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MATHEMATICAL MODEL FOR TRANSIENT 

FLOW IN POROUS MEDIA 

INTRODUCTION 

This study is devoted to the development of a general mathematical 

model simulating transient ground water movement. The basic equaticn 

. describing ground water motion in porous media, is a non-linear, secc nd­

order partial differential equation, which can be conveniently solved b .,._ 

numerical finite-difference methods. The numerous computations invc lved 

in solving finite-difference equations necessitated the use of a digital 

computer. 

The computer program was written so that hydrologic data, hycraulic 

properties of the aq,.1ifer and boundary conditions can be easily introdu:::: ed 

into the model. 

THE APPLIED EQUATIONS 

The partial differential equation for transient saturated flow, i 

porous media, may be written as 
t . 

a aH a aH ah ax (K h ax dx) dy + ay (Khay dy) dx = cp at dx dy + q 

where , h = saturated thickness of the aquifer (H - z) [L] 

H = water table elevation above a d~tum [L] 

Z = impermeable bed elevation above a datum [L] 

K = hydraulic conductivity (permeability) [L/T] 

cj, = storage coefficient (dimensionless] 

q = net extraction rate ( L 3 / T] 

x and y . = space coordinates [L) 

t = time dimension (T] 

In the derivation of Equation 1, it is assumed that the fluid was incom 

pressible (p = constant) and that there was no variation of the storage 

coeff'cient with respect to time· (8 cp/at = O). The third, vertical, dim :::n­

sion for a horizontal case enters the picture with the term h varying 

with space and time. 

(1) 
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Consider five grids in the gri d system of Figure 1 

I 
(y) 

i, j - 1 

J (x) 

i - 1, j 

• ' 

i, j i, j+ 1 

i+ 1, j 

Figure 1 

i= 1,2, .. -.,m 

j = 1, 2,, .. , n 

where, I and J = block numbers in the coordinate system (y, x) 

i and j = subscripts used to identify grid blocks 

m and n = number of blocks in a 2-dimensional model. 

By employing a central finite-difference scheme, Equation 1 may be 

writt.en in the following form ]:.! * 

{
AH . . 1+ B H. 1· .+ (-A-B-C-D- 1-r> H .. +CH .. l + 

l, J- 1- , J £.H l, J l, J+ 

+DH. 1 . o = 
}

t + 6.t {- </, -x-r H . . 
LH l, J } 

t q. . . 0 
+ 1, J 

D,.X. . 6.y. . 
l, J l, J l+ 'J 

where, i = 1, 2, ... , m; j = 1, 2, ... , n 

t
0 

= starting time or previous time 

6.t = time increment 

· · AX and 6.y = areal increments. 

* These numerals refer to corresponding items in the References. 

(2) 
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(K h). . l + (K h). . 
A _ 1, J - 1, J 

- ~x. .(~x. . 
1 
+ ~x. 7 

1, J 1, J - l, J 

(K h). l . + (K h) . . 
B = l - , J 1, J 

~y. .f~y. 1 · + ~Y- -;J 
11 J 1 - , J l, J 

(K h). . 
1
+ (K h) .. 

C - l, J + . l, J 
- ~x .. (L\x. . 1 + ~x .. ) 

1, J l, J + - 1, J 

(K h). l .+ (K h) .. 
D _ 1 + , J l, J 

- ~Y- .(L\y. i .+ L\y. -:r . 
1, J 1 + , J . l, J 

The coefficients A , · B, C, and D are computed froin values 

obtained in the previous time ste:p. 

Equation 2, written for every grid block, may be considered as the flo w 

balance of each grid, involving the four neighboring grids in the given 

rectangular system. This form of the fin.ite-difference equation is als :> 

suitable for a curvilinear grid system similar to Figure 1. The h terms 

are assumed to be constant during a given time step, and have the valt:.e 

at t he end of the previous time period. An iterative procedure would te 

needed to treat the variations of h with time differently. Boundary con­

ditions, i.e. , a constant head (H = constant) or an impermeable barrier 

(aH/ an= 0), are treated by introducing appropriate values into Equation 

2, for the corresponding grids. In_ general, the known coefficients anc: 

quantities appear on the right-hand side of the equation. Equation 2 is a 

linear algebraic equation in implicit form and as such has to be solved 

simultaneou sly. The classical explicit form of finite-difference eg.uations 

for a linear parabolic partial differential equation has the disadvantagE of 

conditional stabqity ,~t must be smaller than a certain function of DX- and ey)~ 

PROCEDURE 

In this investigation, t wo implicit schemes were employed for 1he 

solution of the simultaneous finite-difference equations: 1) Gaussian . I 
Elimination Procedure and 2} Alternating Direction Implicit ProcedurE. 
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Gaussian Elimination 

