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ABSTRACT 

 
 
 

NOVEL APPLICATIONS OF ADVANCED INTEGRAL-EQUATION THEORIES TO 

VARIOUS POLYMERIC SYSTEMS 

 
 
 

Since proposed in 1987, the polymer reference interaction site model (PRISM) theory[1] 

has been applied to many polymeric systems, including homopolymer melts, solutions, blends, 

block copolymers, nanocomposites, polyelectrolytes, etc., mainly by the (former) members in 

the research groups of Schweizer and Curro.[2-5] It is one of the most successful theories to date 

for predicting the structure and thermodynamics of homogeneous polymers. Comparing it to 

the polymer self-consistent field (SCF) theory[6], which can be considered as the most 

successful theory for inhomogeneous polymers and has also been applied to a wide variety of 

systems partly because its numerical calculations have been well developed[7], we note that few 

studies on the numerical calculations of the PRISM theory have been reported, which hinders 

its application by other research groups. As our first step to address this issue, here we focus 

on the PRISM-PY theory that works well for an important class of coarse-grained models for 

polymer melts and solutions in an implicit good solvent, where only short-range non-bonded 

repulsion between polymer segments is employed; all previously reported numerical methods 

for PRISM calculations are not best suited for this class of models. 

 Coarse-grained[8] (CG) models are currently needed to simulate polymeric systems, as 

full atomistic simulations of many-chain systems used in experiments are in most cases not 

feasible due to their formidable computational requirements. Polymeric systems are also best 

suited for coarse graining, as the large number of monomers on each chain allows high levels 
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of coarse graining. Applications of PRISM theory in structure-based coarse graining of 

multicomponent polymeric systems to diblock copolymer melts have been performed to obtain 

the structural and thermodynamic properties of both the original and coarse-grained (CG) 

system, and to quantitatively exam how the effective non-bonded pair potentials between 

coarse-grained segments and the thermodynamic properties of coarse-grained systems vary 

with coarse-graining level. The spinodal curve doesn’t change, regardless of the original system 

for symmetric diblock copolymer melts, which was been proved. Using a simple model system 

for symmetric diblock copolymer melts, we coarse-grained each block as 2N segments and 

examined CG systems with N ranging from 2 to 100.  Coarse graining increases both the peak 

value and peak location of the partial structure factor characterizing the composition 

fluctuations in the CG system. Contrary to the common practice in the literature, CG potentials 

obtained from short-chain systems can not directly used for long chain systems; this is in fact 

the transferability problem in coarse graining. The structure-based coarse graining cannot give 

thermodynamic consistency at any coarse-graining level.  

While the polymer self-consistent field theory has gained great success in describing 

various inhomogeneous polymeric systems, particularly the self-assembled morphologies of 

block copolymers, for spatially homogeneous systems it reduces to the Flory-Huggins theory 

and gives the simplest, yet often qualitatively incorrect predictions. Based on the same model 

system of symmetric DBCs represented as discrete Gaussian chains interacting with soft, finite-

range repulsions as commonly used in the dissipative-particle dynamics simulations[9], we have 

directly compared, without any parameter-fitting, the thermodynamic and structural properties 

of the disordered phase obtained from fast off-lattice Monte Carlo (FOMC) simulations[10], 

P/RISM theories, and Gaussian-fluctuation theory. The compared quantities include the 
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internal energy, entropy, Helmholtz free energy, (virial) pressure, constant-volume heat 

capacity, chain/block dimensions, and various structure factors and correlation functions in the 

system. Our comparisons unambiguously and quantitatively reveal the consequences of various 

theoretical approximations and the validity of these theories in describing the 

fluctuations/correlations in disordered DBCs. 

The structure of a polymeric fluid is usually characterized by the intra- and inter-chain 

pair correlation functions (PCFs), which can be used to determine both the thermodynamic and 

dynamic properties. Few theories, however, are available to predict such microscopic 

structures, which require that the segment-segment correlation effects be explicitly considered. 

In the well-developed self-consistent polymer reference interaction site model (SC-PRISM)[11], 

the inter-chain PCFs are approximated by an intra-chain solvation pair potential, thus allowing 

its prediction of the intra- and inter-chain PCFs. On the other hand, Yu and Wu proposed an 

extended test-particle method [12], enabling prediction of these quantities using polymer 

density-functional theories (PDFTs). Here we directly compare the intra- and inter-chain PCFs 

predicted by various versions of PDFTs and SC-PRISM calculations with those obtained from 

Monte Carlo simulations. A simple model system of tangent hard-sphere chains allows us to 

unambiguously quantify the accuracy of these predictions as a function of the chain length and 

hard sphere packing density. 

Implicit-solvent (IS) models are widely used in molecular simulations of solutions, with 

the advantage of dramatically saving the amount of computation and the hope of faithfully 

reproducing some properties of the corresponding explicit-solvent (ES) model. In practice, 

however, an IS model often gives qualitatively different results from the corresponding ES 

model. We take a simple model system of homopolymer solutions as an example to examine 



v  

the features of the effective coarse-grained[8]  pair potential between polymer segments 

calculated by Percus-Yevick[13]  and hypernetted-chain (HNC)[14] closure in the IS model that 

is designed, using the well-developed polymer reference interaction site model (PRISM)[15] 

theory, to reproduce the pair correlation functions between polymer segments in the 

corresponding ES model. To assess the accuracy of the PRISM theory, we also quantitatively 

compare its predictions with Monte Carlo (MC) simulation[16] results, both for the ES model. 
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Chapter 1 Introduction 
 
 
 
 

My PhD research is about applying advanced integral-equation theories to various 

polymeric systems. In Chap. II, I briefly explain the integral-equation theories, including the 

reference interaction site model (RISM) theory, polymer reference interaction site model 

(PRISM) theory, and the self-consistent polymer reference interaction site model (SC-PRISM) 

theory, used in my research.  

In Chap. III, I applied the PRISM theory to the structure-based[15] coarse graining of 

diblock copolymer melts. Our group proposed in 2015 the systematic and simulation-free 

coarse-graining strategy for polymer melts, where we use the well-developed PRISM theory, 

instead of the commonly used many-chain molecular simulations, for both the original and 

coarse-grained systems.[17] This is at least several orders of magnitude faster than those using 

many-chain simulations, thus effectively solving the transferability problem as coarse graining 

can now be quickly performed at any conditions needed. Also, since the PRISM theory applies 

to the thermodynamic limit and can be solved to very high accuracy, our strategy avoids the 

problems caused by the finite-size effects and statistical uncertainties of many-chain 

simulations, which are precisely the reasons why we cannot afford such simulations for the 

original system of long-chain polymer melts. This work is already published.[18] 

In Chap. IV, I built a general polymer reference interaction site model (PRISM) theory 

algorithm for generic chain models, applying PRISM theory with classic Percus-Yevick[13] 

(PY) closure to homopolymer melts of generic models, including Tangent Hard Sphere Chains 

(THSC), Kremer-Gremer (KG), and Dissipative Particle Dynamic[9] (DPD) models on different 

chain length ( 1 120N = ) and number density ( 3 0.1 3 = ) to quantitatively calculate the 
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decay slope  of the 3D Fourier Transform of the total correlation function ˆ( )h q  and the direct 

correlation function ˆ( )c q . Also, we compared our work with a python-based open-source 

framework for PRISM calculations called “pyPRISM”, a faster ˆ( )c q  convergence using our 

method than python code was proved. We are currently preparing a manuscript on this work 

for publication. 

In Chap. V, we have applied the P/RISM theory to the disordered phase of symmetric 

diblock copolymers (DBCs). In the dissipative-particle dynamic simulations, model system of 

symmetric diblock copolymers as discrete Gaussian chains interacting with soft, finite range 

repulsion is commonly used. The direct comparisons without any parameter-fitting on the 

thermodynamic and structural properties obtained from fast off-lattice Monte Carlo 

simulations, reference interaction site model (RISM), polymer reference interaction site model 

(PRISM) theories, and Gaussian fluctuation theory were made. To reveal the effects of various 

theoretical assumptions and the validity of these theories in describing the correlations in 

disordered diblock polymers, internal energy, entropy, Helmholtz free energy, (virial) pressure, 

constant-volume heat capacity, chain/block dimensions, and various structure factors and 

correlation functions in the system were calculated and analyzed. The FOMC simulations are 

performed by a former PhD student in our group, and the theoretical calculations are started by 

another PhD student in our group; my contribution here is to finish the P/RISM calculations 

and the manuscript to be submitted for publication. 

In Chap. VI, we applied the well-developed self-consistent polymer reference 

interaction site model (SC-PRISM) theory to a simple model system of Tangent Hard Sphere 

chains at different chain length 1 120N = and number density ( 3 0.1 3 = ). The inter-

chain pair correlation functions ˆ( )h q and ˆ( )c q are approximated by an intra-chain solvation 
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potential, which is then used in single chain simulations. Here directly compared the intra- and 

inter- chain correlation functions predicted by various versions of PDFTs proposed by Yu and 

Wu,[19] and SC-PRISM calculations with those obtained from many- chain Monte Carlo 

simulations. This model allows us to quantify the accuracy of these predictions as a function of 

the chain length and hard sphere packing density. The many chains molecular simulations and 

density-functional theory calculations of the model are being carried out by Suyu Wang and 

Jiawei Zhang in Nankai University. We are also currently preparing a manuscript on this work 

for publication. 

Finally, in Chap. VII, in this work, we took a simple model system of homopolymer 

solutions as an example to examine the features of the effective pair potential between polymer 

segments in the Implicit-Solvent model that is designed, using the well-developed polymer 

reference interaction site model (PRISM) theory, to reproduce the chain conformations and pair 

correlation functions between polymer segments in the corresponding Explicit-Solvent model. 

To assess the accuracy of the PRISM theory, we also quantitatively compare its predictions 

with Monte Carlo (MC) simulation results, both for the ES model. Note that, we took the 

Fourier transform of the intra-chain correlation function obtained from MC simulations as input 

for our method, which can help to focus on the influence generated by theory and closure itself. 

In our future work, we consider using SC-PRISM algorithm instead of PRISM theory on the 

IS model to reduce the simulation time to calculate ˆ ( )q . The many chains molecular 

simulations of IS model are being carried out by Suyu Wang in Nankai University. 
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Chapter 2 Polymer Integral-Equation Theory 

 

 

 
For simplicity, here we consider a homogeneous system of n homopolymer chains each 

of N interaction sites (either monomers or CG segments) in volume V, with the chain number 

density denoted by cn/V. Chandler and Andersen proposed the RISM theory in 1972, which 

generalizes the Ornstein-Zernike (OZ) equation for monatomic systems to molecular systems 

and is given in the Fourier space as[20] 

 ( )ˆ ˆˆ ˆ ˆ
ch =ωc ω+ h    (2.1) 

where the symmetric matrices ĥ , ω̂ and ĉ  have N N  elements of , 'ŝ sh , , '
ˆ

s s  and , 'ŝ sc , 

respectively; , '( )s sc r  and , ' , '( ) 1( )s s s sh gr r −  are the interchain direct and total pair correlation 

functions (PCFs), respectively, between the th
s  segment on one chain and the th's  segment on 

another, with , '( )s sg r  being the interchain radial distribution function; , '( )s s r  is the 

normalized (i.e., ( ), ' 0 1ˆ
s s q = = ) intrachain PCF between the th

s  and th's  segments on the 

same chain; and we use the short-hand notation ( )
0

ˆ 4 d ( ) sin( )f q rf r r qr


   to denote the 3D 

Fourier transform of a radial function f(r) with q being the wavenumber. At given c and chain 

conformations (r), Eq.(2.1) must be solved together with a closure relating the interchain 

direct and total PCFs. The atomic Percus-Yevick (PY) closure[13] commonly used for systems 

having short-range, soft, and repulsive non-bonded pair potentials, for example, is given by 

  , ' , ' , '( ) ( ) ( )1 exp .s s s s s sc ur rgr= −          

                                                                                   

When N is large (as typical for polymers), it becomes a formidable task to solve , '( )s sh r  and 
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, '( )s sc r  for all (s,s’) pairs in the RISM theory. Curro and Schweizer therefore proposed the 

PRISM theory in 1987, which assumes , '( ) ( )s s r hh r=  and , '( ) ( )s s r cc r= , thus reducing Eq. 

(2.1) to  

 ( )2ˆ ˆˆ ˆˆ
ch N c h  = +  (2.2) 

where , '2
1 1

(
1

( ) )
N N

s s

s s

rr
N

 
= =

  (r). At given c and (r), Eq.(2.2) again needs to be solved 

together with a closure relating h(r) and c(r). 

Since the chain conformations (i.e., (r)) are not known a priori, we use the SC-PRISM 

theory[11] to obtain (r). Its basic idea is to replace the intermolecular interactions by an 

effective intrachain solvation potential w(r), proposed by Chandler and co-workers as[21, 22] 

 ( )2 2 ˆˆˆ ˆ
c cw N c h   = − +   (2.3) 

where [0.9,1.1] was introduced by Mendez et al. to obtain the correct behavior of the mean-

square chain end-to-end distance[16]. For an initial guess of (r) (e.g., the ideal-chain 

conformations), the SC-PRISM calculation proceeds as follows (seen in Fig 2.1): 

(a) Solve Eq.(2.2) with a closure, then calculate w(r) from Eq.(2.3). 

(b) Perform single-chain Monte Carlo (SCMC) simulation with w(r), the bonded and non-

bonded potentials to obtain new (r). 

(c) Repeat the above two steps till (r) converges. 

We will further use the reweighting scheme[23, 24] to reuse chain conformations 

generated in SCMC simulation so that it does not need to be performed at each iteration, thus 

greatly reducing the SC-PRISM calculation time.
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Figure 2.1: The workflow of SC-PRISM Calculations. 
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Chapter 3 Structure-based Coarse Graining of 

Diblock Copolymer Melts using PRISM 

 

 

 
3.1 Introduction 

Recently, our group proposed a systematic and simulation-free strategy for the 

structure-based coarse graining of multicomponent polymeric systems, where we use the well-

developed polymer reference interaction site model (PRISM) theory[11, 15, 25, 26], instead of the 

commonly used many-chain molecular simulations (MCMS), to obtain the structural and 

thermodynamic properties of both the original and coarse-grained (CG) systems, and to 

quantitatively examine how the effective non-bonded pair potentials between CG segments and 

the thermodynamic properties of CG systems vary with the coarse-graining level[27]. As 

examples, our strategy has been applied to both homopolymer melts [17] and binary polymer 

blends[27]; in the latter case, we proved that it does not change the spinodal curve (thus also the 

critical point) regardless of the original model system, closures, and coarse-graining levels 

used[27]. In this work, we apply it to diblock copolymer (DBC) melts. Just like polymer blends, 

although block copolymer melts have been investigated in many experimental, simulation, and 

theoretical studies due to their both fundamental and practical importance in polymer science 

and engineering, their coarse graining has been performed only by a few groups as summarized 

below. 

Ju and co-workers mapped poly(L-lactide) (denoted by A) and polyethylene (PE, 

denoted by B) blends and DBC melts to the dissipative particle dynamics (DPD) model [9, 28], 

where they set the volume of each DPD particle (CG segment) Vseg=1.15 nm3, which 
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corresponds to about 6 A monomers (C6H8O4) or 24 B monomers (C2H4), and the average 

number of DPD particles per volume of Vseg (i.e., the reduced number density of DPD particles) 

=3[29]. To obtain the DPD interaction parameters aIJ ({I,J}[30]={A,B}), they performed all-

atom molecular dynamics (MD) simulations of pure A (where each chain consists of 6 

monomers) at the thermodynamic temperature T=300 K and various pressures to calculate its 

dimensionless compressibility −1,which then gives [31] ( )1
AA BB 1 2a a  −= = −  with =0.1. 

They also performed all-atom MD simulations at T=300 K and specified densities of pure A, 

pure B (where each chain consists of 24 monomers), and their blends (denoted by A/B) at 

various volume fractions of A (denoted by A) to calculate the cohesive energy Ecoh in volume 

V, then obtained the solubility parameters for pure systems as ( )I coh I
E V =  and aAB from 

( ) ( )2

AB AB AA AB AA0.001 0.315a a a a = − − + − ,[32]where they calculated the Flory-Huggins 

interaction parameter between an A and a B segment as

( ) ( )2 2
AB seg A A A B coh A/B

1V E V      = + − −   with ≡1/kBT and kB being the Boltzmann 

constant. With these DPD parameters, they performed DPD simulations of A/B blends and 

DBCs A-B consisting of A and B chains/blocks of various lengths and at various A to study 

their microphase-separated structure.[29] In a subsequent paper, Ju and co-workers used this 

mapping to study the self-assembled structures of linear triblock copolymer (TBC) melts B-A-

B at various A, where each copolymer chain has N=40 segments. [33] 

Roy et al. mapped linear TBC melts consisting of two poly( (PVBPA) blocks each of 

36.5 kg/mol separated by a poly(ether-ether-ketone) (denoted by C) block of 12 kg/mol to the 

DPD model in three different ways: Model 1 consists of linear TBC A6-C2-A6 chains where 

each A segment represents a portion of the PVBPA block, Model 2 consists of grafted 
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copolymer (AB)m-C2-(AB)m chains with m=3 or 6 where each A segment on the chain backbone 

represents the methyl phosphonic acid and each B segment connected as a side group to an A 

segment represents the styrene, and Model 3 consists of grafted copolymer (AB)m chains with 

m=5, 10 or 15 where the middle C2 block in Model 2 is removed.[34] They set =3 and aII=25 

(I=A,B,C) in all cases, used the same interaction parameter between A and C segments (i.e., 

A=C) in Model 2, and performed atomistic MD simulations of pure methyl phosphonic acid 

and ethylbenzene at T=300 K and 1 bar to obtain A and B, respectively, for Models 2 and 3, 

from which they obtained ( )2

AB seg A BV   = −  with Vseg being the arithmetic average of the 

molecular volumes of methyl phosphonic acid and ethylbenzene. While they then calculated 

aAB=aAA+3.27AB,[31] they also used larger aAB-values in their simulations of Models 2 and 3; 

similarly, specific aAC-values were used in their simulations of Model 1. With these DPD 

parameters, they simulated the self-assembled morphology of each model.[34] 

Dieterich and co-workers proposed a Gaussian disphere model for DBC melts, where each 

block I (=A,B) of NI monomers is coarse-grained as one soft sphere (segment), with parameters 

,Ig
R  denoting its size and b|rA−rB| the length of the CG bond connecting the two segments 

located at rI, respectively, on the same chain.[35] The CG bonded energy of a chain is given by 

( )A Blnb
U P P W = − , where I ,I I I( 1) 1

g
P p R N N − − , 

( )2 2 2
0( ) exp (2 )p u u a ad u uK d − −  with K0 denoting the modified Bessel function of order 

zero and a=0.0802 and d=1.842 being the fitted coefficients[36], and 

( ) ( )3 2
2 2 2 2 2

,A ,B ,A ,B3 4 exp 3 4g g g gW R R b R R    + − +    . The CG non-bonded energy 

between two segments (including the self-interaction) of type I and J located at rI and rJ, 
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respectively, is given by 
IJ IJ I I J Jd ( ) ( )nb

U   = − − r r r r r , where IJ is the interaction strength 

per volume, and ( )3
I I ,I ,I( ) ( )g gN R f R r r  with ( ) ( )3 2 2( ) 3 2 exp 3 2f v v= − . These CG 

potentials were obtained based on the ideal conformations of continuous Gaussian chains 

(CGCs) with additional approximations to yield simple analytical expressions. They then 

performed canonical-ensemble Monte Carlo (MC) simulations of this model to study the self-

assembled morphologies of DBC melts at AA=BB=1 and an average monomer number density 

0.85 =  in both bulk and confined films.[35] This model was later used by Karatchentsev and 

Sommer to study the stability of the gyroid phase formed by DBC melts at AA=BB=1 and 

0.85 =  in bulk.[37] A similar soft dumbbell model for symmetric DBC melts was proposed 

by Uneyama based on the ideal conformations of CGCs with additional approximations to yield 

simple analytical expressions, who then performed Brownian dynamics simulations to study 

the microphase separation dynamics with and without shear.[38] 

Gross and Paul proposed a soft-quadrumer model for DBC melts, where each block is 

represented by two CG segments.[39] Their non-bonded interaction potential between two 

segments of type I (=A,B) separated at distance r is given by 

( ) ( )2 3

II I I16 1 3 2 ( 8)nb
U r r N    = − + +   for rI and 0 otherwise, where I I2 f =  

with fI being the volume fraction of I-block in DBC melts and N0 is an input parameter 

characterizing the AB incompatibility, and that between two segments of different types is 

given by ( ) ( )2 3

AB AB AB2 1 3 2nb
U r r   = − +   for rAB=(A+B)/2 and 0 otherwise; they 

stated that “this form qualitatively reproduces the behavior” of the effective potential between 

the centers-of-mass (CoM) of two self- and mutual avoiding (homopolymer) chains found by 
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Louis et al.[40, 41], who performed lattice MC simulations of such chains each of 100 and 500 

monomers on a simple cubic lattice to obtain the radial distribution function of the chain CoM 

at several chain number densities up to five times that at the chain overlap (which signals the 

onset of the semi-dilute regime), then used the Ornstein-Zernike equation with the hyper netted-

chain closure to obtain the effective potential. Their bonded potential between two segments of 

type I is given by ( )2

II II I12.8 ( 8)b nb
U U r N   = + + , and that between two segments of 

different types is given by ( )2

AB AB AB1.6b nb
U U r  = + ; they stated that these bonded 

potentials reproduce “qualitatively the findings” of Dieterich and co-workers for the 

distribution of distances between the A and the B block in DBC melts[35]. They then performed 

canonical-ensemble MC simulations at the invariant degree of polymerization[42] 216=  and 

365, respectively, to construct the phase diagrams of their model in terms of f and N.[39] They 

subsequently extended their work to lamellae of symmetric DBC melts at 216=  and N=24 

confined between two identical and parallel walls, where they performed MD simulations of 

an united-atom model of PE chains each of 300 monomers at T=509 K confined between two 

parallel graphite walls separated at 90 nm, then used the iterative Boltzmann inversion [43, 44] to 

obtain the effective potential between the two walls and the CoM of half of a PE chain 

(corresponding to a polymer segment in their soft-quadrumer model).[45, 46] This effective 

potential is repulsive at short distances, has an attractive minimum at a distance about equal to 

the radius of gyration of half the PE chains, then quickly approaches zero from below; to make 

the walls selective for A segments, for example, they shifted the potential for A segments so 

that the minimum value is zero and truncated it at the distance of the minimum. They then 

performed canonical-ensemble MC simulations at various wall separation and preference to 

examine the orientation of confined lamellae.[45, 46] 
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Finally, Sambriski and Guenza coarse-grained each DBC chain as either one or two 

connected soft spheres, respectively, representing the CoM of the chain or one of its blocks, 

using PRISM theory.[47] While their approach is similar to ours and they also took CGCs as 

their original model system, they used approximate intrachain pair correlation functions (PCFs) 

that are both qualitatively incorrect and numerically unnecessary, as shown in detail in our 

Appendix B. Furthermore, for the CG systems, they examined only the interchain total PCFs 

between the CG segments, not their effective CG potentials nor their thermodynamic 

properties.[47] 

It is therefore clear that all the previous work on coarse graining of block copolymer 

melts used only a few (fixed) number of CG segments to represent each copolymer chain and 

simple analytical expressions for the CG potentials that require additional approximations.[29, 

34, 35, 38, 39, 47] In particular, the above mapping[29, 34] of real block copolymer melts (i.e., with 

atomistic details) to the DPD model is somewhat ad hoc and requires atomistic simulations of 

the original system, which are computationally very expensive and contradict the purpose of 

coarse graining[48]; the much shorter chain length used in the original system than in the CG 

system further means that they have very different -values (i.e., chain number densities) 

controlling the system fluctuations and causes the transferability problem in coarse graining 

(that is, the CG potentials obtained at one state cannot be directly used at another because they 

are state functions)[49]. In contrast, our systematic and simulation-free coarse-graining strategy 

is quite general and versatile.[17, 48, 50] It is much faster than those using MCMS, thus effectively 

solving the transferability problem, and also avoids the problems caused by finite-size effects 

and statistical uncertainties in MCMS.[48] Our structure-based coarse graining ensures that the 

original and CG systems have the same intra- and intermolecular PCFs involving the CG 
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segments (each representing the CoM of a group of consecutive monomers on the same chain 

in the original system), regardless of the original model system, closures and coarse-graining 

levels used. Furthermore, our highly accurate numerical CG potentials remove the uncontrolled 

approximations needed in the previous analytical approaches[35, 38, 39, 47], and make our strategy 

equally applicable to more complicated chain models than CGC.[48] In the following, we present 

in detail our strategy applied to a simple original model system of DBC melts, and 

quantitatively examine how the effective non-bonded pair potentials between CG segments and 

the thermodynamic properties of CG systems vary with the coarse-graining level. 



14 
 

3.2  Model and method 

3.2.1 Structure-based coarse graining using PRISM 

Here we consider a general original system of n diblock copolymer (DBC) A-B chains 

each of Nm monomers (interaction sites) in volume V at thermodynamic temperature T, where 

the first fANm monomers on each chain are of species A and the rest fBNm monomers are of 

species B. Let IfI be the number density of monomers of species I (=A, B), where nNmV 

is the total monomer number density. The PRISM theory[1] for the original system gives 

( )ˆ ˆˆ ˆˆmm mm mm mm mm= +H Ω c Ω H , where ˆ mmH  is a symmetric 2×2 matrix with its {I,J} (={A,B}) 

element given by 
I J IJ

ˆmm
h   and IJ ( )mm

h r  being the interchain total pair correlation function 

(PCF) between two monomers (denoted by the superscript “mm”) of species I and J, 

respectively, ˆmmc  is a symmetric 2×2 matrix with its {I,J} element given by IJ
ˆmm
c  and IJ ( )mm

c r  

being the interchain monomer-monomer direct PCF, ˆ mmΩ  is a symmetric 2×2 matrix with its 

{I,J} element given by IJ
ˆ mm

m
N   and IJ ( )mm

r  being the normalized (i.e., IJ
ˆ ( 0) 1mm

q = = ) 

intrachain monomer-monomer PCF, and we use the short-hand notation 

( )
0

ˆ 4 d ( ) sin( )f q rf r r qr


=   to denote the 3D Fourier transform of a radial function f(r) with 

q being the wavenumber.  

