DISSERTATION

PROTECTING CRITICAL SERVICES FROM DDOS ATTACKS

Submitted by
Vamsi K. Kambhampati

Department of Computer Science

In partial fulfillment of the requirements
for the Degree of Doctor of Philosophy
Colorado State University
Fort Collins, Colorado

Spring 2012

Doctoral Committee:

Advisor: Daniel Massey
Co-Advisor: Christos Papadopoulos

Michelle M. Strout
Edwin K. P. Chong

Copyright (© Vamsi K. Kambhampati 2012
All Rights Reserved

ABSTRACT

PROTECTING CRITICAL SERVICES FROM DDOS ATTACKS

Critical services such as emergency response, industrial control systems, govern-
ment and banking systems are increasing coming under threat from Distributed Denial
of Service (DDoS) attacks. To protect such services, in this dissertation we propose
Epiphany, an architecture that hides the service IP address making it hard for an attacker
to find, attack and disable the service. Like other location hiding based approaches,
Epiphany provides access to the service through numerous lightweight proxies, which
present a very wide target for the attacker.

However, unlike these solutions Epiphany uses a novel approach to hide the service
from both clients and proxies, thus eliminating the need to trust proxies or apply a filter-
ing perimeter around the service destination. The approach uses dynamically generated
hidden paths that are fully controlled by the service, so if a specific proxy misbehaves
or is attacked, it can be promptly removed. Since the service cannot be targeted directly,
the attacker may target the proxy infrastructure. To combat such threats, Epiphany sep-
arates the proxies into setup and data proxies. Setup proxies are only responsible for
letting a client make initial contact with the service, while data proxies provide further
access to the service. However, the setup proxies employ /P anycast to isolate the net-
work into distinct regions. Connection requests generated in a region bounded by an
anycast setup proxy are automatically directed to that proxy. This way, the attacker bot-
net becomes dispersed, i.e., the attacker cannot combine bots from different regions to
target setup proxies in specific networks. By adding more anycast setup proxies, net-
works that only have legitimate clients can be freed from the perils of unclean networks
(i.e., networks with attackers). Moreover, the attacker activity becomes more exposed

in these unclean networks, upon which the operators may take further action such as re-

i

move them or block them until the problem is resolved. Epiphany data proxies are kept
private; the service can assign different data proxies to distinct clients depending on how
they are trusted. The attacker cannot disrupt on-going communication of a client who’s
data proxy it does not know. We evaluate the effectiveness of Epiphany defenses using
simulations on an Internet scale topology, and two different implementations involving

real Internet routers and an overlay on PlanetLab.

1l

ACKNOWLEDGEMENTS

It is my pleasure to thank everyone who supported me with my PhD at Colorado
State University. In particular, the strong support the computer science department com-
munity and my family which helped me accomplished this task. I must specifically thank
my advisors Dr. Dan Massey and Dr. Christos Papadopoulos for their valuable advise
and support in achieving my PhD. Not only did I learn a great deal from them, but they
also enlightened me to the ancient Indian concept of “Guru Devo Bhava” (Teacher is
God). As my teachers, they guided and motivated me in numerous ways. I understand
now that persistence is an important part of the PhD process. I would also like to thank
Dr. Michelle Strout and Dr. Edwin Chang for serving on my committee, and keeping on
open eye (and ear) when I needed outside opinion. I am indebted to my supervisors at
Nokia: Dr. Lars Eggert and Dr. Pasi Sarolahti for giving me a great opportunity to work
with the EU partnered Trilogy project. It is from the exposure I got at this project, that I
came upon the main idea behind Epiphany. I would also like to thank my colleagues Yan
He, Steve DiBenedetto, Kaustubh Gadkari and my friends who were constantly there for
open discussion. They offered me plenty of constructive criticism. This project would
not have shaped the way it is without their input. I must thank my parents and my wife
for their unconditional support and specifically keeping me motivated through the lows.
Finally, I would like to thank the anonymous reviewers for their insightful comments,

which greatly helped improve the clarity of this work.

v

TABLE OF CONTENTS

1 Introduction

1.1 Thesis Statement
1.2 Contributions e e e,
1.3 Organization. i i e e e e e

2 Background & Related Work

2.1 DDoS Attacks
2.2 WhyDDoSisaHard Problem
23 DDoSDefenses
2.3.1 Location Hiding Architectures

2.3.2 Non-Location Hiding Based Defenses

3 Taxonomy of Capability Architectures

3.1 Overview e
3.1.1 NetworkModel
3.1.2 TowardsaTaxonomy
3.2 A Taxonomy of Capability Architectures
3.2.1 Traffic Classification: Decision
32.1.1 TrafficTypes e
3.2.1.2 Decision Location
32.1.3 HowtoDecide
32.14 WhentoDecide
3.2.2 Traffic Classification: Marking
3221 WhattoMark
3222 Marking Location

AN B W -

0

10
11
11
16

3.2.23 HowtoMark 30

323 Enforcement 30
3.2.3.1 Enforcement Location 30
3232 HowtoEnforce. 31
3.2.4 Capability Management: Setup 32
3241 WhattoSetup 32
3242 HowtoSetup e 32
3.2.5 Capability Management: Refresh 33
32.5.1 WhattoRefresh 34
3252 HowtoRefresh. o 34
3253 WhentoRefresh oo 34
3.2.6 Capability Management: Revocation 35
3.3 Evaluation of Proposed Implementations 35
3.3.1 Traffic Classification: Decision 37
33.1.1 TrafficTypes e 37
3.3.1.2 Decision Location 37
33.1.3 HowtoDecide 38
33.1.4 WhentoDecide 38
3.3.2 Traffic Classification: Marking 38
3.3.2.1 Marking Location 38
3322 HowtoMark 38
333 Enforcement 39
3.3.3.1 Enforcement Location 39
3332 HowtoEnforce. 39
3333 WhentoEnforce Lo 39
3.3.4 Capability Management: Setup 40

vi

3341 WhattoSetup 40

3342 HowtoSetup e 40
3.3.5 Capability Management: Refresh 40
3.4 Findings from the Taxonomy 41
3.4.1 Alternate Decision and Marking Locations 41
3.4.2 Non-Cryptographic Capabilities 42
3.4.3 Push Capabilities ToMarker 42
34.4 Locating the Enforcers 43
345 Revocation 43
3.5 DISCUSSION v vt e e e e e e e 44
4 The Epiphany Location Hiding Architecture 46
4.1 OVerviewo e e e e 46
4.1.1 Challenges in Location Hiding 46
4.1.2 Salient Features of Epiphany 48
4.1.3 A Sample Communication Process 49
4.13.1 Pre-Setup 50
4.1.3.2 Setup e e 52
4133 DataTransfer 54
4.1.4 ThreatModel 54
4.1.4.1 Attacks Against Proxies 55
4.1.4.2 Attacks from Compromised Proxies 57
4.1.43 AttacksonHiddenPaths 57
4.1.4.4 Attacks on Discovery Service 58
4.2 Epiphany Components: Proxies & Destination 58
4.2.1 Proxy Discovery Using DNS 58
422 SetupProxies 59

Vil

4.2.3 Localizing Attackers Using AnycastSPs 61

4.2.4 Further Limiting DoC Attacks 63
4.2.4.1 Assigning Rate Limits 65
4242 AuthorizingaSource oo 66
4243 AssigningDPs Lo 68
4.2.5 Requirements for the Destination Network 68
4.2.5.1 Handling Misbehaving Proxies 70
4.3 Epiphany Components: Hiddenpaths 71
4.3.1 Properties of Hidden Paths 72
4.3.2 Constructing Hidden Paths using Reverse-Multicast 73
4.3.3 Handling Loops and Failures 76
434 Securing the HiddenPaths 78
4.3.5 Identifying Misbehaving Proxies 81
4.3.6 Removing Misbehaving Proxies 84
4.3.7 Removing All Hidden Paths 85
5 Evaluation 88
5.1 Effectiveness of AnycastSPs L . 89
5.1.1 Methodology 89
5.1.2 Varying Attacker Distribution, 91
5.1.3 Varying Legitimate Client Distribution 95
5.1.4 Effects of Various SP Placement Scenarios 97
5.2 Implementation on a Router Testbed 100
5.2.1 Measuring Creation and Removal Delays 103
5.3 Implementation on PlanetLab Testbed 105
5.3.1 Methodology 105
532 RequestLossesatSPs 107

5.3.3 Setup & Data Transfer Delays 108

6 Conclusions & Future Work 113
6.1 Deployment e 113
6.1.1 Proxies 113
6.1.2 Routers 115
6.1.3 Hosts e 116
6.2 Summary e e e 117
6.3 Future Work 120

1X

AS
DoS
DDoS
DoC
DNS
DP
SP
SOS
SSM
TOR
TVA
rps
dps
RTT

TTL

LIST OF ACRONYMS

Autonomous System

Denial of Service
Distributed Denial of Service
Denial of Capabilities
Domain Name System

Data Proxy

Setup Proxy

Secure Overlay Services
Single Source Multicast

The Onion Router

Traffic Validation Architecture
Requests Per Second

Data Packets Per Second
Round Trip Time

time-to-live

LIST OF FIGURES

2.1.1 An example of a DDoS flooding attack

3.1.1 Network model of capability architectures
3.1.2 The Taxonomy of Capability Architectures

3.3.1 Evaluation of various capability architecture implementations

4.1.1 Epiphany architecture and components
412 Pre-Setupphase L
413 Setupphase
4.1.4 Data Transferphase
4.2.1 (a) Anycast SPs form distinct network regions, requests generated in a re-
gion are routed to a local SP. (b) Attackers are further confined to smaller
regions by instantiatingnewer SPs. L.
4.3.1 Example showing the construction of hidden paths
4.3.2 Epiphany message formats L.,
4.3.3 Forwarding loop in Epiphany hiddenpaths

5.1.1 Percentage attackers rendered ineffective [NV, = 0.1,1,10%; N; = 0.01%] .
5.1.2 Percentage legitimate clients unaffected by attackers [N, = 0.1,1,10%;
Ny =0.01%] e
5.1.3 Average and mode of the distance from attackers affecting legitimate clients
to the SPs [N, =0.1,1%; N; =0.01%]
5.1.4 Average and mode of number of attackers affecting legitimate clients [N, =
0.1,1%; Ny =0.01%]
5.1.5 Percentage attackers rendered ineffective [/N; = 0.01,0.1,1%; N, = 1%]

X1

5.1.6 Percentage legitimate clients unaffected by attackers [N, = 0.01,0.1,1%;

5.1.7 Percentage attackers rendered ineffective with N; = 0.01%, N, = 1%, and

with various SP placement scenarios 98
5.1.8 Percentage legitimate clients unaffected with N; = 0.01%, N, = 1%, and

with various SP placement scenarios 99
5.2.1 Experimental testbed implementation of Epiphany on cisco 2600 routers

and commodity hardware oL Lo 102
5.3.1 Percentage requests lost of a legitimate client with 1 to 10 attackers and 1 SP 107
5.3.2 Setup and data transfer times of a legitimate client with 1 SP and 1 DP and

an increasing attacker rate. A total of 15 attackers are used, while the

setup rate limit is fixed at SO0rps. 109
5.3.3 Setup and data transfer times of a legitimate client when a single proxy acts

as both SP and DP. The combined rate limit at this proxy is fixed at 50 rps.110

6.1.1 A deployment strategy for Epiphany Setup Proxies 115

Xii

Chapter 1
Introduction

As critical systems such as emergency response, industrial control systems, government
and banking systems are moving to the public Internet, they become susceptible to Dis-
tributed Denial of Service (DDoS) attacks; examples include the 2007, 2008 attacks
on government websites [27, 28] and the 2010 attacks on financial institutions [20].
A recent survey [29] also concludes that these attacks are the top-most threat to In-
ternet services. In DDoS, an adversary employs several hosts (bots) spread across
in the Internet to send large volume of traffic to a target destination in order to con-
sume its finite resources (bandwidth, CPU). As a result, the attacker prevents a num-
ber of legitimate clients from using the service. Damages range from loss of revenue,
data loss, to defamation and in some extreme cases danger to lives. Critical services
are different from regular Internet services, they can tolerate lower bandwidths, may
be willing to spend more on resources, and assume community support from Internet
service providers and users. However, by definition they must have high availability,
which becomes extremely challenging when DDoS attacks can reach 100 Gbps [29]
(up from 400Mbps in 2002). Solutions such as firewalls are ineffective under such
loads, and this is often true of commercial solutions [1, 39], which also tend to be
expensive. The research community has many proposals to defend against DDoS at-
tacks [8, 19, 21, 34, 36, 46—48], but most are not aimed at critical services and to our
knowledge none has been widely deployed in the Internet.

Critical services are often treated as a separate class of applications, assumed to
be small in number and low in bandwidth, with proposed defenses based on location

hiding principles [5,12,17,38]. The core theme around these approaches is to effectively

hide the service address so that attackers cannot target it directly. Typically the service
becomes accessible through a large number of proxies, which tend to dilute the attack.
However, given enough firepower an attacker can still overwhelm the proxy network or
portions of it to mount an effective attack.

In this dissertation, we develop a novel DDoS defense architecture called Epiphany.
Unlike previous approaches, Epiphany eliminates the need for a service network address
making it virtually impossible to attack the service directly. This is in contrast to ap-
proaches that while hiding the service location from the general public, still expose the
service address to a small set of trusted proxies. Such proxies could become a primary
target for the attacker, or worse, if compromised would expose the service address. For
instance, TOR [12,30,31] and SOS [17] have a small set of proxies that know the ser-
vice address (guard nodes in TOR [30] and secret servlets in SOS [17]), but use multiple
layers of indirection to keep them secret. While Epiphany still relies on proxies, these
are untrusted and cannot reach the service without the service allowing it. Proxies send
traffic over ephemeral hidden paths, which are created on the underlying network us-
ing a technique akin to multicast routing. The paths are under complete control of the
service and can be easily removed if a proxy misbehaves.

Proxies can still be discovered and attacked, so Epiphany uses anycast to limit proxy
access. Since anycast packets are directed to the local proxy by the underlying routing
system, an attacker is forced to have bots in the same anycast region as the clients to
attack their proxy. However, since Epiphany proxies are lightweight (explained later),
many can be quickly deployed and the anycast regions can be made smaller (down to
subnet level if needed) in an effort to isolate attackers. This dilution can not only help
legitimate clients circumvent attackers, but can make it easier to expose bots whose
activity becomes more visible.

Another feature of Epiphany is the separation of setup proxies (SP) from data proxies

(DP). Epiphany makes the SPs public, but keeps the DPs private so they are harder to
attack. A client must first request access from the service using an SP, but the service
will decide if it should authorize the client. Unlike TOR [12] where the client selects its
DP, an Epiphany DP is revealed to a new client by the service, perhaps after gaining trust.
The service further divides DPs to different levels of trust, assigning clients accordingly.
This further isolates new, yet-untrusted clients from existing trusted ones. The service
also has full control over the location of DPs, which enables physical separation based
on trust to avoid collateral damage.

Finally, in order for clients to learn about proxies, a discovery service in necessary.
But this service is often a target for the attacker. Epiphany uses the DNS for proxy
discovery, which inherits all the benefits (and disadvantages) of DNS. Typical measures
to make DNS robust apply here: multiple servers, long time-to-live (TTL) values, robust
network and hardware and so forth.

In summary, using location hiding Epiphany makes it difficult for an attacker to
pinpoint and target a protected critical service: the attacker cannot attack the service
directly since there is no network address to target. Moreover, the attacker is sand-
boxed by anycast and has to go through a trust-building process before it can attack a
service. Even so, the attack is localized to a private proxy, which can be easily and

quickly disconnected by the service, and will only affect clients currently using that

proxy.

1.1 Thesis Statement

“Our thesis is that hiding the service destination address and providing access to the
service through a large front-end of proxies that themselves do not know the destina-
tion address, and that form distinct regions in network, and that are issued differently

to distinct clients based on trust can effectively defend against large scale Distributed

Denial of Service attacks. Specifically, we make the service resilient to inside attacks
from compromised proxies by hiding the destination address from them and providing
them with a temporary path that can be removed at any time to prevent them from caus-
ing harm. We isolate and localize attackers to smaller network regions so that they are
dispersed, become easier to defend against or can be discovered and removed. We allow
the destination to issue different proxies to different clients such that an attacker cannot
easily harm the data exchange between the destination and a legitimate client. Finally,
we make proxy discovery robust by making the clients learn about a small number of
proxy addresses that remain valid for a long duration, but are associated with a large

group of ever changing proxies.”

1.2 Contributions

In this dissertation, we develop a strong location hiding architecture where not only is
the destination hidden from the sources but even the proxies do not know its address.
We show that this architecture is a viable DDoS defense solution through simulations
and experiments on two testbeds, one running on real Cisco routers and another as an

overlay on PlanetLab hosts. The specific contributions of our work are as follows:

1. Epiphany achieves strong location hiding property in which neither the proxies
nor the sources know about the destination address. Epiphany does not place trust
on the proxies or requires trusted components to operate. In order for a proxy
to reach the destination, we develop a novel hidden paths mechanism. Hidden
paths share many similarities with multicast routing, and can be implemented on
routers without sacrificing efficiency when forwarding traffic. Also, most of the
multicast functionality available on routers could be reused to implement hidden

paths. They also do not require hardware or architectural changes to routers.

2. Although IP anycast has been used to protect DNS servers from DDoS attacks,

4

to our knowledge no other location hiding architecture has applied IP anycast
to render attackers powerless. Using IP anycast in Epiphany has two benefits;
first the anycast SPs separate the attackers and dilute them (i.e., attackers can no
longer muster strength with numbers) and second, anycast SPs have a very small
address footprint so proxy discovery becomes simpler and can be made robust.
In addition, anycast SPs localize attackers to smaller regions, which could lead to
the discovery of the bots, or they can be handled using techniques such as client

puzzles [43].

. We provide a model in which the service can assign different data proxies to client
depending on how a client is trusted. This model is different from making all
proxies public and letting the client chose a proxy. We believe that making the
proxies public will allow the attacker to strategize and disable portions of the
proxies at a time to disrupt some legitimate clients. If an important legitimate
client happens to be on a targeted proxy, its communication will be disrupted.
Our approach, on the other hand, has the potential to prevents these situations.
The attacker does not know all data proxies and hence is limited to targeting setup

proxies.

. We construct a small scale Epiphany testbed using Cisco routers and prove that;
1) It is possible to completely hide the destination network by disabling route
announcements for the destination network into the global Internet. 2) Hidden
paths can be constructed out of multicast routing functions available on current
routers. Specifically, Single Source Multicast (SSM) can be used for this purpose.
3) Hidden paths can be quickly added and deleted in the order of milliseconds to
seconds respectively. Thus, new proxies could be easily added and compromised

proxies can be removed quickly once they are identified.

5. We conduct anycast SP simulations on an Internet scale topology and show that; 1)
for a small legitimate client density of 0.01%, only a 0.5% SP density is sufficient
to suppress over 93% of the attackers even when 10% of the entire network is
occupied by attackers. 2) Anycast SPs effectively localize attackers to within 3
to 4 hops of the SP, and most often there is only one attacker interfering with a
legitimate client at an SP. 3) Placing the SPs closer to the edge networks, i.e., close
to where the attacker and legitimate clients are located is the best strategy for SP
placement, while placing them so that there is at least one SP per AS is a better

strategy when there are far fewer SPs.

6. We implemented the various components of Epiphany as an overlay running on
PlanetLab [3] and prove that separating the proxies helps limit collateral damage
to legitimate clients. As a comparison, we implemented a proxy that performs
both setup and data transfer functions and show that data transfer time increases
dramatically with the attacker’s sending rate, while in the separated proxies case,

the data transfer time is independent of the attacker’s sending rate.

1.3 Organization

The rest of this thesis is organized as follows. In Chapter 2 we present background on
DDoS attacks and describe past defenses that are location hiding based and non-location
hiding based. We then develop a taxonomy of network capability architectures, which
are a new but an important approach in DDoS defense in Chapter 3. The taxonomy
helped us identify several new design directions. We apply some of these lessons to
develop the Epiphany location hiding architecture. The Epiphany architecture itself is
discussed in Chapter 4. The main components of this architecture are setup proxies, data
proxies, and hidden paths. Epiphany has many parallels with capability architectures.

For instance, hidden paths in Epiphany can be thought as non-cryptographic capabilities;

without them, proxies cannot send packets to the destination. The destination pushes
hidden paths to proxies, and the hidden paths can be explicitly town down (revoked)
at any time by the destination. We evaluate the effectiveness of Epiphany defenses
in Chapter 5. Finally, we conclude in Chapter 6 with a discussion of how to deploy

Epiphany in the Internet, and describe our future directions.

Chapter 2
Background & Related Work

In this chapter we discuss the DDoS problem in more detail and explain why it is a
difficult problem to solve in the Internet. We then summarize several prior defenses
starting with the ones most similar to Epiphany, i.e., location hiding based approaches,

and then discuss non location hiding based approaches.

2.1 DDoS Attacks

The Internet communication model is simple; a client that has requests/data to send
learns the receiver’s address, wraps the request/data in a packet, stamps the receiver’s
address on the packet and delivers it to the underlying network. The network carries
the packet through intermediate routers and eventually delivers it to the receiver. If the
network is unable to deliver the packet, it simply drops the packet. The ends are respon-
sible for detecting failures and handling them. The ends engage in a communication
protocol to inform each other to either slow down, retransmit or speed up the packet
transfer depending on how fast they can process packets and how fast the network is
able to deliver the packets. Unfortunately, this model of communication has a funda-
mental problem; the receiver has no control over the sender. The receiver can ask the
sender to slow down if it is unable to process packets fast enough, but the sender could
be a broken piece of software that does not comply to these requests. The sender may
also be a malicious adversary that is intensionally overloading the receiver. Such is the
case in DDoS attacks.

In these attacks, an attacker deliberately prevents legitimate clients from accessing

a service by targeting the service host through a distributed set of nodes. The attacker

== == legitimate traffic

=====r gttacker traffic

...
o,]
v, [
|]
“(%fij""- Yo, G
Ta,y ¥, L]
uy]
ol
] N
...I
puuRERERERE g,
g
-

@ packet drops

Figure 2.1.1: An example of a DDoS flooding attack

may consume important resources on the paths to the service, such as network band-
width, router CPU or memory, may attack the infrastructure that the service relies upon,
or target the service directly and consume its resources (CPU, memory, bandwidth)
to render the service unusable to legitimate clients. Figure 2.1.1 shows an example
of bandwidth exhaustion attack, also known as flooding attack. The attacker employs
several distributed hosts to send large volume of traffic to the target, which becomes
aggregated as it reaches the destination and causes severe congestion on some routers.
At the same time, a legitimate client may be attempting to reach the service or may
be already communicating with the service. Although the congested router will drop
the attacker traffic, without further knowledge into what flows are important/legitimate,
the router indiscriminately drops the legitimate traffic as well. The packet loss causes

serious degradation or complete disruption of the service to the legitimate client.

2.2 Why DDeosS is a Hard Problem

From the above description, one can observe that the underlying cause of DDoS is per-
haps due to the lack of distributed enforcement. Making the ends responsible for dealing
with all decisions regarding the communication presents the attacker with an opportu-
nity to misbehave. The destination may set forth any protocol rules for a sender to
follow, but the attacker will simply ignore the rules. One might argue that the network
should participate in enforcing the rules set forth by the destination, but there are several
problems associated with that approach.

First, network providers may be reluctant to modify the basic service model since it
lacks strong incentives for the operators and moreover distributed enforcement increases
overhead on the routers. The operator’s goal is to try to optimize packet deliver and but
they care less about what is being delivered. Although this attitude may be changing in
recent years due to the increasing number of DDoS attacks [29], distributed enforcement
requires cooperation among the different parties involved, which may be difficult to
achieve in the Internet.

Second, identifying bad traffic is a difficult problem on its own. Given a packet, the
network cannot easily identify if it is originating from an attacker or from a legitimate
client. There are instances in which the service might appear under attack, but in reality,
there may be a sudden surge in demand causing a large number of legitimate clients to
flock to the service and rendering it unusable (these cases are referred as flash crowds, or
slashdot effect). Moreover, the attackers may spoof their IP addresses and masquerade
as legitimate clients, i.e., the addresses used in the source IP field of packets sent by the
attacker may contain addresses of legitimate hosts. Address spoofing complicates traffic
classification and enforcement in the network, and if not done correctly, a legitimate

client could be blamed that has nothing to do with the attack.

10

2.3 DDoS Defenses

To remedy the DDoS problem, many solutions have been proposed in the literature [35,
6,8,12,15,17-19,21,22,30,31,34,36,38,42,45-48], but to the best of our knowledge,
no one solution has been widely deployed in the Internet, and moreover most solutions
are not designed with critical services in mind. We structure this discussion on DDoS
defenses around the main topic of this dissertation, i.e., location hiding, and group the

solutions as location hiding based or non location hiding based.

