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ABSTRACT OF DISSERTATION

TARGET TRACKING WITH DISTRIBUTED SENSING: 

INFORMATION-THEORETIG BOUNDS AND CLOSED-LOOP SCHEDULING

FOR URBAN TERRAIN

We address both theoretical and practical aspects of target tracking in a 

distributed sensing environment. First, we consider the problem of tracking a target 

that moves according to a Markov chain in a sensor network. We provide necessary 

and sufficient conditions on t,lu' number of (lueries per time step to track a target in 

thr(;e different scenarios: (1) the tracD'r is rexjuired to know the exact location of 

the target at each time step; (2) the tracker may lose track of the target at a given 

time step, but it is able to “catch-up” , regaining up-to-date information about the 

target’s track; and (3) tracking information is only known by the tracker after a 

delay of d time steps. We then address the problem of target tracking in urban 

terrain. Specifically, we investigate' tbe integration of detection, signal processing, 

tracking, and scheduling, by simultaneously exploiting three diversity modes: (1) 

spatial diversity through the use of coordinated multistatic radars; (2) waveform 

diversity by adaptively scheduling the transmitted waveform; and (3) motion model 

diversity by using a bank of ])arallel filters matched to different motion models. 

A closed-loop active sensing system is presented, and Monte Carlo simulations 

demonstrate its effectiveuc'ss in urlran terrain. Finally, we proijose a scheduling
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scheme that adaptively selects the sequence of transmitters and waveforms that 

maximizes the overall tracking accuracy, while maintaining the sensing system’s 

covertness in a hostile environment. We formulate this problem as a POMDP 

and use two distinct schedulers: (1) a myopic scheduler that updates waveforms 

at every radar scan; and (2) a non-myopic scheduler that activates a new set of 

transmitters if the overall tracking accuracy falls below a threshold or if a detection 

risk is exceeded. By simultaneously exploiting myopic and non-myopic scheduling 

schemes, w(' beneht from trading off short-term for long-term performance, while 

maintaining low computational costs. Monte Carlo simulations are used to evaluate 

the proposed scheduling scheme in a multitarget tracking setting.

Patricia de Rezende Barbosa 
Department of Electrical and Computer Engineering

Colorado State University 
Fort Collins, CO 80523 

Spring 2010
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Chapter 1 

Introduction

This chapter starts with the motivation behind the proposed dissertation and re-

visits key historical aspects that led to this study, followed by a summary of con-

tributions.

1.1 Motivation and Literature Review

It often happens in our everyday life that we receive information not all at once 

but bit by bit, so the complete information is a result of the accumulation of 

partial information. In many situations, however, it is not possible to wait until 

all information is gathered, and we are forced to make decisions and take actions 

under uncertainty. Few problems are more universal than that of decision-making 

under uncertainty; in this dissertation, we consider a few of its instances. Although 

the use of scheduling and decision-making in this work is motivated by applications 

in target tracking, the solution techniques presented here can be applied to a wide 

range of situations. In a world of limited resources —  natural and man-made —  

it is not difficult to envision mmicrous other applications that would beiuffit from 

effe(have scheduling technicpK ŝ.
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1.1.1 Zero-Error Target Tracking Through Limited Query-

ing of Binary Sensors

In Chapter 2, we examine the problem of target tracking through limited querying 

in a sensor network setting. We explore the similarities between this problem and 

Renyi-Ulam gaiiK̂ s [23, 73, 89], of which the game of “twenty-cpiestions” can be 

considered a subclass. Our goal is to find th(H)retical bounds on the number of 

queries per time step a tracker is required to ask a set of sensors in order to track 

a target. We consider three differtmt scxniarios: (1) the tracker is required to know 

the exact location of the target at each time step; (2) the tracker may lose track of 

the target at a given time step, but it is able to “catch-up” , regaining up-to-date 

information about the target’s track; and (3) tracking information is only known 

by the tracker after a delay of d time steps.

Sensor networks have emerged as one of the most promising technologies in 

recent years. While much of the research done in this area explores networking 

issues like time synchronization [28, 22], sensor localization [35, 13], and routing 

[87, 29], additional commnnications problems such as data compression and mes-

sage complexity have become increasingly important as the number of networked 

sensing devices continues to grow. For the majority of existing sensor networks, 

these small and inexpensive devices impose serious energy constraints affecting the 

network lifetime by having to transmit sensing information (over possibly long com-

munication channels) to a remote monitoring station (tracker) [14]. Moreover, the 

reliability and the capacity of the channel available for communication with the 

tracker lead to restrictions on the amount of data sent over such networks. As a



consequence, the tracker needs to make judicious decisions when selecting sensors 

to send data, so that communication with the sensor network is kept to a mini-

mum. We assume a sensor model where sensors are capable of sending only one-bit 

messages to a tracker, which are used to gather tracking information about a target 

that moves according to a Markov chain.

In the literature, one-bit-message sensor networks are called binary sensor net-

works and have been previously considered for target tracking [3, 58, 59]. In [25], 

Evans et ah analyzed the problem of optimal sensor selection; however, their ap-

proach is to formulate the problem as a partially observed stochastic control prob-

lem, where sensors are not constrained to one-bit messages and the tracker also 

controls the channel data rate so that mean squared errors are bounded. Related 

problems also include those in the area of control under communication constraints. 

In particular, Tatikonda and Mitter [83, 85, 86] examined a control problem with 

a nois('less channel rate re((uired to achieve’ diflerent control objectives, namely, 

asymptotic observability and asymptotic stabilizability [84]. Sahai and Mitter [77] 

investigated the problem of tracking and controlling unstable processes over noisy 

channels and demonstrated that Shannon’s classical notion of capacity was insuffi-

cient to characterize noisy channels for this purpose. Furthermore, they idemtified 

a novel characterizing ejuantity called anytime capacity and showed that it is both 

neex ŝsary and sufficient for diannels to have a certain amount of anytime capacity 

such that unstable processes can be tracked and stabilized.



1.1.2 Closing the Loop on Target Tracking in Urban Ter-

rain

In Chapters 3 and 4, we consider a more applied, though unconventional, approach 

to target tracking in a non-traditional setting. Specifically, wc consider the design 

of a “closed-loop” active sensing platform for target tracking in urban terrain. Once 

again, we deal with Tincertainty, though now from a different perspective. When 

tracking multiple targets in urban terrain, there is an inherent uncertainty caused 

by random variations of measurement data and modeling inaccuracies. Uncertainty 

can also be associated with the measurement origin in the presence of clutter and 

multipath, or when multiple targets are in the same neighborhood.

Motivat(!(l by tlic shift of battl(;fields —  from open areas to urban canyons — 

we contribute to the experimental basis of the next generation of tracking and 

surveillance; syst(;ms. Sp(;dfically, wc investigate the integration of detection, signal 

processing, tracking, and scheduling by exploiting distinct levels of diversity: (1) 

spatial diversity through the use of coordinated multistatic radars; (2) waveform 

diversity by adaptively scheduling the transmitted radar waveform according to the 

scene conditions; and (3) motion model diversity by using a bank of paralh'l filtc'i s, 

each o i k ; matched to a difhaent maneuv(;ring model. We start by modeling the 

different eleni(;nts of the ui'ban (;nvironment in Chapt(;r 3. Although intrinsically 

imperfect due to many simplifying assumptions, the models presented facilitate 

the analysis of the interplay among clutter, multipath, sensors, signals, and target 

motion, whic'h ultimately affect the ov(;rall system performanc(;. In Chapter 4, we 

design and simulate a closed-loop active sensing system for tracking multiple targets



in urban terrain.

Traditionally, the approach to tracking systems design has been to treat sensing 

and tracking sub-systems as two completely separate entities. While many of the 

problems involved in the design of such sub-systems have been individually exam-

ined in the literature from a theoretical point-of-view, very little attention has been 

devoted to the challenges involved in the design of an active sensing platform that 

simultaneously addresses detection, signal processing, tracking, and scheduling. In 

addition, the problem of tracking under urban conditions remains relatively unex-

plored and the literature is particularly scarce on works that discuss closed-loop 

tracking systems. One of the few to tackle this problem, Sanders-Reed [78] ex-

amined integration issues of a multitarget tracking system using video sensors and 

sensor-pointing commands to close the feedback loop. Computational aspects of a 

closed-loop image-based tracker of airborne targets were considered by Robinson 

and Sasaki [75]. An overview of systems-level modeling for the performance eval-

uation of closed-loop tracking systems for naval applications was given by Beeton 

and Hall in [7].

Note that waveform scheduling was not considered in any of these previous stud-

ies. However, the quality of radar measurements and, ultimately, target detection 

and the overall tracking performance depend on the transmitted waveform. Many 

modern radar systems are able to exploit waveform diversity by selecting wave-

forms from a programmable library, and changing the transmitted waveform in real 

time. This selection is done according to past responses from the surveillance area, 

which depend on both intra-pulse characteristics (e.g., carrier frequency and band-

width) as well as on inter-pulse characteristics (e.g., pulse repetition frequency) of



the transmitted waveform. The problem of one-step-ahead waveform scheduling for 

tracking systems was investigated by Kershaw and Evans in [38], while the multi-

step-ahead case was considered by Suvorova et al. in [81]. An overview of emerging 

ideas in the area of waveform scheduling for active radar can be found in [18].

One of the few studies focusing on the urban environment is the recent case 

study of urban operations for counter-terrorism, which was analyzed using a proba-

bility of attack integrated into a multitarget tracking system, proposed by Sathyan 

et al. in [79]. Guerci and Baranoski [31] provided an overview of a knowledge-aided 

airborne adaptive radar system for tracking ground targets. A lookahead sensor 

scheduling approach was presented but, as the authors acknowledged, they were 

“merely scratching the surface” of a possible solution. A vehicular sensing plat-

form that exploits recent advances in inter-vehicle communication and on-board 

sensor technology was considered in [51], where a new communication protocol was 

also proposed. Although not particularly tailored to target tracking applications, 

this mobile sensing approach has emerged as an attractive lightweight solution for 

opportunistic monitoring and proactive surveillance in urban terrain, given the 

abundant presence of sensor-equipped vehicles in such environments [50].

1.1.3 Two-Level Scheduling for Target Tracking in Covert 

Operations

In Chapter 5, we revisit the limitation on the number of sensor transmissions dis-

cussed in Chapter 2 and propose a novel adaptive sensing scheme for target tracking 

in a hostile environment. Spcx ihcally, the “two-level” scheduling s(;h(nne uses two



distinct schedulers: (1) a myopic scheduler that updates waveforms at every radar 

scan; and (2) a non-myopic scheduler that activates a new set of transmitters if the 

overall tracking accuracy falls below a threshold or if a detection risk is exceeded. 

The two-level scheduling scheme is implemented by a central controller whose goal 

is to select the sequence of combinations of transmitters and waveforms that yields 

the most accurate tracking estimate according to a suitably chosen performance 

evaluation criterion. The complexity of the controller’s operation is substantially 

increased when sensor covertness is involved. This detection risk constraint is mod-

eled by a limit on the number of consecutive time steps a transmitter can stay 

activated.

In the computer science community, the term two-level scheduling describes a 

method of scheduling computer processes [82]. Similar to our proposed schedul-

ing schenui, two diffcrc'iit schcduk^rs ar(' uscxl. At the lower hwel, the scheduler 

can only select processes already available in memory. In this case, processes are 

usually scheduled in a round-robin fashion for fast process switching. When the 

computer is low on memory, or when a process stored in disk needs to run, swap-

ping processes in and out of memory is required. In this case, the upper level 

scheduler is involved, but since swapping processes between disk and memory is 

time-consuming, scheduling at the upper level happens much less often than at 

the lower level. A similar phenomenon occurs when scheduling radars for adaptive 

sensing. In general, the transition from idle mode to active mode is not instanta-

neous for radar transmitters, that is, they need some time to turn on and warm 

up until they become operational. Hence, measurements taken during start-up are 

often discarded in practice diu' to possible signal flnetuations that could cause large
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measurement errors [80]. Therefore, in our proposed scheme, switching transmitters 

on and off only happcms if certain conditions are met, while switching waveforms 

from a programmable library in a transmitter that is already active is done in real 

time, hence waveform scheduling can be happen frequently.

In the literature, different solution approaches to the adaptive sensing problem 

have been proposed, in which the goal is to make decisions over time under un-

certainty on the use of sensor resources to maximize future sensing performance. 

Adaptive sensing for single target tracking was previously investigated by He and 

Chong [33], where the sensor scheduling problem was formulated as a partially ob-

servable Markov decision process (POMDP). Alultitarget results using the same 

solution framework were presented in [57]. A POMDP formulation was also used 

by Miller et al. to model the coordinated guidance of autonomous aerial vehicles 

(UAVs) [63]. In [31], Guerci and Baranoski provided an overview of a knowledge- 

aided airborne adaptive radar system for tracking ground targets. Reinforcement 

learning methods were used to schedule sensors to most quickly and ('ffectiv('ly de-

tect and track smart targets in [45]. In [92], Wu and Cameron studied the general 

mathematical framework for applying Bayesian decision theory to optimal sensor 

placement. Fuzzy logic and genetic algorithms were two of the solution approaches 

for scheduling prioritized tasks in sensor networks studied in [20].

R(!sourc(  ̂ allocation strategies can be classihed as myopic or non-niyopic. In the 

myopic case, the objective is to maximize the immediate reward, which is usually 

translated to minimizing the instantaneous estimation error in target tracking appli-

cations. Alyopic strategies do not explicitly consider long-term performance, hence 

are less computationally expensive than their non-niyopic counterparts, and have



been extensively studied in the adaptive sensing literature [6, 94, 47, 65, 38, 41], 

Non-inyopie strategies are capable of trading off short-term performance for long-

term performance by taking into account the future beneht of current actions via 

lookahead [81, 48, 49, 46]. However, optimal non-myopic strategies present pro-

hibitive computational costs to most adaptive sensing applications, and therefore 

approximate solution techniques or heuristics are often adopted [17, 33]. While 

waveform agility implemented in a myopic fashion can signihcantly improve the 

tracking estimate [6, 38, 81], the need for non-myopic decision making in target 

tracking is greatly accentuated in a hostile environment, where maintaining covert-

ness is imperative to protect deployed assets. Hence, in addition to waveform 

diversity, adaptive activation of sensors based on a measure of the risk incurred by 

this activation is needed. The concept of risk to sensors was previously considered 

as the threat imposed by targets, and calculated as the probability of attack based 

on target kinematics [79]. Due to their active sensing behavior, radar transmit-

ters can be especially susceptible to detection by hostiles. By limiting the number 

of consecutive scans during which each transmitter remains active, and using a 

non-myopic scheduling strategy, we are able to reduce the detection risk and still 

maintain the desired long-term performance.

1.2 Summary of Contributions

The contributions from this work are the following:

• In Chapter 2 we determine the minimum number of queries per time step 

such that a target is trackable under three different tracking dehnitions. In

9



particular, we show that: (1) the minimum number of queries per time step 

necessary (and sufficient) to follow a targeh is maXig; ’̂ log where de-

notes the set of neighboring sensors of sensor i and binary search is a following 

strategy; (2) the minimum number of queries per time step necessary to track 

a target is at least equal to H, the entropy rate of the underlying Markov 

chain, and H +  l queries per time step are sufficient to track; (3) if a hxed de-

lay of d > 1 time steps is tolerable, H +  queries per time step are sufficient 

for d-tracking, while at least H queries per time step are necessary in this 

case as well. Both tracking and d-tra('king stratc^gies are based on Huffman 

coding.

Another important and innovative aspect of the work described in Chapter 2 

is related to the similarities between the target tracking problem in a sensor 

network setting and Renyi-Ulam gamc\s. To the fjest of our knowkxlge, this 

study is the hrst to ex])lore tlu' duality between these' two problems, providing 

the notable simplicity of our tracking scheme; simplicity always sought for, 

but never really achieved, in previous works [24, 59, 60, 91].

In Chapter 4, we demonstrate through Monte Carlo simulations a closed-loop 

active sensing system that simultaneously: (1) increases the number of con- 

hrmed (tnie) tracks by approximately 15%; and (2) reduces the position root 

mean square error (RMSE) for a tracked target by several tens of % when 

compared to more traditional systems. We achieve these results by exploiting 

distinct levels of diversity: (1) spatial diversity through the use of coordi-

nated multistatic radars; (2) waveform diversity by adaptively scheduling the

10



transmitted radar waveform according to the scene conditions; and (3) mo-

tion model diversity by using a bank of parallel filters, each one matched to 

a different maneuvering model.