A finite-difference equation, similar to Equation 2, is set up fo :­

each grid of the entire model area and for a particular time step. Thie 

system of equatiorrs is solved simultaneo:.1sly by straight forward 

· successive eliminations. The left-hand side of Equation 2 has five 

unknown H's that have to be solved for time (t + bot) using known value :: 
0 

on the right-hand side for time (t ). It is readily seen that the number 
0 

of equations in a set is equal to the number of grids in the model. Some 

equations will represe nt boundary conditions, and hence will have less 

than five unknowns. The system of N= m x n lin~a!' algebraic equatioil.3 

can be writt en in matrix notation as: 

where, [L]N, N = the matrix of the coefficient s of the H's on the left­

hand side of Equatior. 2, the size _of which is N x N. 

[H] N, = the column vector of H's to be solved for time 1 
(to+ ~t), the size of which is N X 1. 

[R]N, = the column vector of the known right-hand side 1 
of Equ2.t ion 2 at time (t ), 

' . . 0 
the size of which is N x 1. 

Matrix [L]N, N writt en explicitly (i. e. , m = 3 . . n = 3, N = 9) in the fc rm, 

E D 0 C 0 0 0 0 ·0 

B E D 0 C 0 0 0 0 

0 B E 0 0 C 0 0 0 

A 0 0 E D 0 C 0 0 

0 A 0 B E D 0 C 0 

0 0 A 0 B E 0 0 C 

0 0 0 A 0 0 E D 0 

0 0 0 0 A 0 B E D 

0 0 0 0 0 A 0 B E 
N.N 

Figure 2 

' 

(3) 
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where, A, B, C, and D are as defined for Eq. 2. 

E ·= the value of (-A-B-C-D- -1.r) in Eq. 2 

N = total number of grids in the example model. 

This matrix is symmetric, definite and has a dominating main diagona::. 

(as a result of the parabolic type of differential equation applied, Eq. : ). 

The matrix LL]N, N may be rearranged in the following form: 

0 0 0 E 

0 0 B E 

0 0 B E 

A O O E 

A O B E 

A O B E 
A O O E 

A O B E 
A O B E 

D 

D 

0 

D 

D 

0 

D 

D 

0 

Figure 3 

0 

0 

0 

0 

0 

0 

0 

0 

0 

~1 
C 

C 

C 

C 

0 

0 

0 
N, 2 m + 1 

whe·,:e, m = the number of grids in the short side of the example mod el. 

Here, the three central diagonals and the two apart-diagonals are arrE. nged 

-as vertical columns. 

A shortcut computer program, BANDSOLVE ':' , uses the matrh in 

Figure 3 to solve the given N equations with N unknowns simultaneous=-y. 

The N computed H's are placed by this procedure in the matrix (co=umn 

vector) [R]N, 1. These results are the set of water table elevations :·or 

time (t + ~t). 
0 

Alternating Direction Implicit Procedure (ADIP) 

The ADIP technique differs from the Gaussian Elimination by E. 

two-half steps solution in two directions of the model problem. The f_rst 

step is the solution of m systems of n linear algebraic equations fo :-

*BANDSOLVE algorithm was written in ALGOL by Donald H. ThurnaL 

of Marathon Oil Company, Littleton, Colorado ~ 
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half-time step (6.t / 2) and the second step solves n systems of m 

equations for the other half-time ste~. . Every equation has three 

unknowns at mo3t, and each system of equations is solved simultaneously -

one at a time. For the Gaussian Elimination technique, every equation 

has five unknowns at most, a nd n x m = N equations are solved simulta-

. neously for a full-time step (6.t). The advantage of ADIP is the dimi~ut ion 

of computer storage requirements. Comput ing time for a 50 grid mode l is 

a pproximately the same for both technique s . 

