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ABSTRACT

TOWARD EFFECTIVE HIGH-THROUGHPUT GEOREFERENCING OVER VOLUMINOUS

OBSERVATIONAL DATA IN THE DOMAIN OF PRECISION AGRICULTURE

Remote sensing of plant traits and their environment facilitates non-invasive, high-throughput

monitoring of the plant’s physiological characteristics. Effective ingestion of these sensing data

into a storage subsystem while georeferencing phenotyping setups is key to providing timely access

to scientists and modelers. In this thesis, we propose a high-throughput distributed data ingestion

framework with support for fine-grained georeferencing. The methodology includes a novel spatial

indexing scheme, the nested hash grid, for fine-grained georeferencing of data while conserving

memory footprints and ensuring acceptable latency. We include empirical evaluations performed

on a commodity machine cluster with up to 1TB of data. The benchmarks demonstrate the efficacy

of our approach.
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Chapter 1: Introduction

Advances in remote and automated geo-sensing allow scientists to monitor dynamic, geospa-

tial phenomena comprehensively. As the resolution and frequency of the data survey increases,

the amount of data collected by sensing devices has grown explosively. The collected data with

associated geocoordinates are often organized based on the geographical extent that they belong

to such as political boundaries, roads, or even experimental geospatial shapes predefined by scien-

tists. Georeferencing is a term that is widely used in geographical information systems to describe

the process of associating a physical map with spatial locations [2]. Georeferencing may be ap-

plied to any kind of geospatial objects or structure such as points of interest, roads or place [3].

Data points collected from geo-sensors are mapped to the corresponding shape of the area (e.g.

city boundaries) for subsequent research such as air quality analysis, traffic monitoring, or surveil-

lance of an emerging, infectious diseases. In this study, we describe our methodology to facilitate

high-throughput georeferencing of voluminous sensor datasets collected from a high-throughput

phenotyping platform (HPP). HPP is an emerging technology to identify genetic variations un-

derlying important quantitative trait loci. Thousands of recombinant inbred lines with various

environmental treatments often create a massive set of plots and automated sensor arrays enable

highly frequent data acquisitions throughout the lifecycle of the plant [4, 5]. Timely georeferenc-

ing between the newly collected voluminous sensor data and experimental setup is key to enabling

researchers to understand traits and patterns as early as possible in the course of an experiment.

There are existing GIS tools and geospatial database management systems supporting georef-

erencing. PostgreSQL [6], MySQL [7], ArcGIS [8], and MongoDB [9] support geospatial relation-

ship queries that includes a query evaluating whether a geospatial object (e.g. point or polygon) is

inside another geospatial object. However, these features were not originally designed for large-

scale of georeferencing query evaluations with frequent data staging and ingestions. These systems

require the ingested data to be indexed before the georeferencing query is evaluated. There are

geospatial analytics frameworks [10, 11], that are based on distributed, open-source frameworks
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such as Apache Hadoop [12] or Spark [13]. These software frameworks leverage additional index-

ing schemes over HDFS to avoid disk I/O that, in turn, result in notable overheads in processing in

addition to ineffective memory utilizations for the continuously arriving voluminous data.

To address these challenges, we propose RADIX, a framework for accomplishing high-throughput,

effective and scalable georeferencing for sensor-based monitoring environments. Our framework

supports: (1) on-line and off-line high-throughput georeferencing for vector point datasets, (2)

effective generation and indexing of advanced metadata, and (3) data availability for monitoring

and explorative analytics. RADIX is also interoperable with the cloud-based data analytics and

archival systems.

1.1 Scientific Challenges

Georeferencing and storing large volumes of sensor data in an efficient manner introduces a set

of unique challenges.

• Voluminous Data With sensor-equipped autonomous vehicles able to record hundreds or

thousands of observations per second, and the ability to easily add additional sensors to an

existing array, the data generated increases dramatically.

• Scalability As data volumes increase, additional storage and computing power may be

needed. A proposed system must be able to easily scale with the addition of new resources.

• High-throughput Georeferencing The system must be capable of processing large volumes

of data quickly so that users may explore and analyze it without waiting for excessive periods

of time.
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1.2 Research Questions

An effective georeferencing scheme is vital to organizing raw observations from sensors with

the scientific context specified in the experiment. Research questions that guide this study include

the following:

• RQ1: How can we perform the high-throughput georeferencing while accounting for the

customizable shapes of the areas being monitored while preserving accuracy?

