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MATHEMATICAL MODEL FOR TRANSIENT
FLOW IN POROUS MEDIA

INTRODUCTION .

This study is devoted to the development of a general mathematical
model simulating transient ground water movement. The basic equaticn
,describing ground water motion in porous media, is a non-linear, seccnd-
order partial differential equation, which can be conveniently solved by
numerical finite-difference methods. The numerous computations invclved
in solving finite-difference equations necessitated the use of a digital
computer, '

The computer program was written so that hydrologic data, hycraulic
properties of the aguifer and boundary conditions can be easily introduzed

into the model.

THE APPLIED EQUATIONS

The partial differential equation for transient saturated flow, im
porous media, may be written as

t
’

g—i(Kh%dX)dy+-a%(th%dy)dx=¢%}%dxdy+q ; (1)

where, h = saturated thickness of the aquifer (H - z) [L]
H = water table elevation above a datum [L]
Z = impermeable bed elevation above a datum [L]
K = hydraulic conductivity (permeability) [L/T]
¢ = storage coefficient [dimensionless]
q = net extraction rate [L3/T]
x and y. = space coordinates [L]
t = time dimension [T]

In the derivation of Equation 1, it is assumed that the fluid was incom-
pressible (p = constant) and that there was no variation of the storage
coefficient with respect to time (8 ¢/9t= 0). The third, vertical, dim=n-
sion for a horizontal case enters the picture with the term h varying

with space and time.



Consider five grids in the grid system of Figure 1
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where, I and J = block numbers in the coordinate system (y, x)
i and j = subscripts used to identify grid blocks

m and n = number of blocks in a 2-dimensional model.

By employing a central finite-difference scheme, Equation 1 may be

_1-/ x*
written in the following form

{A Hy 5.+ BH_j i+ (-A-B-C-D- ) Hy j# CH o+ ‘
t + At q: : . . to :
*DHg 4 ° = {’ K‘ﬁf Hy 3+l ' (2)
1,] L]
where, i=1,2, ..., m; j=1,2, ..., n
t, = starting time or previous time

At = ﬁme increment

Ax and Ay = areal increments.

* These numerals refer to corresponding items in the References.
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The coefficients A, B, C, and D are computed from values
obtained in the previous time step.

Equation 2, written for every grid block, méy be considered as the flow
balance of each grid, involving the four neighboring grids in the given
rectangular system. This form of the finite-difference equation is als>
suitable for a curvilinear grid system similar to Figure 1. The h terms
are assumed to be constant during a given time step, and have the valte
at the end of the previous time period. An iterative procedure would ke
needed to treat the variations of h with time differently. Boundary con-
ditions, i.e., a constant head (H = constant) or an impermeable barrier
(0H/dn = 0), are treated by introducing appropriate values into Equation

2, for the corresponding grids. In general, the known coefficients anc
quantiﬁes appear on the right-hand side of the equation. Equation 2 is a
linear algebraic equation in implicit form and as such has to be solved

- simultaneously. The classical explicit form of finite-difference equations
for a linear parabolic partial differential equation has the disadvantage of

conditional stability {At must be smaller than a certain function of Ax end Ay).z-/

PROCEDURE

In this investigation, two implicit schemes were employed for the
solution cf the simultaneous finite-difference equations: 1) Gaussian

Eliminaticn Procedure and 2) Alternating Direction Implicit Procedure.



Gaussian Elimination

A finite-difference equation, similar to Equation 2, is set up fo-
each grid of the entire model area and for a particular time step. Thie
system of equations is solved simultaneously by straight forward
* successive eliminaticns. The left-hand side of Equation 2 has five
unknown H's that have to be solved for time (to+ At) using known values
on the right-hand side for time (to). It is readily seen that the number
of equations in a set is equal to the number of grids in the model. Some
equations will represent boundary conditions, and hence will have less
than five unknowns. The system of N=mxn linear algebraic equations

can be written in matrix notation as:

[L]N, N'[H]N, 1 =[R]N, 1 | - .(3)

where, [L] = the matrix of the coefficients of the H's on the left-

N, N
hand side of Equatior. 2, the size of which is N x N.

N 1° the column vector of H's to be solved for time
(to + At), the size of whichis N x 1.

=N
!

[R]N 1= the column vector of the known right-hand side
of Equation 2 at time (to), the size of which is N x 1.
Matrix [L]N N writien explicitly (i.e., m = 3, n = 3, N = 9) in the fcrm,

1
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Figure 2
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where, A, B, C, and D are as defined for Eq. 2.
: E = the value of (-A-B-C-D- Tff ) in Eq. 2
N = total number of grids in the example model,
This matrix is symmetric, definite and has a dominating main diagonaZ
(as a result of the parabolic type of differential equation applied, Eq. I).