Developing the equations for the ADIP technique, the basic matrix 

Eq. 3 may be written as, ~ 

. . 

(L]N, N. [H]N, 1 = i(F]N, N + [v]N, N). [HJN, 1 = (R] N, 1 

which gives :he two matrix equations, 

(4) 

(F] • [H] = [R] - [v] · [H] 

[v] • [H) = [R] - [F] [H] 

(5) 

(6) 

where, [F] = the m atri x of th•= coeffi cients of the 1..1nkn.own H's of one 

directior.. in the model (rows } 

[v] = the rr..s.t:::'ix 0f the codfici=nts 0f the unkn'Jwn H's of the 

second dire ction in tht model {columns). 

Matrix [Fj = hf:l. s the for-m shown in Figllre 4: : 

E 0 0 C 0 0 0 0 0 

0 E 0 0 C 0 0 0 0 

0 0 E 0 0 C 0 0 0 

A 0 0 E 0 0 C 0 0 

0 A 0 0 E 0 0 C 0 

0 0 A 0 0 E 0 0 C 

0 0 0 A 0 0 E 0 0 

0 0 0 0 A 0 0 E 0 

· o 0 0 0 0 A 0 0 E 
N,N 

Figure 4 

whe re, A, E , and C are as defined for F igure 2, and matr_i x [v] has three 

central diagor,·::tls. Matrices [F] and [v] are symmetric, definite, with 
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no more than three nonzero entries per, row (tridiagonal) and diagonal 

dominant. Similarly, the basic finite-difference equation (Equation 2) is 

broken into two equations analogous to Equations 5 and 6, 

~- {A H .. _ l + (-A-C- At~) ~- · 
1,J u~ / t:. l,J 

. }t + 
+ CH. . 1 o 

1, J + 

{ 

q . . 
= - At12 Hl.,J. + 26. l,J - B H. 1. 

'-1 x .. t:::,.y. . 1- , J 
1, J 1, J 

+ (B + D) H . . - D H . l . }to 
1, J 1+ , J 

{B H. l . 
1 - • J 

q .. 

+ 

6.t/2 
= 

= 

(7) 

•{- ,c.t/2 Hi;j 
+ 1, J 

2 6,x . . t:::,.y .. - AH .. l 
1, J - + . (8) 

1, J 1, J 

}

t + 6.t/2 
+ (A + C) H . . - C H. . 1 ° 

1,J 1,J+ 

where the terms are as defined before. 

The standard equation for a grid block situated in a row is Equttion 

7. The left-hand side of the equation has the three unknown H's whL h 

are solved for time (t
0 

+ 6.t/2) by the known right-hand side at time ( t::> ). 

Equation 7 is written for every block in each row, hence, there are c. 

equations with n unknowns per row. Every system of equations is s ::> lved 

simultaneously (one row at a time ) by the following scheme, based on 

successive eleminations, 

a. b. Gl 
Rl 

= 
~ 

c. w. 
J 

C. 
= J 

E . - A . w . 1 J J J -

R. - A.G . 1 d . - G. = J J J -
J E. - A. w. 1 J J J -

when, j = 2, 3, ... , n; for a particular value of i; 

(9) 



and a. H. = Gn 
1, n 

. 8 

b. H .. = G. 
1, J J 

W. H .. l 
J 1, J+ 

when, j = (n -1 ), (n - 2). ... , 1; for a particular value of i; 

where, A, E, and C are as defined for Figure 2 

R = the known value of the right side of Equation 7 

(10) 

W and G = auxiliary values for the computation of the unknown H's. 

Equations 9 evaluate two sets of two auxiliary computational elements i or 

a certain row (i) from the start of the row to its end. Then Equations 10 

are employed to get the unknown H's of the row, proceeding from the n th 

element to the first one. This simple solution of simulta.neous equations 

of single-row set is repeated for each of the m rows of the model. E ow­

by-row sweeping results in new computed H values for time {t
0 

+ D.t/2 ). 

The second half-time step uses Equaticn 8 for column-by-column swe ping 

( n sets of m equations each - solved simultaneously - one at a time . 