• RQ2: How can we effectively orchestrate the georeferencing with other data preprocessing

required during the raw data ingestion such as metadata extraction and/or data indexing?

• RQ3: How can the system monitor the process of data georeferencing and provide explo-

rative analytics features to understand characteristics of recently ingested data?

1.3 Approach Summary

RADIX is a distributed georeferencing engine for organizing voluminous sensor observations.

RADIX does not require any grouping or filtering of a dataset prior to performing georeferencing.

We propose a nested hash grid that is a distributed bitmap indexing scheme to encode the obser-

vations and the targeted geospatial shape. The nested hash grid is a hierarchical bitmap hash that

maintains multiple resolutions of geospatial blocks that overlap over a region. Based on the shape

that users specify, RADIX determines the resolution levels for the observations. Small areas or

complicated shapes often cause higher levels of the nested hash grid to achieve better accuracy.

The georeferenced data points are indexed, grouped and stored based on the nested hash grid of

the associated geospatial coordinates.

A distributed protocol was designed and developed that performs georeferencing with the

nested hash grid over Galileo, a distributed storage framework for the voluminous spatiotempo-

ral observations. RADIX pipelines metadata extraction, indexing, and staging with georeferencing

to allow users to access the index of the metadata immediately after a data point is georeferenced.
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Users can browse and search data with extended metadata (e.g. statistical summary) while the data

is being ingested. This feature is useful for monitoring data ingestion and diagnostic activities that

are often required during a project. Our empirical evaluation shows that we can achieve inges-

tion rates of 48MB/sec in a cluster of comprising 25 nodes and our system outperforms Apache

GeoMesa, a distributed geospatial analysis platform leveraging Apache Spark, 8-fold when con-

trasting latency for ingestions.

1.4 Thesis Contribution

RADIX enables ingestion of voluminous observation data while supporting high-throughput

georeferencing, metadata extraction, indexing and staging. Users are allowed to access continually

arriving observations. Our nested hash grid provides a balance between accuracy and latency.

Specific contributions of RADIX include: 1) high-throughput and customizable georeferencing, 2)

a streamlined metadata extraction and indexing scheme to reduce the latency and data movements

within the storage cluster, and 3) real-time monitoring of data ingestion and diagnostic analyses.
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Chapter 2: Related Work

There are two major software architectures that can be compared to this work: Databases

and GIS platforms, and distributed geospatial frameworks. The former includes software such as

MySQL, MongoDB, ArcGIS, and PostgreSQL. The latter includes works such as GeoMesa, Spa-

tialHadoop, VegaIndexer, and Sphinx. Each of these architectures share many similarities with

this work, but all suffer from scalability issues or lack of pipelined data insertion to maximize

throughput. Additionally, some efforts have explored the use of sketching algorithms to man-

age spatiotemporal data volumes that arise in observational settings. The current state of the art

is the Synopsis sketch [14] which extracts information from observational data and organizes it

an in-memory, distributed tree that scales (in and out) dynamically based on the density of the

observational space. The Synopsis system uses a stream processing layer Neptune to facilitate

high-throughput data ingestions [15, 16].

2.1 Databases and GIS Platforms

MySQL [7] is a relational database. Relational databases are organized as a table, or set of

tables with a particular schema. Often, data stored in one table may have dependencies or relation-

ships with data in other tables. SQL databases are particularly powerful for structured data, but

do not perform well with unstructured data, such as text documents or video files due to the fact

that they are not easily converted into row-column format. Additionally, SQL databases are only

vertically scalable, meaning that they can be scaled only be using more powerful hardware. This

is not always feasible.

MongoDB [9] is a NoSQL database program that utilizes JSON-like documents with schemata.

Instead of storing data as tables, it is stored as collections comprised of individual documents. This

model works well for data that can be grouped together without dependencies on other documents.

For example, a large number of agricultural plots could be represented as a set of documents,
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one for each plot. This allows for fast retrieval of plot-level data given that the queries include

knowledge of the exact plot numbers being searched for. The primary downfall of this architecture

is that relational and polygon queries are not efficiently evaluated unless the proper schemas are in

place, which places a heavy work-load on developers.

ArcGIS [8] is a geographic information system designed for working with maps and managing

geographic information in a database. It offers powerful analytics and mapping capabilities for

geospatial data but is not designed for large-scale raw sensor data. ArcGIS differs from RADIX

primarily in that it was built for more complex analysis of spatial data, although it is capable of

georeferencing.

