.2.3 Survival Submodel

sletm ∼ Bernoulli(ϕAletm), (C.26)

logit(ϕAletm) = µ
ϕA

el + β
ϕA

1 SEXl + β
ϕA

2 BREEDm + β
ϕA

3 (SEXl × BREEDm) + β
ϕA

4 PDSIetm, (C.27)

µ
ϕA

el ∼ N (µe, σ
2
ϕA), (C.28)

µ
ϕA

SOPR ∼ N (2.27, 2× 0.482), (C.29)

µ
ϕA

SSPR ∼ N (2.70, 2× 0.332), (C.30)

µ
ϕA

MGPR ∼ N (2.90, 2× 0.452), (C.31)

µ
ϕA

SGPR ∼ N (3.80, 2× 0.862), (C.32)

βϕ
A

∼ N (0, 1002I), (C.33)

σ2
ϕA ∼ IG(0.001, 1000). (C.34)
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C.2.4 Nesting Survival Submodel

Fletd ∼















Bernoulli(ϕNletm) , Flet,d−1 = 1

0 , Flet,d−1 = 0

, (C.35)

logit(ϕNletm) = µϕ
N

el + βϕ
N

1 AGEl + βϕ
N

2 PDSIetm, (C.36)

µϕ
N

el ∼ N (µe, σ
2
ϕN ), (C.37)

µϕ
N

SOPR ∼ N (4.29, 2× 0.612), (C.38)

µϕ
N

SSPR ∼ N (3.81, 2× 0.612), (C.39)

µϕ
N

MGPR ∼ N (4.13, 2× 0.612), (C.40)

µϕ
N

SGPR ∼ N (4.08, 2× 0.752), (C.41)

βϕ
N

∼ N (0, 1002I), (C.42)

σ2
ϕN ∼ IG(0.001, 1000). (C.43)

C.2.5 Brood Survival Submodel

yld ∼ Binomial(Bld, q), (C.44)

Bl,d+1 ∼ Binomial(Bld, ϕ
B
d ), (C.45)

ϕBd = ϕB1 ∼ Beta(290.40, 15.28), for d ≤ 14, (C.46)

ϕBd = ϕB2 ∼ Beta(437.23, 9.84), for d > 14. (C.47)
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C.2.6 Clutch Submodel

Cletm ∼ Poisson(δletm), (C.48)

log(δletm) = µδe + βδ1AGEl + βδ2PDSIetm, (C.49)

βδ ∼ N (0, 1002I), (C.50)

µδe ∼ N (µδ, σ2
δ ), (C.51)

µδ ∼ N (0, 1002), (C.52)

σ2
δ ∼ IG(0.001, 1000). (C.53)

C.2.7 Hatch Submodel

Hletm ∼ Binomial(Cletm, πletm), (C.54)

logit(πletm) = µπe + βπ1 AGEl + βπ2 PDSIetm, (C.55)

βπ ∼ N (0, 1002I), (C.56)

µπe ∼ N (µπ, σ2
π), (C.57)

µπ ∼ N (0, 1002), (C.58)

σ2
π ∼ IG(0.001, 1000). (C.59)
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C.2.8 Juvenile Survival Priors

ϕJSOPR ∼ Beta(10.35, 1.15), (C.60)

ϕJSSPR ∼ Beta(8.22, 5.71), (C.61)

ϕJMGPR ∼ Beta(19.44, 7.56), (C.62)

ϕJSGPR ∼ Beta(10.22, 8.03). (C.63)

C.2.9 Nesting and Re-nesting Propensity Priors

ξ1SOPR ∼ Beta(19.59, 8.00), ξ2SOPR ∼ Beta(1.35, 17.99), (C.64)

ξ1SSPR ∼ Beta(83.72, 7.28), ξ2SSPR ∼ Beta(20.41, 45.43), (C.65)

ξ1MGPR ∼ Beta(8.44, 4.95), ξ2MGPR ∼ Beta(0.36, 2.20), (C.66)

ξ1SGPR ∼ Beta(2.95, 0.09), ξ2SGPR ∼ Beta(1.39, 13.36). (C.67)

C.2.10 Population Model

Net = N♀et,ASY +N♂et,ASY
+N♀et,SY +N♂et,SY

, (C.68)

N♂e,t+1,ASY
∼ Binomial

(

N♂et,ASY
+N♂et,SY

, ϕA
♂et

)

