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ABSTRACT 

EXTREME VALUE ANALYSIS OF PEAK WIND PRESSURES ON BUILDINGS 

Extreme value statistics of pressure fluctuations on buildings in 

regions of impinging, separated flows and vortex formation was deter-

mined both theoretically and experimentally. Fluctuating pressure data 

were obtained on a scale model of an actual structure placed in a wind 

tunnel which simulated the characteristics of the atmospheric wind. 

The data were analyzed to yield probability density functions of pres-

sure fluctuations, which are non-Gaussian for negative and for strong 

positive mean values of pressure coefficients. It was confirmed that 

the distribution of all the pressure peaks in sequence, called "contin-

uous peaks" in this study, is of extreme value type I. Autocorrelation 

functions of peak sequences provided at estimate of the average effec-

tive fluctuation rate. With this value available, the probability dis-

tribution of the largest (or maximum negative) peak in a given time 

period was obtained, resulting in the ability to predict peak pressures 

on a statistical basis. Examination of some implications of the find-

ings reveals the poss:ibili ty of recovering the extreme value distribu-

tions from typical wind..-tunnel pressure study data (for example, 16-

second record at 250 samples per second). Applications of e.xtreme value 

results also include prediction technique for peak pressures. 
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Chapter 1 

INTRODUCTION 

Instantaneous local wind pressures on building surfaces result in 

large forces which have caused a substantial number of glass breakage 

and cladding failures or dislodgment in recent years. Rational design 

of glass and cladding which must withstand the effects of rare events 

such as peak wind pressures requires consideration of the risks in­

volved for any particular choice of design capacity. Given a design, 

the engineer often wants to estimate the maximum pressure or suction 

which the design can withstand and seek an estimate of the probability 

that in a given time period this peak value will be exceeded. Cermak 

(1975), in "Application of Fluid Mechanics to Wind Engineering--A 

Freeman Scholar Lecture," has written an extensive review of wind 

engineering including wind loading of structures. He pointed out that 

research on the determination of extreme value statistics for pressure 

fluctuations in regions of separated flow, reattachment and vortex 

formation is urgently needed. The present work addresses this goal. 

Fluctuations in pressure are caused by turbulence in the flow 

approaching the structure and by flow disturbances generated by the 

structure itself. The mean wind profile, mean wind speed, turbulence 

scales and intensities, direction of the approach flow, and the geom­

etry and roughness of the building have significant influence. Because 

of the random nature of wind direction and amplitude, records of pres­

sure measured on a building surface also indicate a continual random 

variation. The primary sources of information on wind effects on 

buildings have been measurements on small-scale models and on actual 

structures. Quantities of interest are often the mean, the root-mean­

square pressure coefficients and the range of the data. The 
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probabilistic description of pressure fluctuations is achieved through 

the use of the probability density function (PDF). However, in the 

study of wind loads, much of the concern is for the extreme loads as 

indicated before. Since the extremes are rare events, many more data 

are required to define the main body of the PDFs of the extremes than 

to define the maiR body of the PDFs of the parent pressure 

fluctuations. 

In this study, more than 5 million fluctuating pressure data 

points were obtained from a scale model in a boundary-layer wind 

tunnel. Local pressure measurements were made at points in regions of 

impinging, separated flows and vortex formation. The present work 

provides a theory which attempts to embrace the distinctive features of 

previous findings on peak wind pressures on buildings. The distribu­

tion of all the peaks in sequence is verified to be of extreme value 

type 1. The effective fluctuation rate v i-S provided by examining 

the autocorrelation coefficients between peaks at various lag times. 

This parameter is used with theory to obtain the distribution of the 

largest peak in a given time period T (at a particular tap), allowing 

the peak at any desired probability level to be predicted. One impor­

tant application of the present work is the possibility of recovering 

the extreme value distribution from typical wind-tunnel pressure study 

data (e.g. 16 sec. record at 250 Hz). The new theory is also compared 

with Davenport's (1964) peak value theory and Dalglish's (1979) "spike" 

theory. 



Chapter 2 

BACKGROUND 

Advances in structural materials and architectural concepts have 

promoted the design and construction of building with increasing 

slenderness and decreasing structural damping. The use of lighter 

cladding and more extensive glass areas has also increased in recent 

years. All of these features produce vulnerability of structure to 

damage by wind loading. Many failures of various exterior building 

elements indicate the need of an improved evaluation of local wind 

loading. 

Fluctuating pressures on bluff obstacles in turbulent flows are 

caused directly by upstream turbulence and the unsteady velocity field 

produced by the obstacles themselves. Vickery (1966) pointed out that 

"in both smooth and turbulent flow the fluctuating pressures are suffi­

ciently large to warrent attention in regard to both the dynamic re­

sponse of a structure and the magnitude of instantaneous local pres­

sures on a face." The local pressure fluctuations, when combined with 

pressure due to the mean wind, thus produce high instantaneous loading 

on the surfaces of an obstacle (such as a high-rise building). In wind 

engineering applications, one is often concerned with the largest 

value. For cladding design, the mean pressure loading is not adequate. 

Instead, the gust effects must be taken into account, which means 

knowledge of peak pressures (maximum pressure or suction) expected to 

act on the structure during its projected lifetime is essential for 

rational design of glass and cladding. 

Conversion from mean wind speed to mean pressure can easily be 

achieved through mean pressure coefficients obtained from model tests 
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in a wind tunnel and/or from full-scale measurements. Determination of 

wind turbulence effects remains difficult since the local pressure 

fluctuates in a random manner. Davenport (1961, 1964), in his papers 

on the buffeting of structures by gusty wind, suggested expressions for 

estimating the largest instantaneous values occuring during samples of 

some specific duration of a stationary random function. His analysis 

was intended to apply to all aspects of a structure subjected to gust 

loading. This means the stationary random function here could be the 

turbulent velocity fluctuation, the fluctuating aerodynamic force 

induced on the structure thereby, or the structure's response in terms 

of deflection, stress, bending moment, etc. A probability distribution 

for the maximum peak value expected during a given time period, T, has 

been obtained by Davenport assuming a stationary Gaussian process. 

This prediction technique requires the value of the average effective 

fluctuation rate v in peaks per second. The physical interpretation 

of v, according to Davenport, is the frequency at which most of the 

energy in the spectrum is concentrated. He provided an estimate of v 

based on the earlier statistical work of Rice (1944, 1945) using the 

appropriate moments of the power spectrum of the random process. A so­

called "gust factor" was proposed to relate the peak loads to the mean. 

His definition of a gust factor was the number of rms values by which 

the peak response exceeds the mean in some specified recurrence period. 

This gust factor is dependent on the statistical characteristics of 

wind turbulence, the mean wind speed profile, and the size and dynamic 

properties of the structure. Vellozzi and Cohen (1968) introduced the 

gust response factor which is a measure of the effective dynamic load 

produced by gust, and is intended to translate the dynamic response 
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phenomena produced by gust loading into simpler static design criteria. 

The gust loading factor approach is undoubtedly a notable advance in 

obtaining design pressures in practice. This technique is, in fact, 

the basis of the wind loading provisions of the American National 

Standard Building Code ANSI A58.1-1972 (1972). Vickery (1970) deter­

mined that "The gust. factor relates only to the overall loads in the 

direction of mean wind. Lateral loads or local pressures are not 

predictable by the gust factor." It is apparent that the simplified 

gust factor approach cannot be considered entirely adequate. 

Dalgliesh (1971) presented a summary of statistical information 

derived from actual pressure measurements on a tall building. The 

maximum peaks observed from all the records were plotted as probability 

distribution and compared with the theoretical distribution defined by 

Davenport (1964) for a stationary, Gaussian process. The observed 

distributions are in good agreement with Davenport's theory for clad­

ding positions on the positive-pressure upwind side of the building. 

Only one distribution for a negative pressure on the leeward side of 

the building was reported, and discrepancies occur as the distribution 

tends to be more widely scattered and centered at higher peak value 

than the theoretical curve. A rather extensive discussion on the 

crucial quantity v (effective fluctuation rate) was given since it 

provides useful information for the checking and improvement of theo­

retical methods for predicting peak pressures. Dalgliesh found that v 

tends to increase with decreasing lengths of record and the actual 

number of peaks per second is an upper bound for the effective fluctua­

tion rate. Again, he used the gust factor approach: 1:-he number of 

standard deviations from the mean at which the peak pressures fall. 
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Peterka and Cermak (1975) performed the first systematic and 

extensive model tests on local pressure fluctuations in a wind tunnel. 

They suggested that the probability densities of pressure fluctuations 

fall into two basic classes - one for Cp (mean pressure coeffi-mean 

cient) > - 0.1 and another for Cp < -0.25. Probability densities mean 

in the class for Cp > -0.1 are nearly Gaussian while those in the mean 

class for Cp < -0.25 (flow speration regions) are very skew and far mean 

from Gaussian. This innovative grouping of the distributions of the 

fluctuating pressures conveniently summarizes some distinguishing fea-

tures of the aerodynamic process. An extreme value analysis of peak 

pressures was also performed. It was found that probability densities 

for the maximum positive peak pressure in time T for Cp > -0.1 mean 

agree well with the theoretical prediction by Davenport based on a 

Guassian pressure fluctuation distribution. However, in regions of 

high negative pressure (Cpmean < -0.25), probability densities for the 

maximum negative peak pressure in time T do not agree well with 

Davenport's theory based on a Gaussian pressure fluctuation distribu-

tion. Their results indicate that the statistics of laboratory and 

field pressure distributions behave in a similar manner. Information 

about how the parent distribution affects its extreme value distribu-

tion was implied by Peterka and Cermak, where concern was centered on 

the validity of the Gaussian assumption of parent pressure fluctua-

tions. In fact, the approach taken previously to the prediction of 

largest value distribution can be extended to parent distributions 

other than Gaussian. Davenport (1976) pointed out that the tails of 

the distribution of the strong negative pressures are roughly exponen-

tial in form. The largest value distribution is then of extreme value 
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type I. Details concerning type I model of peak pressure distributions 

will be discussed thoroughly in this thesis. 

The probability density functions of the peak pressures in time T 

obtained by Akins and Cermak (1976) are very similar to those found by 

Peterka and Cermak (1975). Akins and Cermak reported that, for the 

pressure fluctuations studied in both stagnation and separated regions, 

the effective fluctuation rate v was approximately 20. A design 

technique was also suggested by them. They argued that a technique 

which utilizes the mean and rms pressure coefficient would be more 

accurate than a procedure which merely recorded the maximum or minimum 

pressure observed at a particular location. Templin and Cermak (1976) 

examined the effect of mullions on the local pressure fluctuations on 

building while Zambrano and Peterka (1978) studied wind loading inter­

action on an adjacent building. Both groups employed the technique by 

Peterka and Cermak (1975) to analyze local peak pressures. 