From a systems engineering point-of-view, the work presented in Chapters 3 

and 4 exposes the challenges and difficulties of integrating detection, signal 

processing, tracking, and scheduling in a single closed-loop platform for target 

tracking in an urban environment. To the best of our knowledge, this work 

is th() hrst to design and analyze a spe;cific tracking system that addresses all 

of these issues at once.

Chapter 5 describes the novel two-level scheduling scheme for management of 

waveform-agile radars for target tracking in a hostile environment. We for-

mulate the proposed adaptive sensing problem using the POMDP framework, 

and illustrate the performance gains of the order of several tens of % in posi-

tion (RMSE) that can be achieved by the novel two-level scheduling scheme 

with only moderate increase in computational complexity when compared to 

a fully-rnyopic scheduler. Moreover, we show that the myopic scheduling of 

waveforms at each radar scan improves on non-myopic actions taken in the 

past approximately 8% of the time.

11



Chapter 2

Zero-Error Target Tracking 
Through Limited Querying of 
Binary Sensors

We consider the problem of tracking a target that moves according to a Markov 

chain using a tracker that queries a set of sensors to obtain tracking information. 

We are interested in finding the minimum number of queries per time step such 

that a target is trackable. Three scenarios are analyzed. First we investigate the 

case where the tracker is required to know the exact location of the target at each 

time step. We then relax our requirements and explore the case where the tracker 

may lose track of the target at a given time step, but it is able to “catch-up,” 

regaining up-to-date information about the target’s track. Finally, we consider the 

case where tracking information is only known after a delay of d time steps. We 

provide necessary and sufficient conditions on the number of queries per time step 

to track in the above three scenarios. These conditions are stated in terms of the 

entropy rate of the target’s Markov chain.

12



2.1 Introduction

The problem of searching by asking questions has been the subject of extensive 

research for many years. Its origins can be traced back to Ulam and Renyi, who 

introduced variations of the famous “twenty questions problem.” Since then, several 

other formulations of this two-person game have been considered in the literature 

[70, 21, 34, 1]. In this work, our goal is to find theoretical bounds on the number of 

queries per time step a tracker is required to ask a set of sensors to track a target.

The problem of target tracking through limited querying is of particular interest 

in the sensor network setting. Sensor networks have emerged as one of the most 

promising technologies in recent years. For the majority of existing sensor networks, 

sensors are small and inexpensive devices, which impose serious energy constraints 

affecting the network lifetime by having to transmit sensing information (over possi-

bly long communication channels) to a remote monitoring station (tracker). More-

over, the reliability and the capacity of the channel available for communication 

with the tracker lead to restrictions on the amount of data sent over such networks. 

As a consequence, the tracker needs to make judicious decisions when selecting 

sensors to send data, so that communication with the sensor network is kept to a 

minimum. It is within this setting that we propose a sensor model in which sen-

sors are capable of sending only one-bit messages to a tracker. These messages are 

used to gather tracking information about a moving target. Specifically, we provide 

necessary and sufficient conditions on the number of queries per time step to track 

a target in three different scenarios: (1) the tracker is required to know the exact 

location of the target at each time step; (2) the tracker may lose track of the target

13



at a given time step, but it is able to “catch-up” , regaining up-to-date information 

about the target’s track; and (3) tracking information is only known by the tracker 

after a delay of d time steps.

The remainder of this chapter is organized as follows. Section 2.2 formalizes 

the tracking problem under three different definitions. According to each of these 

definitions, in Sections 2.3, 2.4 and 2.5 we state and prove theorems that relate the 

number of queries per time step necessary (and sufficient) to track and the entropy 

rate of the target’s Markov chain. Finally, Section 2.6 concludes this chapter with 

summary remarks. This chapter is joint work with Hua Li.

2.2 Problem Formulation

We shall now formalize the problem of tracking a target that moves according to a 

Markov chain. The structure of the motion model is described by a directed graph 

G =  where the set of nodes A , with finite cardinality, represents target

locations, and the set of edges E  describes each neighborhood, that is, possible tar-

get motion. If there exists an edge ( i ,j)  ^ E { i ,j  E A ), with associated transition 

probability pij > 0 , connecting node z G A  to j  G A , then the target moves from 

node i to j  with probability pij. Associated with each target location is a sensor, 

which can sense if the target is at its location. Throughout this chapter we use the 

terms network node, sensor, and target location as synonyms.

A discrete-time, homogeneous and ergodic Markov chain {X t : f G N} on a 

probability space, with measure P and state space A  , models the random motion 

in time of a target. Each node identifies a state of the chain, and the target

14



mobility law is specified by the (one-step) transition matrix [pij] , where pij =

P { X t + i =  j\Xt =  i},  i , j e X .

Given the initial target location X\ =  x\ E df, the history of Markov chain 

states visited by a target up to time step t is called a track.

D efinition 2 .2.1. The target track at time t >  1 is defined as the following finite 

random sequence of states:

X^i,t^=X,X2...Xt (2.2.1)

The main goal of target tracking is to estimate tracks over time. We use the 

following notation for such estimates: at time step r > t, the estimate of is 

denoted by likewise, at time step t  >t ,  the estimate of state Xt is given by

XI-

A tracker estimates target tracks by querying subsets of sensors. At each time 

step t, the tracker may query the sensors a number of times, say Kt times. We 

denote the /i:th query at time t by  ̂ <  k < Kt- Furthermore, each query 

consists of a number of “questions” , each of which addresses a particular sensor 

with a timestamp. Therefore, the query  ̂ is characterized by a set of sensor- 

timestamp pairs:

r l ,)  : 1 < g <  € A , < t] , (2.2.2)

where the sensor-timestamp pair denotes the question: “has sensor st,k

detected the target at time and Jt̂ k denotes the number of “questions” in

the query qt,k-
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In response, the queried set of sensors transmit a single bit to the tracker. 

Specifically, the response to query g*  ̂ can be written as

rtk =
1, if X^j ̂ =  sl f, for some j ;

‘ t , k (2.2.3)
0, otherwise,

that is, Tt̂ k =  1 if and only if, for some I <  j  <  Jt,k, sensor sjf. has detected the 

target at time

At every time step t, a querying scheme is modeled by a finite binary decision 

tree Tf. Here we use the same notion of decision tree as used by Rivest et al. in 

[74]. An internal node in Tt corresponds to queries qt̂ k,  ̂ ^  k <  Kt. The right 

and left children of each internal node represent queries following a “yes” (1) and 

“no” (0) response, respectively (unless they are leaves). Note that the root in Tt 

is considered an internal node. Finally, associated with each leaf in Tt is a track 

estimate up to time step t, i.e., With each leaf in Tr we also associate a

function / ( r ) ,  whose output is the time step t {1 <  t <  r) indicating certainty of 

correct estimation: X̂ i-  ̂ =  X̂ î-t]. Since we assume prior knowledge of the initial 

target location, for any time step t, f { t )  >  0 trivially. However, if the tracker is 

certain that and P^ .̂  ̂ =  with > î, then f { t )  >  ts; that

is, f { t )  outputs the most recent time step at which the tracker is certain of being 

correct.

To summarize, at each time t, sensors are queried by the tracker according to 

a querying scheme modeled by a binary decision tree Tt, resulting in a sequence of 

queries {qt̂ i, qt̂ 2 , . . . ,  qt,Kt) and associated sequence of responses (r^j, • • •, WA'Ji

following a path in the decision tree, culminating with the output of an estimate 

of the track up to time t, X̂ i-t]-, and an indication of what sub-track of this track is
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certain.

Let C  denote the maximum number of queries allowed at each time step, called 

the query quota. Note that C  is an integer. One could think of several scenarios 

where the number of queries at each time step is naturally limited. First, the ca-

pacity of the communication channel between the tracker and the sensors is usually 

scarce. Also, given the limited processing capabilities of small and simple sensors, 

a constraint on how fast queries can be processed is expected. Moreover, if sensors 

are deployed on a hostile enemy environment, it is reasonable to limit the maxi-

mum number of responses sent by sensors at each time step to avoid being detected. 

Therefore, for every time step f, Tt has at most m =  C +  l levels. Equivalently, we 

say the height of Tj, denoted by h{Tt), satisfies h(TJ < C Figure 2.1 illustrates 

a binary decision tree with four levels.

We further make the following remarks. All sensors are fault-free, have memory, 

and are able to communicate without error or delay with a tracker, which knows 

the initial location of the target and its mobility law. Sensor ranges do not overlap. 

Logarithms are taken to the base 2 and, by convention, log 0 =  0 and log § =  0.

In order to track a target, we use a strategy S  defined as follows:

Definition 2.2.2. A strategy <S is a rule that, at each time step, maps the current 

querying scheme and its results to the next querying scheme. In other words, at 

each time step t, S  takes Tt and the sequence of responses at time t, and generates 

Tt+i-

Figure 2.2 depicts the mapping defined above. Note that Definition 2.2.2 defines 

a memoryless strategy in the sense that it only uses information from the previous 

time step, i.e., the querying scheme used to track a target at time t -\- I depends
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only on the querying scheme used at time t.

We investigate three distinct “degrees” of target tracking, which we call follow-

ing, tracking, and d-tracking dehned below. Whether or not these degrees hold 

depend on the instance of the target motion model, given by the tuple (G, [pij], Xi).

Definition 2.2.3. A target is followable if there exists a strategy S such that, 

at each time step t, the target track estimate equals the true target track with 

probability one, that is.

Vt > 1, and f { t )  =  t a.s. (2.2.4)

Definition 2.2.4. A target is trackable if there exists a strategy S  such that the 

target track estimate equals the true target track infinitely often with probability 

one, that is,

Vt >  1, 3t  > t s.t. Wm.j  =  ATp.q and / ( r )  =  r  a.s. (2.2.5)

In other words, even if the tracker loses track of the target, if it is able to “catch-

up” and regain current information about the target track at a later time step, 

tracking is still accomplished. On the other hand, if the target track is estimated 

with certainty only after a fixed delay of d time steps, we define:

Definition 2.2.5. A target is d-trackable if there exists a strategy S  such that the 

target track estimate equals the true target track, after a delay of d time steps, 

infinitely often with probability one, that is.

Vf >  1, 3t  > t s.t. and / ( r  +  d) =  r  a.s.

We are interested in answering the following questions:

(2.2.6)
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1. What is the minimum query quota such that a target is followable?

2. What is the minimum query quota such that a target is trackable?

3. What is the minimum query quota such that a target is h-trackable?

As we shall see in the following sections, there is an intimate connection between 

querying and coding. A binary sequential source code naturally arises from the use 

of binary decision trees to represent the querying scheme. Recently, Borkar et al. 

[12] revisited the problem of sequential source coding, formulated as a constrained 

optimization problem on a convex set of probability measures. Although we also 

impose a causality constraint on codewords, one key difference between our work 

and [12] is that we introduce a constraint at each time step (the query quota) on 

the number of bits in a codeword. In the sections that follow, we state and prove 

three theorems on the conditions under which a target is followable, trackable, and 

d-trackable. We use the notation Ei to denote the set of neighbors of state i G A, 

that is, Ei =  G A  : pij > 0}.

2.3 Target Following

Theorem 2.3.1. A target is followable if and only if

C >  max log \ Ei\. ~ iex ' (2.3.1)

Proof. We first prove necessity. Let X i =  xi e  A . For alH > 1, assume

(2.3.2)
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and

C < maxlog |£'j|. (2.3.3)

Hence, there exists a state i G X  such that C <  log|£'j|. Since the Markov 

chain {X t : t >  1} is ergodic, thus irreducible, there exists a time step t > 1 such 

that the t-step transition probability from state X\ to state i is strictly positive.

i-e-, Pxl >  0 (where p X  =

From the definition of query quota, we know that at most C  bits per time step 

can be transmitted to the tracker. Therefore, the number of choices for estimating 

XtĴ i must be at most 2^ at each time step. But 2^ < \Ei\̂  and hence no strategy 

is able to identify all possible choices for Xt+\. Therefore,

(1)

^  minpij > 0, (2.3.4)

a contradiction.

To prove sufficiency, we show by induction that the simple and well-known 

binary search [43] yields a strategy S  using which we can follow a target when

C >  max log \ Eiiex (2.3.5)

Since the initial location of the target is known a priori, P =  X i|  =  1 

trivially. For a fixed t > 1, assume P ~  suffices to show that

p { h S i i  = =  1.

The binary decision tree Tf+i is generated as follows. An internal node at level 

k in Tf+i denotes a query of the form:

Qt+i,k — {(s i,  ̂+  1) , (s2, t +  1) , . . . ,  (s„, t +  1) }  , (2.3.6)

21



where

\Qt+i,i\ <
'\E:xt I (2.3.7)

The set of sensors to be queried is repeatedly reduced by about half until the 

target track is estimated with certainty. Hence, either

kt+1,1
2 /c - i or kt+i.fcl =

|gt+i,fc
2fc-i (2.3.8)

Since we are interested in showing sufficiency, we consider the case where the largest

bf+i.il
2 f c - l Bynumber of queries is required, that is, the case where \qt+i,k\ =  

dehnition, Tt+\ has at most k =  C \ levels; thus, assuming the largest possible 

number of queries is required at time step t +  1, we can write

kt+ul\qt+i,c\ > 2C-1 • (2.3.9)

When using binary search, the last query asked is a singleton, therefore \qt+i,c\ =  1, 

and we have

1 > 2C-1 C >  log IE.xt I ) (2.3.10)

and hence we are able to estimate the value of W +i with certainty among all 

possible 2^ choices, that is, P ~  ^[i:i+i]| =  b Thus, it suffices to have

C >  maxjg t̂’ log \ Ei\ to follow a target. □

2.4 Target Tracking

As described in Section 2.2, the target motion is modeled by an ergodic Markov 

chain with finite state space. Thus, the chain is also positive recurrent [15, 37], and
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its Shannon entropy rate can be calculated as [19, 93]:

H =  -  J ^ T T i^ P ylogp , 
iex j&x

(2.4.1)

where tt* is the stationary distribution of the Markov chain. In Equation (2.4.1), 

H  represents the mean description complexity of the Markov chain, that is, the 

mean number of queries required per time step such that the monitoring station 

can correctly estimate the target’s track. We shall now prove the following theorem:

Theorem  2.4.1.

a) If a target is trackahle, then C >  H .

b) A target is trackable if C > H +  1.

Proof We prove part (a) using the concept of strong typicality [93] applied to the 

finite-state ergodic Markov chain {W  :  ̂ For every t > 1 and each state

transition (i, j )  e  E, we define the counting function Nk on as

t-i
Nlj (x[i:i]) =  {Xk)lj (Xfc+i) , (2.4.2)

k=0

where Ij (x^) denotes the indicator function, that is.

li {Xk) =
1, if Xk =  i;

(2.4.3)
0, otherwise. 

For a fixed h > 0 and every t > 0, the set

\,S =  <; Xli:t] :
Nku < 5 , (2.4.4)

is called strong typical set, and sequences in this set are called strong typical se-

quences. Lemma 2.4.2 below states two important properties of strong typical sets
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and strong typical sequences. Property (a) is shown in [93], and property (b) can 

be easily shown using a result from large deviation theory [44], For completeness, 

we reproduce their proofs below.

Lem m a 2.4.2. For a fixed 5 > we have:

a) The probability of every strong typical sequence X[o:ij satisfies

< P {X|i,| =  i|„|} < , (2.4.6)

where Ci =  — logpjj and p̂  ̂ is the initial distribution P  {X i — Xi}.

b) For sufficiently large t,

P ^ ^  C22-C3« (2.4.6)

where C2 and C3 are positive constants.

Proof. To show property (a) in Lemma 2.4.2, we hrst bound -  log P (Xp.j] =  X[i;t]} 

from above:

t - i

— \r\cr ir\ (nr, X̂ilogP = ^-logp(a;fc+i|xfc) -  logp
k= l

=  (̂ [1:4 ) ( -  log Pij ) -  log Pxi
ij

< t ffiiPij +  S) ( -  logpij) -  logp, 

logPjj) -  logPxi=  t
hj

hj
=  t{Fl +  cffi) -  log, 
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(2.4.8)



where

Cl =  -  log Pij.
ihj)

Similarly, we can bound

- l o g P

from below:

t {H - C i S )  -log p ^ j < -lo g P {X [i;t ]  =X [i:t]}. 