, (C.69)

N♀e,t+1,ASY ∼ Binomial
(

N♀et,ASY +N♀et,SY , ϕ
A
♀et

)

, (C.70)

Ne,t+1,SY ∼ Poisson
(

N♀et,SY ρet,SY +N♀et,ASY ρet,ASY
)

, (C.71)

N♂e,t+1,SY
= N♀e,t+1,SY = Ne,t+1,SY /2. (C.72)

179



C.3 Varying Survey Effort on Posterior Inference for Vital

Rates

The conditional expectation of survival is unaffected by the area surveyed, but the conditional

variance is proportional to the area surveyed. We show the derivation for male survivorship not-

ing the derivation for female survivorship is analogous. As in Section C.1, we let Y♂et,ASY
and

Y♂et,SY
be the densities of after-second-year (ASY) and second-year (SY) males in ecoregion e

during year t and Set denote the area surveyed. We estimate the approximate number of ASY

and SY males encountered as N♂et,ASY
= Y♂et,ASY

Set and N♂et,SY
= Y♂et,SY

Set. Assuming a

flat improper prior for male adult survival, [ϕA
♂et

] ∝ 1, the conditional expectation for ϕA
♂et

from

equation (C.69) is

E[ϕA
♂et

|Y♂et,ASY
, Y♂et,SY

, Set] (C.73)

=
N♂e,t+1,ASY

(Set)

N♂et,ASY
(Set) +N♂et,SY

(Set)
=

Y♂e,t+1,ASY

Y♂et,ASY
+ Y♂et,SY

= ϕ̃A♂et
, (C.74)

which is independent of Set. The conditional variance, however, is

Var[ϕA
♂et

|Y♂et,ASY
, Y♂et,SY

, Set] (C.75)

=
ϕ̃A♂et

(

1− ϕ̃A♂et

)

N♂et,ASY
(Set) +N♂et,SY

(Set)
=

ϕ̃A♂et

(

1− ϕ̃A♂et

)

Set(Y♂et,ASY
+ Y♂et,SY

)
. (C.76)

The same is true for ρet,SY and ρet,ASY in equation (C.71). Without loss of generality, we

derive the conditional expectation and variance for ρet,SY assuming an improper flat prior and

ρet,ASY known. The conditional expectation of ρet,SY from equation (C.71) is

E[ρet,SY |Y♀et,ASY , Y♀et,SY , ρet,ASY , Set] = (C.77)

Ne,t+1,SY (Set)−N♀et,ASY (Set)ρet,ASY

N♀et,SY (Set)
=
Ye,t+1,SY − Y♀et,ASY ρet,ASY

Y♀et,SY
= ρ̃et,SY . (C.78)
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The conditional variance is

Var[ρet,SY |Y♀et,ASY , Y♀et,SY , ρet,ASY , Set] = (C.79)

N♀et,SY (Set)ρ̃et,SY +N♀et,ASY (Set)ρet,ASY

(N♀et,SY (Set))
2 =

Y♀et,SY ρ̃et,SY + Y♀et,ASY ρet,ASY

Set(Y♀et,SY )
2 . (C.80)

It follows that posterior inference for vital rates both depends on the trend in annual density,

Ye,t+1/Yet, as well as the number of individuals used to estimate that trend, Net(Set).

C.4 Comparison of Integrated Population Model Posterior

Inference with WEST Aerial Survey Annual Reports

Western EcoSystems Technology, Inc. (WEST) uses the aerial surveys to infer annual fluctua-

tions in ecoregion wide lesser prairie-chicken abundance. We compared abundance estimates from

our integrated population model with those reported by [5]. Figure C.1 shows the ecoregion annual

abundance estimates along with their associated uncertainties. In general, mean annual abundance

estimates were similar across the two models, but the integrated population model had less uncer-

tainty and provided inference for range-wide abundance in years during which no aerial surveys

were conducted (2005-2011 and 2019).

The reduced uncertainty of the integrated population model abundance estimates highlights

lesser prairie-chicken booms and busts. For example, from 2015-2016, the MGPR experienced a

boom where the population grew by > 30% according to the points estimates from both models.

The confidence intervals for annual abundance estimated by [5] largely overlap, but in the inte-

grated population model, the credible intervals are separated and the boom is identified. Likewise,

in 2013, the SGPR experienced a bust that reduced the population by more than 20%. In the model

of [5], the magnitude of the bust is qualified by large uncertainty in annual abundance estimates,

but the integrated population model provides more certainty that a large decline occurred.