Dalgliesh et al. (1979) proposed a method of treating peak 

pressures based on the fit of an exponential distribution to a popula­

tion of "significant independent events," called pressure spikes. They 

resolved the difficulty of applying a Gaussian distribution to the 

points making up certain time records of fluctuating pressures by 

arguing that sudden spikes of turbulence are superimposed on a record 

that is otherwise Gaussian in nature. They aimed at these spikes 

rather than the entire population of points in the time record. Two 

rules were provided to determine these spike values which form a new 

parent population of a negative exponential distribution. The extreme 

value distribution of peaks, where each peak in the distribution is the 

maximum spike value from a sampling interval, is then related to the 
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above negative exponential distribution by one parameter n, the 

average number of spikes per interval. This distribution was found to 

provide a good fit to both full-scale and wind tunnel results. A 

discussion of time scaling was also presented which enables comparison 

of model and full-scale measurements. 

Sockel (1979) fitted pressure fluctuation data with a Kth order 

Weibull distribution which implies its extreme value distribution is of 

type I. This is actually in line with Mayne and Cook's (1979) opinion: 

" whichever distribution is a correct description of the parent 

distribution, the extreme value distribution will be type I." Mayne 

and Cook (1979) also proposed a fully probabilistic design procedure; 

the design load is formed by the combination of the extreme hourly-mean 

wind speed with the extreme loading coefficient in that hour of wind. 

The present work provides a theory and new data which attempts to 

embrace the distinctive features of previous findings on peak wind 

pressures. In the future, progress in the understanding of the phenom­

ena related to peak pressures will depend heavily on experimental 

investigations. And these experimental investigations should serve as 

inputs to the modification of existing theoretical results. 



Chapter 3 

THEORETICAL CONSIDERATIONS 

3.1 General Remarks 

The statistical theory of extreme values has, in recent years, 

been very useful in connection with a variety of applied problems. The 

largest or smallest order statistics of a sample is often the relevant 

inference function in engineering applications in statistics. For 

example, in building aerodynamics, rational design of glass and clad-

ding on structures requires a knowledge of peak pressures expected to 

act on the structure during its lifetime. The present work attempts to 

confirm that the cumulative distribution of peak pressures is of type I 

extreme value distribution. With the knowledge of probability density 

of largest (or smallest) peaks in a period together with the informa-

tion regarding distribution of extreme winds, a probabilistic approach 

can be embodied in the design procedures for wind loading. 

3.2 Order Statistics 

Since we are interested in the minimum and maximum pressures, the 

need to consider order statistics arises (see Bury, 1975). 

If we have n sample values 

of measurements into an ordered set 

X., we can rearrange this given set 
1. 

(3.1) 

Thus the given observations are relabeled by a subscript in parentheses 

to indicate their order in magnitude, i.e. x(1) being the smallest 

measurement and the largest. The order statistics are 

random variables associated with a statistical model (probability 

density function PDF, f(x) and cumulative distribution function CDF, 
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F(x), where F(x) = J~~ f(x)dx). The order statistics X(l) and X(n) 

often provide more important information than the mean X or some 

other property of the underlying model F(x). These two order statis-

tics are called the "extreme values" of a set of n measurements. 

3.3 Exact Models of Order Statistics 

Consider the largest sample value X(n) among n independent 

sample values X. 
1 

with model F(x). The distribution of X(n) is 

obtained as follows (Epstein, 1960): 

•(n)(x;n) = Prob{X(n) ~ x} 

= Prob{all X. < x} 
1 -

= [F(x)]n (3.2) 

The PDF of the nth order statistic X(n) is obtained as 

d. 
+(n)(x;n) = d~n) = n[F(x)]n-1 f(x) (3.3) 

Similarly, if the smallest sample value x(
1

) is larger than a 

given value x, it follows that all sample values 

than x. 

(1 - •(l)(x;n)] = Prob{X(1) > x} 

= Prob{all x. > x} 
1 

= [1 - F(x)]n 

••• •(t)(x;n) = 1 - [1 - F(x)]n 

X. must be larger 
1 

X > x} 
n 

(3.4) 
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The equivalent PDF of X( 1) is 

n-1 
$( 1)(x;n) = n[1 - F(x)] f(x) (3.5) 

3.4 The Type I Extreme Value Model 

The sampling model of interst is the distribution of an extreme 

value in a sample from an underlying, "parent" distribution. When the 

parent distribution F(x) is known, the exact extreme value models are 

provided by Eq. (3.2), (3.3) or (3.4), (3.5). When F(x) cannot be 

specified, asymptotic distributions can be used to model the extreme 

value of interest. Note that these distribution are valid only for 

large sample size n of the underlying variable X. 

Since an extreme value is a rare event, it occurs less frequently 

than other values of the underlying variable X. This large value 

usually ends up in the tail of f(x). In other words, the nature of 

the corresponding tail of the parent distribution will affect the 

distribution of the extreme value more strongly than the bulk of f(x). 

The type I extreme value model arises from parent distributions that 

are unlimited in the direction of the extreme value, provided the 

relevant tail of the parent PDF f(x) falls off in an exponential 

manner, i.e. f(x) is of exponential type (Gumbel, 1958). 

Since for any sample of size n it is true that 

min 
i 

{X.} = 
l. 

- max 
i 

{-X.} 
l. 

(3.6) 

We shall now focus on the derivation of the asymptotic extreme-value 

distribution of largest value only. Our interest is in underlying 

distribution F(x) having an upper tail of the exponential type 

F(x) = 1 - exp{-a(x)} (3.7) 
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with a(x) an increasing function of x. It follows, from this 

condition, that the normal, log-normal, gamma, and Weibull distribu-

tions are of this general type. Only a simplified argument is pre-

sented here. The reader is referred to Gumbel (1958) for details. We 

introduce what is known as the characteristic value 

is defined to equal that value of x for which 

1 
F(x) = 1 - -

n 

u of 
n 

It 

(3.8) 

For the exponential-type case under consideration here, we can write 

Thus 

and 

F(u ) = 1 - ! = 1 - exp{-a(u )} n n n 

1 
n 

a(u ) 
n 

e 

n 

= 1 (3.9) 

Consider now the distribution of X(n)' Eq. (3.2): 

n 
~(n)(x;n) = [F(x)] 

If n is large, X(n) will almost certainly take on values only in 

the upper tail of the distribution of X. Thus in the region of 

interest 

-a(x) n 
~ (x·n) = [1 - e ] 

(n) ' 

Using the fa~tor equal to unity [Eq. (3.9)], 

1 
a(u ) 

e-a(x) 1n 
~(n)(x;n) [1 -

n = e 
n 

1 
-[a(x) - a(u )] 

= {1 - e n 1n 
n (3.10) 
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If x is "not far" from u , then we can replace a (x) by a linear 
n 

approximation. The Taylor expansion of a(x) about x = u gives: n 

a(x) a(u ) + [da(x)l ] (x - u ) 
n dx u n 

n 

= a(u ) + a (x - u ) 
n n n 

in which a depends only on n and not on x. Therefore, 
n 

a(x) - a(u ) 
n 

a (x - u ) 
n n 

Substituting into Eq. (3.10) 

tP(n)(x;n) 
1 -a (x - un) n 

[1 - e n ] 
n 

-a (x - u ) 

= (1 - f!)n 
n 

where ~ = e 
n n As the size n of the initial sample in-

creases, the nth-order statistic X(n) increases and so does the 

characteristic value u . It can therefore be expected that the term 
n 

{a(u ) - a(x)} 
n 

(and hence ~) tends to a constant as n grows. 

Therefore the type I asymptote is written 

FI max(x) = lim tP(n)(x;n) , 
n~ 

= lim (1 - f!)n 
n 

n~ 

lim [1 n ~ + n(n-1) ~2 ... ] = - -n 2' 2 n-+eo .n 

1 ~ + 
1 ~2 .!__ ~3 = - -2! 3! 

= e -~ 
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Substituting for P 

FI (x) = exp{-exp[-a (x-u )]} ,max n n 
(3.11) 

The quantity a 
n 

is recognized as a scale factor and u is a loca­
n 

tion factor. Expressing these quantities in the notation of this 

thesis, 

1 
a = n e 

u = - t n 

The type I asymptotic Eq. (3.11) is then written 

~ FI (x;f,,e) = exp[-exp( e )] ,max 

The extreme value PDF is obtained by differentiating Eq. (3.12): 

1 ~ ~ fi,max(x;f,,e) = - e exp[ e - exp( e )] 

(3.12) 

(3.13) 

The type I asymptote for largest extremes is related to the type I 

asymptote for smallest extremes as follows: 

From Eq. (3.6), we know that 

min{X.} 
• 1 
1 

= - max{ -X.} 
. 1 
1 

(3.6) 

Hence the type I asymptote of minimum values is obtained from 

(3.12) as 

FI . (x;t,e) = 1 - exp[-exp(~e )] ,m1n 

with PDF 

fi . (x;f,,e) ,m1n 

It is seen that 

Z = 0, where Z 
e e 

fi . ,m1n 

=~ e . 

(Z ) 
e 

is the image of f I,max (Z ) 
e 

(3.14) 

(3.15) 

about 
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3.5 Peak Pressures on Buildings 

It has been shown in Sec. 3.4 that the statistics of the parent 

population points are related to those of extremes. To predict peak 

wind loading on a structure, Davenport (1964) has provided a peak value 

theory for wind loads based on the assumption of a Gaussian pressure 

distribution. If the parent population is Gaussian, a type I double 

exponential distribution has been shown to apply to peak pressures on 

windward faces of a building (Peterka and Cermak, 1975; and Dalgliesh, 

1971). Extensive model studies in wind tunnels by Peterka and Cermak 

have shown that the forms of the PDFs fall into two basic classes, one 

for direct "impinging" and the other for "separated" flows. The densi-

ties in the former class are nearly Gaussian (but not necessarily, see 

Chapter 6), yet the densities for the latter class are highly skewed. 

This thus explained why predictions based on the Gaussian assumption 

for separated regions fall far short of observations. 

Nevertheless, it is reasonable to believe that both classes meet 

the necessary requirements for the distributions of the positive-going 

and the negative-going extremes to be of the type I form (Peterka, 

personal communication, 1979). The cumulative density function of 

peaks in sequence (see Chapter 5 for details), q(x), has the form 

(Peterka, personal communication, 1979) 

~ exp[-exp( e )] for positive peaks (3.16) 

q(x) = Jx p(x) dx = -oo 

1 - exp[-exp(~)] for negative peaks (3.17) 

where 

p(x) = probability density function of peaks 

t,e = empirical location and scaling factors; 
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t,e can be selected by "least-squares" fit of experimental data. 

p(x) 

Then 

= dq(x) _ 
dx -

- ~ exp[x ; t - exp(x ; t)] for positive peaks (3.18) 

1 X + t ?!__!_! . 
ij exp(~ - e~p( e )] for negat1ve peaks (3 .19) 

But in the peak loading problem, we are not primarily concerned 

with the distribution of all the peaks, but only with the largest (or 

smallest) of these in a period of time T. 