PostgreSQL [6] is SQL database that also supports unstructured data in the form of JSON

structures. PostgreSQL is an ORDBMS (Object-relational database management system). Post-

greSQL, like MySQL, supports spatial indexing of data, but requires an additional package. Since

PostgreSQL is a relational database, it suffers from scalability issues much like MySQL.

2.2 Distributed geospatial frameworks

GeoMesa [11] is a tool that enables large-scale spatiotemporal querying and analytics on dis-

tributed computing systems. It is designed to run atop distributed storage systems such as HDFS

and Apache Accumulo. By default, GeoMesa creates indices on the geospatial features of datasets.

These indices are implemented by creating a space-filling curve atop a Geohash index. Query

polygons are disseminated into geohash coverages, which are recursively broken down into finer-

grained geohashes in order to evaluate points intersecting the query polygon. The key difference

between RADIX and GeoMesa is that RADIX allows a user-defined granularity of greater than 4

bits for the Geohash index. This allows large amounts of data concentrated in a small geospatial

area to be more efficiently indexed and queried.

VegaIndexer [17] is a spatio-temporal indexing scheme designed to run on top of an existing

distributed file system such as HDFS, or a distributed NoSQL database such as HBase [18]. This

indexing scheme utilizes both time and space attributes to index incoming data points to be queried
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at a later time. Rather than using a bitmap index for indexing geospatial data, this system utilizes a

MDR+ (Multi-version Distributed enhanced R+) tree. This structure is based off of an R-tree, but

was developed to be distributed across a compute cluster.

SpatialHadoop [19] is another spatial indexing scheme built on Hadoop. This approach utilizes

a two-tiered indexing scheme, in which a global index is created to index partitions across nodes,

and a local index is created to index data in individual partitions. Local indexing can be performed

with either an R-tree or a grid index. This grid has the disadvantage of being single-layered, unlike

the nested hash grid. SpatialHadoop is intended for data sets covering large geographic areas, as

opposed to small areas requiring precise indexing.

Sphinx [20] is a full-fledged distributed system which uses a standard SQL interface to process

big spatial data. It adds spatial data types, indices and query processing, inside the code-base of

Cloudera Impala. To index spatial data, Sphinx utilizes a two-layered index on HDFS-resident

tables. Much like SpatialHadoop, the master node is responsible for maintaining the global index,

which defines how records are partitioned across machines, and the local index on each node

defines how records are internally organized on that node. Both R-trees and R+-trees are utilized

for these indices. Due to the master-slave architecture of these systems, they are prone to failure or

other issues if the master node fails. RADIX avoids this issue by acting as a distributed hash table,

in which no master node is required.

[21–26] provide the distributed storage based approaches to achieve fast and effective spa-

tiotemporal analytics features. In these approaches, data are indexed using a hierarchical dis-

tributed hash table, and the analytics queries are evaluated without any centralized coordinator.

However, the query evaluation is performed over the data set already ingested with a pre-defined

indexing scheme in these systems. The large scale data ingestion to these systems is challenging

due to the misalignment between the patterns of data acquisition and the indexing schemes. Radix

provides a high-throughput data ingestion methodology that is well aligned with the underlying

data retrieval system. Also, Radix dynamically orchestrates the computations required during the

georeferencing for the sensor data collections.

7



Chapter 3: Background

3.1 Plant Phenotyping

A plant phenotype is the ensemble of all observable traits of an organism (e.g kernel color

and kernel texture for corn). Phenotyping is described as the identification of effects on the

phenotype resulting from genotype (genetic code) differences (G) and environmental conditions

(E). This can be summarized as P = G × E [27]. A more detailed description would be P =

Genotype + Environment + G× E, which includes both the additive and non-additive interac-

tions of environment and genotype. Phenotyping is typically hypothesis driven, aiming to answer

specific questions about gene function. As technology continues to advance, collection of pheno-

typic information is becoming increasingly automated and less labor-intensive, allowing for large

volumes of data to be collected at a high rate, and with high accuracy. For example, Tanger et.

al [4] developed a high throughput phenotyping (HTP) platform capable of collecting data at a

rate of 3000 plots per hour for a population of recombinant rice. Not only does HTP provide a

larger body of data to research, it also allows for time-series characterization of quantitative trait

loci over plant lifetime. In our study, phenotypic data is collected by a sensor array mounted on an

autonomous vehicle traveling through agricultural plots.