 

For given ˆ mmΩ  and non-bonded pair potentials uIJ(r) between monomers of species I 

and J, respectively, for all IJ pairs, where 1/kBT with kB being the Boltzmann constant, we 

solve the above PRISM equation along with a closure for each IJ pair (i.e., an approximate 

relation among uIJ(r), IJ ( )mm
c r  and IJ ( )mm

h r ) to obtain IJ ( )mm
h r , then calculate the structural and 
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thermodynamic properties of the original system. In particular, the partial structure factor 

characterizing the composition fluctuations in the original system is given by 

, AA, BB, AB,2
m m m m

S S S S  + − , where SIJ,m denotes the {I,J} element of its structure factor matrix 

( )ˆ ˆmm mm

m  +S Ω H ; after some algebra, we find ,
mm

m m m
S N = +   , where 

AA BB AB
ˆ ˆ ˆ2mm mm mm mm    + − , the invariant degree of polymerization[42] ( )23

,0e mR N  with 

Re,0 denoting the root-mean-square end-to-end distance of an ideal chain in the original system, 

( ) ( )( ) ( )2 2

AA AB AA AA AB AB BB AB AB BB BB
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ2mm mm mm mm mm mm mm mm mm mm

m C C C C           − + − − + − −    

with 2 3
IJ IJ ,0

ˆmm

m e
C N c R  (note that the use of Re,0 as the length scale in the above is not 

essential), 2
AA BB ABC C C C  −  and 2

AA BB AB
ˆ ˆ ˆ( )mm mm mm mm     − , and 

( )AA AA AB AB BB BB
ˆ ˆ ˆ1 2mm mm mm mm

C C C C     − + + +   . The spinodal curve (i.e., the 

stability limit of the homogeneous phase) of the original system is therefore given by 

( )
* **

* * * *

* *

,

,, ,

* *

* *
*, ,

* *

d dd d d
0  0

d d d d d

1
0  ( , ) 0                          

( , )
( )

( , )

mm
m m m m

qq
q q

m

mm mm q

S N

q q q q q

N
q

qS
q

q



 

 
















    
= + − =  =   

= 



=  =


+


, 

where the maximum of S,m (occurring at q*) diverges as the parameter   characterizing the 

repulsion between A and B monomers reaches a certain value (i.e., * ); note that, since both 

mm  and m (and their derivatives with respect to q) are finite, ( ) * *,
d d 0

q
q


 =  is the only 

solution to the first equation above (where * *( , ) 0q  = ). This is consistent with Eqs. (8.5~8.7) 

in Ref. [51] obtained by Schweizer. 
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Coarse-graining each I-block as NI segments, each representing the center-of-mass of 

lIfINm/NI consecutive I-monomers, and introducing these segments as non-interacting sites 

into the original system to form the expanded original system, our structure-based coarse 

graining gives[50] 1 1ˆ ˆ ˆ ˆˆ ˆ( ) ( )ss sm mm mm mm ms− −H Ω Ω H Ω Ω , where ˆ ssH  is a symmetric 2×2 matrix 

with its {I,J} element given by 
I J IJ I J

ˆss
h l l   and IJ ( )ss

h r  being the interchain total PCF between 

two segments (denoted by the superscript “ss”) of species I and J, respectively, and 

ˆ ˆ( )sm ms T=Ω Ω  is a 2×2 matrix with its {I,J} element given by ( )2
J J IJ

ˆ sm
N f N  , NNA+NB, 

and IJ ( )sm
r  being the intrachain PCF between a segment of species I and a monomer of species 

J; note that we have assumed ˆ sm =c 0 , where ˆ ˆ( )sm ms T=c c  is a 2×2 matrix with its {I,J} element 

given by IJ
ˆsm
c  and IJ ( )sm

c r  being the interchain direct PCF between a segment of species I and a 

monomer of species J in the expanded original system. We also note that a similar result was 

obtained by Sambriski and Guenza, who considered only the cases of N=1 and 2, with a factor 

of 24 ( )k  ((k) is defined by Eq. (10) in their paper) missing on the right-hand-side of Eq. 

(11) or (12) in their paper.[47]  

The PRISM theory for the coarse-grained (CG) system gives 

( ) 1
1ˆ ˆˆ ˆˆ ( )ss ss ss ss

−
−= +c Ω H Ω H , where ˆ ssΩ  is a symmetric 2×2 matrix with its {I,J} element 

given by 2
IJ

ˆ ss

m
N N   and IJ ( )ss

r  is the intrachain segment-segment PCF, and ĉ  is a 

symmetric 2×2 matrix with its {I,J} element given by IJĉ  and IJ ( )c r  being the interchain 

direct PCF between two segments of species I and J, respectively, in the CG system. Similar 

to the original system, the partial structure factor characterizing the composition fluctuations 

in the CG system is given by AA BB AB2S S S S  + − , where SIJ denotes the {I,J} element of its 
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structure factor matrix ( )ˆ ˆss ss

mN N +S Ω H ; after some algebra, we find 

ss
S N = +   , where AA BB AB

ˆ ˆ ˆ2ss ss ss ss    + −  an

( ) ( )( ) ( )
( ) ( )( ) ( )

2 2

AA AA BA AB AA BA AB BB BB AB BB

2 2

BB AA BA AB AA BA AB BB AA AB BB

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ      2 .

sm sm sm sm sm sm sm sm

mm sm sm mm sm sm sm sm mm sm sm

C C C

C

       

          

  − + − − + −

 −  − − − − + −  

 

* *( , ) 0q  =  and ( ) * *,
d d 0

q
q


 =  therefore give ( )

* *,
d d 0

q

S N q


  =   and 

( ) * *,
0

q
N S 

= . In other words, our structure-based coarse graining does not change the 

spinodal curve of the original system; note that this important conclusion is independent of the 

original model system, the closures for the original and CG systems, and the coarse-graining 

levels for A and B blocks.  

 
Finally, with closures for the CG system, we obtain the effective non-bonded pair 

potentials vIJ(r) between segments of species I and J from IJ ( )c r  and IJ ( )ss
h r  for all IJ pairs, 

then calculate the structural and thermodynamic properties of the CG system.  

 

3.2.2 A simple model 

 Due to its simplicity, we choose a specific original model system in this work, 

which is the DBC counterpart of that for symmetric binary polymer blends used in our previous 

work[50]. Here the chain connectivity is described by the continuous Gaussian chain (CGC) 

model with Nm→∞ but finite Re,0 and , ( )2 3
AA BB ,0( ) ( ) ( )m eu r u r N R r   = =  with 0   

controlling the system compressibility (we used    in our previous work[48, 50]) and (r) 
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denoting the Dirac -function, and ( )2 3
AB ,0( ) ( ) ( )m eu r N R r   = +  with 0   controlling 

the AB incompatibility (we used    in our previous work[50]). We refer to this model 

as the CGC- model. It is equivalent to the case of zero interaction range of the model studied 

by David and Schweizer in Sec. IV of Ref. [52] (see our Appendix A for details) and that 

analyzed with mean-field theories by one of us in Ref. [53]. Also, the only difference between 

this model and the “standard” one[54, 55] used in polymer field theories for DBC melts is that the 

latter is incompressible.  

Hereafter we consider symmetric (i.e., fI=1/2) DBC melts, where the only difference 

between A and B is their labeling; any quantity with the subscript “AA” is therefore identical 

to that with the subscript “BB”. As in our previous work [17, 48, 50], we take Re,0 as the length 

scale and define ,0e
r r R , assume ideal-chain conformations, and use the (linearized) Percus-

Yevick (PY) closure[56] given by ( )IJ IJ IJ( ) ( ) 1 ( )mm mm
c r h r u r= − +  for all IJ pairs, which leads to 

constant CIJ solved numerically at given ,   and   from the following combined PRISM-

PY equations: 

( )

( )

2
2 2 AA

AA AB AA AA AB AB AA2 0

2
2 2 AB

AA AB AB AA AB AA AB2 0

2 ˆ ˆ ˆ ˆ ˆd ( ) ( ) 2 1  

2 ˆ ˆ ˆ ˆ ˆd ( ) ( ) 2 1

mm mm mm mm mm mm

mm mm mm mm mm mm

Cq
q C C C

Cq
q C C C

     
 

     
  





  + + −   = − −   


  + + −   = − −    +




 

where ,0e
q qR , and AA

ˆ mm  and AB
ˆ mm  are given in Appendix B. We can then calculate 

( ) ( )( ), AA AB AA AB AA AB
ˆ ˆ ˆ ˆ2 1mm mm mm mm

m mS N C C     = − − − −  
, the interchain internal energy 

per chain ( ),IJ IJ IJ4 1m

c
u C = − + , where IJ=1 for IJ=AA and 0 for IJ=AB, and the 
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interchain virial pressure ( )3
,0 IJ IJ IJ4 1m

e
R P C = − +  due to the IJ interaction in the original 

system[50]. The relation between our solved original system and that by David and Schweizer 

in Sec. IV of Ref. [52] is given in Appendix A. 

At given NI=N/2, our structure-based coarse graining gives 

( ) ( ) 
( ) ( )

2 2 2 2AA
AA AB AA AA AB AB AA AA AB AB AA AB3

,0

2 2 2 2AB
AA AB AA AA AB AB AB AA AB AA AA3

,0

ˆ 4 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) 2 ( ) ( ) 2

ˆ 4 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ2 ( ) ( ) ( ) ( ) 2

ss
sm sm sm sm mm sm sm mm sm sm

e
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e

h
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R

h
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R

         

        
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  AB

,
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C





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and the PRISM theory for the CG system gives 

( ) ( )
( )

( ) ( )

3 2 2 3
AA AB AB ,0 AA AB AA ,0

AA
3

2 3 3
,0

AA AA ,0 AB AB ,0

3 2 2
AB AA AA ,0 AA AB AB
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3

,0

ˆ ˆˆ ˆ ˆ ˆ8 4 ( ) ( )ˆ
ˆ ˆˆ ˆ8 16

ˆ ˆˆ ˆ ˆ ˆ8 4 ( ) ( )ˆ

ss ss ss ss ss ss ss

e e

ss ss ss ss ss ss ss
e

e e

ss ss ss ss ss ss

e

e

h h R h R
c

R N h h R h R

h h R h
c

R

   

   

   

 − + +
=

   + − +   

−  + + +
=

( )

3
,0

2 3 3
AA AA ,0 AB AB ,0

ˆ ˆˆ ˆ8 16

ss

e

ss ss ss ss ss ss ss

e e

R

N h h R h R   








    + − +    

, 

where ( ) ( )2 2
3 3

AA ,0 AB ,0
ˆ ˆss ss ss

e e
h h R h R  −  and 2 2

AA AB
ˆ ˆ( ) ( )ss ss ss    − , and AA

ˆ sm , AB
ˆ sm , AA

ˆ ss  

and AB
ˆ ss  are given in Appendix B; we also compare in Appendix B our coarse-graining 

approach with that used by Sambriski and Guenza[47]. We then calculate IJ ( )ss
h r  and IJ ( )c r  

numerically, and obtain IJ ( )v r  with either the PY[56], hypernetted-chain (HNC)[14], or random-

phase approximation (RPA)[57, 58] closure for the CG system as 

( )
( )

IJ IJ

IJ IJ IJ IJ

IJ

ln 1 ( ) ( ) 1      PY   

( ) ( ) ( ) ln ( ) 1 HNC

( )                                   RPA

ss

ss ss

c r h r

v r h r c r h r

c r



  − + 
= − − +
−

. 

We further measure the range of CG potentials by their second moment, 

4 2
IJ IJ IJ0 0

d ( ) d ( )rr v r rr v r
 

    . Similar to our previous work[48, 50], we find 
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( ) ( )
22 2

AA2 AA 0 AB AARPA AA AA
AA 2 3

AA AAAA 0

ˆd ( ) 7 1ˆ ˆd d1 2 1

ˆ ˆ( 0) ( 0) d d 3 30d ( )

q

q

cr c r C Cc c

c q c q q q q N Nc r

=

=

− − 
 = = = − + = + = =  



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and 

( ) ( )
22 2

AB2 AB 0 AA ABRPA AB AB
AB 2 3

AB ABAB 0

ˆd ( ) 7 1ˆ ˆd d1 2 1
,

ˆ ˆ( 0) ( 0) d d 3 30d ( )

q

q

cr c r C Cc c
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=

=

− − 
 = = = − + = + = =  



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where the Taylor expansion of 2 3
IJ ,0

ˆ
e

N c R  given in Sec. 3.2.1 below is our results. We also 

measure the range of CG potentials by the location of their first root, IJr , which is the smallest 

r  where IJ IJ( ) 0v r = ; note that PY RPA
IJ IJr r= . 

Finally, we calculate 

( ) ( ) ( )( ) 2 2

AA AB AA AB AA AB AA AB AA AB
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ2 ,ss ss sm sm mm mm sm sm

S N C C C         = − + − − − + −    
 

and the interchain internal energy per chain 

( ) ( )2 2
,IJ IJ IJ IJ0

1 d ( ) 1 ( )ss

cu N rr h r v r   
 = + +     and interchain virial pressure 

( ) ( )3 2 3
,0 IJ IJ IJ IJ0

3 1 d ( ) 1 d ( ) dss

eR P N rr h r v r r   


 = + +    due to the IJ interaction in the 

CG system. We use the same numerical methods as in our previous work [50]; note that, due to 

a typographical error, |CAA| is missing right after  in the twelfth line below Eq. (19) in 

Ref. [50] 
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3.3 Results and Discussion 

Here we first present in Secs. 3.1 and 3.2 results of the original and coarse-grained (CG) 

systems of symmetric diblock copolymer (DBC) melts, respectively, then compare in Sec. 3.3 

their thermodynamic properties (i.e., the interchain internal energy per chain and virial 

pressure). The latter clearly shows that the structure-based coarse graining cannot give 

thermodynamic consistency at any coarse-graining level, consistent with our previous work on 

both homopolymer melts[48, 59] and binary polymer blends[50]. 

 

3.3.1 Original System 

Our original system of the CGC- model for symmetric DBC melts has three 

parameters:   controlling the repulsion between all monomers (i.e., the system 

compressibility),   controlling the repulsion between A and B monomers (i.e., the AB 

incompatibility), and the (finite) invariant degree of polymerization [42]  controlling the 

system fluctuations. It reduces to the hard-core CGC- model for homopolymer melts[48, 60] in 

the limit of  →   and to the soft-core CGC- model for homopolymer melts[48, 50] at 0 =  

and finite  , just as the original model system for symmetric binary polymer blends (BPB) 

used in our previous work[50]. We therefore consider finite 0   and 0  , i.e., the soft-core 

CGC- model, which is solved with the ideal-chain conformations and (linearized) Percus-

Yevick (PY) closure[56],  in this work. 

It is easy to show that the partial structure factor ,m m
S N  characterizing the 

composition fluctuations in our symmetric DBC melts has its maximum at * 4.7656q   (due 
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to the assumption of ideal-chain conformations), and diverges when AA AB 10.495C C−   

(i.e., the spinodal point). In comparison, the mean-field order-disorder transition (ODT) can be 

obtained with the random-phase approximation (RPA) closure[57, 58], which gives 

* 10.495m   (i.e., * 10.495
m

  ; here the subscript “m” denotes the mean-field result), the 

same as the well-known result of Leibler[54], who used the “standard” incompressible CGC- 

model; as previously pointed out by one of us, the mean-field ODT does not depend on the 

system compressibility[53]. The difference between the spinodal point and the mean-field ODT 

is therefore due to the PY closure approximately accounting for the fluctuation effects 

neglected at the mean-field level (i.e., by the RPA closure). Fig. 3.1(a) shows 

( ) ( )* * *
, AA AB AA AB

ˆ ˆ( ) 1 ( ) ( ) 2mm mm

m mN S q q q C C   = − − −  
 vs.   at various (=103 and 

104) and  (=0 and 1); note that ( )* * *
, AA AB

ˆ ˆ( ) 1 2 ( ) ( ) 5.2474mm mm

m mN S q q q  = −   at 0 = . 

We see that the RPA closure gives straight lines with their slopes depending only on , while 

the PY closure gives smaller 
*

, ( )mS q  than the RPA result (at the same   and ), 

indicating that the disordered phase is stabilized by the fluctuations. We also see that the 

deviation of the PY result from the RPA (mean-field) result increases with increasing   and 

decreasing . Finally, we note that the PRISM theory used here is applicable only to 

homogeneous systems and thus cannot give any ODT except the mean-field one. Furthermore, 

since =0 at the spinodal point, numerical calculations with the PY closure can only be 

performed for conditions not too close to it. 
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In the following we consider three cases of symmetric DBC melts at 1 =  as examples 

to examine the effects of  and  : Case I is at 1 =  and 
410= , Case II is at 1 =  and 

310= , and Case III is at 0 =  and 
410= ; note that CAA=0 in Case III, which leads to 

some qualitative differences from Cases I and II as shown in Sec. 3.2.3 below. We also note 

that 
3 410 ~ 2 10=   for nearly symmetric DBC melts used in experiments that form lamellae 

with a bulk period of 20~100 nm.[61] 

(a)   (b)  

Figure 3.1: Inverse of the partial structure factor in the original and coarse-grained system. 
Inverse of the partial structure factor characterizing the composition fluctuations in (a) the 
original system of the soft-core CGC- model for symmetric DBC melts solved with the ideal-
chain conformations and the PY closure and (b) the corresponding CG system for 1 = =  and 

410=  (i.e., Case I) at its peak position 
*

q . The straight lines in part (a) are obtained with 

the RPA closure, and the horizontal lines in part (b) mark the corresponding values for the 
original system (the solid line is for the left axis and the dashed line for the right axis). 
 

 

3.3.2 Coarse-grained System 

Here we present the interchain total and direct pair correlation functions (PCFs), as well 

as the partial structure factor characterizing the composition fluctuations, in the CG systems of 

2N100, where each block is coarse-grained as N/2 segments. We also examine the non-

bonded CG pair potentials obtained with various closures. 
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3.3.2.1 Case I: 1 =  and  410=  

In this case, we have CAA≈−0.90272, CAB≈−1.0046, and 
*

, ( ) 0.15439
m m

N S q  . The 

interchain direct PCFs between CG segments IJ ( )c r  (IJ=AA and AB) are qualitatively the same 

as those for symmetric BPB shown in Fig. 4 of our previous work [50]; note the Taylor expansion 

( )2 3 2 2 4
AA ,0 AA AA AA AB

ˆ 18 7 180 ( )e s sN c R C C C C N q O q = − + − +   and 

( )2 3 2 2 4
AB ,0 AB AB AA AB

ˆ 18 7 180 ( )e s sN c R C C C C N q O q = − − − +   at small s
q q N . On 

the other hand, Figs. 2(a) and 2(b) show the interchain total PCFs between CG segments IJ ( )ss
h r  

(IJ=AA and AB) for various N, as well as those between monomers IJ ( )mm
h r  in the original 

system. 

We see that AA( ) 0ss
h r   (except for N≥16 at 0r  ) and AB( ) 0ss

h r   for r0.6, and that 

AA( )ss
h r  and AB( )ss

h r  collapse, respectively, for  and larger r . More importantly, the insets 

of Figs. 2(a) and 2(b) show that IJ ( )ss
h r  oscillates around 0 (as indicated by the cusps) with a 

period (measured by 2i ir r+ −  with ir  denoting the ith root of IJ ( )ss
h r ) of about 1.33 (except for 

the first and last few i-values), which is independent of N and slightly larger than 

*2 1.318q  , and that the extrema of IJ ( )ss
r h r  decay exponentially with increasing r . Most 

of these features clearly originate from IJ ( )mm
h r , and are qualitatively different from those for 

symmetric BPB shown in Figs. 3.3(a) and 3.3(b) of our previous work[50]. 

Figs. 3.2(a) and 3.2(b) further show that, with increasing N, IJ ( )ss
h r  approaches IJ ( )mm

h r  
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in a non-monotonic way; note that IJ ( )ss
h r  becomes IJ ( )mm

h r  in the limit of N→∞ (i.e., without 

coarse graining). On the other hand, Fig. 1(b) shows that coarse graining (i.e., decreasing N) 

increases both the peak value of the partial structure factor 
*( )S q N characterizing the 

composition fluctuations in the CG system and its peak position 
*

q  (or equivalently, decreases 

the characteristic wavelength 
*2 q  of the fluctuations); similar results are found for Cases II 

and III (data not shown). 

The effective non-bonded CG pair potentials IJ ( )v r  are calculated from IJ ( )ss
h r  and 

IJ ( )c r  according to the PY[56], hypernetted-chain (HNC)[14], or RPA[57, 58] closure for the CG 

system. Fig. 3.3(a) shows IJ ( 0)v r =  measuring the strength of the CG potentials; these results 

are similar to those for symmetric BPB shown in Fig. 3.5 of our previous work[50], except that 

AB ( 0)v r =  here monotonically decreases with increasing N due to the non-bonded pair 

potential between monomers IJ ( 0) 0u r = →  in the original system of the soft-core CGC- 

model[48]. 
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   (a)   (b)  

(c)   (d)  

(e)    (f)  

Figure 3.2: The interchain total PCFs between CG segments and those between monomers. 

The interchain total PCFs between CG segments IJ ( )ss
h r  and those between monomers IJ ( )mm

h r  

for symmetric DBC melts at (a,b) 1 =  and 410=  (i.e., Case I), (c,d) 1 =  and 310=  
(i.e., Case II), and (e,f) 0 =  and 410=  (i.e., Case III). The (red) dotted curve in each inset 

show IJ ( )mm
r h r . 1 =  in all cases. 
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(a)   (b)  

(c)  

Figure 3.3: Strength of the non-bonded CG pair potential between AA and AB segments. 
Logarithmic plot of the strength of the non-bonded CG pair potentials between AA and AB 
segments obtained with various closures for the CG system, for symmetric DBC melts at (a) 

1 =  and 
410=  (i.e., Case I), (b) 1 =  and 

310=  (i.e., Case II), and (c) 0 =  and 
410=  (i.e., Case III); 1 =  in all cases. In part (c), 

RPA
AA ( 0) 0v r =  , 

PY
AA( 0) 0v r =  , 

HNC
AA ( 0) 0v r =  , all AB ( 0) 0v r =  , and  “LS” denotes “least-squares”. 

 

Fig. 3.4 shows the CG potentials 
PY
IJ ( )v r  (IJ AA and AB) obtained with the PY closure 

for the CG systems, normalized by their strength. We see that 
PY
IJ ( )v r  oscillates around 0 (as 

indicated by the cusps shown in the inset), and that 
PY PY
IJ IJ( ) ( 0)v r v r =  for various N 

approximately collapse when r  is normalized by N −k with =.620; similar results are found 

for 
RPA RPA
IJ IJ( ) ( 0)v r v r =  and

HNC HNC
IJ IJ( ) ( 0)v r v r =  (Data not shown), except that 

HNC
IJ ( ) 0v r   
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for N≥18. 

(a)   (b)  

Figure 3.4: Non-bonded CG pair potentials between AA and AB segments. 
Non-bonded CG pair potentials between (a) AA and (b) AB segments obtained with the PY 
closure, for symmetric DBC melts at 1 = =  and 410=  (i.e., Case I). 

 

Finally, Figs. 3.5(a) and 3.5(b) show the range of the CG potentials as a function of N; 

note that our numerical results give 
PY RPA
IJ IJ   (data not shown), and that 

HNC
IJr  is not 

calculated for N≥18. We see that HNC
IJ exhibits a minimum at N=4, then monotonically 

increases with increasing N, and seems to approach an asymptotic value around 1 for large N; 

the latter clearly contradicts the zero-interaction range of uIJ(r) in the original system, 

indicating the qualitative failure of the HNC closure for large N. On the other hand, we find 

that 
RPA 0.620 0.003

IJr N
−   using the least-squares fitting of the linearly transformed data; as in our 

previous work[48, 50], we normalize r  by N−k with k=0.620 for the horizontal axis in Fig. 3.4 

above to approximately collapse the CG potentials for various N. We also see that 
HNC

IJr  

exhibits a minimum at N=12 and that, for N12, 
HNC RPA

IJ IJr r  with a maximum deviation of 

0.06 (14%) for IJ=AA and of 0.1 (23%) for IJ=AB (both occurring at N=12); in all cases, 
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we find 
HNC RPA

IJ IJr r  as in the case of symmetric BPB[50]. 

 

(a)   (b)  

(c)  

Figure 3.5: Range of the non-bonded CG pair potentials. 
Logarithmic plot of the range of the non-bonded CG pair potentials between (a) AA and (b) 
AB segments obtained with various closures for the CG system, for symmetric DBC melts at 

1 = (i.e., Case I). Part (c) shows the results for symmetric DBC melts at 0 =  (i.e., Case III). 
In all cases, 1 =  and 410= . “LS” denotes “least-squares”. 
 
 

3.3.2.2 Case II: 1 =  and  410=  

In this case, we have CAA≈−0.68449, CAB≈−0.86944, and 
*

, ( ) 2.3231
m m

N S q  . While 

the results in this case are qualitatively the same as in Case I, they are quantitatively different 

due to the different -values. Figs. 3.2(c) and 3.2(d), for example, show that IJ ( )ss
h r  oscillates 
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around 0 with a period of about 1.58 and that the extrema of IJ ( )ss
r h r  decay much faster with 

increasing r  than in Case I, due to the quantitatively different IJ ( )mm
h r  in these two cases; note 

that 
*

, ( )
m m

N S q  here is larger than that in Case I. It is therefore clear that, contrary to the 

common practice in the literature, CG potentials obtained from short-chain (i.e., small- ) 

systems cannot be directly used for long-chain (i.e., large- ) systems; this is in fact the 

transferability problem in coarse graining[49]. As another example, comparing Figs. 3.3(a) and 

3.3(b) shows the quantitative differences in IJ ( 0)v r =  between Cases I and II, and we find 

that 
RPA 0.564 0.003

IJr N
−   using the least-squares fitting of the linearly transformed data in Case 

II. 

 

3.3.2.3 Case III: 0 =  and  410=  

In this case, we have CAA= and CAB≈−0.10481, and 
* 3

, ( ) 6.7456 10
m m

N S q
−  . Fig. 

3.6(a) shows that, at small s
q q N , 

4 3
AA ,0

ˆ 0
e

N c R   for various N collapse as 

supported by the Taylor expansion 

4 2 4 6AA AB
AB AB3 2

,0

ˆ 7 7 587 7
( )

180 5184 3240 136080 2400
s s s

e

c C
N C q N C q O q

R N

  
  = + + − − +
    

 in this 

case; with increasing qs, however, it becomes 0 (after the cusp) and exhibits a maximum 

around qs=5; and for larger qs, it quickly approaches 0. This behavior is qualitatively different 

from Cases I and II above, as well as Case II for symmetric BPB (i.e., 0 = , 2 =  and 

410= ) shown in Fig. 9(a) of our previous work[50]. Fig. 3.6(b) shows that cAA(rs)0 at small 
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s
r Nr 0.5, again qualitatively different from Cases I and II above. Note, however, that 

AB ( )c r  here is qualitatively the same as in Cases I and II above, as well as Case II for 

symmetric BPB shown in Fig. 9(d) of our previous work[50].  

On the other hand, Figs. 3.2(e) and 3.2(f) show that IJ ( )ss
h r  oscillates around 0 with a 

period of about 1.32 (slightly larger than 
*2 q ) and that the extrema of IJ ( )ss

r h r  decay much 

slower with increasing r  than in Case I; we therefore increase the number of equally spaced 

subintervals, denoted by M in our previous work[50], to 40,000 in order to increase the real-

space cut-off in Case III. Note that 
*

, ( )
m m

N S q  here is smaller than that in Case I; combining 

with the corresponding results in Case II, we attribute such changes to how far the system is 

from its spinodal point (as measured by 
*

, ( )
m m

N S q ). More importantly, Fig. 3.2(f) shows the 

unphysical result of AB( ) 1ss
h r  −  for N10 at small r ; since IJ ( ) 1mm

h r  −  for all r  and the PY 

closure works well for the repulsive potential in the original system, we attribute this unphysical 

behavior mainly to the use of ideal-chain conformations, which is strictly valid only in the limit 

of →   or at 0 = . Similar problem was found in our previous work on homopolymer 

melts.[48]  

Fig. 3.3(c) shows IJ ( 0)v r =  calculated from IJ ( 0)ss
h r =  and IJ ( 0)c r =  according to 

various closures for the CG system; note that cAA(rs=0)0 leads to 
RPA
AA ( 0) 0v r =   and 

PY
AA( 0) 0v r =   (similar results were found for symmetric BPB shown in Fig. 10(a) of our 

previous work[50]), while 
HNC
AA ( 0) 0v r =   and all AB ( 0) 0v r =   as in Cases I and II above. 