2.3.1 Location Hiding Architectures

Epiphany belongs in the general class of location hiding architectures [5,12,17, 18, 30,
31,38], but is more similar to TOR hidden services [12,30,31] at an abstract level. These
architectures hide the destination address from the general public and make the service
accessible only through proxies. Since the attacker cannot reach the destination directly,
he is forced to target the proxies instead. Location hiding architectures employ large
number of proxies to present a very wide target for the attacker, and also frequently vary
the active proxy set to evade the attacker.

TOR [12] provides location hidden services through an overlay based anonymiza-
tion network, while Epiphany uses the underlying network to hide the service and is not
designed to provide anonymity. In TOR, a hidden destination selects a set of TOR over-
lay nodes called introduction points and constructs secure paths to these points using
the TOR overlay nodes. The destination announces the service name and the introduc-
tion points to a TOR directory service. A source that wishes to receive service contacts
the directory service and retrieves the list of introduction points. It then picks one of
the introduction points and uses another TOR node called rendezvous point to estab-
lish connection with the destination. Note that both the source and destination do not

know about each other’s IP addresses. After this process, they exchange traffic via the

11

rendezvous point.

Conceptually, TOR introduction points and rendezvous points can be viewed as
setup and data proxies of Epiphany. However, an important distinction is that Epiphany
lets the service decide which DPs to assign to a client whereas TOR lets the client
choose the rendezvous point. Letting the client choose the DP can be disadvantageous
in Epiphany, because an attacker could exploit this and make the destination build hid-
den paths to colluding DPs and make the destination expend resources in removing those
DPs.

TOR secure paths are functionally similar to Epiphany hidden paths, but they use
strong cryptographic mechanisms to encrypt all traffic, including control traffic for con-
structing hidden paths. Each intermediate hop in the TOR secure path only knows about
its adjacent neighbors, similar to the routers in Epiphany hidden paths, which only know
about the adjacent routers on the path. However, since the secure paths in TOR are
constructed on top of end-user hosts, any node in the TOR overlay could become the
predecessor of a hidden server. Overlier et al [30] show that an attacker could game
the system and become this first hop node. Once there, the attacker could use timing
analysis to discover the hidden destination.

Epiphany does not suffer from this type of attack, since the hidden paths in Epiphany
always start at the border routers in the destination network. The attacker cannot arrange
for its nodes to become these border routers. [30] suggests using a set of trusted/preferred
overlay nodes called entry guard nodes to prevent the attacker from becoming one of
the first hop nodes. However, the attacker may discover the entry guard nodes and target
them instead. To combat this, the possible entry guard set has to be large, but making
the set large and also ensuring that they are trust-worthy is a challenging problem. The
border routers in Epiphany hidden network are trusted, but the attacker would need to

learn about them to target the service. However, since the service location is hidden, the

12

security of our system depends on how the operators keep this information secret.

TOR introduction points are vulnerable to DDoS attacks much the same way SPs
in Epiphany are vulnerable to attacks. To protect the introduction points, Valet Ser-
vice [31,32] proposes to hide them behind another layer of indirection involving large
number of valet nodes. In this approach, a client learns about a contact information
ticket that has information about a valet node and an encrypted valet token. The valet
token contains the address of the introduction point, which only the valet node can de-
crypt. To reach the service, the client contacts the valet node and asks it to forward
the request to the introduction point listed in the valet token. The valet node contacts
the introduction point on behalf of the client and the connection process completes as
before (i.e., the introduction point tells the service about the client’s rendezvous point).
Valet service gives different contact information tickets to different clients based on the
information/trust regarding a client. Attackers will need to learn about all possible con-
tact information tickets to learn about all valet nodes, and even then, they will not know
about the introduction points.

This model is very different from Epiphany’s setup model. Epiphany does not hide
the service name, nor does it make an attempt to hide the setup proxy addresses. But
rather Epiphany uses anycast to scale the SPs behind a single address and uses additional
defenses such as client puzzles to protect the connection setup process of legitimate
clients. Unlike valet services, which separates clients using different contact information
tokens, Epiphany separates clients at data level, using different data proxies.

The original TOR approach uses a central directory service to allow clients to learn
about the proxies, but the directory service is vulnerable to DDoS attacks. [31] pro-
poses to address this issue using a decentralized directory service. Unlike this approach,
Epiphany uses DNS to provide proxy discovery, but makes the discovery service re-

silient to attacks using known techniques for making DNS robust.

13

Secure Overlay Services (SOS) [17] and its generalized cousin Mayday [5] build an
overlay of proxies and designate different proxies to hold different information about
the overlay and information about the destination. All proxies are publicly accessible,
but authenticate clients before letting their traffic enter the proxy network. Once the
traffic is in, the overlay routes it to a set of proxies called beacons that are responsi-
ble for forwarding the traffic to yet another set of proxies called secret serviets. Only
the beacons know about the secret servlets, and only the servlets know about the des-
tination’s address. The servlets are ultimately responsible for forwarding the traffic to
the destination. SOS establishes a filtering perimeter around the destination and only
permits packets from these secret servlets. At any time, the attacker does not know the
identities of the servlets, and hence cannot forge packets with their IP addresses to pass
through the filtering perimeter. In addition, SOS changes the set of proxies acting as
beacons and secret servlets periodically, so that even if an attacker catches up and learns
about the servlets or targets them, the service is not rendered unavailable. Portions of the
overlay may be affected due to an ongoing attack, but the overlay recovers and works
around the failures.

Unlike SOS, Epiphany does not authenticate its clients at the proxies. We believe
distributing authentication information to all proxies presents a different set of chal-
lenges. Epiphany proxies are lightweight, i.e., they do not hold user authentication
information and hence they are more deployable. Moreover, Epiphany does not require
a filtering perimeter since it never reveals the destination’s IP address to anyone in the
network. Finally, Epiphany separates its proxies so that attacks on its SPs do not affect
clients talking to the service via the DPs. In other words, Epiphany reduces collateral
damage to a legitimate client since the attacker does not know which DP a client may
be using to access the service. If an attacker targets some proxies in SOS, clients using

those proxies will be affected. However, SOS has one benefit over Epiphany, an SOS

14

client can freely move to a different proxy if its lost to an attack. Proxy failures (such as
an SP failing) may cause brief interruptions to clients in Epiphany.

Internet Indirection Infrastructure (:3) [18,38] constructs an overlay on top of the In-
ternet and changes the current Internet model of associating an IP address (an identifier)
and with a host location. Hosts in ¢3 do not know about the IP addresses of each other,
but rather send packets to logical identifiers. A receiver specifies interest to receive
packets through these identifiers. A service that wishes to be globally visible advertises
a few public identifiers. The client learns about these identifiers and contacts the service
by sending a request to the identifier. The underlying i3 overlay delivers the request to
the actual destination, which may then gives the client a different set of private identi-
fiers for rest of the communication. An attacker in ¢3 could flood the public identifiers to
flood the service, but 73 limits such attacks using proof of work based on computational
puzzles [18]. Although 73 hides the IP addresses, an attacker may find out about the host
IP address of an ¢3 server and target it directly through the Internet.

In general, overlay based location hiding approaches such as SOS, 3 and TOR must
deal with penetration attacks in which the attacker progressively compromises a series
of nodes in the overlay to identify the destination. Ju Wang et al [41] study penetration
attacks and point out that reconfiguration, proxy depth and host diversity are important
factors in combating these attacks. Unlike overlay based approaches, Epiphany con-
structs its hidden paths on network routers, and hence is only as strong as the security
of these devices on the underlying network. Compromise of these devices would have
implications far beyond preventing access to a single service.

Network authenticated path panning (SNAPP) [33] describes a mechanism by which
hidden paths could be constructed using less state at routers. In this approach, routers
encrypt the upstream and downstream path information and encode that information in

the packets to aid packet forwarding. However, this approach requires changing the IP

15

packet structure and forwarding semantics at routers. While SNAPP can provide sender

anonymity, its main purpose is to override routing protocol decisions.

2.3.2 Non-Location Hiding Based Defenses

Epiphany also leverages some ideas from non-location hiding based approaches. Con-
tent distribution networks (CDNs) such as Akamai CDN [1] present a very wide target
for the attacker using numerous distributed replicated instances of the service to handle
large traffic volumes. In a way, they engage in an arms race against the attacker by out-
matching the attacker’s ability to consume those resources. However, replication at such
levels imposes a great amount of management overhead, and moreover, not all services
can be easily replicated. For instance, services that are geographically tied to a location,
databases holding sensitive information and so forth. Replicated instances are similar to
proxies, but are not lightweight like Epiphany.

Phalanx [13] employs a large swarm of proxies called mailboxes to aid communica-
tion between the sources and a destination. The source is not allowed to send packets
directly to the destination and any such attempts will be dropped at a filtering perimeter
around the destination. Instead, the source engages in a setup process with the destina-
tion to retrieve a cryptographically generated sequence of mailboxes and nonces it can
use to reach the destination. The source stamps each packet with the nonce and sends
it the next mailbox in the sequence. The destination also knows about the next mailbox
and the nonce and retrieves the next packet from the mailbox. Note that the destina-
tion picks up packets from the mailboxes at its own pace to avoid getting overwhelmed.
Similar to 23, the setup process in Phalanx is protected using computational puzzles.
Mailboxes do not have direct access to the destination either. The destination punches
a temporary hole in the filtering perimeter as it retrieves a packet from a mailbox and
immediately closes it so that a compromised mailbox cannot flood the destination.

Network capabilities [6,34,42,46,48] propose to fundamentally change the Internet

16

communication model. They require the sender to obtain cryptographically verifiable
tokens called capabilities from a receiver as proof of authorization to send traffic to
the receiver. The network actively participates in verifying the capabilities and treats
packets with capabilities preferentially over packets without capabilities. Using capa-
bilities, the receiver has explicit control over how much traffic the sender is allowed
to send, and who is allowed to send. Filtering bad traffic is effective, since an unap-
proved source will not have capabilities and its traffic will be dropped in the network.
Like Epiphany, capabilities have an open model, in which a source sends requests to
obtain authorization/capability from the destination. However, the attacker may flood
the request channel to prevent clients from receiving capabilities (Denial of Capabilities
attacks [7]). We describe capabilities architectures in much more detail in Chapter [?].

In addition to the above defenses, there are other DDoS defenses based on filter-
ing. In IP traceback [22, 36, 47] intermediate routers probabilistically select packets
to mark with their IP addresses so that the destination can reconstruct the paths taken
by offending traffic. The goal is that once the paths are identified, traffic filters could
be installed deeper in the network to remove offending traffic that may arrive on those
paths in the future. However, the attacker may spoof the IP address of the traffic it sends
and make it difficult to generate filtering rules to remove such traffic. Path Identifier
(Pi) [45] proposes to make traffic originating from the same network paths identifiable
using markings in the packets, but does not attempt to reconstruct the path. A destina-
tion can request its upstream routers to filter traffic based on these markings rather than
the source IP address.

In Pushback [15,21] a congested router classifies incoming traffic to identify high
bandwidth aggregates that are causing the congestion, and rate limit the aggregates to
relive congestion on the bottleneck link. Subsequently, the congested router requests its

upstream routers sending the aggregate to rate limit the traffic as well. These routers in

17

turn will push back the rate limiting request upstream until it reaches the source of the
aggregate or close to the source of the aggregate. However, pushback may incorrectly
drop legitimate traffic that is mixed with the aggregate traffic, and moreover, DDoS
attackers may be highly distributed making it difficult to identify the high aggregate
causing network paths.

AITF [8], and Stoplt [19] propose to filter offending traffic at its source network
since that is the most effective location in removing bad traffic early in the network.
In AITE, the border routers in each autonomous system on the path to the destination
add their IP addresses to packets when forwarding them. The destination uses these
addresses to identify the originating network even if the source spoofs its IP address.
Stoplt eliminates source address spoofing using a path identification mechanism [19].
In both these architectures, when the destination identifies offending traffic it requests
an agent in the source network to perform filtering. The agent in the source network
confirms if indeed a source in its own network is sending the offending traffic and fil-
ters such traffic. However, to be effective, these solutions require cooperation from the
source networks and require large scale deployment; otherwise any openings in the de-
fensive perimeter will let unwanted traffic to reach the destination. Moreover, they must
deal with fluctuating/varying attacks in which the attacker attempts to evade detection
by varying the amount of traffic, or the attacker may resume the attack once the filtering

request at the source network has expired.

18

Chapter 3
Taxonomy of Capability Architectures

Capability architectures [6, 26, 34,42, 46, 48] changed the way we perceive DDoS de-
fenses in a fundamental way. Rather than remove offending traffic after the fact, capa-
bility architectures give explicit control to the receiver in deciding and expressing what
traffic it wants to receive. They place controls throughout the Internet to treat wanted
traffic with higher priority. Traffic that is not deemed important may be rate-limited or
dropped entirely. However, despite the many point solutions, capability architectures
have not been studied rigorously to understand the tradeoffs and challenges. In this
chapter we analyze capability architectures from ground up and develop a taxonomy to
categorize existing approaches and identify new directions. We start with a brief de-
scription of the main categories of the taxonomy and describe how we arrived at them.
We then describe the categories in greater detail and evaluate several capability imple-
mentations using the taxonomy framework. Finally we discussion a few open areas
we identified through the taxonomy and motivate the need for a location hiding based

approach to protect critical services.

3.1 Overview

Network capability architectures [34, 42, 46, 48] propose fundamental changes to the
Internet service model, in that they require routers to treat packets with authorizations
(i.e., capabilities) preferentially over other traffic. In these architectures, a sender that
wants to communicate with a receiver needs to obtain an authorization from the receiver.
To get this authorization, the sender starts out by sending an initial capability request

packet to the receiver. Routers along the network path insert cryptographically generated

19

tokens into the request. The receiver gets the request and decides if it wants to grant
authorization to the sender; if so, it cryptographically synthesizes a capability from the
router tokens and returns it to the sender. Otherwise, the receiver ignores the request.
The sender includes the capability in subsequent data, until either the capability expires,
or is revoked by the receiver. The cryptographic operations on capabilities allow routers
to easily verify the authorization and give preferential treatment to such traffic.

Capabilities allow the receiver to exert fine grain control over the senders. Senders
have to be vetted initially, and misbehaving senders can be filtered by letting their capa-
bilities expire. Filtering bad senders is efficient in terms of keeping unwanted traffic off
the network, because in most cases routers near the source are likely to drop unwanted
packets. In a broad sense, capability architectures take the receiver’s choices to receive,
regulate, or reject certain traffic and ask the network to enforce such choices.

However, despite the many point solutions [34,42,46,48] in capability architectures,
there has not been a rigorous study of the entire solution space. Such a study is impor-
tant since capabilities is a new idea and adding capabilities to the Internet introduces
unexplored yet fundamental challenges and trade-offs due to the new service model;
the implications of which are not well understood. To understand these challenges and
tradeoffs, we take a fresh look at proposed capability architectures and develop a tax-
onomy. We believe that a taxonomy is necessary to expand the current understanding
of the problem and solution space in capability architectures and architectures that are
similar in essence to capabilities (for instance, 73 [18,38], SOS [17], Phalanx [13] are all
authorization based architectures similar to capabilities). The taxonomy also provides
a framework to compare various existing and future implementations of these type of
architectures. Capability architectures have significant impact on the Internet in terms
of, assimilating the new service model, changes to router hardware and end-host/router

software. Factor such as these and incremental deployment strategies must be carefully

20

@ destination
border router
(DBR)

et |

] core routers destination
sourc% @

source border
router (SBR)

Figure 3.1.1: Network model of capability architectures

studied. In developing the taxonomy and studying the solution space, we have come to

the following realizations:

e (Capabilities alone are insufficient to remedy the DDoS problem as they are sus-
ceptible to colluding attacker problem. The colluding attacker problem is studied

in [19,48]. We expand on this in Section .

e The general capabilities approach is richer than what the existing approaches sug-
gest. We identifier some new areas to explore, such as explicit revocation of au-
thorizations, pushing capabilities to a sender, marking/deciding at locations other

than the source/destination and non-cryptographic capabilities.

3.1.1 Network Model

To develop the taxonomy, we introduce a simple network model to identify various
players involved in capability architectures. Our model omits intricacies of a physical
network, but is specific enough to capture critical components of the network needed to
describe the taxonomy. Figure 3.1.1 shows the network model.

The network has several sources, some of which might be DDoS attackers, and some
are legitimate clients. We assume the legitimate clients are attempting to reach the des-
tination, while the attackers are targeting it. The source(s) and destination are connected

via routers, which could be malicious themselves. The network is distributed, i.e., dif-

21

ferent administrative authorities control different parts. For instance, the source and
destination may be controlled by users, their respective networks controlled by orga-
nizations (companies, universities, etc), and the core network is controlled by Internet
service providers (ISPs). The parties involved in distributed networks may not agree
to the same policies, and may be managed with different levels of expertise. These
properties complicate the deployment choices for capability architectures.

Our model identifies five important locations. The source and destination, as de-
scribed above. These are connected to a source border router (SBR) and a destination
border router (DBR) respectively. Without loss of generality, we assume packets from
the source and destination pass through these routers (note that a site may have multiple
border routers as with site-multihoming, but we ignore these cases to keep the model
simple). We group the rest of the network into core routers. The policies at the core and

border routers are likely different from the policies at the hosts.

3.1.2 Towards a Taxonomy

To defend DDoS attacks, capability architectures need to perform three important tasks.
First, they need to provide authorizations to packets. We refer to this task as traffic
classification in the taxonomy. Specifically, the architecture must provide mechanisms
to decide what packets are authorized and then mark those packets. Second, they need
to treat packets with authorizations preferentially at routers over packets without autho-
rizations (or that have invalid authorizations). For instance, when a router is about to run
out of resources, it may drop packets without authorizations, but allow authorized traffic
to pass. We refer to this task as enforcement. Third, capability architectures need to
coordinate the classification and enforcement processes and, to accommodate changes
in decision and sender behavior they must ensure capabilities expire and are refreshed
periodically. We refer to these tasks as management.

These three tasks form the top level categories in the taxonomy, namely. 1) Traffic

22

Table 3.1: Definitions used in the taxonomy

Term \ Definition

Wanted Traffic with valid capabilities
Unwanted | Traffic with invalid capabilities
Unclassified | Traffic without capabilities
Decision | The process of determining whether a flow is wanted or unwanted.
Marking The process of adding capability bits (given by a decider) to a packet.
Enforcement | The process of determining what forwarding action to take depend-
ing on the capability in a packet.

Setup The process of initializing capabilities in the network for a specific
source and destination.
Refresh The process of keeping the capabilities active in the network.
Revocation | Explicitly removing the capabilities issued by a decider from the
network.

Classification — defines the actions relating to decision and marking packets into dif-
ferent types. 2) Enforcement — describes the process of taking necessary forwarding
actions on packets, and 3) Capability Management — deals with setup and refreshing
capabilities in the network. The precise definitions of the terms we use in the taxonomy
are described in Table 3.1 and Figure 3.1.2 shows the resulting taxonomy.

The sub-categories in the taxonomy arise from fundamental questions such as, what,
where, how and when an action is performed. For instance, the decision process involved
in traffic classification requires understanding “what are the traffic classes?”, “where are
the decisions made?”, “how to decide if a sender is authorized?”’, and “when to decide if
authorizations are needed?”’. We use various metrics to argue about and understand the
tradeoffs an architecture designer has to make when coming up with a new capability
architecture implementation, or an architecture that is in essence similar to capabilities.
The metrics include correctness, effectiveness, incentives, deployment issues, and ef-
fect on network resources (such as bandwidth, cpu and memory). For example, when
choosing the location where decisions are made to grant capabilities, we use correct-

ness of classification as the metric. In this case, the destination has the most knowledge

23

about the resources under attack and hence decisions made at the destination are more

accurate.

3.2 A Taxonomy of Capability Architectures
We now discuss the taxonomy in more detail.

3.2.1 Traffic Classification: Decision

The first part of traffic classification process is to determine whether a flow is wanted
or unwanted. We refer to the node making such decisions as the decider. Figure 3.1.2

shows the taxonomy of the decision process under traffic classification.
3.2.1.1 Traffic Types

Capability architectures roughly divide packets into three types, those that have valid
capabilities, i.e., wanted traffic, those that have invalid capabilities, i.e., unwanted traffic,
and those that have no capabilities, or unclassified traffic. The first two categories follow
from the fact that decisions regarding a flow are either to accept (want) or reject (don’t
want) the flow. However, classifying traffic into wanted or unwanted may not always be
possible or even desirable. For instance, the decider may not have sufficient information
to accept or reject the first packet from a new client, or the decider may choose not to
classify traffic when it is not under attack. In these cases, the decider may leave the
traffic as unclassified.

By definition, all capability architecture implementations must have these three classes,
but some may have additional sub-types. For example, PATRICIA [42] defines two sub-
types called control and authorized within the wanted traffic class. We do not consider
sub-types in the taxonomy since they are mostly implementation specific. However, we
note that implementations may chose additional traffic classes in order to discern traf-

fic to different destinations. On the other hand, more traffic classes means the decider

24

" pasoq-ysnd -z
paspg-iind

Usoloy O} MOH

192104u3 > I3pI23Q T
12)IDW < JapI2ag ‘|

ysaloy 0} 81OUM

{"pasoq-ysng 'z,
i pasog-iind [}

awps deay ‘g
aspaldeq 7!
aspaiou| .:
sayqodod

Use1eY Of JOUM

sAbmly *

! ooy sepun g
! pubwaquo |
:

dnjas o} usym

saImoAIyaIy Apiqede) jo Awouoxe], Y, g 1°€ NIy

I 19d10)uz < I9pId3q
,,Ev_.ciﬁvﬁv._umn

\

T
Juswebbupw Aljigodod
t

pajw-19Y90d T}
pajwy-awil |

sayiqodo)

'
U

uoypuysaq ' s9[zznd 48a v, .. N
¥g9a m sajoOYISD s19jnoy 310D [sapjlod I0goI9 g} __________________
s19jn0y 910D | J91095 paIoys | ! ¥8s m aAypIOqDJI0D 7 ' uoyouysaq .N,”
¥gs | ..mm.___.._.ﬁoauu\, 92Inog 1 sapjjod [p207] ”, ¥8q ‘L)

uolPo07 BUBUDW

UODI0T JUBWSDIONT

SUDW Of MOH

apIoag o} MOH

9210ju3 O} MOH

" ooy sepun ¢} ooy 1spun g} " yoopysepun g | I paussooun
" pubwsaqg uo N" \\\\\\\\\\\\\\\\ ” pubwaqg uo NW \\\\\\\\\\\\\ " pubwaqg uo NW m pajuomun
| shomy ‘L |4 si930d 1] S shomy L fsmewond iyt shomy Li | A PoweM

9210JUJ O} USYM 9210ju3 O} JPYM SIOW Of {OUM opIoaq o} UsYm sadA| ool

uoisioaQ

T
UOLDDYISSOID DlOIL
t t

Juswieoloug

|
asusjeq sodaq paspg sal

25

may need to expend more resources when classifying traffic. The implementation must
weight the tradeoffs associated with the increased overhead versus the benefits gained

from adding more traffic classes.
3.2.1.2 Decision Location

Location of the decider determines sensitivity/correctness of classification. In most
cases, decisions made at the destination are more accurate, but there are other loca-
tions and factors to consider. We present a few arguments for choosing the location for

the decider.

e Correctness — Two factors influence correctness: i) knowledge of resources un-
der attack and, i1) knowledge of receiver’s policies. This knowledge is more
available closer to the destination, i.e., traffic wanted by the destination, traffic
in accordance with the destination’s network policies, and congestion informa-
tion. Specifically, the destination has most knowledge about its own policies and
its resource limits, while the destination border router () B R) knows more about
the network policies and condition of the narrow access link. These two loca-
tions make good choices for a decider, but beyond them, correctness 1s difficult to
achieve. The core network may have knowledge about congestion, but does not

know the receiver’s policies.

e Deployment Issues — Traffic classification requires installing a classifier module
at the decider. At the destination host, this may be a simple software upgrade, but
upgrading a router such as the DB R is more complex. However, deploying the
classifier on the D B R benefits multiple destinations downstream from the DB R,
whereas installing it on the destination benefits only that one host. The same

deployment issues apply when considering marking and enforcement locations.

26

e Effect on Resources — The classification process consumes cpu and memory re-
sources proportional to the number of flows reaching or transiting the decider.
Since a DBR transits traffic for multiple destinations, it needs to commit more
resources compared to a host that only needs to keep track of its own flows. These

additional constraints play a role in choosing the decider as well.
3.2.1.3 How to Decide

Deciding what traffic to accept or reject requires inputs/information at the decider. These
inputs could originate locally, entirely based on local policies, they may originate from
a distributed entity based on collaborative policies, or may originate from a third-party
system using global policies.

More specifically, in local policy based systems the decider may maintain a local
reputation value for clients, or a blacklist of misbehaving clients. Other mechanisms
include, a local intrusion detection system (IDS), CAPTCHAO:s to distinguish human
users from automated bots, client authentication, and techniques based on computational
puzzles [34] and so forth. Alternately, the decider may coordinate with a group of exter-
nal or internal nodes (including other deciders) which provide additional information in
making decisions. We call these collaborative policies. For example, the decider could
make decisions depending on input from a collaborative reputation system, or a collabo-
rated blacklist of misbehaving clients. However, in a distributed network different nodes
have different interests, so collaborative systems need to address issues with agreement,
trust and security between the participants. Finally, the decider could use a service from
a third party system to make decisions. Examples include third party reputation systems,

global blacklists of misbehaving clients and/or lists with unallocated address blocks.