We observed the largest discrepancies in abundance estimates between the models in the SOPR.

The two starkest differences were in 2015 and 2022, which were the years estimated to have the
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lowest abundance according to the model of [5]. Aerial detections for these years were low with a

total of 10 birds detected across 7 groups in 2015 and 9 birds across 7 groups in 2022. The lower

bounds of the WEST estimates in these years are below the number of birds counted by the ground

surveys in the SOPR, which only surveyed 1% of the ecoregion.

Limited aerial detections also made abundance estimation in the SSPR difficult. Only three

birds were detected in the SSPR in 2020, and the low sample size prevented [5] from calculating

the uncertainty of the point estimate. The integrated population model leverages the demographic

and ground surveys to infer a probable range-wide abundance when aerial detections were limited.
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Figure C.1: Lesser prairie-chicken ecoregion annual abundance estimates from 2005-2022. Posterior means
and 90% credible intervals from integrated population model fit to the ground, aerial, and demography data
in red. Mean estimates and 90% confidence intervals from [5] are in black.
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C.5 Annual Abundance and Vital Rates

Table C.1: Posterior means (95% credible intervals) for lesser prairie-chicken range-wide abundance split
by ecoregion and year. Posterior means derived from integrated population model fit to aerial, ground and
demographic surveys. SOPR = Shinnery Oak prairie Ecoregion, SSPR = Sand sagebrush Prairie Ecoregion,
MGPR = Mixed-Grass Prairie Ecoregion, and SGPR = Short Grass Prairie/Conservation Reserve Program
Mosaic Ecoregion.

Year SOPR SSPR MGPR SGPR Total

2005 10888 (8696, 13486) 3230 (2070, 4652) 15114 (10744, 20434) 38551 (27973, 51170) 67783 (55734, 81404)
2006 12827 (10287, 15852) 3677 (2398, 5255) 12207 (8795, 16408) 33057 (24269, 43451) 61768 (51670, 73069)
2007 10004 (8026, 12295) 1360 (891, 1941) 6978 (5064, 9304) 30914 (23046, 40085) 49256 (40724, 58960)
2008 5615 (4549, 6869) 1710 (1139, 2405) 6963 (5147, 9135) 29825 (22744, 37912) 44113 (36545, 52446)
2009 6131 (4994, 7449) 1513 (1032, 2089) 7141 (5392, 9197) 35513 (27723, 44252) 50298 (42118, 59363)
2010 4601 (3778, 5590) 1445 (1019, 1934) 6204 (4825, 7791) 23204 (18790, 28137) 35454 (30659, 40661)
2011 4168 (3454, 5016) 1694 (1227, 2237) 6234 (4975, 7655) 19284 (16592, 22172) 31381 (28228, 34733)
2012 2893 (2412, 3446) 663 (479, 864) 3490 (2872, 4168) 12823 (11578, 14113) 19868 (18389, 21434)
2013 1857 (1555, 2194) 776 (604, 976) 3283 (2772, 3850) 10093 (9168, 11074) 16008 (14882, 17179)
2014 1516 (1287, 1779) 419 (320, 521) 3159 (2711, 3633) 8377 (7626, 9191) 13471 (12550, 14431)
2015 1852 (1581, 2142) 682 (538, 846) 4044 (3518, 4607) 8796 (8085, 9591) 15373 (14404, 16397)
2016 2210 (1935, 2514) 369 (278, 456) 6024 (5200, 6900) 10018 (9132, 11004) 18622 (17357, 19962)
2017 2859 (2500, 3247) 389 (302, 499) 4843 (4168, 5540) 10387 (9525, 11307) 18477 (17290, 19704)
2018 3009 (2622, 3427) 533 (475, 681) 3208 (2624, 3702) 10443 (9530, 11224) 17193 (16120, 18213)
2019 3187 (2766, 3640) 745 (627, 898) 3533 (2927, 4159) 16813 (15436, 18191) 24278 (22690, 25860)
2020 3335 (2861, 3830) 1026 (830, 1254) 3194 (2621, 3795) 13796 (12694, 14940) 21352 (20004, 22740)
2021 2081 (1739, 2428) 608 (476, 765) 3704 (3081, 4380) 13422 (12317, 14575) 19816 (18484, 21183)
2022 1119 (896, 1337) 838 (600, 1125) 3165 (2543, 3882) 12611 (11153, 14141) 17733 (16096, 19443)
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Table C.2: Posterior means (95% credible intervals) for female lesser prairie-chicken annual survival split
by ecoregion and year. Posterior means derived from integrated population model fit to aerial, ground and
demographic surveys. SOPR = Shinnery Oak Prairie Ecoregion, SSPR = Sand Sagebrush Prairie Ecoregion,
MGPR = Mixed-Grass Prairie Ecoregion, and SGPR = Short Grass Prairie/Conservation Reserve Program
Mosaic Ecoregion.