We also note that the least-squares fitting of the linearly transformed data gives 
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RPA 1.461 0.004
AA ( 0)v r N − − =   and 

RPA 0.4916 0.0008
AB ( 0)v r N − =  ; in Fig. 3.6(b), we therefore 

normalize cAA(rs) by N−1.461 to approximately collapse the results for various N. In addition, for 

large N, while 
PY
IJ ( 0)v r =  seems to follow the above scaling, 

HNC
IJ ( 0)v r =  levels off and 

contradicts IJ ( 0) 0u r = →  in the original system. We further note that the above unphysical 

result of AB( 0) 1ss
h r =  −  makes 

PY
AB ( 0)v r =  and 

HNC
AB ( 0)v r =  undefined for N12. 

(a)   (b)  

Figure 3.6: 3D Fourier transform of the interchain direct PCFs between two A-segments in the 
CG system. 
(a) Logarithmic plot of the Fourier transform of the interchain direct PCFs between two A-

segments in the CG system AAĉ  and (b) linear plot of cAA(rs) with the inset of |cAA(rs)| for 

symmetric DBC melts at 0 = , 1 =  and 
410=  (i.e., Case III). 

 

Finally, Fig. 3.5(c) shows the range of CG potentials as a function of N. Note that our 

numerical results give 
PY RPA
AB AB   (data not shown); 

RPA
AA , however, cannot be calculated 

numerically due to CAA=0 in this case, and a similar problem is encountered for 
PY
AA . Also note 

that 
HNC

IJr  can be calculated only for N=4, 6, and 8 (data not shown). As in Case I above, we 

see that 
HNC
IJ  approaches an asymptotic value for large N, indicating the qualitative failure of 

the HNC closure for large N. On the other hand, we find that 
RPA 0.493 0.001

AAr N
−   and 
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RPA 0.513 0.001
ABr N

−  using the least-squares fitting of the linearly transformed data, where the data 

points at N=2 are excluded. 

 

 

3.3.3 Thermodynamic inconsistency 

Here we compare the thermodynamic properties (i.e., the interchain internal energy per 

chain ,IJc
u  and the interchain virial pressure IJP  due to the IJ (=AA and AB) interaction) 

between the original and CG systems. Figs. 3.7(a) and 3.7(b) show their differences for Case I, 

where we have ,AA ,0 AA 100 11.284m m

c e
u R P =   and ,AB ,0 AB 100 25.114m m

c e
u R P =   for the 

original system, and the RPA and PY closures are used for the CG system. We find that the 

RPA closure underestimates all these quantities, while the PY closure overestimates ,0 AA
m

e
R P  

(except for N≥82) and ,AA
m

c
u  but underestimates ,0 AB

m

e
R P  (except for N=4 and N≥34) and 

,AB
m

c
u . For large N, the PY closure gives smaller deviations than the RPA closure; as expected, 

in the limit of N→ Nm, only the PY closure can recover the original system.  

Fig. 3.7(c) shows the differences between the thermodynamic properties of the CG 

system obtained with the HNC closure and those with the RPA closure. Similar to the BPB 

studied in our previous work[50], we find that ( ) ( )HNC RPA 3 HNC RPA
,IJ ,IJ ,0 IJ IJ 0c c eu u R P P −  −   

scales approximately with N2 for large N, which indicates the qualitative failure of the HNC 

closure in reproducing these thermodynamic properties of the original system for large N; the 

same reasoning as given in the second paragraph of Sec. 3.3.1 in our previous work[50] applies 

here. Similar results are found for Cases II and III (data not shown). 
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(a)   (b)  

(c)  

Figure 3.7: Interchain internal energy per chain and virial pressure of the CG system. 
Logarithmic plot of the interchain internal energy per chain uc and virial pressure P of the CG 
system due to (a) the AA and (b) the AB interactions obtained with the RPA and PY closures, 
for symmetric DBC melts at 1 = =  and 410=  (i.e., Case I). Part (c) is a logarithmic plot 

of the difference in these quantities of the CG system obtained between the HNC and RPA 
closures. 

 

As pointed out in our previous work on homopolymer melts[48, 59] and BPB[50], that the 

structure-based coarse graining cannot give thermodynamic consistency at any coarse-graining 

level is consistent with the finding by several other groups[8, 49, 62, 63], and is actually expected 

due to the fact that the CG pair potentials do not have the many-body nature of the potential of 

mean force in coarse graining. 
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3.4 Summary 

In this work, we have applied our recently proposed systematic and simulation-free 

strategy for the structure-based coarse graining of multicomponent polymeric systems[50] to 

diblock copolymer (DBC) melts, where we use the well-developed polymer reference 

interaction site model (PRISM) theory[1], instead of the commonly used many-chain molecular 

simulations (MCMS), to obtain the structural and thermodynamic properties of both the 

original and coarse-grained (CG) systems, and to quantitatively examine how the effective non-

bonded pair potentials between CG segments and the thermodynamic properties of CG systems 

vary with the coarse-graining level. We have proved that our strategy does not change the 

spinodal curve, regardless of the original model system, closures, and coarse-graining levels 

for the two blocks. 

Due to its simplicity, we have chosen a specific original model system for symmetric 

DBC A-B melts in this work, which consists of continuous Gaussian chains (CGCs) with the 

Dirac -function interactions and is referred to as the soft-core CGC- model. With the root-

mean-square end-to-end distance of ideal chains taken as the length scale, this model has only 

three parameters (which are all finite): 0   controlling the repulsion between all monomers 

(i.e., the system compressibility), 0   controlling the repulsion between A and B monomers 

(i.e., the AB incompatibility), and the invariant degree of polymerization [42]  controlling 

the system fluctuations. It is the DBC counterpart of that for symmetric binary polymer blends 

(BPB) used in our previous work[50], and its only difference from the “standard” model[54, 55] 

used in polymer field theories for DBC melts is that the latter is incompressible (they therefore 

have the same mean-field ODT, i.e., the well-known Leibler’s result[54]). We have solved this 

original model system numerically with the assumption of ideal-chain conformations and the 



36 
 

(linearized) Percus-Yevick (PY) closure[56]. The relation between our solved original system 

and that by David and Schweizer in Sec. IV of Ref. [52] is given in Appendix A. 

Coarse-graining each block as N/2 segments, We have then examined CG systems with 

2N100 in three cases, all at 1 =  and in the disordered phase stabilized by the system 

fluctuations: Case I is at 1 =  and 
410= , Case II is at 1 =  and 

310= , and Case III is 

at 0 =  and 
410= . In particular, while the interchain direct pair correlation functions 

(PCFs) between CG segments IJ ( )c r  (IJ=AA and AB) are qualitatively the same as those for 

symmetric BPB studied in our previous work[50] in most cases, some qualitative differences in 

AA ( )c r  are found in Case III. On the other hand, the interchain total PCFs between CG 

segments IJ ( )ss
h r  oscillates around 0 and the extrema of IJ ( )ss

r h r  decay exponentially with 

increasing r ; we have found that the oscillation period is independent of N and is larger than 

*2 1.318q  , where 
*

q  denotes the wavenumber at which the partial structure factor 

characterizing the composition fluctuations in the original system reaches its maximum, and 

that the period approaches 
*2 q  and the decay becomes slower as  the original system 

approaches its spinodal point (shown in Fig. 2). Most of these features clearly originate from 

IJ ( )mm
h r , and are qualitatively different from those for symmetric BPB studied in our previous 

work[50]. We have also found that coarse graining (i.e., decreasing N) increases both the peak 

value and peak location of the partial structure factor characterizing the composition 

fluctuations in the CG system (see Fig. 3.1(b) for an example). 

The effective non-bonded pair potentials IJ ( )v r  between CG segments of species I and 
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J are calculated from IJ ( )ss
h r  and IJ ( )c r  according to either the PY[56], hypernetted-chain 

(HNC)[14], or random-phase approximation (RPA)[57, 58] closure for the CG system, and we have 

analyzed their strength IJ ( 0)v r =  (shown in Fig. 3.3) and range (shown in Fig. 3.5, where the 

results for Case II are similar to Case I and thus not shown), with the latter quantified by either 

their second moment IJ or their first root IJr  (note that we have obtained 
RPA
IJ  analytically, 

and that 
PY RPA

IJ IJr r= ). While in most cases IJ ( 0)v r =  approaches 0 with increasing N for large 

N, consistent with the fact that the strength of the non-bonded pair potential IJ ( )u r  between 

monomers of species I and J in the original system is 0, 
HNC
IJ ( 0)v r =  in Case III levels off for 

large N and contradicts this fact. Similarly, while 
PY RPA
IJ IJ   (data not shown) and 

PY RPA
IJ IJr r=  all approach 0 with increasing N, 

HNC
IJ  levels off for large N and contradicts the 

fact that IJ ( )u r  has zero interaction range; note that 
PY
AA  and 

RPA
AA  in Case III, as well as 

HNC
IJr  for large N, cannot be calculated. With 

RPA
IJ

k
r N

−  obtained from the least-squares 

fitting of the linearly transformed data, we can approximately collapse IJ IJ( ) ( 0)v r v r =  for 

various N by plotting them vs. 
k

N r  (see Fig. 4 for an example). Quantitative comparisons 

between Cases I and II, however, show that, contrary to the common practice in the literature, 

CG potentials obtained from short-chain (i.e., small- ) systems cannot be directly used for 

long-chain (i.e., large- ) systems; this is in fact the transferability problem in coarse 

graining[49]. 

Finally, we have compared the thermodynamic properties (i.e., the interchain internal 

energies per chain and virial pressures) between the original and CG systems and found that 
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the structure-based coarse graining cannot give thermodynamic consistency at any coarse-

graining level. This is consistent with our previous work on homopolymer melts[48, 59] and 

BPB[50], as well as the finding by several other groups[8, 49, 62, 63], and is actually expected due 

to the fact that the CG pair potentials do not have the many-body nature of the potential of 

mean force in coarse graining. Our results clearly indicate the qualitative failure of the HNC 

closure in reproducing these thermodynamic properties of the original system for large N. 

All the previous work on coarse graining of block copolymer melts used only a few 

(fixed) number of CG segments to represent each copolymer chain and simple analytical 

expressions for the CG potentials that require additional approximations.[29, 34, 35, 38, 39, 47] In 

particular, the approximate intrachain PCFs for the ideal conformations of CGCs used by 

Sambriski and Guenza[47] are both qualitatively incorrect and numerically unnecessary as 

shown in detail in Appendix B. The mapping[29, 34] of real block copolymer melts (i.e., with 

atomistic details) to the dissipative particle dynamics model[9, 28] is somewhat ad hoc and 

requires atomistic simulations of the original system, which are computationally very 

expensive and contradict the purpose of coarse graining[48]; the much shorter chain length used 

in the original system than the CG system further causes the transferability problem in coarse 

graining[49]. In contrast, our systematic and simulation-free coarse-graining strategy is quite 

general and versatile.[17, 48, 50] It is much faster than those using MCMS, thus effectively solving 

the transferability problem in coarse graining, and also avoids the problems caused by finite-

size effects and statistical uncertainties in MCMS.[48] Furthermore, our highly accurate 

numerical CG potentials remove the uncontrolled approximations needed in the previous 

analytical approaches[35, 38, 39, 47], and make our strategy equally applicable to more complicated 

chain models than CGC.[48] Work in this direction will be reported in another publication. 



39 
 

Chapter 4 Numerical Analysis on the PRISM-PY 

Calculations of Coarse-Grained Polymer Models 

 

 

 
4.1 Introduction 

As one of the most successful theories, the polymer reference interaction site model 

(PRISM) theory, developed in 1987, has a wide application for predicting the structural and 

thermodynamic properties including blends, block copolymers, polyelectrolytes, homopolymer 

melts, solutions, and nanocomposites. Most of the application were reported by research groups 

of Schweizer and Curro.[2-5] However, only a few works have been done on the numerical 

calculations of the PRISM theory compared with polymer self-consistent field (SCF) theory[6] 

as another successful theory. Developing the numerical solution of PRISM model is promising 

as it is at least several orders of magnitude faster than MCMS, thus solving the transferability 

problem and those due to the finite-size effects and statistical uncertainties of MCMS. To 

achieve this, we focused on the PRISM-PY theory which can use used for accurate prediction 

of polymer melts and solutions in an implicit good solvent, where only short-range non-bonded 

repulsion between polymer segments is employed. In this work, it has been identified that most 

of previous works that worked well for PRISM calculations are not ideal for PRISM-PY 

models. 
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4.2 Model System and Numerical Methods 

Taking the simplest system of n homopolymer chains each having N segments of 

diameter (i.e., range of the repulsive part of their non-bonded pair potential unb(r), where 

1/kBT with kB being the Boltzmann constant)  in volume V at thermodynamic temperature 

T as an example, the PRISM equation is given by   

 ( )ˆ ˆˆ ˆˆ ,h N c N h  = +  (4.1) 

where ( )h r  is the interchain total segment pair correlation function (PCF) with r r  , ( )r  

is the normalized (i.e., 
2

0
4 d ( ) 1rr r 


= ) intrachain segment PCF, ( )c r  is the interchain 

direct segment PCF, and ( )
0

ˆ 4 d ( )sin( )f q rrf r qr


   denotes the 3D Fourier transform of a 

radial function ( )f r  with q being the wavenumber (in units of 1/), and 
3

nN V  is the 

dimensionless segment number density; note that, for monatomic fluids (i.e., N=1), ˆ 1 =  and 

the PRISM equation reduces to the well-known Ornstein-Zernike (OZ) equation[64]. For given 

N,   and , to solve for both h and c, a closure is needed; for example, the commonly used 

atomic Percus-Yevick (PY) closure[13]  

 ( ) ( )nb( ) 1 exp ( ) 1 ( )c r u r h r = − +   (4.2) 

works well for systems where 
nb ( )u r  is purely repulsive.  

Analytical solution to the above PRISM-PY theory can be obtained only for the 

idealized model system of continuous Gaussian chains (where N→∞ and the effective bond 

length between two adjacent segments on a chain l→0 at finite ideal-chain root-mean-square 

end-to-end distance ,0e
R Nl= ) with the Dirac -function non-bonded potential (i.e., 
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unb(r)(r)) under the Padé approximation for the chain conformations (i.e., 

( )2ˆ 1 1 12q = +  with q here in units of 1/Re,0);[60, 65] numerical calculations are needed for 

more complicated cases. In particular, in this work we consider three commonly used unb(r): 

The hard-sphere (HS) potential is given by 
HS( )u r →   for 1r   and 0 otherwise; the 

Weeks-Chandler-Andersen (WCA) potential is given by ( )2WCA 6( ) 1u r r  −= −  for 1r   and 

0 otherwise, which in the limit of the parameter →∞ becomes HS( )u r ; and the dissipative 

particle dynamics (DPD) [9]potential is given by ( )2DPD( ) 1u r r = −  for 1r   and 0 

otherwise, which in the limit of →∞ also becomes HS( )u r . In addition to unb(r), two 

adjacent segments on the same chain also interact with a bonded potential ub(r). The tangent 

hard-sphere chain (THSC) model uses ( )bexp ( ) ( 1) 4u r r  − = −  and 
HS ( )u r ; the 

Kremer-Grest (KG) model uses ( )2b ( ) 33.75 ln 1 1.5u r r   = − − 
 for 1.5r   and ∞ 

otherwise, and 
WCA ( )u r  with =1 to prevent bond-crossing[66]; and the DPD model uses 

b 2( ) 2u r r = [67] and 
DPD ( )u r  with 37.5 =  to mimic the compressibility of water[31]. In 

the thermodynamic limit, the structural and thermodynamic properties of these three commonly 

used polymer models are therefore controlled only by N and  ; typically, the KG model uses 

0.85 =  for polymer melts, and the DPD model uses 3 =  or 5. 

In the early PRSM-PY calculations (where the repulsive part of 
nb ( )u r  is 

HS( )u r ), 

a variational method[68] was used, where (0 1 )c r
−   is taken as a cubic polynomial with its 

four coefficients solved numerically. While for HSs (i.e., N=1) this approach gives the exact 
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solution to the OZ-PY theory[64], for N2 the use of a cubic polynomial leads to systematic 

error (as shown by our results below). On the other hand, to avoid the expensive calculation of 

convolutions, the PY closure and the PRISM equation should be computed in the real and the 

reciprocal space, respectively. One therefore needs to introduce cut-offs and discretize these 

domains, use the fast Fourier transform (FFT) and the inverse Fourier transform (iFT), which 

for radial functions are equivalent to the Type-I fast sine transform (FST), to switch between 

these domains, and solve the PRISM-PY theory using an iterative method.  

In 1992, Yethiraj and Schweizer[69] proposed to use the Picard iteration (also known as 

the simple mixing, SM), where the interchain indirect PCF ( ) ( ) ( )r h r c r  −  is taken as the 

independent variables to be solved; with an initial guess 
(0) ( )r , they (I) calculated ( )c r  from 

the closure and then ĉ  via the FFT, (II) calculated ( )2 2ˆ ˆ ˆ ˆ ˆ1 1N N c c   = − −   (obtained 

from Eq.(4.1)) and then ( )r via the iFT, and (III) calculate 
(1) (0)( ) ( ) (1 ) ( )r r r   = + −  for 

the next iteration, where  is a constant parameter for the SM. A similar method was 

implemented in the recently developed pyPRISM[5], a Python-based open-source framework 

for PRISM calculations, with the following differences: In Step (II) ( )2 2ˆ ˆ ˆˆ ˆ1h N c N c = −  

(instead of ̂ ) and ( )h r are calculated, then ( ) ( ) ( )r h r c r = −  is obtained; and in Step (III) a 

Newton-Krylov based iteration (instead of the SM) is used by default. 

For short-range and purely repulsive 
nb ( )u r , the PY closure gives  

 ( 1) 0;c r  =  (4.3) 

solving (0 1)c r   therefore gives the least number of independent variables. Furthermore, 

for the THSC model, both ( )h r  and ( )c r  are discontinous, in both their value and their 1st-
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order derivative, at 1r = ; taking their FFT without accounting for their discontinuities therefor 

leads to very slow convergence (thus much finer spatial discretization). In contrast, ( )r  is 

continuous, and ̂  decays to 0 much faster than both ĥ  and ĉ  (as shown by our results 

below); it is therefore preferred to take the iFT of ̂ , which reduces the cut-off in the reciprocal 

space. Finally, it is well-known that the SM has only linear convergence, thus not suitable for 

high-accuracy calculations. 

The key to numerically solving the PRISM-PY theory is to accurately evaluate the 

improper integrals in the 3D Fourier transform and its inverse transform. Here we use large 

enough cut-offs cr  (which takes an integer value) and cq , respectively, for the real and the 

reciprocal space, such that 
0 0

d ( ) d ( )
cr

rf r rf r


   and 
0 0

d ( ) d ( )
cq

qf q qf q


  ; the accuracy of 

these approximations essentially determines that of the numerical solution to the PRISM-PY 

theory. As aforementioned, it is also important to choose the integrand of these integrals, 

because its decay rate towards 0 with r (q) determines the value of cr  (qc). We therefore use 

the following approach: We uniformly discretize the real-space interval [0,1] into m 

subintervals each of length 1r m  ; for the KG and DPD models, we take ( )ic r i r   

(i=0,…,m−1) as the independent variables to be solved and our approach has three steps: 

I. Given the initial guess of the independent variables, with Eq.(4.3)we calculate 

( )
0

ˆ( ) 4 d ( )sin( )
cr

j j jc q j q q rrc r q r  =   for j=1,…,M−1 with cM mr  via the FST, which 

has a computing time of O(MlnM), and gives q m M = , qM=qc=m and ˆ( ) 0cc q = . We also 
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calculate 
1

2
0 0 0

ˆ ˆ( ) 4 d ( )c c q rr c r =   via the Romberg integration. Note that the numerical 

accuracy of ˆ( )
j

c q  (j=0,…,M−1) is determined only by m (i.e., r ). 

II. We calculate ( )2 2ˆ ˆ ˆ ˆ ˆ( ) ( ) 1 ( ) ( ) 1 ( )j j j j jq N q N q c q c q   = − −   for j=0,…,M−1 (note 

that ˆ( ) 0cq = ), then ( )2

0
ˆ( ) 1 2 d ( )sin( )

cq

j j jr r qq q qr  =   for j=1,…,M−1 via the FST (which 

gives ( ) 0cr = ) and ( )2 2
0 0 0

ˆ( ) 1 2 d ( )
cq

r qq q    =   via the Romberg integration. Note that 

the numerical accuracy of ( )
j

r  for j=0,…,M−1 is determined by both m (i.e., qc) and M (i.e., 

q). 

III. We calculate ( ) ( ) ( )i i ih r r c r= +  for i=0,…,m−1, then use the residual errors of the PY 

closure to converge the m independent variables via the Anderson mixing (AM), the computing 

time of which is O(m). Note that, for the KG model, the PY closure gives 0( ) 1h r = − . 

( 1 ) 1h r
− = −  for 

HS ( )u r , and. Also note that, at 1r = , both ( )h r  and ( )c r  are 

discontinous for the THSC model. These led to the differences below in our numerical solutions 

of the three models. 

For the THSC model, due to its discontinuity at 1r = , we take ( )ic r i r=   (i=0,…,m 

with 1
m

r
−= ) as the independent variables and make the following changes to the above steps: 

I. Here we use a continuous auxiliary function 1
0

( )      if 1
( )

( )             otherwise

c r c r r
c r

c r

− − 
 


 with 

1 ( 1 )c c r
− =  to calculate 
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( ) ( ) ( )

( ) ( ) ( ) 

1
2

0 10 0

2 3
0 10

ˆ( ) 4 d ( )sin d sin

4 d ( )sin 2 cos 2 sin 2

c

c

r

j j j j

r

j j j j j j j

c q q rrc r q r c rr q r

q rrc r q r c q q q q q





 = +  

 = + − + − 

 


 

via the FST; note that ( ) ( )2 2 3
1

ˆ( ) 4 ( 1) 2 2 ( )m

cc q c m m m  = − − −  . We also calculate 

1
2

0 0
ˆ 4 d ( )c rr c r

−

=   via the Romberg integration. 

II. Here we use another auxiliary function 0
ˆ ˆ ˆ( ) ( ) cq q   −  with ˆ ˆ( )c cq   to calculate 

( ) ( )2 2
00

ˆ ˆ( ) 1 2 d ( )sin ( 1)
cq

j

j j j c
r r qq q qr m j    = − −    via the FST, which gives 

3 2ˆ( ) ( 1) 2j

c c
r m M  = − − . 

III. Here we take i=0,…,m. Note that the PY closure gives ( ) 1ih r = − . 
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4.3 Results and Discussion 

In all cases, we take the AM convergence criterion c=10−10 (i.e., the maximum absolute 

value of the residual errors of the PY closure ovall all ir ). We use the numerical error of 0ĉ  

to choose the m-value; in particular, for the PRISM-PY theory of the THSC model at N=1 (i.e., 

the HS model), we have the exact result of ( )* 3 2 4
0 0

ˆ ˆ ( ) 4 2 8 6( 1)c c m      →  = − + − −  

with the HS packing fraction 6  . Fig. 4.1(a) shows that the numerical error 

*
0 0 0

ˆ ˆ ˆ( ) ( )c m c c m  −  increases with increasing   and decays with m−2 for HS. We attribute 

this fast decay to our accounting for the discontinuities of ( )c r  in its FFT; as shown in Fig. 4.4 

(plotting 0
ˆ ( )c m  vs. m for HS, KG and DPD model at N=1 and 0.6 = ) in the Appendix, the 

decay of 0
ˆ ( )c m  with m−1 is obtained using pyPRISM[70].  

For the THSC model with N≥2, since the exact result of 0
ˆ ( )c m →   is not known, we 

take 
*
0 0

ˆ ˆ ( )c c m=  and found the same behavior of 0
ˆ ( )c m ; Fig. 4.1(a) further shows the cases for 

the THSC model with N=24 and 120 at 0.6 = , where we see that 0
ˆ ( )c m  increases with 

increasing N. Fig. 4.1(b) shows similar behavior for the KG and DPD models, where 0
ˆ ( )c m  

decays with m−4 at large m; numerical calculations of these models are therefore easier (i.e., 

requires smaller m*) than the THSC model. According to Figs. 4.1(a) and 4.1(b), we choose the 

m-value (denoted by m*) in each case to ensure an accuracy of 
* 7

0̂( ) 10c m
−   in our subsequent 

calculations.  
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(a)  (b)  

(c)  (d)   

 

Figure 4.1: Numerical error 0
ˆ ( )c m as a function of the spatial discretization parameter m and 

Numerical error 0
ˆ ( )M as a function of .M m  

Parts (a) and (b) show the numerical error 0
ˆ ( )c m  as a function of the spatial discretization 

parameter m for (a) the THSC and (b) the KG and DPD models at various dimensionless 
segment number densities   and chain length N, based on which we choose m* to ensure 

* 7
0̂ ( ) 10c m

−   in our subsequent calculations. Similarly, parts (c) and (d) show the numerical 

error 
*

0 ( ; )M m  as a function of the spatial cut-off 
*

c
r M m=  for (c) the THSC and (d) the 

KG and DPD models at various   and N, based on which we choose 
* * *

c
r M m  to ensure 

* * 8
0( ; ) 10M m −   in our subsequent calculations. 

 

With the above chosen m*, we similarly use the numerical error 

* * *
0 0 0( ; ) ( ; ) ( ; )M m M m M m    −  to choose the M-value (equivalently cr ); our results 

are shown in Figs. 4.1(c) and 4.1(d), based on which we choose the M-value (denoted by M*) 
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in each case to ensure that 
* * 8

0( ; ) 10M m −  in our subsequent calculations. 

Fig. 4.2(a) shows our numerical results of ˆ( )c q , ˆ( )h q  and ˆ( )q  obtained for the 

THSC model at N=1 (i.e., the HS model) and 0.6 = , which coincide with the analytical results 

within our numerical accuracy. Note that (1) the cusps in these logarithmic plots indicates the 

roots (where ˆ( )c q , ˆ( )h q  or ˆ( )q  crosses 0), and (2) at large q the local maxima of ˆ( )q  decay 

towards 0 with q−4, much faster than those of ˆ( )c q  and ˆ( )h q  decaying with q−2, thus 

justifying our Step II above; the same are found at other  -values (data not shown). Fig. 4.2(b) 

shows the corresponding results for N=120, where 

( ) ( )22ˆ ( ) ( ) 2 ( ) 2 ( ) 1 ( )N
q N B q NB q B q N B q  = − + − −   with 

( ) ( )b nb b nb( ) exp ( ) ( ) exp ( ) ( ) ( 0) sinB q u r u r u r u r q q q    − − − − = =  are used; note 

that this ˆ ( )q  is exact for N=2, and we do not expect any qualitative changes in the decay of 

ˆ( )c q , ˆ( )h q  and ˆ( )q  towards 0 at large q for more accurate ˆ ( )q . One difference from the N=1 

case, however, is that at large q the local maxima of ˆ( )q  now decay towards 0 with q−3; the 

same are found at other N2 and  -values (data not shown). Fig. 4.5 in the Summary shows 

the root-mean-square deviation of (0 1 )c r
−   from its least-square-fitted cubic polynomial 

3( )c r , defined as ( )
1 2

30
d ( ) ( )c r c r c r

−

  −  and numerically calculated via the Romberg 

integration, vs.   at various N; we see that the systematic error c introduced by variational 

method[68] is on the order of 10−4 and increases with increasing  .   
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(a)  (b)  

Figure 4.2: 3D Fourier transform of the direct PCF, and that of the total PCF, and that of the 
indirect PCF for THSC model. 
Logarithmic plot of our numerical results of the Fourier transform of the direct PCF ˆ( )c q , that 

of the total PCF ˆ( )h q , and that of the indirect PCF ˆ( )q  obtained for the THSC model at (a) 

N=1 (i.e., the HS model) and (b) N=120; the dimensionless segment number density 0.6 = . 