If the peaks are independent, then the probability density 

function of largest peak in time T, P(x), is given by 

P(x) 
N 

= dQ(x) = d[q(x)] = N[q(x)]N-1 p(x) 
dx dx (3.20) 

where 

Q(x) = cumulative distribution of largest peak in time T 

N = number of independent peaks in time T 

= VT 

And v is the effective fluctuation rate, number of independent peaks 

per unit time. 

Q(x) = [q(x)]N 
?!__!_! = exp{- N exp( e )] 

= exp{- exp[x + (t + 8 ~n N)]} 
e (3.21) 

The largest observation Q(x) has also a type I model, with 

location shifted by the factor 8 ~n N, the scale parameter 8 being 

unchanged. 

The model Eq. (3.17) also features a reproductive property. That 

is, the smallest extreme value from the model Eq. (3.17) has the exact 
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distribution with Eq. (3.17) being shifted to the left by amount e !n 

N. 

Note the expressions (3.20) and (3.21) are valid for all N not 

for large N only. A problem arises as to how to determine N, and 

thus v in a given time T. The effective fluctuation rate, v, 

varies with frequency response of the measurement system and is not an 

easily measured quantity. A new mechanism was proposed to find v in 

this thesis. It was achieved by examining the autocorrelation coeffi­

cients between peaks for various lag times (Peterka, 1979). Details 

concerning the new method will be discussed in Section 3, Chapter 6. 



Chapter 4 

EXPERIMENTAL APPARATUS AND PROCEDURES 

4 .. 1 General 

The intention of this study was to determine extreme value 

statistics for surface pressure fluctuations on structures. During the 

past decade, wind tunnels capable of modeling the wind forces on struc­

tures have been developed (Cermak, 1958) and there is a growing con­

fidence that careful simulation of the flow field and the near-by 

structures will produce pressure fluctuations that accurately model the 

full-scale situation (Dalgliesh, 1975). With the versatility of modern 

high speed digital computers, large amounts of data at various loca­

tions on a model (structure) subjected to many wind directions can be 

obtained to facilitate an extensive analysis of peak wind pressures on 

buildings. The data analyzed in this thesis originated from a wind 

engineering study (Peterka and Cermak, 1979) of a preliminary design of 

the Mountain Bell Utah State Headquarters Building, Salt Lake City, 

Utah (Fig. 4.2). The wind-tunnel test was performed in the Meteoro­

logical Wind Tunnel in the Fluid Dynamics and Diffusion Laboratory at 

Colorado State University, Fort Collins, Colorado. Measurements of a 

different test building were made in the Industrial Aerodynamics Wind 

Tunnel in order to check the consistency of the dat~ obtained. 

4.2 Scaling Requirements 

Physical Modeling 

Modeling the aerodynamic loading on a structure requires special 

consideration of flow conditions in order to produce similitude between 

model and prototype. Cermak ( 1975) detailed the similarity require-

ments and their wind tunnel implementation. 

ments may be stated as follows: 

In summary the require-
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(1) Undistorted scaling of boundary geometry (geometric 

similarity). 

(2) Kinametric similarity of approach flow (distributions of mean 

velocity and turbulence characteristics). 

(3) Reynolds number equality. 

These criteria are satisfied by constructing a scale model of the 

s·tructure and its surroundings and performing the model studies in wind 

tunnels specially designed to model the important characteristics of 

atmospheric boundary layer flows. Reynolds number constancy requires 

that the quantity be similar for model and prototype. If the 

same fluid is used (the kinematic viscosity, I:! , is identical for 
p 

both), Reynolds number can not be made precisely equal with reasonable 

wind velocities. Wind velocity in the wind tunnel would have to be the 

model scale factor times the prototype wind. Such a value is well 

above the velocity of sound in air and can result in appreciable 

effects of compressibility. To compensate for this apparent dilemma is 

the circumstance that duplication of prototype Reynolds number for 

sharp-edged bluff bodies is not directly necessary. In fact, for 

sufficiently high Reynolds number (> 2 x 104 ) a pressure coefficient at 

any location on the building will essentially be constant with Reynolds 

number if the model is characterized by sharp corners. Typical values 

encountered are 107 to 108 for the full-scale and 105 to 106 for the 

wind tunnel model. Thus acceptable flow similarity is achieved without 

precise Reynolds number equality. 

Time Scaling 

Time scaling is essential to relate peak pressures on the model to 

those in full-scale situation. The concept of the reduced velocity is 
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frequently applied to time scaling (Akins, 1976). This dimensionless 

parameter is, in fact, the reciprocal of the Strouhal number. The 

equality required in the model and prototype is given by: 

(4.1) 

where U is the meaq velocity of wind, n is a characteristic fre­
o 

quency, and D is an appropriate dimension of the building under 

consideration. Equation (4.1) can be rearranged to 

(4.2) 

since 1 n
0 

= T . For a fixed geometric scale and velocity ratio, Eq. 

(4.2) can be used to obtain a time scaling. 

As shown in Chapter 3, theoretical analysis of extreme value 

statistics requires a knowledge of the number of independent peaks in 

time T, vT, where v is the effective fluctuation rate. The use of 

a nondimensional wavenumber leads to a scaling for v 

(4.3) 

or 

(4.4) 

This scaling together with Eq. (4.2) gives the relationship 

(4.5) 

With a time scaling factor established, the wind-tunnel measurements of 

pressure fluctuation rates can be compared with available full-scale 

measurements. 
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4.3 Wind Tunnels 

Measurements of the Utah Mountain Bell Building were made in the 

Meteorological Wind Tunnel located in the Fluid Dynamics and Diffusion 

Laboratory of Colorado State University, Fort Collins, Colorado. A 

schematic of the tunnel is shown in Fig. 4.1. This is a closed-circuit 

type wind tunnel witb. a 9 to 1 contraction ratio driven by a 250 hp 

variable-pitch, variable-speed propeller. The available velocity in 

the test section ranges from 0.3 to 37 mps (1 to 120 fps). All of the 

data reported in this thesis were taken at a free stream velocity of 16 

mps (50 fps) measured at the top of the boundary-layer. This velocity 

is well above that required to ensure Reynolds number similarity be-

tween the model and prototype as discussed in Sec. 4.2. The ceiling of 

the wind tunnel is adjustable to maintain a zero pressure gradient in 

the vicinity of the model. 

The long test section in conjunction with spires, barriers and 

roughness elements were used to develop the proper approach mean velo-

city and turbulence characteristics. Descriptions of this type of 

approach to obtain thick boundary layers have been provided by Cermak 

(1976). The velocity profile developed had a mean profile following a 

power-law of the form 

U(Z) (~)n 
u(o) = o 

(4.6) 

where U(Z) and U(o) are the mean velocities at an arbitrary height, 

Z, and at the top of the boundary layer, o respectively. The exponent 

n is an indication of terrian roughness upstream of the modeled area. 

For this study n had a value of 0.24--which would be classified as 

suburban or type B exposure as designated by the ANSI Standard (1972). 



22 

Mean velocity and turbulence intensity profiles were measured upstream 

of the model and are shown in Fig. 4.3. The turbulence intensity is 

defined as the root-mean-square (about the mean) of the longitudinal 

velocity fluctuations divided by the local mean velocity U(Z), 

T = 
u 

(4.7) 

Properties of the wind tunnel boundary layer, such as velocity spectra, 

autocorrelation function and coherence function are reported by Akins 

and Cermak (1976). The reader is referred to this report for a more 

complete discussion of simulation of boundary layers. 

4.4 The Model 

The Mountain Bell Building was modeled along with a region of the 

city with 300 m (985 ft) radius centered at Mountain Bell Building. The 

model was constructed to the scale of 1:200 to give the largest pos-

sible size that did not produce significant blockage in the wind tunnel 

test section. The model was built of 0.013 m (1/2 in.) thick Lucite 

plastic and fastened together by metal screws. The surrounding build-

ings were built of styrofoam. The completed model is shown in Fig. 4.2. 

To measure pressures, holes were drilled in the model 0. 0016 m 

(1/16 in.) in diameter normal to the plastic surface. A brass tube with 

inside diameter of 0.0016 m was connected to each pressure tap with the 

tube extending into the interior of building. Flexible "Tygon" tubing 

(0.0016 m ID, 0.003 m OD) was used to connect each tap directly to a 

pressure transducer. The tube length is 0.013 m. The dimensions and 

the locations of the taps on the building are shown in Fig. 4.4. 

The model was mounted on a turntable at the downstream end of the 

test section. The turntable was supported by a large inertial mass to 
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isolate the model from any vibrations in the wind tunnel. The wind 

directions were measured clockwise from true north. The reference for 

the azimuth was set using an optical alignment technique. Other build­

ing orientations could be set using a graduated scale located on the 

base of the turntable. The scale is readable to within 0.25 degree. 

Details concerning the experimental configuration of this study 

can be found in the "Wind-Tunnel Study of Mountain Bell Utah State 

Headquarters Building, Salt Lake City" by Peterka and Cermak (1979). 

4.5 Pressure Measurements 

Fluctuating pressure data used for study in this thesis were 

obtained from selected pressure taps on the model building. The in­

stantaneous pressure was transmitted through a very short tube length 

(0. 013 m) to the positive sides of one differential pressure trans­

ducer. The negative or reference side of the transducer was connected 

to the static side of Pitot-static tube located directly above the 

model at the top of the boundary layer. In this way, the transducer 

measured the instantaneous difference between the local pressures on 

the surface of the building and the static pressure in the free stream 

above the model. The fluctuating signal from the transducer was fed to 

a high-speed digital data-acquisition system. A block diagram of the 

system is shown in Fig. 4.5. The digital technique and data processing 

procedure will be discussed in more detail in Chapter 5 titled "Data 

Acquisition, Processing and Reduction." Note that in this study, 

pressure measurement was made at each tap at a time. 

The pressure transducer used was a Setra Low Range Pressure 

Transducer (Model 237) with 0.1 psi range. It was selected because of 

its favorable signal-to-noise ratio and linearity in the required 
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working range. The transducer was calibrated to yield a calibration 

factor which converted the voltage signal into physical units (psi). 

The calibration is linear and repeatable to within 0.5 percent. 