Year SOPR SSPR MGPR SGPR Mean

2005 0.49 (0.40, 0.58) 0.39 (0.27, 0.51) 0.38 (0.31, 0.45) 0.39 (0.32, 0.45) 0.41 (0.37, 0.45)
2006 0.50 (0.44, 0.54) 0.40 (0.28, 0.52) 0.40 (0.34, 0.45) 0.39 (0.32, 0.45) 0.42 (0.38, 0.46)
2007 0.42 (0.36, 0.49) 0.31 (0.23, 0.41) 0.40 (0.34, 0.46) 0.39 (0.32, 0.45) 0.38 (0.35, 0.42)
2008 0.43 (0.36, 0.50) 0.40 (0.29, 0.52) 0.38 (0.31, 0.46) 0.38 (0.31, 0.44) 0.40 (0.36, 0.44)
2009 0.48 (0.41, 0.55) 0.41 (0.30, 0.52) 0.39 (0.33, 0.45) 0.36 (0.29, 0.43) 0.41 (0.37, 0.45)
2010 0.44 (0.37, 0.51) 0.41 (0.29, 0.52) 0.39 (0.33, 0.45) 0.32 (0.23, 0.41) 0.39 (0.35, 0.43)
2011 0.44 (0.37, 0.51) 0.41 (0.30, 0.53) 0.40 (0.34, 0.46) 0.36 (0.28, 0.43) 0.40 (0.36, 0.44)
2012 0.47 (0.37, 0.56) 0.34 (0.24, 0.44) 0.41 (0.34, 0.49) 0.38 (0.32, 0.44) 0.40 (0.36, 0.44)
2013 0.46 (0.37, 0.55) 0.47 (0.34, 0.60) 0.44 (0.37, 0.51) 0.43 (0.35, 0.50) 0.45 (0.40, 0.50)
2014 0.49 (0.41, 0.58) 0.40 (0.29, 0.51) 0.42 (0.37, 0.49) 0.42 (0.35, 0.49) 0.44 (0.40, 0.48)
2015 0.46 (0.39, 0.53) 0.42 (0.30, 0.53) 0.42 (0.36, 0.48) 0.41 (0.34, 0.47) 0.43 (0.39, 0.47)
2016 0.50 (0.41, 0.59) 0.45 (0.34, 0.55) 0.37 (0.29, 0.45) 0.40 (0.33, 0.46) 0.43 (0.38, 0.47)
2017 0.49 (0.42, 0.54) 0.35 (0.22, 0.47) 0.37 (0.29, 0.44) 0.39 (0.32, 0.45) 0.40 (0.35, 0.44)
2018 0.48 (0.41, 0.53) 0.34 (0.22, 0.46) 0.40 (0.35, 0.46) 0.39 (0.32, 0.45) 0.40 (0.36, 0.44)
2019 0.45 (0.39, 0.52) 0.46 (0.35, 0.57) 0.40 (0.34, 0.46) 0.41 (0.35, 0.49) 0.43 (0.39, 0.47)
2020 0.43 (0.35, 0.50) 0.49 (0.37, 0.64) 0.41 (0.33, 0.50) 0.44 (0.36, 0.53) 0.44 (0.40, 0.49)
2021 0.40 (0.34, 0.48) 0.58 (0.48, 0.64) 0.43 (0.37, 0.49) 0.51 (0.45, 0.53) 0.48 (0.45, 0.51)
2022 0.41 (0.34, 0.48) 0.41 (0.30, 0.52) 0.41 (0.36, 0.47) 0.39 (0.33, 0.45) 0.41 (0.37, 0.45)

Mean 0.46 (0.44, 0.47) 0.41 (0.39, 0.44) 0.40 (0.39, 0.42) 0.40 (0.38, 0.41) 0.42 (0.41, 0.43)

185



Table C.3: Posterior means (95% credible intervals) for male lesser prairie-chicken annual survival split
by ecoregion and year. Posterior means derived from integrated population model fit to aerial, ground and
demographic surveys. SOPR = Shinnery Oak Prairie Ecoregion, SSPR = Sand Sagebrush Prairie Ecoregion,
MGPR = Mixed-Grass Prairie Ecoregion, and SGPR = Short Grass Prairie/Conservation Reserve Program
Mosaic Ecoregion.