3.2 Georeferencing

Georeferencing is a broad term that may be refer to one of several specific meanings. In any

sense, georeferencing is an important process when dealing with any geospatial information, as it

provides meaning to arbitrary points in space, often for very specific purposes. For example, an

individual pixel in a raster image may be georeferenced according to a specific projection scheme,

or an individual coordinate may need to be georeferenced to some form of landmark or boundary,

such as a particular address or a county boundary. Generally, georeferencing is the process of
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associating something with a location(s) in physical space. Any object that can be related to a

geographic location is able to be georeferenced (e.g a building, landmark, or data point). There

are several variations of georeferencing. The most common description is raster to geolocation

georeferencing [2]. This refers to the process of aligning raster images to a map coordinate system.

Most modern satellite images and aerial cameras already contain spatial reference information

by using GPS, but scanned images and historical data must often be georeferenced. This type

of georeferencing requires ground control points in order to correlate individual pixel values in

raster image to a pre-existing coordinate system and may additionally require the use of a map-

projection, which is a method of projecting the earth’s curved surface onto a flat surface. Direct

georeferencing [28] is similar but does not require the use of ground control points. This type of

georeferencing is designed for autonomous drones in order to maintain real-time knowledge of its

location during flight. This is achieved with a combination of GPS and aerial imagery. Nørremark

et. al [29] refer to georeferencing as mapping individual plants to geolocations. Additionally,

georeferencing may refer to the process of associating geographic coordinates to polygons on the

earth’s surface, e.g. mapping points to a particular county in a state. For this study, we refer to

georeferencing as the process of mapping a data point associated with a geographic coordinate to

a pre-defined polygon on the earth’s surface. These polygons represent agricultural plots, which

we will refer to as plots throughout the remainder of this paper.

3.3 Distributed Spatiotemporal Data Storage

To perform georeferencing on voluminous phenotyping data while providing maximum data

locality, we leverage a distributed storage framework Galileo [30–33]. Galileo is a high throughput

distributed storage framework designed for large, geospatial and time-series datasets. It is modeled

as a hierarchical distributed hash table and utilizes the underlying host file system for storage of

data on physical media. A Galileo cluster is logically organized into groups, essentially turning

a cluster into a cluster of smaller clusters. This organization allows similar data to be grouped

together rather than on random nodes. We utilized Galileo to store data once it had been processed
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and georeferenced. The basic unit of storage in Galileo is a block. A block is a multi-dimensional

array of data that is ultimately stored on disk as a stream of bytes that may represent any type of

data. Every block stored in Galileo is accompanied by its corresponding metadata. The metadata

for a block is stored in an in-memory metadata graph and is also stored as a file alongside the block

in the underlying filesystem. Upon failure or shutdown, a given node is able to restart and utilize

the metadata stored on disk to rebuild the graph. This metadata graph allows for individual nodes to

process queries for blocks without having to read from disk, drastically decreasing query process-

ing time. Galileo supports user-configurable data partitioning schemes. In order to partition data

amongst nodes within a group, a two-tiered hashing scheme is used. The first hash function deter-

mines the group a data point belongs to, while the second hash function determines the node within

that group. When a query comes in to a node in the system, the metadata graph is evaluated to de-

termine if the node has any data matching the query. This allows for queries with no matching data

to be quickly ignored, avoiding disk I/O. If information in the metadata graph matches the query,

the corresponding block can either be returned as a whole or evaluated for specific portions of

data matching the query. In the process of georeferencing, we utilize the Geohash [34] geocoding

scheme to avoid a brute-force search of polygons to associate a data point with. A Geohash is a 1-

dimensional Base32 string representation of a 2-dimensional bounding box on the earth’s surface.

A longer Geohash string indicates a higher geographical precision, i.e a finer-grained bounding

box. A Geohash is created by intertwining the bits of latitude-longitude pairs. For example, the

decimal coordinates 40.58532◦N, -105.084379◦W would map to 9xjqbsrfs, with each character

represented by five bits. Additional characters may be added or removed to decrease or increase

respectively the size of the bounding box that the string represents. This geocoding scheme allows

for a coarse-grained Geohash to be defined as a grid of more fine-grained Geohashes. This grid

can be converted into a bitmap, which is utilized by the nested hash grid discussed in Chapter 3.
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Chapter 4: Methodology

To achieve high-throughput data ingestion that entails compute-intensive preprocessing, our

methodology targets concurrent georeferencing and metadata extractions while pipelining compu-

tationally intensive operations to reduce the data communication and I/O access. Our data ingestion

consists of three stages: stamping, georeferencing, and metadata extraction. The indexing scheme

involved in both the stamping and georeferencing phases is the nested hash grid. The nested hash

grid is a distributed spatial indexing scheme that converts geographic coordinates to an array of

bits to provide coarse-grained data mapping by grouping spatially neighboring data points. We

specify this grouping based on geographical proximity by leveraging the geohash algorithm [34].