27

3.2.1.4 When to Decide

An interesting question we raise in the taxonomy is when to invoke the decision process.
Although decisions can be made at all times, the process itself consumes resources (cpu,
memory), and conserving these resources might be important for some systems. In the
taxonomy, we define three possible choices 1) decide at all times, i1) decide when under
attack, and ii1) decide on demand. The later two choices reduce the overhead when
there are no ongoing attacks. However, they might raise some new challenges; for
instance, how does a decider detect an ongoing attack? How quickly can the decider
respond to attacks? Furthermore, initiating the decision process on demand requires
authentication between the decider and the requesting party, which further complicates
the overall architecture.

These three choices also apply to marking (i.e., when to mark), enforcement and

setup, but we omit the discuss in later sections since they raise similar issues.

3.2.2 Traffic Classification: Marking

The second part of the traffic classification process is to mark packets with capabilities.

Marking allows the decider to convey its decisions to the network.
3.2.2.1 What to Mark

Marking adds capability bits to packets. Although, conceptually it is possible to mark
flows, we do not consider this case in the taxonomy. Marking a flow would mean that the
same capability must be used for an unspecified number of packets, which contradicts

requirements such as periodic refresh and making a change in decision.
3.2.2.2 Marking Location

Although decisions are made closer to the destination, marking closer to the source is

more effective since it allows the network to take enforcement actions early. However,

28

in the taxonomy we consider several locations for marking and offer some insights in

choosing these locations.

e Effectiveness — Marking at the source gives the most opportunity for the network
to take enforcement actions, i.e., it enables every location from the source up to
the destination to enforce. The SBR, core and DB R may also mark packets to
achieve compliance with their own network policies. For example, an S BR may
mark on behalf of its hosts to filter certain clients from communicating with the
destination. The effectiveness of enforcement reduces as marking is moved closer

to the destination.

e Security — Although the source is the most effective location to mark, it is also the
least trustworthy location. The host software may be insecure and may be com-
promised. The attacker could use the source to flood the network after inserting
random bits and attempting to pass them as valid capabilities. This will increase
the processing overhead at the enforcers. On the other hand, the SBR, core and
the D B R may not suffer from the same security issues as the source, since router
software is much different, and moreover these are well managed compared to a

source.

e [ncentives — The source has the most incentive to mark since it wants its traffic
to reach the destination. Similarly the SBR may also mark to achieve policy
compliance or to save uplink bandwidth in case its network contains compromised
hosts (example: DSL, cable operators). Similar arguments apply to core networks,
but the operators in these networks may be hesitant to add tasks to the routers
beyond basic forwarding. We believe incentives need to be strongly considered

when choosing a marking location.

29

3.2.2.3 How to Mark

How to mark refers to the techniques used to construct, manipulate and test capabilities.
Fundamentally, a capability is a secret between the decider, marker and enforcers, and
the adversary should not be able to reconstruct/guess it easily.

A straightforward approach for constructing, manipulating and testing the capability
is to use cryptographic techniques. For example, TVA [48] uses keyed hash functions,
PATRICIA [42] uses digital signatures in request packets and PortCullis uses crypto-
graphic puzzles. We refer to them collectively as cryptographic capabilities. Alter-
nately, if any or all of the operations to construct, manipulate, and test capabilities can
be achieved without using cryptography, we refer to them as non-cryptographic tech-
niques. Cryptographic techniques may different requirements and properties; for in-
stance digital signatures require public key infrastructure (PKI), where as keyed hash
functions in TVA do not require such an infrastructure. On the other hand, capabilities
created from keyed hash functions in TVA are path dependent, while digital signatures
are path independent. Non-cryptographic techniques are hard to envision, since most
existing capability approaches utilize cryptographic techniques. We discuss this in more

detail in Section 3.4.

3.2.3 Enforcement

Enforcement takes forwarding actions depending on the capability in a packet. We refer
to the node taking the enforcing action as the enforcer. Note that enforcement actions
are taken on individual packets (and not flows), since marking attaches capabilities to

individual packets.
3.2.3.1 Enforcement Location

The enforcement location determines how quickly unwanted traffic is removed from

the network. We consider the SBR, core routers, DBR and destination for enforcement

30

location.

o Effectiveness — Removing unwanted traffic closer to the source is more effective
since it saves network resources and prevents the attacker from consuming bot-
tleneck resources in the network. In this regard, the SBR and core routers are
likely candidates, but the DBR and the destination could also enforce to ensure
unwanted traffic is entirely removed. However, removing traffic at the DBR and

the destination is not as effective as removing at the source or in the core.

e [ncentives — The source has no incentives to enforce; especially if it is compro-
mised. The SB R on the other hand has incentives to block unwanted traffic from
leaving its network, considering the source network might be paying for the net-
work service. Similarly, the DB R has more incentive to block unwanted traffic
from entering its own network to protect its hosts. Core routers have fewer in-
centives; they may save some network resources, but the complexity of doing so
might out weigh the benefits of removing traffic. However, they are an important
location nonetheless. Providing incentives for the core network is an important

problem.
3.2.3.2 How to Enforce

The forwarding action taken during enforcement could be to: 1) drop a packet, ii)forward
it, or iii) rate limit. Conceptually, enforcement starts with verifying the capabilities
inside the packet. If the verification succeeds the packet is delivered to a scheduler,
which takes further action such as forwarding it to the appropriate outgoing interface. If
verification fails, the packet is either dropped immediately or delivered to the scheduler,
which may then take further actions such as rate limit the packet (to reach a certain
target rate), or delay the packet for a short duration to send it when resources become

available, or simply drop it. Note that, although we define only three basic actions

31

here, it is possible for an architecture implementation to define additional scheduler
actions such as increasing the priority of wanted traffic, demoting a packet that failed

verification and so forth.

3.2.4 Capability Management: Setup

Setup initializes capabilities between the decider, marker and the enforcers. Figure 3.1.2
shows capability management with setup and refresh. Note that the definition of setup
in this context is different from the general definition of setting up a new connection (for
example, a TCP connection). The later may occur multiple times between a source and

a destination without requiring additional capability setups.
3.24.1 What to Setup

In the taxonomy we identify two types of capabilities: 1) time-limited, which are valid for
a specific amount of time, and ii) packet-limited, which are valid for specific number of
packets. The length/period of validity of a capability is an important tuning parameter
— a capability that is valid longer may authorize several packets, which is harmful if
an attacker gets hold of the capability. While a capability with shorter period can only
authorize fewer packets, but needs to be refreshed more often, which increases overhead.
Note that capabilities might be both time-limited and packet-limited. For example, in
TVA, capabilities are both time-limited and packet-limited, while in SIFF, capabilities
are only time-limited. Packet limited capabilities require additional state at the enforces

to keep track of the authorized packets.
3.2.4.2 How to Setup

Determining how to setup involves understanding how the decider distributes capabil-
ities to the marker and enforcers. In the taxonomy, we consider two very different

communication models for setting up capabilities: 1) Pull capabilities from the decider,

32

or ii) Push capabilities to the marker.

In the pull approach the marker requests capabilities from the decider. To do that,
it must first discover the decider (since decider could be different from the destination)
and then retrieve the capabilities. To learn about the decider the marker may for ex-
ample, query an external database such as DNS, or send a control message towards the
destination asking for the decider. Note that if the decider is the destination itself, then
the discovery process is simple since the marker already knows the destination address.
Following discovery, the markers and enforcers use architecture specific mechanisms to
retrieve capabilities. For example, in TVA the source sends an explicit capability request
packet, while the enforcers implicitly learn about the capability as part of the setup (they
generate bits of the capability token). However, prior work has shown that this type of
retrieval process is susceptible to denial of capability (DoC) attacks [7,34]. Additional
mechanisms are needed to prevent DoC attacks in the pull model [34].

In the push approach the decider pushes capabilities to the marker. However, in
order to do so, the decider must first discover the marker and enforcers associated with
a source and then transfer the capabilities to them. Similar to the pull approach, the
decider may use DNS, or control messages to learn about the marker (and enforcers), and
use architecture specific mechanisms to transfer capabilities. Unlike the pull approach,
the push approach does not suffer from DoC attacks since the source no longer needs
to ask for capabilities using unprotected request packets. To our knowledge, none of
the existing capability mechanisms use the push model to setup capabilities. We discuss

more details of the pull mechanism in Section ??.

3.2.5 Capability Management: Refresh

Authorizations issued by the decider cannot be permanent, otherwise a source with valid
authorizations may be compromised and may become a threat. To ensure continued

communication between the ends, the decider needs to refresh capabilities periodically.

33

3.2.5.1 What to Refresh

The capabilities established during setup need to be refreshed for two reasons. First, de-
cisions are not static but may change over time. For instance, a change in decision might
be triggered when a source becomes malicious. Second, the marker or the enforcers may
change as a result of path changes or node failures. To accommodate these changes the
capabilities need to be refreshed. The decider may choose to increase, decrease, or keep
the same number of capabilities at the time of refresh. A special case of decrease is
to issue no capabilities at all, which essentially terminates the authorization given to a

source. The capabilities issued during refresh may be time-limited or packet-limited.
3.2.5.2 How to Refresh

The decider could use different mechanisms to refresh capabilities; it could issue new
capabilities in each refresh cycle, or change the state associated with a capability at
routers. Specifically, if we assume each capability initially permits N packets, the de-
cider can request the routers to permit N + n packets to cause an increase, or request
N — n to decrease the number of packets permitted per capability. The capabilities can

be refreshed through a push or a pull based communication process similar to setup.
3.2.5.3 When to Refresh

Since capabilities expire after a while, they can be refreshed anytime before they expire.
However this raises two important issues: 1) the overhead involved in periodic refresh,
and 2) the maximum time before a change can take effect. These two issues are effected
by the lifetime of a capability and the duration before which a capability is refreshed.
Longer expiration periods cause slower response to decision or node changes (decider
must wait until existing capabilities expire), while shorter expiration periods increase
overhead. Alternately, if capabilities are refreshed much before they expire, changes

can take effect sooner, but it also increases overhead. In addition to these factors, the

34

decider needs to consider round trip time and message loss to determine the maximum

duration it can wait before refreshing capabilities.

3.2.6 Capability Management: Revocation

An alternative to the (soft-state) refresh mechanism is an explicit (hard-state) revocation.
Although refresh and revocation are solutions to the same problem, to our knowledge
existing capability implementations largely use the refresh mechanism. We now de-
scribe the tradeoffs involved in choosing either the refresh or the revocation mechanism
to remove capabilities from the network. Specifically, the tradeoffs we discuss include,
delay in response to changes, and overhead.

Unlike refresh, revocation responds quickly to changes since the dominant delay fac-
tor is the propagation time for the revocation message to reach the marker and enforcers.
However, to revoke capabilities the decider needs to know the markers and enforcers,
and moreover revocation requires additional messages from the decider. These two fac-
tors contribute to the overhead in revocation. On the other hand, the delay in response
to changes in refresh depends on the lifetime of a capability. Shorter lifetimes decrease
this delay, but increase management and message overhead. For example, with shorter
lifetimes, the destination needs to update the marker frequently. But the advantage of
soft-state refresh is that it does not require the decider to know about all the enforcers in

the network.

3.3 Evaluation of Proposed Implementations

Using the taxonomy framework, we compare several capability implementations and
point out key differences. Our evaluation covers SIFF [46], TVA [48], PATRICIA [42],
Fine Grained Capabilities (FGC) [26] and PORTCULLIS [34]. Figure 3.3.1 shows the

evaluation results, which points out several unexplored areas (marked in bold).

35

suonejuawedwr a1mod)ydIe A1jiqeded snoweA Jo uoneneay ¢ ¢ AN

uoneJidxs siojeg uopesidxs aiojeg uopesidxs aiojeg uonelidxs aiojeg Usaypn
uoREooASY MaU anss| MaU anss| MaU anss| MOH yseyey
awes awes doay| awes dooy| awes e
dooy ‘asealdsp ‘asealou| ‘9SE0.00p ‘asealou] ‘aseal0ep ‘asealou| | dosy ‘oseslosp ‘esealou] Jeum Juswabeue
puewaq uQ Yoeype Japun shemy yoeye Jepun shemy shemy Usypn
usnd (peuake) jind lind (padakey) ind lind lind MOH dnjes
pajwi|
pajw dwi| pajwi| swi| Josyoed ‘ol swiL pajw awiy Jeum
soee Japun puewsp uQ Soeye Japun shemy skemy Usaypn
pajuemun
pajuemun doip Ajeyeipawiw] pajuemun dosp Aepy pajuemun doip Aepy pajuemun doip Aepy doup Ajsreipawi MOH JusLWaIoUT
924nos }daoxa ||y uoneunsaq ‘¥aa 92.nos 1deoxs ||y 924nos 1deoxs ||y 904nos }daoxa ||y EYETY
sjoyoed sjexoed sjexoed sjexoed sjexoed JEITN
puewaq uo soeje Japun skemy Soeye Japun shemy skemy Usaypn
oydesboydAip (ysey)arydeiboydAin
-uoN (se|zznd)oydesboydAiy | (A ouwppwwAs)olydesboydhin ‘aInjeuBis [enBiq (ysey)oiydesboydAin (ysey)oydesboydAin MOH Bupyepy
¥gQa ‘@109 ‘¥gs 92Inog 92Inog 92In0g 92In0g 90Inog EYETIY
sjaxoed jsanbay siayoed sjaxoed sjaxoed siayoed 1Jeym
puewaq uo Soepe Japun skemjy SoENE Japun skemly skemly usym uonedlisselo
T olyjel
seol0d [eqo19 (sezznd) seonod [e00] . (sysipoelq (sysipoelq) | (seyoyde) ‘sjsipoe|q) (payoadsun) MOH jel]
aAneIOgE]|0D suonejndau) saoljod |00 saioljod [e207] sajoljod [e207] sao1jod |e207]
224nos }daoxa ||y uoneunsaq | YgS ‘Y49Q ‘uoneunsaqg uopeunsaq uoneunsaq alayp\ | uoisioeq
AWy = uonejndal yym s}exoed Je|nbay Aoeba pisioun ak
% > |oA9] 8jzznd yym sisenbay | Ny s uonendas yum syexoed pajowaq pajowaq pumun owwm._ }
3y < |9A9] 8jzznd yyum sisenbay | Xy z uoneindas yum syexoed pazuoyny ‘[01u0) 1senbay ‘Je|nbay PIUM el
paiojdxaun SITINO1H0d 094 VIOId1vd VAL

36

3.3.1 Traffic Classification: Decision

As noted in the taxonomy, the decision process involves determining whether a flow
is wanted or unwanted. We now discuss how the various capability implementations

achieve this task.
3.3.1.1 Traffic Types

The implementations define all three traffic types described in the taxonomy (albeit, with
different terminology). However, some crucial differences exist. SIFF treats all packets
without capabilities as unclassified traffic, including capability request packets which do
not have any capabilities. While all the other implementations classify request packets as
some form of wanted traffic. TVA uses fair queueing, PATRICIA uses digital signatures,
PORTCULLIS uses puzzles, and FGC uses reputation values to identify wanted request
packets. For example, PORTCULLIS treats all request packets with a puzzle solution
of difficulty greater than k as wanted traffic.

Within the wanted class, TVA, FGC and PATRICIA apply queueing algorithms to
prioritize different flows. However, as we noted in the taxonomy, the enforcers (routers)
need to expend more resources with increasing packet classes. The impact of which has

not been evaluated in the implementations.
3.3.1.2 Decision Location

The destination is the decider in all implementations, but interestingly PATRICIA in-
volves both the DBR and the SBR in the decision process. However, these nodes are
only responsible for making decisions on request packets. The SBR decides if a source
is allowed to communicate with the destination (based on its network policies), while
the DBR decides if the destination is allowed to accept requests from certain networks.
In PORTCULLIS, decisions regarding request packets are made at all location except

the source, since the request capacity is a limited resource at every link.

37

3.3.1.3 How to Decide

The implementations use local policies to make decisions. Collaborative and global
policy systems have not been considered in the current implementations. An example

of a collaborative system can be found in [24].
3.3.1.4 When to Decide

In SIFF, TVA, and FGC, the destination always decides regardless of whether it is under
attack or not. In PATRICIA, the destination only decides when it is under DDoS attack.
Similarly, in PORTCULLIS, routers require (and check) puzzles in request packets when
the destination is under attack. Deciding on demand is not considered in any of the

implementations we evaluated.

3.3.2 Traffic Classification: Marking

There a few key differences in how the implementations mark packets, which we discuss

next.
3.3.2.1 Marking Location

The implementations mark at the source, mainly due to its effectiveness. However, as
noted in the taxonomy there are other possible locations for marking which have not

been explored.
3.3.2.2 How to Mark

All implementations we evaluated use cryptographic techniques to construct, manipulate
and test capabilities. Specifically, SIFF, TVA and PATRICIA construct and test capabil-
ities piece-by-piece at each router using keyed hash functions. In FGC, the capability is

a symmetric key shared between the source and the destination. In PATRICIA, the SBR

38

marks request packets with a digital certificate, and in PORTCULLIS, the source solves

strong cryptographic puzzles and includes the solutions in request packets.

3.3.3 Enforcement
The following is the evaluation of enforcement.
3.3.3.1 Enforcement Location

Most implementations enforce at all locations except the source. FGC, on the other
hand, enforces at the destination and DBR. However, FGC requests core routers to en-
force when enforcement at the DBR and destination is alone not sufficient to thwart

attacks.
3.3.3.2 How to Enforce

Wanted traffic receives higher priority than other traffic, so it is always forwarded when
sufficient bandwidth is available. Unwanted traffic is always dropped in SIFF, but not
dropped immediately in TVA, PATRICIA and FGC (it may be dropped upon reaching
a congested link). Unwanted request packets are always dropped in PORTCULLIS.
A benefit of forwarding packets that fail to verify is that when network paths change,
the capability may become invalid at certain enforcers. If the enforcer simply drops
the packet the destination may take a while detect and recover from the error, but if
instead the enforcer forwards it, the destination may detect the problem and trigger an

immediate refresh cycle.
3.3.3.3 When to Enforce

SIFF and TVA enforce at all times, PATRICIA enforces only when the destination is un-
der attack, and FGC enforces on demand. A careful evaluation is needed to understand

the impact of these choices. We believe routers may reduce some overhead using the on

39

demand or under attack approach, but they may also allow some unwanted traffic to get

through.

3.3.4 Capability Management: Setup

We find that capability management is not well defined in most implementations. How-

ever, there are some details that set the implementations apart.
3.3.4.1 What to Setup

SIFF, FGC and PATRICIA implement time-limited capabilities. TVA implements packet-
limited capabilities. PORTCULLIS puzzles are equivalent to packet-limited capabilities
(one puzzle solution permits one request packet). Verifying packet limited capabilities

requires additional state at routers, which is an important resource to protect.
3.3.4.2 How to Setup

To setup capabilities, SIFF, TVA, PATRICIA, FGC and PORTCULLIS use the pull
model, but PATRICIA implements a two-layer pull mechanism in which the marker
requests its SBR for an initial capability (to include in request packet), and uses it to
request subsequent capabilities from the destination. PORTCULLIS also implements a
two-layer pull mechanism, but with puzzles. The puzzle solutions in the request from a
source is treated as a capability, which in turn is used to request subsequent capabilities

from the destination.

3.3.5 Capability Management: Refresh

The implementations do not provide sufficient detail in this area, but we believe they
support increasing, decreasing or keeping the same number of capabilities in a refresh
cycle. To also push new capabilities to the source to cause an increase or to keep the

same number of capabilities.

40

3.4 Findings from the Taxonomy

Although we did not uncover new open problems other than what has already been
pointed out, such as the DoC attacks [7,34], and the colluding attacker problem [42,48].
We believe there are a few missed opportunities that are worth exploring. We now

discuss these in more detail.

3.4.1 Alternate Decision and Marking Locations

Current capability architectures involve end hosts in setting up capabilities. However,
a malicious source may insert bogus capabilities, share its capabilities with others, or
steal capabilities issued to a different source. In other words, the source is the least
trustworthy location to mark packets. Similarly, a compromised host may authorize a
large volume of traffic to its network and cause harm to other hosts in the same network
(colluding attacker).

Marking Locations: Marking packets at locations other than the source may ad-
dress some of the issues with malicious hosts. For instance, if marking is done at the
source border routers, a compromised host can no longer easily steal or insert bogus
capabilities. The core routers and destination border router may also mark, but the
effectiveness is reduced as marking becomes distant from the source, and hence the op-
portunity to remove unwanted traffic much earlier in the network. Marking at the SBR
requires that the decider know about the SBR, or have some mechanism to discover the
SBR (i.e., if multiple SBR exists, the decider needs to know where to send the capabili-
ties).

Decider Locations: Although the decider location determines correctness in the
decisions made regarding a source, and decisions are more accurate at the destination,
there are several alternatives to consider including destination border router, core routers

and the source border routers. Network capabilities fundamentally distinguish between

41

wanted and unwanted traffic. An attacker, however, may be able to use colluders at
appropriate places to drive shared bottlenecks into saturation and squeeze out the target
destination’s traffic without directly attacking the destination. To address this issue TVA
proposes fair queueing all wanted traffic, but this is a fragile solution, as the attacker can
employ many colluders, effectively neutralizing the FQ controls. PATRICIA involves
the DBR in decision making, but this approach works only if the attacker is located
within the DBR’s network. An alternative is to use collaborative or global decision
systems such as multiple DBRs participating in the decision process. However such

systems are very hard to implement and deploy.

3.4.2 Non-Cryptographic Capabilities

Cryptographic capabilities are hard to guess or forge. However, they consume cpu re-
sources at both end-hosts and routers, and these resources may be critical at a few net-
work points (such as congested routers). Moreover, they may require changing the router
architecture to support the new cryptographic operations. Using non-cryptographic tech-
niques would alleviate these issues, but they must be hard to guess or forge. We sketch
a couple of examples next. One possibility is for the destination to use a state based ap-
proach in which the destination creates the capability and distributes it to key enforcers
and the source. The enforcers simply cache the capability and verify it against the one
they receive from the source (using simple matching). Another possibility is for the
capability itself to dictate the forwarding path to the destination. The decider provides
an encoded source route as the capability, and without it packets from a source cannot

reach the receiver.

3.4.3 Push Capabilities To Marker

A pull model for setting up capabilities is susceptible to DoC attacks. PORTCULLIS

provides a solution to defend against these attacks. However, an alternative is to use a

42

push model for capability setup. To sketch an example, suppose we disallow the sender
from requesting capabilities directly from the decider. Instead, the decider periodically
pushes a few initialization-capabilities to a number of trusted intermediaries, say, the
SBRs. The senders are required to obtain these initial capabilities from the SBR, so
they may send requests to the receiver and obtain additional capabilities for subsequent
traffic. The SBRs work in conjunction with the decider ensuring that offenders are not
granted initial capabilities. For instance, the SBRs could install a local blacklist. To
attack this system, the attacker may flood the SBR, but the SBR can easily detect such
attacks and isolate the compromised hosts in its own network. An intelligent attacker
may use several attack sources to consume all available initialization capabilities from an
SBR, but since the decider periodically pushes capabilities, the initialization capabilities
are restored shortly. Moreover, the SBR may now categorize these sources as offenders,
and either refuse or reduce the number of initialization capabilities granted to these

sources.

3.4.4 Locating the Enforcers

To verify capabilities the decider needs to signal enforcers. In single path networks
the enforcers are located on the path between the source and destination. However, all
current designs tie the capability to the path, which will not work in networks where the
path changes frequently (e.g., mobile networks). Thus, according to our taxonomy, the
enforcement function may have to be easily movable to address many networks. Such

ability will also be useful if there are frequent routing changes.

3.4.5 Revocation

Explicitly revoking the capabilities allows the destination to quickly cutoff clients that
turned into attackers. However, the current implementations do not explore revocation.

To see the importance of revocation, imagine the destination sending a revocation mes-

43

sage for a particular capability to the enforcers, which then temporarily maintain a state
to block packets at a very fine granularity, such as packets using that specific capability.
When the capability itself expires, the state can be removed. Our taxonomy identified

revocation as an important new direction to explore in capability architectures.

3.5 Discussion

We studied capability architectures in great detail not only to understand the problem
and solution space but also to motivate our own design. We found that capability archi-
tecture design space is generally rich and mostly complete. The two important problems
in capability architectures, i.e., the colluding attacker problem and the denial of capabil-
ities problem have been studied and solutions were proposed. However, these solutions
are not without additional constraints. For instance, fair queueing all wanted traffic to
address the colluding attacker problem (as suggested in TVA) requires additional pro-
cessing and state at routers. The state required to classify packets is proportional to the
number of flows and the router needs to process every packet to classify its flow. In
addition, the solution proposed in TVA cannot easily address the case when multiple
colluders game the system into granting more share of the resources to the attacker. The
alternative we suggested in the taxonomy to involve different decision locations (core
routers, multiple DBRs) must deal with cooperation among the parties involved. This
may be difficult to achieve given distributed entities may not always agree on a common
outcome. We believe that colluding attacks are possible because the attacker knows
where the destination is located. A location hiding based approach that completely
hides the destination address may not have this problem.