Year SOPR SSPR MGPR SGPR Mean

2005 0.38 (0.30, 0.49) 0.48 (0.34, 0.61) 0.49 (0.39, 0.59) 0.50 (0.40, 0.59) 0.46 (0.41, 0.52)
2006 0.61 (0.54, 0.68) 0.54 (0.42, 0.65) 0.53 (0.44, 0.61) 0.51 (0.41, 0.60) 0.55 (0.50, 0.59)
2007 0.51 (0.43, 0.58) 0.28 (0.24, 0.36) 0.45 (0.36, 0.54) 0.49 (0.39, 0.58) 0.43 (0.39, 0.47)
2008 0.44 (0.38, 0.51) 0.52 (0.39, 0.64) 0.50 (0.40, 0.60) 0.49 (0.39, 0.58) 0.49 (0.44, 0.54)
2009 0.59 (0.52, 0.67) 0.51 (0.38, 0.63) 0.51 (0.42, 0.60) 0.51 (0.40, 0.60) 0.53 (0.48, 0.58)
2010 0.52 (0.45, 0.59) 0.49 (0.36, 0.62) 0.50 (0.40, 0.59) 0.43 (0.31, 0.54) 0.49 (0.43, 0.54)
2011 0.58 (0.51, 0.65) 0.55 (0.43, 0.66) 0.54 (0.45, 0.62) 0.50 (0.40, 0.60) 0.54 (0.49, 0.59)
2012 0.56 (0.46, 0.65) 0.32 (0.28, 0.42) 0.44 (0.36, 0.54) 0.47 (0.37, 0.56) 0.45 (0.40, 0.49)
2013 0.50 (0.42, 0.58) 0.57 (0.43, 0.70) 0.55 (0.44, 0.64) 0.52 (0.42, 0.62) 0.53 (0.48, 0.59)
2014 0.54 (0.46, 0.63) 0.40 (0.28, 0.52) 0.53 (0.44, 0.62) 0.50 (0.40, 0.59) 0.49 (0.45, 0.54)
2015 0.53 (0.46, 0.60) 0.54 (0.42, 0.65) 0.54 (0.44, 0.62) 0.50 (0.40, 0.59) 0.53 (0.48, 0.57)
2016 0.46 (0.36, 0.57) 0.48 (0.38, 0.58) 0.51 (0.40, 0.62) 0.41 (0.33, 0.48) 0.47 (0.42, 0.51)
2017 0.57 (0.50, 0.66) 0.49 (0.38, 0.61) 0.47 (0.37, 0.57) 0.39 (0.31, 0.47) 0.48 (0.43, 0.53)
2018 0.58 (0.51, 0.65) 0.48 (0.37, 0.59) 0.48 (0.37, 0.58) 0.38 (0.30, 0.46) 0.48 (0.43, 0.52)
2019 0.56 (0.49, 0.63) 0.43 (0.31, 0.54) 0.49 (0.39, 0.58) 0.34 (0.25, 0.43) 0.45 (0.41, 0.50)
2020 0.57 (0.50, 0.64) 0.44 (0.30, 0.57) 0.38 (0.27, 0.50) 0.30 (0.23, 0.41) 0.42 (0.37, 0.48)
2021 0.52 (0.44, 0.60) 0.27 (0.27, 0.28) 0.37 (0.33, 0.46) 0.27 (0.27, 0.27) 0.36 (0.33, 0.39)
2022 0.49 (0.43, 0.57) 0.53 (0.41, 0.65) 0.54 (0.45, 0.63) 0.52 (0.42, 0.60) 0.52 (0.47, 0.57)

Mean 0.53 (0.51, 0.55) 0.46 (0.43, 0.49) 0.49 (0.47, 0.51) 0.45 (0.42, 0.47) 0.48 (0.47, 0.49)
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Table C.4: Posterior means (95% credible intervals) for second-year lesser prairie-chicken productivity split
by ecoregion and year. Productivity is the expected number of individuals produced per female that survive
to sexual maturity. Posterior means derived from integrated population model fit to aerial, ground and
demographic surveys. SOPR = Shinnery Oak Prairie Ecoregion, SSPR = Sand Sagebrush Prairie Ecoregion,
MGPR = Mixed-Grass Prairie Ecoregion, and SGPR = Short Grass Prairie/Conservation Reserve Program
Mosaic Ecoregion.