The solution of the single-column set is analogous to the scheme give r:: by 

Equations 9 and 10, except that terms i and j will be interchanged v here 

i = 2, 3, •.. , m for a particular j ; B and D are introduced instec.d of 

A and C ; and R will be the right-hand side of Equation 8. These c c-m­

putations use quantities computed from the first half-step at time { t
0

-f t>.t/2) 

and will result in solving for the unknown values of H at time { t
0 

+ Lt). 

One time increment is completed by computing the first half-step with rows 

and the second half- step with columns to give us values of water table 

elevations for time {t
0 

+ D.t}. 

MODEL DETAILS AND TESTS 

Mathematical models have been developed using both the Gaus Ei.an 

Elimination and the Alternating Direction Implicit Procedures. Both 

horizont al and vertical models have been studied. A brief description of 

the use &.nd test s conducted on the models follows. 

Boundary Co~di~ions 

The computer programs written for the two implicit technique E or 

proce dures can har..d~e 2 types of boundary conditions: 1) An imperme3.blc 

boundary or bar rier which prevents flow. This type of bounda ry result s 

in the coefficients (A, B, C, or D) hav~ng values equal to zero for .the .grid 
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points representing the barrier. 2) Constant head boundary, such as 

a river hydrauiically connected to the aquifer. The water elevation 

in the river assumed constant and known for a certain period of time 

will determine the water table elevation in the aquifer nearby. It was 

assumed water t able continuity existed in the vicinity of th~ constant 

· head boundary and the potential gradient was finite. Likewise, there 

was to be no restricting limitation for adjustment of the aquifer water 

table t o the constant r..ead. The constant head value along with other 

known quantities was then transferred to the right sid e of the finite­

difference equation, 

Both types of boundary conditions were assig_ned negative 

values (-H) in the grid block to distinguish them from the non­

boundary grid. Tl:e impermeable barrie r has an arbitrary negative 

value, no t used elsewhere in the model. The constant head boundary 

will have its known value, but with a minus sig!l preceding it. 

Inp1.1t Data 

The computer programs prepa.red to date have been general in 

nature and not developed specifically for a p2.rticul2.r condition. Thus 

it is necessary to introduce data into the comp1.ner to describe a partic ­

ular area to be modeled . Required data includes the amount of wate r =n 
storage, the aquifer properties, and the net applicat ion of water to the­

land for the parti cular area a.nd period to be modeled. Data must als~ 

be supplied on the size of grid to be used ( 6. x and 6.y ), the model size 

(I, J}, the time increment (6.t) and the total time (t). 

The quantity of water in storage at the initial starting time is 

introduced by· assigning a water table elevation (H) and an impermeabl = 

bedrock elevation (Z) to each grid point. These values in conjunction 

with the aquife r properties including the storage coefficient (cf> ) and the: 

hydraulic conductivity or permeability (K) are 1..:.sed to define the initia _ 

conditions and describe the aquifers ability to transmit water. Avera e 

or representative value s for the above parameters are assigned to eadl 

grid point. Impermeab!e aquifer bounda ries or the presence of a stre 3.m, 

constant head boundary , must also b e introduced for the proper grids 3. S 

previously described . 
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The net application of water to tl:.e area during the period to be 

studied is a function of the following parameters: consumptive use, 

evapotranspiration, pumping, pr ecipitation, seepage from canals and 

water applied as irrigation to the land. A net extraction of water (q} 

is estimated for each grid block and is the algebr aic sum of the above 

· parameters. Net flow of water into or out of the aquifer is represented 

by the respect ive value, negative or positive, of (q) . 

Input data for all the variables are punched on IBM cards and 

read into the compute:.~ as ca11ed for by the p.:-ogram. 

Output Data 

Data compute d by· the program includes values for the water ta le 

elevation (H) at various times requested in the program and estimates of 

the influent or effluent flow for each grid block adjacent to a stream, 

constant head boundar y. 

Once the model has been verified, when computed values compa re 

with historical records for a particular period, it will be poss ible to V3. ry 

the a.pplied water (q) and note changes in the water. table elevations (H or 

return flows in the streams. This would allow one to study the indivic:ual 

effect of precipitaUon, pumping, evapotranspiration or applied irrigat::.on 

water on the water in stor8.ge or river return flow. 