The geohash represents a two-dimensional location (based on latitude and longitude) on Earth as

one-dimensional Base-32 string where the geographical extent is controlled by the length of string:

longer strings represent smaller, contiguous spatial regions.

We use this hash grid for indexing pre-defined shapes (e.g. the HPP plots, or state boundaries)

and ingested data points. Figure 4.1 depicts the bitmap representation of two spatial shapes. The

cells that intersect with the shapes are set to 1. Once the shapes are indexed, newly ingested data

points are indexed with a separate bitmap representation to perform geospatial queries. To evalu-

ate intersections between a shape and a set of data points, we perform a bitwise AND of the two

Figure 4.1: Conversion of plot shapes to bitmap index representation.
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bitmaps; this reduces the query evaluation time considerably compared to the traditional R-tree

based query scheme [35]. To reduce compute times and memory requirements, the system dy-

namically lowers the precision of the bitmap index. The challenge of this approach is to manage

ambiguity during query evaluation. If the data points within the same cell map to the multiple

shapes, the system needs to evaluate entire data points within the cell. To address this issue, we

propose the nested hash grid that is a hierarchical bitmap indexing scheme with configurable res-

olutions. RADIX inherits the architecture of our underlying storage network topology - distributed

hash table: Any subset of nodes in the RADIX cluster can be used as the ingest nodes to provide

concurrent data ingestion.

4.1 Stamping with the Nested Hash Grid

To reduce in-cluster data movement during georeferencing, RADIX identifies the corresponding

data node and forwards the batch of data points. RADIX reads raw data from disk or network as a

chunk, a group of adjacent points within the sequence of data stream. The size of these chunks is

tunable, but smaller (< 500 KB) chunks show relatively low latency. Several message sizes were

tested: 100 KB, 500 KB, 1 MB, and 5 MB. Each individual record within a message consisted

of 16 features, including 11 double-precision floating point decimals, two strings, one UTC time

stamp, one integer, and one boolean. As seen in Figure 4.2, message size increased, throughput

tended to decrease. This is caused by a combination of increased compression overhead for larger

messages as well as increased processing time to compute metadata.

Figure 4.3 displays the multi-tiered hashgrid with 3 layers. RADIX maintains hash grid indices

of shapes with multiple resolutions in the main memory of nodes. The hash grid with the lowest

resolution includes complete coverage of bitmap information of the shapes. If there is a cell of the

bitmap that intersects with multiple shapes, RADIX calculates a finer resolution of the hash grid

only for those cells. Adjusting the length of the geohash value enables nested coverage between

the finer and coarser resolutions of the hash grids. The levels of nesting are extensible based on

the dataset. Stamping involves two steps, identification of the storage node and data forwarding.
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Figure 4.2: Throughput in messages per second for varying stamped message sizes.

First, each chunk is placed into a global queue and each data point in a chunk is indexed in a

hash grid object. Once the hash grid for the chunk is ready, it is evaluated by mapping with a

lowest resolution hash grid of the shapes. Overlapping between a shape and data chunk indicates

that the portion of data chunk may belong to the spatial shape. If the cell in the shape hash grid

intersects with multiple shapes, the data is evaluated with one level finer hash grid of the shapes.

Second, the chunks are then forwarded to the RADIX node that is responsible for the majority of the

chunk. The node that received the data chunk performs further processing locally. All chunks are

compressed with the Snappy [36] compression scheme to minimize bandwidth consumption. Once

compressed, the message is sent to the appropriate destination as an unprocessed store message.

4.2 Distributed Georeferencing

The process of georeferencing is performed asynchronously over the storage cluster. We call

this design as a relaxed georeferencing. With a relaxed georeferencing, data points are evaluated

in a data-parallel way and merged at the end of the data ingestion process or query evaluation.
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Figure 4.3: Georeferencing plot shapes with the nested hash grid .
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Figure 4.4: Message handling with thread pool for stamped messages.