The matrix [L] may be rearranged in the following form:

N, N
(0 0o 0 E D 0 C]
0 0 B E D 0 C
0 0 B E 0 0 C
A 0 0 E D 0 C
A 0 B E D 0 C
A 0 B E 0 0 C
A 0 O E D O 0
A 0 B E D O 0
A 0 B E 0 0 0]
N, 2m+1
Figure 3 '

wheve, m = the number of grids in the short side of the example model.
Here, the three central diagonals and the two apart-diagonals are arrznged
as vertical columns.

| A shortcut computer program, BANDSOLVE#*, uses the matri> in
Figure 3 to solve the given N equations with N unknowns simultaneousZ’y.
The N computed H's are placed by this procedure in the matrix (co’umn
vector) [R]N, 1 These results are the set of water table elevations -or
time (to + At).

Alternating Direction Implicit Procedure (ADIP)

The ADIP technique differs from the Gaussian Elimination by
two-half steps solution in two directions of the model problem. The f.rst

step is the solution of m systems of n linear algebraic equations fo-

*BANDSOLVE algorithm was written in ALGOL by Donald H. Thurnat
of Marathon Oil Company, Littleton, Colorado §/
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half-time step (At/2) énd the second step solves n systems of m
equations for the other half-time step. .Every equation has three
unknowns at most, and each system of equations is solved simultaneously -
one at a time. For the Gaussian Elimination technique, every equation
has five unknowns at most, and nxm = N equations are solved simulta-
’ neously for a full-time step (At). The advantage of ADIP is the diminution
of computer storage requirements. Computing time for a 50 grid model is
approximately the same for both technigques.

Developing the equations for the ADIP technique, the basic matrix
Eq. 3 may be wriiten as, Y \

(L, By, 1= Ty, Wy, ) - [y, 1= Ry, o (4)
which gives the twc matrix equations,
[F] - (H]= [R] - [v]- (1] (5)
[V]- (H= [&] - [F] - [H] - (6)
where, [F] = the matrix of the coefficients of the dnknown H's of one
direction in the mecdel (rows)

[V] = the matrix of the co=fficients of the unknown H's of the

secord direction in the model {columns).

Matrix [F] = has the form showrn in Figure 4:

E o 0 Cc 0 0 0 0 0
O E O O Cc 0 0 0 0
o 0 E O O C 0 0 0
A 0 O E 0 O C 0 0
O A 0 O E O 0 C 0
o 0 A 0O O E 0 0 C
o.0 O A O O E 0 0
o 0 o0 0O A 0O O E O
fo o o o o A o o E]
N, N
Figure 4

where, A, E, and C are as defined for Figure 2, and matrix [V] has three

central diagorials, Matrices [F] and [V] are symmetric, definite, with
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no more than three nonzero entries per row (tridiagonal) and diagonally
dominant, Similarly, the basic finite-difference equation (Equation 2)is

broken into two equations analogous to Equations 5 and 6,

6 Yt + At/2
AHI,J-I +(-A-C"Kf7-2) Hl,J + CHl,J+1 s
)4 9, j ) |
atrz Bi,j oAy 35773 B S, & (7)

t
o
+ (B + D)Hi,j" DHi+1,j}

é t°+ At
BHi"'l,j+(-B-D_m)Hi,j+DHi+1,j =

=4._9 -
w77 Wi " ra%, 6y, AW 5o, ¥ (8)

t,+ At/2
+ (A + C)Hi,j -C Hi,j+1

where the terms are as defined before.

The standard equation for a grid block situated in a row is Equation
7. The left-hand side of the equation has the three unknown H's whizh
are solved for time (‘co + At/2) by the known right-hand side at time (ta)'
Equation 7 is written for every block in each row, hence, there are ¢
equations with n unknowns per row. Every system of equations is s>lved

simultaneously (one row at a time) by the following scheme, based on
successive eleminations,

¢ Ry
i Sl -y b Gy ® —E,
c B .AG (9)
-- - --1 .
c. W. d. G.=-3 J _J
E =AW E A W
J § W1 e T R B |



and a. Hi,n = Gn b. Hi,j = Gj - Wj Hi,j+ 1 (10)
when, j = (h ~-1), (n-2), ..., 1; for a particular value of i;

where, A, E, and C are as defined for Figure 2

R = the known value of the right side of Equation 7
W and G = auxiliary values for the computation of the unknown H's.

Equations 9 evaluate two sets of two auxiliary computational elements for
a certain row (i) from the start of the row to its end. Then Equations 10
are employed to get the unknown H's of the row, proceeding from the nth
element to the first one. This simple solution of simultaneous equatians

of single-row set is repeated for each of the m rows of the model. Fow-
by-row sweeping results in new computed H values for time ('co + At[2).
The second half-time step uses Equaticn 8 for column-by-column sweeping
(n sets of m equations each - solved simultaneously - one at a timen.