Another important issue with capability architectures is that deploying capabili-
ties requires making fundamental changes to the current Internet architecture. The

packet header must now carry a variable length capability that the routers have to verify.

44

Routers are required to perform cryptographic operations to verify the capabilities. Pro-
cessing the packets at the same line rate as current Internet routers means the routers in
capability architectures need faster CPUs or specialized processors, or in other words,
routers must be upgraded and their software and hardware architecture may need to
change. Moreover, host software and middleboxes such as proxies and home routers
must be upgraded to support the new model. Due to the number of devices that only
work with IP, deployment may become difficult.

Although our study of capability architectures has not found new open problems,
we found some new directions that are worth exploring. We applied these lessons in our
novel location hiding architecture, which we present in the next chapter. Specifically, we
prevent the colluding attacker problem by hiding the destination address. We achieve
this location hiding through non-cryptographic based hidden paths that are similar to
capabilities, i.e., if a host does not have a hidden path, it cannot send any traffic to
the destination. Our hidden paths require some software changes to the routers, but
do not change the IP packet structure or the router architecture. In addition to this we
decouple the entities marking packets from the source. In our architecture, intermediate
proxy nodes mark packets with hidden path on behalf of a source (i.e., an alternative
to marking at the source). Moreover, in our architecture the destination explicitly sets
up (i.e., pushes) hidden paths to the proxies without ever exposing its IP address to the
proxies. Finally, our architecture has both a soft state approach to remove hidden paths
as well as an explicit hidden path removal protocol to cutoff a proxy from sending any
traffic to the destination. In other words, the reaction time to cutoff a misbehaving proxy

is in the order of a round trip time.

45

Chapter 4

The Epiphany Location Hiding Archi-
tecture

In this chapter we present the Epiphany location hiding architecture. We first discuss
the challenges facing location hiding and describe Epiphany using an example commu-
nication process. We then present our attack model and discuss the various components

of Epiphany in more detail, namely the proxies, destination and hidden paths.

4.1 Overview

We start with an overview describing the challenges facing location hiding, how Epiphany

addresses those challenges and give an example of the communication process.

4.1.1 Challenges in Location Hiding

In order to effectively defend against DDoS attackers, location hiding architectures must
address a few important challenges. We outline these here so the reader can establish

the basis for why we made certain design choices in Epiphany.

e Location hiding architectures need to ensure that the destination remains hidden
despite compromised or malicious proxies. Minimizing the number of trusted
components, carefully controlling what information is released to the proxies, and
controlling how the proxies reach the destination are important factors to consider
when hiding the service location. Otherwise, once the destination’s address is out,
the attacker will circumvent the proxy layer and directly target the destination. To

avoid such potential threats, SOS [17] and Mayday [5] suggest putting a defensive

46

filtering perimeter around the destination, so that even if the destination address
is revealed to the attacker, the damaging traffic can be limited at this perimeter.
However filtering presents yet another set of challenges; for instance, the filtering

perimeter must be large enough to cover bottlenecks near the destination network.

Location hiding architectures need to make the service resilient in the face of at-
tacks on the proxies. Since the destination is no longer a direct target, the attacker
will target the proxies instead. One approach to dealing with attacks on the prox-
ies is to use a large number of proxies, and change them periodically to evade the
attacker. However, in order to quickly recruit and deploy large numbers, the prox-
ies must be lightweight, i.e., they need not require special hardware, software or
store sensitive user information. Recruiting proxies from end-hosts such as peer-
to-peer networks is one way to get them in large numbers, but they are generally

not trustworthy.

Location hiding architectures need to assign and manage proxies in such a way
that collateral damage to legitimate clients is limited. Although increasing the
number of proxies may present a very wide target for the attacker, a legitimate
client using a proxy to reach the destination may still be affected if that proxy is
attacked. In fact, the attacker may selectively target specific proxies to disable or
disrupt portions of the proxy network. The destination needs to assign and manage
proxies in such a way that collateral damage to legitimate clients is minimized in

the presence of large scale DDoS attackers.

Lastly, location hiding architectures need to have a scalable and robust discovery
mechanism for the clients to learn about the proxies. To reach the service, clients
need to learn about the proxies using the discovery mechanism. However, this

discovery service must be able to cope with frequent changes in the proxy set, and

47

moreover, it must be robust against attacks; otherwise the discovery service will

become a single point of failure for the entire system.

4.1.2 Salient Features of Epiphany

In Epiphany, we address these challenges with some simple but novel set of ideas such

an anycast and multicast routing. Epiphany has the following distinguishing features.

e Strong Location Hiding: Epiphany completely hides the destination from every-
one in the network, including the sources and the proxies. Instead, the proxies are
given revokable hidden paths to reach the destination. Therefore, there is no need
to trust any proxy or employ defensive filtering perimeters. Moreover, if a proxy
becomes compromised the destination location is not revealed to the attacker. If
the destination is able to identify the misbehaving proxy, it can cutoff the hidden
path to the proxy to prevent it from causing any collateral damage to traffic from

other proxies.

e Localize Attacks: Epiphany separates setup proxies (SPs) from data proxies (DPs),
and employs IP anycast on the SPs to create distinct network regions. Requests
generated in a region are automatically directed to the nearest local SP by the
underlying routing system. If a network region created due to an anycast SP does
not have any attacker bots, clients from that region will be unaffected by bots in
other regions, as these bots have no way of sending requests to that local SP. On
the other hand, if a region has both attackers and legitimate clients, more SPs
could be instantiated in that region to further break it down into smaller regions.
These smaller regions may in turn have no attackers, or have fewer attackers that
are easier to locate and disable. In other words, Epiphany localizes attackers using

anycast SPs.

48

o Trust Based Segregation: Although the SPs are public, the DPs are not made
public to everyone in the network. A client can send a request through an SP and
ask the destination to provide access through a DP. If the destination does not trust
the client, it will not reveal a DP to the client. On the other hand, a client that is
trusted by the destination is given access to a DP that no other client may know
about. The communication of this important client will not be affected by ongoing
attacks against the system (unless the attacker is able to determine the address of

the DP that the legitimate client is using).

e Fine-Grain Traffic Control: An authorized source in Epiphany does not have un-
restricted access to the destination. The source must comply to the destination’s
requirements for sending traffic, i.e., it must comply to a certain sending rate, oth-
erwise proxies perform rate limiting to prevent excess traffic from reaching the

destination.

e Robust Proxy Discovery: The client only needs to learn a small number of proxy
addresses due to the use of IP anycast. Moreover, these addresses have a long
life-time even thought the underlying proxies may change frequently. Epiphany
leverages existing DNS to make proxy discovery robust. Proxy discovery for DPs
involves the destination directly telling the source which DP to use, so there is no

burden of making them available on DNS.

4.1.3 A Sample Communication Process

To better understand the interaction between the components, we present an example
of the communication process between a source S and the destination D when there is
no ongoing attack. Figure 4.1.1 shows the Epiphany architecture. Here D’s address
is hidden from S and the only way to reach it is through a number of proxies. Some

proxies, designated as setup proxies (SP) are responsible for forwarding requests from

49

N Destination
N
Source Data Proxies (DP)

Figure 4.1.1: Epiphany architecture and components

the source. The source learns about these from DNS. The destination assigns a different
set of proxies called data proxies (DP) in order to communicate with the source. For ease
of exposition, we break down the communication process into three phases as shown in

Figures 4.1.2,4.1.3 and 4.1.4.
4.1.3.1 Pre-Setup

Before any source can communicate with the destination, D must first select some SPs.
We assume the destination learns of the possible SPs through some external means; for
instance, SPs may run on user machines, be available as part of a paid service, or are
setup by network operators as a service to their users. We assume that SPs have a public
anycast address in addition to their unicast address, but the latter is not made public.
Different SPs may have different anycast addresses, so the SPs will form distinct anycast
groups. Once the destination selects its SPs, it is provided with the unicast addresses of
the SPs. We assume only the destination knows about the unicast addresses of the SPs
and that these unicast addresses are safely communicated to D when it learns about the
SPs.

Note that the above assumes an instance of Epiphany that is not available to the gen-

eral user to deploy a service (although any user can access the service). While this is a

50

Figure 4.1.2: Pre-Setup phase

reasonable assumption for many critical services (they are deployed by authorized users
only), there is nothing to stop Epiphany from being used by general users to provide a
service. In this case, however, without some access controls, it becomes relatively easy
to infiltrate the SP network and enumerate the unicast address of the SPs and attack the
service, a weakness shared by other similar services such as SOS and TOR. While so-
lutions to this problem are beyond the scope of this work, we note that any solution that
works with other peer-to-peer services will also work for Epiphany.

The destination D uses the unicast addresses to build hidden paths to the SPs (Sec-
tion 4.3) and provides an identifier for the corresponding hidden path to each of the SPs.
The SPs can use this hidden path identifier to forward requests to D. The SPs are also
assigned a service-controlled request rate limit. The rate limit may depend on the aggre-
gate users the service can sustain, or be tailored to the path capacity from an SP to the
destination. Finally, D publishes the anycast SP addresses in DNS (Section 4.2.1). Note
that further adjustments to the SP population can be done dynamically and transparently
without disruptions to the service. However, we assume D has a secure channel to up-
date the DNS if changes to the SP records are necessary; for instance, D could construct

hidden paths to certain intermediary hosts that allow D to securely access the DNS.

51

SP"

SP,|[S [req(D)

op [authis)] [spr.|H., [sIsPo o Jauths) - IERH-

auth(s)}----- "' DP,

Figure 4.1.3: Setup phase

DP

4.1.3.2 Setup

Now that the destination has provided some SPs, when the source wants to access
the service, it consults DNS to get the anycast addresses associated with the service.
The source chooses an SP (if multiple anycast addresses are involved) and sends an
Epiphany request for D. The request may include identification or authentication infor-
mation about S that the destination can verify (for instance, a prior authorization token,
a reputation value, a digital certificate). Figure 4.1.3 shows this process. Upon receiving
the request, the SP looks up a local table that is indexed by D to find the hidden path
associated with D (the SP may support multiple services simultaneously). The SP veri-
fies if the request is within the rate limit; if the number of requests forwarded to D has
already reached the rate limit, the SP simply drops the request, otherwise it encapsulates
the request in an outer header with the SP’s unicast address (S P, in the figure) in the
source address field and the hidden path identifier in the destination field and sends it to
D. The network forwards the request to the destination using the hidden path identifier.
Note that we use multicast addresses as hidden path identifiers.

When the destination receives the request, it decides whether it will accept S (Sec-

52

tion 4.2.4.2). If not, D can quietly drop the request, or as an optimization notify the SP
to block future requests from that source. If the request is accepted, D chooses a DP and
constructs a hidden path to it, if such a path does not already exist. D then generates
an authorization token using the information in the request to identify S and creates an
encapsulated response that has the DP’s address and the authorization token for S. The
response additionally has a rate limit for the amount of traffic S can send to D via the
DP. The destination encrypts the response and sends it via the same SP from which it
received the request. As shown in Figure 4.1.3, the encapsulated packet’s destination
address is the SP’s real address S P, and the source field is filled with the hidden path
identifier H P,;. This way D does not have to reveal its IP address and any error mes-
sages (such as ICMP) generated inside the network can still be forwarded to D using the
hidden path. Upon receiving the response packet, the SP decapsulates it and forwards
it to the source using its own anycast address (S P,). Note that the SP does not need to
reveal its unicast address to the source since this is a stateless exchange.

After sending the response through the SP, the destination also sends a similar en-
capsulated response to the selected DP notifying it about the acceptance of S. However,
the response sent to the DP can be decrypted by the DP as well. The DP decapsulates
the response, creates a local table indexed by D that has the authorization token for S,
the hidden path identifier to reach D, and the rate limit specified by D. The DP forwards
this second response to the source.

From the responses the source learns about the DP, the authorization token, and the
rate limit and is now ready to send/receive data to/from the destination. If S does not
receive a response it can retry the request multiple times. Note that S may not receive
the response due to several reasons: the rate limit at SP may have reached, the request
may be lost in the network, the destination may have rejected the source, or the response

from the destination is lost.

33

@?DP] S |D|S |auth(s) data

S|DP,|auth(s)ack |----

HP,4|S |auth(s) do’ro§@

DP, |HP,4|S|DP,|auth(s)|ack

[Id[AUTR[Path [Rate

D [1010.[HP4 | X
| ad |

— |

Figure 4.1.4: Data Transfer phase

4.1.3.3 Data Transfer

Figure 4.1.4 shows the data transfer phase. S encapsulates the Epiphany data packet and
sends it to the DP (D P; in the figure). The data packet has the authorization token given
to S. Upon receiving the data packet, the DP decapsulates it, verifies S using the autho-
rization token and checks if the data packet is within the rate limit set by the destination.
If the checks satisfy the DP looks up the hidden path identifier to reach D, replaces the
destination address field in the packet with the hidden path identifier (H P,4), and for-
ward the data packet to the destination. If on the other hand, the verification fails or if
the packet has reached the rate limit, the DP will drop the packet. When the destination
receives the packet it too verifies the authorization token from S and checks if the rate
limit assigned to S is satisfied. If the verification succeeds, D sends acknowledgments
or data packets back to the source via the DP. Figure 4.1.4 shows the acknowledgement

messages from D to S, which go through the DP.

4.1.4 Threat Model

The problem we are addressing in this thesis is denial of service attacks from a dis-
tributed attacker against a critical service. The attacker may perpetrate the attack in

many different ways, by attacking the application/protocol weaknesses or by target-

54

ing the network infrastructure that provides the service. We do not address attacks on
application weaknesses since we assume they may be dealt by hardening the applica-
tion software, but rather we focus on preventing infrastructure level attacks, specifically
flooding attacks originating from a distributed attacker. We assume the attacker is at-
tempting to disrupt the service to an unknown set of clients. Note that if the attacker
knows the specific clients it wishes to deny service to, the attacker may directly flood
them or target their surrounding infrastructure to deny service to those clients.

Since Epiphany hides the service address, the attacker may not be able to apply di-
rected attacks on the service, but may target the Epiphany infrastructure, specifically the
proxies, discovery service and intermediate routers to deny service to legitimate clients.
We assume the attacker is aware of the destination’s strategies and any defenses placed
to counter the attacks. Some proxies may become compromised or may misbehave due
to software failures. Moreover, the attacker may employ source address spoofing on
these compromised proxies to masquerade as some other nodes to avoid detection. We
assume some routers in the network may be compromised, but that the attacker cannot
arrange for specific routers to be compromised. That is, the attacker may able to gain ac-
cess to a few routers in the network, but does not have the ability to compromise specific

routers on a certain network path.
4.1.4.1 Attacks Against Proxies

The attacker may target the SPs and DPs to deplete their resources and cause service
disruptions. First, since the SPs have public addresses that are know to everyone in the
network. The attacker may resort to brute-force flooding the SPs with large volume of
traffic to consume bandwidth resources on the network paths to the SPs. The flooding
causes legitimate requests to be dropped at congested routers. Another more effective
attack is when the attacker sends a flood of valid requests to consume the requests tokens

at SPs. In Epiphany, the SPs do not authenticate requests (they do not make decisions

55

about which sources are malicious or legitimate). So if 2 is the request rate limit at
an SP, and r,, r; are the attacker and legitimate client’s combined request rates, then
legitimate clients on average will get O(#) of the R request capacity. But, if the
attacker’s rate is much higher, i.e., r, >> 1, then legitimate clients may fail to reach the
destination in some expected duration (the duration is not more than few minutes). This
type of attack is well studied in capabilities [7, 34,48], but here we refer to it as Denial
of Connection (DoC) attack.

Second, unlike the SPs, the DPs are not exposed to everyone in the network but
rather a source must go through an approval process to learn about a DP. However, in
an open service model in which anyone can request service from the destination, the
destination may not have sufficient information about certain clients to readily decide if
they should be approved or not; for instance, a new client that is requesting access to the
destination for the first time. An aggressive policy at the destination might deny access
to such clients, while a more open policy may approve them. Some of these clients could
be malicious or part of the attacker botnet. Moreover, a previously approved client may
have become compromised. Under these circumstances, the DP is now known to the
attacker. The attacker may attempt to flood the destination through the DP, but the
DP will filter out most of the excess traffic due to the rate limit set by the destination.
However, the same DP may be used by multiple clients to reach the destination. The
attacker can flood the DP to consume its resources (or the resources on the paths to the
DP) and as a result, legitimate clients using that DP will experience a denial of service
or serious degradation of the service performance. In other words, the attacker causes
collateral damage to legitimate clients by targeting the DPs. The attacker may also game
the decision system at the destination into revealing multiple DPs in order to make the

attack more effective.

56

4.1.4.2 Attacks from Compromised Proxies

The attacker may compromise the SPs and DPs, or the proxies may become malicious
and collude with the attacker. A compromised proxy may not conform to the rate limits
set by the destination, or may attempt to recover critical information about the clients
and/or attempt to obtain the authorizations given to the clients. Through these compro-
mised proxies, the attacker may funnel large volume of traffic to flood the destination.
The attacker may also vary the attack traffic and/or the attacking proxies to avoid detec-
tion. As a result of these attacks, not only do the clients using the compromised proxies
get affected, but the flood may cause collateral damage to legitimate traffic from other

proxies.
4.1.4.3 Attacks on Hidden Paths

Since hidden paths are a critical component in Epiphany, the attacker may attempt to
hijack the hidden paths or may trick the destination into creating more hidden paths in
order to consume its resources. In Epiphany, we do not consider penetration attacks [41],
which are possible in other location hiding architectures such as SOS and TOR. In these
attacks, the attacker compromises a series of nodes along the path towards the desti-
nation to learn about its IP address. However, to achieve this attack in Epiphany, the
attacker must first compromise a proxy and subsequently compromise every router on
the path to the destination. Ju Wang et al. [41] argue that making the intermediate path
longer and employing heterogenous mix of operating system software on intermediate
nodes makes penetration attacks much more difficult. In Epiphany, the proxies could be
located farther away from the destination, and moreover Internet routers run different
software compared to hosts and they are generally well managed. Therefore we assume

these type of attacks are not possible in Epiphany.

57

4.1.4.4 Attacks on Discovery Service

The availability of proxy directory service is essential for the clients to reach the service.
Without it, clients have no way to know which proxies to use or what proxies are avail-
able at a given time. The attacker may target the directory service, in this case the DNS,
to prevent clients from learning about the SPs. Although defending DNS is outside the
scope of this work, we discuss several well known techniques to make proxy discovery

through DNS robust to such attacks in later sections.

4.2 Epiphany Components: Proxies & Destination

We now describe some of the Epiphany components in greater detail including proxy

discovery, SPs, DPs, the destination and its network.

4.2.1 Proxy Discovery Using DNS

In order to send requests to the destination the source must learn about at least one SP’s
address. We refer to this process as proxy discovery and achieve it using DNS. Assume
that the source S has a service name it is attempting to reach. The source could have
learned this name through some external means: an email, a web page (URL), or word
of mouth. In Epiphany, the service name is synonymous with D, since the destination
does not have a public IP address. To reach the destination, the source contacts the DNS
and sends a query for the service name asking it for the A (or AAAA) records. The
response contains IP addresses of nearby anycast SPs (if multiple anycast SP groups are
involved) that the source could use to reach the destination. Epiphany relies on DNS
for proxy discover mainly because it is widely available and moreover techniques to
make DNS robust against attacks can be employed to make the proxy discovery robust.
For instance, multiple redundant name servers could be employed for better availability

and the name servers themselves could use anycast to separate the attacker regions.

58

Moreover, the DNS entries for SPs can now have longer time-to-live (TTL) values to
increase availability through caching. That is, clients which have already consulted the
DNS and learned about the SP address will be able to cache the result for long periods.
Even if the DNS is temporarily unavailable due to an ongoing attack, the clients have
the cached SP address to reach the service.

A key requirement in Epiphany is that the destination be able to add/remove SPs
quickly and frequently to adapt to varying conditions, such as increase in load or in re-
sponse to attacks on the SPs. But, large scale updates and quick propagation of changes
is difficult to achieve in the DNS. However with anycast, a large number of SPs map to
one or a small number of addresses in DNS; hosts acting as SPs can change frequently,
but the DNS records can remain unchanged for long periods (i.e., the TTL values can be
set to a longer duration). Note that if the destination must change the DNS records, we
assume it has a secure path to the DNS servers to update the records, or this task may

be delegated to a third party.

4.2.2 Setup Proxies

The setup proxies are the primary contact point for a source to reach the service and
hence must have public addresses. However, the attacker may target the SPs to deny
service to legitimate clients. Approaches such as SOS [17] and Mayday [5] employ a
large number of proxies and use DNS tricks to evade the attacker (for instance, they
suggest giving different SPs to different clients based on the client’s location). More-
over, these approaches require a client to authenticate itself to a proxy to send a request.
Unlike these, Epiphany has an open service model in which any client can send a re-
quest through the SP. However, to prevent indirect flooding the destination sets limits on
the number of requests each SP is allowed to forward. Unfortunately, as we described
earlier, this makes the attack easier, because the attacker only needs to send sufficient

requests to consume the entire request token capacity at the SPs, thus denying legitimate

59

clients from being able to reach the service. Playing DNS tricks may not help, since the
attacker may enumerate all SPs using the distributed botnet and consume the request
capacity at all SPs. Increasing the number of SPs may not help either, as the combined
rate from all SPs has to remain under a threshold to prevent flooding the destination
with requests. The literature has proposals based on resource proofs to guarantee fair-
ness to legitimate clients under these conditions. For instance, PortCullis [34] suggests
using cryptographic puzzles inside request packets. However, Portcullis requires mak-
ing fundamental changes to routers (both hardware and software) in order to support
cryptographic puzzles. Our goal in Epiphany is to operate within the current Internet
infrastructure and make fewer changes to Internet components for rapid deployment.
We first outline a few important properties for the SPs and discuss our solution to

combat DoC attacks in more detail next:

e Open Access: In Epiphany, any source can send a request through an SP. The SP
does not authenticate clients. Such a model allows the SPs to be lightweight and
easy to deploy, since there is no user authentication information to store at the

SPs.

e Connectionless: A source need not establish a connection with the SP to send
requests, it simply sends a request and the SP forwards it to the destination. Con-
nectionless setup allows the SPs to change without causing service disruptions. If

an SP is removed, clients will send their requests to a different SP.

e Regionalized: Using IP anycast, the SPs form distinct regions in the network. Re-
quests generated in a region are automatically directed by the underlying routing
system to the nearest SP in that region. Therefore bots in one region cannot flood
SPs in a different region. In other words, regionalizing helps disperse bots and free
clean networks from unclean networks. Anycast has been shown to be effective

for protecting DNS root servers [23,25].

60

Figure 4.2.1: (a) Anycast SPs form distinct network regions, requests generated in a
region are routed to a local SP. (b) Attackers are further confined to smaller regions by
instantiating newer SPs.

4.2.3 Localizing Attackers Using Anycast SPs

To combat DoC attacks we propose to use Anycast SPs. RFC 4786 [4] describes anycast
as “the practice of making a Service Address available to a routing system at Anycast
Nodes in two or more discrete locations”, i.e., in the anycast model a single IP address
can have multiple points of presence in the Internet. We believe that although bots
may be present everywhere, some networks however small they may be are cleaner
than others (we borrow the definition of clean and unclean networks from [35]), i.e.,
have very few or no bots, but attackers in unclean networks can interfere with clean
networks if all SPs are reachable from any network. It is these clean networks we wish
to liberate from attackers. Using anycast, it is possible to restrict the accessibility of
an SP to within a small network region. Multiple anycast node instances form distinct
network regions. A request generated by clients in a region is automatically directed
by the underlying routing system to the nearest anycast SP in that region, thus attackers
are restricted to only targeting the SP in their own regions. If a region does not have

attackers, legitimate clients in that region are unaffected. Figure 4.2.1a shows a simple

61

example of anycast SPs. Networks that host the SPs announce a route for the SP to
neighboring networks. These networks, if not hosting an SP themselves, accept the
best possible route (depending on the routing protocol in use) from the neighbors. In
Figure 4.2.1a networks A and B announce a route for prefix a/24 to network C', which
then accepts the route from network A. When clients in network C' send requests, the
network forwards them to the anycast SP in A. Attackers in A can only flood the SP in A
but cannot prevent clients in B from reaching the destination. On the other hand, clients
in C' may not be able to reach the destination since they are using the SP in A, which
is under attack. Note that the routes for anycast SPs may be locally scoped or global as
defined in [4], i.e., a route for an anycast SP is either limited to a small network/subnet,
or announced to outside networks. For instance, an Autonomous System (AS) may have
multiple anycast SPs, some may be locally scoped so that the clients inside the AS can
use them, while some anycast SPs may be announced outside the AS for neighboring
networks to use. Scoping the anycast announcements gives more control to the network
operator on who is allowed to use an SP, and also confines failures due to attackers to a
small region.