Year SOPR SSPR MGPR SGPR Mean

2005 1.30 (0.65, 2.00) 1.10 (0.35, 2.10) 1.10 (0.46, 1.90) 0.92 (0.40, 1.50) 1.10 (0.78, 1.50)
2006 1.10 (1.10, 1.10) 1.40 (0.63, 2.20) 0.68 (0.32, 1.10) 0.78 (0.39, 1.20) 1.00 (0.77, 1.20)
2007 0.57 (0.26, 0.92) 0.14 (0.06, 0.30) 0.33 (0.11, 0.64) 1.00 (0.45, 1.60) 0.52 (0.34, 0.71)
2008 0.30 (0.12, 0.52) 0.93 (0.21, 1.90) 0.98 (0.37, 1.80) 1.10 (0.60, 1.60) 0.83 (0.54, 1.20)
2009 0.68 (0.37, 1.10) 0.88 (0.32, 1.50) 1.30 (0.71, 1.90) 1.60 (1.00, 2.20) 1.10 (0.85, 1.40)
2010 0.53 (0.22, 0.86) 1.10 (0.34, 1.90) 0.89 (0.44, 1.40) 0.46 (0.05, 0.89) 0.74 (0.48, 1.00)
2011 0.62 (0.34, 0.98) 1.50 (0.63, 2.40) 1.10 (0.45, 1.80) 0.80 (0.35, 1.30) 1.00 (0.70, 1.30)
2012 0.34 (0.16, 0.57) 0.11 (0.01, 0.27) 0.26 (0.09, 0.50) 0.50 (0.18, 0.87) 0.30 (0.19, 0.43)
2013 0.33 (0.15, 0.56) 0.61 (0.09, 1.50) 0.74 (0.26, 1.40) 0.58 (0.23, 1.00) 0.57 (0.34, 0.85)
2014 0.48 (0.24, 0.76) 0.17 (0.03, 0.44) 0.93 (0.39, 1.60) 0.71 (0.30, 1.10) 0.57 (0.38, 0.79)
2015 1.30 (0.72, 1.80) 1.30 (0.36, 2.40) 1.70 (0.82, 2.60) 1.20 (0.62, 1.80) 1.30 (0.97, 1.80)
2016 1.40 (1.00, 1.80) 0.06 (0.05, 0.07) 2.40 (1.60, 3.10) 1.70 (1.10, 2.20) 1.40 (1.10, 1.60)
2017 1.50 (1.40, 1.50) 1.10 (0.30, 2.20) 0.62 (0.29, 0.97) 1.40 (0.89, 1.80) 1.20 (0.89, 1.50)
2018 1.10 (0.88, 1.20) 1.70 (0.92, 2.40) 0.54 (0.21, 0.98) 1.30 (0.79, 1.70) 1.20 (0.92, 1.40)
2019 1.00 (0.69, 1.40) 1.20 (0.55, 1.90) 1.20 (0.47, 2.10) 3.00 (2.00, 3.70) 1.60 (1.20, 2.00)
2020 1.10 (0.74, 1.50) 2.10 (1.20, 2.60) 1.00 (0.50, 1.60) 0.88 (0.58, 1.20) 1.30 (0.98, 1.50)
2021 0.27 (0.10, 0.46) 0.29 (0.08, 0.57) 1.40 (0.62, 2.30) 0.96 (0.44, 1.50) 0.74 (0.48, 1.00)
2022 0.29 (0.12, 0.51) 0.71 (0.13, 1.50) 0.69 (0.27, 1.30) 0.60 (0.25, 1.00) 0.57 (0.35, 0.84)

Mean 0.79 (0.71, 0.87) 0.92 (0.75, 1.10) 1.00 (0.86, 1.10) 1.10 (0.96, 1.20) 0.95 (0.88, 1.00)
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Table C.5: Posterior means (95% credible intervals) for after-second-year lesser prairie-chicken productiv-
ity split by ecoregion and year. Productivity is the expected number of individuals produced per female that
survive to sexual maturity. Posterior means derived from integrated population model fit to aerial, ground
and demographic surveys. SOPR = Shinnery Oak Prairie Ecoregion, SSPR = Sand Sagebrush Prairie Ecore-
gion, MGPR = Mixed-Grass Prairie Ecoregion, and SGPR = Short Grass Prairie/Conservation Reserve
Program Mosaic Ecoregion.