Therefore, we have:

(2.4.9)

(2.4.10)

(2.4.11)

< - lo g P {X [i:,]  = X [1:,]} < (2-4.12)

We now show property (b) in Lemma 2.4.2 using the following result from large 

deviation theory:

Lem m a 2.4.3. [44j Suppose {W j} is an ergodic finite-state chain with state space 

X  and let hf denote its L̂  convergence parameter

bt =  sup sup \p̂ l̂  -  7Tj|. (2.4.13)
* j

The series

h =  Y ,b t (2.4.14)
«>i

converges, and for any bounded function F  : T  —)■ R and any S > 0, we have

logP<j _ 7 t (F) >   ̂ ^2 V a F  t ~ 1 / ’
(2.4.15)

as long as t > 1 3bF, where

F  =  max |F(2;)|,xex (2.4.16)
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and 7t (F ) is the mean of the function f  with respect to the stationary distribution 

TV of the Markov chain, i.e.,

Tv{F) =  ^F{l)TVi. (2.4.17)
i^X

In order to apply the above lemma, we first construct an ergodic finite-state 

Markov chain {F J  from the original Markov chain { Xt }  by taking the segment 

Yt =  (Xt- i ,Xt ) .  Clearly, {Yt} is an ergodic Markov chain with finite state space 

F  =  It is easy to verify that the stationary distribution of {Y)} equals to 

TViPij for each edge (z, j )  G Let bt be the convergence parameter of {Yt} and

b =  bt. We take

so that F  is bounded and

F { Y t ) = m Y t ) ,

F  =  sup|F(j)| < 1.
3

Using Lemma 2.4.3,

><^1 <
t — \ f  5

2 \b t - l
t - 1  f s  y

^  U - b  '

for all (L i) 6 and t >  1 +  y - Hence, for t sufficiently large.

logP X ij
-  TTiP.j >  5 -  ^ ^

t - l  fS

Similarly, applying Lemma 2.4.3 to function F' — 1 — F,

logP .( W U m ) _  < _ d  < J _ ^  (^  _  3

(2.4.18)

(2.4.19)

(2.4.20)

(2.4.21)

(2.4.22)
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for t sufficiently large. Combining inequalities (2.4.21) and (2.4.22), we have

logP '̂ iPij > 5  \ <
t — 1 /  (5

2 \b7 - 3  , (2.4.23)

for t sufficiently large.

We can now bound the complement of the strong typical set Af <5 as follows:

P ^ — P U
(ij)eA’2 t iPij >  s

<  ^  p  J  ̂ y  >  (i
{i,j)ex2 I

<  |A’ |2 2 -(‘ - i ) ( f -3 ) '

(2.4.24)

for t sufficiently large, where

and

C2 =  lA’ I

C 3 = I ^ - 3

(2.4.25)

(2.4.26)

□

Now, assume there exists a strategy S such that a target is trackable and C < H. 

Using Lemma 2.4.2, we get the following bound for the probability of the event

{ h ‘« i =
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P {- [̂Wl = “  P =  [̂W| =  *|1:1| }  P {-'̂ [1:1] =  }
|̂l:t|€A’[i.(J

= X I P l̂ [l:t] = ^l-A }  P {^[l:t] = Hl-A ]

+ X  ^ = [̂l:t]l-̂ [l:i] = [̂l:t] } P {^[l:i] =
[̂l:t]t t̂,5

-  X  P {^[l:t] =  [̂l:tl l̂ [l:t] =  } P {̂ [1:4] =  Hl'-t] ]
\̂V.t\&̂t,6
+  C22“ 3̂*

< E  P {-*|W| =  =  ![« ]}
[̂l:t]Ĝ t,i5
+  C22-^3  ̂ (2.4.27)

Given the constraint on the height of the tree Tt for each time step f >  1, there are 

at most 2**" choices for Hence,

Therefore,

X  ^ ~  -  2̂ *̂ -

P +  c22-^3i.

(2.4.28)

(2.4.29)

Since we can always choose 5 > 0 such that H — C — ciS >  0, and C3 > 0, it is clear 

that

t>i
(2.4.30)

By the first Borel-Cantelli lemma [10], we have

(2.4.31)
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thus contradicting the assumption that a tracking strategy S  catches-up infinitely 

often with probability one. Hence, it is necessary that C >  F  for a target to be 

trackable.

To prove part (b), assume C > H +  1. We describe an interactive tracking 

strategy which we refer to as the catch-up strategy, and we show (again, using 

induction) that a target is trackable when C > H +  1. L e t f = l .  Given the 

initial target location Xi  =  xi G T , we first show that there exists r  > 1 such that 

~  s-iid f{T) =  T almost surely.

In the catch-up strategy, each binary decision tree T( is generated according to 

a scheme based on Huffman coding [19], where the tracker uses the Markov chain 

transition probabilities to get Huffman codewords. Traversing Tt (that is, querying) 

takes place as follows.

The first nodes to be queried are those associated with codewords whose leftmost 

bit is 1 (equivalently, one could first query nodes whose leftmost bit is 0). If the 

response to this query is 1, the tracker would then query nodes whose corresponding 

codewords first two bits (from left to right) are 1, and so forth. On the other hand, 

if the response to the first query is 0, the following nodes queried would then be 

those associated with codewords whose first bit (from left to right) is 0 and second 

bit is 1.

From Huffman coding, we can directly derive a binary decision tree from 

Exi, the set of neighbors of state Xi. Each internal node in represents a possible 

query, and each leaf corresponds to a possible target location at t =  2. We maintain 

an auxiliary tree T*, initialized with In order to generate T2, we use the fact 

that at most C  queries can be asked at any given time step, and prune T* at level
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m =  min (C +  1, h{T*)). The resultant tree is T2, the binary decision tree at t =  2. 

Each leaf in T2 is associated with an estimate -̂ [̂ 1.2] and the certainty function /(2 ) . 

We now have two possibilities:

Case 1: If /(2 )  =  1, the track ^[i:2] is known with certainty, and we have 

caught-up. The procedure described above is repeated for t >  3, that is, we 

first derive tree from , where X 2 =  X2 G T ; we then set T* =  > and

generate Ts with height h{T^) =  min {C +  1, If /(3 )  =  0, we continue

as in Case 2 below; otherwise, proceed as in Case 1.

Case 2; If /(2 )  =  0, the tracker does not have certainty about the estimate Wp̂ .2], 

which is assumed to be the maximum a posteriori (MAP) estimate of X î-2 ],

i.e.,

X l  =  argmaxP { X 2  =  ilATo} . (2.4.32)

In this case, at f =  3, we use Huffman coding to derive trees Tj, where i ^ X  

is associated with leaves of the subtree in T*, whose root corresponds to the 

chosen estimate in (that is, the last node traversed in T‘2) .

Each tree Tj is appended to T*, replacing the leaf corresponding to location 

% in T *  by the root in T j ,  thus yielding an updated T*. We then prune this 

updated T* so that hiT ,̂) =  min (C +  1, h{T* — h{T2 ))). In general, we prune 

T* so that h{Tt) =  min (C +  1, h{T* — h(Tj_i))), for any f >  1. The root in 

T3 corresponds to the internal node in T* whose left and right subtrees are
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the appended T j ’ s .  If /(3 )  =  0, there is no certainty about the estimate Xp .̂3], 

and we derive T4 the same way as T3.

This process continues until / ( r )  =  r, for some r  >  3, when we would have 

caught-up. Querying is then resumed as in Case 1.

Note that there is no need to keep the complete auxiliary tree T* as described 

in Case 2 above. At each time step f > 1, the root in T* can be selected as the 

internal node whose subtrees are the appended Tj’s, and all other nodes on upper 

levels can be discarded. However, this is an implementation issue which does not 

affect the proof. The example below illustrates the catch-up strategy.

Exam ple 1. Let X\ =  xi E X , C =  2, and assume X 2  =  a2  E X . Also, let 

Exi =  {« i , 02, 03, U4, 05} with transition probabilities {0.2, 0.1, 0.3, 0.2, 0.2}. Thus, 

one possible set of Huffman codewords is {10,011,00,11,010}, and the binary de-

cision tree is illustrated in Figure 2.3.

Since t =  2, T* is the same as . Moreover, since C  =  2, T2  has three levels, 

as shown in Figure 2.4, where 05 =  argmaxje;^- P {X 2  =  i\Xi =  xi } .

Given that f {2)  =  0, the estimate X î-  ̂ =  2:105 is not known with certainty, 

thus Ta.2 âs o-re generated using the set of neighbors Ea ,̂ respec-

tively. Let Ea2 =  {o i, 03, 04, 05} with transition probabilities {0.4, 0.1, 0.1, 0.4}, and 

Eas =  { 04, 03} With transition probabilities {0.5, 0.5}. Tâ  and Ta,̂  are directly de-

rived from Huffman coding and illustrated in Figure 2.5.

Trees Ta.̂  and Ta,̂  are appended to T* as follows: the root in Tâ  takes place o f

31



the leaf corresponding to location 0 2  in T*; likewise, the root in Tâ  takes place of 

the leaf corresponding to location â  in T*.

The updated T* is shown in Figure 2.6. At t =  3, T3 is generated as follows: 

its root corresponds to the internal node in T* whose left and right subtrees are Tâ  

and Tâ , respectively. The height ofT^ is h{T3 ) =  min (C  +  1, h{T*) -  h(T2 )) =  3. 

Assuming X 3 =  a ,̂ -̂ pi.3] =  ^[i:3], and we have caught-up. This is shown in 

Figure 2.1.

We now show that the catch-up strategy can indeed be used to track a target. 

In other words, we show that the tracker regains current information about the 

target location infinitely often with probability one when the catch-up strategy is 

applied. Let be the average number of queries asked up to time r, that is,

1[1:t ] —
Y^l=l

T
r  > 1, (2.4.33)

where Ik is the number of queries asked to estimate W  with certainty. Clearly, 

Ik is a bounded function of the Markov chain {X t : f > 1}, for every A: > 1. By 

the Generalized Convergence Theorem for bounded functions of discrete-time and 

ergodic Markov chains with finite state space [62], we have

l[l:7 L, (2.4.34)
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where the limit L (according to the Source Coding Theorem [19, 93]) satisfies 

H < L < H +  1, and H is given by Equation (2.4.1). It suffices to show that

P{^[i :t ] < C, for some r > 1} =  1, (2.4.35)

and we show it by contradiction. Assume

P{̂ [i:r] > c, Vr > 1} =  p > 0. (2.4.36)

Then, since C > H +  1 and H < L < H +  1,

P{̂ [1:t] > T, Vr > 1} > P{/[l:r] > C, Vt  > 1} =  p > 0.

Hence,

(2.4.37)

P l l̂im /[!,.,] =  l | < 1 -  p, (2.4.38)

a contradiction.

Therefore, there exists r  > 1 such that and / ( r )  =  r  almost

surely. By induction, now assume the above is true for t =  t', that is, there exists 

r ' > t' such that X^ .̂  ̂ =  and f { r ' )  =  t ' almost surely.

Using the same reasoning as above (for the case t =  1), we can show that there 

exists r" > r ' such that and / ( r " )  =  r" almost surely. Hence, it

suffices to have C >  H +  1 to track a target. □
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2.5 Target d-tracking

Theorem 2.5.1.

a) If a target is d-trackable for some positive integer d, then C >  H .

b) For any positive integer d, a target is d-trackable if C >  H +

Proof. Part (a) is proven once again using contradiction and strong typicality. Sim-

ilarly to the tracking case, we assume that C < H  and that there exists a strategy 

<S such that a target is d-trackable. The track estimate has at most

choices, since can be true at most times. Hence, the probability of the

event =  ^[i:«]| is bounded by

P ^  c22-^̂ {t+d)_ ^2.5.1)

Again, by the first Borel-Cantelli lemma, we have

(2.5.2)

a contradiction. Thus, C > H .

We show part (b) using a block version of the catch-up strategy described in the 

proof of Theorem 2.4.1. Consider the sequence of random variables {HA : n >  0}, 

where HA =  {Xfi(n-i)+i, ■ • ■ ,X^n), d > 0, that is, each random variable HA is 

a segment of of length d of the sequence {Xt  : t >  1}. We call the sequence 

(HA : n > 0} a block Markov chain taking values in the state space Assuming 

C > H +  2  ̂ and given the initial target location xi, we skip querying during the first 

d time steps. For each time step t, from t =  d -|- 1 to t =  2d, we apply the catch-up
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strategy to get and f{2d).  This is done using the transition probabilities of

the Markov chain {kT„ : n > 0} to generate Huffman codewords. Thus, at f =  2d, 

we have the estimate ITi =  . . . ,  . This procedure is repeated for

every “block” of d time steps, hence if Cw is the maximum number of queries 

allowed during each block, Cw =  dC. Moreover, the entropy Hw of the Markov 

chain {kT„ : n > 0} can be calculated in terms of the entropy rate H  of the original 

Markov chain as

w =  limn—̂oo
log P [̂l:nd\ }

n

=  lim dn—>oo
log P [̂l-.nd\ }

nd

=  - d  ^  TTiPylogPy,
i j ex

(2.5.3)

that is, Hw =  dH.

By Theorem 2.4.1, if Cw > Hw +  1, that is, if C > id +   ̂ and d > 0, a target 

is d-trackable. □

2.6 Concluding Remarks

In this chapter, we have studied the number of queries required to follow, track, and 

d-track a target that moves according to a Markov chain. Necessary and sufficient 

conditions have been presented for all cases, as well as corresponding following, 

tracking, and d-tracking strategies. One possible area for future work is to extend 

these results to the multitarget scenario, as well as to consider the case where 

sensors are faulty (i.e., their query responses may be wrong), and where noise 

is present in the communication between sensors and tracker. In this direction,
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it would be natural to introduce the notion of distance between sensors (states) 

and analyze tracking performance under criteria such as the mean squared error. 

We conjecture that results related to rate-distortion theory are possible. Another 

interesting variation is to take sensors responses to be the number of sensors that 

reply “yes” to a query. Future work could also include investigating the mean 

number of time steps (in terms of number of queries) involved in the catch-up 

strategy before the target track can be estimated, i.e., the mean lag time. Although 

the simplicity of this strategy is particularly attractive, it is of interest to find the 

strategy that incurs the minimum lag time. Recently, Hua Li extended this work by 

considering the case when we have no a priori knowledge about the target motion 

model [52].
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Figure 2.2: Strategy mapping.
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Figure 2.3: Binary decision tree (equivalently, T*) derived from Huffman coding. 
Each leaf correspond to a possible target location, and each internal node represents 
a possible query at any t > 0.
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Figure 2.4 ’ Binary decision tree T2. The arrow shows the tree traversal at t =  1.
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(b)

(a)

Figure 2.5: (a) Binary decision tree Tâ - (b) Binary decision tree as ♦
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Figure 2.6: T* updated with subtrees Ta. and -a2 ■
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Figure 2.7: Binary decision tree T .̂ The arrow shows the tree traversal at t =  3.
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Chapter 3

Models for Active Sensing in 
Urban Terrain

We consider models for the various elements present in the urban environment 

required in the design of an active sensing platform for such scenarios. Specifically, 

we provide clutter, sensor, multipath, signal, and motion models. To the best of 

our knowledge, this work is the first to inv(\stigat(; how the interplay among these 

elements affect the overall performances of a elosexl-loo}) multitarget-niultisensor 

tracking system.

3.1 Introduction

The past few years have shown that conventional warfare belongs in the past. The 

battles have now moved to dense urban environments, where surveillance and track-

ing systems are denied line-of-sight, thus creating the need for innovative systems 

that will give allied troops an advantag(' ov('r (snemy fighters. While the primary 

motivation behind this work is tlus urban battlefi('ld pressented to military forces, ra-

diolocation applications in the transportation and communications industries (e.g., 

urban vehicular sensing platforms) would also IxaK'fit from (dfective solutions to the
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problem of target tracking in urban terrain. The interdisciplinary nature of this 

work highlights the challenges involved in designing a closed-loop active sensing 

platform for next-generation tracking and surveillance systems, as well as the im-

portance of considering different diversity modes under unfavorable environmental 

conditions.

The first step in designing an active sensing platform for target tracking in an 

urban environment is to model the various elements that are part of this environ-

ment. Although intrinsically imperfect due to the many simplifying assumptions 

explained in this section, the models considered facilitate the analysis of the in-

terplay among these; dilf(;rent (;l(;nients, and how l.hcy ultimately aff(;ct the overall 

tracking system performance.

The remainder of this chapter is organized as follows. In Section 3.2, clutter and 

multipath in urban terrain are discussexl and the; modc'l of the spex’ific scenario con-

sidered is presented. In Section 3.3, the transmitted and received signal models are 

explained. Target motion models are discussed in Section 3.4. Finally, Section 3.5 

concludes this chapter.

3.2 Clutter and Multipath in Urban Terrain

The overwhelming complexity of the urban environment makes active sensing for 

ground target tracking a very interesting and challenging problem. Although we 

may have access to layouts of streets, buildings and vegetation via satellite radar 

imagery and city niaj)s, the; urban sĉ cmario is ])articularly difficult for a tracker due 

to the unpredictability and nonlinearity of target maneuvers, as well as the presence
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of arbitrary obscuration, that is, areas in the scenario that may not be visible to a 

sensor at any given instant of time, thus making targets “disappear” occasionally. 