Chapter 5 

DATA ACQUISITION, PROCESSING AND REDUCTION 

5.1 Digital Techniques 

Before the continuous time series of the fluctuating voltages can 

be converted into a discrete digital time series, the digitizing sample 

rate must be considered. Sampling at points which are too close to-

gether will yield correlated and highly redundant data, and thus un­

necessarily increase the time and cost of calculations. In contrast, 

sampling at points which are too far apart will cause higher frequency 

components to be "folded" at lower frequencies. (Bendat and Piersol, 

1971 have a more detailed description of concepts discussed in this 

section). In this case, misrepresentation and improper conclusions 

about the original data may result. One practical method exists for 

handling this aliasing problem, i.e. to select the sample rate to be at 

least two times greater than the maximum anticipated frequency in the 

original data. Previous studies in pressure fluctuations on buildings 

indicate that most of the energy content is associated with frequencies 

less than 100 Hz. The data, then, were digitized at 250 samples per 

second so that all significant information was obtained for the proba­

bilistic study. However, since the frequency response of the pressure 

measurement system in this study is sufficiently high (over 500 Hz), 

data were then taken at a sample rate of 1000 Hz in situations where 

power spectra were to be measured. Because the energy content of fluc­

tuating pressures were much less than the frequency response of the 

transducer, no influence of transducer frequency response on results 

was expected. 

A sophisticated digital-data-acquisition system at the Fluid 

Dynamics and Diffusion Laboratory at Colorado State University was used 
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for the pressure measurements. The analog-to-digital (A/D) convertor 

(Preston Scientific GMAD-4), Hewlett-Packard-1000 computer, disk unit, 

and Digi-Data digital tape drive are an integrated system. An operator 

can control the system through a teletype. The data-taking program 

sampled from the A/D on one channel and saved time series segments of 

length 16,384 (214) on the 9-track magnetic tape for transfer to the 

Cyber 172 for later analysis. Each segment of 16,384 data was broken 

12 
into 4 tape-records of 4,096 (2 ) although the 16,384 points consti-

tute a continuous time series. This is expecially helpful when the 

spectral density estimation by digital means is to be computed by the 

Cooley-Tunkey Fast-Fourier Transform (FFT) method (Akins and Peterka, 

1975). 

Seven representative pressure taps on the wind tunnel models, 

subjected to various wind directions, were selected. Each was sampled 

at 1000 Hz for 4 minutes (16 segments, each of 16,384 points) for spec-

tral analysis; while data for probabilistic study were obtained by 

sampling at 250 Hz for 25 minutes (24 segments, each of 16,384 points) 

for each tap. The long record of pressure fluctuations provided an 

acceptably large sample of peaks for determination of extreme value 

distribution as will be discussed later. 

5.2 Basic Data Processing and Reduction 

The raw data on digital tapes obtained from the A/D converter 

consisted of 16-bit binary words representing the continuous pressure-

transducer voltages. These 16-bit binary words (from HP-1000) were 

then transformed into 60-bit binary words (Cyber 172) by byte manipula-

tion routines (CSU Computer User's Manual, 1976). Special attention 

must be given to the feature of representing negative numbers in the 
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HP-1000 16-bi t binary. Those numbers which are greater than 32767 

(2
15

-1) are actually negative numbers and the value 65535 (2
16

-1) must 

be subtracted from them to determine correct original values. All the 

digital data in this study were processed using the Cyber 172 at the 

Computer Center of Colorado State University. 

The digital tape contained a record of a voltage signal e[t] in 

a discrete form, consisting of N values obtained by sampling at 

intervals of 6t. The total length of record in seconds, T, is then 

equal to N6T. The first step in data reduction was to convert the 

voltage signal into physical units of pressure. The use of linear 

pressure transducers makes this operation a simple multiplication. 

discrete form of the record in physical units was expressed as 

The 

P .. 
l. 

The sample mean value, P, the variance, ap 
2

, and the coefficient of 

skewness, S{P}, are computed in the usual manner; thus for large sample 

size, N 

1 
N 

p = :L P. 
N 

i=1 
l. 

2 1 
N 

P)2 ap = :L (P. -N 
i=1 

l. 

(5. 1) 

Non-dimensional pressure coefficients, Cp, were obtained from the 

surface pressures on the models. The mean, rms, peak maximum, and peak 

minimum pressure coefficients are defined as follows: 



Cpmean = 

Cprms = 

Cpmax = 

Cpmin = 
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(Pi - pstatic) 

1 p{u(6)}2 
2 

{ (P. -
l. 

p . ) 
stat1.c 

1 
2 p 

(P. - p . ) 
1. stat1.c max 

1 p {u(6)} 2 
2 

(P. - p . ) . 
1. stat1.c m1.n 

1 {u(6)} 2 
2 p 

- (P. - p )}2 
l. static 

{u(6)} 2 

maximum in record 

minimum in record 

(5 .2) 

1/2 

The data records used in obtaining these coefficients were taken 

at a sample rate of 250 Hz for a period of 16.38 sec. (Peterka and 

Cermak, 1979). These coefficients will descirbe the general character-

istics of pressure taps chosen in this study. 

The probability density function (PDF) can be defined for the 

midpoint of the ith bin for K bins over the data range [a,b] as 

where 

f. (r)) = 
l. 

w 

N 

d. 
l. 

N. 
l. 

Prob[d. 1 < r) <d.] N. K 
].- - l. l. __ ____.;;,__ ___ _____;;;.._ = (-) ( ) 

w N b-a 
i = 1, 2, ... K 

Cp - Cp 
mean = , the reduced variate 

Cprms 

= (b-a)/K, the width of each bin 

= sample size 

= a + iW, and 

= number of r) such that d. 1 < r) ~ d .. 
].- l. 

(5.3) 

The PDF for parent distributions of pressure fluctuations on the 

structure were calculated for each tap location using 64 bins to 
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subdivide the range of fluctuations. Each distribution consisted of 

16,384 data samples. 

The power spectral density function, which describes the frequency 

composition of the data in terms of the contributions of the fluctua-

tions at a given frequency to the variance of the signal, was computed 

directly from the data records using Fast-Fourier Transform techniques. 

The programs used in the data analysis of this thesis and a detailed 

description of their use has been discussed by Akins and Peterka 

(1975). 

5.3 Treatments of Peak Pressures 

The probability density function of all peaks in sequence for each 

pressure tap was constructed. These peaks are actually "relative" 

extrema (relative maxima or minima) in the time series. Figure 5.1 

shows how these peaks were selected according to the "screening" tech-

nique. The local extremum must be, at least, 2 analog-digital steps 

(-.0096 volt) away from its two neighboring points to avoid A/D noise. 

Distributions of this kind are referred to as "probability density of 

continuous peaks" p('l). The cumulative probabilities of peak distrib-

utions q('l) were also calculated. The cumulative distribution func-

tion (CDF) is the probability that the value of 11 will not exceed a 

certain value. It is the integral of the probability density function 

from -~ to '1· In our case, 

(5.4) 

Each peak distribution consisted of 10,000 peaks selected from 24 seg-

ments, each 16,384 data points long. The task was then to fit these 

peak distributions q('l) (CDF) by type I extreme value distributions, 
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~ax(~) = exp{- exp(~)} for maximum (5.5) 

~in(~) = 1 - exp{- exp(~)} for minimum (5.6) 

The parameters used in the assumed theoretical distribution were 

determined by least-squares fit of the observed values. A multiple 

correlation coefficient indicates how good the fit is. While at the 

same time, the chi-square goodness of fit test was used to test the 

null hypothesis that the observed probability density function and the 

assumed theoretical density function are the same. The chi-square 

statistic for K class intervals is 

(f. - F)
2 

"'2 
X = 

K 

1: 
i=1 

1 

F 
= sum of normalized squared deviations (5. 7) 

where f. = the observed frequency in the ith bin and F =the expected 
1 

frequency of the theoretical distribution. The number of degrees of 

freedom of the chi-square, x2
, distribution is (K-1) minus the number 

of parameters of the assumed distribution. 

The probability density for largest (or smallest) peak in time T 

was obtained for each tap location. Since the extremes are rare events, 

many more data are required to define the main body of the PDFs of ex-

tremes than to define the main body of the PDFs of the parent variate. 

The long record mentioned above (24 segments, each of 16,384 data 

points) provided 288 5-sec sampling intervals. Each sampling interval 

provides only one maximum/minimum. The extreme value distribution ap-

plies to a collection of maxima/minima derived from many such inter-

vals. These distributions for the largest peak in time T were pre-

sented in hystograms. Note that these hystograms of extreme pressures 
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were developed from only one tap at a time, not from groupings of two 

or more taps. This will give us some understanding about extreme value 

distributions 

conditions. 

of pressure taps under different approach wind 

A value of v, the number of independent peaks per unit time, was 

required to obtain the theoretical extreme value distribution. A new 

mechanism was proposed to form v. It was achieved by examining the 

autocorrelation coefficients between peaks for various lag times. 

Details concerning the new scheme will be discussed again in Chapter 6 

when the data are examined and interpreted. 

5.4 Accuracy and Repeatability 

The overall accuracy of experimental measurements can be obtained 

by considering each instrument involved in the measurements. However, 

in wind-tunnel tests many factors in addition to the accuracy of each 

individual instrument are involved in the overall accuracy of the final 

measurement. As shown by Akins (1976), in order to include all rele­

vant factors in an assessment of the accuracy of a measurement, the 

repeatability of each measurement serves as a more reliastic measure of 

the quality of the measurement even though this is not a measure of the 

absolute accuracy of each measurement. 

A total of five repeatability checks were conducted for the 

pressure measurements. It was found that consistency exists among 

these measurements. No significant differences were observed. 



Chapter 6 

RESULTS AND DISCUSSION 

Over five million pressure fluctuation data were recorded during 

the course of this thesis study. This huge amount of data could only 

be obtained and examined by taking advantage of the high speed and 

versatility of a digital computer. Much attention has been given to 

the statistical aspects of experimental design and data evaluation. A 

computer software package was developed for the acquisition and reduc­

tion of fluctuating pressures on buildings in regions of impinging, 

separated flows and vortex formation. The first section of this 

chapter presents mean, rms, maximum and minimum pressure coefficients 

of all pressure taps selected. Parent pressure distributions are 

discussed in the second section. We then transfer our attention from 

parent loading coefficients to their extremes. An extensive extreme 

value analysis of peak wind pressures on buildings is performed in the 

third section. The last section examines some implications of the 

findings relative to the wind tunnel model study and to the probabil­

istic approach of design pressures. 

6.1 Pressure Coefficients 

Figure 6.1 shows the mean and the rms of surface pressure 

fluctuations as well as the associated maximum and minimum of five 

pressure taps selected for the peak wind pressures study. Each pres­

sure tap was sampled at 250 samples/second for a total of 4080 samples 

(16 sec. data). The maximum (or the minimum) pressure coefficient 

refers to the largest (or the smallest) Cp value in the 4080 data 

samples. 
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Each tap, which subjected to one specific wind direction, is in 

certain region of the flow around the tall building. For instance, Tap 

116 is in the stagnation zone where the wind direction is zero degree 

relative to the true north. 

normal to the upwind face. 