Year SOPR SSPR MGPR SGPR Mean

2005 1.50 (0.73, 2.20) 1.30 (0.45, 2.40) 1.30 (0.56, 2.20) 1.10 (0.51, 1.70) 1.30 (0.92, 1.70)
2006 1.30 (1.10, 1.30) 1.40 (0.43, 2.40) 0.82 (0.34, 1.40) 0.98 (0.49, 1.50) 1.10 (0.81, 1.40)
2007 0.74 (0.32, 1.20) 0.26 (0.05, 0.61) 0.33 (0.10, 0.62) 1.20 (0.53, 1.90) 0.63 (0.41, 0.86)
2008 0.26 (0.11, 0.46) 1.90 (1.30, 2.60) 1.40 (0.96, 1.90) 1.30 (0.65, 1.90) 1.20 (0.95, 1.50)
2009 1.30 (1.20, 1.40) 1.10 (0.30, 2.00) 1.40 (0.60, 2.30) 1.80 (0.96, 2.60) 1.40 (1.00, 1.80)
2010 0.68 (0.29, 1.10) 1.30 (0.44, 2.10) 1.10 (0.45, 1.80) 0.99 (0.14, 1.90) 1.00 (0.66, 1.40)
2011 1.00 (0.76, 1.20) 1.50 (0.53, 2.50) 1.30 (0.59, 2.10) 1.00 (0.53, 1.50) 1.20 (0.88, 1.60)
2012 0.46 (0.22, 0.73) 0.23 (0.03, 0.60) 0.38 (0.12, 0.73) 0.63 (0.21, 1.10) 0.42 (0.27, 0.60)
2013 0.34 (0.16, 0.57) 1.50 (0.89, 2.20) 1.10 (0.68, 1.60) 0.79 (0.41, 1.20) 0.93 (0.71, 1.20)
2014 0.64 (0.36, 0.94) 0.31 (0.05, 0.78) 1.20 (0.53, 1.90) 0.95 (0.51, 1.40) 0.77 (0.54, 1.00)
2015 1.70 (1.20, 2.20) 2.40 (1.70, 3.20) 1.80 (0.88, 2.90) 1.60 (0.96, 2.20) 1.90 (1.50, 2.30)
2016 1.50 (1.00, 2.00) 0.06 (0.05, 0.15) 1.80 (0.80, 3.10) 1.70 (0.97, 2.60) 1.30 (0.93, 1.70)
2017 1.70 (1.40, 1.80) 1.40 (0.74, 2.20) 1.10 (0.39, 2.00) 1.40 (0.65, 2.20) 1.40 (1.10, 1.80)
2018 1.00 (0.72, 1.30) 1.30 (0.37, 2.50) 0.65 (0.25, 1.10) 1.40 (0.74, 2.30) 1.10 (0.78, 1.50)
2019 1.30 (0.85, 1.70) 1.40 (0.45, 2.60) 1.40 (0.68, 2.10) 2.20 (0.93, 3.70) 1.60 (1.10, 2.10)
2020 1.30 (0.88, 1.70) 2.20 (1.00, 2.90) 1.20 (0.48, 2.00) 1.00 (0.40, 1.80) 1.40 (1.00, 1.80)
2021 0.38 (0.16, 0.65) 0.57 (0.14, 1.20) 1.70 (0.86, 2.70) 1.20 (0.66, 1.80) 0.97 (0.68, 1.30)
2022 0.24 (0.10, 0.42) 1.00 (0.36, 1.90) 0.81 (0.31, 1.50) 0.80 (0.37, 1.30) 0.72 (0.47, 1.00)

Mean 0.96 (0.88, 1.00) 1.20 (1.00, 1.30) 1.20 (0.99, 1.30) 1.20 (1.1, 1.4) 1.10 (1.10, 1.20)
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C.6 Submodel Posterior Inference

Mean monthly survival rates for females in the non-breeding season were 0.946, 0.942, 0.943,

and 0.939 in the SOPR, SSPR, MGPR, and SGPR, respectively. On average, females had 5% lower

monthly survival during the breeding season. Male survival did not decrease during the breeding

season.