Note that k denotes the slope of the straight line. 
 

Fig.4.3(a) shows our numerical results of ˆ( )h q  and ˆ( )q  obtained for the KG model 

at N=1 and 120, where 0.85 =  and

( ) ( ) ( ) ( ) ( )
1 6

1 6

33.75 33.752 1.522 26

1

0

0

2
d sin 1 1.5 exp 2 1 d sin 1 1.5

( )
1.274938405605209 06 1

rr qr r r rr qr r

B q
q

−

−    − − − + −    


 =
 

 

are used, and Fig.4.3(b) shows those for the DPD model at N=1 and 10, where 3 =  and 

( ) ( )( ) ( ) ( )
( )( ) ( ) 

1 22 3 2 2 3 2

0 1

1 22 2 3 2 2 2 3 2

0 1

d sin exp 2 1 d sin exp
( )

d exp 2 1 d exp

rr qr k r a r rr qr k r
B q

q rr k r a r rr k r

 

 

− −

− −

 − − − + − =
 − − − + − 

 
 

 are 

used. Comparing with Fig. 4.2 for the THSC model, we see that at large q the local maxima 

of ˆ( )h q  (and ˆ( )c q , data not shown) now decay with q−4 and those of ˆ( )q  decay with q− 

(for N=1) or q− (for N≥2); the same are found at other N2 (data not shown). Numerical 

calcuations of the KG and DPD models are therefore easier than those of the THSC model. 
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(a)  (b)  

Figure 4.3: 3D Fourier transform of the direct PCF, that of the total PCF, and that of the 
indirect PCF for THSC and DPD model. 
Logarithmic plot of our numerical results of the Fourier transform of the direct PCF ˆ( )c q , that 

of the total PCF ˆ( )h q , and that of the indirect PCF ˆ( )q  obtained for (a) THSC model at N=1, 

120 and the dimensionless segment number density 0.6 = .  and (b) DPD model at N=1,10, 

and the dimensionless segment number density 3 = ; Note that k denotes the slope of the 

straight line. 
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4.4 Summary 

 

Figure 4.4: The numerical error 0
ˆ ( )c m    given by pyPRISM. 

The numerical error 0
ˆ ( )c m  as a function of the spatial discretization parameter m at chain 

length N=1 (i.e., monomers), where the dimensionless monomer number density 0.6 = , 0.85 

and 3 for HS, KG and DPD models given by pyPRISM. See the main text for more details.  
 
 

 

Figure 4.5: The root-mean-square deviation of (0 1 )c r
−    from its least-square-fitted cubic 

polynomial. 

The root-mean-square deviation of (0 1 )c r
−   from its least-square-fitted cubic polynomial 

3( )c r , ( )
1 2

30
d ( ) ( )c r c r c r

−

  − , vs.   at various N for the THSC model. See the main text 

for more details. 
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(a)  (b)   

(c)  (d)  

(e)  

Figure 4.6: PCFs and 3D Fourier transform of PCFS for KG model at   =0.85. 

See the main text for more details. 
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(a)  (b)   

(c)  (d)  

(e)  

Figure 4.7: PCFs and 3D Fourier transform of PCFS for DPD model at  =3. 

See the main text for more details. 
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Chapter 5 Fluctuation/Correlation Effects in 

Symmetric Diblock Copolymers: On the 

Disordered Phase 

 

 

 
5.1 Introduction 

Block copolymers have attracted great interest not only due to their technical 

applications (e.g., in nanotechnology) but also the underlying physics especially for their order-

disorder transition (ODT).[71] While the polymer self-consistent field (SCF) theory has been 

widely applied to block copolymer systems with great success, it is a mean-field theory that 

neglects the system fluctuation/correlation (F/C) effects. Such effects are known to play 

important roles in both the ordered and disordered phases of block copolymers. In particular, 

SCF theory reduces to the well-known Flory-Huggins theory for the disordered phase, thus 

giving qualitatively incorrect predictions for the ODT.[72, 73] On the other hand, the F/C effects 

studied in conventional molecular simulations of many-chain systems with hard-core 

repulsions (e.g., the Lennard-Jones repulsion in off-lattice and the self- and mutual-avoiding 

walk in lattice simulations), where the invariant degree of polymerization[74] 
3 2
,0( )enR V

controlling the system fluctuations for n monodisperse copolymer chains in volume V with 

,0eR  denoting the root-mean-square end-to-end distance of an ideal chain is at most 100 or so, 

are not in the experimentally accessible range in most cases (where 310  ).[72] Using soft 

potentials that allow particle overlapping, such as done in our previous work[73] (referred to as 

Paper I hereafter), is therefore the only way at present to simulate systems of much larger 
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-values, and is the essence of our fast Monte Carlo simulations proposed several years ago.[10, 

75] This further allows us to directly compare the simulation results and theoretical predictions, 

based on the same model system without any parameter-fitting, to unambiguously quantify the 

F/C effects either neglected or treated approximately in the theories. [75-78] 

In Paper I, we reported the first systematic study unambiguously quantifying the ODT 

shift of a model system of symmetric diblock copolymers (DBC) from the mean-field 

prediction using fast off-lattice Monte Carlo (FOMC) simulations[10] with experimentally 

accessible fluctuations. Here we focus on the disordered phase of the same DBC model system 

studied in Paper I and quantify the F/C effects on its structural and thermodynamic properties 

by directly comparing our FOMC results with predictions of both the polymer field theories 

and integral-equation theories. Systematic loop-expansions can be used to incorporate F/C 

effects into the field theories.[79] As the zeroth-order expansion, SCF theory provides a well 

understood mean-field reference. Since it gives rather trivial predictions for the disordered 

(homogeneous) phase, however, here we mainly consider the second-order expansion (also 

known as the one-loop approximation[80]), i.e., the Gaussian-fluctuation (GF) theory. As shown 

below, the GF theory predicts the mean-field ODT for symmetric DBC and various diverging 

behaviors at the ODT. 

On the other hand, the integral-equation theories we consider here include both the 

reference interaction site model (RISM) theory proposed by Chandler and Anderson [18, 20, 81, 82] 

and the polymer reference interaction site model (PRISM) theory proposed by Curro and 

Schweizer.[25, 83, 84] The former extends the well-known Ornstein-Zernike (OZ) equation[64] for 

spherical monatomic fluids to molecular fluids and accounts for both intra- and interchain 

correlations, and the latter further extends to long-chain systems by assuming that the interchain 
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total and direct pair correlation functions (PCFs) are independent of the interacting site 

(segment) positions along the chain, which greatly reduces the computation cost. Given the 

short chain lengths (N=10) used in our FOMC simulations, we explicitly check this 

approximation by comparing RISM and PRISM results. We also note that both theories require 

the intrachain PCF as an input, which are taken either as ideal-chain conformations or from our 

FOMC simulations, and a closure (i.e., an approximation relating the interchain direct PCF and 

the non-bonded pair potentials between polymer segments), for which we use the atomic 

random-phase approximation (RPA), Percus-Yevick (PY),[13] and Zhou closures here; in 

particular, PRISM theory with the ideal-chain conformations and RPA closure is equivalent to 

the GF theory as shown below. 

PRISM theory has also been widely applied to various polymeric systems. In particular, 

for conformationally symmetric DBC (A-B) modelled as the continuous Gaussian chains with 

the Dirac -function repulsion between all monomers (i.e., the reference system, denoted by 

CGC-) and an additional Yukawa potential for the AB repulsion, David and Schweizer solved 

PRISM theory analytically with the reference molecular mean spherical approximation (R-

MMSA) and PY (R-MPY) closures, where their reference system was solved with the atomic 

PY closure[13] and the Pade approximation for the ideal-chain conformations; in order to 

compare with the fluctuation theory of Fredrickson and Helfand,[72] most of their results were 

obtained under the approximation of either the “literal” or the “effective” incompressibility and 

other approximations.[51, 52] In the case where the reference system is the hard-core CGC-

 model, Guenza and Schweizer further simplified these analytical results under the 

approximations of small range of the Yukuwa potential and large .[85] The CGC- model, 

however, cannot be directly used in molecular simulations; neither can the “literal” 
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incompressibility be enforced in off-lattice molecular simulations. 

In a subsequent paper, David and Schweizer presented numerical results of the PRISM 

theory solved with the R-MMSA and R-MPY closures for conformationally symmetric DBC 

modelled as chains of tangential hard spheres with a modified Lennard-Jones tail potential (see 

Eq(2.4) there) for the AB repulsion, where they used the ideal-chain conformations.[86] Later, 

Donley derived a new closure that is similar to the atomic (linearized) PY closure but 

incorporates three-body correlations beyond those included in the hypernetted-chain closure, 

and applied it to study the same model system of symmetric DBC as in Ref.[86] (again with the 

ideal-chain conformations).[87] These theoretical predictions, however, have not been directly 

compared with molecular simulations. 

Our work therefore represents the first direct comparison between PRISM theory and 

molecular simulations for the disordered phase of block copolymers, where the same model 

system is used in both the theory and simulations; such comparisons unambiguously reveal the 

consequences of theoretical approximations and stimulate the development of advanced 

theories that can quantitatively describe the fluctuation/correlation effects in block copolymers 

and predict their ODT. 

As mentioned early, the F/C effects plays very important role in both ordered and 

disordered phases for DBC systems. On the other hand, in the comparison among simulations 

and theories, the SCF theory neglects all the interchain fluctuations and correlations, the GF 

theory only considers the fluctuations in the Gaussian level, RISM theory with PY closure 

considers the correlations in the “PY level”, and in the FOMC simulations all kinds of 

fluctuations and correlations are included. 
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This work is structured as follows. In the second section, we firstly introduce our model 

system with soft DPD potential and define some notations, where the discrete Gaussian chain 

(DGC) model is used, following some simple description about FOMC; then the derivation of 

GF theory and P/RISM theories are simply presented, where the equations of how to calculate 

the interested structural and thermodynamic properties are also presented. In the third section, 

these properties are compared among FOMC simulations and theories, including the 

block/chain mean-square end-to-end distances, the bonded and non-bonded internal energy per 

chain and (virial) pressure, the Helmholtz free energy per chain, the non-bonded constant-

volume heat capacity, and the structure factors. We then make some conclusions and remarks 

in the fourth section. Some structural and thermodynamic quantities calculated from GF theory 

is presented in the Appendix. The chain-end effects neglected in the PRISM theory are also 

discussed in the Appendix. 
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5.2  Model and Methods 

5.2.1 Model Systems 

Our model system is the same as in Paper I [73], where we consider compressible DBC 

systems of n chains in continuum, each consisting of N segments at a chain number density 

c n V   with V being the system volume. Each chain has AN A-type segments followed by 

BN B-type segments, and A BN N N= + ; for symmetric DBC A BN N= . The canonical 

partition function of the system is   

  ,
1 1

1
dR exp ,

!

n N
C E

k s

k sn
 

= =

= − −   (5.1) 

where 
1

nC C

kk
h

=
=  is Hamiltonian due to the chain connectivity, with C

kh denoting the 

contribution of the kth chain, described by the discrete Gaussian chain (DGC) model in 3D, i.e., 

 ( )
1

2

, 1 ,2
1

3
,

2

N
C

k k s k s

s

h
a


−

+
=

= − R R  (5.2) 

where 1 Bk T   with Bk being the Boltzmann constant and T the thermodynamic 

temperature, a denotes the effective bond length (assumed to be same for both A and B blocks), 

and 
,k sR denotes the spatial position of the sth segment on the kth chain. The non-bonded 

Hamiltonian 
E E E

 = + , with 
E

  and 
E

 given by 

   ( ) A B 0 A B 0

0 0

1 ˆ ˆ ˆ ˆd d ( ) ( ) ( ) ( ) (0),
2 2

E nN
u u    

 
   = + − + − r r r r r r r r  (5.3) 

  

 ( )A 0 B

0

ˆ ˆd dr ( ) ( ),E
u

  


  = − r r r r r  (5.4) 
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With Eq.(5.3) is due to the system compressibility characterized by the generalized Helfand 

compressibility  ,[88] with the last term used to deduct the self-interaction, and Eq.(5.4)  

models the repulsion between A and B segments with the generalized Flory-Huggins 

interaction parameter  . The average number density of polymer segments is 0 nN V  and 

the microscopic densities of A and B segments are defined as ( )A

A ,1 1
ˆ ( )

n N

k sk s
 

= =
 − r r R

and ( )B

A
B ,1 1

ˆ ( )
n N

k sk s N
 

= = +
 − r r R , respectively. 

( )( ) ( )23
0( ) 15 2 1

B
u r k T r r   = − − is the dissipative particle dynamic simulations,[31] 

with r  r  being the separation distance between two segments, the finite interaction range is 

 and the Heaviside step-function is ( )r . The soft, repulsive non-bonded pair potential 

between two segments s and s is therefore given by 

 
( )

0 0

,

0 0

( ) ( )                if  and  are of the same type

( )      otherwise
s s

N u r N s s
u

N N u r N

  


   

=  +
 (5.5) 

Which recovers the hard-sphere potential as N  →  . 

Alternatively, E can be re-written as 

 0
A B

0

(0)
1

2
E unN N

n Nf f E NE 
  

  
 

= − + + + 
 

 (5.6) 

Where ( )0
ˆ ˆ(1 2 ) d d ( ) ( )E      − r r ρ r U r r ρ r and 

( )0
ˆ ˆ(1 2 ) d d ( ) ( )E      − r r ρ r U r r ρ r  measure the “contact” of all segments and that 

between A and B segments, respectively, beyond mean field values. Here the vector

 A B
ˆ ˆ ˆ( ) ( ), ( )

T =ρ r r r ,  A B
ˆ ˆ ˆ( ) ( ), ( )

T =ρ r r r and  0 0 A B,
T

f f=ρ with A Af N N and 

B A1f f= −  being the average volume fraction of A and B blocks in the copolymer, 
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respectively, and 22 interaction matrices  0

1 1
( ) ( )

1 1
r u r N 

 
  

 
U and

 0

0 1
( ) ( )

1 0
r u r N   

  
 

U . The non-bonded internal energy per chain is then given by  

0
,nb A B

0

(0)
1 ,

2

E

c

EEuN N
u Nf f N

n n n


   

  
 

 = − + + + 
 

 (5.7) 

The difference in the Helmholtz free energy per chain from the reference state at 0
N

N


= =

can be calculated via the thermodynamic integration as 

1 2

0
A B 1 2, 0 ,0 0

0

(0) 1
1 d d ,

2

N N

c N t N N N t

uN
f Nf f t E t E

n

 

    

 
  = = =

    = − + + +     
   (5.8) 

Finally, the fluctuation of E and E are given by 

( )
22 2

N

E
E E

N


  






 
= − = −   

        

    (5.9) 

( )
22 2

N

E
E E

N


  






 
= − = −  

  
       (5.10) 

( ) ( )
22 2

, ,
N N

EE
E E

N N


   

 


 

  
= − = − = −        

 (5.11) 

from which the constant-volume heat capacity due to the non-bonded interactions is calculated 

as 

( ) ( ) ( )( )2 2,nb 2 2 2
,

1
2 .V

B

C
N N N N

k n
          = + +   (5.12) 
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5.2.2 Fast off-lattice Monte Carlo (FOMC) Simulations 

We perform FOMC simulations of the above model system in a canonical ensemble 

with trial moves of hopping[75], reptation[75], pivot[73], and box-length change[73], where replica 

exchange of configurations at different N  is used near ODT to further improve the sampling 

efficiency; more details are given in Paper I[73]. Note that our simulations are performed in a 

variable-length, rectangular parallelepipedal box with the periodic boundary conditions applied 

in all directions. For the disordered phase close to ODT, the box-length change trial moves are 

needed to eliminate the effects of the periodic boundary conditions on the system fluctuations.  

In our simulations, we calculate 

( ) ( )0 0 , ,1 1 1 1
1 2 2

n n N N

k s k sk k s s
E N u n     = = = =

= − −    R R and

( ) ( )A

A
0 0 , ,1 1 1 1

1 4
n n N N

k s k sk k s s N
E N u n     = = = = +

= − −    R R ,and their fluctuations 

according to Eqs. (5.9)~(5.11) using the second order centered finite difference after their 

ensemble averages are obtained. 

 

5.2.3 Polymer field theories 

Here we start from the same model system as in Sec.5.2.1 and insert the identity 

  P P P P PP=A,B
ˆ1 ( 2 )exp d ( ) ( ) ( )i     = −   r r r r into Eq.(5.1), where P ( ) r is the 

density field constrained to P
ˆ ( ) r  and P ( ) r is the conjugate field imposing this constraint. The 

partition function can finally be re-written as 
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  

    

  

P P P P
P

P A B
P

P A B A B
P

( 2 ) exp ,

    =exp exp ,

                            ( 2 ) exp , , , ,

id E

en

     

    

      

=  −

−  −

  −







 (5.13) 

where ( )ln !id n
G n  − is the Helmholtz free energy of ideal chains with 

 
1

d exp
N C

ss
G h

=
  −  R , and  P p A BP

d ( ) ( ) ln ,en
i n Q i i     − −  r r r  is the 

entropic contribution from chain configurations with the single-chain partition function

 A

A
A B1 1 1

d exp ( ) ( )
N N NC

s s ss s s N
Q h i i G  

= = = +
  − − −   R R R . 

 

5.2.3.1 Self-consistent field (SCF) theory 

The SCF solution, * * *
A B( ), ( )

T

    ω r r and * * *
A B( ), ( )

T

     r r , is obtained under the 

mean-field approximation ( )* * * *P p
, ,

( ) ( ) 0en E en
i        = + =   ω ρ ω ρ

r r . In this 

study we only consider the homogeneous phase, i.e., 
*

0=ρ and * 0=ω . SCF theory then gives

SCFSCF
0E E = = ,  SCF SCF

,nb 0 0 A B( 2 ) 1 (0)
c c

f u N u Nf f      =  = − + with ,nbc
u being 

the non-bonded internal energy per chain, the difference in the entropy per chain from the ideal-

chain reference state 
SCF SCF

,b 1.5( 1)
c B c

s k u N =  = − with ,bc
u being the bonded energy per 

chain, the (virial) pressure due to the bonded interaction ( )SCF
,b A B2

c c
P N Nf f   = + , and 

constant-volume heat capacity 
SCF SCF

,b 1.5( 1)
V B V B

C k C k N= = − with ,bV
C being the contribution 

due to the bonded interaction and that due to the non-bonded interaction
SCF

,nb 0
V

C = .As for the 

chain dimensions, SCF theory gives random walk for a homogeneous system, e.g., 
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2 2 2
,SCF ,0 ( 1)

e e
R R N a= = − . 

 

5.2.3.2 Random-phase approximation (RPA) and Gaussian-fluctuation 

In RPA analysis,[75, 89, 90] the fields are re-written as 
*( ) ( )= +ω r ω ω r and

*( ) ( )= +ρ r ρ ρ r ,where ( )ω r and ( )ρ r are defined similarly to ˆ( )ρ r .The single-chain 

partition function can then be expanded to the second order in ( )ω r as  

  *
13

d ˆ ˆln ln ( ) ( ) ( ).
2 (2 )

N
Q i Q i

V
 


  −  −  

qω ω ω q S q ω q  (5.14) 

 where ˆ ( )ω q denotes the 3D Fourier transform of ( )ω r with q being wavevector, 1( )qS is 

the single-chain structure factor matrix with its element 1,PP ( )S q being the average intrachain 

PCF between two segments on P and Pʹ blocks, respectively, q = q . For an ideal DGC, 

1,AA A 1,BB B 1,AB 1,BA 1,AA 1,BB( ) ( , ), ( ) ( , ), ( ) ( ) (1, ) ( ) ( ) 2S q NP f q S q NP f q S q S q NP q S q S q= = = = − −  

,where ( ) ( )
2

2( , ) ( ) 2 ( ) 2 ( ) 1 ( )fN
P f q fN B q fNB q B q N B q  − + − −  with

2 2( ) exp( 6)B q a q − .[75] We then write the second-order term of the statistical weight as 

1(2) RPA
RPA 3

0

1 d ˆ ˆ( ) ( ) ( ),
2 (2 )

q  
 

−
 =  − 

q ρ q S ρ q  (5.15) 

where 
(2)

RPA
ˆ ( ) 0  =ω q is used, and 

( ) ( )
( ) ( ) ( )

11 1
10 1,AA 0 1,ABRPA 1

0 11 1
0 1,AB 0 1,BB

ˆ ˆ
,

ˆ ˆ
N u N S N N u N S

N N u N S N u N S


    
    

−− −
−−

− −

 + + +
 = + + + + 

S S S  (5.16)with 

the matrix ( )0
ˆ ˆN N   +S U U  due to the non-bonded interactions. For symmetric DBC, 
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1,AA 1,BBS S= and we can diagonalize the matrix ( ) 1RPA


−
S  to obtain Eqs. (A6) and (A7) in 

Ref. [75]. At the mean-field ODT
*
MFN , ( ) 1RPA



−
S  is singular at the most unstable mode

*
q , which 

gives the corresponding lamellar period
* *
0,MF 2L q= .[75, 90]  Alternatively, we can write 

( )
1(2) RPA

RPA 3

0

1 d ˆ ˆ( ) ( ) ( ),
2 2

  
 

−
 =  − 

q ω q S q ω q  (5.17) 

where 
(2)

RPA
ˆ ( ) 0  =ρ q and ( ) 1RPA 1

0 1

−−= +S S S ; 
*
MFN and 

*
q  can also be obtained from the 

singularity of
*

q . 

Substituting Eq. (5.14) into Eq.(5.13) and evaluating the Gaussian integrals over 

ˆ ( )ω q and ˆ( )ρ q , we can approximate the partition function  by 

   
( )

( )

     

SCF

0

1

0

SC

3

0
3

1 0
F

1

d
( ) ( ) ( )

2

d ˆ

1 ˆ ˆexp exp e

)

 

ˆ ˆ( ) ( ( ) ( ) ( )
22

( ) ( )

xp
2

ˆ      exp
2

  = exp exp det

id

c

id

c

q

i

f

q

q

n

n q

f  




 




 





 
−

  = − −  − 
  

  



 −

  − −  −
    
    

 − −

 

+ 











q

q
q S q

q ω q q ωρ q S ω q

S S

ρ ρ ρ

I

ω

2
,

 (5.18) 

which gives 

( )
 0

GF SCF
13

d
ln det ( )

2

1

2
( )c c

c

f f q q
 

 =  + +
q

S S I  (5.19) 

with I  being the 2 2  identity matrix. 
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5.2.4 Integral-equation (IE) theories 

5.2.4.1   Reference interaction site model (RISM) theory 

Due to the small N -values (10 and 20) and thus the large chain-end effects in our study, 

we employ RISM theory in most cases to study the structural and thermodynamic properties of 

symmetric DBC in the disordered phase. RISM theory describes the interchain pair correlation 

functions (PCFs) via the generalized Ornstein-Zernike (OZ) equation given in the Fourier space 

as[20] 

 ( )ˆ ˆˆ ˆ ˆ ,ch =ωc ω+ h  (5.20) 

where the symmetric matrices ĥ , ω̂ and ĉ  have N N  elements of , '
ˆ

s sh , , '
ˆ

s s  and , '
ˆ

s sc , 

respectively; , '( )s sc r and , ' , '( ) ( ) 1s s s sh r g r −  are the interchain direct and total PCFs, 

respectively, between the th
s segment on one chain and the th's  segment on another, with 

, '( )s sg r  being the interchain radial distribution function; , '( )s s r is the normalized (i.e., 

, ' 1ˆ ( 0)s s q == ) intrachain PCF between the th
s  and th's  segments on the same chain; and we 

use the short-hand notation ( )
0

4 / d ( ) sinˆ ( )f q rf r r qr


  .  to denote the 3D Fourier transform 

of a radial function ( )f r .  

In this study, we take , '
ˆ

s s  as an input obtained in two ways: one is calculated directly 

in FOMC simulations and denoted by 
FOMC
,

ˆ
s s   ,and the other is given by the ideal DGC model as

DGC
, (ˆ )

s s

s s B q −
 =  . To assess the theoretical predictions of quantities directly related to the chain 

conformations (i.e., the chain/block end-to-end distance, internal energy and pressure due to 

the bonded interaction), however, we use only 
DGC
,

ˆ
s s   ;while the self-consistent integral-
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equation theories can predict , '
ˆ

s s , we expect that their results are in-between those obtained 

using 
DGC
,

ˆ
s s   and

FOMC
,

ˆ
s s  leave such studies to the future. 

Eq. (5.20) must be solved together with a closure relating the interchain direct and total 

PCFs. Here we use the atomic Percus-Yevick (PY) closure[13] in most cases, commonly 

employed for short-range, repulsive non-bonded pair potentials, which for our soft potential 

[Eq. (5.5)] is given by 

  , ' , ' , '( ) ( .)1 e p ( )xs s s s s sc rur g r = −    (5.21) 

We solve the generalized OZ equation and closure iteratively. For oldc , from Eq. (5.20) 

we obtain 

 ( ) ( )1old old old oldˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ,c c 
−   − = − + − γ h c I ωc ωc ω c c  (5.22) 

where the symmetric matrix γ̂  has N N  elements of interchain indirect PCFs , '
ˆ

s s  and I  

is the N N  identity matrix. We then obtain the new direct PCFs as 

new
, , , ,( ) ( ) 1 exp[ ( )] 1 ( )s s s s s s s sc r r u r r      = + − − −  from the PY closure; the Anderson mixing 

method  is used with a convergence criterion

    10
, ' , ' , '',

m (ax 1 )ex( ) )p ( 10s s s s s ss s r
r u r g r  −

  + − −   , where , '( )s s r  and , '( )s sg r  are 

functions of , '( )s sc r  from Eq. (22) and we use a cut-off ,010c er R=  for , '( )s s r  [i.e., , '( )s sh r and

, '( )s sg r ] and uniformly discretize  0, cr  into 3200 subintervals. 
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5.2.4.2 Polymer reference interaction site model (PRISM) theory 

To highlight the chain-end effects, we compare the RISM predictions with those from 

PRISM theory in some cases. Following Schweizer[52] and replacing the subscript “ ,s s ” by “ 

P, Ps s  ”, where P, 'P'ŝ sh , for example, denotes the interchain PCF between the th
s  segment on P 

(=A,B) block and the th's  segment on P '  block, we can rewrite Eq. (5.20) as 

 ( )
Q Q

P,tQ tQ,t Q t Q , P t Q , P
Q=A,B Q 1

P, 'P '
=A,B 1

ˆ ˆˆ ˆˆ .ss s

N N

s c s

t t

h c h  


         
 = =

= +    (5.23) 

In PRISM theory one assumes P,PP, P'P' P
ˆ ˆ
s s H f fh  =  and P, 'P' P,P'

ˆˆ
s sc C= , where P,PĤ   and 

P,P'Ĉ  are the interchain total and direct PCFs between two segments on P and P '  blocks, 

respectively. After some algebra, we finally obtain the PRISM equation from the above as 

 ( )1 1 0
ˆˆ ˆ ,= +H S C S H  (5.24) 

where the symmetric 2 2  matrices Ĥ   and Ĉ  have elements of P,PĤ   and P,P'Ĉ , respectively, 

and we have used p p

1,PP P, P1 1
ˆN N

s ss s
S N

  = =
   . 