Now, suppose the destination is able to identify a region with both attackers and le-
gitimate clients, say perhaps through an external entity, by monitoring the load on SPs,
or through explicit signaling from SPs. The destination can then instantiate more SPs
in that region to further split it into smaller regions. In the example in Figure 4.2.1,
although C' has no attackers in its own network, clients in C' may fail to reach the desti-
nation due to the attackers in A. Assuming the destination has access to a potential SP
host in C, it can instantiate a new SP in C' as shown in Figure 4.2.1b. For instance, the
destination could ask its providers for a new SP, it could reserve some SPs for later use,
or the affected network may provide D with a new SP. In Figure 4.2.1b, after adding a

new SP in C, the clients in C' are no longer affected by the attackers in A, or in other

62

words attacks are now localized to within the network A. To further dilute attackers,
the destination could add more SPs to a region to split it into more regions. Region
splitting can be applied all the way down to subnet level, at which point, clean subnets
become separated from unclean ones. We believe this sort of localization is a first step
to combating DDoS attacks. Bot activity becomes more visible and the attackers now
become a local problem for operators in unclean networks. If these networks/regions do
not take necessary measures, D can tell the SPs to block all requests from those regions.
For instance, assuming the destination is able to identify bots, it may notice that requests
from an SP all belong to bots and inform the SP to disable accepting requests by setting

its request rate limit to zero. The bots in the region are now rendered ineffective.

4.2.4 Further Limiting DoC Attacks

As a result of localization, some networks may locate and disable the bots in their net-
works, but in some cases this may not possible or easy, i.e., a region may end up with
both attackers and legitimate clients. For instance, a bot may be a DSL customer paying
for connectivity. The DSL provider cannot easily remove this bot without risking losing
the customer. Another issue is that a region cannot be made smaller due to unavailability
of SP hosts. Under these conditions, limiting the attackers using additional mechanisms
would be helpful to increase the chances for legitimate clients to reach the destination.
One approach is to filter requests based on their source IP addresses at the SPs. For
example, if the SP has sent a request for a particular host in the last x seconds, then
further requests from that source (to the same destination) are ignored. However, a bot
may spoof its IP address and masquerade as other legitimate hosts in its local network
and deplete the request resources at the SP. We sketch out two designs inspired from
existing resource proof based approaches [34, 40, 43] to limit local attackers in these
regions. An SP may implement any of them, but we assume clients can become aware

of which mechanism is in use.

63

The first approach is similar in spirit to Speak-Up [40]. Earlier we noted that legit-

L)
Tr+T]

imate clients on average get O() of the R request resources at an SP. If we make
the clients send requests at the same rate as attackers i.e., r. = 1, then there is a 50%
chance that one of them will get through to the destination. More specifically, when
a source S is unable to reach the destination in an expected amount of time, it starts
sending requests at a maximum rate allowed by its uplink capacity, i.e., the source be-
comes a request flooder for a short period of time (until it receives a response from the
destination). Even if the attacker’s aggregate rate is higher than a single client (due to
the presence of multiple bots), the client still has more chance of success than when
requesting at low rates. The problem with this approach however is that it may cause
congestion in the network due to the increased traffic from all clients. However, since
the anycast SPs restrict the requests to a small network region, we believe the conges-
tion will not propagate to deeper parts of the network where it can adversely affect the
network performance of a large number of clients.

The second approach is to employ cryptographic puzzles similar to [34,43,44]. How-
ever, our approach, although inspired from these proposals, is different in one important
aspect — only the SPs verify puzzle solutions. We do not involve intermediate routers
between the SPs and the clients in puzzle verification. This has the benefit that routers
do not need hardware or software changes and thus makes deployment easier. In this
approach, a client S starts by sending a request to the SP. If the SP is unable to forward
the request, it returns a nonce Ny to the client asking it to solve a cryptographic puz-
zle. The client chooses another nonce N, and a puzzle difficulty level [and computes
a solution z such that the last [bits of P = H(z, N,, Ny, 1) are all zeros. Here H() is
a universally known hash function. N, guarantees puzzle freshness, i.e., a client cannot
precompute puzzle solutions since it does not have N, before contacting the SP. The

SP issues different N, to different clients and keeps track of them by entering Ny in

64

a bloom filter (for easy verification). The nonce N, distinguishes the puzzle solutions
from different clients. Finding x requires the client to brute-force search 2! solution
space, which takes a random amount of time depending the puzzle difficulty level [. For
instance, with [= 2, the client needs to search 4 values of z to find a solution. Once the
client finds a solution, it sends a second request with the parameters P, N., N, [and
the solution x. The SP can easily verify the solution x by matching P sent by the client
with P = H(x, N, N, 1) computed by the SP. Note that the SP also verifies N, using
the bloom filter. The SP records the solution x along with the solution parameters so
that S cannot reuse the solution in subsequent requests. If the puzzle solution verifies,
the SP checks if the puzzle solution is above a threshold limit for that time period (can
be a second) and forwards the request to the destination. If however, the puzzle solution
does not verify or if the difficulty level is not above the threshold limit, the SP drops
the request forcing the client to retry. The client will have to retry with a greater puzzle
difficulty level than before to increase its chance of success.

Using this approach, the attacker must either compute unique puzzle solutions to
sustain an attack rate or resort to brute-force bandwidth exhaustion attacks. As we
noted earlier, the localization effect of the SPs dilutes the attacker bots. Hence, if the SP
is more provisioned than the combined bot resources in that local network, the attacker
will not succeed with brute-force attacks. On the other hand, the attacker may use the
bots to solve puzzle solutions to sustain a constant attack rate. Using this, the attacker
may not prevent legitimate clients from reaching the service, but may delay them long

enough for the users to give up on the service. We evaluate this behavior in Chapter 5.
4.2.4.1 Assigning Rate Limits

The primary reason for rate-limiting is so that if an attacker floods the SP, the flood is
throttled at the SP rather than directed at the destination. However, rate limiting also

affects how successful a client will be in reaching the destination. We outline a few

65

techniques for assigning rate limits to SPs.
Suppose the destination sets aside C). of it available bandwidth for requests. D could

assign this capacity to the SPs in several ways: 1) it may assign equal rate limits to

all SPs, i.e., if | N,,| is number of SPs, then each SP gets U\(;Y:p‘ of the capacity as the
rate-limit, or 2) D may assign different rate limits to different SPs, but the combined
rate adds up to C,., or 3) D may adapt the rate limit based on demand. In the first case,
regardless of the client population or demand, each SP is only allowed to forward a
fixed number of requests even if some SPs have no requests to forward. In this situation,
some clients may not be able to reach the destination if their SPs are heavily loaded,
while some other SPs have unused capacity. The second approach might address these
issues, but is much harder to achieve if the destination does not know ahead of time how
the clients are distributed or how the load will be distributed. The third approach allows

the destination to dynamically change the rate-limits depending on demand, but requires

addition processing overhead at the destination.
4.2.4.2 Authorizing a Source

In Epiphany, we assume the destination has policies to decide which source to authorize.
These could be based on local policies at the destination, prior authorizations given to
important clients, reputation systems, blacklists of misbehaving sources and so forth.
For example, the destination may never authorize a source that sends a malformed re-
quest or a source found in a blacklist. Reputation systems such as the one described
in [26], could be used to distinguish important clients from new clients that the desti-
nation has never seen. Once the destination decides to authorize a source, it generates
an authorization token and selects a DP to return to the source. The authorization token
is simply a random nonce given to both the source and the DP. However, the problem
is that if the destination sends this information in the clear, a compromised SP or an

intermediate node may be able to learn about the DP and steal the authorization issued

66

to the source. To address this, we assume the source, destination and DP exchange
cryptographic keys to encrypt the future packets.

We roughly sketch an example of one such mechanism, but note that different appli-
cations may employ different mechanisms. Suppose a source S has a signed reputation
value and the public key of the destination D (learned from perhaps a previous inter-
action, or may be distributed to S using some other means). The source starts out by
picking a new shared session key, and encrypts the key and the reputation value using
the public key of D. The source sends this information in a request packet. Only the
destination can decrypt and learn about the session key since it has the private key. The
destination will verify the reputation value and may generate a new signed reputation
value for S. Subsequently, the destination generates a response packet with the new rep-
utation value, the authorization token, the DP’s address, and the rate limit. However, D
encrypts the response using the session key from S and sends it via the SP. Since the SP
does not have the session key it cannot decrypt the response to learn about the DP or the
authorization token. Now, to notify the DP the destination generates another response
with S’s TP address, the session key from S, the authorization token, the new reputation
value, and the rate limit and sends it to the DP. However, the destination encrypts this
response using the DP’s public key (learned during initial configuration). The DP de-
crypts the response using its private key, learns about S, the authorization token and the
session key. For every future packet that S sends, it includes the authorization token and
encrypts the data packet using the session key. The DP has the session key to decrypt the
data packet from S and verify it using the authorization token. The DP simply matches
its version of the authorization token with the token included in the data packet. The DP
forwards the encrypted data packet to the destination. The destination may periodically

renew the authorization token given to S.

67

4.2.4.3 Assigning DPs

Inaccuracies in the decision process at the destination may cause it to incorrectly autho-
rize an attacker. For instance, a default policy at the destination might be to accept any
new client, but without sufficient knowledge, the destination may accept a new host that
belongs to the attacker’s botnet. The attacker may not be able to flood the destination
through the DP using this bot (since the DP filters out excess traffic), but may still cause
collateral damage to some other legitimate clients using that DP.

To address this issue, the destination may assign DPs based on different trust tiers
of clients. In this model, lower tier DPs are assigned to new and untrusted clients, while
higher tier DPs are reserved for trusted clients or those with a history of good behavior.
While a determined attacker can still enumerate all the lower tier DPs, this will only
affect new untrusted clients. The service can protect legitimate clients by having a pool
of low trust DPs that are expendable. For example, suppose the destination knows the
properties of a DP such as its current load, bandwidth, or trust level, it could assign
better DPs (i.e., DPs with fewer clients, DPs not heavily loaded, trusted DPs) to more
important clients while assign a fixed set of DPs to untrusted clients. This way, important
clients will be unaffected since they are on different DPs. Some new clients that are
legitimate will fail to reach the destination, but they can restart the setup process to
receive a different DP. As the destination builds more trust or reputation about a source,
it can progressively move that source to better DPs in future interactions. In addition,
the service may distribute the DPs far from each other, where there is less likelihood

that an attack on one DP will affect others.

4.2.5 Requirements for the Destination Network

The strength of location hiding architectures depends on how well the destination is kept

hidden. Otherwise, secondary defenses such as filtering rings may be necessary [13,17].

68

To achieve strong location hiding not only does the destination software needs to be
robust against accidental information leaks, but the destination network itself must have
a few important properties. Note that the properties we list below are not mandatory, but
would enhance protection for critical services.

For maximum protection the service can be placed in a separate network that does
not have any public components. To see why, consider a hidden web-server such as
www.private.fbi.gov. If the web-server is co-located with the rest of the public fbi.gov
domain, the attacker could simply target any host in fbi.gov domain to indirectly inflict
damage. Another possibility is to locate the web-server is a completely different domain.
For example, locate the www.private.fbi.gov web-server in google.com domain. Though
this might make it harder for the attacker to guess the web-server’s host domain, public
components if any present in the host domain might give away the hidden server if
they are compromised (for instance, they may discover the hidden server through local
network scans).

Another interesting step is to completely disable routing announcements for the hid-
den network into global routing space (but the routing announcements from other net-
works are still received by the hidden network). Since there are no public components
in this network, and since all communication with the destination happens explicitly
through hidden paths, the destination IP prefix is not needed to route any packets to
the destination. The access routers to the hidden network are the only ones that know
about this network. If remote management of the service is required, the destination
could have a permanent hidden path to a special remote management proxy. This allows
the operators to reach the destination without having to announce routes to the global

routing space.

69

4.2.5.1 Handling Misbehaving Proxies

The attacker could use compromised proxies to flood the destination. Although the
destination may know that it is under attack, it may not know which proxy is causing
the flood if compromised proxies employ source address spoofing. To address this,
we develop a path identifier approach similar to Pi [45] in Section 4.3.5. Briefly, this
approach gives an identifiable signature to all packets originating from the same proxy.
The destination can match the signatures and remove the hidden paths to misbehaving
proxies. We discuss the mechanism in more detail in Section 4.3.5.

Compromised SPs may attempt to steal the authorizations given to legitimate clients,
may block certain legitimate clients from reaching the destination or worse, may mas-
querade as a legitimate source and try to obtain authorization from the destination. In the
first case, we discussed a mechanism by which a client could exchange cryptographic
keys with the destination to encrypt the response packet. The SP cannot learn about the
authorization token since it does not have the keys to decrypt the message. If a com-
promised SP drops requests from a particular client, the client could retry the request
through a different anycast SP (if multiple anycast SPs are available). In the last case,
we noted that a legitimate client may include a prior authorization token or a digital
certificate in the request to identify itself to the destination. However, if neither of these
are available, a new source is limited to sending a simple request with its IP address
and a session key encrypted with the destination’s public key. A compromised SP could
become man-in-the-middle attacker and easily replace the session key with its own key
and steal the authorization (and DP address) given to this new source. However, we note
that this limitation is not unique to Epiphany alone, but is possible in other defenses such
as capability architectures. A compromised SP may also send a simple request posing
as a legitimate client (i.e., without including a prior authorization or digital certificate).

However to combat attacks, our tiered approach to assigning DPs can be used. When

70

the actual legitimate source sends a subsequent request, it will include the prior autho-
rization token or digital certificate and may receive a different higher tiered DP. Finally,
similar to the compromised SPs, compromised DPs could also block certain clients from
reaching the destination or may steal authorizations given to legitimate clients and given
them to the attackers. The attackers may use these to send bogus traffic to the desti-
nation. However, once the destination detects this behavior, it can move the legitimate
clients to a different DP. Also, we assume the client may exchange additional session

keys with the destination to protect its traffic from sniffing attacks.

4.3 Epiphany Components: Hidden paths

Hidden paths are a fundamental component of the Epiphany architecture. Unlike unicast
routing where knowing the destination’s address is sufficient to send traffic to it, hidden
paths do not reveal the location of the destination or allow anyone to send traffic to it
unless two conditions are met. First, a node must know about a hidden path address that
uniquely identifies a forwarding table entry at each intermediate hop on the path, and
second, the node must have a forwarding table entry pointing to the correct next hop
node (out of the possible set of neighboring nodes) on the path to the destination. We
call our paths hidden for this very reason, i.e., each router on the path only knows the
next router on the path, but do not where the path originated from or where it may lead
to.

Hidden paths allow the destination to control how the proxies send traffic. The
proxies may become compromised or turn malicious and may be used to attack the
destination. Under these conditions, cutting them off from sending any further traffic
is necessary. In Epiphany, the hidden path is created between the destination and a
proxy (either SP or DP). We assume all routers between the proxies and the destination

are Epiphany aware (we relax this requirement and discuss alternatives to work around

71

non-Epiphany aware routers in Section 6.1). To successfully hide the service, we now
describe a set of goals/properties we wish to achieve for the hidden paths. The actual

mechanism to construct the hidden paths is discussed later.

4.3.1 Properties of Hidden Paths

e Strong location hiding. Knowing the hidden path identifier does not divulge the
destination’s IP address or its location either implicitly or explicitly. In Epiphany,
the hidden path is an address G that the proxy stamps on packets in order to send
them to the destination. This address is different from the destination address, and

knowing it does not give away any information about the destination.

e Cannot be easily forged. Constructing hidden paths requires secured message ex-
change between the destination, intermediate routers, and a proxy. All the state
regarding the hidden path is maintained inside the network and is tied to the ad-
dress GG and a secret shared between the destination and intermediate routers. An
adversary cannot easily forge this hidden path to inject packets towards the desti-

nation.

e Path may expire or can be removed. The hidden path is created dynamically upon
the destination’s request, and expires after a time interval. The path is periodically
refreshed to keep it active. Hidden paths may also be explicitly removed upon the

destination’s request.

e FEfficient. A router does not incur any additional overhead when forwarding an

Epiphany packet on a hidden path compared to forwarding a unicast packet.

o Compatibility with IP packet structure. Hidden paths do not change the IP packet

structure and are compatible with the current IP packet forwarding mechanisms.

72

1) RJOIN to PI 3) RJOIN to P3

D-R1->R2-P1 D->R1->R3->R2-P3
R1: <G, {1}, 3> R1: <G, {1, 2}, 3>
R2: <G, {1}, 4> O R2: <G, {1,2},3>

P R3: <G, {2,1}, 3>

2) RIOIN to P2 3 P
D-oRISR25R3-P2 —T RE: <G, i1} 2>
R1: <G, {1},3> fiélb>
R2: <G, {1, 3}, 4> W= s
R3: <G, {2}, 1>

R, R

Unicast FIB

Epiphany FIB — <~ | Dest|Next Hop
Dest| {ifp} | ofp :: P, | R2(1)
G [{1,2}] 3 P, | R2(1)

() [lwo

Figure 4.3.1: Example showing the construction of hidden paths

This is an important requirement for rapid deployment unlike capability architec-

tures that change the IP packet structure and router architecture.

4.3.2 Constructing Hidden Paths using Reverse-Multicast

Our implementation of hidden paths shares many similarities with multicast routing.
In multicast, a set of receivers express interest to receiver traffic addressed to a group
address (also known as multicast address), while a sender simply sends traffic to this
address. Each router starting from the one closest to each of the receiver builds a mul-

ticast forwarding table entry towards the source. The forwarding table entry has the

73

group address, the interface on which the router will receive packets addressed to the
group address, and the interfaces on which it should send these packets towards the re-
ceivers. However, in this model, the source does not know the number of receivers or
their corresponding addresses. In addition, knowing the group address does not divulge
the location of the receivers, since to know that, one has to look at the forwarding tables
of each intermediate router on the path(s) from the source to the receivers. Each router
only has partial information about the path, i.e., the previous and next hops on the path
between the source and the receivers.

Unlike multicast, in Epiphany, we want a group of senders to send traffic towards
a single receiver whose address they do not know. We refer to our implementation as
reverse-multicast due to its similarities with multicast. For illustrative purposes, we
refer to the example shown in Figure 4.3.1 to describe the implementation. The router
functions in pseudocode are outlined in Algorithm 1.

When the destination decides to build a hidden path to a proxy P, it picks a random
IP address GG from a range of addresses. For security, the address range is chosen to be
large to avoid address collisions (different hidden destinations may randomly pick the
same address) and it cannot be used for unicast routing to keep forwarding on hidden
paths separate from unicast paths'. The destination lookups proxy P, in its unicast
forwarding table and sends an rjoin message to the next hop router R; on the path to
P,. The format of this message is shown in Figure 4.3.2. The IP header has R, in the
destination field and the source field has the address G.

When R; receives the rjoin, it looks up P; in the unicast forwarding table (Unicast-
FIB) and identifies the interface i f,; to reach ;. Note that the unicast FIB is populated

at router R; through conventional IP routing. If there is no entry for GG in R;’s Epiphany

I'To simplify address allocation, one may use multicast address space for this purpose.

74

P hgader

protoftype Auth
R |G = EPI |= rjoin P|D| TS |h, (D,P)
proto|type =
RIG = EPI |rprune PID|TS h,
protoftype = Auth
R1G |=epi purge D|Ts|h. (D,P)

Figure 4.3.2: Epiphany message formats

Forwarding Information Base (EFIB) table, it creates a new entry for G in the FF'I B
with i f,,; as one of the input interfaces and i f;,,, as the output interface, i.e., the interface
on which R, received the rjoin. Otherwise, I?; adds if,; to the already existing set of
input interfaces for G, and replaces the output interface 7 f,,; with the new interface
i fjoin- 121 forwards the rjoin towards P;. Subsequent routers on the path to P, perform
similar operations and deliver the rjoin to P, while building the hidden path in their
EFIBs. After receiving the rjoin, P; verifies it using the Auth(D, P) field and registers
an entry for D. The Auth(D, P) field contains authentication tokens exchanged between
D and P, during initial configuration. An adversary cannot establish hidden paths to
this proxy since it does not have the authentication tokens to verify the rjoin. Note
that, although we describe hidden path creation for point to point links, routers may be
connected to several other routers on a shared medium (such as Ethernet). In such case,
we assume routers have additional link level mechanisms to correctly resolve the input
and output interfaces to their corresponding previous and next hop routers.

Figure 4.3.1 shows the unicast path from D to P;, and the EFIB entries created at
each of the routers in response to the rjoin to P; (step-1). The EFIB entries create the
hidden path in the opposite direction of the unicast path, shown using a red line in the

figure. When D wishes to create hidden paths to proxies P and P, it uses the same

75

address GG and sends rjoins towards P, (step-2) and Ps (step-3). For example, when D
sends the rjoin for P, router R, appends a new input interface (iface 3) to the existing
input interface set for G. On the other hand, the rjoin for P; crosses the previous path
established for P, (Figure 4.3.1, the yellow path crosses the previously established green
path between R, and Rj), i.e., one of the input interfaces at R, (iface 3) now becomes
an output interface. Ry removes this interface from the input interface set and replaces
the previous output interface to point to 3. Note that, due to the rjoin for Fs, portions
of red and green paths are deleted and P, P; use portions of the yellow path to reach D.

Using this method of constructing hidden paths, the state required at each router is
proportional to the number of hidden destinations (one G per destination). While this
may seem state intensive, we expect the number of hidden destinations to be small, often
limited to critical services. Moreover, we expect a gradual deployment strategy with
the most important services moving to Epiphany and increasing the router resources
as more services need defense. For example, a current Internet router holds roughly
350K unicast forwarding entries. If we increase this capacity by 20% and allocate it
towards Epiphany, the router can support up to 70K hidden destinations. Note that
only the routers between the proxies and the destination need to support this increase
in forwarding state (since the hidden paths are only constructed on top of them), and
moreover no inter-domain routing protocol is needed, which is a major stumbling block
with IP multicast. We believe our proposed approach is a reasonable tradeoff to achieve

efficient packet forwarding while keeping compatibility with the IP packet structure.

4.3.3 Handling Loops and Failures

Under stable unicast routing conditions, Epiphany creates loop free hidden paths. We
prove this by contradiction. Suppose the destination constructs hidden paths to proxies
P, through P, ; and the resulting paths does not have loops (Figure 4.3.3, loop free

paths are shown in black). Now suppose the destination constructs a hidden path to F,,,

76

Figure 4.3.3: Forwarding loop in Epiphany hidden paths

but the resulting path has a forwarding loop, as shown Figure 4.3.3 with a red line. The
only way this could occur is if one router’s out interface points to the input interface of
another router on the same path. For example, in Figure 4.3.3 some router [?; points
to another router 1?5, on the path to F,,. However, since the rjoin replaces the outgoing
interface at each router it traverses, router 2, must have received an rjoin from Ry,
and 7, must have received it from R;,, which in turn must have received it from ;.
However, under stable routing conditions the rjoin for P, should have originated at the
destination and traversed a loop free path to F,,, which contradicts the the loop formation
in the forwarding state.

Although loops do not occur under stable routing conditions, they may be possible
when the rjoin coincides with unicast routing changes. Moreover, network failures may
cause the hidden paths to fail and as a result several proxies sharing a path segment
associated with the failure or loop may not be able to reach the destination. Under these
conditions, the Epiphany forwarding state at the affected routers must be removed. To

achieve this, we use a soft-state approach — after updating the EFIB in response to an

77

rjoin, each router independently sets a timer for the input interface it just added (i.e., for
EFIB.G{if,}). If no packets are received on this interface for the timeout duration,
the interface is removed from the input interface set for G. When this set becomes
empty, the entire EFIB entry for G is removed. In order to keep the state active, proxies
must send either data or keepalive messages. However, we additionally require that
in order to continue sending data or keepalives, the proxies must receive periodic rate
refresh messages (or data) from D. If no packets are received from D in the last 7.,
seconds (i.e., rate refresh interval), the proxies stop sending the keepalives (or data),
which causes the router state to expire. Note that during a failure or a loop, D does
not receive keepalives from certain proxies and it stops sending rate refreshes (or data)
to those proxies. The proxies timeout after 7,.,. seconds and stop sending keepalives.
The state at the routers times out and will be removed. Eventually when unicast routing
stabilizes, the destination can send rjoins to the affected proxies to create new hidden
paths.

In Figure 4.3.1, assuming no loops or failures occur on the unicast paths, the soft-
state approach removes unused state at routers. For example, after the rjoin for Ps,
Ry will switch its outgoing interface to 3, and R; will stop receiving traffic on input
interface 1. This interface will no longer receive any keepalive messages, and after the

timeout R, will remove it from the set of input interfaces for G.

4.3.4 Securing the Hidden Paths

If a different destination D’ sends an rjoin for a G used by a destination D, it may
usurp the hidden paths created by D. This may happen unintentionally, as both D and D’
randomly choose the same (7, or D’ may be an attacker who learned about G. In the first
case, the probability of collisions can be reduced by choosing a large address space for
G. The second case however, requires securing the hidden paths as they are constructed.

In Epiphany, we adopt a simple solution: we make sure that the first destination to send

78

an rjoin for GG claims the EFIB entry for GG at a router until it decides to relinquish it at
a later time.