Figure 3.1 is a pictorial representation of the urban terrain.

A number of terrain factors have major impact on the overall system perfor-

mance. Different road classes (e.g., highways, arterial roads, residential streets, 

alleys) impose different constraints on ground vehicdes (e.g., change in speed, stop-

ping points, turns, (;xits). In addition, different construction materials (e.g., glass, 

compete, brick, wood) have differcmt reflectivity coefficients, and tluaefore different 

multipath conditions. Clearly, it is virtually impossible to consider every detail in 

every possible scenario. In this work, we consider a representative scenario that 

allows the tracker to experience the main technical challenges observed in practice: 

multipath ambiguities, lack of continuous target visibility, and measurement-to- 

track uncertainty due to clutter. The simulated scenario is depicted in Figure 3.2, 

which shows four building structures at an intersection. The uneven nature of ur-

ban clutter is represented by the ‘-h’ , indicating vegetation on the center median 

and sidewalks. A radar transmitter, represented by ‘v ’> is located at (2085,1470.5); 

whereas two radar receivers, each with three sensor array elements, are located at 

(2088,1475) and (2078,1467), both represented by ‘O ’-

Throughout this work, the term clutter is used to describe the signal received as 

a result of scattering from background objects other than targets of interest. Hence, 

a wide variety of background elements, from raindrops and birds to buildings and 

trees, are collectively described as clutter. Usually dense and unevenly distributed 

over the surveillance area, urban clutter increases the false alarm rate and missed 

detections when modeled inappropriately. At first glance, clutter may behave as
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Figure 3.1: Pictorial representation of the urban terrain.
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Simulation Scenario

Figure 3.2: The simulated urban terrain. The start and end trajectory points are 
shown as □; receivers are shown as Q i the transmitter is shown as v ;  and clutter 
discretes are shown as +.
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noise, in the sense that it creates a background intensity above which the target 

return must rise to be detected. However, clutter, as opposed to noise, is caused by 

the transmitted signal, and therefore it is directly related to the signal reflected by 

targets. Hence, ideally, clutter should not be modeled as noise. Another widely used 

model is one that assumes clutter to be homogeneous over the sensor’s surveillance 

area. However, variations in the underlying terrain, vegetation, and different urban 

structures contribute to homogeneity violations, making this clutter model far from 

ideal [30, 31, 61]. Figure 3.3 shows the radar return of an urban scene in which 

no target is present. Thus, this image represents the relative intensity of clutter 

only, where we can clearly distinguish bright, discrete, clumpy, non-Gaussian, and 

non-homogeneous scattering.

We consider clutter as a superposition of N,. independent scatterers,

Nn
n..{1) =  -  T,) (3.2.1)

1=1

where the zth scatterer has reflectivity a,, t ., is the time-delay from the transmitter 

to the zth scatterer and back to the receiver, u, is the Doppler shift incurred during 

propagation, and s{t) is the transmitted signal.

Target detection in urban terrain is allectc'd by multipath propagation due to 

the inability of sensors to distinguish between the received signal scattered directly 

from a target and the received signal that traversed an indirect path in the urban 

sc('nario. Therefore, targets can also b(' d('tect('d du(' to reflections from buildings, 

vegetation, and other chitt(!r scatterers having difh'ixait rcTc^ctivity coefficients, thus 

pr(!senting different multipath conditions.

Using prior knowledge of the terrain, a physical scattering model can be derived.
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Radar Return -  Clutter Intensity in the Urban Scene
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Figure 3.3: Urban clutter example.
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We assume reflective surfacxrs are smooth, reflectivity coeffici(uits are constant, and 

tlie angle of incidence (X|uals tlie angle of reflection. W(' fiirtlier assume that the 

strength of the radar return is negligible after tliree reflections. For an unobstructed 

target, the direct path can be described as follows. Let p and q be vectors cor-

responding to the paths from transmitter to target and from target to receiver, 

respectively. The length of the direct path is the sum of the lengths of p and q; 

azimutli is the angle between the receiver and q; and the Doppler shift is the sum of 

the projected target velocity onto p and q. In all other cases, path length, azimuth 

and Doppler shilt (’an be calculated once the reflection point on the clutter scat- 

terer has been determined. For instance, let (xd/c) be the incidence point of the 

transmitted signal on the clutter scatterer, [xk.Vk) the target position at time step 

/c, and {xr,yr) the receiver location. Using simple geometry and the line equation, 

the rejection })oint (x ,̂ y,) can be found solving the equations below:

yc =  mXc -|- c

[-rn(x,. -  X,,) -I- y, -  y^f _  [-m {xk  -  x,.) -|- xjk -  y^f 
(x,. -  x J 2 +  (y,,, _  _  y^Y ■

(3.2.2)

(3.2.3)

where m is the slope and c Is the y-intercept in the line equation representing 

the clutter scatterer. Both m. and c are assumed to be known. Note that such 

a ])oint may not exist due to possible obscuration and the' finite dimensions of 

scatterers. Equations above refer to the transmitter-target-clutter-receiver path, 

and the approach is analogous for other paths.
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3.3 Signals for Active Sensing in Urban Terrain

Radar has become an essential sensor in tracking and surveillance systems due to its 

ability to survey wide areas rapidly under any weather conditions. In this work, we 

consider a sensing system where small low-power multistatic radars are distributed 

over the surveillance area. In particular, we consider bistatic radar pairs augmented 

by additional sensors (transmitters or receivers). The physical separation between 

transmitter and receiver in such system provide the spatial diversity needed to 

improve coverage, and thus detection. Although it is out of the scope of this work 

to delve into details of radar sensors, for the sake of completeness, we give a brief 

overview below.

A radar is called an active sensor b('c:aus(' it initiates tlu' enc'rgy rcdhicted by ob-

jects in its surveillance area. This energy is then collected by the radar’s aperture 

[11]. The active nature of a radar is the primary factor that makes it an (dfective 

sensor, since it gives the system designer some control over both transmitted and 

received signals. In other words, it is possible to adaptively schedule the waveform 

being sent according to changing environmental conditions. On the other hand, 

a disadvantage of active sensors is that if the sensor location is revealed to a tar-

get, this target can take evasive or hostile actions. This scenario is considered in 

Chapter 5.

Most current radar systems are monostatic, that is, transmitter and receiver 

are co-located. The performance of such systems has been greatly improved by the 

advent of high-resolution imaging, low-sidelobe antennas, and high-speed digital 

signal processing. However, since scattering occurs in all directions, a single receiver
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can only intercept a very small portion of this energy, and much of the signal is lost. 

Moreover, as targets become faster, more agile, and stealthier, the shortcomings of 

monostatic systems are accentuated.

The separation of transmitter and receiver in bistatic and multistatic radar 

systems can overcome these; limitations and offer the potential to o;xtend the ca-

pabilities and performance of current systems, improving coverage and detection. 

Although the inherent advantages of multistatic systems make them attractive for 

a variety of applications, they come with the cost of increased complexity and new 

challenges. While in rnonostatic radars synchronization between transmission and 

reception is straightforward, the separation of transmitter and receiver makes this 

task much more challenging, and synchronization has to be achieved via atomic 

clocks, GPS signals, or a signal sent directly from the designated transmitter. An-

other crucial issue is the data fusion scheme that must be used to combine mea-

surements from various receivers. To date, there have been few good multistatic 

models and further research is needed [32] .

A surv(;y of the literature reveriLs that fhdinitions of bistatic and multistatic 

radars are ejuite widely varying with no universal acceptance of a single description. 

The IEEE dedines bistatic radars as a radar system that uses sensors at different 

locations for transmission and reception. However, there is no stipulation as to how 

far apart the two sensors should be. Clearly, if they are near co-located, then the 

system approximates a monostatic radar. If a further sensor (either transmitting 

or receiving) is added to the bistatic pair, then this might be called a multistatic 

radar. However, other terminology often includes netted radars [4], multisite radars 

[16], distributed radars [90], and MIMO radars [27]. The distinctions between these
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are, at best, blurred. In this work we use the term multistatic to mean any system 

comprising a bistatic pair augmented by an additional sensor.

The mth receiver (m =  1, . . . ,  M)  is a uniform linear array of sensor ele-

ments, separated by distance d^, and where the direction of arrival of the signal 

sent by the nth transmitter (n =  1, . . . ,  Â ) is 0n,m- We assume coherent processing, 

i.e., radar returns that arrive at different receiver sampling intervals can be pro-

cessed jointly. In other words, we are assuming that radar returns can be stored, 

aligned, and subsequently fed to the receiver for fusion.

Before we describe transmitted and received signals, it is important to under-

stand the difler(mt time frames involved. Whih; transmitter and rta êiver perform 

signal processing on a intrapulse fashion, the tracker works on a interpulse time 

frame. Therefore, in the proposed signal model, three time scales are used; the 

state sampling period T =  — tk^i, the pulse repetition interval 7d, and the re-

ceiver sampling period T̂ . In general, T2 <C Ti <C T. In addition, we use the 

far-ficld assumption and consider tlu; signal wave to be planar.

At time a series of pulses is transmitted at periods of Ti seconds. Assuming 

Gaussian-windowed up-sweep and down-sweep chirp signals of unit energy, the 

signal transmitted by the nth transmitter at time tk is given by:

{t) =  exp { [Tj 7 -  1/ ( 2k 2)] {t -  bT^f]

b = - { B - l ) / 2

(3.3.1)

where t e R ,  B is the munber of pulses transmitted, k  represents the pulse duration, 

and 7 is the chirp rate. The complex exponential is positive or negative according 

to the waveform scheduled for transmission: up-sweep chirp or down-sweep chirp, 

respectively.
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The received signal is a summation of reflections from targets of interest and 

clutter scatterers. Let Pk,n,rn Le the total number of reflections received by tin; 

mth receiver at time that originated from the nth transmitter. Signals from the 

pth path (p =  1, . . . ,  Pk,n,m) are subject to a random phase shift uniformly

distributed in (—tt, tt]. Hence, the signal received by the Ith element (/ =  1, . . . ,  L„J 

of the mth sensor array at time tk +  UT2  can be written as:

N ,n ,m

” (3.3.2)yk,rn,l{‘u) =  X] e->̂ "'”'g'n,rn{^k;uT2) +  e{u),
71=1 p = l

where u =  (0, . . . ,  f/ — 1) is the sample index, and e{u) is a complex white Gaussian 

process. We can write (x/,.;nT2) as:

Sr,.,mi^k;uT2) =  (3.3.3)

M  ■ Sk,n (^^2 -  (Xfc)) ■

g-2wjVLm(Xfc)wT2+j(;m-l)rfm[sin(«Lm(Xfe))C,m(xfc)w72]

where for the carrier signal wavelength A, =  d,„/A, and Sk-n {uT2  — (x^,))

is the delayed replica of the transmitted signal given in Equation (3.3.1). In addi-

tion, the following r(;ceivcd signal param(d,ers are defined for the pth path between 

the nth transmitter and m.th receiver: (x ,̂) is the magnitude of the radar re-

turn, including transmitted signal strength and path attenuation; (x*.) is the 

time-delay incurred during propagation; ^ (x/;) represents the Doppler shift; and 

(̂ A:) IS the directiou of arrival, where (x^) is its rate of change. The pa-

rameters above can be computed for each target state x̂ ., given prior knowledge of 

the urban scenario.
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3.4 Models for Target Motion in Urban Terrain

One of the two major challenges in target tracking is the uncertainty about the 

target motion; the other being the uncertainty about measurement origin. The 

target motion uncertainty refers to the fact that an accurate dynamic model of the 

target(s) being tracked is not available to the tracker. To this end, various mathe-

matical motion models have a been developed over the years. A comprehensive and 

updated survey, emphasizing the underlying ideas and assumptions of these mod-

els is given in [53, 54, 55]. While the tracking community traditionally has been 

concerned with modeling the motion of civilian and military aircrafts, there is little 

literature available about modeling the motion behavior of urban ground vehicles 

and dismounts (i.e., human motion) [26, 40]. Target motion in urban terrain can 

be described by a large number of models, mixed in various ways. It is not the 

objective of this work to design novel motion models for targets in urban terrain. 

Instead, we adopt existing models in the literature.

Before we proceed, a few observations should be made. First, we consider motion 

models of a “point target.” Although a target is probably never really a point in the 

mban (mvironment, for the purposes of this woik, it suffices to treat each target as 

a point object without shape or any other spatial characteristic or feature. Second, 

although measurements are usually available only at discrete instants, the target 

motion is more accurately modeled in continuous time, since the target dynamics 

does not depend on how or when samples are taken. However, since this work relies 

on computer simulations, we adopt discrete-time models.
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Let the target state vector at time he

(3.4.1)

where T  denotes matrix transpose, [xk.yk] is the velocity vector, and [xk,Vk] is 

the acceleration vector.

Motion models can be divided into two categories: uniform motion (or non-

maneuvering) models and maneuvering models. The most commonly used non-

maneuvering motion model is the nearly constant velocity (NCV) model, which 

can be written as:

xa:+i =  Fx)(, -|- Gw*,, (3.4.2)

where the process noise w* is a zero-mean white-noise sequence,

\

F =

G r 0 0 0 o i  ̂ 1
2 ■' 0

0 1 0 0 0 0 T 0

0 0 1 T 0 0 0
, G =

0 0 0 1 0 0 0 T

0 0 0 0 0 0 0 0

0 0 0 0
V 1 0 0

(3.4.3)

/

and T is the state sampling period. The process noise covariance multiplied by the 

gain is the design parameter

Q =  diag a Q', a. O' (3.4.4)

where Q' =  G G ^, and and are uncorrelated variances in x and y directions, 

respectively, corresponding to noisy “accelerations” that account for modeling er-

rors. To achieve nearly constant velocity or uniform motion, changes in velocity
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over the sampling interval need to be small compared to the actual velocity, i.e., 

<  ±k and a l T  ^  yk-

We considcT two different models to describe accelerations and turns. Left 

and right turns are modeled by the coordinated turn (CT) model with known 

turn rate u. This model assumes targets move with nearly constant velocity and 

nearly constant angular turn rate. Although ground target turns are not exactly 

coordinated turns, the CT model, originally designed for airborne targets, is a 

reasonable and suffici('nt ap])roximation for our purposes. Knowhxige of each turn 

rate is based on prior information about the urban scenario. For the six-dimensional 

state vector, the CT model follows Equation (3.4.2), where ŵ , is a zero-mean 

additive white Gaussian noise (AWGN) that models small trajectory perturbations, 

and
/

F =

V

1 sin (jjT
LJ 0 1 —coscjT

U) 0 0

0 c o sc j T 0 — sin ujT 0 0

0 1 -COS ujT
LO 1 sin u)T

U) 0 0

0 sin ujT 0 cos ujT 0 0

0 0 0 0 0 0

0 0 0 0 0 0

(3.4.5)

/
Similarly to the NCV model, Q =  diag [Q', Q'], Q' =  GG ^, and is the process 

noise variance, ffowever, contrary to the NCV model, x and y directions are now 

coupled.
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Accelerations and decelerations are described by the Wiener-sequence accelera-

tion model, where
/

and

G  =

T 0 0 1^2 0

1 0 0 T 0

0 1 T  0 1 7̂ 2 
2

0 0 1 0 T

0 0 0 1 0

0 0 0 0 1

/ 1 rp2 0 ^

T 0

0 \rp2 
2 ^

0 T

1 0

\ 0 1 J

\

(3.4.6)

/

(3.4.7)

For this model, the process noise w*. in Equation (3.4.2) is a zero-mean white- 

noise sequence with nncorrelated variances in the x and y directions. We consider 

Xk and <C jjk, in which case the Wiener-sequence acceleration model 

is also known as the nearly constant acceleration (NCA) model.