The solution of the single-cclumn set is analogous to the scheme giver by
Equations 9 and 10, except that terms i and j will be interchanged where
i=2,3, ..., m for a particular j; B and D are introduced instecd of
A and C; and R will be the right-hand side of Equation 8. These com-
putations use quantities computed from the first half-step at time ( to-! At/2)
and will result in solving for the unknown values of H at time ( to + Lt).
One time increment is completed by computing the first half-step with rows
and the second half-step with columns to give us values of water table

elevations for time (‘co + At}

MODEL DETAILS AND TESTS

Mathematical models have been developed using both the Gaussian
Elimination and the Alternating Direction Implicit Procedures. Both
horizontal and vertical models have been studied. A brief description of

the use and tests conducted on the models follows. ]

Boundary Conditions

The computer programs written for the two implicit techniques or
procedures can handle 2 types of boundary conditions: 1) An impermeable
boundary or barrier which prevents flow. This type of boundary resuks

in the coefficients (A, B, C, or D) having values equal to zero for the grid
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points representing the barrier. 2) Constant head boundary, such as
a river hydraulically connected to the aquifer. The water elevation
in the river assumed constant and known for a certain period of time
will determine the water table elevation in the aquifer nearby. It was
assumed water table continuity existed in the vicinity of the constant
" head boundary and the potential gradient was finite. Likewise, there
was to be no restricting limitation for adjustment of the aquifer water
table to the constant head. The constant head value along with other
known quantities was then transferred to the right side of the finite-
difference equation,

Both types of boundary conditions were assigned negative
values (-H) in the grid block to distinguish them from the non-
boundary grid. Thke impermeable barrier has an arbitrary negative
value, not used elsewhere in the model. The constant head boundary

will have its known value, but with a minus sign preceding it.
Input Data

The computer programs prepared to date have been general in
nature and not developed specifically for a perticular condition. Thus.
it is necessary to introduce data into the computer to describe a partic-
ular area to b2 moedeled. Required data includes the amount of water n
storage, the aquifer properties, and the net application of water to the
land for the particular area and pericd to be modeled. Data must also
be supplied on the size of grid to be used (A x and Ay), the model size
(I, J), the time increment (At) and the total time (t). ‘

The quantity of water in storage at the initial starting time is
introduced by assigning a water table elevation (H) and an impermeabl=
bedrock elevation (Z) to each grid point.' These values in conjunction
with the aquifer properties including the storage coefficient (¢) and the
hydraulic conductivity or permeability (K) are used to define the initia.
conditions and describe the aquifers ability to transmit water. Average
or representative values for the above parameters are assigned to each
grid point. Impermeable aquifer boundaries or the presence of a stream,
constant head boundary, must also be introduced for the proper grids as

previously described.
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The net application of water to the area during the period to be
studied is a function of the following parameters: consumptive use,
evapctranspiration, pumping, precipitation, seepage from canals and
water applied as irrigation to the land. A net extraction of water (q)
is estimated for éach grid block and is the algebraic sum of the above
* parameters. Net flow of water into cr out of the aquifer is répresentej
by the respective value, negative or positive, of {q).

Input data for all the variables are punched on IBM cards and

read into the computer as called for by the program.

Output Data

Data computsd by the program includes values for the water table
elevation (H) at various times requested in the program and estimates of
the influent or effluent flow for each grid block adjacent to a stream,
constant head boundary.

Once the model has been verified, when computed values compare
with historical records for a particular period, it will be possible to vary
the applied water (q) and note changes in the water, table elevations (H) or
return flows in the streams. This would allow one to study the indivicual
effect of precipitation, pumping, evapotranspiration or applied irrigat.on

water on the water in sterage or river return flow.

Horizontsl Model Tests

A simple test using 50 grids and hypothetical data was run on a
computer to check the validity of the program and to compare the
Gaussian Elimination technique with the Aliernating Direction Implicit
Procedure. The numerical results coincided with analytical solutions
using heat flow equation for all time steps taken and were consistent
and stable.

Another model test using 50 grids and realistic input data was
run for one day time increments and produced data on water table
fluctuations znd return flow to a river for a period of two years. Dails
and monthly results for both techniques were the same. For this trial
run, it was assumed that there was no outflow from a grid block when

the saturated thickness was very small.
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To solve 50 equations (50 unknowns) by the Gaussian Eliminaticn
" technique for a total time period of two years in increments of one day |
" time-steps required 4. 86 minutes on an IBM 7094 computer, Time
requirements for larger grids are now being investigated.