Specifically, before the destination sends an rjoin for G for the first time, it creates
a hash chain {hy, ..., h,} by repeatedly hashing a secret k using a well known hash
function H, i.e., hg = H(k),hy = H(hg),...,h, = H(h,_1). Sufficiently long hash
chains can be generated offline for this purpose. The destination includes the last hash
element h,,, called the hash anchor h, in the first rjoin it sends out. Routers associate
the hash anchor h, with address GG. For every future rjoin or control messages that the
destination sends out, it includes the previous hash element to the one it recently used in
the rjoin or control message. For example, D uses h,,_; for the second rjoin it sends out.
When a router receives the message, it hashes h,,_; once to get h,, = h, and thus verifies
the message. The router can now update the hash anchor by replacing the previous h,
with h,_; to verify future messages. Note that not all routers receive every rjoin or
control message that the destination sends out, and therefore they may have an older
hash anchor. However, to verify a future message they simply have to repeatedly hash
the new element to get h, (an index into the hash chain can be sent in the message to
speed up this operation).

Now, assume the attacker learns about the hash element /,, (possibly through a com-
promised proxy). However, given h,, the attacker cannot easily generate h,_; due to
the one way property of the hash function. Therefore the attacker cannot send rjoins or
control messages with a new hash element in order to usurp the state associated with G
at routers. Although these type of attacks are not possible, the attacker may still game
the system by flooding the network with bogus rjoin messages using the hash element
h,. As noted earlier, some routers have outdated hash anchors and may accept the bo-
gus rjoin from the attacker and change the hidden path. As a result, traffic from some

of the proxies will be directed to the attacker. However, this change in the hidden path

79

is only temporary, since the attacker does not have the original hash chain. When the
destination realizes that the traffic is not arriving from some of the proxies, it will send
rjoins towards the affected proxies with a new hash anchor and the hidden path will be
updated. The destination may also proactively send the latest hash element to its proxies
and tell them to send it in keepalives (an optional part of keepalive message). Routers
can then update their anchor after verifying this new element. In the mean time, the
attacker would have collected some traffic intended for the destination, but we assume
the service uses application layer encryption to prevent the adversary from making use
of this traffic.

The attacker may also target the hidden paths in two additional ways: 1) the attacker
may send bogus rjoins/control messages with completely random hash elements, and 2)
the attacker may send several rjoins to different G's to exhaust the forwarding state at
routers. In both cases, the attacker will cause DoS attack on routers. In the first case,
routers with an EFIB entry for G will repeatedly hash the random hash element in an
attempt to verify the bogus message. However, since the hash element is completely
random, the router will take an indefinite amount of time to declare failure. The router
can limit the number of rounds it will try before declaring failure, but the attacker can
repeatedly send bogus messages to engage the router. The second case is similar, but
instead of exhausting the processing resources of the router, the attacker could exhaust
the state resources of the router. To limit this type of attack, routers could allocate a fixed
amount of the EFIB resources to each of their neighbors. When they reach the limit for
a particular neighbor, any future rjoins from that neighbor are ignored. The attacker
may flood the network with rjoins, but will end up consuming the EFIB resources at the
routers near his network; future rjoins will not propagate any farther. If the attacker just
happens to share most of the paths with D, then D may not be able to establish hidden

paths. However, since the attacker cannot precisely locate D, we believe the likelihood

80

of such an event is small. Moreover, we assume hidden networks and their surroundings

are tightly controlled by the operators to prevent such attacks.

4.3.5 Identifying Misbehaving Proxies

Hidden paths give unrestricted access to the proxies to send traffic to the destination. If
a proxy becomes malicious or gets compromised, the attacker may use it to flood the
destination. In this case, the destination will know that there is a misbehaving proxy
since it will receive packets at a rate much higher than the combined rate limits at all
proxies. For example, if the rate limit at each proxy is 1 packet per second and if there are
10 proxies, then the destination should only receive 10 packets per second; If it receives
more, it will know that there is a misbehaving proxy. However, the destination may
not necessarily know which of the proxies is sending the traffic flood. A misbehaving
proxy may spoof its IP address and masquerade the flood using different IP addresses.
Worse yet, if the misbehaving proxy learns about other proxies in the network, it may
spoof their IP addresses and fool the destination into blaming those proxies. Although
this type of scenario may be avoided to a certain degree by employing source address
filtering at the proxy access routers, we believe such a requirement is hard to achieve at
all proxies. Moreover, the destination has no way to verify if a certain network hosting
a proxy has indeed employed source address filtering.

Rather, we need a mechanism to identify packets arriving from different proxies
without relying on their source IP addresses. To this end, we adopt a solution similar to
path identifier (Pi) [45]. Piinserts a path dependent signature into the identification field
of an IP packet (IPv6 has a flow label field that could be adopted for similar purposes).
Specifically, each router on the path from the source to the destination inserts a small
portion of the signature. Therefore packets traversing the same path will have the same
signature when received at the destination. However, Pi is somewhat limited in resolving

the paths due to the limited space available in the IP identification field (16-bits); the

81

signature in Pi comes from the routers closest to the destination. With 2-bits per router
(suggested value in Pi [45]), up to 8 routers closest to the destination can insert their
signatures. In Epiphany, if a number of proxies share the same path segment, and if the
segment is longer than the field length divided by the number of P1 bits per router (i.e.,
path length > 8), the proxies may end up with the same signature. The destination will
have difficulty discerning the packets originating from these proxies. Instead, we want
to capture some bits from the routers closer to the proxy, and some bits from the routers
upstream of the destination. However, a misbehaving proxy may lie about the routers
in its own network and insert bogus signatures into the IP identification field. For these
reasons we need a slightly different algorithm than the one proposed in Pi [45].

When D sends an rjoin, it initializes a counter (i.e., sets it to 0) in the rjoin packet.
Every router on the path increments this counter and sends back an rjoin report message
with the IP addresses of the interfaces on which the rjoin is received and sent, the current
counter value, and the Pi bits it will insert into the packet. The Pi bits are a 2-bit ran-
dom nonce generated by the router (2-bits is the suggested parameter in the original Pi
approach). The destination collects the the rjoin report messages from upstream routers
and reconstructs a topology tree identifying the paths to proxies. The destination also
has a list of path identifier/signatures at reach router. Note that a compromised proxy
may generate bogus rjoin report messages for non-existent routers in its own network.
If the proxy attempts to flood the destination using these bogus report messages, D will
know about it and cutoff the proxy. For instance, D could set a limit on the total path
length it will accept as valid. If it receives more report messages than this limit, D will
cutoff the proxy.

Now that the destination has information about the upstream topology, it will decide
which of the routers in the topology should mark the packets with Pi bits. Lets suppose

that the destination is able to identify a router that has the same IP address prefix as the

82

proxy. Here, having the same prefix means that some intermediate router’s IP address
has the same initial p? bits as the address of the proxy. We denote this router as R,.
The destination could vary this prefix length to capture routers that are closest to the
proxy (i.e., in the proxy’s subnet) or routers that are farther out towards the border of
the network hosting the proxy. However a misbehaving proxy may fabricate bogus
routers near its network, i.e., router IP addresses with longer prefix p. If the destination
chooses these routers, then detecting a misbehaving proxy may become difficult since
the proxy will freely insert bogus signatures. One the other hand, if the destination
chooses routers that are farther away from the proxy; proxies in the same domain will
have the same signature. To address this, we propose to split the IP identification field
into two fields; the first m bits are set aside for routers closer to the proxy and the next
n bits for the routers upstream of D. To pick R, the destination chooses the first router
that has the largest matching prefix on the path to each proxy. That is, matching the
prefixes starting with the router closest to the destination, pick the first router that has
the largest matching prefix (say a /16 or a /24) to a proxy. The router R will insert its
Pi bits in the m bits and the routers upstream of it (towards the proxy) will insert their
P1i bits into the remainder of m bits, while the routers immediately upstream of D will
insert their Pi bits into the n bits of the IP identification field. To decrease the chance
that bogus routers from the proxy are accepted as marking routers, the destination will
use a smaller value for m (say 2 hops).

After this step, the destination generates a list of indices one for each router on the
path starting from each proxy, to indicate whether they should insert Pi bits (or not),
and if so, where in the IP identification field they should insert those bits. Routers

not selected to insert the Pi bits are given a 0 index. The destination sends this list of

2A prefix is typically denoted with the notation /p.

83

indices as a rate refresh message to the proxy. The proxy must forward this list, along
with a counter that is initialized to 0, in a keepalive message to the destination. If the
proxy lies about the information in the keepalive, D will know about it and cutoff that
proxy (D must receive the keepalive with the original index list). When each router
receives the keepalive message, it reads the counter, decrements it, and picks an index
from the list corresponding to the counter. The router associates this index with the
address GG. When a packet from a proxy arrives at each router, the routers that have an
index great than zero will insert their Pi bits into the IP identification field of the packet.
If a misbehaving proxy attempts to flood the destination using spoofed addresses, the
destination will be able to identify the proxy using the signature on the packets. Note
that in this method, if some of the m bits are from bogus routers inserted by a proxy,
then D may receive packets with different signatures. However, the signatures will have
the same n bits and some portion of the m bits (the proxy cannot arrange for this portion
to be different). In this case, the destination may need to selectively cutoff proxies with
the same matching portion of the signature. This way, D may not be able to readily find

the exact misbehaving proxy, but the proxy will be eventually removed.

4.3.6 Removing Misbehaving Proxies

If the destination decides to remove the hidden path to a proxy, it stops sending rate
refreshes causing the router state to expire. However, a misbehaving proxy may keep
the router state active by disregarding the rules for keepalives. To remove such proxies,
the destination sends an explicit rprune message towards the misbehaving proxy once it
is identified. Figure 4.3.2 shows the format of this message, and Algorithm 1 describes
the router actions. Routers upstream from the destination forward the rprune message
until it reaches the router adjacent to the proxy. This router will remove the interface
associated with the proxy from its forwarding state and stops sending any traffic from

the proxy. As a result, routers downstream will timeout and remove the hidden path.

84

In Figure 4.3.1, suppose D sends an rprune for ;. The message first reaches R,
which is on the unicast path to P;. R; verifies the message (using the hash anchor) and
forwards it to Rs. Since R; is not directly connected to Py, it does not take any action.
When R, receives the rprune, it too verifies the message and finds out that it is directly
attached to P; (R» can compare its directly attached subnets with that of the proxy’s
address). R, removes the input interface attached to P; from the set of input interfaces
for G. Any packets sent by P; will be dropped at R,. Due to this, invalid keepalives
from P; will not reach downstream routers on the hidden path, and those routers will
remove the state after timeout. In the example, 3 is the downstream router (following
the yellow) path towards the destination. Note that not only can this method be used
to remove misbehaving proxies, but it can also be used to remove misbehaving routers.
For instance, if 5 does not comply with the destination’s rprune request and the flood
from the proxy still arrives at the destination. The destination can send an rprune for Rs.
In this case R will detect that it is directly attached to 2, and remove the interface 1
from the input interface set for G. As a consequence of removing 5, the proxy Ps will
also be removed. However, this is acceptable since the misbehaving router R, would
not have allowed P; to successfully communicate with the destination any way. Note

that rprune can be use to remove the path to any misbehaving router as well.

4.3.7 Removing All Hidden Paths

Occasionally D may need to switch to a different G and remove all the hidden paths
associated with an old GG. This may be because, 1) D ran into a collision with respect
to GG after constructing hidden paths to a subset of the proxies, and 2) both a proxy and
its adjacent router are compromised and D cannot remove the hidden path to the proxy.
Although D may individually remove the hidden paths to the proxies, this process has
message overhead and may take a while to complete. Moreover, the misbehaving proxy

and its adjacent router will keep the state active at downstream routers. Therefore, to

85

remove all hidden paths D sends an explicit purge message to its upstream router. The
format of this message is shown in Figure 4.3.2, and Algorithm 1 describes the router
actions upon receiving a purge.

The purge message is addressed to the access router(s) D uses to reach the prox-
ies. However, unlike the rjoin and rprune messages, which are addresses to a proxy, the
purge message is addresses directly to GG. In Figure 4.3.1, suppose D wants to remove
all the hidden paths from the network. It sends a purge for G to its upstream router R;.
Ry consults its EFIB, verifies the message using the hash anchor, and sends the purge
upstream on all interfaces found in the input interface set of G, i.e., EFIB.G . {if,}.
R; then removes the EFIB entry associated with G. When B3 receives the PURGE, it
too verifies the message and sends the purge upstream (on the yellow path) to 5. Sub-
sequently 3 removes the state associated with G. Eventually the purge messages reach
the proxies, and they too remove the state associated with GG. Note that a misbehaving
proxy or router(s) may not remove the state, but since downstream routers no longer

have state associated with G, they drop any traffic sent to G.

86

Algorithm 1 Functions at a router for processing various messages and creating the

Epiphany forwarding table (EFIB)

function RJOIN(fjoin, G, F;, hi)
ifpi < lookupUnicastF1B(P;)
Z'waf — Z'fjoin
if exists(EFIB(G)) then
if verify(hy) then

EFIB(G){ifin} < (EFIB(G){ifin} Uifpi) — ifjoin
G)

EFIB(-ifout — ijom

/I G is already claimed
// Did D claim G?

else /I D claimed G first, create new entry for G

EFIB — (G, {ifpi},ifout)
setTimer(EFIB(G).{ifpi})
Update hash anchor h, with hy,
send RJOIN Upstream on i f;

function RPRUNE(G, P;, hy)
if exists(EFIB(G)) Averify(hy) then
i fpi — lookupUnicastF1B(P;)
if directlyAttached(P;) then
EFIB(G) {ifin} — EFIB(G){ifn} — ify
if EFIB(G){ifin} = ¢ then
EFIB(G) «— ¢
else
send RPRUNE Upstream on i f,;
Update hash anchor h, with hy,
function PURGEC(fpurge, G, hi)
if exists(EFIB(G)) Averify(hi) then
if ifpurge = EFIB(G).ifou: then
forall if; — EFIB(G){ifin} do
send PURGE Upstream on i f;
EFIB(G) <« ¢
function RECVDKEEPALIVE(G, i f;)
if exists(EFIB(G))Nif; € EFIB(G).{ifin} then
resetTimer(EFIB(G).{ifi})
function TIMEREXPIRED(G, i f;)
EFIB(G){ifin} — EFIB(G){ifn} — if;
if EFIB(G).{ifin} = ¢ then
EFIB(G) < ¢
function RECVDPACKET(G, if;)
if exists(EFIB(G))Nif; € EFIB(G).{ifin} then
resetTimer(EFIB(G).{ifi})
Forward packet on EFIB(G).i fout
else
Drop packet

// Is proxy a neighbor?

87

Chapter 5
Evaluation

In this section we evaluate the main mechanisms of Epiphany through simulations on
an Internet scale topology, implementation on a local testbed and on a PlanetLab over-
lay. While we cannot offer a complete evaluation of the effectiveness of some aspects
of Epiphany, such as reputation mechanisms, client access policies by the service and
tiered DP implementation, we evaluate the new mechanisms such as the effectiveness of
anycast in isolating clients from bots, the delay overhead involved in hidden paths and
the effectiveness of separating DPs and SPs.

A key feature in Epiphany is the anycast SP mechanism. Anycast helps dilute the
attackers and render them ineffective. In addition, the anycast SPs localizes the attacker,
thus making the source network responsible for dealing with the attackers. Moreover,
simpler techniques such as client puzzles [43] could be used to further limit the attacker.
We simulate anycast SPs on an Internet scale topology using a simple model in which
attackers, legitimate clients and SPs are placed randomly on the topology. Although
the model may not represent the actual numbers of attackers or legitimate clients or
their locations in the real Internet, it provides insight into how effective the anycast SPs
will be in rendering the attackers ineffective. The simulation also evaluates different
strategies for placing the SPs and how those strategies affect the attackers and legitimate
clients.

Another important feature in Epiphany is the ability to quickly add and remove prox-
ies to handle different scales of attacks. However, this requires quickly constructing and
removing hidden paths. We demonstrate this design feature using a simple implementa-

tion of Epiphany on Cisco routers using single source multicast (SSM) [14]. Although

88

this implementation is not the exact same mechanism by which Epiphany creates hidden
paths, it is however we envision Epiphany hidden paths to be implemented on routers.
Using this testbed we measure path setup and teardown delay and provide estimates on
what to expect when constructing/tearing down hidden paths in Epiphany. These mea-
surements are essential to understand the expected delays when adding and removing
proxies.

Finally, Epiphany separates the SPs from DPs to minimize disruptions to established
communications. Even though the attacker is targeting an SP, once a client successfully
sends a request through and establishes communication with the destination, it will not
be affected by any amount of attacks on the SPs. This approach is different from using
the same proxy for both setup and to communicate with the service. We implemented
Epiphany as an overlay running on top of PlanetLab and use this overlay to measure the

effectiveness of separating the proxies, and also to evaluate setup delays.

5.1 Effectiveness of Anycast SPs

We conduct simulations to evaluate the effectiveness of anycast SPs in isolating attack-
ers from legitimate clients on the 2011 dual Router+AS topology from CAIDA [10]. To
this end, we developed a router+AS topology simulator to study anycast SPs under: 1)
various attacker and legitimate client distributions, and 2) different scenarios for plac-
ing SPs. The simulator does not consider link capacities, because such information is

unavailable with the topology.

5.1.1 Methodology

We first preprocessed the CAIDA ITDK [10] topology data (which is contained in nodes
and links files) to obtain an undirected router graph G (V,), where V' is a set of routers

and F is the set of undirected edges. To this end, we chose the most accurate alias re-

89

solved router topology, namely midar-iff, and combined the information from the nodes
file and links file to derive a list of routers and their respective interfaces. The topology
data does not include router interfaces that connect to end hosts. Therefore we assume
any router with only one interface to be connected to end-host subnets. We converted the
IP level connectivity information provided in the links file to graph edges. For example,
if router 1 shares an IP link with routers 2, 3 and 4; we create the following graph edges:
{1-2},{1-3},{1-4},{2-3},{2-4}, {3-4}. Next, we extract the largest connected
component from the topology to form G(V, E). The resulting graph has ~ 3.3 million
routers and ~ 21 million edges.

To derive the AS level graph, we took the router to AS mapping provided in the
topology data and converted the router level graph G(V, F) to an AS level graph G'(V', E'),
where V' is a set AS nodes and E’ is the set of AS level undirected edges. We extracted
the largest connected component from this graph. The resulting AS graph has 20,115
nodes and contains 2,743,974 routers (4 AS nodes were eliminated in this process).
Some routers that are part of the router level graph were not part of the AS level graph
because they either did not have an AS mapping, or they were not part of the 20,115 AS
nodes. We pick our attackers, legitimate clients and SPs from these 2,743,974 routers,
but use the full 3.3 million router graph to compute path information. Of the 2,743,974
routers in the AS graph, 1,356,359 routers only have one interface and the remaining
1,387,615 routers have more than one interface. We denote the routers with only one
interface as edge routers, and the rest as core routers. Note that some routers may have
multiple interfaces that connect to end-host subnets (for instance, multi-homed routers).
However, since we do not have the subnet information, we treat these as core routers
in the simulation. We always choose the attackers and legitimate clients from the edge
routers, but place the SPs on either or both edge and core routers.

We model our attackers and legitimate clients in the topology using a simple ap-

90

proach; we randomly pick N,% of the edge routers and denote them as attackers, and
similarly pick ;% of edge routers and denote them as legitimate clients. Our model is
very general in that it does not consider specific distribution of actual attackers versus
legitimate clients, or their locations in the Internet. However, in the simulations we vary
the percentage of attackers, legitimate clients and SPs to study properties such as how
many attackers are rendered ineffective, how many attackers interfere with legitimate
clients, how far away are the attackers interfering with legitimate clients located from
an SP, and so forth. Finally, we randomly pick N,,% of all routers and denote them as

SPs and assign them to attackers and legitimate clients based on the following rules:

o [f there are SPs in the same AS, assign the nearest (in terms of router hops) SP to

each of the attackers and legitimate clients.

e If no SPs exist in the local AS, pick the nearest remote AS that has SPs and assign

the nearest SP in the remote AS to each of the attackers and legitimate clients.

5.1.2 Varying Attacker Distribution

We first vary the attacker distribution from N, = 0.1% to N, = 10% with a fixed legit-
imate client percentage N; = 0.01%. In other words, the simulation models attackers
that are 10, 100 and 1000 times stronger than the legitimate clients. We show the results
for various SP densities. For each data point, we run the simulation 10 times and plot
the average with error bars.

Figure 5.1.1 shows the percentage of attackers that are on SPs not used by legitimate
clients i.e., these attackers cannot aggregate their traffic to target specific SPs. If the
destination is able to detect them and tell the corresponding SPs to disable accepting
requests (as discussed in Section 4.2.3), these attackers would become ineffective and
can no longer harm legitimate clients. The graphs show that even at 0.025% SP density,

almost 50% of the attackers are neutralized regardless of the attacker distribution. How-

91

100 LI T T T T

[Co)
(@)
T

80 |
0L

60

% Ineffective Attackers

S0 0.1% Attackers ——
1% Attackers - - -
10% Attackers :--g-=

40 11 1 1 1
0.025 0.125 0.25 0.5 0.75 1.0

% Setup Proxies (out of ~2.7mil)

Figure 5.1.1: Percentage attackers rendered ineffective [N, = 0.1,1,10%; N, =
0.01%]

ever, at 0.5% SP density, about 93% of the attackers are neutralized. Increasing the SP
density to 1% only marginally improves the number of attackers rendered ineffective.
On the other hand, below 0.25% SP density, the attackers rendered ineffective starts to
quickly drop off with smaller SP densities. In other words, at 0.5% SP density only
about 7% of the attackers are interfering with the legitimate clients.

In contrast, Figure 5.1.2 shows the percentage of legitimate clients that do not have
attackers on their SPs, i.e., these are the clients that will not be affected by any attackers.
At 0.5% SP density and 0.1% attackers, nearly 63% of the legitimate clients become free
from attackers. However, at 0.5% SP density and 1% attacker distribution, only 13% of
the legitimate clients are unaffected by the attackers. Increasing the SP density improves
the percentage of unaffected legitimate clients, but only slowly. This effect is more dis-
cerning at 10% attacker distribution. In this case, the percentage of unaffected legitimate

clients starts at a meager 1% at 0.25% SP density and only increases marginally to 3%

92

80

0.1% Aftackers —— I
1% Attackers - - - -
10% Attackers :--@--=

T

70

60 |
50 |
40 t
30 |

20 +

% Unaffected Legitimate Clients

10 F R

O Lhe®r” e oo B eeeeeee e Goreesenesenen s o
0.025 0.125 0.25 0.5 0.75 1.0

% Setup Proxies (out of ~2.7mil)

Figure 5.1.2: Percentage legitimate clients unaffected by attackers [N, = 0.1, 1, 10%;
N; = 0.01%]

as more SPs are added. These numbers may seem not promising, since only a small
percentage of legitimate clients are unaffected by attackers. However note that we are
modeling a highly distributed attacker (in both N, = 1% and N, = 10%). Moreover,
our SPs are randomly placed rather than carefully planned and installed. In our model,
as the attacker distribution increases, the probability that some attackers land very near
in terms of number of hops to the legitimate clients increases. Now to separate them,
two SPs must be placed in such a way that the attacker and legitimate client are routed
to a distinct SP. When the distance between the attacker and legitimate client is greater,
there are more routers in the topology between the two nodes to randomly place SPs
so that they are separated, but as the distance becomes less, there are fewer choices and
hence requires a much higher SP density to achieve the separation. We observe this with
the 0.1% attacker distribution. At 0.25% SP density, about 50% of the legitimate clients

are unaffected by the attackers. That is because, at that density there are 5 times more

93

0.1% Attackers +—— 0.1% Attackers ——
1% Attackers » x-1 1% Attackers - x-

Avg. Attacker Distance from SP

Mode of Attacker Distance from SP

2L L L L L 2 L L L L L
0.025 0.125 0.25 0.5 0.75 1.0 0.025 0.125 0.25 0.5 0.75 1.0

% Setup Proxies (out of ~2.7mil) % Setup Proxies (out of ~2.7mil)

Figure 5.1.3: Average and mode of the distance from attackers affecting legitimate
clients to the SPs [NV, = 0.1, 1%; N; = 0.01%]

128 i i 0.1% Attackers —— | | T 1 I i [0.1% Attackers ——
X 1% Attackers ~ x-1 » * 1% Attackers - x-
w 64 F\ q 5 {
o X X '
L LN S 6t
g 32 N £
8 S <
< LS =
o
5 16 F P
[
= 2 4
Q € \
g 8F 5 !
S b= '
z z |
L)
g * g0
< Ll g .
1 b 1 1 1 1 O 1 1 1 1 1
0.025 0.125 0.25 0.5 0.75 1.0 0.025 0.125 0.25 0.5 0.75 1.0

% Setup Proxies (out of ~2.7mil) % Setup Proxies (out of ~2.7mil)

Figure 5.1.4: Average and mode of number of attackers affecting legitimate clients
[N, =0.1,1%; N; = 0.01%]

SPs than attackers and legitimate clients combined (m% ~ 5). Adding more
SPs certainly increases the percentage of unaffected legitimate clients, but only up to a
certain point. In particular, the number of unaffected legitimate clients (at 0.1% attacker
density) marginally improves from 72% to 73% going from 0.75% SP density to 1% (at
1% SP density there are 20 times more SPs than attackers and legitimate clients com-
bined). We believe at this point, most of the remaining legitimate clients are very close
to the attackers and hence separating them requires a much higher SP density.