3.5 Concluding Remarks

In this chapter, we described models for urban clutter, multipath, sensor signals, 

and target motion. These models are used in the design of a closed-loop active sens-

ing platform for tracking multiple targets, discussed in Chapter 4. Throughout the
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modeling process, a compromise between representation accuracy and model com-

plexity was sought, and it became clear that a more unified approach to modeling 

all the different elements involved is needcxl.
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Chapter 4

Multitarget-Multisensor Tracking 
in Urban Terrain

We investigate the integration of detection, signal processing, tracking, and schedul-

ing by exploiting three distinct levels of diversity: (1) spatial diversity through the 

use of coordinated multistatic radars; (2) waveform diversity by adaptively schedul-

ing the transmitted waveform; and (3) motion model diversity by using a bank of 

parallel hlters matched to different motion models. Specihcally, we proposed a 

closed-loop active sensing system in which, at every radar scan, the waveform that 

yields the minimum trace of the one-step-ahead error covariance matrix is transmit-

ted; the received signal goes through a matc'hed-filter, and cmve htting is used to 

extract range and range-rate measurements that feed the LMIPDA-VSIMM algo-

rithm lor data association and hltcning. Monte Carlo simulations demonstrate the 

effectivcmess of the proposed system in an urban sc('iiario contaminated by dense 

and uneven clutter, strong multipath, and limited line-of-sight.
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4.1 Introduction

When compared to tracking airborne targets, tracking ground targets in urban ter-

rain poses a new set of challenges. Target mobility is constrained by road networks, 

and the quality of measurcmu^nts is affected by dense and umwen clutter, strong 

multipath, and limited line-of-sight.

We propose a closed-loop active sensing system for the urban terrain that inte-

grates multitarget detection and tracking, multistatic radar signal processing, and 

waveform scheduling. The proposed system simultaneously exploits three distinct 

levels of diversity: (1) spatial diversity through the use of coordinated multistatic 

radars; (2) waveform diversity by adaptively scheduling the transmitted radar wave-

form according to the urban scene conditions; and (3) motion model diversity by 

using a bank of paralk'l filters, each one matched to a different motion model. 

Specihcally, at each radai- scan, t.lu' waveform that yields the minimum trace of 

the one-step-ahead error covariance matrix is transmitted; the received signal goes 

through a matched-filter, and curve fiU.ing is used to extract measurements that 

feed tlie LMIPDA-VSIMM algorithm for data-association and filtering. The overall 

system is depicted in Figure 4.1. This feedback structure is fundamentally different 

from more conventional designs where processing is done sequentially without any 

feedback.

In this chapter, we explore the models presented in Chapter 3 and outline the 

main aspects of each building block of the proposed closed-loop active sensing plat-

form for target tracking in urban terrain depicted in Figure 4.1. The remainder 

of this chapter is organized as follows. Section 4.2 describes the detection process
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performed by emdi radar ixK'eiver. Specifically, the matched filter detector is de-

scribed. Radar imaging and how range and azimuth measurements are extracted 

are also explained. Section 4.3 discusses the various elements of the multitarget-

multisensor tracker, including: automatic track initiation and termination criteria, 

measurement validation, filtering, and data association. In Section 4.4, waveform 

scheduling is considered. Simulations results are presented in Section 5.4. Finally, 

Section 5.5 concludes this chapter.

4.2 From Signal Detection to Discrete Measure-

ments

Under the modeling assumption of AWGN, the optimal signal detection is the 

correlator receivc'r, or ('(piivalently, the matched-hlter [71]. The signal received by 

the /th element of the mth sensor array, given in Equation (3.3.2), is compared to a 

template signal by computing a correlation sum of sampled signals. The template 

signal is a time-shifted, time-reversed, conjugate and scaled replica of the signal 

transmitted by the nth transmitter at time

hk;ri{t) =  asl -  t) , (4.2.1)

where b; is the time-delay incurred during propagation, * represents complex con-

jugate, and a is the scaling factor assumed to be unity.

In the general multistatic setting with N transmitters and M  receivers, we 

consider the case where the mth receiver is a uniform linear array of sensor 

elements. Therefore, we need to combine the signals received by each of the sensor
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array elements to obtain the total signal received by the mth receiver at time 

which can be written as:
u -l Ti

y k ,m  'y   ̂ 'y   ̂ y   ̂y k ,m ,l{ , '^ ')h k ,n  (^^2 0  ! (4.2.2)
„=0 «=1 1=1

where yk,rn,i is given by Equation (3.3.2), and is given by Equation (4.2.1).

Before range and range-rate measurements that feed the tracker can be ex-

tracted, pre-processing the radar intensity image is necessary. Assuming each tar-

get is a point object (as opposed to an extended object with spatial shape), we 

use peak detection to locate a point source corresponding to a received power peak 

on a time-delay versus Doppler image. Due to strong local (but lack of global) 

similarities exhibited by urban clutter, image processing techniques aimed to sup-

press this type of clutter should be based on segmentation analysis and process 

each image segment individually in order to distinguish between targets of interest 

from background scatterers [2]. However, this could be extremely computationally 

intensive, therefore we use a more standard form of clutter suppression. Specifi-

cally, we calculate a background model prior to tracking using the average of radar 

intensity images over time to approximate the true urban scenario. The average 

background image is then subtracted from each image formed using radar returns 

during the tracking process. For each time-delay r and Doppler shift n, the average 

magnitude of the radar return is given by;

1
•4(t , n) =  - ^ A , ( r , //), (4.2.3)

j=i
where j  indexes times during which the urban scenario was under surveillance prior 

to tracking, and

Afc(r, v) =  A ~ (r, u) -  A{t , u) (4.2.4)
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is the magnitude of the radar return for time-delay r and Doppler shift u at time step 

tk during tracking. If further improvements on the contrast between background 

and targets of interest are needed, it is possible to reduce the image noise applying 

smoothing techniques.

Peak detection is implemented iteratively. For each peak T,peak peakK.’ ‘'k found

hi Ak{T, u), a nonlinear optimization algorithm is used to find a curve that fits the 

underlying image within a window centered at the peak. When performing curve 

fitting, we are interested in estimating the measuremcmt error covariance matrix. 

SiiK'e noise sources arc; assimuHl to be AWGN, Gaussian curve; fitting has been 

widely used in target detection. However, locally within a window centered at the 

peak, a Gaussian can be approximated by a quadratic. In this work, we fit a two-

dimensional quadratic function to each peak in the underlying image. Specifically, 

at every time step tp,we solve the following optimization problem:

I ]  I -  M t , r , (4.2.5)
r V

where for e > 0, the window containing time-delay and Do])pler values is defined 

by T e ~   ̂j   ̂ ^ — e, ~b ^) ’

jy) =  (T^T -h  2ara^Tiy - |-  u 2..2 (4.2.6)

We define a scan as the set of measurements geiu'rated by a radar receiver from 

an individual look over the entire surveillance area. The A;th scan by the mth 

receiver corresponding to its kth look is denoted by:

Z k , ,n  =  ^ l n , y  ■ • • . > (4-2.7)

where is the total number of measurements in scan In this work, the jth

,m ) measurement in the /cth scan of the mth receiver is the following
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two-dimensional vector of range and range-rate:

'̂ k,m
k.m

k̂.rn
(4.2.8)

where (r̂ . corresponds to the location of the jth  peak in the time-delay and

Doppler image from receiver m by trivial transformation. Associated with each

measurement vector z(, is an error covariance matrix

=
0".3

k , m

Prr \ CF
k , m ■i )

Prf I ^ j-3
'  k , m  k , m

ajj
k , m

(4.2.9)

where ip is the vector of parameters that characterize the waveform transmitted 

at tk, and prr is tlu; correlation cot'fhcieiit between range and range-rate measure-

ment errors. The vector ij> is included in the measurement noise covariance ma-

trix description to show the explicit dependence of this matrix on the transmitted 

waveform. In particular, t.iansmittc'd waveforms defined l)y Equation (3.3.1) are 

characterized by pulse duration k  and chirp rate 7 ; hence, in this case.

i)
■

(4.2.10)

The correlation coc f̂ficient Ix̂ twecm measurement errors also depends on the 

transmitted waveform, and can be calculated using the waveform’s ambiguity func-

tion as shown in [69]. In particular, tlû  corrc'latioii coefficient for the up-sweep 

and down-sweep chirp waveforms considered in this work are strongly negative and 

positive, respectively.

In state estimation, the measurement model describing the relationship between
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the target state at time and the kth radar scan can be written as:

4,m =  H M  +  Vfc, (4.2.11)

where H is a vector-valued function that maps the target state to its range 

and range-rate, and v/c is the zero-mean Gaussian measurement noise vector with 

covariance matrix R|.

4.3 Multitarget-Multisensor Tracker

VVe consider a tracker implemented as a .sequential filter that weighs measurements 

in each scan. In addition, tracks are initiated, maintained and terminated in an 

integrated fashion. Note that we use the word track instead of target since we 

have no a priori knowledge of the number of targets in the urban scenario. Also, 

algorithms discussed in this section have been previously presented in the literature. 

Hence, rather than deriving each algorithm below, we highlight their main features 

related to the design of a closed-loop active sensing system for urban terrain.

4.3.1 Automatic Track Initiation and Termination

The goal in track initiation is to estimate tentative tracks from raw measurements 

without any prior information about how many targets are present in the surveil-

lance area.

We follow the two-i)oint, differencing algorithm, according to which it takes two 

time steps (or two radar scans) for a track to be initiated [5]. For each receiver 

m {m =  1,. . . ,  M), a tentative track is initiated for every declared detection, i.e..
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for every peak in the time-delay versus Doppler image exceeding a given detection 

threshold, and that cannot be associated with an existing track. In particular, at 

ti a tentative track is initiated for each measurement j  =  1, . . . ,  in scan 

Zi Assuming the velocity of a target along the x and y coordinates lies within 

the intervals [— [-y'k-'\ respectively, a track is initiated at

{xk,yk) when

II 6 [ { - i n  -  T, { i n  + T] (4.3.1)

and

m- e  [ { - i n  -  2a„._,) T, ( s r r  +  T] , (4.3.2)

where T =  tk — tkn  is the state sampling period, and and  ̂ are the

standard deviations of target velocities in x and y directions, respectively. Each 

measurement that falls into the track initiation area yields an initial position and 

velocity from which a track is initiated. Measurements can then be associated 

with this new track starting at tk >  2, and the target’s acceleration can then be 

estimated at the hltering stage of the tracker, described in Section 4.3.3.

The nsnal approach to track termination is to declare a track terminated if 

such track has not been associated with any new measurements for two consecu-

tive time steps. We adopt a more integrated approach and use a probability of 

track existence, dehned in Section 4.3.4, that is initialized for every initiated track. 

Specifically, a tracT is terminated if the probability of track existence falls below a 

given track termination threshold.
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4.3.2 Measurement Validation

For each initiated track t =  1, . . .  we define a gate in the ineasiireinent 

space within which measurements to be associated with track are expected to 

he. Only those measurements that lie within the gate are said to be validated, and 

are therefore associated to track . The size and shape- of the gate- can be chTned 

in several different ways. We use the so-called ellipsoidal validation gating [56] and 

apply the following statistical test:

(b-  k̂
- 1

Z*: -  Zfc(b < .9^ (4.3.3)

where ẑ . represents the zth measurement in the kth scan; is the predicted 

measurement for track x̂ (̂ ; represents the innovation covariance at scan k; and 

(j is a threshold computed from Chi-square distribution tables, such that, if a target 

is detected, its measurement is validated with gating probability P<7. The number 

of degrees of freedom of g is equal to the dimension of the measurement vector. In 

the two-dimensional case, the area of the validation ellipse is det(S[^ )̂^^ ,̂ where 

det is the matrix determinant.

4.3.3 Filtering

The tracking algorithm needs to be adaptive in order to handle a time-varying 

number of targets and dynamic urban conditions. We show in Section 4.5 that 

the variable structure interacting multiple model (VS-IMM) estimator is effective 

under such conditions [42, 55]. The VS-IMM estimator implements a separate filter 

for each model in its model set, which is determined adaptively according to the 

underlying terrain conditions. Specifically, at each tinu' stc-p p,, the model set is
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updated to:

Mk  =  {r , G I X ,x K ,p [^ ;, r,_i G , (4.3.4)

where and P).'d7 the mean and covariance of track t in tiie filter matched 

to model r at X represents prior information about the urban scenario; and

){t.r)

j^totai -g gg|. possible motion models. Changes in track trajectory

modeled as a Markov chain with transition probabilities given by:

are

7T.ij =  P {rk =  =  j ) , e  M total (4.3.5)

In this work, we consider the' un.scc'utc'd Kalman hlter (UKF) algorithm. Initially 

proposed by Julier and Uhlmann [36], the UKF represents the state distribution 

by a set of deterministically chosen sample points. Each UKF filter matched to a 

different motion moch'l runs in ])aralk'l in the VS-IMM framework. The estimated 

mean and covariance' from each model-matched hlter are mixed (Gaussian mixture) 

before the next hltering time ste]). Tlu' ove'rall output of the VS-IMM estimator 

is then calculated by probabilistically combining the individual estimates of each 

filter [39].

4.3.4 Data Association

We consider the recently introduced linear multitarget integrated probabilistic data 

association (LMIPDA) algorithm [68, 66]. An extension of the single-target inte-

grated probabilistic data association [67], LMIPDA models the notion of track 

existence as a Markov chain. Let Xk denote the event that a track exists at tk- The
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a priori probability that a track exists at tk is given by:

'4>k\k-\ — P s Xfc
fc-i

û . . (4.3.6)
i = l

where is the set of measurements from all receivers at time i.e.,

^k — (4.3.7)

The evolution of track existence over time satisfies the following ecpiations:

î k\k-l =  PllVT-l|fc-l +  P2I ( l  ~ V-’Ai-llAi-l) (4.3.8)

1 — =  Pl2̂ A:-l|fc-l +  P22 (1 — , (4.3.9)

where =  1, 2, are the corresponding transition probabilities.

The central ideal behind the LMIPDA algorithm is the conversion of a single-

target tracker in clutter into a mnltitarget tracker in clutter by simply modifying 

the clutter measurement density according to the predicted measurement density of 

other tracks. The- modified clutter density of track given the ith measurement 

can be written as:

‘ (4.3.10)Si<»=pl '>+ w  „(■)
1 -  p

where is the clutter density in the validation gate of track given the zth 

measurement in the A;th scan z\; is the a priori probability that z\. is the true 

measurement for track x[.̂ \ i.e.,

p f / p f
P̂ '̂̂  =  PnPa^i^ti (4.3.11)

where the probability of existence of track x̂ \̂ pf"’ is the a priori measure-

ment likelihood (Gaussian density), and is the total number of measurements
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associated with track at time tk. The probability of track existence is calculated 

as follows:
(i -  4*̂ )

-k̂\k 1 _  Ad)^(d ’  ̂ k̂ ŷ k\k-i
where

< ’ „(■)

i = l

(4.3.12)

(4.3.13)

For each model r e A4k, we dehne the following probabilities of data association:

1 — Pd ^’gg { t ,r )  _

1 -  5{Ur) (4.3.14)

for clutter measurements and, for each target measurement i > 0,

r,(Ur) _  ^ -  P d P g P,
Pk,i — (4.3.15)

where is the a priori likelihood of measurement i assuming association with

track x[(̂  that follows motion model r, i.e.,

(d iUr)
P i =  p \ b

reMk
(4.3.16)

and

=  CDCa l - E
iUr)

Pc (4.3.17)
'i.=i

Finally, the motion model for each track x[.̂  ̂ is updated according to the fol-

lowing model probabilities:

(t,r) _  (t,r)
Pk Pk\k-1 1 -  s ( t )  ’

(4.3.18)

for r G Aik-
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4.4 Waveform Scheduling

Many modern airborne radars have a waveform scheduler implemented. Ideally, the 

scheduler would use a library of waveforms especially designed to improve detection 

and the overall tracking performance.

We consider the general waveform selection problem, which in the multitarget 

tracking case can be written as:

mm ^
1

t=i
I Z t } (4.4.1)

where 'k represents the waveform library, x*. is the tracking state estimate, and T;t 

is the total number of tracks at tk-

In particular, we consider the one-step ahead (or myopic) waveform scheduling 

problem, where the waveform selected for transmission at tA:+i is given by:

1
=  argmin X !  Tr (W.+i )| (4.4.2)

where Tr is the matrix trace and is the posterior state error covariance ma-

trix corresponding to track x[^\ The performance measure in Equation (4.4.2) is 

equivalent to minimizing the mean square tracking error over all existing tracks. 

The posterior state covariance error matrix dchnes a six-dimensional ellipsoid 

centered at x[(̂  that is a contour of constant probability of error [88], and its trace 

is proportional to the perimeter of the rectangular region enclosing this ellipsoid.

In order to evaluate Ecjuation (4.4.2), we hrst approximate the measurement 

error covariance matrix by the Fisher information matrix J{x/>) corresponding to 

the measurement using waveform 'll’ [38, 88]. Specihcally,

(4.4.3)
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where U is the transformation matrix between the time-delay and Doppler mea-

sured by the receiver and the target’s range and range-rate. In particular, for the 

up-sweep Gaussian chirp with pulse duration /t, chirp rate 7 , and wavelength A 

defined by Equation (3.3.1), we have:

R(V;) =  -  
V

2'KĈ'yĤ
A (4.4.4)

- 2̂  ( 2 y ) 7 ^  +  2 7 V )

where rj is the signal-to-noise ratio (SNR). A similar expression can be obtained for 

the down-sweep Gaussian chirp.