This allows data to be split arbitrarily amongst nodes within a cluster to exploit a high level of

concurrency. The process of georeferencing relies entirely on the global hash grid. As incoming

unprocessed messages are received at a node, they are placed into a message queue from which

10 message handler threads pull. These threads handle one of two types of store messages :

unprocessed and to_disk. Figure 4.4 depicts the process of message handling at each node. An

unprocessed message is one which has been stamped and transferred to the node responsible for

storing most of its contents. When a thread receives an unprocessed message, each data point in

the message is examined to determine whether this node is responsible for storing it. If a point

indeed belongs on this node, it is georeferenced by the hash grid and placed in an in-memory map.

This map tracks all data points belonging to a particular polygon, and groups them together. If

new data has not been observed for some polygon for more than a time threshold, all existing data

for that polygon is removed from the mapping and transformed into a to_disk message and placed

in the queue. A temporary map is created for handling of data points that do not belong to the

node processing them. Points are added in the same fashion as they are added to the previously

mentioned map, although data in this map is lumped together and packaged as a new unprocessed

message and sent to the node it belongs to. Clearing portions of the in-memory map at a regular

interval is crucial to managing memory consumption, especially when data is processed at the

terabyte or petabyte scale. The 30 second interval was chosen to ensure that most or all data for a
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given polygon is aggregated before extracting metadata and storing to disk. This prevents excessive

disk I/O during this phase of ingestion.

4.3 Metadata Extraction

Once data is aggregated at the polygon level, it is packaged into a to_disk message, and added

to the same queue that receives unprocessed messages. When a thread receives a to_disk message,

metadata is extracted for that message and added to the Galileo metadata graph. The type of

metadata computed is specified by the user before ingestion begins. Typically, the metadata is

comprised of simple summary statistics. These are generally lightweight computations that provide

a general summary of a data block and also provide a reasonable query scope. Once the metadata

has been added to the metadata graph, it is stored on disk alongside the raw data. The on-disk

metadata acts as a checkpoint in the case that a node fails and must rebuild its metadata graph.

4.4 Interactive Diagnoses

To facilitate discovery analytics over data that has been ingested, we have created a web inter-

face that allows users to visually explore and query the data stored in the system. Upon login, a

user is presented with a Google Maps [37] view that displays all the current polygons for which

data is held. Figure 4.5 shows the data exploration interface, which we have named RADIX. Two

types of queries are currently supported: polygon bounded geospatial query and feature query.

Polygons may be drawn on the interactive map to specify a particular spatial region to query for.

When the back end receives this type of query, a coverage map is created, consisting of all geo-

hashes that cover the area of the polygon. The precision of these geohashes is dependent on the

precision specified during the ingestion phase. This coverage map is then compared with the global

hash grid to determine which polygons are contained or intersect with the query polygon, and all

matching blocks are returned to the user. A feature query is more specific. This type of query is

similar to a SQL-style query in that the user specifies a specific feature or set of features, a value to
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Figure 4.5: RADIX data visualization dashboard with polygon selection.

compare to, and a relational operator for comparison. Existing polygons may be visualized based

on feature. This is particularly important for recognizing patterns and outliers in the domain of

precision agriculture. For example, if the user desired to look for areas with below or above av-

erage nitrogen levels, the visualization feature could be set to nitrogen to view the difference in

nitrogen levels between all plots.
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Chapter 5: System Architecture

5.1 Data Flow: From the Field to the Archives

Autonomous sensing vehicles have become more reliable and affordable to obtain and can

easily be outfitted with a myriad of sensors. These sensing devices are becoming prevalent in

many domains, especially precision agriculture [38]. It is crucial that data that is collected by

these vehicles can be indexed and stored so it can be analyzed as soon as possible. Our system

was designed for daily bulk uploads of field data. There are three major software components in

the RADIX framework: the user interface for analytics, the data ingestion engine, and underlying

Galileo storage framework. Once data from the field is collected, it is sent to the data ingestion

component. The data ingestion engine runs on top of Galileo and communicates for metadata

extraction and storage. This architecture allows for the Galileo framework to be constantly up and

running, and data can be ingested at any number of nodes at any time with a simple Netcat [39]

command. This design also streamlines the process of georeferencing, metadata extraction and

archiving into a single pipeline. Data collected by autonomous vehicle is stored onto an external

storage media and transported to the physical location of the servers to be transferred locally. Web

uploads of data are also supported; however, this method incurs a high latency cost. Once the media

is inserted and the command issued, each ingest node will begin stamping data chunks as they are

read and transfer them to their corresponding destination. As soon as metadata is calculated and

placed in the metadata graph, it is immediately available to query, regardless of whether the raw

data has been dumped to disk. This allows for data to be queried in the least amount of time

possible after collection and ingestion.
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Figure 5.1: Query evaluation process from RADIX interface to back-end Galileo servers.