 

5.2.4.3 Quantities calculated from IE theories 

A. Non-bonded internal energy, (virial) pressure, and free energy 

 

The non-bonded internal energy per chain from IE theories is given by 

IEIE

IE SCF
,nb ,nb ,c c

EEN
u u N

n n

  


= + +   (5.25) 

with 
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IE

2
, , 00

, 10

2
d ( ) ( ) ( )

N

s s c s s

s s

E
r r h r r u r

n N

    
  

=

 = +    (5.26) 

and 

A

A

IE

2
, , 00

1 10

4
d ( ) ( ) ( )

N N

s s c s s

s s N

E
r r h r r u r

n N

    
  

= = +

 = +     (5.27) 

have both intra- and interchain contributions. Similarly, the non-bonded (virial) pressure from 

IE theories is given by 

,IE 2
nb , ,0

, 1

d ( )2
d ( ) ( ) .

3 d ln

N
s sc

s s s c s s

s s

u r
P r r g r r

r

    
 

=

 = − +    (5.28) 

We then calculate IE
c

f from Eqs. (5.8), (5.26) and (5.27), and

IE IE SCF IE IE
,b ,b ,nbc B c c c c

s k u u u f    = − + − ; the calculation of 
IE
,bc

u is given below. Finally, the 

fluctuations of E  and E  and the non-bonded constant-volume heat capacity are calculated 

numerically by the second order centered finite difference according to Eqs. (5.9)  (5.12), 

(5.26) and (5.27). 

 

B. Chain dimensions, internal energy, and pressure due to the bonded interaction, and 

structure factors 

Adopting the method of Wang, [91] for two segments 1e  and 2e  on the same chain we 

introduce an auxiliary parameter   and define

( ) ( )
2 1

2
2

, ,1
( ) 3 2

nC C

k e k ek
a   

=
 + − R R . We then have the partition function at given 

  as 
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( ) ( ) 2 1,

2
2

, ,
1 1

1
3 2

1
( ) d exp .

!

nC E

k e k

n N

k s

k s

ek
a

n
  

=
= =

− − −=  − R R R  (5.29) 

The mean-square distance between 1e  and 2e , ( )2
1 2,R e e , is then given by 

2 2
2 2

1 2 ,SCF 1 2

0 0

( )2 ln 2
( , ) ( , ) ,

(

3 3

) c
e

fa a
R e e R e e

n  

 
 



= =

 
= − = +

 
 (5.30) 

where we numerically evaluate the partial derivative by the second-order centered finite 

difference after obtaining ( )cf   via Eq. (5.8),; the intrachain PCFs at given  , 

( ), ' 1 2;ˆ , ,s s q e e  , needed for solving the P/RISM equations are derived in the Appendix A.4. 

We then have the chain and block mean-square end-to-end distances as 
2 2
,IE IE (1, )

e
R R N=  and 

2 2
,IE IE A(1, )

eb
R R N= ,respectively, as well as the mean-square bond length

2 2
,IE IE ( , 1)

s
b R s s= +  for 

the sth bond. The internal energy per chain due to the bonded interaction is then given by

1IE 2 2
,b ,IE1

(3 2 )
N

c ss
u a b −

=
=  ,from which we calculate the pressure due to the bonded interaction 

as ,b(2 3)
b c c

P u  = − . 

We also calculate the total structure factor PPP,P
( ) ( )tS q S q

  , where 

PP' , '
P ' P'

ˆ /( ) s s

s s

S S Nq
 

   with , '
ˆ

s sS  being the ( , ')s s  element of the N N  matrix 

( ) 1ˆ ˆˆ ˆ ˆ ˆ
C c  − + = −S ω h I ωc ω . We further calculate the structure factor 

AA BB AB( ) ( ) ( ) 2 ( )S S S Sq q q q  + −  characterizing the composition fluctuations of 

( )A B 0( )( ) ) /r rr    −   . 
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5.2.4.4 Relation among IE, GF, and SCF theories 

     If we assume , ' , ' )1 x (e )p (s s s sr ru u  −  −   for small , '( )s su r  and set 

, ' 1( )s s rg =  in the PY closure [Eq.(5.21)], it is then reduced to , ' , '( ) ( )s s s sc ur r= − , the mean-

spherical approximation (MSA) closure used for penetrable spheres. Since , '( )s su r  satisfies 

PP' P, 'P'( ) ( )s su ur r= , the RISM equations are then equivalent to the PRISM equations and we 

have
RPA
PP PP( ) ( )C r u r = − .Eq. (5.24) thus gives the total structure factor matrix

1 1
1 0 0 1

ˆ ( ) − − + = +S S H S S , which is the same as 
RPA
S  . We therefore refer 

RPA
PP PP( ) ( )C r u r = − as the RPA closure. 61It is clear that, for all calculated structural and 

thermodynamic quantities, P/RISM theories with the RPA closure (denoted as P/RISM-RPA) 

and 
DGC
, ( )

s s
r  are the same as GF theory (see Appendix A), which contains only the Gaussian-

level fluctuations. One thing to note is that the above assumption of , ' 1( )s s rg =  is used only 

to reduce the PY to the RPA closure; P/RISM-RPA or GF theory does not necessarily give 

, ' 1( )s s rg = . On the other hand, in the limit of c →  , Eq. ((5.5)5) gives , ' 0( )s su r →  at 

finite /N   and N , leading to , ' 0( )s s rc →  and , ' 0( )s s rh →  (or , ' 1( )s s rg → ) for both 

P/RISM-PY and P/RISM-RPA (or GF) theories. In this limit, the interchain 

fluctuation/correlation (F/C) effects can thus be neglected, and both IE and GF theories reduce 

to SCF theory. From another point of view, all the F/C effects on both structural and 

thermodynamic properties (beyond the mean-field predictions) for both IE and GF theories are 
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proportional to 
1

0−
 (at large 0  for IE results); this also indicates that both IE and GF theories 

reduce to SCF theory as 0 →  . 
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5.3 Results and Discussion 

Setting the root-mean-square end-to-end distance of an ideal (discrete Gaussian) chain 

having N segments and an effective bond length a, ,0 1eR N a= −  , as the length scale, we have 

a total of five parameters in our model system: the invariant degree of polymerization 

( )2
3
,0enR V=  for n chains in volume V, the AB incompatibility N , the system 

compressibility /N  , N, and the range of the (dissipative particle dynamics) interaction 

potential / a  (or ,0/ eR ); the first three are physical parameters that can be mapped to an 

experimental system, and the last two are model parameters characterizing the chain 

discretization and finite interaction range, respectively. In the following, we fix  410= , 

10N =  and / 0.3a =  unless specified otherwise, and examine the effects of /N   and N  

on various structural and thermodynamic properties by comparing the results obtained from 

different methods in three systems: System I is homopolymers at 0N = , and Systems II and 

III are DBC at / 0N  =  and 50, respectively. We use ideal chains at / 0N N = =  as the 

reference state in all cases. The error bar of each ensemble-averaged quantity from FOMC 

simulation is estimated as three times its standard deviation with the statistical correlation 

among samples collected after equilibration considered by the correlation-function method. 

62Note that, since the Zhou closure cannot be used for cases of small pair interaction strength, 

it is only applied for homopolymers at /N  12 and DBC at / 50N  =  in this study. 
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5.3.1 System I: Homopolymer 

5.3.1.1 Chain end-to-end distance and bonded internal energy 

Fig. 5.1 shows the difference in the mean-square chain end-to-end distances from the 

ideal-chain reference state, 
2
e

R , obtained from various theories and FOMC simulations. We 

see that 
2
e

R  obtained from all the methods monotonically increases with increasing /N   due 

to the excluded-volume interaction. For small / 1N  , 
2
e

R  is proportional to /N  , which 

can be found from the Taylor expansion of Eq.(5.36).  

 

Figure 5.1: Difference in the mean-square chain end-to-end distance from the ideal-chain 
reference state for homopolymers. 
Logarithmic plot of the difference in the mean-square chain end-to-end distance from the ideal-

chain reference state 
2
e

R  for homopolymers, where “ 1k = ”denotes a straight line of slope 1. 
10,N =  410=  and / 0.3a = . 

 

While our simulation data here are for / 50N   , as /N   further increases they are 

expected to converge to a constant similar to Fig. 5.5(a) in Ref. [78] (which is for compressible 

homopolymers on a 1D lattice). GF (or equivalently P/RISM-RPA with the intrachain PCF for 

ideal DGC, 
DGC
,

ˆ
s s

  ) theory gives surprisingly good results within the entire range of our 

simulation data, which are also similar to Fig. 5.5(a) in Ref. [78]; in contrast, RISM-PY theory 
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with 
DGC
,

ˆ
s s

  overestimates 
2
e

R  for / 2N  , and the deviation increases with increasing /N   

and diverges in the limit of /N  → .With 1 1e =  and 2e N= , Eqs. (5.8), (5.26) and (5.30) 

give 

DGC2
, ,2 2

,IE 00 0
1 10 0

ˆ ( , ) ( , , )4
d d ( ),

3

N N N
s s s s

e c

s s

r h r Na N
R r r u r

N

 



     
   


 

= =
=

    = +       
   (5.31) 

where 
DGC
,

0
ˆ ( , ) 0

s s
r


  

=
     is given in Appendix A.4. In the limit of /N  → , PY 

closure gives ( ), ' , , / 1s sh r N  = −  for 0 r    regardless of  , leading to 

( ), ' 0[ , , / / ] 0s sh r N    =  =  thus diverging
2
,IEe

R  in the limit of /N  → . This 

divergence is clearly due to the use of ideal-chain conformations. On the other hand, RPA 

closure ( )( )0 0
ˆ ˆ (( ) / /)c q N u Nq  = −  gives  2

, ' 1 0 1, , / ) , ) ( ) / 1 , ( )ˆ ˆ ˆ( ( ( )s sh q N S q c q S q c q    −  

with ( )1 , '
, ' 1

, ) 1/ )ˆ ( ,(
N

s s

s s

S q N q  
=

=  . Eq. (31) then becomes 

( )
( )2

2 1
,GF 0 030

0
0

ˆ , ,( , )d ˆd ( ).
3 2

N

e

h q NS qa N
R u q





   
   

=

   = +        
 

q
 (5.32) 

Since ( ) ( ) ( ) ( )   ( )2
0 0 1 1 1, , / / [1 , ] , / , /ˆ ˆh q N S q c q S q S q         −    = −   −    , its 

second term then cancels with the first term in the integrand of Eq.(5.32), thus eliminating the 

divergence of 
2
,IEe

R  in the limit of /N  → . With RPA closure, 

we finally have 

( )

2
2 0 1
,GF 3

0 0 0

ˆ ( ) ( , )d
,

ˆ3 (1, ) ( )2
e

u q S qa
R

P q u q N


 
    =


 =

+ 
q  (5.33) 

leading to 
2 2
,G ,0/ 0.0141e F eR R   in the limit of /N  → . That 

2
,Ge FR  does not diverge in 
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the limit of /N  →  is therefore due to the error cancelation between the use of ideal-chain 

conformations and RPA closure, which may also be the reason for the surprisingly good 

prediction of GF theory shown in Fig. 5.1. 

The difference in the bonded energy per chain from the reference state (given by
S
,b
CF

cu

), ,bcu , exhibits similar behavior to 
2
eR  as expected and is therefore not shown. 

 

5.3.1.2 E , non-bonded internal energy, pressure, and free energy 

Fig. 5.2 (a) shows that /E n  obtained from all the methods monotonically decrease 

from ( ) ( ) ( )2 DGC 2
0 , '

0
, ' 1

2 / d / 1.2066
N

c s s

s s

rr u r r N


   
=

  at / 0N  =  with increasing /N  ; 

this is because polymer segments reduce their contact (overlap) as their repulsion increases. 

Since 410= here is below the FCC close packing of these segments (which corresponds to

42 10=  ), in the limit of /N  →  we have the ground state of hard-sphere chains with 

zero non-bonded internal energy, which has no fluctuations (i.e., the presence of multiple 

energy levels) and gives  0 0 /( 70)/ / 1 2 0.693E n u  = −  . There are, however, 

correlations in the ground state; that is, the segments cannot overlap. We see from Fig. 5.2(a) 

that RISM-PY theory with 
DGC
, '

ˆ
s s  gives very good prediction; even in the limit of /N  → , 

it gives
IE / 0.7066E n  , slightly higher (by 2% ) than the above exact value. The deviation 

is due to the use of ideal chain conformations. In fact, in this limit we have , '( ) 1s sh r  = − ; 

Eq. (5.26) then leads to ( ) ( ) ( )IE DGC 2
0 , ' 0

0
, ' 1

/ 2 / d 1/ 2 0.7066
N

s s

s s

E n N r r u r r


    
=

= −  . We 
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also note that using 
FOMC
, '

ˆ
s s  in RISM-PY theory gives slightly worse (smaller) prediction than 

using 
DGC
, '

ˆ
s s  for /N   up to 50 (more clearly seen in Fig. 5.2(b)); this unexpected result is 

actually due to the error cancelation between the use of ideal-chain conformations and PY 

closure at finite /N  . 

(a)  (b)  

(c)  (d)  

Figure 5.2: The ensemble average of E  per chain, the non-bonded internal energy per chain, 

the difference in pressure and the Helmholtz free energy per chain from the reference state. 

(a) The ensemble average of  per chain, (b) the non-bonded internal energy per chain ,nc bu , 

(c) the difference in pressure from the reference state due to the non-bonded interactions nbP , 

and (d) the difference in the Helmholtz free energy per chain from the reference state cf  for 

homopolymers. Note that the horizontal axis in Part (a) is on the logarithmic scale. 10N = , 
410= and / 0.3.a =  
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On the other hand, GF theory only works for / 1N   and underestimates E  at larger 

/N  . For large /N   (up to 1010 ) our numerical calculations give
GF 0.25/ ( / )E n N  − .  (Data 

not shown), which is different from the lattice case where 
GF 1/ ( / )E n N  −  was found. For 

homopolymers (i.e., 0N = ), Eq. (5.39) can be rewritten as

( ) ( )GF 2 2
0 0

0
/ 1 / 4 d (1, ) / / (1ˆ ˆ( ) ( , ) 1)cE n qq u Pq q N u Pq q     


= +   , which corresponds to 

Eq. (19) in Ref. [78]. With 0 1ˆ ( )u q =  on a lattice, we then obtain the “−” scaling in the limit 

of /N  →  after the Taylor expansion in terms of / N . But for the soft potential used here, 

0
ˆ ( )u q is not constant and approaches 0 in the limit of q → , which changes the scaling of 

GF /E n  with /N  . Clearly, 
GF 0E = in the limit of /N  →  indicates that GF theory does 

not capture the segment correlations in the ground state. 

The non-bonded internal energy per chain ,nbcu  is directly calculated from E  

according to Eq. (5.7) and is shown in Fig. 5.2(b). We see that ,nc bu  from all the methods is 

proportional to /N   at small / 1N  , and that RISM-PY theory with 
DGC
, '

ˆ
s s  can 

quantitatively predict ,nbcu  within the range of our simulation data. Its predictions with 
FOMC
, '

ˆ
s s

, however, are less accurate (smaller) for /N   up to 50, due to the aforementioned error 

cancelation between the use of ideal-chain conformations and PY closure at finite /N  . On 

the other hand, RISM-PY prediction with 
DGC
, '

ˆ
s s  is proportional to /N   at large /N   (data 

not shown), due to the slight deviation of its predicted 
IE /E n  from the exact value in the limit 

of /N  → ; in other words, 
IE
,nc bu diverges instead of approaching 0 in this limit, which is 
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unphysical and due to the use of ideal-chain conformations. 
FOMC
, '

ˆ
s s is therefore needed at large 

/N   to obtain the correct behavior of ,nc bu . Fig. 5.2(b) also shows that GF theory largely 

underestimates ,nc bu  and even gives the wrong trend for / 15N  , because it fails to capture 

the segment correlations. Eq. (5.41) indicates that 
GF
,nc bu  has two parts: the SCF prediction 

( ) ( )SCF
,n 0 0/ 2 1 0 / 0.6937 /c bu N u N    = −  −    and the GF contribution 

( ) GF 0.75/ / ( / )N E n N   at large /N  ; the former leads to ,nb 0cu   at large /N  . 

Fig. 5.2(c) shows the difference in (virial) pressure from the reference state due to the 

non-bonded interactions, 
3

n ,0b eP R . We see that 
3

n ,0 /b eP R N    at small / 1N   for all 

methods, and that RISM-PY theory with 
DGC
, '

ˆ
s s  can quantitatively predict 

3
n ,0b eP R  within the 

range of our simulation data. RISM-PY theory with
FOMC
, '

ˆ
s s , however, gives less accurate 

(smaller) prediction for /N   up to 50, due to the same reason for /E n  or ,nc bu  discussed 

above. We also see that GF theory overestimates 
3

n ,0b eP R  at large / 25N  , which is 

different from that for /E n  or ,nc bu , due to its failure to capture the segment correlations. On 

the other hand, while 
FOMC 3

n ,0b eP R  is expected to approach 0 in the limit of /N  →  , the 

predictions of RISM-PY with 
DGC
, '

ˆ
s s  and GF theories are proportional to /N   at large /N   

(data not shown), because the SCF contribution, which is proportional to /N  , dominates at 

large /N  ; in other words, they diverge instead of approaching 0  in the limit of /N   due 

to the use of ideal-chain conformations. 

Fig. 5.2(d) shows the difference in the Helmholtz free energy per chain from the 
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reference state, cf , which is directly calculated from E  according to Eq.(5.8). We see 

similar results to those of ,nc bu  shown in Fig. 5.2(b), but the valid /N  −range for RISM-PY 

theory in Fig. 5.2(d) is larger than that in Fig. 5.2(b). On the other hand, the RISM-PY 

prediction with 
DGC
, '

ˆ
s s  is proportional to /N   at large /N   (data not shown); in other words, 

IE
cf diverges in the limit of /N  →   due to the use of ideal-chain conformations. We also 

see that 
GF

cf  exhibits a maximum, which can be found from Eq.(5.8). and the behavior of 

GF
E  shown in Fig. 5.2(a). In addition, 

GF
cf becomes negative at large /N   (data not 

shown), where the SCF contribution ( 0.6937 /N  − ) dominates in Eq.(5.8). 

 

5.3.1.3   
2
  and heat capacity 

(a)  (b)  

Figure 5.3: The fluctuation of E  and 
2
  per chain, and the constant-volume heat capacity. 

Logarithmic plot of (a) the fluctuations of E , 
2
 , per chain and (b) the constant-volume heat 

capacity due to the non-bonded interactions ,nV bC  for homopolymers. In Part (b), “ 2k = ” 
denotes a straight line of slope 2. 10N = , 410= and / 0.3a = .  
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Fig. 5.3(a) shows the fluctuations of E ,
2
 ,. We see that all the results monotonically 

decrease from 23.77 10−  at / 0N  =   with increasing /N  . GF theory again only works for

/ 1N  , and overestimates 
2
  at larger /N  . For large /N  , our numerical calculations 

give
2 1.25
,GF ( / )N  − , consistent with the above behavior of 

GF
E  [see Eq.(5.9)]. In contrast, 

RISM-PY predictions with both 
DGC
, '

ˆ
s s  and 

FOMC
, '

ˆ
s s  are in good agreement with our simulation 

results, and the former decreases more rapidly with increasing /N   than GF prediction at 

large /N  . While our simulation data are only for / 50N   , at larger /N   they are expected 

to decrease also more rapidly than GF prediction, as found in the 1D lattice case shown in Fig. 

5.3(a) of Ref. [78]. 

(a) (b)  

Figure 5. 4: The total structure factor and the normalized isothermal compressibility of 
homopolymers. 

(a) The total structure factor ( )tS q  and (b) the normalized isothermal compressibility T of 

homopolymers. 10N = , 410= and / 0.3a = .  

 

Analogous to ,nbcu , the constant-volume heat capacity due to the non-bonded 

interactions ,nV bC  is directly calculated from 
2
  according to Eq. (5.12) and shown in 

Fig. 5.3(b). We find that ,nV bC  from all the methods is proportional to 
2( / )N   at small 
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/ 1N   and monotonically increases with increasing / 50N   . At large /N  , however, 

FOMC
,nV bC .  is expected to exhibit a maximum and then decrease to zero in the limit of /N  →

, where the system is in the ground state; while the same is expected for the RISM-PY 

prediction with 
DGC
, 's s , 

GF 0.75
,n ( / )V bC N   and diverges in this limit. 

 

5.3.1.3 Total structure factor and isothermal compressibility 

Fig. 5.4(a) shows the total structure factor ( )tS q characterizing the density fluctuations. 

We see that, for 0N   ,GF theory underestimates On the other hand, 𝑆𝑡(𝑞) predicted by 

RISM-PY theory with either 
DGC
, 's s or

FOMC
,s s   are indistinguishable, and in very good agreement 

with FOMC results. Note that, with the normalized isothermal compressibility 

( )T c B T
k T V P V  −   and 𝑃 denoting the total pressure, we have ( 0)t TS q N = = which 

is shown in Fig. 5.4(b). While T cannot be obtained from our canonical-ensemble FOMC 

simulations performed in a fixed-length box at 0N = , we see that 𝜅𝑇 obtained from both GF 

and RISM-PY theories decrease from 1 for ideal chains (i.e., at 0N  = ) with increasing N 

as expected. Consistent with Fig. 5.4(a), for 0N   , while GF theory underestimates T , 

RISM-PY theory with 
DGC
,s s

   gives slightly larger T  than that with 
FOMC
,s s  . 
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5.3.2 System II: DBC at 0N  = Chain/block end-to-end distance and bonded 

internal energy 

Fig. 5.5(a) shows that 
2
eR obtained from all the methods monotonically increase with 

increasing N  (that is, the repulsion between A and B segments causes chain-stretching), and 

that both GF and RISM-PY theories (with
DGC
, '

ˆ
s s ) give good predictions for small 1N , 

where Taylor expansion of Eq.(5.36) gives 
2
,GFeR N   (at / 0N  = ). For 3 8N  GF 

theory gives better prediction than RISM-PY theory, while for larger N  the opposite occurs. 

The latter is due to the divergence of 
2
,GFeR  at the mean-field ODT

*
MF 10.047N  , where 

the matrix 
RPA 1( )

−S  becomes singular at the most unstable mode
*
MF ,0 4.634eq R  . In contrast, 

we see that both 
2
,FOMCeR  and 

2
,RISM-PYeR  remains finite even at the ODT 

* 25.67N   

determined from FOMC simulations. 

Fig. 5.5(b) shows the mean-square block end-to-end distance
2
ebR , with the ideal-chain 

result given by ( )2 2
,0 / 2 1ebR N a= − . We see that 

2
ebR  obtained from all the methods exhibit a 

small positive maximum around 2N = , and that both theories give good predictions up to  

4N . For larger N , 
2
ebR  becomes negative, and GF theory underestimates

2
ebR .  mainly 

due to its divergence to −  at 
*
MFN  (again caused by the singularity of

RPA 1( )
−S ); in contrast, 

RISM-PY theory
DGC
, '

ˆ
s s  overestimates

2
ebR , and both 

2
,FOMCebR  and 

2
,RISM-PYebR  remains finite 

at
*
N . We also note that, for small 1N , the Taylor expansion of Eq.(5.36) gives 

2
,GFebR N   at / 0N  = . 
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Fig. 5.5(c) shows ,bcu  obtained from various methods, which is like Fig. 5.5(b) except that 

FOMC
,bcu  exhibits a minimum before

*
N . This minimum, absent in

2
ebR , is clearly due to the 

contribution of A-B bonds: ( )2
1 25, 6R e e = =  (data not shown) exhibits similar behavior to 

2
eR  shown in Fig. 5.5(a). GF theory, however, cannot capture the minimum in ,bcu  due to 

the divergence to −  of other bonds. In contrast, while RISM-PY theory with 
DGC
, '

ˆ
s s  

overestimates ,bcu  for 4N , it can capture this minimum. Note, however, that the 

relative difference 
SCF

,b ,b/c cu u  is very small, meaning that the effect of N  on the bonded 

energy is negligible compared to the SCF (ideal-chain) contribution although the chain 

conformations (
DGC
, '

ˆ
s s and

FOMC
, '

ˆ
s s ) are different. 
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(a)  (b)   

(c)  

Figure 5.5: The difference in the mean-square chain end-to-end distance, mean-square block 
end-to-end distance from the ideal-chain reference state, and the bonded energy per chain from 
the ideal-chain reference state. 
Logarithmic plot of the difference in the mean-square chain end-to-end distance from the ideal-

chain reference state
2
eR , (b) semilogarithmic plot of the difference in the mean-square block 

end-to-end distance from the ideal-chain reference state
2
ebR , and (c) semilogarithmic plot of 

the difference in the bonded energy per chain from the ideal-chain reference state ,bcu  for 

DBC. The vertical lines mark 
*
MFN  (dash-dot-dot) and 

*
FOMCN  (dotted for / 0N  =  and 

solid for / 50N  = ). In Part (a), “ 1k = ” denotes a straight line of slope 1. 10N = , 410= and

/ 0.3.a =   
 
 

5.3.2.2 E , non-bonded internal energy, pressure, and free energy 

Fig. 5.6 (a) shows that /E n  obtained from all the methods monotonically decrease 

from ( ) ( ) ( )
A

A

2 DGC 2 2
0 , '

0
1 ' 1

4 / d / 3.939 10
N N

c s s

s s N

rr u r r N


    −

= = +

    at 0N =  with increasing
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N ; this is because A and B segments reduce their contact as their repulsion increases. GF 

theory only works for 1N , and underestimates E  at larger N ; 
GF

E  diverges to −  

at 
*
MFN  due to the singularity of the matrix 

RPA 1( )
−S  at the most unstable mode

*
q . In contrast, 

both RISM-PY and FOMC results remain finite even at
*
N . While RISM-PY theory with 

both 
FOMC
, '

ˆ
s s  and 

DGC
, '

ˆ
s s  overestimates E  for 15N , using 

FOMC
, '

ˆ
s s  gives better prediction 

than using 
DGC
, '

ˆ
s s  as expected. 

,nbcu  is directly calculated from E  according to Eq.(5.7) and is shown in 

Fig. 5.6(b). We see that ,nbcu  from all the methods is proportional to N  at small 0.1N  

(i.e., where E  is nearly constant), and exhibits a maximum due to the competing SCF 

contribution of random mixing (i.e., / 4N ) and the F/C contribution of AB segregation (i.e., 

the monotonic decrease of E  with increasing N  as shown in Fig. 5.6(a)). These results 

of ,nbcu  can be well understood based on those of E  discussed above. The N -range 

over which RISM-PY theory gives good predictions for ,nbcu , however, is smaller than that 

for E . 

Fig. 5.6(c) shows the behavior of
3

n ,0b eP R , which is
DGC
, '

ˆ
s s  like that of ,nbcu  discussed 

above. The N -range over which the theories give good predictions for 
3

n ,0b eP R , however, is 

larger than that for ,nbcu . We also note that RISM-PY theory with
DGC
, '

ˆ
s s does not capture the 

maximum of 
3

n ,0b eP R . 
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(a) (b)  

(c)  (d)  

Figure 5.6: The ensemble average of E  per chain, the non-bonded internal energy per chain, 

the difference in pressure and Helmholtz free energy per chain from the reference state at 
0N  = . 