The posterior state error covariance matrix can then be calculated for each 

waveform using the UKF’s t:(wariance update eciuations.

4.5 Simulation Setup and Results

Monte Carlo simulations are used to evaluate the effectiveness of the proposed 

closed-loop system in urban terrain. The scenario used is shown in Figure 3.2, 

where the overall clutter density is assumed to be 2.5e~''m^. The maximum sensor 

range is 300 meters, and the SNR experienced is 0.2.

Although in reality the transinitted signal can be reflected by multiple scatterers, 

we assume that the strength of the radar return is negligible after three rc'flecticms, 

therefore we restrict our simulation to the following paths; transmitter—̂ target—̂ -re-

ceiver (direct path), transmitter->clutter—̂ receiver, transmitter-^target^clutter^ 

receiver, transmitter—)-clutter—>target^receiver, transmitter—>clutter-)-clutter—̂ -re-

ceiver, transmitter—)^clutter^>target—>clutter^>receiver, transmitter—̂ target^'clut-

ter—5-clutter—> receiver, and transmitter—>clutter-^-clutter—5-targets-receiver.
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The simulation experiment consisted of 100 runs, each with a total of 140 

radar scans, where a radar scan takes 0.25 seconds. Two targets 10 seconds apart 

from each other are simulated using the same trajectory as follows. Starting at 

(1950,1500), each target moves at constant velocity of 10 m /s in the x direction for 

10 seconds; as they approach the intersection, they start decelerating at constant 

rate of 1 m/s^ for 5 seconds; they enter a left turn with constant turn rate of 7t /20 

rad/s for 10 seconds; after completing the turn, each target accelerates for 5 sec-

onds at 1 m/s^ rate; finally, they end their trajectories with constant velocity at 

(2068.8,1667.8).

Two model sets are used during motion model adaptation. In the vicinity of 

intersections, a set consisting of NCA, left-turn CT with turn rate of 7t /20 rad/s, 

and right-t.urn CT with the same turn rate is used. Specifically for the simulated 

trajectory, this inodel set is used between scans 20 and 100. During the remaining 

radar scans, a set containing the NCA and NCV motion models is used instead. 

We consider the following motion model transition probability matrix is:

/  n QQ n ni n n \

V

0.99 0.01 0 0

0.1 0.7 0.1 0.1

0 0.1 0.99 0

0 0.1 0 0.99 y
A waveform library consisting of fom- different Gaussian-windowed chirp signals 

is considered. Waveforms vary in pulse duration k . In particular, radar sensors 

considered support the following pulse durations: k  =  0.5 ps, and k =  1.375 ps. 

In general, longer pulses return more power; however, finer details may be lost.
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In addition, waveforms of each pulse duration can be either an up-sweep or down- 

sweep chirp. Pulses are repeated at every 10 milliseconds, and waveforms operate 

at 4 GHz with 40 MHz of bandwidth.

A more traditional open-loop system, which does not support any diversity 

modes, is used as a baseline for comparison. In the baseline implementation, a 

single UKF using the NCV motion model is considered.

Note that the simulation parameters used in this work do not represent any 

particular system, and were chosen exclusively for illustration purposes.

Simulation results in Figure 4.2 and Figure 4.3 show that the closed-loop system 

clearly outperforms its open-loop counterpart. The average number of confirmed 

tracks is increased by approximately 15% over 140 radar scans, and the position 

RMSE is reduced by approximately 60%. Figure 4.4 shows the evolution of each 

motion model probability over time. Although there is some “model competition” 

b(4,ween NCV and NCA, the closcxl-loop system satisfactorily idcmtihes the correct 

motion model throughout the simulation.

4.6 Concluding Remarks

The closed-loop active sensing system discussed in this chapter highlights the major 

challenges in the design of multisensor-multitarget tracking systems, while' signifi-

cantly outperforming its open-loop counterpart. New capabilities for tracking and 

survonllance, and the seamless integration of diffeueut se'iising jelatforrns will only 

be possible with advances in the areas of multisensor data fusion, intelligent algo-

rithms for signal processing and resource allocation, and creative ways to unravel
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multipath propagation. This work is a first step towards imderstaiiding how these 

research areas interact from a systems engineering perspective to ultimately be in-

tegrated into a active sensing tracking platform tliat operates effectively in urban 

terrain.

Future work in this area could include tracking dismounts, and the investigation 

of coordinated non-myopic waveform scheduling schemes for distributed transmit-

ters, which do not have to simultaneously transmit the same waveform. One could 

also consider the expansion of the simulated waveform library. Mobile sensing 

platforms, such as UAVs and vehicular sensor networks, are especially important 

in hostile urban environments, since their completely distributed and opportunis-

tic nature makes it difficult for hostiles to disable' surveillauce ,̂ while potentially 

increasing the coverage area.
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Figure 4.1; Systems-level architecture of tlie proposed closed-loop active sensing 
platform.
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Figure 4.2: Number of coiifirmed tracks for close-loop and op('u-loop systems.
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Figure 4.3: Position RiVISE for closed-loop and open-loop systems.
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Figure 4.4: Motion model probabilities in the closed-loop system.
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Chapter 5

Two-Level Scheduling for Target 
Tracking in Covert Operations

We consider an active sensing system where multiple waveform-agile radars scan 

a hostile surveillance area for targets. A central controller adaptively schedules 

the sequence of transmitters and waveforms that maximizes the overall tracking 

accuracy, while simultaneously maintaining the sensing systems’s covertness. We 

formulate this problem as a partially observable Markov decision process (POMDP), 

and propose a novel “two-level” scheduling scheme that uses two distinct schedulers: 

(1) at the lower level, a myopic waveform scheduler; and (2) at the upper level, a 

non-myopic transmitter scheduler. Scheduling decisions at these two levels are 

carried out separately. Although waveforms are updated at every radar scan, a 

new set of transmitters only becomes active if the overall tracking accuracy falls 

below a given threshold, or if a “detection risk” is exceeded. By simultaneously 

exploiting myopic and non-myopic scheduling schemes, we benefit from trading off 

short-term for long-term performance, while maintaining low computational costs. 

Monte Carlo simulations are used to evaluate the performance of the proposed 

adaptive sensing scheme in a multitarget tracking setting.
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5.1 Introduction

Recent advances in sensing technology and embedded systems have made it pos-

sible to deploy multiple sensors for a variety of applications, including: reconnais-

sance, surveillance and target tracking; autonomous vehicle navigation; and remote 

habitat monitoring. Regardless of their nature, multisensor applications rely on ef-

fectively managing sensor resources. In particular, next-generation multifunctional 

agile radars demand innovative resource management techniques to achieve a com-

mon sensing goal while satisf}dng resource constraints. In this work, this dynamic 

management of sensor resources is called adaptive sensing. .

We expand upon the closed-loop active sensing system for urban terrain pro-

posed in Chapter 4, and consider a more general system that also exploits trans-

mit diversity. In particular, we consider an, active sensing system where multiple 

waveform-agile radars scan a hostile surveillance area for targets, and a central con-

troller adaptively schedules the sequence of transmitters and waveforms that max-

imizes the overall tracking accuracy, while simultaneously maintaining the sensing 

system’s covertness. We formulate this adaptive sensing problem as a POMDP, and 

use this formulation t.o (h'vc'lo]) a novel sclnxluling s( heme. Specifically, we use two 

distinct schedulers: (1) at the lower level, a myopic waveform scheduler; and (2) at 

the upper level, a non-myopic transmitter scheduler. Scheduling decisions at these 

two levels are carried out separately. While waveforms are updated at every radar 

scan, a new set of transmitters is activated only if the overall tracking accuracy falls 

below a given threshold, or if a detection ri.sk is exceeded. We define the detec-

tion risk as a limit on the nnmber of consecutive scans during which a transmitter
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remains active. By simultaneously exploiting myopic and non-myopic scheduling 

schemes, wv. beneht from trading off short-term for long-term pc^rformance, while 

maintaining low computational costs.

The remainder of this paper is organized as follows. Section 5.2 describes our 

adaptive sensing problem, the motivation behind the two-level controller, and its 

outline. In Section 5.3, we provide the POMDP formulation of the problem, its cor-

responding solution, and the relationship between the two scheduling timeframes 

involved. In Section 5.4, Monte Carlo simulations are used to evaluate the perfor-

mance of the proposed adaptive sensing scheme in an urban multitarget tracking 

setting. In addition to mean square error results, we analyze the frequency of 

transmitter activation when varying the detection risk. Finally, we conclude in 

Section 5.5 with summary remarks and future directions.

5.2 Adaptive Sensing Platform

The ('(aitral contiolk'r is faced with the following trad(;off; cather activate a trans-

mitter that provides higher quality measurements in the short term, but that also 

exceeds the detection risk, thus jeopardizing future sensing ability; or activate a 

transmitter that yields poorer quality measurements, but that poses lower detec-

tion risk.

Figure 5.1 illustrates how tracking and scheduling components interact to form 

the proposed adaptive sensing platform. This basic systems-level control archi-

tecture is particularly suitable for the lookahead POMDP framework discussed in 

Section 5.3. The top block depicts the sensing system, which in this work consists
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of multiple waveform-agile radars distributed over a surveillance area. The sensing 

system’s inputs are actions (external control commands) that represent which trans-

mitters to activate and which waveforms to transmit. The corresponding outputs 

can b(! divided into two different classes: (1) fully observable sensing quantities, 

such as sensor locations, which transmitters are activated, and which waveforms 

are transmitted; and (2) unobservables, i.e., measurements of those aspects that 

are not directly observable, such as sensor outputs representing observations of the 

target state. The bottom block depicts the proposed two-level controller and its 

two main components: the tracker and the scheduler (action selector). At each time 

step, the tracker provides the current state estimate, i.e., the posterior distribution 

of unobservables. The two-level controller takes both observables and unobserv-

ables estimates into consideration to make sensing allocation decisions, and output 

control actions. These actions are then used to generate new measurements that 

are subsequently used by the tracker, thus closing the loop.

5.3 Problem Formulation

In this section, we formulate the adaptive sensing problem in the POMDP frame-

work to include long-term performance considerations. The POMDP model formal-

izes the interaction between the sensing system and the two-level controller depicted 

in Figure 5.1. In the literature, POMDPs have been used in dynamic probabilistic 

systems to make sequential decisions that optimize an appropriate objective. We 

start with a brief introduction to POMDPs. Since a review of POMDP optimiza-

tion techniques is beyond the scope of this paper, we refer the reader to Bertsekas
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sensing system

two-level controller

Figure 5.1; Systems-level control architecture of the adaptive sensing platform.
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work on dynamic programming and optimal control [9] for a comprehensive and 

rigorous treatment of POMDPs.

5.3.1 POMDP Definition

A POMDP generalizes the Alarkov decision process model [64, 76, 72] by incorpo-

rating the notion that some aspects of the environment are not directly observable; 

therefore decision makers may not be able to perfectly monitor such an environment 

[8]. A POMDP consists of the following:

• A finite s(d of possible states A, and a distribution po specifying the random 

initial state. A state describes features that evolve over time.

• A finite set of possibk' actions A  over controllable aspects of the sensing 

system that may be selected by the scheduler.

• A state-transition law that represents how states change over time by speci-

fying the next-state distribution given an action chosen at the current state, 

i.e., it defines tlu' transition probability p | Xk,ak), Xk E X,  E A,  for

any time step k >  0.

• A set of possible observations Z,  describing those features that depend on 

the states or that are directly observable, including prior actions.

• An observation law that relates states and actions to observations through the 

distribution of observations given the current action and the resulting state, 

i.e., it dehnes the observation probability p {z^+i \ Xjt+i,afc), E Z,  x̂ , E A , 

Xk E A,  for any time step A: > 0.



• A one-step cost function C (x^, a*,) specifying the immediate cost incurred (a 

real number) by choosing action E A  a.t state Xk G df.

Since the states in a POMDP are not directly observable, there is an uncertainty 

about the state space, represented by the so-called belief state. Specifically, the 

belief state is the posterior probability distribution of the underlying state given 

the history of observations up to time step k, i.e..

P^k I  ' ^ 0 ;  •  •  •  )  U q ,  .  .  .  ,  , (5.3.1)

and bo is its initial distribution.

Given b|̂., the scheduler selects an action G A, incurring a cost C {xk, a^); the 

state transitions from x  ̂ to (unobserved) state x^+i with probability p {xk+i \ Xk, ua-); 

and the observation Zk+i E Z  is made according to p{zk+i \ Xk,ak). The process 

is repeated at the state Xk^i- Hence, the belief-state can be recursively updated 

using Bayes rule as follows:

p {zk+i I Xk+i,ak) P i^k+i I Xk, ak) bk
bk+i — (5.3.2)

p{zk+\ \ bk,ak) ’

where Xk E A, ak E A, Zk E Z , for k >  0.

Therefore, a POMDP is a Alarkov decision process where the states are only 

partially observable through the observation law, but where the belief state is fully 

observable and represents a sufficient statistic. Hence, scheduling decisions in a 

POMDP are based on recursively calculating the belief state. Figure 5.2 shows the 

causal relationship between POMDP states, actions, observations, and costs.
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Figure 5.2: Causal representation of a POMDP. Circles represent random variables; 
shaded circles indicate unobserved random variables, and un-sliaded circles indicate 
observed variables. A diamond represents a decision node, and a rectangle repre-
sents a cost node. Solid directed arcs indicate causal ('ffect, whereas the dashed arc 
indicates that a distribution is used instead of the actual unobserved valued.



5.3.2 POMDP Formulation

To formulate our adaptive sensing proi)lein as a POMDP, we must first specify each 

of the components defined in Section 5.3.1 in tlie context of tlie proposed problem. 

Following the notation in [63], we have:

States

We consider a factored state vector with three components: the sensor(s) state 

the target(s) state Cfc, and the tracker state (4a,, Pk)- Hence, we can write the state 

vector at time step k as

Xk =  {skXkAk.Pk)- (5.3.3)

In the proposed adaptive sensing problem, Sk s])('cifies the number of consecutive 

time steps each sensor has been active up to (and including) time k; and Ca, specifies 

the position, velocity, and acceleration of each target at time k. Assuming a Kalman 

filter-based tracker, (4a:, Pk) represents the tracker internal state at time k, where 

4A, is the posterior mean vector and Pk is the posterior covariance matrix.

Actions

Waveform-agile radars are controlled through a sensor activation control and a 

waveform mode control. Therefore, the action at each time step is to specify which 

transmitters are active (or idle), and which waveform is sent by active transmit-

ters. We denote the action space by A  =  {0, where N is the total number

of transmitters in the surveillance area and il is th(' total number of waveforms
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available in the library. For instance, at time step k, the action is a matrix

ak =

hU) hi.n)

(N,Q)
(5.3.4)

where = 1 specifies that the nth transmitter is active and transmits waveform 

u at time step  ̂+  1 to generate observations based on the system state x^. Con-

versely, =  0 specifies that wavc'form cj is not sent by transmitter n at time

step A; +  1. For a given transmitter n and some A: > 0,

n

E 0 (5.3.5)

if and only if this transmitter is idle at A: +  1. Note that radars whose transmitters 

are idle still operate in passive mode, i.e., they could still receive echoes from the 

scatterers in the surveillance area.