5.2 Interaction Between Components

The Galileo framework interacts with both the user interface and the data ingestion engine. All

communication with Galileo is performed with Galileo messages. Message handling is performed

with socket connections on a separate thread for each node. There are several types of message,

with each message type invoking a particular action and response based on the information it

carries. Figure 5.1 shows the interaction between each component during query handling. The

web-based interface relies on a translation server that acts as a middle-man for communication

between the client and the back-end Galileo cluster. This node could be a member of the cluster or a

separate machine. For the purpose of load balancing, we employed an external node of the Galileo

cluster. This allows us to orchestrate data traffics to idle nodes or nodes with lower workloads.

This node is implemented as a RESTful [40] server, accepting web requests and translating them

to Galileo messages, and passing those messages to the back end. When the REST server receives a

query, it is translated into the appropriate Galileo message type and sent to a node in the cluster. The

Galileo node receiving the query will forward the query to all other nodes, while simultaneously

evaluating the query against its local metadata graph. Responses from all other nodes are sent to
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the node that received the original query, where they are aggregated into a single message and

sent back to the REST server. The REST server then converts the results into a JSON [41] object

and returns it to the user. The data ingestion engine communicates with Galileo only during the

process of georeferencing and stamping. The actual computations performed during these phases

are handled by the data ingestion engine, and the results are passed to the Galileo framework,

which updates the metadata graph and handles disk I/O.
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Chapter 6: Performance Evaluation

We describe the results of our benchmark by profiling several aspects of RADIX, including

memory consumption, CPU utilization, data ingestion/georeferencing performance, and query per-

formance. Several cluster configurations were used and are described in the next section. All query

results were validated for 100

6.1 Dataset and Environment Setup

We have used a high throughput phenotyping platform (HPP) dataset that is synthesized from

existing HPP data. The data contains 15 attributes including datetime, geographic coordinates,

plant genotype, and an array of randomly generated numbers to represent various sensor readings.

The majority of the data types are floating point decimals. The total size of data used in this

benchmarking ranged from 8 GB to 1 TB and the geospatial coverage of this dataset is approxi-

mately 20,000 m2. Since RADIX is targeting off-line high-throughput data ingestion, the dataset

is segmented and loaded to the ingest nodes. Performance evaluations reported here were carried

out on a base cluster of 40 HP DL160 servers (Xeon E5620, 12 GB RAM). The test cluster was

configured to run Fedora 24, and RADIX was executed under the OpenJDK Java runtime 1.8.0

72. For evaluations involving Apache GeoMesa, we used Apache Spark version 2.1.0 with HDFS

3.1.1 with a 25 node cluster. For large cluster configurations, we combined our baseline cluster

of 40 machines with 30 HP DL320e servers (Xeon E3-1220 V2, 8 GB RAM) and 30 HP DL60

servers (Xeon E5-2620, 16 GB RAM). Smaller cluster configurations consisted of subsets of the

base cluster.

6.2 Resource Utilization

We first compared memory and CPU utilization for a cluster of 15 nodes, and separate cluster

of 160 nodes. We evaluated resource utilization for 2 different data input sizes: 8 GB and 1 TB.
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Figure 6.1: Memory and CPU utilization on 160-node cluster for 1 TB ingest file over 5 minute period

during ingestion.

For the 15-node cluster, we measured resource use based on varying number of ingest nodes, while

the 160-node cluster utilized every node as an ingest node. The ability to use an increased number

of nodes as ingest nodes can increase both throughput and resource utilization in most scenarios.

Figure 6.1 illustrates CPU and memory utilization on a 160-node cluster during the first 5 minutes

of a 1 TB data ingest. In this scenario, each of the 160 nodes acts as an ingest node. The first 45

seconds during ingestion see a large spike in CPU usage, as each machine utilizes several cores

for generating stamped messages, and other cores process messages from other nodes. Figure 6.2

compares resource utilization for an 8 GB ingest with 2 (a, d), 4 (b, e) and 8 (c, f) ingest nodes.

Memory consumption spikes early during the ingest phase, but gradually drops as more messages

are processed and stored. Once ingesting has completed, the metadata graph is still maintained in

memory, causing persistently moderate memory usage but allowing for faster query evaluation.