The ensemble average of E  per chain, (b) the non-bonded internal energy per chain ,nc bu , 

(c) the difference in pressure from the reference state due to the non-bonded interactions nbP , 

and (d) the difference in the Helmholtz free energy per chain from the reference state cf  for 

DBC at / 0N  = . The vertical lines mark 
*
MFN  (dash-dot-dot) and 

*
FOMCN  (dotted). Note that 

the horizontal axis in Part (a) is on the logarithmic scale. 10N = , 410= and / 0.3a = .  
 

Fig. 5.6(d) shows that, while cf  from all the methods are proportional to N  at 

small 1N  similar to the behavior of ,nbcu , they monotonically increase with N  up to 

*
N  (

*
MFN for GF theory); this is because the SCF contribution ( / 4N ) is always larger 

than the absolute value of the F/C corrections in Eq.(5.8). We also note that 
GF

cf  does not 
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diverge [as evident from Eq.(5.19) or the behavior of
GF /E n ] at

*
MFN , which means that the 

entropy per chain 
GF GF GF/c B c cs k u f  = −   must diverge just like the non-bonded internal 

energy, consistent with the divergence of
2
,GFeR . 

 

5.3.2.3 
2
  and heat capacity 

Fig. 5.7(a) shows the fluctuations of E ,
2
 . We see that GF prediction increases from 

21.8756 10−  at 0N =  with increasing N .  and diverges to  at 
*
MFN , consistent with the 

behavior of 
GF

E  [see Eq.(5.10)]. But even this trend is incorrect, as 
FOMC

E  decreases with 

increasing N . In contrast, RISM-PY theory gives much better predictions, although it 

underestimates 
2
  for 10N . RISM-PY theory with 

FOMC
, '

ˆ
s s  gives the closest prediction to 

our simulation results as expected, and even captures the small shoulder found in our 

simulations around
*18N N =  , which is not captured when ideal-chain conformations are 

used. 

Fig. 5.7(b) shows ,nV bC  calculated directly from 
2
  shown in Fig. 5.7(a) due to the 

poor performance of GF theory in predicting
2
 , we do not consider it here. We see that 

2
,n ( )V bC N  for 1N , where 

2
  is nearly a constant, and that 

FOMC
,nV bC  exhibits a 

maximum before
*
N , which is captured by RISM-PY theory with 

FOMC
, 's s  but not with

DGC
, 's s ; 

the latter behavior can be deduced from that of
2
 . 
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 (a)  (b)  

Figure 5.7: The fluctuations of E ,
2
  per chain and the constant-volume heat capacity at 

0N  = . 

(a) Logarithmic plot of the heat capacity due to the non-bonded interaction ,nV bC  for DBC 

at / 0N  = . The vertical lines mark 
*
MFN  (dash-dot-dot) and 

*
FOMCN  (dotted). 10N = , 

410= and / 0.3.a =  
 
 
 

5.3.2.4 Structure Factor 

Fig. 5.8(a) shows the total structure factor ( )tS q . As in the case of homopolymers, GF 

predictions largely underestimate ( )tS q  except for the ideal-chain case (data not shown). 

( )tS q  predicted by RISM-PY theory with either 
DGC
, 's s  or 

FOMC
, 's s  are indistinguishable; they are 

in good agreement with the FOMC results for 8N  and underestimate the latter for larger

N . Fig. 5.8(b) further shows that, while T  given by GF and RISM-PY theories with 
DGC
, 's s  

monotonically decreases with increasing N ,that given by RISM-PY theories with 
FOMC
, 's s  

exhibits a minimum around 18.6.N =  
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(a) (b)  

     (c) (d)  

Figure 5.8: The structure factor and the normalized isothermal compressibility at 0N  = . 

(a) The structure factor (a) ( )tS q  characterizing the density fluctuations , (b) the normalized 

isothermal compressibility T of diblock copolymers and (c) ( )S q
 characterizing the 

composition fluctuations in DBC at / 0N  = . Part (d) shows the wave-number
*

q , where 

( )S q
 predicted by RISM-PY theory with the ideal-chain conformations 

DGC
, 's s  reaches its 

maximum, as a function of   normalized by its ODT-value 
*  determined in FOMC 

simulations, where the symbol on each curve marks its minimum. 10N = , 
410= and

/ 0.3a = .  

 

Fig. 5.8(c) shows the partial structure factor ( )S q
 characterizing the composition 

fluctuations. We see a growing peak at the most unstable mode 
*

q  as N  increases, and that 

the simulation results lie in-between the RISM and RPA predictions. RISM-PY prediction with 

FOMC
, 's s  is hardly better than with

DGC
, 's s ; both underestimates ( )S q

 (except for ideal chains) 
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and exhibits larger deviation from the FOMC results with increasing N . This 

underestimation is consistent with the fact that RISM-PY theory cannot give an ODT (see 

Sec. 5.3.4 below). On the other hand, RPA prediction largely overestimates ( )S q
, thus 

giving
* *
MFN N  . 

Finally, Fig. 5.8(d) shows how the RISM-PY prediction of the peak position 
*

q  of 

( )S q
 varies with   normalized by the ODT determined from simulations, and we see a 

unexpected minimum (marked by the symbol); the unexpected increase of 
*

q  at large   

signifies the breakdown of RISM-PY theory using
DGC
, 's s . In contrast, such a minimum is not 

predicted by RISM-PY theory using 
FOMC
, 's s  (data not shown). 

 

5.3.3 System II: DBC at 50N  = Chain/block end-to-end distance and bonded 

internal energy 

Fig. 5.5(a) shows that, while 
2
,GFeR  monotonically increases with increasing N  for 

small / 10N  , for larger /N   it slightly decreases with increasing N  and exhibits a 

minimum before diverging at 
*
MFN  (which is independent of /N  ). This is consistent with 

our simulation results at / 50N  = , where the GF theory still gives good prediction up to

6N . 

On the other hand, Fig. 5.5(b) shows that, for / 10N  , 
2

,GFebR  monotonically 

decreases with increasing N , which is consistent with our simulation results at / 50N  = . 

Compared to System II, however, GF theory gives good prediction only for 2N  here. 

file:///C:/Users/yayaw/OneDrive/Desktop/Graduation/Yan%20Dissertation.docx%23subsec:Trend
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The behavior of ,bcu , shown in Fig. 5.5(c), is like System II, except its monotonic 

decrease with increasing N  for / 10N  . Due to the poor performance of RISM-PY 

theory with 
DGC
, '

ˆ
s s  in predicting the chain conformations for System I, we do not consider its 

predictions here. 

We know that larger /N   makes 
2
eR  larger and increasing N  before ODT has two 

effects: chain stretching leading to larger 
2
eR  and formation of clusters leading to smaller 

2
eR  

that screens the /N   effect. Therefore, at small /N   the former effect plays important role, 

while at large /N   the latter becomes more significant. The maximum in 
2
ebR  at / 0N  =  

results from two competing effects with increasing N : increased stretching of each block 

leading to increasing 
2
ebR  and clusters formed in each block leading to decreasing 

2
ebR ; 

apparently the latter becomes more significant at large N  especially near
*
MFN . the 

stretching effect is screened by the larger repulsion because of larger /N  . 

In following, we are currently working on several thermodynamic properties of diblock 

copolymers at 50N  = , including E , non-bonded internal energy, pressure, free energy, 

2
 , heat capacity and structure factor. 
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5.4 Trends of ODT predicted by RISM-PY method 

The mean-field ODT 
*
MF  of symmetric DBC is given by RPA, which only accounts 

for the Gaussian-level fluctuations; 
1 *( )S q

−
from RPA is a linear function of  , and 

1 *( ) 0S q
− =  at

*
MF . We therefore have 

1 * 1 * *
MF( ) ( )/ , 0 1 /r S q S q N     − − = = −  for 

*
MF   from RPA, which does not depend on / a  and /N  . On the other hand, this 

independence is not true for RISM-PY theory, which approximately accounts for the non-

Gaussian fluctuations. At finite 0  , while 
PY

r  predicted by RISM theory with 
DGC
, 's s  and 

PY closure is always larger than 
RPA

r  and never vanishes (RISM-PY therefore cannot give an 

ODT) as shown in Fig. 5.9, the qualitative trends of ODT can be inferred from the closeness of 

PY
r  to 

RPA
r . In this section we therefore analyze the trends of ODT by comparing the rates at 

which 
PY

r  approaches 0, which captures some of the qualitative behavior of the ODT 

determined from FOMC simulations in Paper I.[73] 

Fig. 5.9(a) shows the /N  - and / a -dependence of
PY

r . 
410= ,where the symbols 

denote the N  value larger than which RISM-PY theory using 
DGC
, 's s  breaks down .We see 

that, at given / a , 
PY

r  increases with increasing /N   and approaches 0 at slower rate. This 

is because, as /N   increases, the A-B repulsion characterized by N  becomes relatively 

weaker, thus requiring larger N  to form lamellae. This behavior is also found for the soft-

core CGC-   model of DBC melts used in our recent work, and is consistent with most cases 

of the FOMC results; note, however, that, at / 1.15a = , 
* *

MF/   decreases with increasing 

file:///C:/Users/yayaw/OneDrive/Desktop/Graduation/Yan%20Dissertation.docx%23psai*
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/N   for  at 10N =  and for   at 20N =  in FOMC simulations, which 

cannot be explained by IE theories. On the other hand, as / a  increases, the RISM-PY results 

approach the RPA prediction (i.e., 
PY

r  approaches 0 at faster rate), which is consistent with 

our FOMC results. This is because, as / a  increases, the AB repulsion becomes effectively 

larger, thus requiring lower N  to form lamellae. 

As increases, Fig. 5.9(b) shows that, at / 0N  =  and / 0.3a = , 
PY

r  

approaches 0 faster; in other words, as increases, the system fluctuations approaches 

Gaussian-level, which is consistent with FOMC results.3 

(a) (b)  
 

(c)  

Figure 5.9: Ratio between the inverse of the maximum of structure factor 
*( )S q  and that 

0N = for three different cases. 

Ratio between the inverse of the maximum of the structure factor 
*( )S q  characterizing the 

file:///C:/Users/yayaw/OneDrive/Desktop/Graduation/Yan%20Dissertation.docx%23psai*
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composition fluctuations and that at 0N = , predicted by RISM-PY theory with 
D
, '
GC

s s , as a 

function of   normalized by its value 
*
MF  at the mean-field ODT, for DBC at (a) 

410=  

and 10N = , (b) / 0N  = , 10N = , and / 0.3a = , and (c) 
410=  and / 0N  = . In each 

part, the straight line is the RPA result, and the symbol on each curve marks the  -value at 

which 
*

q  reaches the minimum (see Fig. 5.8(d)). 

 

Finally, we also investigate the effects of the chain length N , as shown in Fig.5.9(c). 

At given / 0.3a =  and / 0N  = , 
PY

r  decreases with increasing N  and approaches 0 at 

faster rate. But we note that varying N  at constant / a  exhibits both the short-range 

correlation and chain discretization effects, because changing N  also changes ,0eR . To 

investigate the latter alone, we compare the case of 10N =  and / 0.3a =  (i.e. ,0/ 0.1eR =

) with that of 20N =  and ,0/ 0.1eR = . We see that 
PY

r  approaches 0 also at faster rate with 

only increasing the chain discretization, which is consistent with our FOMC results. One may 

expect that the chain discretization effects diminish quickly and the RISM-PY results approach 

RPA with increasing chain discretization. 

 

From another point of view, the RPA closure can be obtained from Taylor expansion 

of PY closure at small , '( )s su r . Since the maximum value of , '( )s su r , achieved at 0r = , is 

proportional to ( ) ( )31 2
,0eN R −  (or equivalently ( ) ( ) 31 2

N a  −− ), smaller /N   or 

larger makes ( ), ' 0s su  smaller; Figs. 5.9(a) and 5.9(b) therefore show that, as /N   

decreases increases, RISM-PY theory approaches RPA results. Similarly, as / a  

file:///C:/Users/yayaw/OneDrive/Desktop/Graduation/Yan%20Dissertation.docx%23psai*
file:///C:/Users/yayaw/OneDrive/Desktop/Graduation/Yan%20Dissertation.docx%23psai*
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increases at the same N , while the interaction range increases, , '(0)s su overall decreases; 

Fig. 5.9(a) therefore shows that RISM-PY theory approaches RPA results with increasing / a

. Finally, keeping ,0/ eR  as constant, , '(0)s su decreases with increasing chain discretization, 

which is consistent with the middle two curves in Fig. 5.9(c); on the other hand, since 

increasing N  and decreasing ,0/ eR  have competing effects on , '(0)s su , comparison of the 

upper two curves in Fig. 5.9(c) shows that the former outweighs the latter in this case. 

 

5.5 Summary 

A Calculated quantity from GF theory 

A.1 Mean-square end-to-end distances, energy, and pressure due to the bonded 

interaction 

Adopting the method of Wang, for two segments 1e  and 2e  on the same chain we 

introduce an auxiliary parameter   and define ( )
2 1

2 2
, ,

1

) 3 / 2 ( )(
n

C C

k e k e

k

a   
=

 + − R R

. We then have the partition function at given   as 

   ( )
( ) exp exp d [ ( ) ( ) ln ( ) ,

! 2

n
EG

i n Q
n

      


 =  −    + 
 

r r r  (5.34) 

where 

( ) ( ) ( )
A

2 1

A

2 2
A B

1 1 1

( ) d exp{ 3 / 2 ( ) } / ( )
NN N

C

s s s e e

s s s N

Q h i i a G     
= = = +

   − − − − −  R R R R R  

and ( ) 
2 1

2 2

1

( ) d exp 3 / 2 ( )
N

C

s e e

s

G h a  
=

   − − − R R R . The mean-square distance 
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between 1e  and 2e , ( )2
1 2,R e e , is then given by 

( ) ( ) ( )
2 1

2 2 2
1 2 , ,

0
1

, 2 / 3 ln / ( ) / .
n

k e k e

k

R e e a n n


 
=

=

 = −   = −   R R  

Next, we expand ( )lnQ   to the second order in ( ) r  as 

( ) ( ) ( ) ( ) ( )*
1 1 23

d
ln ln , , , ,ˆ

2
ˆ

(2 )

N
Q Q q e e

V
    


 −   −

q
q S q  (5.35) 

where ( )1 1 2, , ,q e eS  is a 2 2  matrix with its ( )P,P'  element being the Fourier transform of 

( ) ( ) ( ) ( )
*

2
P P'/ ln / 'V N Q i i


       r r . Substituting it into Eq.(5.34) and performing the 

Gaussian integrals, we obtain  

( ) ( ) ( ) ( )
2

2 2 RPA
GF 1 2 SCF 1 2 1, 0 1 23

d
, , t ' , , ,

3 (2 )c

a
R e e R e e r q q e e   = = +   

q
S S  (5.36) 

where ( ) ( )2 2
S 1 2 2 1,CFR e e e e a= −  is the SCF prediction, and, at given  , the single-chain 

structure factor ( )1 1 2, , ,q e eS  and ( ) ( )1, 0 1 2 1 1 2
0

' , , , , , /q e e q e e 
 = =

    S S  are derived in 

Sec. A.4. Note that, ( )1, 0' ,1,q N=S is equivalent to ( )
, '

, , /H ' N− − −
r r

q q r r  defined in Ref. [78]; 

since RPA [Eq.(5.35)] is the only approximation used here and we obtain the same results as 

in Ref. [78], the additional approximation used in the Appendix of Ref. [78] turns out 

to be exact at the RPA level. 

The mean-square chain end-to-end distance can be obtained as ( )2 2
,GF GF 1,eR R N= , and the 

mean-square block end-to-end distance ( )2 2
,GF GF A1,ebR R N=  [or ( )2

GF A 1,R N N+  for symmetric 

DBC].  Finally, the bonded energy can be evaluated as 

2

GF SCF RPA
,b ,b 3 1b

1 d
t ,

2 (2
( ) ( )

)
c c

c

u u r q q 
 

 = +   
q

S S  (5.37) 
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where ( ) ( )2

1

1, 01b
1

' , , 1
N

s

q q s s

−

=
=

 +S S , and the pressure due to the bonded interaction is given 

by 

2

GF SCF RPA
b b 3 1b

1 d
t .

3
( ) (

)
)

(2
qP qP r  


 = −   

q
S S  (5.38) 

 

A.2 non-bonded internal energy and non-bonded pressure 

Using Eq.(5.18) and the second order cumulant moment of the Gaussian distribution, 

we obtain the ensemble average of E  and E  in GF theory as 

GF RPA

3

d
tr ,

2 (
ˆ( )

2 )
( )

V
E q q  

=    
q

S u   (5.39) 

GF RPA

3

d
tr ,

2 (
ˆ( )

2 )
( )

V
E q q  

=    
q

S u   (5.40) 

the non-bonded internal energy is then given by  

GF SCF RPA
,n ,n 03

1 d
tr ( ) .

2 (
( )

2 )
c b c b

c

u q qu  
 

 = +   
q

S S (5.41) Alternatively, one can use 

( ) ( )  ( )GF GF GF
,n / / / /c b c cu N f N N f N       =    +      to obtain the same results. 

Similarly, the non-bonded pressure is given by 

GF SCF RPA
n n 03

1 d
tr ' ,

6 (2 )
( ) ( )b b qP P q 


 = −   

q
S S (5.42) 

where ( )0 0

/ /
' ' /

/ /
ˆ

N N N
u N

N N N

  


  
+ 

  + 
S  with 

0 0' d ( d) /( )u r ur r r   

A.3 non-bonded constant-volume heat capacity 

The fluctuations of E  and E  in GF theory are given by 
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( )
( )

GF2 RPA 2

3

d ˆtr [ ( ) ( )] ,
2 2

V
q q  


 =  

q
S u   (5.43) 

( )
( )

GF2 RPA 2

3

d ˆtr [ ( ) ( )] ,
2 2

V
q q  


 =  

q
S u   (5.44) 

( )
( )

GF2 RPA RPA
, 3

d ˆ ˆtr ( ) ( ) ( ) ( ) ,
2 2

V
q q q q     


 =  

q
S u S u  (5.45) 

where we have used Eq. (5.18) and the fourth-order cumulant moment of the Gaussian 

distribution[80] to calculate the ensemble average; these results can also be obtained from 

Eqs.(5.9)  (5.11). The GF prediction of ,nV bC  is then given by 

GF
2,nb RPA

03

1 d
tr ( ) ( ) .

2 (2 )

V

B c

C
q q

k
 

  =    
q

S S   (5.46) 

Note that at given /N   and N , the GF predictions of 
2
eR , 

2
ebR , ,bcu , ,nc bu , ,V nbC , 

cf , and /c Bs k  are all proportional to 
1

c−
, which is independent of the system 

dimensionality, and in the limit of c →   the SCF prediction is exact. 

 

A.4 Single chain structure factors at given   for 
2
e

R calculation 

Here we derive 1 1 2
1, 0 1 2

0

( , , )
( , , )

q e e
q e e

=
=

 =


S
S used for the calculation of 2

1 2( , )R e e in GF 

theory for 2 1e e .Firstly, for the (A, A) elements, we have  
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 

( ) ( ) ( ) ( )

( ) ( )

*

A

2
1,AA 1 2

*
A A0 0

2 2

2 1 2 12 0 0 0, 1

2 1 2

( , , ) 1 ( )
d( ) exp ( )

( ) ( ) ( )

3
exp exp

2

3
( ) exp

N

t t e e t t e e

t t

s s

t t e

q e e V Q
i

N Q i i

i i
a N

e e B q i
N

 

 
      = =

 
=

−


   = − −  −     

 = −  − − − −  − −        

= − − −  − −  





ω

S
r r q r r

r r

q R R R R q R R R R

q R R R( )
A A1

2 2
1

01 1

N N

e

t t t

a
−

 = = +

 
    R

(5.47) 

which corresponds to the correlation between ( )exp t ti −  −  q R R  and ( )2

2 1e e−R R  in the 

ideal-chain ensemble of ideal-chain system, depending on the positions of relevant segments 

along a chain. If 2 1 Ae e N  , apparently, between ( )exp t ti −  −  q R R  and ( )2

2 1e e−R R   are 

uncorrelated, and thus the above equation goes to 0; otherwise, for 1 2 Ae e N  , we have 

( ) ( )

( ) ( )

1 2 1 A

1 2

2 2 2 A

1 1 2

1 1
2 2

1 2 12 2
1 1 1 11,AA 1 2

1 1
2 20

2
1 1

( ) ( )
( , , )

,
3

( ) ( )

e e e N
t t t t

t t e t t e

e e e N
t t t t

t e t t t e t e

t e B q e e B q
q e e a q

N
t t B q e t B q

− −
 − −

 = = + = = +

− −
 − −=

  = = + = = +

 
− + −   =     + − + −  

   

   

S
 (5.48) 

and for 1 A 1e N −  and 2 A 1e N + , we have 

( ) 1 A A A

1 1

1 12 2
1,AA 1 2 2 ' 2 '

1
' 1 1 ' ' 10

, , ,
( ) ( ) ( ') ( ) .

3

e N N N

t t t t

t t e t e t t

S q e e a q
t e B q t t B q

N





− −
− −

= = + = = +=

   = − + −    
     (5.49) 

Similarly, for 1 2 A 1e e N  + , the (B, B) element ( )1,B 1 2
0

, , , / 0BS q e e


 
=

   =  ; otherwise, 

for 2 1 A 1e e N  + , we have 

( ) ( )

( ) ( )

1 2 1

A 1 A 2

2 2 2

1 1 2

1 1
2 2

1 2 12 2
1 1 1 11,BB 1 2

1 1
2 20

2
1 1

( ) ( )
( , , )

,
3

( ) ( )

e e e N
t t t t

t N t e t N t e

e e e N
t t t t

t e t t t e t e

t e B q e e B q
q e e a q

N
t t B q e t B q

− −
 − −

 = + = + = + = +

− −
 − −=

  = = + = = +

 
− + −   =     + − + −  

   

   

S
 (5.50) 
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and for 2 A 2e N +  and 1 Ae N , we have 

    
( ) 2 2 2

A A 2

1 12 2
1,BB 1 2 2 ' 2 '

2
' 1 ' 1 ' 1 10

, , ,
( ') ( ) ( ') ( ) .

3

e e e N
t t t t

t N t t t N t e

S q e e a q
t t B q e t B q

N





− −
− −

= + = + = + = +=

   = − + −    
     (5.51) 

Note that ( )1,B 1 2
0

, , , /BS q e e


 
=

     is the same as ( )1,A 1 2
0

, , , /AS q e e


 
=

     for 

symmetric DBC. 

Finally, for 1 2 Ae e N  , we have the crossing terms 

( ) ( )1,A 1 2 1,B 1 2
0 0

, , , / , , , /B AS q e e S q e e
 

   
= =

     =       as  

( ) 1 2

A 1 A

1 12 2
1,A 1 2 2 ' 2 '

2 1 2
' 1 1 ' 10

, , ,
( ) ( ) ( ') ( ) ,

6

e eN N
B t t t t

t t N t e t N

S q e e q a
e e B q e t B q

N





− −
− −

= = + = = +=

   = − + −    
     (5.52) 

for A 1 21N e e+    we have  

( ) A 2 A

1 2

12 2
1,A 1 2 2 ' 2 '

1 2 1
' 1 ' 10

, , ,
( ) ( ) ( ) ( ) ,

6

N e N N
B t t t t

t t e t t e

S q e e q a
t e B q e e B q

N





−
− −

= = = ==

   = − + −    
   (5.53) 

and for 1 Ae N  and 2 A 1e N +  we have 

( ) ( )

( ) ( )

1 2 1

A 2

A 2 A

1 A 1 2

1 1 1
2 2

1 2 12 2
1 1 11,AB 1 2

1
2 20

2
1 1

( ) ( )
( , , )

,
6

( ) ( )

e e e N
t t t t

t t N t t e

N e N N
t t t t

t e t N t e t e

t e B q e e B q
q e e q a

N
t t B q e t B q

− − −
 − −

 = = + = =

−
 − −=

 = = + + = =

 
− + −   =     + − + −  

  

  

S
  (5.54) 

From the above equations 2

1

1,1 1
( ) ( , , 1)

N

b s
q q s s

−

=
 +S S  is given by 

        

( (
( )

A
A A A

2

1 12 2 2 2
'

1 21 ,AA
1 ' 1 1 1

) 1 ( ) )
( ) ,

3 3 ( ) [1 ]

Ns s
N N Ns

t t

sb
s t t s s

B q B q B qa q a q
S B q

N NB q B q

− −
−

−
= = = + =

  − −  = =
−   
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( (
( )

B
B

2

A A

12 2 2 21
'

1 21 ,BB
1 ' 1 1 1

) 1 ( ) )
( )

3 3 ( ) [1 ]

Ns s
NN s N

t t

sb
s N t N t s s

B q B q B qa q a q
S B q

N NB q B q

−−
−

−
= + = + = + =

  − −  =
−    , 

A A

2

A A

2 2 1
' '

1 ,AB
1 ' 1 1 1 ' 1 1

( ) ( )
6

N Ns N N N
t t t t

b
s t t N s N t t s

a q
S B q B q

N

−
− −

= = = + = + = = +

 
= + 

  
     

( (
( )

( (
( )

A B
A B 12 2

1 2 1 2
1 1

) 1 ( ) ) ) 1 ( ) )
.

6 ( ) [1 ] ( ) [1 ]

N Ns N s N
N N

s s
s s

B q B q B q B q B q B qa q

N B q B q B q B q

−

− −
= =

      − − − −      = +
 − −
 
   (5.55) 

Note that, for symmetric DBC, 21 ,AAb
S is the same as 21 ,BBb

S . 

In the IE theories, we need the intrachain correlation functions ( ), ' 1 2, , ,ˆ
t t q e e   at given   acting 

on ( )2

2 1e e−R R  on one chain to solve the OZ equation with a closure to obtain ( )2
1 2,R e e . 

Considering one ideal-chain (i.e., without non-bonded interactions), ( ), ' 1 2,ˆ , ,t t q e e  , with 't t  

for example, can be evaluated by Gaussian integral as 
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( )

( )

( )
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=
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

 

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= = ==

− − −

= ==

  − − − 
 =

 − − 
 

 
 − −    

 

   

  

b b b q b

b b b

( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

2
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1

1 1 2

2 1
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22 2

2 1
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exp ,    if 1  and 1 ;
6 1
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6 1
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6 1
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6 1
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















        
   


   −  − − −   −     − +     

 (5.56) 

Taking the derivative of ( ), ' 1 2,ˆ , ,t t q e e   with respect of   and set 0 = , we have 

( )

( )

( )

1 2

2 2
2

1 1 1 2

2 2
2, ' 1 2

2 1 1

0

0,                                              if 1  or ;

( ) ,             if 1  and 1 ;
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t t t t

t t e e t t N
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q e e a q
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

 


−

−
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      

  −    +  


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
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2

1 2

2 2
2

2 1 2 2

nd 1 ;

( ) ,              if +1 -1; 
6

( ) ,             if +1 1 and ;
6

t t

t t

e t N

a q
t t B q e t t e

a q
e t B q e t e e t N

−

−







 +  



 −   



−   −  

 (5.57) 

which also leads to 1, 0 1 2( , , )q e e=S , for example, the (P,P )  element is given by 

( ) ( ), ' 1 2 0
P, ' P'

1/ [ , ,ˆ , / ] |t t

t t

N q e e    =
 

  . 
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B Chain-end effects 

The comparison of ,nbc
u and nbP between RISM and PRISM theories provides us with 

the chain-end effects neglected in the PRISM theory, shown as in Fig. [5.10] at N/κ=0 for 

instance. We find, with
DGC
,s s

  , both ,nbc
u and nbP from PRISM-PY method are lower than that 

from RISM-PY at high χN values, meaning that PRISM-PY gives solutions closer to FOMC 

simulation than RISM-PY, which is conflict with our expectation and it is probably caused by 

error cancelation between the chain-end effects and the PY closure. 
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Chapter 6 PCFs of Polymeric Fluids: A 

Comparison of Self-Consistent Polymer Reference 

Interaction Site Model and Polymer Density-

Functional Theories 

 

 

 
6.1 Introduction 

Chain conformations and structures of polymer melts determine their thermodynamic 

properties. For homopolymer melts of tangent hard-sphere chains, we have compared the 

intrachain normalized pair correlation function (PCF) (r) (i.e., d ( ) 1r = r ) and the interchain 

total PCF h(r) between monomers predicted by the SC-PRISM theory that adjusts its solvation 

potential strength to reproduce the mean-square chain end-to-end distance Re
2 given by the 

corresponding MC simulations[16] with the SC-PRISM theory that does not adjust its solvation 

potential strength (denoted by “=1”), a polymer density-functional theory based on the 

modified fundamental measure theory and the second-order thermodynamic perturbation 

theory[19, 92] (denoted by “TPT2”), and the corresponding MC simulations for various chain 

lengths (Nm=3~120) and monomer number densities (3=0.1~0.6 with  being the hard-sphere 

diameter), establishing it as the most accurate theory for (r) and g(r) to date. The figure below 

gives an example for Nm=24 and 3=0.6, where ( ) 2( ) ( ) ( ) 2 1 ( 1)
m m m

r r r N N r N     − − − −  with 

(r) denoting the Dirac -function.  