Figure 5.1.3 shows the average and mode of the distance from the attackers that
interfere with legitimate clients to their respective SPs. As the SP density increases,

the average distance between the attackers and the SPs decreases. However, the mode

shows that most of the time the attackers are only 3 to 4 hops away from the SPs after

94

about 0.125% SP density. On the other hand, Figure 5.1.4 shows the number of attackers
that interfere with the legitimate clients at an SP. With fewer SPs, the average number of
attackers interfering with legitimate clients is very high, but as more SPs are added, this
average drops quickly. For instance, at 1% attackers and 0.5% SPs, on average there are
only 8 attackers interfering with legitimate clients, but the mode shows that in most SP
regions, there is only one attacker interfering with legitimate clients.

In summary, regardless of the attacker distribution, with a small legitimate client
density of 0.01% and an SP density of 0.5%, over 93% of attackers are are neutralized.
Moreover, at that SP density, most often there is only one attacker affecting a legiti-
mate client, and this attacker is only 3 to 4 hops away from the SP. In other words,
the SPs effectively localize the attackers to a single subnet which is often very close
to the SP. These results suggest that the anycast SPs make the techniques to locate at-
tackers simpler, since there are far fewer attackers to find and they could be found in a
smaller network radius. Moreover the additional techniques to further limit the attackers

discussed in Section 4.2.4 could be employed effectively.

5.1.3 Varying Legitimate Client Distribution

We now hold the attackers at 1% and vary the legitimate client distribution from 0.01%
to 1%. That is, the legitimate clients are 10 to 100 times smaller than the attackers, and
equal to the number of attackers. Again, we conducted the simulation 10 times for each
data point and show the average with error bars. The results are shown for increasing
SP densities.

Figure 5.1.5 shows the percentage of attackers rendered ineffective at different le-
gitimate client distributions. As the legitimate client density increases, the percentage
of attackers rendered ineffective for a given SP density also decreases. Because now,
with the increased number of legitimate clients, the likelihood that clients end up in at-

tacker regions increases, thus fewer attackers become ineffective. For instance, when

95

100 — l l T
90
80
70

H -

60 0.01% Legits +——
50 - 0.1% LegitS e
40 + i |
30 |
20 — T

10 Iy I |

% Ineffective Attackers

0 leE
0.025 0.125 0.25 0.5 0.75 1.0

% Setup Proxies (out of ~2.7mil)

Figure 5.1.5: Percentage attackers rendered ineffective [NV, = 0.01,0.1, 1%; N, = 1%]

the legitimate clients and attackers are both 1%, the probability that they end up closely
located to each other increases and may end up being routed to the same SP. As ex-
plained earlier, separating the attackers from legitimate clients when they are closely
located requires higher SP densities. Figure 5.1.6 shows the percentage of legitimate
clients that are unaffected by attackers. Here, the percentage of legitimate clients unaf-
fected remains mostly similar across different legitimate client distributions for a given
SP, attacker distribution. For example, at 0.5% SP density approximately 15% of the
legitimate clients are separated from attackers. As the SP density is increased, more
legitimate clients become separated from attackers. This is because, at a given attacker
distribution, as more clients are randomly chosen, some of them may land very close to
attackers (a real world analogy is that they come from unclean networks) while some
land in SP regions without attackers (analogous to clean networks).

In summary when the attackers and legitimate clients are equally and heavy dis-

96

35

0101%ILeg|tS ;_I+_q] T

g 30 t 0.1% Legits «-x--
2 1% Legits @
@)
= 25 [(el
g‘..._.,.--_- """"
= 20 .
o .
@
— ke
I5 15 i ,_:.:.5"'- 1
3]
8 10 -
% i ol ,.r"rr i
[-
D 5 | v.v"’d‘, |
N p

0 1 1 i 1

0.025 0.125 0.25 0.5 0.75 1.0

% Setup Proxies (out of ~2.7mil)

Figure 5.1.6: Percentage legitimate clients unaffected by attackers [N, = 0.01, 0.1, 1%;
N, = 1%]

tributed, separating them requires a much higher SP density. For example, when N, =
1% and N; = 18, even at 1% SP density only 25% of the attackers are rendered ineffec-

tive and similarly only 25% of the legitimate clients are unaffected by attackers.

5.1.4 Effects of Various SP Placement Scenarios

Through this next set of simulations, we wish gain some insight into different strategies
for placing SPs. The scenarios are based on choices a critical service provider might
face and/or depending on the availability of SPs. /-SP-Per-AS examines the case when
a critical service provider wants to establish regions based on AS boundaries, i.e., /-SP-
Per-AS attempts to place at least one SP in each AS, but if there are fewer SPs (than the
AS nodes) they are placed at random AS nodes. SPs at the Core examines the case when
SPs are operated by Internet Service Providers (ISPs) or site admins, i.e., in this method,

SPs are placed at random core routers. Edge examines deploying SPs at the edges, on

97

100

90

80
70
60
50

Core +—— ||

o Edge + x-1
30 | i Edge+Core «-*--+ |-
1SP-per-AS @

40

% Ineffective Attackers

20 11 1 1 1
0.025 0.125 0.25 0.5 0.75 1.0

% Setup Proxies (out of ~2.7mil)

Figure 5.1.7: Percentage attackers rendered ineffective with NV, = 0.01%, N, = 1%,
and with various SP placement scenarios

perhaps end user machines. Finally, Edge+Core examines a general case in which the
service provider has access to some SPs at the edge and some at the core across different
AS nodes.

Figure 5.1.7 shows the percentage of attacker rendered ineffective, while Figure 5.1.8
shows the percentage of unaffected legitimate clients when V; = 0.01%, and N, = 1%.
From the various SP placement strategies, placing the SPs on edge routers provides
better separation of attackers and legitimate clients. For instance, at 0.5% SP density,
the edge only approach rendered 93% attackers ineffective, while Core, Edge+Core and
1SP-Per-AS rendered 95%, 89% and 50% attackers ineffective. As we mentioned ear-
lier, separating the attackers from legitimate clients requires placing SPs in a way that
they use distinct SPs. In Edge, this is more likely because an SP may land on the same
edge router as an attacker or a client. In contrast, in the Core only placement scenario,

an SP is not placed on the same edge router as an attacker or a legitimate client and

98

45

40

35

30
0.05 0.1 0.15 0.2 0.25 oI

20 e

15 | I Tt

10 } e - I— 0

5t g h

0 N 1 1 1 1
0.025 0.125 0.25 0.5 0.75 1.0

% Setup Proxies (out of ~2.7mil)

Core +—+—i

Edge + x-1 T‘
Edge+Core --%--' |1
1SP-per-AS &= |j|
]

H

% Unaffected Legitimate Clients

Figure 5.1.8: Percentage legitimate clients unaffected with N; = 0.01%, N, = 1%,
and with various SP placement scenarios

therefore it becomes harder to separate them. However, in the Internet, placing all SPs
on the edge or core only might not be possible depending on the availability of SPs
(some edge networks might not provide any SPs). The Edge+Core scenario is more
likely and presents a balance between the edge only and core only scenarios.

Finally, placing the SPs one per AS does worst, i.e., at 0.5% SP density, only 50% of
the attackers are rendered ineffective. In addition, increasing the SP density has marginal
effect in terms of separating attackers from legitimate clients. This is because some SPs
are wasted in ASes that might not have either attackers or legitimate clients, while in
the ASes that do have them, the attackers and legitimate clients are tied to the same SP.
Interestingly, when there are far fewer SPs in the network, the /-SP-Per-AS scenario is
able to separate more legitimate clients from attackers compared to the other scenarios,
i.e., for instance at 0.025% SP density, 5% legitimate clients are unaffected by attackers,

while Edge only and Core only have 3% legitimate client unaffected by attackers (see

99

Figure 5.1.8). We believe this is because the SPs in 1SP-Per-AS scenario are able to
roughly divide the network in such a way that a few regions have only attackers, and a
few other regions have only legitimate clients (but a large portion of the regions have
both attackers and legitimate clients).

In summary, placing the SPs on Edge+ Core offers the best compromise in terms of
separating the attackers from legitimate clients. However, when there are far fewer SPs
available (for instance when a service is just starting to roll out) or when the critical
service provider is only able to acquire SPs in distinct ASes, then /-SP-Per-AS seems a

better compromise than the other scenarios at smaller SP densities.

5.2 Implementation on a Router Testbed

Epiphany hidden paths are a new concept, but the basic functions to implement some of
the functionality of hidden paths are already available on routers in the form of multicast
routing. Specifically, we implement a variant of hidden paths on cisco 2600 routers
using single source multicast (SSM) [14]. Figure 5.2.1 shows our experimental testbed.
The SP, DP, source and destination are off-the-shelf commodity hardware based on Intel
Pentium 4 processors (with 2Gb RAM) and are running Linux OS. All the forwarding
functions at the SP and DP are implemented as user level programs, while the source
and destination are Epiphany aware applications which simply transfer fixed size UDP
messages. We setup static routing so that the source and the proxies can reach each
other, but the destination prefix in not announced to any other router. In other words,
there is no way for either the proxies or the source to reach the destination even if they
know the destination’s IP address.

We use SSM for two reasons. First, in SSM, like any other multicast protocol the
sender does not know the receiver’s address, and second, the receiver can leave the

multicast group at any time to stop receiving further traffic for that group. SSM also

100

allows the destination to explicitly specify which sender it wishes to receive the traffic
from. Without this control, any host sending to a multicast group that the destination
specifies interest in will be able to send traffic to the destination. We exploit these
features of SSM to implement hidden paths. Initially, D randomly picks a multicast
group G1 and specifies interest in this group using the IGMPv3 membership reporting
protocol [11]. Since the destination only wants to receive packets from the SP, D sets
up an IGMPv3 filter and includes the SP as the sender for this group. The IGMPv3
protocol reports this interest to the adjoining router R1, which is on the path to the SP.
The IGMP message has the destination’s IP address, but R1 only uses it locally and
never reveals the destination address to any other router (in fact, R1 never announces a
route for D’s address prefix to any other router). In response to the IGMP membership
interest, R1 creates a multicast forwarding entry <SP, G1>, and sends an SSM join
message upstream to R2 after identifying the interface on which it should send the join
using the SP’s unicast address. The router R2 similarly creates <SP, G1> forwarding
entry, but does not propagate the message any further since the SP is directly attached
to it. Note that the multicast forwarding entry created by the join message is different
from Epiphany’s EFIB entry, but a few similarities exist between the two. Epiphany
does not care which source is sending the packets, as long as they arrive on one of
the input interface set; if they arrive on an interface not belonging to this set, they are
dropped/filtered immediately. While in SSM, routers maintain explicit state about which
sources are allowed to send traffic to a particular multicast group. Packets arriving from
a source that is not in the list of allowed sources (for a particular multicast group) are
dropped immediately. To create hidden paths to all proxies using SSM, a router would
require memory resources proportional to the number of proxies, while in Epiphany
there is only one entry per destination.

In order for the SP to forward requests to the destination it needs to know about G1.

101

N TR i
Unicast L@‘i&/) Ry MFIB '
Packets / | ’ , if0/0
Mulitcast ,
Join(SP, G1)

Packets

IGMPv3 Include(SP, G1)

Join(DP, Gl IGMPv3 Include(DP, G1)
5 =
[LR»/
v'

Figure 5.2.1: Experimental testbed implementation of Epiphany on cisco 2600 routers
and commodity hardware

After sending the IGMPv3 membership message, D sends a unicast message to the SP
with G1, its own identifier (i.e., D’s ID), and the rate limit for requests. The SP creates a
lookup table entry with this information. Note that the destination always sends packets
to the proxies using their unicast IP addresses. When a source S sends a request to the
SP, the SP looks up D (i.e., D’s identifier), checks the rate limit (using a token bucket
algorithm), and forwards the request to the destination by wrapping it in a multicast
packet addressed to group G1. When the request arrives at router R2, the router lookups
G1 in the multicast forwarding information base (MFIB) table and forwards it to R1.
The router R1 similarly looks up G1 and forwards the message to D. The destination
accepts the request and sends an SSM join for {DP, G1}. The destination then sends a
unicast message to the DP informing about G1, the rate limit for S, and the authorization
token to verify S. The source learns about the DP and sends its data through the DP.
When the destination wants to remove the hidden path to a proxy, say the SP, it sends an
IGMPv3 membership report message to exclude the SP from G1. D also stops reporting
membership interest for G1. After a timeout interval, router R1 sees that it no longer

has members interested in G1 and sends a prune message for G1. At the same time, R1

102

also removes the multicast forwarding entry for G1. The prune message propagates to
the router R2, which then stops forwarding multicast packets for G1 (and removes its

own MFIB entry).

5.2.1 Measuring Creation and Removal Delays

Using this simple testbed, we measure the delay to setup and teardown the path between
the destination and the SP. These measurements give an estimate of the delays to expect
when constructing and tearing down hidden paths in Epiphany. First, to measure the path
setup delay, we make the destination send a unicast message with the address G1 that
the SP could use to reach D. Immediately following this message, D initiates the hidden
path construction process (as outlined above). Once the SP receives the message from
D, it immediately starts sending Epiphany request packets. The destination measures
the delay between the time it sent the unicast packet to the time when it receives the first
request packet from the SP. This delay includes the time to setup the path and the round
trip time taken for the unicast message from D to reach the SP, and the request from the
SP to reach D. Note that some requests from the SP will be lost as the path is setup. We
measure the round trip separately (using a series of messages between SP and D) and
subtract it from the total time computed above to get the path setup time. We repeated
the experiment 20 times and averaged the results.

From the experiments, we observed that the path setup took about 13.89 millisec-
onds, while the round trip time is only 1.18 milliseconds. Here, the round trip time is
composed of the delays to transmit, propagate, and process the packets at routers. In
our simple testbed, these delays are minimal due to the short length of physical cable
involved, and the low load on routers. In the Internet however, the propagation delays
will dominate the round trip time and processing delays at router may further increase
this delay, therefore the setup time in the Internet will be dependent on the total propa-

gation time of the hidden path create message. However, based on current estimates of

103

round-trip times, we believe these delays will be well within the milliseconds range.

Next, to measure the teardown delay, we make the destination send a message to
the SP to tell it to start sending requests at a constant rate of 200 requests per second.
That is, the SP sends requests at every 5 millisecond interval (we chose this interval
due to the relatively low timing accuracy on our hosts). Immediately following this, D
sends an IGMPv3 membership report message to exclude the SP from group Gl1, i.e., D
expresses interest to remove the SP from sending any packets to D. The router responds
to the membership report message by stopping to forward any packets from the SP.
However, the router does not generate a prune message until it finds that it no longer
has any members interested in G1. This duration is a random interval in the order of
seconds. During this time packets from the SP still arrive at the destination network. We
use t cpdump tool to capture the traffic and analyze the number of packets that arrived
at the destination after the path removal was initiated. We then compute the delay using:
number of packet received after teardown X send interval. For example, if 200 packets
arrive at the destination after the path removal is initiated, then the teardown delay is
200 x 5 = 1000 milliseconds, or 1 second. We repeated the experiment 20 times and
averaged the results.

We observed that the path tear down took about 1276 milliseconds on average. Since
the round trip time is minimal it does not affect the teardown delay. However, our
accuracy is under 5 milliseconds due to the SP’s sending rate, i.e., the path would have
been removed anytime between 1276 milliseconds to 1281 milliseconds. In the Internet,
the propagation delays will increase this delay, but they are generally smaller compared
to this delay. In other words, removing hidden paths might take in the order of seconds.
During this time, a compromised proxy may cause some damage to legitimate traffic by
flooding the destination, but the damage will be limited to within few seconds.

Another important lesson we learned from the testbed is that the destination network

104

prefix need not be exported to the global Internet. This an important finding, since
no other location hiding architecture has suggested completely hiding the destination
address and also making it impossible to reach the destination without having an explicit
hidden path.

In summary, we have demonstrated how to create and hidden paths using existing
router functionality. While more functionality would be nice to have (such as an explicit
path teardown process), we have demonstrated the viability of hidden paths within ex-
isting router functionality. This gives us confidence that the Epiphany mechanisms are

both feasible and deployable.

5.3 Implementation on PlanetLab Testbed

We implemented the main Epiphany components as an overlay on top of PlanetLab [3]
to evaluate setup and data transfer time in a real Internet setting. These experiments also
provide evidence of the effectiveness of separating setup and data proxies. The imple-
mentation consists of a central fopology server, which is responsible for creating and
managing the overlay, and an overlay node application which implements the functions
of an Epiphany router (R), source (S), destination (D), setup proxy (SP), and data proxy
(DP). Our implementation consists of approximately 6000 lines of C++ code to imple-
ment the Epiphany components, and another 2000 (approximately) lines of Perl code to

implement the topology server.

5.3.1 Methodology

The topology server takes as input the number of Epiphany routers, SPs, DPs, and a
list of PlanetLab hosts. It then randomly selects some hosts from the list and launches
the node application instances for the routers, SPs, DPs and D. The topology server

also gives the router hosts a list of all other routers in the overlay. The router hosts

105

use this list to ping each other and inform the topology server about the Round Trip
Time (RTT) to the other routers. The topology server gathers this information and for
each router computes at least three other neighbors that have the shortest RTT to form
a connected overlay graph. If the resulting graph does not form a single connected
component, the topology server selects additional neighbors for some router to form a
connected graph. After this step, the topology server gives the connectivity information
to the routers (i.e., list of router destinations and the neighbors to reach them), which
then form the overlay using TCP connections. Next, the node applications for SPs, DPs
and D ping the routers and attach to the closest router in the overlay using RTT as the
metric. The destination also learns about the SPs and DPs from the topology server.
After the overlay has initialized, the destination sends rjoin messages to the proxies to
construct hidden paths. The destination also sets the rate limit Rz for the number of
requests each SP can forward to D in a second. Once this process is complete, the
topology server launches a specified number of attackers and legitimate clients. These
sources compute the closest SP using the RTT value and start sending requests at rates
r; and r, respectively, for a duration of 7., seconds. We ensure that the attackers
always start sending requests to the SPs before the legitimate client and end after the
legitimate client stops sending requests (or data). We do not implement real attacks,
where a PlanetLab host (attacker) is flooding another PlanetLab host (SP), but rather
emulate them by making the attacker hosts send at sufficiently high rate. To implement
rate-limiting at the SPs and DPs, we borrowed the token bucket implementation from
click [2]. Also, since our node applications use TCP, we set the TCP_NODELAY option
to avoid potential buffering (due to nagle’s algorithm) at the sender, which could skew
results. We also followed the best practices described in [37] for running the experiments
on PlanetLab. In particular, [37] notes that generating packet streams on PlanetLab

nodes at precise intervals is difficult, especially for high rates. Therefore our rate-limits

106

100 |

95 H B
9 K~

85 | l]

80 | 1 T] i

75 |]
70 |]

% Request Packet Lost

65 | Observed Loss Rate —— |
1 Expected Loss Rate - - --

60 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10

Number of Attackers

Figure 5.3.1: Percentage requests lost of a legitimate client with 1 to 10 attackers and
1 SP

are set in such a way that we do not encounter these pitfalls.

5.3.2 Request Losses at SPs

We first study the request losses experienced by a legitimate client when both the at-
tackers and legitimate client are on the same SP. We assume the SP does not employ
any additional defenses such as the ones described in Section 4.2.4. Figure 5.3.1 shows
the request loss percentage for 1 legitimate client with an increasing number of attacker
hosts (form 1 to 10). Each attacker sends at rate 7, = 100 Requests Per Second (rps),
while the legitimate client sends at r; = 1 rps. The request rate-limit Ry at the SP is
set to 10 rps. In the Internet, the destination may not know how many clients are behind
a specific SP and therefore it has to accommodate several legitimate clients sending re-
quests at once. Our estimate of Ry in this case approximates a small subnet (i.e., it can

accommodate 10 legitimate clients sending requests at once). We run the experiment

107

for a total duration of 3600 seconds, but take periodic samples at every 60 second in-
tervals. Figure 5.3.1 shows the expected and average percentage of requests lost in an
interval due to the attackers, while the error bars show minimum and maximum per-

centage of requests lost in a sample interval. The expected loss percentage is computed

Tl
Ta XNag+T]

using: 1 — (X Rpg). From the figure, it is clear that although the expected loss
percentage should be 90% with only one attacker, the dynamic behavior is much worse.
Numerous factors contribute to the dynamic behavior, including delays in the network
which affect the arrival time of the legitimate request, coalescing of legitimate requests
in the network and so forth. However, in any case since the attacker is sending at a much
higher rate the legitimate requests will be dropped at the SP due to the rate-limit. As
the number of attackers increase, the losses also increase as expected. In other words,
without the additional defenses we described in the design, a legitimate client cannot

expect to successfully reach the destination in an expected amount of time when the SP

it is using is also occupied by attackers.

5.3.3 Setup & Data Transfer Delays

Now that we have established the request losses of a legitimate client in the presence of
attackers, we ask ourselves “at what attack rates is a legitimate client likely to reach the
destination within a reasonable amount of time?” This is an important factor to study,
since once the defenses we discussed in Section 4.2.4 have been established, attackers
may not be able to completely block the legitimate clients from reaching the destination
but may seek to delay them for prolonged periods. Studies on Internet users found
that a significant percentage of users will wait no longer than 3 seconds to receive the
service after initiating a request [1]. However, since Epiphany is protecting a critical
service, we assume the users in Epiphany are willing to wait longer, i.e., in the order
of a minute to receive the service. The first part of our experiments study the setup

delays at different attacker rates. Then, we study the data transfer delays experienced in

108

160000 || Data ITransferlDeIay r—+—1 l l ; 4 30
Setup Delay + x- 1 n s
140000 Setup Delay --*-- ; Y 25 T9)
@ . ©
< 120000 | i =
§] {120 &
¢ 100000 - %
2 g
E 80000 }) 4 15 %
> 60000 | =
3 03
O 40000 | . T
l g5 LWL
20000 +*

0 " 0

0 50 100 150 200 250 300 350

Attacker combined request rate (per second)

Figure 5.3.2: Setup and data transfer times of a legitimate client with 1 SP and 1 DP
and an increasing attacker rate. A total of 15 attackers are used, while the setup rate
limit is fixed at 50 rps.

Epiphany and compare it against the delays experienced when a single proxy performs
both data transfer and setup functions (such would be the case in SOS [17]). Since SPs
and DPs are different nodes in Epiphany, we shown the delays separately in the graphs.

In the following experiments, we use 15 different attacking hosts to generate a tar-
get attack rate. For example, to achieve an attack rate of 150 rps, each attacking host
sends 10 requests per second. This is inline with our notion that if the SP is employing
cryptographic puzzles, the attacker may strategize and use multiple hosts to generate
requests with valid puzzle solutions at a constant rate. In all the experiments, a single
legitimate client attempts to send 1000 data packets of 100 Bytes each to the destina-
tion. The request rate-limit Ry is set to 50 rps at the SP, while the data rate-limit Rp
is set to 100 Data Packets Per Second (dps) at the DP. For each data point, we repeat

the experiment 50 times and compute the average delay (with minimum and maximum

109

I T T T

160000 } Data Transfer Delay +—+— . T e x4 30

Setup Delay + -1 - i s
140000 || #of Failed Transfers --x-- 1 105 ©
120000 | I I
§ ' {20 &
¢ 100000 i %
2 : QL
I= 80000 {15 @
N—r L E
% 60000 | BN N e N
6 /r/ T T A 10 -8
Q40000 }] =
I 1 " + LL
20000 oty 0 7 1% =

T 1 | .--% 1 1 % _ ! 1

I I Phe - TS k- - =X

0 L2 -1-4—’f—”_')1(___gf__1_% 41(L1 ik 1 0

0 50 100 150 200 250 300 350

Attacker combined request rate (per second)

Figure 5.3.3: Setup and data transfer times of a legitimate client when a single proxy
acts as both SP and DP. The combined rate limit at this proxy is fixed at 50 rps.

delays shown using error bars). To measure the setup delay, we compute the time from
when the legitimate client initiates a transaction to the time it receives a response from
the destination. The client retransmits requests every one second for up to 60 seconds
before giving up on a transaction (i.e., if it does not receive a response). We consider
the transactions that do not receive a response within 60 seconds as failures. Note that
the retransmission rate of the legitimate client in our experiments is higher compared to
a client in the current Internet, but we presented some arguments for sending at higher
rates in Section 4.2.4.