State-transition law

We decompose the state transition law in three parts, corresponding to the evolution 

in time of each of the three state components. The sensor state evolves according 

to

•SA:+1 =  V-'( s a :, , (5.3.6)

where -0 is the- map defining how th(> sen.sor state changes from one time step to 

the next, according to the action a .̂ Sp('cifically, for the nth transmitter we have:

-f 1, if =  1 for some u; G [1, fA] , (5.3.7)
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and

=  0, if =  0 for all u G [1, f f ] . (5.3.8)

The evolution in time of the target state is defined by the target kinematics

C*:+i — /  (Cfc) + (5.3.9)

where Vk represents the randomness in the target state transition and /  defines the 

target motion model. Finally, the track state evolves according to a Kalman filter, 

which updates the posterior mean and covariance

Observations and observation law

The observation ẑ , is generated according to the observation law, which depends 

on the sensor model. We factor into three components corresponding to the 

state factorization as follows. Since the sensor state and the track state are fully 

observable, their corresponding observations are equal to their respective underlying 

state components, i.e..

k̂i -2̂. ^k' (5.3.10)

On the other hand, the target state is only partially observable through noisy 

sensor measurements. In this work, each sensor measurement consists of a number 

of observations that can be measurements from established tracks, false alarms from 

clutter, or measurements from newly initiated tracks. We consider the detection 

scheme described in our prior work [6], and use peak detection radars to locate a 

point source corresponding to a received power peak in a time-delay versus Doppler 

image. For the collection of target state observations from all sensors at time k, z\. ,
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we can write

4 =  h{Ck,Sk,w^), (5.3.11)

where h is a function that maps the target state C/c to its time-delay and Doppler 

(or to its range and range-rate through trivial transformation), and Wk represents 

the zero-mean Gaussian measurement noise with covariance matrix Rk (G, Sfc). For 

each peak found in the time-delay versus Doppler image at time step k, a nonlinear 

optimization algorithm is used to find a curve that fits th(! underlying image within 

a window centered at the peak to estimate Rk {Ck,

Belief State

Given the factorization of state the belief state at time step k can be written 

as:

bk= [ b l b i b l b i : ) ,  (5.3.12)

Each component of the factored belief state bk is updated according to:

K ( s ) =  6 { s  -  Sk) , (5.3.13)

' > 1 ( 0 =  A T ( C - C f c , A ) , (5.3.14)

' > 1 ( 0 =  ^ ' ( e - e ^ ) , (5.3.15)

K ( P ) =  H P - P k ) . (5.3.IG)

where A/” (C —G-iA:) denotes the normal distribution of the target state ( with 

mean G: and covariance G,,; and d (s — ŝ .) is the Dirac delta function centered at 

s =  Sk.  Note that when defining the belief state corresponding to the target state 

we assumed a perfect tracking model and Gaussian statistics; hence this belief state 

component can b(' updated using a Kalman filter.
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Cost function

In this work, the goal is to minimize the total accumulated tracking error. The 

most commonly used measure of tracking accuracy is the mean square error (MSE). 

Hence, the one-step cost function C  { x k , a h )  simply maps the state and action at 

each time step to the mean square tracking error incurred, i.e.,

C{xk,ak) =  E [lla+i -  6:+i|P I  X k , a , ]  , (5.3.17)

where E [• | Xfc,â ,] denotes the conditional expectation given state x^ and action

“ A-

Before we describe the POMDP approximate solution, it is important to un-

derstand the two scheduling timeframes involved. While our problem formulation 

and solution approach are general enough for both myopic and non-myopic sched-

ulers, and do not depend on how the scheduling decision epoch is specified, (^adi 

sduxluler in the; proposcxl two-lev('l controlkir operat(!s on a difterent timeframe, as 

explaiiuxl bekow. Let A r b{; the dc'dsion interval, that is, the; difhn'ence between 

two decision epochs, corresponding to the non-myopic scheduler. Similarly, let Ah 

be the decision interval corresponding to the myopic scheduler, that is, the; ditfer- 

(!iic(; between two radar scans. Note that, while Ad is fixed. A t  varies according 

to tracking performance. However, assuming the detection risk is given by Ty >  1, 

A t  is bounded between Ah and T q , i.e.: Ah <  A t  <  Tp. Figure 5.3 illustrates 

this relationship.
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5.3.3 POMDP Approximate Solution

Given tlu; definition of one-step cost function, at each time st(;p A: > 0, a scheduler’s 

objective is to choose an action E A  based on the belief state bk that minimizes 

the total expected cost. We call such decision rule a scheduling policy. Specifically, 

a policy is the sequence of mappings from belief states to actions tt =  {^k}k>o^ 

where tt  ̂{bk) E A, and an optimal policy tt  ̂{bk) € ,4 is the one which minimizes 

the total expected cost.

Assuming a finite horizon of H time steps, the total expected cost over the 

horizon is given by

J// — E
77-1

C  (xfc, ak)

k=Q
which can be written in terms of belief states as

■/7-1

Jn =  E 'Ŷ c{bk,CH-)
A:=0

(5.3.18)

(5.3.19)

where

c{h., a-k) =  C(x, ak)bk{x) (5.3.20)

is the cost incurred by selecting action cik at belief state bk. In this work, we assume 

perfect data association and approximate c{bk,ak) by

c{bk ,ak)=  f  E [WCk+i -  ^k+,\n S kA A k,ak]bi{0  dC =  Tv{Pk+i), (5.3.21)

where Tr is the trace operator, which in this case is proportional to the perimeter 

of the rectangular region enclosing the covariance ellipsoid. In scenarios of dense 

clutter and multiple highly maneuvering crossing targets, it might be wise to recon-

sider this approximation. However, since our main goal is to show the effe(-tiv(!ness 

of the proposed scheme, we adopt this approximation throughout our work.
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According to Bellman’s Optimality Principle for POMDPs [8], the optimal pol-

icy T̂ l (h )  is given by

K. ih ) =  argmin {c  {bk, a) +  E ih+i) \ bk, a] } (5.3.22)

where (fe^+i) is the so-called expected cost-to-go, that is, the optimal ex-

pected total cost value over H — k — 1 time steps, starting at the next belief state 

bk+\ ■

By defining the Q-value as

Qn-k {bk, a) =  c {bk, a) -h E [Jn_k-i {h+ i) \ bk, a] , (5.3.23)

the optimal policy according to Bellman’s principle can be written as

7tI =  argmin {Q n-k  {bk, a )} . (5.3.24)
a

Hence, the optimal action at belief state bk is the one with smallest Q-value.

Assuming the tiiiK! horizon is sufficiently long, the o])timal policy can b(' as-

sumed to be stationary, i.e..

71* =  argmin {Q u {b, a)} . (5.3.25)

Hence, the choice of action at a given belief state does not depend on any time 

index. In this case, tlû  difference; between Q// and Q//_i is negligible, and the 

horizon is constant at H regardless of the current time k. Thus the Q-value can be 

written as

Q{b, a) =  c{b, a) -I- E [J* {b') | 6, a] , (5.3.26)

where b' is the next belief state, that is, the belief state after choosing action a at 

belief state 5; c{b, a) is the cost incurred by choosing this action; and J* is called the
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cost-to-go, that is, the optimal expected total cost over the horizon. This approach 

is called receding horizon control.

In general, analytical calculation of the Q-value is impossible since the com-

plexity of searching for an optimal solution grows exponentially with the state and 

action spaces. Therefore, it is necessary to use approximate solutions. Several 

Q-value approximation methods have been proposed in the literature [17]. Many 

of these methods, including policy rollout/CO-rollout and hindsight/foresight opti-

mization, usually involve approximating the Q-value through Monte Carlo simula-

tions. However, Monte Carlo approximation methods can be very computationally 

expensive; hence we use the recently proposed nominal belief-state optimization 

(NBO) method [63]. In this approach, the cost-to-go is approximated by
//-i

J*{b )=  min V  c{bk.ak), (5.3.27)

where the nominal belief state is the maximum a posteriori (A3AP) estimate of 

5̂ ., and the minimization is over a sequence of actions. The NBO method, which 

approximates the belief-state evolution, is particularly suitable for our adaptive 

sensing problem, in which the primary source of randomness is in the cost function 

(mean square tracking error), and where it would be prohibitive to simulate mul-

tiple random noise samples to estimate expectations and calculate the belief state 

analytically.

5.4 Simulation Experiments

In this section, we start by describing our simulation setup. Our goal is to demon-

strate the (!ff('ctiveness of the proposed two-level sclu'duling scheme in a multitarget
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tracking setting when compared to a fully-myopic baseline scheduler. Therefore, 

simulation parameters used do not represent any particular system, and were cho-

sen exclusively for illustration purposes. We then analyze simulation results with 

respect to tracking accuracy and frequency of transmitter activation with varying 

detection risk.

5.4.1 Simulation Setup

We exploit the dynamic adaptation of waveforms to the varying urban terrain, 

and combat obscurations created by urban canyons by taking advantage of spatial 

diversity. The simulation scenario is de})icted in Figure 5.4, which shows an inter-

section of four city blocks. Two target trajectories are simulated using the nearly 

constant velocity model (NCV) on two straight line segments. Both targets move 

at 10 m/s; one target starts at (2150,1525) and makes a right turn at (2080,1525); 

the other starts at (1986,1502) and makes a left turn at (2055,1500). Three radar 

sensors with different viewi)oints are distributcxl at (2050,1725), (2180,1525) and 

(1950,1525), represented by the symbol ‘D ’. Receiver and transmitter locations are 

assumed to be the same.

Although all sensors can receive returns during the same radar scan (receivers 

whose corresponding transmitter is idle can still operate in passive mode), for sim-

ulation purposes we assume that only one transmitter can be active and transmit 

pulses at (;ach radar .scan. A waved'orm library consisting of four different Gaussian- 

windowed chirp signals is considered. Waveforms vary in pulse duration. In partic-

ular, radar sensors considered support pulse durations of 0.5 gts and 1.375 jj,s. In
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gcru r̂al, loiigcu' puLs(is rc t̂uni more power; however, finer details may be lost. In ad-

dition, waveforms of each pulse duration can be either an up-sweep or down-sweep 

chirp. Pulses are repeated at every 10 ms, and waveforms operate at 4 GHz with 

40 MHz of bandwith. The maximum sensor range is 300 meters.

Each radar receiver performs matclu'd-filtering. The received signal is a sum-

mation of reflected signals from targ(;ts and (4ntter, whose density is 2.5e“ ® 

throughout the surveillance area. The multipath model assumes that the radar 

return is negligible aft(;r three rcdiections, and it can be d(;rived using prior knowl-

edge of the urban scene. We further assume each target is a point object, and use 

peak detection to locate a point source corresponding to a received power peak on 

a time-delay versus Doppler image, as detailed in [6].

The trad«;r uh(!s an ('xtcmdc'd Kalman Alter (EKF) with the NCV model for 

state estimation and a linear multitarget integrated probabilistic data association 

algorithm (LMIPDA) for data assemiation. A total of 100 Monte Carlo runs were 

used to evaluate the system. Each run consists of 100 radar scans of 0.25 seconds.

5.4.2 Simulation Results

Figure 5.5 shows that the two-level scheduler outperforms the fully-myopic sched-

uler. In this case, both the detection risk and the receding horizon were assumed to 

be 10 radar scans. The performance gains obtained by the proposed method is ev-

ident when multipath and obscurations are present, since the non-myopic method 

is able to anticipate the future loss of observations and use this information to 

schedule transmitters and waveforms accordingly. Note that the position RMSE 

peaks when targets are farthest apart from the sensors. We can also observe that
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the two-level scheduler has a faster “response” to the environment, whereas the 

fully-myopic scheduler needs more time to recover from bad sensing decisions. In 

this particular simulation, the non-myopic scheduler activates a new transmitter at 

regular intervals of 10 time steps (according to the detection risk), except during 

the interval [68, 75] when the non-myopic scheduler is used during each radar scan 

in this interval due to decreased tracking performance, which in this case means 

an overall position RMSE above 1.9 meters. The RMSE of both schedulers drops 

again when both targets get closer to one of the three sensors at the end of their 

respective trajectories. The waveform selected by the myopic scheduler differs from 

the one previously chosen by the non-myopic scheduler at radar scans 16, 36, 43, 

48, 55, 59, 86 and 93. Hence, in this case the myopic scheduler improves on non-

myopic decisions taken in the past approximately 8% of the time. The improvement 

in performance (RMSE), however, is several tens of %.

The percentage of time the non-myopic scheduler is used as a function of the 

detection risk is shown in Figure 5.6. Note that the transmitter activation frequency 

does not necessarily grow with a higher risk tolerance, since decisions made by the 

non-myopic scheduler could result in lower tracking accuracy such that the selection 

of a new set of transmitters is required.

5.5 Concluding Remarks

In this chapter, we investigated the problem of tracking targets in a hostile en-

vironment, where a central controller adaptively schedules the sequence of radar 

transmitters and waveforms that maximize the overall tracking accuracy, while
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simultaneously maintaining the sensing system’s covertness. We formulated this 

adaptive sensing problem as a POMDP, and proposed a novel scheduling scheme 

were two separate schedulers are involved: a myopic waveform scheduler that op-

erates at every radar scan, and a non-myopic transmitter scheduler that activates 

a new set of transmitters only when certain conditions are met, that is, if tracking 

performance falls below a tolerance level, or if a detection risk (i.e., risk of losing 

covertness) is exceeded.

Simulation results show that the proposed two-level scheduler signihcantly im-

proves tracking performance when compared to a fully-myopic scheme, while still 

maintaining relatively low computational costs. We have shown through Monte 

Carlo simulations that the intelligent selection of transmitters and waveforms over 

time, where the long-term effects of this action are taken into account, is highly 

effective in tracking mobile ground targets with hxed ground radars. In addition, 

the proposed scheduling scheme is able to dynamically address sensor covertness. 

Although several simplifying assumptions were made to facilitate implementation, 

the intention was not necessarily to test our scheme using the most realistic scenario 

possible, but to demonstrate the effectiveness of the approach. Hence, simulation 

scenarios and parameters were chosen for illustration purposes only.

Future work could involve the study of coordinated waveform scheduling schemes, 

where waveforms with different interpulse and intrapulse characteristics would likely 

be simultaneously sent by transmitters with different viewpoints. Moreover, when 

multistatic radars are involved, receiver scheduling according to the scene condi-

tions can also be considered. In these cases, innovative data fusion algorithms are 

needed. Given the generality of our problem formulation, it is possible to extend
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it to the situation of adversarial targets that can evade tracking and snrveillance, 

and to apply sensor motion control when a mobile sensing platform is involved, in a 

straightforward manner. On the other hand, opportunistic sensing platforms, such 

as vehicular sensor networks, offer a different solntion approach to the problem of 

target tracking in covert operations. The completely distributed, highly scalable, 

and opportunistic nature of such platforms makes it harder for hostiles to disable 

surveillance, while potentially increasing the sensing coverage area. Additional 

areas for further improvement of the proposed two-level controller are the analy-

sis of different POMDP solution approximation methods (e.g., heuristic expected 

cost-to-go), and the study of the relationship between time horizon and tracking 

performance.

101



A r

T +  1

d +  1 6 +  2 +  3 6 +  A d +  5

Figure 5.3: Relationship between myopic and non-myopic decision epochs for Tjj =  
3. Myopic scheduling decisions occur at (5, +  1, 6 +  2, () +  3, c) +  4, and 6 +  5;
non-myopic scheduling decisions occur at r and r -|- 1.
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Simulation Scenario
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Figure 5.4: Simulation scenario with two target trajectories; sensor locations are 
represented by ‘D ’.
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Radar Scans

Figure 5.5; Position RMSE when using the proposed two-level scheduler or a fully- 
myopic scheduler.
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10 15
Detection Risk

Figure 5.6: Percentage of time the non-myopic scheduler is used as a function of 
the detection risk.

105



Bibliography

[1] A. Ambainis, S. A. Bloch, and D. L. Schweizer, Delayed binary search, or 

playing twenty questions with a procrastinator, Algorithrnica 32 (2002), no. 4, 

641-651.

[2] T. Asano, D. Z. Chen, and N. Toknyania, Polynomial-time solutions to im-

age segmentation, Proceedings of the 7th Annual SIAM-ACM Conference on 

Discrete Algorithms, January 1996, pp. 104-113.

[3] J. Aslam, Z. Butler, F. Constantin, V. Crespi, G. Cybenko, and D. Rus, 

Tracking a moving object with a binary sensor network. Proceedings of ACM 

Conference on Embedded Networked Sensor Systems (SENSYS) (Los Angeles, 

California), November 2003, pp. 150-161.

[4] C. J. Baker and A. L. Hume, Netted radar sensing, IEEE Aerospace and Elec-

tronic Systems Magazine 18 (2003), no. 2, 3-6.

[5] Y. Bar-Shalom (ed.), Multitarget-midtisenso'r tracking: Advanced applications, 

ch. 2, Artech House, 1990.

106



[6] P. R. Barbosa, E. K. P. Chong, S. Suvorova, and W. Moran, Multitarget multi-

sensor tracking in an urban environment: A closed-loop approach, Proceedings 

of the Conference on Signal and Data Processing of Small Targets 2008, part 

of the SPIE Symposium on Defense and Security (Orlando, FL), vol. 6969, 

March 2008, pp. 69690W1-69690W12.

[7] L. J. Beeton and S. L. Hall, Closed loop tracking systems for naval applica-

tions, The lEE Seminar on Target Tracking: Algorithms and Applications 

(Birmingham, United Kingdom), March 2006, pp. 115-122.

[8] R. E. Bellman, Dynamic programming, Courier Dover Publications, 2003.

[9] D. P. Bertsekas, Dynamic programming and optimal control, vol. 1 & 2, Athena 

Scientihc, 2001.

[10] P. Billingsley, Probability and measure, Wiley-Interscience, 1995.

[11] S. S. Blackman and R. Popoli, Design and analysis of modern tracking systems, 

Artech House, Norwood, MA, 1999.