For homogeneous monatomic fluids, the pair correlation function ( )h r is just the 

familiar radial distribution function ( ) 1g r − . It can be used to determine the structural, 
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thermodynamic, and dynamic properties of the fluid, and can be measured experimentally.  For 

polymers, there are intra- and inter-chain PCFs, which depend on the segment positions along 

the chain contour due to the finite chain length. Few theories can predict intra- and inter-chain 

PCFs; these include polymer integral-equation theories such as the SC-PRISMs and DFTs. 

On the other hand, for spatially homogeneous monatomic fluids the Percus’ trick is the 

basis for defining g(r); that is, the radial distribution of other particles around a particle fixed 

at the origin is inhomogeneous. For polymers Yu and Wu [12] proposed the extended Percus’ 

trick, which treats a homogeneous homopolymer system as an inhomogeneous mixture of free 

chains A and grafted chains C and D. With segment s’ on a chain fixed at the origin, any 

polymer DFT can then be used to calculate the number density of segment s on type-I chain 

, '( )
I ss

r under the spherical symmetry, from which h(r) and ( )r are obtained. 

Here we use the polymer DFT of Yu and Wu, which combines the modified 

fundamental measure theory[93] for hard-sphere correlations and the first-order thermodynamic 

perturbation theory[94] for chain correlations; hereafter, we referred to this theory as TPT1. To 

improve its accuracy, we also replace the first-order thermodynamic perturbation theory by the 

second order as done in this paper, referred to as TPT2[92]. 
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6.2 Model and Method 

6.2.1 PRISM Calculations 

Here we use a simple model system of tangent hard-sphere chains to quantitatively 

compare the SC-PRISM and DFT predictions of intra- and inter-chain PCFs against many-

chain Monte Carlo simulation results. In our model system, which consists of n homopolymer 

chains each of N segments in volume V at thermodynamic temperature T. We take the hard-

sphere diameter   and 1 Bk T  as the units of length and energy, respectively. we have 

     if 1
( )

0      otherwise
nb

r
u r

 
= 


,  the bonding potential ub between two adjacent segments on a chain 

is given by ( ) ( )exp ( ) ( 1) 4   d exp ( ) 1b b
u r r u r   − = −  − = r , which fix the bond 

length to be   where r r  and 
3  .The bonded potential of a chain 

1
b b

1
1

( ) ( )
N

s s

s

V u
−

+
=

= −R R R sums over all its bonds, where Rs is the spatial position of the sth 

segment on the chain, and R denotes the spatial positions of all segments on the chain, thus its 

configuration. Note that, ( ) R is the number density of chains having the configuration R, 

1

( ) ( )
N

s

s

 
=

 r r is the total segment number density at spatial position r with

1

( ) d ( ) ( ).
N

s t s

t

  
=

=  −r R r R R  

The PRISM equation gives 3 2 3 3ˆ ˆ ˆ ˆˆ ˆ( ) 1 ( )h N c N c      = −  . The PY 

closure[13] gives ( ) ( )( ) 1 exp ( ) 1 ( )nb
c r u r h r = − +  , which leads to cut( ) 0c r r =  with 

cut 1r =  for the THSC model; it further gives cut(0 ) 1h r r  = − . We therefore only need to 
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solve for cut(0 )c r r  . For an initial guess 
old

cut(0 )c r r  , with   being the unit of length 

and
old old

2

3 3

ˆ ˆC c
N

 
=  ,we can therefore calculate the 3D Fourier transform of the indirect PCF, 

( ) ( )
old 2

3 3 3 3 2old 3

ˆ ˆˆ ˆˆ 1

ˆˆ1

h c C

NN C

 
      

 
  − = −
 − 

 from the PRISM equation, then obtain 

( ) ( )new 2( ) exp ( ) 1 1 ( )nb
C r N u r r  = − − +  ,which reduces to ( )new 2( ) 1 ( )C r N r= − −  for the  

THSC model. The Anderson mixing is finally used to converge ( )C r  with a convergence 

criterion of 
cut

new old 10
{0 }max ( ) ( ) 10r r C r C r

−
  −  . 

Note that, for hard spheres (i.e., Nm=1), the analytical solution is given by 

2 2 2
3

4 4 4

(1 2 ) 3 (2 ) (1 2 )
(0 1)

(1 ) 2 (1 ) 2 (1 )
c r r r

    
  

+ + +
  = − + −

− − −
 (6.1) 

For a system of n hard spheres each of diameter  in volume V, i.e., at the packing (volume) 

fraction 
3 6    with n V  , the analytical solution to the Ornstein-Zernike equation 

( ) ( )
3

3 3

ˆ ˆˆ ˆˆ 1   
ˆ1 6

h c
h c h

c


   

= +  =
−

 with the Percus-Yevick closure 
( ) 1

( ) 0

h r

c r




 = −
  =

 is 

given by Eq (6.1), where r r  . We therefore ha
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(6.2)     
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    

 

→

− + − +
= =  =

+

 =
−

− +
   − + − − +   
     + − + − + + +   
 + + − 

       

(6.3)         
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q
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 







 
   − + − − +   
  − −    + − + − + + +   
 + + − 

  (6.4) 

In PRISM calculations, we uniformly discretize cut[0, ]r  into m subintervals of width 

cutr r m = . We also use a cut-off cutcr r M m=  for ( )r  (i.e., ( )h r ) and uniformly discretize 

[0, ]cr  into M subintervals of width r . We calculate the 3D Fourier transform 

( ) ( ) ( )c cut3

0 0
ˆ ( 0) 4 d ( ) sin( ) 4 d ( ) sin( )

r r

c q q rc r r qr q rc r r qr   = =   using DST ( cr  

instead of cutr  is used as the upper limit of the first integral to decrease q ; see below) and 

using the Romberg integration (i.e., the second integral due to the discontinuity of cut( )c r ) ;

( ) cut3 2

0
ˆ ( 0) 4 d ( )

r

c q rc r r = =   is calculated using the Romberg integration. We also 

calculate the 3D inverse Fourier transform 2 30

ˆ1
( 0) d sin( )

2

c

mm
q

mm
r q q qr

r


 

 =   using iDST 

(see below) and 
2

2 30

ˆ1
( 0) d

2

c

mm
q

mm
r q q


 

= =   using the Romberg integration; this introduces 

cq r M r  = =   and cq M q r=  =  . We therefore choose m to be large enough such 
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that  cut

10

0
max ( ) 1 10

r r
h r

−
  +  .We also choose M to be large enough such that 

2 30

ˆ1
( ) d sin( )

2

c

mm
q

mm

c c

c

h r q q qr
r


 

=   calculated using the Romberg integration is less than

1010− . 

To calculate 
3 0

ˆ 4
( 0) d ( ) sin( )

crf
q rf r r qr

q




 =  , we use the discrete sine transform 

(DST) 
1

0
1

1 1ˆ ( ) ( )sin d ( )sin( )
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M
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s

k j

j c

jk
F q F r rF r qr

M M r

−

=

  = − 
 

  , where M+1 is the number of 

equally spaced points at j c
r jr M= , for j=0,1,…,M; that is, 
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  = −  = =  
 
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j j j

F r f r r r= −   and k cq k r= , for k=0,1,…,M. Similarly, to calculate 
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cq f
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r 
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  , which is the same as DST except 
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 
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j c c
r jr M j q= = , and that ( )

1

1

ˆ( ) 2 ( )sin 0
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=

= = = .  
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6.2.2 SC-PRISM Calculations 

Using only ( )b
u r   gives id( ) sinB q q q= for the THSC model, where q q  with q 

being the wavenumber. Note that, at small q , 
2

id( ) 1B q bq −  with 1 6b =  for the THSC 

model, leading to  
( )

( )
2

id id id 2
id 22

id

( ) 2 ( ) 2 ( ) 1ˆ ( ) 1
31 ( )

mN

m m m

mm

N B q N B q B q b N
q q

NN B q


− + − −
=  −

−
. To avoid 

division by 0 in the calculation of id
ˆ ( )q , we therefore need to set id

ˆ ( ) 1q =  for 

2   bq q b    , where 162.2 10 −   is the machine epsilon. For the THSC model, 

NB1 id( ) ( )B q B q= . 

Note that we take   as unit in PRISM and eR  as unit in single chain simulations, we 

need to make a unit change when we connect these two parts together. Once the PRISM 

equations are solved for an initial guess of old
ˆ ( )mm

q  (e.g., ), we calculate 

( )( )
( )( )

2
3 3

3 2 3 3

ˆ ˆˆ
 

ˆ ˆ1

N Cw

N N C

  
 

   

 
 = −   −   

 and then its 3D inverse Fourier transform as in 

Sec. 6.2.1 above; we define 
1 2

IJ 0.770
e m

d R N −  (for 10mN  ,we use 1 ed R=  with eR  

obtained from MD simulations). We transfer r to r  and ( ) ( )0 0w r w r=  , er dr r R= = ; the 

solvation potential is then given by 0( ) ( )mm mm
w r w r=  with   can be either set to 1, or 

adjusted (using using the Ridder method) such that the root-mean-square chain end-to-end 

distance  obtained from the subsequent single-chain Monte Carlo (SCMC) simulations (or 

histogram-reweighting, HR) with  is equal to Re, i.e.,  with  

NB1
ˆ mm

,SCe
R

( )mm
w r

,SC,SC ee e RR R −  A
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denoting three times the standard deviation of quantity A given by the SCMC simulations or 

HR (with the sample correlations accounted for via the correlation-length method). With 

new
ˆ ( )mm

q   given by the SCMC simulations or HR, transfer q  to q  and new
ˆ ( )mm

q new
ˆ ( )mm

q  , 

LJq dq q= =  with eq qR=  ;we finally use the Anderson mixing to converge , i.e., with 

( )
new old

new old ˆ ˆ( ) ( )
ˆ ˆ( ) ( ) min ,mm mm

mm mm

q q
q q

 
   −   satisfied for all  q .  

 

6.2.3 Monte Carlo Simulations 

We also performed many-chain Monte Carlo simulations (MCMS) of tangent hard-

sphere chains in a canonical ensemble using segment rotation and chain reptation, with 

configurational bias to increase the acceptance rates of these trial moves. Note that, in MCMS 

using a cubic simulation box of length L, we have MS 2q L =  for MSĥ  with L L   due to 

the PBCs used. We also choose the bin size MS 16r p r =   with p being an integer in the 

calculation of MS( )h r , so that the Romberg integration can be used with ( )h r  obtained from 

PRISM calculations to calculate the corresponding ( )h r  and compare it with MS( )h r . 

 

6.2.4 DFT Calculations 

Yu and Wu expressed the ideal part of the system Helmholtz free energy due to the 

combination of chain connectivity, the excess part Fex and the external potential V(r),  

( ) ( )b ex

1
d ( ) ln ( ) 1 ( ) [ ( )] d ( ) ( ).

N

ss
V F V    

=
 = − + + + − R R R R r R R R  (6.5)  

 with V(r) is external field and  is chain chemical potential. 

ˆ mm



114  

Fex is given by  

( ) ( )
( )

( ) ( )

( ) ( )

2
2

2 3
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2
ex 2 2

2 2 3
3 3 3
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
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  (6.6) 

with ( )
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3
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( ) ( )1 ( )

0.23363 ( )
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2

( ) d (1 2 ) ( ),  

( ) d (1 2 ) ( ), 

( ) d (1 2 ) ( ),V

n

n

 



 
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and ( )r is the Dirac  -function, and   ( )r is the Heaviside function. 

Minimizing   Euler-Lagrange equation, from which we then obtain ( ) R , 

ex
b

1

0  ( ) exp ( ) ( ) .
( ) ( )

N

t

t

F
V V

  
 =

 
=  = − − − 

 
R R R

R R
                                        (6.7) 

with 
ex ex

1( ) ( )

N

t t

F F 
 =

= 
R R

 and 
ex

( ) ( ),
( )

F
V




 +r r
r

 we obtain  
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 
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   (6.8) 

We can rewrite ( )s r in terms of the propagator qs(r) 

( ) 1( ) exp ( ) ( ;[ ]) ( ;[ ]),s s N sq q    − += +r r r r    

(6.9) 

where ( ) ( 2, , ) sq s N=r satisifies

( ) ( ) ( )b
1 1( ) exp ( ) d exp ( ) ( )  with  ( ) exp ( ) .s sq u q q −  = − − − = −r r r r r r r r  
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6.3 Results and Discussion 

In the self-consistent PRISM calculations, one converts the interchain PCFs ( )h r and 

( )c r  into an intrachain solvation potential w(r) in an approximate way, which is then used in 

single-chain simulations to iterate ( )r till it converges. Note that this parameter   so that 

the mean-square chain end-to-end distance here matches that from the many-chain simulations. 

In Fig 6.1(a), we can see that the SC-PRISM with 1 =  overestimates Re
2; as I mentioned 

before, we can adjust  to match Re
2 to the Monte Carlo results. On the other hand, TPT2 

underestimates Re
2, and TPT1 is even slightly worse than TPT2; these are due to the 

approximations of the thermodynamic perturbation theories. As the density increases in Fig 6.1 

(b) and (c), we see the same qualitative results with smaller Re
2 in all cases. 
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(a) (b)  

 

(c)  

Figure 6.1: The mean-square chain end-to-end distance as a function of the number of bonds 
in a chain at different number density. 
Parts (a), (b) and (c) show the mean-square chain end-to-end distance Re2 as a function of the 

number of bonds in a chain N− at different 
3 =0.1,0.4 and 0.6 on logarithmic plot; the 

Monte Carlo simulations are shown in black, the self-consistent PRISM results with fixed 

1 = are in blue, and the TPT2 results are in red. 
 

Based on Fig 6.1, we may expect that SC-PRISM with  adjusted gives the smallest, 

while TPT1 gives the largest, deviation in the intrachain PCF from the Monte Carlo results. 

This is generally the case, as shown by these two tables here summarizing the results for various 

N and , where the four theories are represented by different colors. SC-PRISM with  adjusted 

results are in blue, SC-PRIMS with 1 = results are in green, TPT1 results are in pink and 

TPT2 results are in red. But there are exceptions. For example, Fig 6.2(a) shows (r) at N=24 

and a segment number density representing melts. At large enough r, the deviations of all 
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theoretical predictions from the Monte Carlo result are smaller than the simulation error, which 

leads to these empty cells. More importantly, in the first interval of r/ (ranging from 1 to 2), 

SC-PRISM gives the largest, while TPT2 gives the smallest, deviation from the Monte Carlo 

results. This is because in Fig 6.2(c), at small r, the bare solvation potential w0(r) in SC-

PRISM calculations is strongly attractive, leading to overestimation of w(r).  

 

Table 6.1: Summary of best theory for ( )r  in each interval based on the root mean square 

error between four different theories and MC simulation results. 
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Table 6.2: Summary of worst theory for ( )r  in each interval based on the root mean square 

error between four different theories and MC simulation results. 

 

 

Similarly, Table 6.3 and 6.4 summarize the theoretical predictions of the interchain PCF 

( )h r . We observe that TPT2 produces the smallest deviation in ( )h r  from Monte Carlo results 

for small segment number densities and r, whereas SC-PRISM with adjusted  produces the 

smallest deviation for big  or r. On the other hand, SC-PRISM with 1 =  produces the 

biggest deviation for small  and r, while TPT1 produces the largest deviation for large   or 

r. As an example, in Fig 6.3 (a) shows h(r) at N=24 and
3 0.6 =  in the semi-logarithmic plot. 

We see that SC-PRISM with 1 = overestimates ( )h r , while TPT1 and TPT2 underestimate 

( )h r for r between 1.2 and 3 ; by adjusting , SC-PRISM gives overall the best agreement 
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with the Monte Carlo results. 

(a)  (b)  

(c)  

Figure 6.2: The intra-chain pair correlation function, the deviation of that in each interval 

between four different methods at N=24 and 
3 0.6 = , and the bare solvation potential 

obtained from SC-PRISM calculations. 

Part (a) shows the intra-chain pair correlation function ( )r  at N= and 
3 0.6 =  obtained 

from four different methods in the semi-logarithmic plots; the Monte Carlo simulations are 
shown in black, the self-consistent PRISM results with fixed   adjusted are in blue,  the self-
consistent PRISM results with fixed 1 = are in green , the TPT1 results are in pink and the 
TPT2 results are in red. Part (b) shows the deviation of ( )r in each interval between four 

different methods and MC simulation results in the bar plot; the Monte Carlo simulations are 
shown in black, the self-consistent PRISM results with fixed  adjusted are in blue,  the self-
consistent PRISM results with fixed 1 = are in green , the TPT1 results are in pink and the 

TPT2 results are in red.  Part (c) shows the bare solvation 0 ( )w r obtained from self-consistent 

PRISM calculations at different chain length and 
3 0.6 =  in the semi-logarithmic plots. 
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Table 6.3: Summary of best theory for ( )h r  in each interval based on the root mean square 

error between four different theories and MC simulation results. 
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Table 6.4: Summary of worst theory for ( )h r  in each interval based on the root mean square 

error between four different theories and MC simulation results. 
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(a)  (b)  

Figure 6.3: The inter-chain pair correlation function, the deviation of that in each interval 

between four different methods at N=24 and
3 0.6. =  

Part (a) shows the inter-chain pair correlation function ( )h r at N= and 
3 0.6 = obtained 

from several different methods in the semi-logarithmic plots; the Monte Carlo simulations are 
shown in black, the self-consistent PRISM results with fixed  adjusted are in blue,  the self-
consistent PRISM results with fixed 1 = are in green , the TPT1 results are in pink and the 
TPT2 results are in red. Part (b) shows the deviation of ( )h r in each interval between four 

different methods and MC simulation results in the bar plot; the Monte Carlo simulations are 

shown in black, the self-consistent PRISM results with fixed  adjusted are in blue,  the self-
consistent PRISM results with fixed 1 = are in green , the TPT1 results are in pink and the 
TPT2 results are in red.   
 
 

6.4 Summary 

We performed SC-PRISM with 1 = , SC-PRISM with  adjusted, TPT1, TPT2 and 

Monte Carlo simulations for various chain lengths (Nm=3~120) and monomer number densities 

at
3 (=0.1, 0.4 and 0.6), being the hard-sphere diameter, in order to find the best and worst 

theory for intra-chain pair correlation function ( )r and inter-chain pair correlation ( )h r based 

on the deviation between four different theories and MC results. The following figures are used 

to summary the information for Table 6.1, 6.2, 6.3 and 6.4. 
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(a)  (b)   

(c)  (d)   

(e)  

Figure 6.4: The intra- and inter- chain pair correlation function, the deviation of those in each 
interval between four different methods, and the bare solvation potential obtained from SC-

PRISM calculations at N=3 and
3 0.1. =  

Parts (a) and (c) show the intra-chain and inter-chain pair correlation function ( )r and ( )h r at 

N= and 
3 0.1 =  obtained from several different methods; the Monte Carlo simulations are 

shown in black, the self-consistent PRISM results with  adjusted are in blue,  the self-
consistent PRISM results with fixed 1 = are in green , the TPT1 results are in pink and the 
TPT2 results are in red. Parts (b) and (d) shows the deviation of  ( )r and ( )h r in each interval 

between four different methods and MC simulation results in the bar plot; the Monte Carlo 

simulations are shown in black, the self-consistent PRISM results with fixed  adjusted are in 



125  

blue,  the self-consistent PRISM results with fixed 1 = are in green , the TPT1 results are in 
pink and the TPT2 results are in red.  Part (c) shows the solvation potential represented by SC-
PRISM with 1 = , SC-PRISM with  adjusted and SC-PRISM with  normalized by  
adjusted. 
 
 

(a)  (b)  

 (c)  (d)  

 (e)  

Figure 6.5: Same with Fig 6.4, but at N=3 and
3 0.4. =  

 



126  

(a)  (b)   

(c)  (d)  

 (e)   

Figure 6.6: Same with Fig 6.5, but at N=3 and
3 0.6. =  
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(a)  (b)   

(c)  (d)   

(e)  

Figure 6.7: Same with Fig 6.5, but at N=4 and 
3 0.1. =  

 



128  

(a)  (b)   

(c)  (d)   

(e)  

Figure 6.8  Same with Fig 6.7, but N=4 and
3 0.4. =  
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(a)  (b)   

(c)  (d)   

(e)  

Figure 6.9: Same with Fig 6.8, but at N=4 and 
3 0.6 = . 
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(a)  (b)   

(c)  (d)   

(e)  

Figure 6.10: Same with Fig 6.9, but at N=8 and
3 0.1 = . 
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(a)  (b)  

 (c)  (d)   

(e)  

Figure 6.11: Same with Fig 6.10, but at N=8 and
3 0.4 = . 
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(a)  (b)  

 (c)  (d)   

(e)    

Figure 6.12: Same with Fig 6.11, but at N=8 and
3 0.6 = . 
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(a)  (b)   

(c)  (d)   

(e)    

Figure 6.13: Same with Fig 6.12, but at N=12 and 
3 0.1 = . 
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(a)  (b)   

(c)  (d)   

(e)     

Figure 6.14: Same with Fig 6.13, but at N=12 and 
3 0.4 = . 
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(a)  (b)   

(c)  (d)   

(e)     

Figure 6.15: Same with Fig 6.14, but at N=12 and 
3 0.6 = . 
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(a)  (b)   

(c)  (d)   

(e)      

Figure 6.16: Same with Fig 6.15, but at N=24 and
3 0.1 = . 
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(a)  (b)   

(c)  (d)   

(e)      

Figure 6.17: Same with Fig 6.16, but at N=24 and
3 0.4 = . 
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Chapter 7 Structure-based Coarse Graining of 

Homopolymer Solutions using PRISM Theory: 

Designing the Implicit-Solvent Model from an 

Explicit-Solvent Model 

 

 

 
7.1 Introduction 

Implicit-solvent (IS) models are widely used in molecular simulations of solutions, with 

the advantage of dramatically saving the amount of computation and the hope of faithfully 

reproducing some properties of the corresponding explicit-solvent (ES) model. Strictly 

speaking, the latter can only be achieved when the effective interaction potentials in the IS 

model are derived from the ES model following some coarse-graining procedure to integrate 

out the degrees of freedom of the solvent molecules. In practice, however, such a procedure is 

rarely followed because (1) it makes the effective interaction potentials not pairwise additive 

and not transferable, and (2) it often requires molecular simulations[16] of the ES model, which 

contradicts the purpose of coarse graining. It is therefore not surprising that in practice an IS 

model often gives qualitatively different results from its “corresponding” ES model.  

In this work, we take a simple model system of homopolymer solutions as an example 

to examine the features of the effective pair potential between polymer segments in the IS 

model that is designed, using the well-developed polymer reference interaction site model 

(PRISM)[15] theory, to reproduce the total pair correlation function (PCF) between polymer 

segments in the corresponding ES model. To assess the accuracy of the PRISM theory, we also 

quantitatively compare its predictions with Monte Carlo (MC) simulation [16]  results, both for 
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the ES model. While performing MC simulations of the ES model contradicts the purpose of 

our structure-based coarse graining, it provides the needed input to the PRISM theory, thus 

allowing the most stringent test of the theory. This problem can further be avoided by using the 

self-consistent (SC) PRISM theory[95] for the ES model, as proposed at the end of this work. 
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7.2  Models and Methods 

7.2.1 PRISM Calculations 

As our ES model, let us consider a solution of homopolymer P in an explicit solvent S. 

Each P chain has N segments (interaction sites), the number density of which is denoted by 

nNV with n being the number of chains and V the system volume. Each S molecule has only 

one interaction site, the number density of which is denoted by SnSV with nS being the 

number of S molecules. The PRISM equations[15] for this ES model are given by 

 

( )
( )

( )
( )

( )

2 2 2
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 

    


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    

  − −  = = − − + −



=
− − + −

− −
=

− − + −





,  (7.1) 

where PP( ) ( )h r h r , PS( )h r , and SS( )h r  are the intermolecular total PCF between P segments, 

between P segments and S molecules, and between S molecules, respectively; PP ( )c r , PS( )c r , 

and SS( )c r  are the intermolecular direct PCF between P segments, between P segments and S 

molecules, and between S molecules, respectively; and ( )r  is the normalized average 

intrachain PCF between P segments satisfying 2 3

0
4 d ( )rr r  


=  with  denoting the length 

unit. For given , S and ( )r , to solve the above intermolecular PCFs, we use the atomic 

Percus-Yevick (PY) [13]closure for the ES system given by  

    IJ IJ IJ( ) 1 exp ( ) ( ) 1c r u r h r= − +  with IJ=PP, PS and SS,  (7.2) 

where uPP(r), uPS(r) and uSS(r) are the non-bonded pair potentials between P segments, between 
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P segments and S molecules, and between S molecules, respectively, specified below. 

Eliminating all the S molecules in the above ES model, we obtain our IS model, for 

which the PRISM equation can be written as 

 
( )

ˆ
ˆ

ˆˆ ˆ
h

c
N N h  

=
+

,  (7.3) 

where ( )c r  is the interchain direct PCF between P segments in the IS model. Note that using 

the same ̂  and ĥ  in Eqs.(7.1) and (7.3) ensures that our IS model exactly reproduces (within 

our PRISM theory for coarse graining) both the chain conformations and interchain total PCF 

between polymer segments in the ES model; this is the key to our structure-based coarse 

graining using the PRISM theory. Finally, to obtain the coarse-grained (CG) or effective non-

bonded pair potential v(r) between P segments in the IS model, we use either the PY closure 

written as 

 ( ) ( )PY( ) ln ( ) 1 ln ( ) 1v r r h r = + − + ,  (7.4) 

where (r)h(r)−c(r) is the interchain indirect PCF between P segments in the IS model, or the 

hypernetted-chain (HNC)[87] closure written as 

 ( )HNC( ) ( ) ln ( ) 1v r r h r = − + ;  (7.5) 

since these two closures correspond to different approximations, they give different v(r). 