Figure 5.3.2 shows the setup delays experienced by a legitimate client at different
attacker rates. On average, the setup delay is below 10 seconds, while the error bars
show that in some cases the setup delay may be longer. For instance, the setup delay is
close to 50 seconds when the aggregate attacker rate is 120 rps. However, the figure also

shows the number of failed transactions (out of 50 trails) for each attacker rate; as the

110

attack rate increases the number of failures also increases, but dramatically. For instance,
at an aggregate attack rate of 300, although the setup delay is close to 10 seconds, the
legitimate client fails to reach the destination 30 out of the 50 trails. In other words, the
legitimate clients can sustain a relatively high success rate even when the attackers are
flooding at 5 times the request rate-limit capacity. Not only that, but when the legitimate
client’s request retransmission rate is high, the legitimate client can expect to succeed
within 10 seconds after it initiates a transaction.

Figure 5.3.2 also shows the data transfer delay. The average data transfer delay is
10 seconds, which is understandable, since the legitimate client has 1000 data packets

to transfer and the data transfer rate limit is 100, the client should take approximately

1000pkts

00dps. — 10 seconds to transfer the data. However, the error bars show that in some

cases, the data transfer delays were over a minute. For instance, at an attacking rate of
90, the maximum data transfer time for the legitimate client was close to 70 seconds.
On careful inspection of the data logs, we found that the destination process running on
a PlanetLab host stalled for nearly 60 seconds in total; the stall causes the destination to
not send acknowledgements to data packets it receives, which in turn causes the client
to stall. We found similar events for the other cases as well. Although we are unable
to pinpoint the exact cause of this problem at this time, we strongly believe that it is
caused due to the very high load on PlanetLab hosts and an effect of virtualization
process scheduling. For instance, most PlanetLab hosts we used for the experiments
have anywhere from 40 to 60 active slices (virtual machines) running on them at any
time. The experiment clearly shows that data transfer time is not affected by the presence
of attackers in Epiphany, since the legitimate client uses a different proxy to transfer the
data. In comparison, Figure 5.3.3 shows the case when a single proxy acts as both an
SP and a DP. Here, the destination sets a single rate limit of 50 packets per second

at the proxy. The proxy accepts both requests and data packets and forwards them

111

to the destination, but does not exceed the rate-limit. In other words, if a legitimate
client is attempting to send 1000 data packets through this proxy, it will take % =20
seconds on average if there are no attackers present. However, as the attackers send more
requests, the proxy will start to drop requests and data packets indiscriminately and the
data transfer delay for the legitimate client increases. For example, in Figure 5.3.3 when
the attackers are sending at 30 requests per second, the data transfer delay takes a little
over 20 seconds on average (out of 50 trials), but as the attacking rate increases, the data
transfer delay also increases dramatically.

In summary, separating the proxies helps prevent collateral damage to legitimate
traffic in the presence of attackers, while using the same proxy for both data transfer and

setup causes collateral damage.

112

Chapter 6
Conclusions & Future Work

DDoS defenses are generally hard to deploy considering the changes they require to
the network infrastructure. We analyze the changes Epiphany makes and layout a plan
for deploying Epiphany in Section 6.1. We then provide a summary and describe the
important contributions and impact of our work in Section 6.2. Epiphany is a new
architecture and there are a few directions we wish to explore in the future. We describe

these in Section 6.3.

6.1 Deployment

Deploying Epiphany on the Internet requires some new components such as the proxies
and making changes to the software of existing components such as routers and hosts.

We now describe the changes and the deployment strategy for each of these components.

6.1.1 Proxies

Epiphany relies on large number of proxies for its defenses. As a starting point, the
Epiphany data proxies could be recruited from content distribution networks such as
Akamai [1], which currently has roughly 95,000 servers spread in 1,900 networks. Un-
like replicated services, Epiphany data proxies are light-weight; they do not hold large
databases of user account information or require special hardware, and they operate in-
dependently from other proxies (they do not form proxy networks as in SOS [17], or
TOR [12]). All the state that they maintain is generated during a session with the des-
tination. If a DP is attacked, it can be removed/replaced and brought back when it is

no longer under attack. In other words, DPs can be implemented alongside of existing

113

replicated instances on Akamai CDN nodes. However, note that with this approach the
attacker will know about the DPs and could potentially disrupt communication of impor-
tant clients. One approach to solving this is to use a private set of nodes along side of the
publicly know Akamai nodes. The destination could assign untrusted or less important
clients to the Akamai nodes and given the private DPs to more important clients.

Setup proxies in Epiphany require additional support from the routing infrastructure
to implement anycast. Although anycast is widely used to protect top level DNS servers,
anycast introduces additional routes (and routing updates) into the global Internet rout-
ing and hence must be used prudently. We outline two mechanisms to relieve this stress
on global routing. In the first approach, we propose to use a combination of locally
scoped and globally scoped anycast SPs, as shown in Figure 6.1.1. Networks A and C
have hosts they wish to use as SPs, and the destination is willing to recruit them for the
SP. On the other hand, networks B and D either do not have hosts to offer as SPs or the
destination is not willing to install SPs in their networks. The anycast addresses for the
SPs in networks A and C are announced within these networks and their announcements
are locally scoped. That is, before networks A and C export any internal routes to the
global routing space, they remove the route for the SP. Since the routes for these SPs
are local, they do not create additional routing state in global routing, or the failure of
any of these SPs does not cause a route change in global routing. Networks B and D
must use the globally scoped anycast SPs to reach the destination. To reduce the num-
ber of routing entries, the SPs could share a common address prefix with other anycast
services. For instance, several Epiphany hidden services could share a common address
prefix (say a /24) and announce that prefix to global routing; each hidden service will
then use a different address from this space for its SP.

An alternative is to apply the techniques described in [9, 16]. In this approach, a

few anycast SPs are globally scoped (with possibly a shared address prefix as described

114

Globally scoped anycast SP
B :

Internet

Locally scoped anycast SP

Figure 6.1.1: A deployment strategy for Epiphany Setup Proxies

above). However, clients are not allowed to use these SPs directly. Instead, the SPs
only accept requests from a specific set of hosts that are part of a peer-to-peer (p2p) type
network. The clients send their requests to the p2p hosts and these hosts forward them
to the SP. The p2p hosts can also perform rate-limiting before sending the requests to the
SPs. Since the attacker may attempt to flood the SPs directly without going through the
p2p network, the SP network must employ some form of filtering at its border routers
to eliminate the flood. The advantage of this approach is that, first, large number of
SPs are possible due to the large scale of end hosts based p2p networks and second, the
destination does not need to construct hidden paths to a large number of SPs and hence

less overhead on the destination and on the routers.

6.1.2 Routers

Constructing hidden paths on routers consumes forwarding state, which is a premium
on some Internet routers. To reduce the state, cryptographic based path generation tech-
niques similar to SNAPP [33] may be employed. However, these techniques require
making changes to the packet structure and may additionally require making hardware

changes to routers (to support high speed cryptographic operations). An alternative is

115

to use tunneling where it is necessary, and the state based approach where possible.
For instance, an intermediate router inside a network could use an MPLS tunnel to for-
ward the packets to a border router that has an Epiphany forwarding entry. In addition,
since reaching the service is more important than efficiency, routers could use slower
(but more abundant) memory for forwarding Epiphany packets rather than high speed
memory.

As for the software changes on routers to implement the new protocol for Epiphany
hidden paths, our implementation on Cisco 2600 routers shows that single source mul-
ticast could be used as an alternative until the full Epiphany protocol is implemented
on routers. Moreover, since many functions in Epiphany are similar to multicast routing
(such as the multicast forwarding table), the implementation could borrow these existing
functions to implement Epiphany hidden paths. Also, note that Epiphany does not make
changes to the IP forwarding engine itself, so those components remain unchanged.
The required changes could be applied incrementally, while resorting to tunneling on

non-Epiphany aware routers.

6.1.3 Hosts

In order for a source to communicate with the destination it needs to, 1) send a request
to a host but specify a different service name, and 2) use a different host to retrieve
the actual resource. At the basic level, applications could be modified to support this
model while the host software remains unchanged. However, protocols such as HTTP
already support these features (albeit without the added security we specify). For in-
stance, an HTTP client sends can send an HTTP GET request to the SP, but specify the
destination’s service identifier in the HOST field of the request. The SP needs to be able
to parse the HTTP request, extract the destination’s identifier and forward the request
to the destination. To this end, we could make the SP HTTP aware. When the desti-

nation receives the request, it generate an HTTP redirect message with the DP as the

116

redirected host and sends it to the SP. The SP simply sends the redirect message to the
client, which then learns about the DP and switches to the DP to reach the destination.
Thus, a service that operates on HTTP can simply use the HTTP redirect mechanism
to implement Epiphany without making modifications to the client. Applications that
are not based on this model, such as FTP, SSH and so forth on the other hand require
some software changes. These changes could be implemented incrementally as more
and more applications move to Epiphany. Note that the HTTP protocol does not support
additional encryption to protect the redirect mechanism. The DP address (i.e., redirected
host address) is sent in the clear through the SP. If the SP is compromised or malicious,

it will reveal the DP’s address to the attacker.

6.2 Summary

The tremendous growth of the Internet and its allure for increased flexibility and avail-
ability has led many critical services to migrate to the Internet, such as emergency re-
sponse services, government portals for national security, military and diplomatic oper-
ations, power distribution and industry control systems, banks and so forth. However,
DDoS attacks pose significant threat to these services and challenge the very availability
aspect of the services.

In this dissertation, we propose a novel location hiding architecture to protect critical
services from DDoS attacks. Our architecture achieves strong location hiding property;
neither the sources nor the proxies know the destination address. Moreover, the des-
tination network itself is not announced into global routing, and therefore nobody can
send packets to the hosts inside that network without going through the Epiphany com-
munication model. Since the attacker does not know the destination address, directed
attacks on the service are no longer possible. We achieve this location hiding using two

important components, proxies and hidden paths. Epiphany hidden paths share many

117

similarities with multicast routing and can be implemented on routers without sacrific-
ing forwarding efficiency, or requiring changes to the router architecture. Hidden paths
operate on existing IP packet and address structure, and the multicast functions for for-
warding and membership management available on routers could be reused to construct
them.

Like other location hiding approaches, Epiphany employs large number of proxies
for its defenses, but instead of making them public Epiphany separates them into setup
and data proxies. Only the setup proxies are made public while the data proxies are hid-
den and revealed to important/trusted clients. This is an important property of Epiphany;
since the data proxies are not public, the attacker cannot disrupt established communi-
cations of other legitimate clients in the network unless the attacker knows about the
data proxy a specific client is using. We demonstrate this property of Epiphany using
an overlay based implementation of Epiphany on Planetlab hosts. Our evaluation shows
that making the proxies public allows the attacker to consume their resources and make
the data transfer times increasingly longer with higher attacker rates, while in Epiphany
the attack on setup proxies has no effect on established communications.

The next important property of Epiphany is the use of IP anycast to localize attack-
ers. Since the setup proxies are public, the attacker could amass a large botnet and target
them. Epiphany has an open communication model, i.e., any source can send a request
through the SP and ask the destination for further access. The setup proxies do not
treat different clients preferentially and therefore let any request go through. To avoid
request flooding attacks, the destination assigns rate limits to the SPs. Now, if the SPs
are all accessible, the attacker could simply consume the request resources at each SP
and prevent legitimate clients from reaching the destination, or in other words, cause
DoC attacks. Network capability architectures have a similar problem, but address them

using cryptographic puzzles based approach [34]. In Epiphany, we address these attacks

118

using a two pronged approach. First, Epiphany SPs use anycast addresses, which cre-
ates distinct regions in the network. Requests generated from clients in one region are
automatically forwarded to the SP in that region. Therefore attackers become dispersed
and cannot prevent legitimate clients in regions that have no attackers from reaching the
destination. Additional anycast SPs could be brought up in regions that have a large at-
tacker presence to further split them up and localize them to smaller and smaller regions.
Second, once the attackers become localized, they can either be located and removed, or
simple resource proof approaches such as client puzzles [43] could be used to limit the
damage they can cause. We show the effectiveness of anycast SPs using simulations on
an Internet scale topology. Our analysis found that for a small legitimate client density
of 0.01%, an SP density of 0.5% is sufficient to suppress over 93% of the attackers even
when 10% of the entire network is occupied by attackers. Moreover, at that density the
attackers are localized to within 3 to 4 hops of the SPs, and most often there is only
attacker interfering with legitimate clients at an SP. Also, placing the SPs closer to the
edge networks, i.e., where the attackers and legitimate clients are situated is the best
strategy for SP placement when there are a large number of SPs, while placing them so
that there is at least one SP per AS is a better strategy when there are far fewer SPs.
Finally, the attackers may compromise proxies and funnel DDoS traffic through
them to cause collateral damage to legitimate traffic. Once the destination detects such a
misbehaving proxy, it can immediately remove the hidden path to that proxy to prevent
it from causing further damage. Moreover, the destination could quickly add new prox-
ies to handle large scale attacks. To test these properties we constructed a small scale
Epiphany tesbed on Cisco routers and used single source multicast to build the hidden
paths. In our measurements, we found that building a hidden path takes only a fraction
of a second, but tearing it down takes in the order of seconds. Although in the Internet,

factors such as propagation delay and processing delay at routers will add to the overall

119

delay, we believe they will still be within order of seconds. In other words, the damage
that a compromised proxy can cause is limited to within seconds.

In summary, we were successful in developing a strong location hiding architecture
with the specific goals we set forth for the dissertation. We believe our architecture is a
new dimension in the overall DDoS defenses that are based on location hiding. Although
prior techniques have used location hiding principles, to the best of our knowledge none
of them have completely hidden the destination. Moreover, using well established tech-
niques, we were able to develop a proxy system that is highly localized and involves
low security throw away boxes. We neither rely on or have trusted proxies. Finally, we
separate the proxies and allow the destination to decide how it will assign proxies, and to
whom it will assign those proxies. Through the deployment strategy we outlined above,

we believe Epiphany can be deployed effectively in the Internet in the near future.

6.3 Future Work

We believe there are a few directions we could explore in the future. For instance, just as
any other DDoS defense architecture Epiphany makes a few design tradeoffs, and also
makes assumptions about specific attacks. We briefly describe these here and leave the
detailed analysis for future.

First, Epiphany uses a state based approach to construct hidden paths, but does so
without requiring changes to the IP packet structure or forwarding functions at routers.
A different approach, loosely based on [33] is to trade the per-destination state for cryp-
tographic operations, albeit with the loss of compatibility with IP packet structure and
forwarding functions at routers. To sketch a rough design, consider that when a router
receives an rjoin, instead of creating an EFIB entry, the router uses a locally gener-
ated cryptographic key to encrypt the interface identifier on which it received the rjoin.

The router then inserts the encrypted token into the next available location in a variable

120

length source address field of the rjoin message, and forwards the rjoin to its upstream
router on the path to the proxy. Each router on the path similarly insert an encrypted
form of their interfaces on which they received the rjoin. When a proxy receives the
rjoin, it extracts the source address field, which is now an encoded route to the destina-
tion and creates an entry for the destination in its local Epiphany table. When a packet
arrives for the destination, the proxy inserts the encoded route into a variable length des-
tination address field of the packet and sends it to the attached router. The router extracts
its own portion of the encoded route and decrypts it to find out the outgoing interface
on which it should send the packet. Each router independently decrypt the route and
forward the packet to the destination. The benefit of this approach is that it does not
consume any state to create or maintain the hidden path at routers (except for the state
required to store the cryptographic key). Moreover, since the encoded path is included
in every packet that a proxy sends, the destination can easily identify misbehaving prox-
ies if they attempt to flood the destination. Unlike the path identifier based approach we
discussed in the design section, the encode path is unique to every proxy and hence the
accuracy of detection is very high. However, as noted earlier, the cryptographic based
approach changes the packet structure and forwarding functions at routers and there-
fore deployment may be difficult. We believe these are compelling but opposing design
choices, and a detailed analysis is important to understand the tradeoffs.

Another design tradeoff is the need to deploy a large number of SPs versus the over-
head in constructing hidden paths to all the SPs. Hidden paths require committing state
resources at routers and also require making changes to the router software. Initially not
all routers may have implemented these changes and hence deploying a large number of
proxies close to the edges may not be possible. In addition, anycast route propagation
has some inherent delays depending on the underlying routing protocol in use, which

also affects how quickly the destination can react to attacks. In the deployment section

121

we discussed an alternate design in which the destination appoints a few concentrator
SPs that accept and forward requests from a p2p based SP network. The p2p network
of proxies do not use anycast addresses, and the destination does not need to construct
hidden paths to each and individual SP. However, such a design has numerous issues
involving management, security and proxy discover for the clients. We wish to explore
these issues and consider the solution as a future design element in Epiphany.

We also wish to further study some of the attacks we outlined in the design. Specif-
ically, 1) understand how the system behaves when the attacker games the destination
into revealing data proxies. If the destination’s policy is to assign a few data proxies to
new clients, the attacker could learn about all these DPs (by asking the destination using
new compromised clients) and prevent other legitimate clients that are also classified as
new clients from reaching the destination. 2) The attackers could flood the network with
hidden path rjoin messages and can consume router state resources. To prevent it, we
described configuration at ISPs. However, it is possible that not all networks are config-
ured to reject messages from attackers. Further analysis is needed to understand under
what circumstances such attacks are possible. The findings could be used to direct new
designs to prevent such attacks.

Finally, we wish to expand our anycast evaluation using specific attacker, SP and le-
gitimate client placement strategies. The results we reported in the dissertation assume
a simple random distribution. However, in the real Internet, the location of each of the
players affects how many attackers are rendered ineffective and how many legitimate
clients are free from attacker. Knowing these numbers will greatly enhance the under-
standing about the effectiveness of our system. The current CAIDA topology data does
not include end host information, but perhaps future data may include such information,
allowing us to map known attacker bot locations and legitimate client locations in the

topology. Then, we may try different SP placement strategies and study their impact.

122

REFERENCES

[1] Akamai technologies. http://www.akamai.com.
[2] Click modular router. http://read.cs.ucla.edu/click/.
[3] Planetlab. http://www.planet—-lab.org/.

[4] J. Abley and K. Lindqvist. Operation of Anycast Services. RFC 4786, December
2006.

[5] David G. Andersen. Mayday: Distributed filtering for Internet services. In
USENIX USITS, 2003.

[6] Tom Anderson, Timothy Roscoe, and David Wetherall. Preventing Internet denial-
of-service with capabilities. SIGCOMM Hot Topics in Networks (HotNets-11),
November 2003.

[7] Katerina Argyraki and David Cheriton. Network capabilities: the good, the bad
and the ugly. In HotNets-1V, November 2005.

[8] Katerina Argyraki and David R. Cheriton. Active Internet traffic filtering: Real
time response to denial-of-service attacks. In USENIX, 2005.

[9] Hitesh Ballani and Paul Francis. Towards a global IP anycast service. SIGCOMM,
2005.

[10] CAIDA. The internet topology data kit — 2011-04.

[11] B. Cain, S. Deering, 1. Kouvelas, B. Fenner, and A. Thyagarajan. Internet Group
Management Protocol, Version 3. RFC 3376, October 2002. Updated by RFC
4604.

[12] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The second-
generation onion router. In USENIX, 2004.

[13] Colin Dixon, Thomas Anderson, and Arvind Krishnamurthy. Phalanx: Withstand-
ing multimillion-node botnets. In NSDI, 2008.

[14] H. Holbrook and B. Cain. Source-Specific Multicast for IP. RFC 4607, August
2006.

[15] John Ioannidis and Steven M. Bellovin. Implementing pushback: Router-based
defense against DDoS attacks. In Network and Distributed System Security
(NDSS’02), 2002.

123

[16] Dina Katabi and John Wroclawski. A framework for scalable global IP-anycast
(GIA). SIGCOMM, 2000.

[17] Angelos D. Keromytis, Vishal Misra, and Dan Rubenstein. SOS: Secure overlay
services. In ACM SIGCOMM, pages 61-72, August 2002.

[18] Karthik Lakshminarayanan, Daniel Adkins, Adrian Perrig, and Ion Stoica. Taming
IP packet flooding attacks. SIGCOMM CCR, 34(1):45-50, January 2004.

[19] Xin Liu, Xiaowei Yang, and Yanbin Lu. To filter or to authorize: Network-layer
DoS defense against multimillion-node botnets. In ACM SIGCOMM, pages 195—
206, 2008.

[20] Robert Mackey. ‘operation payback’ attacks target mastercard and paypal sites to
avenge wikileaks. New York Time Blog.

[21] Ratul Mahajan, Steven M. Bellovin, Sally Floyd, John Ioannidis, Vern Paxson, and
Scott Shenker. Controlling high bandwidth aggregates in the network. SIGCOMM
CCR, 32(3):62-73, July 2002.

[22] Allison Mankin, Dan Massey, Chien-Lung Wu, S. Felix Wu, and Lixia Zhang.
On design and evaluation of “intension-driven” ICMP traceback. In Computer
Communications and Networks, pages 159-165, 2001.

[23] Danny McPherson and Dave Oran. Architectural considerations of IP anycast.
Draft-iab-anycast-arch-implications, February 2010.

[24] Jelena Mirkovic and Peter Reiher. Building accountability into the future internet.
In NPSec, pages 45-51, October 2008.

[25] Ryan Naraine. ICANN: Anycast saved DNS root servers during attack. "http:
//blogs.zdnet.com/security/?p=118".

[26] Maitreya Natu and Jelena Mirkovic. Fine-grained capabilities for flooding DDoS
defense using client reputations. In Workshop on Large Scale Attack Defense
(LSAD), pages 105-112, 2007.

[27] Jose Nazario. Estonian DDoS attacks. http://ddos.arbornetworks.
com/2007/05/estonian-ddos—attacks—a-summary-to—-date/.

[28] Jose Nazario. Georgia on my mind — political DDoS.
http://asert.arbornetworks.com/2008/07/
georgia-on-my-mind-political-ddos/.

[29] Arbor Networks. Worldwide infrastructure security report — Volume VI. http:
//www.arbornetworks.com/report, 2010.

124

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

Lasse Overlier and Paul Syverson. Locating hidden servers. IEEE Symposium on
Security and Privacy, 100-114, 2006.

Lasse @verlier and Paul Syverson. Valet services: Improving hidden servers with
a personal touch. Workshop on Privacy Enhancing Technologies, 2006.

Lasse @verlier and Paul Syverson. Location hidden services and valet nodes. Pri-
vacy in Telecommunications, Telektronikk, 2007.

Bryan Parno, Adrian Perrig, and Dave Andersen. SNAPP: Stateless network-
authenticated path pinning. In ASIACCS, pages 168—178, 2008.

Bryan Parno, Dan Wendlandt, Elaine Shi, Adrian Perrig, Bruce Maggs, and Yih-
Chun Hu. Portcullis: Protecting connection setup from denial-of-capability at-
tacks. In ACM SIGCOMM, August 2007.

Collins M. Patrick, Shimeall Timothy J., Faber Sidney, Janies Jeff, Weaver Rhian-
non, De Shon Markus, and Kadane Joseph. Using uncleanliness to predict future
botnet addresses. IMC, 2007.

Stefan Savage, David Wetherall, Anna Karlin, and Tom Anderson. Practical net-
work support for IP traceback. In ACM SIGCOMM, pages 295-306, August 2000.

Neil Spring, Larry Peterson, Andy Bavier, and Vivek Pai. Using PlanetLab for
network research: Myths, realities, and best practices. SIGOPS, 2006.

Ion Stoica, Daniel Adkins, Shelley Zhuang, Scott Shenker, and Sonesh Surana.
Internet indirection infrastructure. IEEE/ACM Transaction On Networking, pages
205-218, 2004.

UltraDNS. Siteprotect system. http://www.ultradns.com/
ddos-protection/siteprotect/how—-it-works.

Michael Walfish, Mythili Vutukuru, Hari Balakrishnan, David Karger, and Scott
Shenker. Ddos defense by offense. In ACM SIGCOMM, pages 303-314, August
2006.

Ju Wang and Andrew A. Chien. Understanding when location-hiding using over-
lay networks is feasible. Computer Networks, 2006.

Lan Wang, Qishi Wu, and Dung Dinh Luong. Engaging edge networks in prevent-
ing and mitigating undesirable network traffic. In Workshop on Secure Network
Protocols (NPSEC), October 2007.

Xiaofeng Wang and M. K. Reiter. Defending against denial-of-service attacks with
puzzle auctions. In IEEE Symposium on Security and Privacy, pages 78-92, May
2003.

125

[44] Xiaofeng Wang and Michael K. Reiter. Mitigating Bandwidth-Exhaustion At-

tacks using Congestion Puzzles. In ACM Computer and Communications Secutiry
(CCS’04), October 2004.

[45] Abraham Yaar, Adrian Perrig, and Dawn Song. Pi: A path identification mecha-
nism to defend against DDoS attacks. In IEEE Symposium on Security and Pri-
vacy, pages 93—107, May 2003.

[46] Abraham Yaar, Adrian Perrig, and Dawn Song. Siff: A stateless internet flow filter
to mitigate DDoS flooding attacks. In IEEE Symposium on Security and Privacy,
pages 130-143, May 2004.

[47] Abraham Yaar, Adrian Perrig, and Dawn Song. Fit: Fast Internet traceback. In
IEEE INFOCOM, volume 2, pages 1395-1406, 2005.

[48] Xiaowei Yang, David Wetherall, and Thomas Anderson. A DoS-limiting network
architecture. In ACM SIGCOMM, pages 241-252, August 2005.

126