Horizont~.1 Model Test~ 

A simple test using 50 grids and hypothetical data was run on a 

computer to check the ~;·alidity of the prog:::--am and to compare the 

Gaussian Elimination technique with the Alternating Direction Implicit 

Procedure. The numerical results coincided with analytical solutions 

using heat flow equation for all time steps taken and were consistent 

and stable. 

Another model test using 50 grids and realistic input data was 

run for one day !ime i!lcreme!'lts and produced data on water table 

fluctuations a nd return flow to a river for a period of two years. Dail_;­

and montr.!y results for both t echniques were the same. For_ this tria 

run, it was assumed that there was no outflow from a grid block when 

the saturated thickness was very small. 
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To solve 50 equations (50 unkno,vns) by the Gaussian Eliminaticn 

· technique for a total time period of two years in increments of one day 

tim.e-steps required 4. 86 minutes on an IBM 709 4 computer. Time 

requiremer..ts for -larger grids are now being investigated. 

One trial run was executed with the Gaussian Elimination tech­

nique where two grids of the "active blocks" were occupied by an 

impermeable boundary as shown here: 

Boundary 
/ / 

Constant Head Boundary 

Figure 5 

This run with irregular boundary shapes gave sati sfactory results 

and presumably shows that such model situations can be handled. 

Vertical Model Test 

To study the limitation of the horizontal model when a water 

table slope is signific2.nt (i. e . , aquifer near a stream) a two-dimensicnal· 

vert ical model was tried utilizing the ADIP te chni que . The basic eqm~tion 

governing unsteady flow is 'Q 2 H = 0, except at the free surface (waL r 

table) where the equation is V(KSy'H) = cf> a H/ at. The term S is the 

length dimension in the X and Z directions. In this case too, the h _at 

equation is nonlinear as the vertical bloc k dimension (Z) varies wit h t:me. 

The Alternating Direction Implicit Procedure was modified to: 1) loca- e 

the water table, 2) introduce the storage coefficient in blocks containi --ig 

the water surface, and 3) discard computations above the ·free water 

surfac e . Results obt3.ined to date indicate that the ADIP compute r pre ­

gram should be remodified to handle the discontinuity at the moving W3.ter 

surface and a seepage face near the stream. 
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RECOMMENDATIONS AND CONCLUSIONS 

The hydrologic values of parameters to be used as data in a 

model solution, are probably the weakest point of an analysis. Hence, 

it is imperative to exercise particular care in the establishment of 

these data, and to document them well for assumptions and decisions 

made. A proposed way to treat these input data is to study the yearl} 

distributions of the components of q, sum them and introduce it in t t e 

numerical computations as a monthly percentage of the yearly quantity. 

For the vertical model the Gaussian Elimination technique will 

be adapted to treat the problem of a moving free water surface. This 

problem will be similar to the penetrating or irregular boundary 

problem solved in the horiz_ontal model. 

The Gaussian Elimination and the Alternating Direction Implicit 

Procedure are just two ~echniques that can be used to obtain approxio ate 

solutions for the parabolic differential equations. It appears that exi; licit 

techniques with unconditiona l stability El may also be adaptable to the 

problem. Further study of various techniques is anticipated to obtai, an 

accurate method for solving the equations for a large number of grid 

points utilizing a minimum amount of computer time . 

Field data for a reach of the Arkansas River between LaJunt& 

and Las Animas, Colorado, is now being processed in preparation fer 

a large scale test of the horizontal mathematical model. Approximalely 

450 grid points will be considered with a one day increment used as -he 

time step. Calculations on change in the water table elevation withi r:. 

ea·ch grid and inflow or outflow from each grid along the river to the 

stream will be made. It will be necessary to compar:e the c_omputed 

values with historic water level and river flow data to determine whet 

changes will have to be made in the model or the input data to obtain. 

compatible results. 

Work to date indicates that a digital computer program can be 

prepared for _ a ground water aquifer system to study the effect of 

_ pumping, applied irrigation water, precipitation, and consumptive use 

upon the ground water in storage and return flows to a river hydraulical­

ly connected to the aquifer. If historical data can be matched with 
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computer solutions, indicating a valid model, then the mathematical 

model could be used e xtensively in developing water management 

policies to maximiz e the use of our water resources. 
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