For simplicity, in this work we take P polymers as tangent hard-sphere chains[96] 

(THSCs) and S molecules as hard spheres (HSs)[26] having the same diameter ; that is, 

IJ ( )u r →   for 1r r    and 0 otherwise with IJ=PP, PS and SS. This also gives 

PY ( 1)v r  →  and HNC ( 1)v r  →  , and makes Eqs. (7.4) and (7.5) applicable only to 

r. To obtain the ̂  needed as the input to Eqs. (7.1) and (7.3), we perform many-chain MC 
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simulations of the ES model. The simulations also give 
MC
IJĥ  at discrete wavenumbers qMC (due 

to the periodic boundary conditions applied to the simulation box), which are compared with 

IJĥ  obtained from our PRISM-PY calculations of the ES model to quantitatively assess the 

accuracy of the theory.  

We take  as the unit of length and uniformly discretize the real-space interval [0,1] 

into m subintervals each of length 1r m  , and take IJ ( )ic r i r=   (i=0,…,m with 1
m

r
−= ) as 

the independent variables to be solved. Our approach has three steps: 

I. Given the initial guess of the independent variables and IJ ( 1) 0c r  =  (given by Eq. (7.2), 

we use continuous auxiliary functions 
IJ IJ,1

IJ,0

IJ

( )      if 1
( )

( )                otherwise

c r c r r
c r

c r

− −  


 with 

IJ,1 IJ ( 1 )c c r
− =  to calculate 

( ) ( ) ( ) 2 3
IJ IJ,0 IJ,10

ˆ ( ) 4 d ( )sin 2 cos 2 sin 2
cr

j j j j j j j j
c q q rrc r q r c q q q q q  = + − + −   for 

j=1,…,M−1 with cM mr  via the fast sine transform (FST), the computing time of which is 

O(MlnM), use the Romberg integration to calculate 
1

2
IJ 0 IJ0

ˆ ( ) 4 d ( )c q rr c r
−

=  , and also 

calculate ( ) ( )2 2 3
IJ IJ,1

ˆ ( ) 4 ( 1) 2 2 ( )m

cc q c m m m  = − − −  ; note that the numerical accuracy 

of 
IJ

ˆ ( )
j

c q  (j=0,…,M) is determined only by m (i.e., r ), and that the FST gives qj=jq with 

q m M =  and qM=qc=m. 

II. We calculate the 3D Fourier transform of the interchain indirect PCFs 

IJ IJ IJ
ˆˆ ˆ( ) ( ) ( )

j j j
q h q c q  −  with IJ=PP, PS and SS for j=0,…,M, where Eq. (7.1) is used to obtain 
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IJĥ . We then use auxiliary functions 
IJ,0 IJ IJ,

ˆ ˆ ˆ( ) ( )
c

q q   −  with 
IJ, IJ

ˆ ˆ ( )
c c

q   to calculate 

( ) ( )2 2
IJ IJ,0 IJ,0

ˆ ˆ( ) 1 2 d ( )sin ( 1)
cq

j

j j j c
r r qq q qr m j    = − −    for j=1,…,M−1 via the FST 

(note that 
3 2

IJ IJ,
ˆ( ) ( 1) 2j

c c
r m M  = − − ), calculate ( )2 2

IJ 0 IJ0
ˆ( ) 1 2 d ( )

cq

r qq q  =   via the 

Romberg integration, and also calculate 
3 2

IJ IJ,
ˆ( ) ( 1) 2j

c c
r m M  = − − ; note that the numerical 

accuracy of 
IJ( )

j
r  (j=0,…,M) is determined by both m (i.e., qc) and M (i.e., q). As shown in 

our results below, IJ
ˆ ( )q  decays towards 0 much faster than 

IJ
ˆ ( )h q  and IJ

ˆ ( )c q , thus 

requiring a much smaller qc.  

III. We calculate IJ IJ IJ( ) ( ) ( )i i ih r r c r= +  with IJ=PP, PS and SS for i=0,…,m, then use the 

residual errors of the PY closures (i.e., IJ ( ) 1ih r + ) to converge the 3(m+1) independent 

variables via the Anderson mixing. 

Our approach of calculating v(r) for the IS model is as follows: 

I. With the above converged ˆ( )
j

h q  for j=0,…,M, we calculate ˆˆ ˆ( ) ( ) ( )
j j j

q h q c q  − , where 

Eq. (7.3) is used to obtain ĉ . 

II. We use an auxiliary function 0
ˆ ˆ ˆ( ) ( ) cq q   −  with ˆ ˆ( )c cq   to calculate 

( ) ( )2 2
00

ˆ ˆ( ) 1 2 d ( )sin ( 1)
cq

j

j j j c
r r qq q qr m j    = − −    for j=1,…,M−1 via the FST, and also 

calculate 3 2ˆ( ) ( 1) 2j

c c
r m M  = − − . 

III. With the above converged 
PP( ) ( )

j j
r h r =  for j=m,…,M, we calculate 

PY( )
j

v r  and 

HNC( )
j

v r  according to Eqs.(7.4) and (7.5), respectively. 
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7.2.2 MC Simulations 

Our many-chain MC simulations[16] of the ES model are performed in a canonical 

ensemble using a cubic simulation box with the periodic boundary conditions applied in all 

directions. Our trial moves include the random displacement of a randomly chosen S molecule 

(with the maximum displacement adjusted such that the average acceptance rate is about 50%), 

the random rotation of a randomly chosen P segment under the constraint of fixed bond length, 

and the reptation of a randomly chosen P chain under the constraint of fixed bond length. For 

trial moves of an S average acceptance rate is about 50%; for those of an end P segment for 

N3, when generating its trial position, we avoid its overlap with the third segment on the chain. 

Finally, we estimate the error bars of our calculated quantities as three times their 

standard deviation, with the sample correlations accounted for using the correlation-function 

method.  
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7.3 Results and Discussion 

5 For the ES model of THSCs in HSs, we fix the total site number density 

3
S 0.6

t
    + = , which is representative for liquid solutions. We vary the chain length N 

and the polymer volume fraction ( )SnN nN n  +  in the solution, and in MC simulations 

choose the length of the simulation box L to be larger than 2Re with Re denoting the root-mean-

square chain end-to-end distance obtained in the simulation. 

 

7.3.1 Chain conformations obtained from MC Simulations 

Figs. 7.1(a) and 7.1(b) show 

( )
1

* 2 2

2

( ) 2 ( ) ( ) ( ) ( ) 2( 1) ( 1)
N

i

i

r N N i r r r N N r N    
−

=

 − = − − − −  (collected using a bin 

size of 1 32r = ), where ( )i r  denotes the normalized PCF between segments separated by 

i bonds along the same chain satisfying 2

0
4 d ( ) 1irr r 


= , and ˆ ( )q  obtained in many-chain 

MC simulations of the ES model for various N and ; note that for N=2, 
*( ) 0r = and 

( )ˆ( ) 1 sin 2q q q = +  regardless of . 
*( 1) 0r  =  and 

*( 1) 0r N  − =  are due to the 

THSC model, and the discontinuities of 
*( )r  at integer values of 2,..., 2r N= −  are due to its 

summation of ( )i r , each of which is continuous and takes positive values only for 1 r i   

(and 0 otherwise). We see that 
*( )r  at small r 3 decreases with decreasing , indicating 

chain expansion in the athermal HS solvent. This effect becomes more pronounced with 
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increasing N, as can also be seen in Fig. 1(c) showing 2 4
10

4 d ( )e NR rr r 


−=   for various N 

and . On the other hand, ˆ ( )q  approaches 1/N at large q as expected, and the results for 

various  nearly collapse. As aforementioned, ˆ ( )q  is used as the input to our PRISM 

calculations. 

(a)  (b)  

(c)  

Figure 7.1: The intrachain PCF between P segments at N=8 and N=24 with various   and the 

corresponding mean-square chain end-to-end distance. 

Semi-logarithmic plots of the intrachain PCF between P segments 
*( )r  (collected using a bin 

size of 1 32r = ) for the chain length (a) N=8 and (b) N=24 obtained in many-chain MC 

simulations of the ES model at various polymer volume fractions , where the inset shows a 
semi-logarithmic plot of the corresponding 3D Fourier transform ˆ ( )q . Part (c) shows the 

semi-logarithmic plot of the corresponding mean-square chain end-to-end distance Re
2. See 

main text for details. 
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7.3.2 Intermolecular PCFs of the ES model 

Figs. 7.2~7.4 compare IJ ( )h r  for IJ=PP, PS and SS, respectively, obtained from our 

PRISM-PY calculations and many-chain MC simulations of the ES model at various N and ; 

note that we use the same bin size of 1 32r =  in PRISM-PY calculations (that is, after 

obtaining IJ ( )h r , we numerically calculate 

( )2 3
IJ IJ( 1)

(( 1 2) ) d ( ) ( 1) 1 3 ( )
j r

j r
h j r rr h r j j r




 

−
−  − +  and plot it in the figures) as used in 

the MC simulations. We see that PP( ) ( )h r h r=  exhibits similar oscillations to those for HSs 

due to the segment packing, and decreases with decreasing  in MC results (for N=2, this occurs 

for r 2); the latter is the well-known “correlation hole” effect caused by the chain 

connectivity, and becomes more pronounced at smaller r  with increasing N. In comparison, 

the PRISM-PY theory overestimates ( )h r  at small r  and even gives its opposite trend with 

varying , which is a well-known problem of the PY closure[13]; this problem becomes more 

severe with decreasing  and increasing N. 
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(a)  (b)  

(c)  

Figure 7.2: The intermolecular total PCF between P segments PP ( )h r at different chain length 

and various . 

The intermolecular total PCF between P segments PP( ) ( )h r h r=  obtained (using a bin size of 

1 32r = ) from our PRISM-PY calculations and many-chain MC simulations of the ES model 

at (a) N=2, (b) N=8 and (c) N=24 and various . 
 

On the other hand, PS( )h r  and SS( )h r  also decrease with decreasing  for r 2 in 

MC results, and the PRISM-PY theory gives much better prediction for PS( )h r  and SS( )h r  

than for ( )h r , although it underestimates PS( )h r  and overestimates SS( )h r  for most 2r  . 

We also note that the local maximum of SS( )h r  around 2r =  shifts to smaller r  and 

becomes larger with decreasing .  
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(a)  (b)  

(c)  

Figure 7.3: The intermolecular total PCF between a P segment and an S molecule PS( )h r  

segments at different chain length and various . 

The intermolecular total PCF between a P segment and an S molecule PS( )h r obtained (using a 

bin size of 1 32r = ) from our PRISM-PY calculations and many-chain MC simulations of 

the ES model at (a) N=2, (b) N=8 and (c) N=24 and various . 
 

Figs. 7.9~7.11 in the Summary show the PRISM-PY predictions of IJ ( )h r   for IJ=PP, 

PS and SS, respectively, for the ES model at various N and , where a bin is not used. Note that 

(1) the cusps in these semi-logarithmic plots indicates the roots (where IJ ( )h r  crosses 0), and 

(2) at large r  the local maxima of IJ ( )h r  exponentially decay towards 0. We see that the local 

extrema of IJ ( )h r , particularly those at large r , decrease with increasing . In addition, while 

at small N and  the roots of IJ ( )h r  are nearly evenly spaced, their spacing dramatically 
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increases with increasing N and . These results are consistent with those shown in Figs. 

7.2~7.4.  

(a)  (b)  

(c)  

Figure 7.4: The intermolecular total PCF between S molecules SS( )h r  at different chain 

length and various . 

The intermolecular total PCF between S molecules SS( )h r  obtained (using a bin size of 

1 32r = ) from our PRISM-PY calculations and many-chain MC simulations of the ES model 

at (a) N=2, (b) N=8 and (c) N=24 and various . 
 

Fig. 7.5 shows the 3D Fourier transforms of all the intermolecular PCFs, 
IJ

ˆ ( )h q , 

IJ
ˆ ( )c q  and IJ

ˆ ( )q  with IJ=PP, PS and SS, for N=2 and =1/2. Note that (1) the cusps in these 

logarithmic plots indicates the roots (where IJ
ˆ ( )h q , IJ

ˆ ( )c q  or IJ
ˆ ( )q  crosses 0), and (2) at large 

q the local maxima of PP
ˆ ( )q  and PS

ˆ ( )q  decay towards 0 with q−3 and those of SS
ˆ ( )q  decay 
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towards 0 with q−4, much faster than those of 
IJ

ˆ ( )h q  and IJ
ˆ ( )c q  decaying with q−2, thus 

justifying the Step II of our numerical approach; these scalings are also consistent with our 

recent PRISM-PY results for the THSC model. The same scalings are found for other N1 and 

 (data not shown). 

(a)  (b)  

(c)  

Figure 7.5: The 3D Fourier transforms of the intermolecular PCFs in the ES model. 
Logarithmic plots of the 3D Fourier transforms of the intermolecular PCFs in the ES model: 

(a) 
IJ

ˆ ( )h q , (b) IJ
ˆ ( )c q  and (c) IJ

ˆ ( )q  with IJ=PP, PS and SS, for N=2 and =1/2. The k-value 

gives the slope of the corresponding straight line. 
 
 
7.3.3 Interchain PCFs and effective pair potential of the IS model 

Fig. 7.6 shows ĉ  and ̂  for N=2 and =1/2. We see that, consistent with Fig. 5 and 

our recent PRISM-PY results for the THSC model[26], at large q the local maxima of ˆ( )q  
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decay towards 0 with q−3, much faster than those of 
PP

ˆ ( )h q  and ˆ( )c q  decaying with q−2. The 

same scalings are found for other N1 and  (data not shown). 

 

Figure 7.6: The 3D Fourier transforms of the intermolecular PCFs in the IS model for N=2 
and 1 2. =  

Logarithmic plot of the 3D Fourier transforms of the intermolecular PCFs in the IS model for 
N=2 and =1/2. The k-value gives the slope of the corresponding straight line. 

 

Fig. 7 .7(a) shows the effective non-bonded pair potentials between P segments ( )v r  

calculated from Eqs. (7.4) and (7.5) for N=2 and f=1/2. We see that both PY ( )v r  and 

HNC ( )v r  are attractive at small r 1.5 and decay towards 0 with increasing r  in an 

exponentially damped oscillatory manner; compared to PY ( )v r , HNC ( )v r  is more negative 

at small r  and “shifts” to larger r . We also see that 
HNC ( )v r  exhibits a discontinuity in its 

first-order derivative at 2r = , which is due to the same behavior of 
PP( ) ( )h r h r=  shown in 

Fig. 7.2(a). In fact, since ( )c r is continuous at 2r = , we find that both 

( )( )  PY( ) ( ) ( ) ( ) 1 ( ) 1 ( ) ( ) ( ) ( ) 1v r c r h r c r h r h r c r h r c r   = − + + − − +    and 

( )HNC( ) ( ) ( ) 1 ( ) ( )v r h r h r h r c r   = + −    are discontinuous at 2r = ; these are shown in Fig. 

7.7(b), where we use a 6th-order accurate finite-difference formula[50] to calculate the first-order 
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derivatives.  

(a) (b)  

(c)  
Figure 7.7: Effective non-bonded pair potential between P segments obtained from PY and 
HNC Closure and its first derivative. 
(a) Effective non-bonded pair potential between P segments ( )v r  obtained with the PY 

and HNC closures in the IS model for N=2 and =1/2. (b) The first derivative of ( )v r  

obtained from PY and HNC closure. (c) ( )v r  obtained from HNC closure at different chain 

length and various .  

 

The inset of Fig. 7.7(a) shows ( )v r  on a semi-logarithmic plot; in addition to the 

exponential decay towards 0 of the extrema of ( )v r  with increasing r , we also see that the 

location of these extrema and the roots of ( )v r  are nearly equally spaced. Fig. 7.8(a) shows 

that the first (i.e., smallest) two roots of PY ( )v r , denoted by 1,PYr  and 2,PYr , respectively, are 

nearly independent of N but increase with increasing ; similar results are found for other roots, 

as well as the location of the extrema (except the first extremum at 1r = ), of PY ( )v r  (data 



154  

not shown). 

 From Eq. (7.4), it is evident that ,PYi
r  are also the roots of ( )c r . Fig. 7.8(b) shows that 

the absolute value of the first three extrema of PY ( )v r , denoted by *
,PYiv , increases with 

increasing N and decreasing ; similar results are found for other extrema of PY ( )v r  (data not 

shown).While 
PY ( )v r  shown in Fig. 7.7(a) is representative for other N and f, Fig. 7.7(c) 

shows that 
HNC ( )v r  becomes more negative for r 5 with increasing N and for 2r 5 with 

decreasing f. at other N and f; as a result, 1,HNCr  dramatically increases with increasing N. 

(a)  (b)  

Figure 7.8: The first and second roots and the absolute value of the first three extrema *
,PYiv

of PY ( )v r  at different chain length and various .  

 (a) Semi-logarithmic plot of the first (i.e., smallest) two roots ,PYi
r  (i=1,2) and (b) logarithmic 

plot of the absolute value of the first three extrema *
,PYiv  (i=1,2,3) of PY ( )v r  vs. N at 

various . 
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7.4 Summary 

(a)  (b)  

(c)  

Figure 7.9: Semi-logarithmic plots of the intermolecular total PCF between P segments 

PP ( )h r   obtained from our PRISM-PY calculations of the ES model. 

At (a) N=2, (b) N=8 and (c) N=24 and various . 
 

In this work, we take a simple system of homopolymers in an explicit solvent (ES), 

modelled as n tangent hard-sphere chains (THSCs) each of N segments in nS hard-sphere 

solvent molecules where all the polymer (P) segments and solvent (S) molecules have the same 

diameter s, as an example to examine the features of the effective pair potential between P 

segments in the implicit-solvent (IS) model obtained from the structure-based coarse graining 

using the well-developed polymer reference interaction site model (PRISM) theory[15]. Our 

coarse-graining approach, given by Eqs. (7.1)~(7.5), ensures that the IS model exactly 

reproduces (within the accuracy of the PRISM theory) both the chain conformations and the 
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interchain total pair correlation function (PCF) between P segments in the ES model. We fix 

the total number density of P segments and S molecules to 0.6/s3, which is representative for 

liquid solutions, and vary N and the polymer volume fraction ( )SnN nN n  +  in the solution.  

(a)  (b)  

(c)  

Figure 7.10: Semi-logarithmic plots of the intermolecular total PCF between a P segment and 

an S molecule PS( )h r obtained from our PRISM-PY calculations of the ES model. 

 
We solve the ES model using the PRISM theory[15] and the atomic Percus-Yevick (PY) 

closure[13], with the intrachain PCF between P segments taken directly from our many-chain 

Monte Carlo (MC) simulations of the ES model. As expected, chains expand with decreasing f 

and this effect becomes more pronounced with increasing N. Due to the approximation of the 

PY closure, the PRISM-PY theory overestimates the interchain total PCF between P segments 

PP( ) ( )h r h r=  at small r r   and even gives its opposite trend with varying f (which should 

decrease with decreasing f) compared to our MC results; this problem becomes more severe 
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with decreasing f and increasing N. The interchain total PCF between a P segment and an S 

molecule PS( )h r  and that between S molecules SS( )h r  also decrease with decreasing f for r

2; the PRISM-PY theory gives much better predictions for PS( )h r  and SS( )h r  than for ( ),h r  

(a)  (b)  

(c)  

Figure 7.11: Semi-logarithmic plots of the intermolecular total PCF between S molecules 

SS( )h r .obtained from our PRISM-PY calculations of the ES model. 

 

although it underestimates PS( )h r  and overestimates SS( )h r  for most r . At large r  the 

local maxima of IJ ( )h r  (IJ=PP, PS and SS) exponentially decay towards 0. On the other hand, 

consistent with our recent PRISM-PY results for the THSC model?, at large wavenumber q the 

local maxima of the 3D Fourier transforms of the intermolecular indirect PCFs PP
ˆ ( )q  and 
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PS
ˆ ( )q  decay towards 0 with q-3 and those of SS

ˆ ( )q  decay with q-4, much faster than those of 

IJ
ˆ ( )h q  and the 3D Fourier transforms of the intermolecular direct PCFs IJ

ˆ ( )c q  (with 

IJ IJ IJ
ˆ ˆˆ ( ) ( ) ( )c q h q q= − ) decaying with q-2. 

For the IS model, at large q the local maxima of the 3D Fourier transform of the 

interchain indirect PCF between P segments ˆ( )q  decay towards 0 with q-3, much faster than 

those of the corresponding ˆ( )h q  and ˆ( )c q  decaying with q-2. The effective non-bonded pair 

potentials between P segments PY ( )v r  and HNC ( )v r  are then obtained from the PY[13] and 

the hypernetted-chain (HNC)[87] closures, respectively, for the IS model. Both PY ( )v r  and 

HNC ( )v r  are attractive at small r 1.5, decay towards 0 with increasing r  in an 

exponentially damped oscillatory manner, and exhibit a discontinuity in their first-order 

derivative at 2r =  due to the same behavior of PP( ) ( )h r h r= . Compared to PY ( )v r , 

HNC ( )v r  is more negative at small r  and “shifts” to larger r . Both the local extrema of 

PY( )v r  and its roots are nearly equally spaced; their locations are nearly independent of N 

but increase with increasing f (except the first extremum at 1r = ). On the other hand, 

HNC ( )v r  becomes more negative for r 5 with increasing N and for 2 r 5 with 

decreasing f. 

Finally, we note that, while performing MC simulations of the ES model contradicts the 

purpose of our structure-based coarse graining, it provides the needed input (i.e., the chain 

conformations in the ES model) to the PRISM theory, thus allowing the most stringent test of 
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the theory. On the other hand, this problem can be avoided by using the self-consistent PRISM 

theory for the ES model; this will be explored in our further work. 
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Chapter 8 Concluding Remarks and Future Work 

 
In this chapter, I briefly summarize what has been learned from this work and give some 

suggestions for future work on theoretical studies of polymers. 

8.1. We have applied our recently proposed systematic and simulation-free strategy for 

the structure-based coarse graining of multicomponent polymeric systems to diblock 

copolymer (DBC) melts, where we use the well-developed polymer reference interaction site 

model (PRISM) theory, instead of the commonly used many-chain molecular simulations 

(MCMS), to obtain the structural and thermodynamic properties of both the original and coarse-

grained (CG) systems, and to quantitatively examine how the effective non-bonded pair 

potentials between CG segments and the thermodynamic properties of CG systems vary with 

the coarse-graining level. We have proved that our strategy does not change the spinodal curve, 

regardless of the original model system, closures, and coarse-graining levels for the two blocks. 

8.2. We have successfully developed a general algorithm to solve a class of coarse-

grained models for polymer melts, including THSC, KG and DPD models, using well-known 

PRISM-PY theory, performed it to different chain length ( 2 ~120N = ) and various number 

density
3( 0.1 ~ 0.6), =  to obtain PCFs and 3D Fourier Transform of those PCFs. Our method 

has faster decay in the direct correlation function ˆ( )c q  than a recently developed ‘pyPRISM’, 

a Python-based open-source framework for PRISM calculations, we attribute this fast decay to 

our accounting discontinuities of ( )c r  and its FFT. What’s more, we also found that 1N =  case 

is a special case for THSC, KG and DPD models, since the indirect correlation function ˆ( )q

for 1N =   decays fasters than 2N  for all methods. 

8.3. We have unambiguously quantified the fluctuation/correlation effects on the 
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thermodynamic and structural properties of disordered symmetric DBC, by directly comparing 

the results from MC simulations, PRISM-PY theory, and GF theory. In general, GF theory 

works only at small N  and N , and RISM-PY theory can give semi-quantitative 

predictions at larger N  and N . At even larger N  (close to ODT), however, the ideal-

chain conformations cannot be used in the RISM-PY theory, which does not give a spinodal 

point at finite chain number density. At larger N  (i.e., 50N  = ), we need more future 

work to support our conclusions. 

8.4. We have quantitatively compared the intra- and inter- chain correlation function of 

tangent hard-sphere chains at various chain length ( 2 ~120N = ) and number density 

3( 0.1 ~ 0.6), = obtained from many-chain Monte Carlo simulations, two SC-PRISM 

theories with  either set to1 or adjusted to match 
2
e

R and two polymer DFTs, TPT1 and TPT2. 

We found that SC-PRISM overestimates 
2
e

R , while TPT2 underestimates 
2
e

R  and slightly 

improves over TPT1. In general, SC with  adjusted gives the smallest deviation in intra-chain 

correlation function from the Monte Carlo results, and TPT1 gives the largest deviation in intra-

chain correlation function from the Monte Carlo results. There are, however, exceptions caused 

by the strongly attractively bare solvation potential in SC-PRISM calculations, thus 

overestimation of intra-chain correlation function at small r. TPT2 gives the smallest deviation 

in inter-chain correlation function from the Monte Carlo results for small number density and 

r, and SC-PRISM with  adjusted gives the smallest deviation at large number density or r. 

On the other hand, SC-PRISM with 1 = gives the largest deviation in inter-chain correlation 

function from the Monte Carlo results for small number density and r, and TPT1 gives the 

largest deviation in inter-chain correlation function from the Monte Carlo result at large number 
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density or r.  We will continue working on the long chain length (i.e., N=60 and 120) to 

summary the relative best method for PCFs. 

8.5. We have applied our systematic and simulation-free strategy to the structure-based 

coarse graining of the well-known Kremer-Grest model for homopolymer melts, where the 

well-developed Polymer Reference Interaction Site Model theory, instead of the commonly 

used many-chain molecular simulations, is used for both original and coarse-grained systems. 

Our self-consistent PRISM calculations well produce the chain conformations in the original 

system. With increasing chain length, the Percus-Yevick closure used for the original system 

causes small discrepancies in the interchain total pair correlation functions between monomers. 

We are currently working to improve the approximate relation employed in the previous 

structure-based coarse graining using the PRISM theory. 

8.6. We have performed our PRISM-PY theory on a simple model system of 

homopolymer solution at different chain length 2,8,24,60N = and various 0.1,0.5,0.9. =  

We directly compared the total pair correlation functions obtained from our method and many-

chain Monte Carlo simulations of the corresponding ES model. We found that the intra-chain 

correlation function ( )r obtained from MC results at small r 3 decreases with decreasing 

, indicating chain expansion in the athermal HS solvent.  PP ( )h r decreases with decreasing  

in MC results (for N=2, this occurs for r 2) and becomes more pronounced at smaller r  

with increasing N. In comparison, the PRISM-PY theory overestimates ( )h r  at small r  and 

even gives its opposite trend with varying , which is a well-known problem of the PY closure; 

this problem becomes more severe with decreasing  and increasing N. On the other hand, 
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PS( )h r  and SS( )h r  also decrease with decreasing  for r 2 in MC results, and the PRISM-

PY theory gives much better prediction for PS( )h r  and SS( )h r  than for ( )h r , although it 

underestimates PS( )h r  and overestimates SS( )h r  for most 2r  . We also note that the local 

maximum of SS( )h r  around 2r =  shifts to smaller r  and becomes larger. What’s more, we 

examined the features of the effective pair potential between polymer segments in the IS model. 

We found that both PY ( )v r  and HNC ( )v r  are attractive at small r 1.5 and decay towards 

0 with increasing r  in an oscillatory manner; also HNC ( )v r  exhibits a discontinuity in its 

first-order derivative around 2r = , which is due to the same behavior of PP( ) ( )h r h r= . In the 

future work, we consider to use SC-PRISM algorithm we have already developed in the 

Chapter 6 to reduce the simulation time of obtainnig ˆ ( ),q  since ˆ ( )q is input for PRISM-PY 

theory. 
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