This is the case with wind direction 

High mean pressure coefficient can be 

expected. We term the phenomenon "strong positive." Tap 417 lies in 

the impinging region with flow direction slightly oblique to the upwind 

face (WD = 165°). Tap 613 is very close to the corner of the building 

where speration occurs. This results in a stronger negative Cp 
mean 

value than that of Tap 419, which is downstream in the separated 

region. On top of the flat roof of the building lies Tap 701 where the 

effect of vortex formation is evident. The ambient flow direction is 

30° relative to the south wall of the right angle corner. A very low 

(strong negative) mean pressure coefficient was found and is consistent 

with previous research findings (see, for example, Ostrowski et al. , 

1967). Illustration of typical flow pattern around a tall building in 

a boundary-layer flow is shown in Figure 6. 2a. Figure 6. 2b demon­

strates the effect of vortex formation on the mean pressure distribu­

tion over a flat-roof building. Attention on the mean pressure coeffi­

cient and its possible related flow region should be emphasized. 

6.2 Parent Distributions of Pressure Fluctuations 

The most important function for the probabilistic description of a 

variate is the probability density function (PDF). The PDF's for 

parent distributions of pressure fluctuations on the structure were 

calculated for each tap location using 64 bins to subdivide the range 

of flucutation amplitudes. Each distribution consisted of 16,384 data 

samples at a sample rate 250 samples/second. 
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Test for stationarity of data must be made before one can actually 

perform the probabilistic analysis of fluctuating pressures. It was 

found in this study that the pressure flucutation process is stationary 

at least in the mean (first moment) and the rms (second moment). The 

sampling record of each pressure tap was broken up into sixteen succes-

sive short time intervals (16.4 sec at 250 s/s). The mean and rms of 

each interval were computed for all tap locations. The ensemble aver-

aged properties of each tap computed over these intervals do not vary 

significantly from one interval to another. Typical results (obtained 

from Tap 116) are shown in Table 6.1. The data were then normalized in 

the usual way by extraction of the mean and division by the rms, ready 

for the probabilistic analysis. 

The distributions were found to fall into two distinct categories: 

(1) those associated with direct wind impingement on the structure with 

positive mean pressure coefficients; and (2) those associated with 

separated and vortex formation regions with negative pressure coeffi-

cients. Figure 6.3 shows the probability density associated with the 

positive Cp . These distributions are skewed to the right, contrary mean 

to the general belief that local pressures on the upwind face of the 

structure follow a Gaussian distribution. The PDF of Tap 417 is almost 

Gaussian, yet a close visual examination reveals the fact that its 

positive tail extends more than a normal distribution would predict. 

This phenomenon is much more pronounced for the case of Tap 116, which 

was termed "strong positive" in the previous section. In order to 

determine the extent to which the frequency of large positive values 

exceeds the normal distribution, probability for the positive side of 

the distribution was plotted on a logarithmic scale (Figure 6.4). 
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Deviations from the Gaussian distribution, at the tail, are evident, 

especially for Tap 116. The probability of a pressure at the 3. 5 

standard deviation level is 2 to 5 times that predicted by a normal 

distribution. The higher peaks of both distributions near zero were 

found shifted slightly to the negative side. This implies that, in the 

regions of the structure exposed to impinging flow, the pressure would 

be close to its mean value and also positive more frequently than would 

be predicted by a Gaussian distribution. 

Two parameters prove to be helpful in understanding the nature of 

pressure distributions, i.e. , the mean pressure coefficient (Cp ) mean 

and the coefficient of skewness of pressure fluctuation signals (S{P} 

as defined in Section 2, Chapter 5). For the strong positive case (Tap 

116 with Cp = 0.442 and S{P} = 0.423), the positive tail deviates mean 

more from a normal distribution than the relatively moderate case (Tap 

417 with Cp = 0.407 and S{P} = 0.285). It is, perhaps, more mean 

beneficial to focus attention on the skewness coefficient S{P} since 

it indicates the preferred direction of fluctuation. For a positive 

skewed random signal, the areas above and below the mean are equal, but 

the positive amplitudes are greater than the negative perturbations. 

With a higher S{P} value (= 0.423), the distribution of Tap 117 is 

more skewed to the right than the distribution of Tap 417 whose S{P} 

value equals 0.285. In other words, the distribution of pressure 

fluctuations can be thought of as nearly Gaussian as long as its corre-

sponding Cp and S{P} values are comparatively small. For pres-mean 

sure fluctuation process, intermittent bursts of turbulence might 

explain the occurrence of strong spikes of pressure. A. higher S{P} 

value tends to indicate more spikes will occur. These spikes, because 
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of their large values, end up in the tail of the probability 

distribution and usually this tail is the only part of the distribution 

which is not Gaussian. The tail of the distribution is, of course, the 

only part that is of interest for extreme value analysis. 

The same argument applies as well to the distribution associated 

with negative mean pressure coefficient. On faces where the flow is 

completely separated (including the separated regions over building 

roof), the mean pressures are negative and intensive vortex motions are 

generated within these areas. Very strong negative spikes of pressure 

can be expected. It should not be surprising that the distributions of 

pressure fluctuations in the separated regions are highly skewed to the 

left as shown in Figure 6.5. Significant deviations from the Gaussian 

distribution are evident inunediately. The most important deviation 

occurs on the negative tail of the curve. Large numbers of points are 

past 5 standard deviations from the mean indicating a much higher 

probability for values in this region than a normal distribution would 

predict. For comparison purposes, distributions are again displayed on 

a logarithmic scale (Figure 6.6). The severe deviation case goes to 

Tap 701, which is in the vortex formation region, with Cp = -0.813 mean 

and an S{P} value as low as -0.983 as compared with -0.616 for Tap 

417 and -0.257 for Tap 613-. Note deviation from normality is more 

eminent for negative Cp tail than for positive Cp tail. The mean mean 

probability of a negative pressure at 4 standard deviation level is 10 

to 20 times the predicted value by a normal distribution. This infor-

mation is particularly significant since the dominant loads on a struc-

ture's cladding or glass are usually due to the negative pressures in 

sensitive areas of the structure near corners and roof lines. Results 
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concerning distributions in the separated regions are in agreement with 

the findings of Peterka and Cermak (1975). The reader is referred to 

their report for details. 

In order to check the consistency of results obtained above, an 

alternative building was tested in the Industrial Aerodynamics Wind 

Tunnel in the Fluid Dynamics and Diffusion Laboratory, Colorado State 

University. A schematic diagram of the tunnel is shown in Figure 6.7. 

Functionally speaking, this tunnel does not differ from the Meteoro­

logical Wind Tunnel, which was used for the measurements of the 

Mountain Bell Utah Headquarters Building. Two taps were selected: one 

is in the direct wind impinging region, the other separated region. The 

Setra Low Range Pressure Transducer was £lushly mounted (without the 

0. 013 m short tubing) . The same testing procedures were followed. 

Results from this alternate building show excellent consistency with 

those from the Mountain Bell Utah Building as can be seen from Figures 

6.4 and 6.6. The alternate building was placed in an urban environment 

but without any tall structures immediately upstream. The mean velo­

city profile developed has an exponent n = 0.4, while the turbulence 

intensity at the ground level is approximately 35%. 

Based on the above study, it may be concluded that the 

distribution of pressure fluctuations throughout the direct impinging 

region on the structure is skewed to the right, while the distribution 

of pressure fluctuations throughout the separated region on the struc­

ture is skewed to the left. The probability of large negative pres­

sures is orders of magnitude larger than a prediction based on a normal 

distribution. For large positive pressures, however, the deviation 

from a normal distribution is less pronounced and usually can be 
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neglected. The assumption that pressures on windward faces of a 

building follow a Gaussian distribution thus seems natural and appro-

priate. Two parameters, namely, the mean pressure coefficent (Cp ) 
mean 

and the coefficient of skewness of pressure fluctuations (S {P}) are 

believed to summarily describe the nature of local pressure fluctua-

tions at certain location of a building. 

6.3 Extreme Value Analysis and Estimates of Average Effective 

Fluctuation Rates 

The peak pressures were picked sequentially from the fluctuation 

time series at each pressure tap. These peaks in sequence, called 

continuous peaks, are actually relative extrema (local maxima or 

minima) in the time series. Figure 5. 1 shows how these peaks were 

screened out. The eligible extremum was chosen to be 2 analog-digital 

steps (>0.0096 volts) away from its two neighboring points (one on the 

right and the other on the left). Later study showed that screening 

with 0.5 analog-digital steps (>0.0024 volts) yielded essentially same 

results. This can easily be understood by considering the quantization 

operation of digitizers. Since the magnitude of each data sample is 

expressed by some fixed number of digits, only a fixed set of levels 

are available for approximating the infinite number of levels in the 

continuous data. If the quantization is done properly (which is the 

case of this study), the true level is approximated by the quantizing 

level closest to it. Screening with 0.5 A/D steps is equivalent to 

screening with 1 A/D step. And if the number of levels is large 

enough, screening with 1 A/D step doesn't make much difference from 

screening with 2 A/D steps. 



39 

A long record of pressure flucutations at each tap is available 

for the collection of the continuous peaks. Each long record, sampled 

at a rate of 250 samples/second, consists of 24 segments of data. Each 

segment has 4 records and one record comprises 4,096 data points. The 

first 10,000 continuous peaks were picked up from each long record to 

construct CDF and PDF of fluctuating pressures for the corresponding 

tap. The CDF's from these experimental data are expressed in terms of 

dotted lines, shown in Figures 6. 7a, c, e, g and i. Similarly, the 

PDF's are given in Figures 6. 7b, d, f, h and j. The dotted lines are 

adopted merely as symbols to express curves, that is to say, each dot 

does not necessarily represent the calculated result of experimental 

data. One word worth mentioning here is that approximately 10 records 

of data provide 10,000 continuous peaks. We can say that, on the 

average, each record (4,096 data points) gives 1,000 continuous peaks. 

This is of particular interest if the distribution of these 1,000 con­

tinuous peaks does not differ significantly from that of 10,000 contin-

uous peaks. This clue leads to the possibility of recovering the 

extreme value distribution from the regular wind-tunnel pressure study 

data. Refer to Section 6.4i for detailed discussion. 

In Chapter 3, recall that the statistics of the parent population 

of points in the sampling intervals are related to those of the ex­

tremes (continuous peaks in this case). An expression for the distri­

bution of continuous peaks can be derived from the· parent population. 

If the tail of interest of the parent distribution is of exponential 

type, a type I double exponential distribution has been shown to apply 

to peaks. The CDF of peaks in sequence, q (x), has the form (see 

Section 5, Chapter 3) 
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~ exp[- exp( a )) for positive peaks (3.16) 

q(x) 
X = f_

00 
p{x)dx = 

1 - exp[- exp(~)] for negative peaks (3.17) 

where X = standardized variate 

p(x) = PDF of continuous peaks 

t, a = empirical location and scaling factors. 