One trial run was executed with the Gaussian Elimination tech-

nique where two grids of the "active blocks' were occupied by an
- impermeable boundary as shown here:

Impermeable Boundary

/////////////// Lrl L LELLLL S
/

OO NN
TR

Constant Head Boundary
‘ Figure 5

This run with irregular boundary shapes gave satisfactory results

and presumably shows that such model situations can be handled.

Vertical Model Test

To study the limitation of the horizontal model when a water
table slope is significant (i. e., aquifer near a stream) a two-dimensicnal
vertical model was tried utilizing the ADIP technique. The basic equstion
governing unsteady flow is v 2H =0, except at the free surface (wat=r
table) where the equation is {KSYH) = ¢8 H/8t. Theterm S is the
length dimension in the X and Z directions. In this case too, the h=at
equation is nonlinear as the vertical block dimension (Z) varies with t-me.
The Alternating Direction Implicit Procedure was modified to: 1) loca e
the water table, 2) introduce the storage coefficient in blocks containiag
the water surface, and 3) discard computations above the free water
surface. Results obtained to date indicate that the ADIP computer prc-
gram should be remodified to handle the discontinuity at the moving water

surface and a seepage face near the stream.
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RECOMMENDATIONS AND CONC LUSIONS

The hydrologic values of parameters to be used as data in a
model solution, are probably the weakest point of an analysis. Hence,
it is imperative to exercise particular care in the establishment of
these data, and to document them well for assumptions and decisions
made. A proposed way to treat these input data is to study the yearly
distributions of the components of g, sum them and introduce it in tke
numerical computations as a monthly percentage of the yearly quantity.

For the vertical model the Gaussian Elimination technique will
be adapted to treat the problem of a moving free water surface. This
problem will be similar to the penetrating or irregular boundafy
problem solved in the horizontal model. ' _

The Gaussian Elimination and the Alternating Direction Implieit
Procedure are just two techniques that can be used to obtain approxinate
solutions for the parabolic differential equations. It appears that exrlicit
techniques with unconditional stability 2 may also be adaptable to the
problem. Further study of various techniques is anticipated to obtai1 an
accurate method for solving the equations for a large number of grid
points utilizing a minimum amount of computer time.

Field data for a reach of the Arkansas River between LaJuntez
and Las Animas, Colorado, is now being processed in preparation fcr
a lai‘ge scale test of the horizontal mathematical model. Approximately
450 grid points will be considered with a one day increment used as -he
time step. Calculations on change in the water table elevation withir
each grid and inflow or outflow from each grid along the river to the
stream will be made. It will be necessary to compare the computed
values with historic water level and river flow data to determine whet
changes will have to be made in the model or the input data to obtain
compatible results.

Work to date indicates that a digital computer program can be
- prepared for a ground water aquifer system to study the effect of
pumping, applied irrigation water, precipitation, and consumptive use
upon the ground water in storage and return flows to a river hydrauKcal-

ly connected to the aquifer. If historical data can be matched with
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computer solutions, irndicating a valid model, then the mathematical
model could be used extensively in developing water management

policies to maximize the use of our water resources.

ACKNOWLEDGEMENTS

The ground water section of the Civil Engineering Research C=nter
employed the services of Dr. H. K. van Poolen and Dr. E. A. Breitenbach,
of Marathon Oil Company, as consultants on the project. Their guidznce,
criticism, and contributions are greatfully acknowledged.

The authors also wish to acknowledge Mr. G. Palos for his part in
the project, and Mr. H. Duke, Dr. D. K. Sunada, and Mr. M. W. Bitinger
for their help and encouragement. '

Funds for the initiation of this study were provided under corcract
from the Colorado Water Conservation Board and more recently thrcugh
the Colorado Agricultural Experiment Station. Computing facilities at
Colorado State University in cooperation with Western Data Processing
Center at UCLA were utilized. '



14

REFERENCES

1. Breitenbach, E. A. and van Poolen, H. K., Personal Communications,

Mara‘thon Oil Company, Littleton, Colorado.

2. Richtmyer, R. D., Difference Methods for Initial - Value Problems,
Interscience, N. Y. 1957. |

3. Thurnau, D. H., Algorithm 195 Bandsolve, Communications of tke
ACM, Vol. 6, No. 8, p. 441, August, 1963.

4. Varga, R. S., Matrix Iterative Analysis, Prentice - Hall, 1963.

5. Saul'yev, V. K., Integration of Equations of Parabolic Type by tte
Method of Nets, Pergamon Press, 1964.



	CERF_65_59_001
	CERF_65_59_002
	CERF_65_59_003
	CERF_65_59_004
	CERF_65_59_005
	CERF_65_59_006
	CERF_65_59_007
	CERF_65_59_008
	CERF_65_59_009
	CERF_65_59_010
	CERF_65_59_011
	CERF_65_59_012
	CERF_65_59_013
	CERF_65_59_014
	CERF_65_59_015
	CERF_65_59_016