6.3 Throughput

System throughput was measured as the number of messages per second processed for varying

numbers of ingest nodes on a 25-node cluster. We measure throughput in terms of messages

processed per second. The two message types are unprocessed and to disk, as discussed in Section

3. Message size is user-configurable and can impact performance with larger sizes. We chose a

message size of 120 KB for testing purposes.
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Figure 6.2: Memory and CPU utilization on 15-node cluster for 8 GB ingest file over 5 minute period during

ingestion.

Figure 6.3: Throughput in messages/sec for varying numbers of ingest nodes.
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Figure 6.3 depicts throughput in messages per second for varying numbers of ingest nodes on a

25-node cluster. Throughput increases logarithmically as the number of ingest nodes increases and

levels off when roughly half of the cluster nodes are used as ingest nodes. This is due to the fact

that the ingest nodes devote more processing power to disk I/O and stamping, with less threads

able to handle incoming messages from other nodes. Throughput is affected by the number of

features for which metadata is computed. A dataset with a significantly large number of features

will see diminished throughput as metadata computations are more complex, while a dataset with

fewer features will achieve greater throughput.

6.4 Georeferencing Query and Feature Query Evaluation

To demonstrate the low latency of query evaluations with the nested hash grid and metadata

graph, we performed a variety of queries against MySQL, GeoMesa and RADIX. We evaluated

polygon queries, in which each system must identify all points intersecting a user-defined polygon

shape, as well as feature queries, where all features matching the user’s query are returned. For

MySQL queries, an index was created for the features queried, and a spatial index created on

the spatial column. Our GeoMesa configuration consisted of a spatiotemporal index, with no

indices on any other features. For query evaluation experiments, the RADIX cluster and GeoMesa

Hadoop cluster each consisted of 25 nodes from the base cluster, with 10 ingest nodes for RADIX

and 10 threads for GeoMesa. MySQL was run on a single machine with 8 threads to insert data

to maximize insertion speed. MySQL required additional time to create indices on the desired

columns that was not accounted for. Figure 6.4 shows query evaluation time for each system

for both polygon queries (blue) and feature queries (orange). Even with a spatial index, polygon

queries are slow for MySQL. Additionally, feature queries are 20 times slower in GeoMesa than

for MySQL or RADIX. Figure 6.5 shows the time to fully ingest a 10 GB file in each system.

RADIX outperforms both systems by nearly 8-fold. GeoMesa suffers a penalty during ingestion

due to the fact that indexing is not pipelined.
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Figure 6.4: Query evaluation time for polygon and feature queries.

Figure 6.5: Time to fully index and store a 10 GB file.
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Chapter 7: Conclusion and Future Work

In this work, we presented a spatial indexing scheme and data processing pipeline for georef-

erencing and extracting metadata from observational data.

• RQ1: The nested hash grid provides accurate and quick georeferencing for large-scale

datasets. It allows for extremely fine-grained spatial indexing without excessive time or

memory costs. The multi-tiered design allows facilitates high accuracy without high mem-

ory cost.

• RQ2: RADIX was able to significantly outperform both MySQL and GeoMesa in terms of

data ingestion, while also providing near equal query evaluation times. Raw data is geo-

referenced and aggregated at a plot or shape level so that metadata extraction can occur at

that same level of granularity. Additionally, metadata extraction is pipelined in the ingest

process, avoiding an extra stage of data processing.

• RQ3: Queries are evaluated against in-memory data structures such as the hash grid and

metadata graph, avoiding disk I/O and providing fast response times. This allows the system

to maintain an up-to-date view of all data that has been ingested, including data that was just

recently ingested.

The ability to utilize any number of nodes as ingest nodes can significantly increase overall

throughput, but only to a certain point. Using n/2 nodes as ingest nodes in an n-node cluster

achieved the best results in most cases. The entire system is easily scalable, as nodes can be easily

added or dropped from the system at any time. Overall, our approach provides an avenue for

handling daily data ingestion at extreme scales, while also providing a simple interface for visually

exploring the data.

While the system performs very high-throughput data ingestion and georeferencing, there is

room for improvement. In particular, (1) polygon query evaluation method could be modified to
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reduce query evaluation time when the polygon covers a large percentage of the total data stored,

(2) finer-grained query evaluation such that when a polygon intersects a plot, only data falling

within the defined polygon is returned, rather than all data for the intersecting plot, and (3) allowing

multi-geometry queries, such that multiple sub-groups of plots may be queried.
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