Values of the distribution parameters t and a are obtained by 

least-squares fit. 

The least-squares fit employed in this study is simply the search 

for the best linear function to predict the sample data by regression 

method. The method consists of plotting the magnitude of the extreme 

against the so-called "Gumbel's reduced variate" y, estimated from 

y = in[- !n q(x)) = ~ (shown for positive case only) 

This has the effect of transforming the Type I CDF given by 

q(x) -e = e 

to a straight line. Values of the distribution parameters t and a 

are then obtained by fitting a straight line through the plotted 

points. The fitted Type I distribution results are shown, in solid 

lines, in Figure 6.7 for each pressure tap selected. A multiple cor­

relation coefficient (R2) for each fit is also obtained to indicate 

how good the fit is. For every fit, the corresponding coefficient is 

well above 0. 98. This means each least-squares fit is statistically 

significant. Visual examination of the plots in Figure 6.7 may also 

help judge the goodness of fit. The "best" fit observed goes to Tap 
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701 (in the vortex formation region of the building) with fitted and 

experimental results almost undistinguishable. However, result from 

chi-square goodness of fit test for each fit (with Tap 701 an excep­

tion) suggests the hypothesis that the observed PDF and the assumed 

theoretical PDF are the same be rejected. Chi-square test result for 

Tap 701 is shown in Table 6. 2. It indicates that the model be ac­

cepted. While on the other hand, it is not even necessary to carry out 

the whole calculation process as what was done in Table 6.2 to show the 

rejection of the model for other taps. Take Tap 419 for example. Sum 

of normalized squared deviations of only 2 class intervals around the 

mode (PDF) yields very large a number already [(1039-1175.5) 2/1175.5 + 

(931-1189.5) 2/1189.5 = 72]. Possible explanation for failure to accept 

the model may attribute to the sample size used. It should be attended 

that 10,000 observations were used for each curve fitting. The x2 

test under this circumstance may be mathematically insignificant but 

the fit is physically meaningful. 

Based on the finding in Figure 6.7, it is thus concluded that the 

distribution of continuous peaks of pressure fluctuations is of the 

Type I form. As was proved in Chapter 3, this Type I property for 

extremes holds no matter what type of parent distribution it might be 

as long as its tail of interest is of exponential type. The finding is 

believed to be the first successful attempt to prove the distributions 

of the positive-going and the negative-going pressure extremes to be of 

Type I form through wind-tunnel model test. 

The distribution of continuous peak pressures at a point, q (x), 

has been obtained. However, in the gust loading problem, we are not 

primarily concerned with the distribution of all the maxima/minima, 
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only with the largest/ smallest of these which occurs in a period of 

time T. Consider, for instance, a sample of N independent maxima in 

time T, the PDF P(x) that the largest of them has the value, x, is 

the probability that one of the maxima has this value while the rest 

are smaller, i.e. 

where 

P(x) = d Q(x) 
dx 

N 
= d q(x) = N[q(x)]N-1 p(x) 

dx 

Q(x) = CDF of the largest peak in time T 

q(x) = CDF of continuous maxima. 

From Equation (3.20), note that 

N 
Q(x) = [q(x)] 

~ = exp[- N exp( 
8 

)] 

= exp{- exp[x + Ct + a ~n N)]} 
e 

(3.20) 

(3.21) 

With q(x) available, Q(x) can be determined provided that the number 

of independent maxima, N, during a period, T, is known. The largest 

observation Q(x) has also a type I model, with location shifted by 

the factor a ~n N, the scale parameter 8 being unchanged as compared 

with q(x) -- the initial model. Similarly, the distribution of smal-

lest peak in time T is also a product of this reproductive property 

-- with its initial model (distribution of continuous minima) being 

shifted by the amount 8 ~n N while the shape is preserved. The dis-

tribution of the largest/smallest peak in time T is often termed as 

"extreme value distribution" in this thesis. Experimental results of 

extreme value distribution of a scaled model in the wind tunnel were 

obtained so that a comparison is possible with the shifted distribution 

of continuous peaks. 



43 

In the past, a few theories have been presented to cope with the 

problem as how to determine the number of independent peaks in time 

T -- in other words, the effective fluctuation rate v. For the time 

being, a new technique, which employs the autocorrelation coefficients 

between peaks for various lag times, is proposed to find v. Compari-

son is then made among these different theories as opposed to the 

experimental extreme value distribution from wind-tunnel test. 

Autocorrelation coefficients are established by direct computation 

of average products among the continuous peaks at various lag times. 

For N data values X, n = 1, 2, ... , N, from a transformed record 
n 

{X(t)} which is stationary with zero mean, the estimated autocorrela-

tion function at the displacement rh is defined by the formula 

R = R (rh) r x 
1 

N-r 

= N-r ~ Xn Xn+r' 
n=1 

r=0,1,2, ... ,m (6.3) 

where r is the lag number, m is the maximum lag number, h is the 

time interval between samples, and R r 
is the estimate of the true 

value R at lag r, corresponding to the displacement rh. A normal­
r 

ized value for the autocorrelation function is obtained by dividing 

by R
0 

where 

= R (0) 
X 

= 1 N (X )2 = 
N n~1 n 

R 
r 

Note that the quantity R
0 

is a sample estimate of the true mean 

square value in the data. 

The very same 10,000 continuous peaks, which give rise to the 

distributions of continuous peaks (shown in Figure 6.8), were used to 

obtain autocorrelation coefficients according to the computation 
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technique described above. Take Tape 701 for example, which is located 

in the vortex formation region of the building. There are 24 segments 

of pressure fluctuation data, sampled at 250 Hz, each of size 16,384. 

The segment is further broken into 4 tape-records with 4,096 samples in 

each. Table 6.3 keeps track of how many continuous peaks were provided 

by each tape-record as we accumulate, through the long time series, 

those 10,000 continuous peaks needed for the distributions. Each 

tape-record takes 4096/250 = 16.38 sec. and provides, on the average, 

1147 continuous peaks. So the average time interval between peaks is 

16.38/1147 = .0143 sec. Note that the sampling rate is much higher 

than the energy frequencies of fluctuating pressures; thus, there are 

enough data points to ensure detection of all peaks. It should also be 

noted that, from Table 6.3, the number of peaks per unit time is almost 

independent of the sampling rate. Autocorrelation coefficients were 

computed at O, 1, 2, 5, 10, and 15 lag numbers, which correspond to lag 

times of 0.0, 0.0143, 0.0286, 0.0715, 0.143, and 0.215 sec., respec­

tively. Results are shown in Table 6.4. Plot of autocorrelation coef• 

ficients versus average lag times can be found in Figure 6.9. The same 

procedure was followed to obtain autocorrelation coefficients for pres­

sure flucutation data sampled at 1,000 Hz. Results were compared with 

those of previous case (sample rate= 250Hz). Figure 6.9 illustrates 

the agreement in R's at corresponding lag times between two sets of 

data: one sampled at 250Hz, the other 1,000 Hz. The average fluctua­

tion rate, v, can thus be determined from Figure 6.9. At R = 0.2 

level, the average time per independent peak is found to be . 023 

sec/indep pk. The reciprocal of this quantity gives 
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no. of independent peaks 
v = sec. 

1 
45 indep pk/sec. = .023 sec./indep pk 

At R = 0.1 level, 

1 
15 indep pk/sec. v = .065 sec./indep pk 

These two v's are differed by a factor of 3. They agree reasonably 

well with values reported by Akins (1976) [v approximately 20 in both 

separated and stagnation regions]. Zambrano (1978), in his study of 

wind load interaction on an adjacent building, found v to be approxi-

mately 20 with no upstream building interference. Values of v, 

ranged from approximately 5 up to approximately 45, were also reported 

for cases with different degrees of interference by the upwind build-

ing. Peterka and Cermak (1974) reported v : 11 for positive Cpmean 

and v :58 for negative Cp when test building is placed in the 
mean 

city environment. It is implied by Figure 6.9 that this new technique 

for computing v described herein is independent of the sampling rate. 

However, when applied to other pressure taps on the building, the tech-

nique did not yield reasonable results. The autocorrelation coeffi-

cient drops sharply even at the first lag number. This implies a high 

value of v of order of magnitude 150 indep pk/sec. A possible ex-

planation is that the new technique is sensitive to the degrees of 

pressure fluctuations. Tap No. 701 lies in the vortex formation region 

of the building where large fluctuation amplitudes occur, whereas other 

taps give relatively small fluctuations. It is thus recommended that 



46 

pressure fluctuation signals be amplified to within a reasonable range 

before further study. Nevertheless, for practical cladding design pur­

pose, the vortex shedding phenomenon is the dominant factor that has to 

be taken into consideration. Information associated with this dominant 

phenomenon is significant enough to provide a general guideline in pur­

suing knowledge of local pressure fluctuations on buildings. 

With the average effective fluctuation rate, v, available, the 

number of independent peaks, N, in time T is simply given by N = vT. 

And the distribution of the largest/smallest peak in time T is readi­

ly obtained by shifting by a factor of e R.n N the distribution of 

continuous maxima/minima. 

The distribution for the largest/smallest peak in time T(= 5 sec 

in this thesis study) has been obtained for each tap location through 

wind-tunnel test. The long pressure fluctuation record (24 segments-­

each of size 16,384 samples at 250 Hz) provides 288 5-sec sampling 

intervals. Each sampling interval provides only one maximum/minimum. 

The extreme value distribution applies to a collection of maxima/minima 

derived from many such intervals. These distributions for the largest/ 

smallest peak in time T(= 5 sec) are, traditionally, presented in 

histograms, as shown in Figures 6.10a-e. The peaks for the windward 

side of the building are fairly narrowly confined with very few ex­

tending above 4 to 5 standard deviations from the mean as can be seen 

in Figures 6.10a and b. The peak in the separated and vortex shedding 

regions of the building is observed to have higher values and the 

larger peaks tail off slowly to values of 9 standard deviations from 

the mean as illustrated in Figure 6.10c, d, and e. This result is not 

surprising in light of the probability distribution for the fluctuating 
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pressure presented earlier. The data presented by Peterka and Cermak 

(1974) for fluctuating pressures on a wind-tunnel test model are con-

sistent with the present data. Dalgliesh et al. (1979) conducted 

measurements of peak pressures on a full-scale structure as well as 

wind tunnel model. The present results are also in good agreement with 

theirs. 

The distributions of continuous peaks were shifted, according to 

the amount 9 ~n N, to best fit the histograms of peaks in order to 

obtain v. This method of "back-calculating" to determine v gave 

reasonable agreement when compared with directly computed values of v 

from the proposed autocorrelation technique. For example, the distrib-

ution of continuous peaks for Tap No. 116 would have to be shifted to 

the right an amount 9 !n N = 3.5 to best fit its corresponding exper-

imental extreme value distribution. Since 6 = - 0.861 and 9 R.n N = 
3.5, we have 

(0.861) !n(vT) = 3.5 

VT: 59 

v 12. 