Figure C.2: Posterior means and 95% credible intervals for ecoregion intercepts and covariate associations
in lesser prairie-chicken survival submodel. Red indicates the credible interval for the covariate association
excluded 0. The parameter describing heterogeneity in monthly adult survival is ϕA. Sex∈ {0, 1} indicates
if the individual is male. Breed∈ {0, 1} indicates if the month is in the breeding season defined as March-
June [6].

The density of lesser prairie-chicken groups was highest in the Short-Grass Prairie/Conservation

Reserve Program Mosaic Ecoregion (SGPR) and lowest in the Sand Sagebrush Prairie Ecoregion

(SSPR) (Figure C.3, top). Fewer lesser prairie-chicken groups were observed in blocks with a

higher percentage of anthropogenic development and woodlands and lower percentage of CRP

enrollment and shrublands. The density of lesser prairie-chicken groups was also positively asso-

ciated with larger grassland patches and breeding seasons in the previous year with greater PDSI.
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In the aerial distance sampling submodel (ADSM), mean lek sizes were 4.7, 6.7, 9.2, and 11.7

individuals in the Shinnery Oak Prairie Ecoregion (SOPR), SSPR, Mixed-Grass Prairie Ecoregion

(MGPR), and SGPR, respectively (Figure C.3, middle). Lek sizes tended to be smaller in regions

with more anthropogenic development and larger in shrublands. In the N-mixture submodel, mean

lek sizes were 12.1, 3.1, 11.8, and 12.4 individuals in the SOPR, SSPR, MGPR, and SGPR, re-

spectively (Figure C.3, bottom). Leks were smaller, on average, in shrublands and larger following

breeding seasons with greater PDSI. The covariate associations for lek sizes in the count submod-

els were largely similar with the exception of the association for shrubland. On average, the ground

sites had 3 times the percentage of shrubland as the aerial blocks, which could explain differences

in the observed association across submodels.

Clutch sizes, hatchability, and daily nesting survival rates were all positive associated with

PDSI (Figure C.4). On average, after-second-year females were more productive than second-year

females, although all credible intervals included 0. Mean clutch sizes were 8.3, 8.5, 10.1, and 9.9

in the SOPR, SSPR, MGPR, and SGPR, respectively. Mean hatchability was 0.71, 0.79, 0.80, and

0.73 and daily nesting survival rates were 0.963, 0.964, 0.964, and 0.965. Daily brood survival

rates were 0.954 for the first 14 days post hatch and 0.997 thereafter.

Mean monthly survival rates for females in the non-breeding season were 0.946, 0.942, 0.943,

and 0.939 in the SOPR, SSPR, MGPR, and SGPR, respectively. On average, females had 5% lower

monthly survival during the breeding season. Male survival did not decrease during the breeding

season.
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Figure C.3: Posterior means and 95% credible intervals for ecoregion intercepts and covariate associations
in lesser prairie-chicken aerial distance sampling and N-mixture submodels. Red indicates the credible
interval for the covariate association excludes 0. Parameters describing heterogeneity in lesser prairie-
chicken lek sizes and the number of lesser prairie-chicken groups in the aerial distance sampling submodel
are given by βλ and βψ. Heterogeneity in lesser prairie-chicken lek sizes in the N-mixture submodel is
described by η.
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Figure C.4: Posterior means and 95% credible intervals for ecoregion intercepts and covariate associations
in lesser prairie-chicken productivity submodels. Red indicates the credible interval for the covariate as-
sociation excluded 0. Parameters describing heterogeneity in clutch sizes, hatchability, and daily nesting
survival rates given by δ, π, and ϕN , respectively.
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Figure C.5: Posterior means and 95% credible intervals for ecoregion intercepts and covariate associations
in lesser prairie-chicken survival submodel. Red indicates the credible interval for the covariate association
excluded 0. The parameter describing heterogeneity in monthly adult survival is ϕA. Sex∈ {0, 1} indicates
if the individual is male. Breed∈ {0, 1} indicates if the month is in the breeding season defined as March-
June [6].
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