[12] V. S. Borkar, S. K. Mitter, A. Sahai, and S. Tatikonda, Sequential source 

coding: an optimization viewpoint. Proceedings of the 44*̂ ' IEEE Conference on 

Decision and Control, and the European Control Conference (Seville, Spain), 

December 2005, pp. 1035-1042.

[13] N. Bulusu, J. Heidemann, and D. Estrin, GPS-less low-cost outdoor localization 

for very small devices, IEEE Personal Communications (2000), no. 5, 28- 34.

107



[14] J. Carle and D. Simplot-Ryl, Enejyy-efficient area monitoring for sensor net-

works, IEEE Computer 37 (2004), no. 2, 40-46.

[15] E. Qinlar, Introduction to stochastic processes, Prentice-Hall, 1975.

[16] V. S. Chernyak, Fundamentals of multisite radar systems: Multistatic radars 

and multiradar systems, CRC, 1998.

[17] E. K. P. Chong, C. Kreucher, and A. O. Hero HI, Foundations and Applications 

of Sensor Management, ch. 8, Springer, 2007.

[18] D. Cochran, S. Suvorova, S. Howard, and B. Moran, Waveform libraries, IEEE 

Signal Processing Magazine 26 (2009), no. 1, 12-21.

[19] T. M. Cover and J. A. Thomas, Elements of information theory, John Wiley 

& Sons, Inc., 1991.

[20] W. de Jon van Norden, F. J. Bolderheij, and L. Rothkrantz, Intelligent task 

scheduling in sensor networks. Proceedings of the 8th International Conference 

on Information Fusion (Philadelphia, PA), July 2005, 8 pp.

[21] A. Dhagat, P. Gacs, and P. Winkler, On playing twenty questions with a liar. 

Proceedings of the Third Annual ACM-SIAM Symposium on Discrete Algo-

rithms (SODA) (Orlando, Florida), January 1992, pp. 16-22.

[22] J. Elson and D. Estrin, Time synchronization for wireless sensor networks. 

Proceedings of the 15̂ ‘̂ International Parallel and Distributed Processing Sym-

posium (San Francisco, California), April 2001, p. 186.

108



[23] P. Erdos and A. Renyi, On two problems of information theory, MTA Mat. 

Kut. Int. Kozl. 8A  (1963), 229-243.

[24] E. Ertin, J. Fisher, and L. Potter, Maximum mutual information principle 

for dynamic sensor query problems, Proceedings of IPSN’03 (Palo Alto, CA), 

April 2003, pp. 405-416.

[25] R. Evans, V. Krishnamurthy, G. Nair, and L. Sciacca, Networked sensor man-

agement and data rate control for tracking maneuvering targets, IEEE Trans-

actions on Signal Processing 53 (2005), no. 6, 1979-1991.

[26] M. E. Farmer, R-L. Hsu, and A. K. Jain, Interacting multiple model (IMM) 

Kalman filters for robust high speed, hunuin motion tracking, Proceedings of the 

2002 International Conference on Pattern Recognition, August 2002, pp. 20-

23.

[27] E. Fishier, A. Haimovich, R. Blum, D. Chizhik, L. Ciinini, and R. Valenzuela, 

MIMO radar: an idea whose time has come. Proceedings of the IEEE Radar 

Conference, April 2004, pp. 71 -78.

[28] S. Ganeriwal, R. Kumar, and M. Srivastava, Timing-sync protocol for sensor 

networks, Proceedings of ACAI Conference on Embedded Networked Sensor 

Systems (SENSYS) (Los Angeles, California), November 2003, pp. 138-149.

[29] D. Ganesan, R. Govindan, S. Shenker, and D. Estrin, Highly-resilient, energy- 

effi,cient multipa.th routing in wireless sensor networks, ACAI SIGMOBILE Mo-

bile Computing and Communications Review 5 (2001), no. 4, 11-25.

109



[30] J. R. Guerci, Space-time adaptive processing for radar, Artech House, 2003.

[31] J. R. Guerci and E. J. Baranoski, Knowledge-aided adaptive radar at DARPA, 

IEEE Signal Processing Magazine (2006), 41-50.

[32] E. Hanle, Survey of bistatic and multistatic radar, lEE Proceedings, Part F 

(1986), 587-595.

[33] Y. He and E. K. P. Ghong, Sensor scheduling for target tracking: A Monte 

Carlo sampling approach, Digital Signal Processing 16 (2006), no. 5, 533-545.

[34] R. Hill, J. Karim, and E. Berlekamp, The solution of a problem of ulam on 

searching with lies, Proceedings of the IEEE International Symposium on Infor-

mation Theory (ISIT) (Gambridge, Massachusetts), August 1998, pp. 16-21.

[35] R. Iyengar and B. Sikdar, Scalable and distributed GPS free positioning for  

sensor networks, Proceedings of IEEE International Gonference on Communi- 

cations(IGG) (Anchorage, Alaska), May 2003, pp. 338-342.

[36] S. J. Julier and J. K. Uhlmann, Unscented fiMering and rurnlmenr estmuitton, 

Proceedings of the IEEE 92 (2004), no. 3, 401-422.

[37] V. Kalashnikov, Topics on regenerative processes, CR.G Press, 1994.

[38] D. J. Kershaw and R. J. Evans, Optimal waveform selection for tracking sys-

tems, IEEE Transactions on Information Theory 40 (1994), no. 5, 1536-1550.

[39] Y. S. Kim and K. S. Hong, An IMM algorithm for tracking maneuvering vehicle 

in an adaptive cruise control environment. International Journal on Gontrol 

and Automatic Systems 2 (2004), no. 3, 310-318.

n o



[40] T. Kirubarajan and Y. Bar-Shalom, Tracking evasive move-stop-move targets 

with an M Tl radar using a .VS-IMM estimator, Proceedings of SPIE Signal 

and Data Processing of Small Targets, vol. 4048, 2000, pp. 236-246.

[41] T. Kirubarajan, Y. Bar-Shalom, W. D. Blair, and G. A. Watson, IMMPDA so-

lution to benchmark for radar resource alllocation and tracking in the presence 

of ECM, IEEE Transactions on Aerospace and Electronic Systems 34 (1998), 

1023-1036.

[42] T. Kirubarajan, Y. Bar-Shalom, K. R. Pattipatti, and I. Kadar, Ground tar-

get tracking with variable structure IMM estimator, IEEE Transactions on 

Aerospace and Electronic Systems 36 (2000), 26- 45.

[43] D. Knuth, The art of computer programming, vol. 3: Sorting and searching, 

Addison-Wesley, 1997.

[44] L. L. M. I. Kontoyiannis and S. Meyn, Relative entropy and exponential devia-

tion bounds for general markov chains, Proceedings of the IEEE International 

Symposium on Information Theory (ISIT) (Adelaide, Australia), December 

2005, pp. 1563-1567.

[45] C. Kreucher, D. Blatt, A. Hero, and K. Kastella, Adaptive multi-modality 

sensor scheduling for detection and tracking of smart targets, Digital Signal 

Processing 16 (2006), 546-567.

I l l



[46] C. Kreucher and A. Hero, Non-myopic approaches to scheduling agile sensors 

for multitarget detection, tracking, and identification, Proceedings of Interna-

tional Conference on Acoustics, Speech, and Signal Processing, vol. 5, March 

2005, pp. 885-888.

[47] C. M. Kreucher, A. O. Hero, K. D. Kastella, and M. R. Morelande, An 

information-based approach to sensor management in large dynamic networks, 

Proceedings of the IEEE 95 (2007), no. 5, 978-999.

[48] V. Krishnamurthy, Algorithm's for optimal scheduling of hidden Markov model 

sensors, IEEE Transactions on Signal Processing 50 (2002), 1382-1397.

[49] V. Krishnamurthy and D. Evans, Hidden markov model multuirrn bandits: A 

methodology for beam scheduling in multitarget tracking, IEEE Transactions 

on Signal Processing 49 (2001), 2893-2908.

[50] U. Lee and M. Gerla, A survey of urban vehicular sensing platforms, Computer 

Networks 54 (2010), no. 4, 527-544.

[51] U. Lee, E. Magistretti, B. Zhou, M. Gerla, P. Bellavista, and A. Corradi, 

MobEyes: smart mobs for urban monitoring with vehicular sensor networks, 

IEEE Wireless Communications 13 (2006), no. 5, 51-57.

[52] H. Li, Information theoretic problems in decision making and networks, Ph.D. 

thesis, 2007.

[53] X. R. Li and V. P. Jilkov, A survey of maneuvering target tracking: dynamic 

models. Proceedings of the SPIE Conference on Signal and Data Processing of 

Small Targets (Orlando, FL), vol. 4048, April 2000, pp. 212-235.

112



[54] ______ , Survey of maneuvering target tracking. Part I. Dynamic models., IEEE

Transactions on Aerospace and Electronic Systems 39 (2003), no. 4, 1333-

1364.

[55] ______ , A survey of maneuvering target tracking. Part V. Multiple-model

methods, IEEE Transactions on Aerospace and Electronic Systems 41 (2005), 

no. 4, 1255-1321.

[56] X. Rong Li and Y. Bar-Shalom, Tracking in clutter with nea,re.st neighbor filters: 

analysis and performance, IEEE Transactions on Aerospace and Electronic 

Systems 32 (1996), no. 3, 995-1010.

[57] Y. Li, W. Krakow, E. K. P. Chong, and K. N. Groom, Approximate stochastic 

dynamic programming for sensor scheduling to track multiple targets, Digital 

Signal Processing 19 (2009), no. 6, 978-989.

[58] J. Liu, P. Cheung, L. Guibas, and F. Zhao, A dual-space approach to tracking 

and sensor management in wireless sensor networks. Proceedings of the 1** 

ACAI International Workshop on Wireless Sensor Networks and Applications 

(Atlanta, Georgia), April 2002, pp. 131-139.

[59] J. Liu, J. Reich, and F. Zhao, Collaborative in-network processing for target 

tracking, EURASIP ,IASP; Special Issues on Sensor Networks 2003 (2003), 

no. 4, 378-391.

[60] J. Manyika and H. Durrant-Whyte, Data fusion and sensor management: a 

descentralized information-theoretic approach, Ellis Horwood, New York, 1994.

113



[61] W. L. Melvin, Space-time adaptive radar performance in heterogeneous clutter, 

IEEE Transactions on Aerospace Electronic Systems 36 (2000), no. 2, 621-633.

[62] S. Meyn and R. Tweedie, Markov chain and stochastic stability, Communica-

tions and Control Engineering Series, Springer-Verlag, 1993.

[63] S. A. Miller, Z. A. Harris, and E. K. P. Chong, A POMDP framework for  

coordinated guidance of autonomous uavs for multitarget tracking, EURASIP 

Journal on Applied Signal Processing, special issue on Signal Processing Ad-

vances in Robots and Autonomy 2009 (2009), Article ID 724597, 17 pp.

[64] H. Mine and S. Osaki, Markovian decision processes, Elsevier, 1970.

[65] S. Miranda, C. Baker, K. Woodbridge, and H. Griffiths, Knowledge-based re-

source management for multifunction radar, IEEE Signal Processing Magazine 

23 (2006), no. 1, 66 -76.

[66] D. Musicki, S. Challa, and R.. Evans, Multitarget tracking in clutter without 

measurement assignment, Proceedings of the 44‘ '̂ IEEE Conference on Decision 

and Control (Paradise Island, Bahamas), December 2004, pp. 716-721.

[67] D. Musicki, R. Evans, and S. Stankovic, Integrated probabilistic data asso-

ciation (IPDA), IEEE Transactions on Automatic Control 39 (1994), no. 6, 

1237-1241.

D. Musicki, S. Suvorova, and S. Challa, Multi target tracking of ground targets 

in clutter with LMIPDA-IMM, Proc. of The 7'̂ ‘ International Conference on 

Information Fusion (Stockholm, Sweden), June 2004, pp. 1104-1110.

114



[69] R. Niu, P. Willet, and Y. Bar-Shalom, System level performance for radar 

waveforms, Proceedings of the 7*̂ ' Mediterranean Conference on Control and 

Automation (MED 99) (1999), 868-897.

[70] A. Pelc, Searching with known probability of error, Theoretical Computer Sci-

ence 63 (1989), 185-202.

[71] .1. Proakis, Digital communications, ed., McGraw Hill, 2001.

[72] AI. L. Putterman, Markov decision processes: Discrete stochastic dynamic pro-

gramming, Wiley, 1994.

[73] A. Renyi, On a problem of information theory, AITA Mat. Kut. Int. Kozl. 6B 

(1961), 505-516.

[74] R. L. Rivest, A. R. Aleyer, D. J. Kleitman, K. Winkimann, and .1. Spencer, 

Coping with errors in binary search procedures, Journal of Computer and Sys-

tem Sciences 20 (1980), no. 3, 396-404.

[75] B. Robinson and D. Sasaki, Software systems testing of a closed loop tracking 

system using a simulink based simulation, vol. 4025, April 2000, pp. 160-169.

[76] S. M. Ross, Applied probability models with optimization applications, Holden- 

Day, 1970.

[77] A. Sahai and S. Mitter, The necessity and sufficiency of a/nytime cn/pacity for 

stabilization of a linear system over a noisy communication link - Part 1: Scalar- 

systems, IEEE Transactions on Information Theory 52 (2006), 3369-3395.

115



[78] J. N. Sanders-Reed, Multi-target, multi-sens or, closed loop tracking, Proceed-

ings of SPIE XVIII Acquisition, Tracking, and Pointing (Orlando, FL), vol. 

5430, April 2004, pp. 160-169.

[79] T. Sathyan, K. Bharadwaj, A. Sinha, and T. Kirubarajan, Intelligence-aided 

multitarget tracking for urban opefations. a case study: Counter-terrorism, 

Proceedings of SPIE 6201 (2006), 62010M.

[80] D. S. Sawicki, The traffi,c roxlar handbook. Grove Enterprises, 1993.

[81] S. Suvorova, D. Musicki, B. Moran, S. Howard, and B. La Scala, Multi step 

ahead beam and waveform scheduling for tracking of rnanoeuvermg targets in 

clutter. Proceedings of IEEE International Conference on Acoustics, Speech, 

and Signal Processing, vol. 5, March 2005, pp. 889-892.

[82] A. S. Tanenbaum and A. S. Woodhull, Operating systems: Design and imple-

mentation, ed., Prentice Hall, 1997.

[83] S. Tatikonda and S. Mitter, Control over noisy channels, IEEE Transactions 

on Automatic Control 49 (2004), no. 7, 1196-1201.

[84]  , Control under communication constraints, IEEE Transactions on Au-

tomatic Control 49 (2004), no. 7, 1056-1068.

[85] S. Tatikonda, A. Sahai, and S. Mitter, Control of LQG systems under com-

munication constraints. Proceedings of the 37*̂ ' IEEE Conference on Decision 

and Control (Tampa, FL), vol. 1, December 1998, pp. 1165-1170.

116



1861 ., Control of LQG systems under communication constraints, Proceed-

ings of the 1999 American Control Conference (San Diego, CA), vol. 4, June 

1999, pp. 2778-2782.

[87] D. Tian and N. Georganas, Energy efficient routing with guaranteed delivery 

in wireless sensor networks, Proceedings of IEEE Wireless Communications 

and Networking Conference(WCNC) (New Orleans, Louisiana), March 2003, 

pp. 1923-1929.

[88] H. L. Van Trees, Detection, estimation, and modulation theory, vol. 3, Wiley 

Interscience, 2001.

[89] S. M. Ulam, Adventures of a mathematician, Scribner, New York, 1976.

[90] J. van Kleef, J. Bergmans, L. Kester, and F. Groen, Multiple-hypothesis tri- 

lateration and tracking with distributed radars, Proceedings of the 9** Interna-

tional Conference on Information Fusion, 2006. ICIF ’06., July 2006, pp. 1-7.

[91] H. Wang, K. Yao, G. Pottie, and D. Estrin, Entropy-based sensor selection 

heuristic for target localization. Proceedings of the 3rd international sympo-

sium on Information processing in sensor networks (Berkeley, GA), April 2004, 

pp. 36-45.

[92] H. L. Wu and A. Gameron, A Bayesian decision theoretic approach for adaptive 

goal-directed sensing. Proceedings of the Third International Gonference on 

Computer Vision (Osaka, Japan), December 1990, pp. 563-567.

[93] R. W. Yeung, A first course in information theory, Kluwer Academic, 2002.

117



[94] F. Zhao, J. Shin, and J. Reich, Information-driven dynamic sensor collabora-

tion, IEEE Signal Processing Magazine 19 (2002), no. 2, 61-72.

118