This value is the same as that found by correlation analysis. Note 

that, from Eq. (3.21), 

Q(x) X + = exp{- exp[ Ct + e .en N)]} 
e (3.21) 

a negative value of e (as for positive Cp case) implies the mean 

translation of the curve to the right. Similarly, cases of negative 

Cp find 9 to assume positive values, which means a translation of mean 

the curve to the left. The value of v for Tap No. 417 was calculated 

to be 21, while v = 55 for Tap No. 419, v = 20 for Tap No. 613 and 
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v = 60 for Tap No. 701. Results are shown in Figure 6.10a-e. 

Distribution at R = 0.1 and R = 0.3 level (from Figure 6.9) were 

also shown for Tap No. 701 in Figure 6 .10e. Note that the shifted 

amount e in(vT) is not sensitive to the estimated value of V because 

of the nature of logarithmic function. Values of v range from ap­

proximately 12 up to approximately 60, and are in reasonable agreement 

with estimates via autocorrelation technique as well as with other 

wind-tunnel test findings. Note that the test building is placed in 

the city environment as compared with previous wind-tunnel tests with 

only one or two block building(s). In summary, the theoretical extreme 

value distribution can be determined by shifting the distribution of 

continuous peaks if a knowledge of v is obtained. 

In fact, techniques have been developed to predict the peak wind 

loading values on a structure. Davenport (1961, 1964) provided a peak 

value theory for wind loads based in part on earlier statistical work 

of Cartwright and Longuet-Higgins (1956) and Rice (1944, 1945). The 

procedure involves the assumption of a Gaussian pressure distribution 

of local pressures acting on the structure in response to a Gaussian 

distribution of velocity in the turbulent flow about the structure. 

The peak probability density function is a function of sample time. 

The purpose of Davenport's statistical model is to relate the largest 

likely instantaneous value of the pressure force occuring during a 

period of time T to the mean value, power spectrum, and probability 

distribution of the (continuous) peak fluctuations at the point of 

interest. The theory by Davenport is that given a stationary random 

function x = f(t) having a normal probability distribution with mean 

x, standard deviation a(x), and normalized variate f'l defined as 

(x-x) /a(x), the assumed probability distribution of the function is 
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1 1 2 
p(~) = 2n exp(- 2 ~ ) (6.4) 

The probability distribution for the largest peak in time T is 

2 2 
P(~) = ~ vT exp[- g=- vT exp(- g=)] (6.5) 

The quantity, v, is interpreted by Davenport to be the frequency at 

which most of the energy in the spectrum will generally be close to the 

natural frequency (for application to the building motion). In order 

to obtain this value (called average effective fluctuation rate) the 

power spectral density for the random function is required. And v is 

given by 

(6.6) 

where 

(6.7) 

in which S (n) is the power spectrum of the random function at the 

frequency n. It is attempted to apply Davenport's theory to Tap No. 

116 (positive mean) and Tap No. 419 (negative mean). Spectra were 

formed for the positive and negative mean data (long time series 

sampled at 1,000 Hz) from the test building. Results are shown in 

Figures 6.11a and b. Appropriate moments of the spectrum were taken to 

form v according to Equations (6.6) and (6.7). There is a drawback 

in the integration formula 

m2 = I; n2 S(n) dn. 

It is well known that S(n) is of order n-5/ 3. The integrand n2 S(n) 

is thus of order n 113. It is apparent that the indefinite integral 

lim J~ n2 S(n) dn ~ ~ 
n~ 
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The average effective fluctuation rate, v, thus assumes infinity. 

Actual integration upper limits used were frequencies intercepted with 

the extrapolated spectra curves shown in Figure 6. lla and b. The 

theoretical distributions based on Davenport's theory are shown in 

Figures 6 .12a and b, together with those predicted by the present 

theory. Figure 6.12a shows that the data for the windward side of the 

building follows Davenport's distribution reasonably well, while the 

present theory doesn't quite match the data. However, the data in 

Figure 6.12b do not fit Davenport's theoretical curve at all well and 

yet the present theory works beautifully. This is significant because 

pressure coefficients in the flow separated and vortex formation 

regions are of primary concern in the practical design of claddings. 

Even for the positive mean case, it is argued that a slight increase of 

the value of n - {Cp - Cp )/Cp around the modes of two theoret-·• - mean rms 

ical distributions, say at 11 = 3. 5, would result in a cumulative 

probability of .846 predicted by Davenport's theory as compared with a 

value of .654 from the present theory. Design at this level based on 

the present theory is thus on the safe side. 

The reason why Davenport's theory breaks down for the negative 

mean case is because of his assumption of a Gaussian parent distribu-

tion. It is discussed in Section 6.2 that parent distribution of pres-

sure fluctuations on the windward side of the building can be approxi-

mated by a Gaussian distribution. It is thus not surprising that the 

data of positive pressures are predicted reasonably well by Davenport's 

theory. However, in strongly turbulent negative regions the tail of the 

parent distribution is distinctly non-Gaussian, and predictions based 

on Davenport's theory fall far short of observations. Measurements made 
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by Dalgliesh (1971) and Peterka and Cermak (1974) yield the same con­

clusions. It should be noted that the only assumptions made in the 

present theory are: 1) the pressure fluctuation process is stationary 

and 2) the tail of the parent distribution is of exponential type. 

These were actually verified in Section 6. 1 and Figure 6. 8. Dispute 

over whether the pressure fluctuations is Gaussian or not seems super­

fluous from the present point of view. 

The average effective fluctuation rate formed by taking 

appropriate moments of power spectrum density are consistent with 

estimates from autocorrelation technique. As far as the available 

facilities and practical design purpose are concerned, the present 

theory provides an economic and convenient way to form v, which is 

just a by-product when constructing the distribution of continuous 

peaks. No extra work, like generating the power spectrum density and 

taking the appropriate moments, is necessary. Dalgliesh ( 1971) dis­

cussed the fluctuation rates at some length. He pointed out that for 

pressure fluctuations on cladding, v is a random variable, i.e., the 

numerical value of v differs somewhat from record to record in a 

random fashion. The information provided by fluctuation rate is useful 

for the checking and improvement of the theoretical methods for pre­

dicting peak pressures. Dalgliesh gave a theoretical interpretation of 

v. He argued that v represents the average number of crossings of 

the zero (mean) value with positive slope (plus crossings) per second. 

For narrow-band random processes the plus crossing rate and the number 

of peaks per second are essentially the same; but for the wide-band 

process represented by local pressure fluctuations on cladding the 

actual number of peaks was found to be about twice or three times the 
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number of zero crossings. His viewpoint only leads to the conclusion 

that the peak rate is an upper bound for the effective fluctuation 

rate. Since we are mainly interested in the number of independent peaks 

in a period of time T, there is no way to tell, from Dalgliesh's argu-

ment, whether the peaks are correlated in some way. It is asserted in 

this thesis that the "continuous" peaks which passed the screening 

technique (see Figure 5 .1) are dependent samples of a single random 

variable. 

process, 

There is a correlation within each sample of the random 

measured by the sample autocovariance function, C (t, t+t), 
X 

which is given by 

c (t, t+t) 
X 

n 
= 1 

I X.(t) X.(t+t) 
n i=1 1 1 

(6.8) 

in which t is referred to as time lag. If the process is stationary 

(at least in the weak sense) and the mean is removed from the process, 

Equation (6.8) is merely a re-statement of Equation (6.3), which is the 

formula used that ultimately yields an estimate of the effective flue-

tuation rate. This is so because once the autocovariance has reached 

zero (or some acceptable level) at certain lag time, the subsequent 

data essentially form an independent sample. 

Noticing the difficulty of applying a Gaussian distribution to the 

negative fluctuating pressures, Dalgliesh et al. (1979) solved the 

problem by saying that intermittent "bursts" of turbulence are super-

imposed on a record which is otherwise Gaussian in nature. In other 

words, strong spikes of pressure occur at random intervals throughout 

the sample record and these spikes, because of their large values, end 

up in the tail of the parent probability distribution and usually this 
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is the only part of the distribution that is non-Gaussian. Instead of 

aiming at the entire population of points in the sampling interval, 

Dalgliesh et al. examined the spikes according to two rules: 

"1) A spike value must be away from the mean by a threshold value 

at least twice the rms about the mean. Both mean and rmsm 

are measured over the entire sampling interval. 

2) A spike must be separated from adjacent spikes by returns 

toward the mean that extend at least the threshold value from 

the spike value." 

These two artificially imposed rules to the record enabled Dalgliesh et 

al. to deal with a new parent population of spike values whose distri-

bution (CDF) is 

F(g) = 1 - exp[- (g-8)/(g-8)] (6.9) 

in which g is normalized spike value, e is the threshold value 

(chosen to be 2), and g is the mean of the spike values in the inter-

val. The extreme value distribution of peaks, g, where each peak in 

the distribution is the maximum spike value from a sampling interval, 

is related to the above expression by only one parameter: 

F (g) = {1 - exp[- (g - 8)/(g - 8)]}n 
n 

(6.10) 

The new parameter n is the average number of spikes per interval. 

Histograms of peaks from many intervals can be matched rather well by 

their theory. Note that Equation (6.9) is simply a statement that the 

upper tail of the original parent distribution is of exponential type 

(refer to Equation (3.7)). The average number of spikes per interval, 

n, is converted, based on Equation (4.4), to be compatible with present 

wind-tunnel values of v. Dalgliesh et al. gave values of v ranging 
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from approximately 10 up to approximately 55. Though Dalgliesh' s 

spike-value theory bears a resemblance to the present theory, it dif-

fers from its counterpart mainly in the way of treating "peaks". The 

question arises, for example, what would be the effect on the spike 

value theory if a change of threshold value occurs? The present 

theory, however, is simple and mathematically complete. 

6.4 Applications of Extreme Value Results 

i) Wind Tunnel Study 

Ten thousand continuous peaks were used to construct each 

distribution shown in Figure 6.8. It was found that 16 seconds pres-

sure fluctuation record at 250 samples per second provides approximate-

ly 1,120 continuous peaks. The fitted type I distribution of the first 

1,400 continuous peaks, out of 10,000, for Tap No. 417 is given in Fig. 

6.13. It is seen that this distribution does not differ significantly 

from that of 10,000 continuous peaks (the chi-square test result is 

x2 = 27.4 as compared with the sum of normalized deviations 0.5,17 

12.63). This finding enables us to recover the extreme value distribu-

tion from the regular wind-tunnel pressure study data. The very same 

data used to compute Cp and Cp mean rms also yield the distribution 

of continuous peaks. An estimate of the average effective fluctuation 

rate according to the nature of fluctuating pressures would then allow 

the establishment of the distribution of the largest/smallest peak in 

time T. The significance of the theory presented in this thesis roots 

right in this application. 

ii) Gust Factor Approach 

A parameter which was suggested (Dalgliesh, 1971) to describe 

extreme design loading coefficient values in terms of the parent mean 

and rms values is the Gust Factor, defined by 
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(6.11) 

where the symbol denotes the extreme value. This approach has been 

adopted by many other researchers (Akins, 1976; Mayne and Cook, 1979; 

Dalgliesh et al., 1979, ... , etc.). The assignment of a value for gd 

is not as straightforward as for Cp and Cp because the Gust mean rms 

Factor must account for the randomness inherent in pressure fluctua-

tions. If a measurement of a mean or rms pressure coefficient for a 

given flow situation and building geometry is repeated, the values of 

each individual measurement fall within the repeatability of the mea-

surement system. However, the peak pressure coefficient will vary in a 

random fashion. The definition of in Equation (6.11) is analagous 

to that for the standardized variate f1 in Equation (5. 3). Extreme 

"Gust Factor" type of approach is possible using gd in place of f"). 

The extreme value distribution (of gust factors) expresses the risk of 

exceedance of the pressure coefficient in the observation period. A 

reasonable way of choosing a representative value for gd is then 

possible by picking one of the following: 

a) the value that occurs most frequently (the mode), 

b) the average value (the mean), or 

c) the value with an acceptably small probability of being 

exceeded. 

The advantage of extreme value analysis over the selection of a 

single extreme is that the probability of the extreme is correctly 

assessed and is described by the values of t (the location factor) 

and e (scaling factor). 
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iii) A First-order Method for Design 

Extreme value analysis of fluctuating pressures yields 

information on the risk of exceedance of the pressure coefficient in 

the observation period. The risk of the design wind speed can also be 

known from a similar analysis of the wind data. Therefore, the actual 

risk of wind loads on a structure can be assessed from the joint risk 

of wind speed and pressure coefficient. A first-order method to this 

assessment has been proposed by Mayne and Cook (1978, 1979) and is 

briefly described in this thesis. The reader is referred to their work 

for a complete discussion. 

Since climatological records commonly refer to hourly mean wind 

velocities, the sample duration of frequent interest is one hour. The 

first-order method assumes that the design load is formed by the com-

bination of the extreme hourly-mean wind speed with the extreme pres-

sure coefficient in that hour of wind through a simple convolution 

integral of the joint PDF of the annual extreme hourly-mean wind speed 

V and the extreme pressure coefficient Cp. If these two parameters 

are statistically independent*, then the joint PDF is simply the pro-

duct of their individual PDFs. This is illustrated in Figure 6.14. 

The probability of a given load X is the integral of the joint PDF 

along the curved line 

* This is so through a fundamental redefinition of dynamic pressure and 
pressure coefficient parameters. This redefinition makes use of the 
way that the Spectral Gap, shown in Figure 6.15, divides the frequency 
range into Macro- and Micrometeorological ranges. The dynamic pres­
sure, being a function of Macro- range only, and the pressure coeffi­
cient, a function of Micro- range only, can be considered as being 
statistically independent since all cross-sepctral terms are identi­
cally zero. See Mayne and Cook (1979) for details. 
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(6.12) 

Note that the shape of the two individual PDFs is the type I form, the 

shape of the joint PDF is always known and geometric similarity reduces 

the four parameters tv and ev' for the wind speed, and tc and e ' c 

for the pressure coefficient, to the two independent parameters Ct/S)v 

and Ct/6) , and the scaling function of Equation (6.12). 
c 

The design 

load probability distribution functions can then be computed over some 

range of t/6 of both parameters. It is also possible to work back-

wards from the results of the first-order design method to determine, 

for a given return-period, the equivalent static pressure coefficient 

which gives the design result when applied in Equation (6.12) with the 

extreme mean-hourly wind speed of the same return-period. This actual-

ly calibrates the "Gust Factor Approach" resulting in the design value 

of for some specified return-periods. 

Mayne and Cook (1979) reported that the first-order method 

underestimates by the order of a maximum 10%. More refined higher-

order methods are possible but the extra complication associated is not 

necessary because of the other uncertainties concerning the behaviour 

and strength of structures. 

The extreme value distribution in a period of time T = 5 sec is 

obtained in this thesis. What would be the distribution of extreme 

values over longer observation period, say, one hour? The distribution 

of extreme values over longer observation period can actually be relat-

ed to the original extreme value distribution provided that there is no 

additional variability introduced into the parent data by extending the 

observation period and the original T time extremes (peak pressures) 
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are independent. The number of independent observations of the original 

extreme population in each of the new longer periods is the ratio of 

their lengths r = T /T. 
r 

The probability that an extreme value is not 

exceeded in the new longer period T 
r 

is the probability that all of 

r original extreme values are not exceeded 

Q (x) = [Q(;g)]r 
r 

(6.13) 

Thus the CDF of the new extreme value distribution is merely the CDF of 

the original extreme value distribution raised to the power of the 

sample-size ratio. 



Chapter 7 

CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER STUDY 

7.i Conclusions 

The experimental findings of this thesis are limited to static 

structures where the dynamic response caused by wind loads is negli-

gible and does not enter into the design considerations. With this in 

mind, several conclusions concerning the nature of local pressure flue-

tuations on buildings caused by turbulent boundary-layer winds are 

listed. 

In this wind tunnel study, the pressure fluctuation process is 

assumed to be stationary if the approaching wind speed is stationary. 

Since there are no specific trends observed in the mean and rms from 

the experimental data, the assumption was regarded as confirmed at 

least in the weak sense. 

i) The distribution of fluctuating pressures for positive Cp mean 

is skewed to the right, while for the negative Cp , the mean 

distribution is skewed to the left. Two parameters, namely, 

the mean pressure coefficient (Cp ) and the coefficient of mean 

skewness of fluctuating pressures (S{P}) summarily describe 

the nature of local pressure fluctuations. For a positive 

mean pressure distribution, the deviation from a normal dis-

tribution is not pronounced, therefore, a Gaussian approxima-

tion for pressures on windward face of a building is valid. 

ii) The distributions of the positive-going and negative-going 

continuous peaks are of type I form. This fact tends to 

justify the assumption that the tails of the parent distribu-

tion are of the exponential type. 
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iii) The average effective fluctuation rate, v, can be obtained 

through the use of autocorrelation coefficients between 

continuous peaks of parent population for various time lags. 

Once the autocorrelation has reached zero (or close to zero) 

at some lag time, the subsequent peaks essentially form an 

independent sample. Note that v is defined as number of 

independent peaks per unit time. This technique is indepen­

dent of the sampling rate. Results from this technique are 

consistent with other reported values of v. It is observed 

that v assumes values typically in the range of 10-60 peaks 

per second in wind-tunnel models. 

iv) The distribution of the largest (positive or negative) peak 

in time T can be obtained by shifting an amount a !n(vT) 

the distribution of continuous peaks. The shifted result 

agrees well with the experimental extreme value distribution. 

Note that the prime advantage of the present theory, in addi­

tion to its convenience, is that it avoids detailed knowledge 

of the spectral content of the parent distribution. 

v) Recovery of the extreme value distribution from regular 

wind-tunnel test data, e.g., 16 seconds record at 250 samples 

per second, is possible. 

7.2 Recommendations for Further Study 

Numerous extensions to the work discussed in this study is 

evident. 

i) Study of the effect of fluctuating pressure amplitude on the 

proposed autocorrelation scheme for establishing the average 

effective fluctuation rate, v. 
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ii) Study of the slope and shapes of extreme pressure peaks. 

Also the acquiring of more information on the response of 

cladding as well as the characteristics of the loading. 

iii) Investigation of the effect of the approach turbulence level 

on the local pressure fluctuations, especially on the largest 

peak negative values. 

iv) Further research on the space correlations of the large 

negative peak fluctuations. 

v) Any upper and lower bounds for the average effective 

fluctuation rate? 



62 

REFERENCES 

American National Standards Institute, 1972, Building Code Requirements 
for Minimum Design Loads in Buildings and Other Structures, ANSI 
A58.1-1972. 

Akins, R. E. and Peterka, J. A., 1975, "Computation of Power Spectral 
Densities and Correlations Using Digital FFT Techniques," 
Technical Report CER75-76REA-JAP13, Fluid Dynamics and Diffusion 
Laboratory, Colorado State University, Fort Collins, Colorado. 

Akins, R. E. and Cermak, J. E., 1976, "Wind Pressures on Buildings," 
Technical Report CER76-77REA-JEC15, Fluid Dynamics and Diffusion 
Laboratory, Colorado State University, Fort Collins, Colorado. 

Bendat, J. S. and Piersol, A. G., 1971, Random Data: Analysis and 
Measurement Procedures, Wiley Interscience. 

Benjamin, J. R. and Cornell, C. A., 1970, Probability, Statistics, and 
Decision for Civil Engineers, McGraw-Hill Book Company. 

Bury, K. V., 1975, Statistical Models in Applied Science, John Wily & 
Sons, New York. 

Cermak, J. E., 1958, "Wind Tunnel for the Study of Turbulence in the 
Atmospheric Surface Layer," Technical Report CER56-JEC42, Fluid 
Dynamics and Diffusion Laboratory, Colorado State University, Fort 
Collins, Colorado. 

Cermak, J. E. and Sadeh, W. z., 1971, "Pressure Fluctuations on 
Buildings," Proceedings of the Third International Conference on 
Wind Effects on Buildings and Structures, Tokyo, Japan. 

Cermak, J. E., 1971, "Laboratory Simulation of the Atmospheric Boundary 
Layer," AIAA Journal, Vol. 9, No. 9, pp. 1746-1754. 

Cermak, J. E. , 1975, "Applications of Fluid Mechanics to Wind 
Engineering--A Freeman Scholar Lecture," ASME Journal of Fluids 
Engineering, Vol. 97, Ser. 1, No. 1, March, pp. 9-38. 

Cermak, J. E., 1976, "Aerodynamics of Buildings," Annual Review of 
Fluid Mechanics, Vol. 8, pp. 75-106. 

Dalgliesh, W. A., 1971, "Statistical Treatment of Peak Gusts on 
Cladding," Journal of the Structural Division, ASCE, Vol. 97, ST3, 
pp. 2173-2187. 

Dalgliesh, W. A., 1975, "Comparison of Model/Full Scale Wind Pressures 
on a High-Rise Building," Journal of Industrial Aerodynamics, Vol. 
1, No. 1, pp. 55-66. 



63 

Dalgliesh, W. A., Templin, J. T. and Cooper, K. R., 1979, "Comparisons 
of Wind Tunnel and Full-Scale Building Surface Pressues with 
Emphasis on Peaks," Proceedings Fifth International Conference on 
Wind Engineering, Cermak, J. E. (ed.) Fort Collins, Colorado, 
U.S.A., 9-14 July 1979, Pergamon Press, Vol. 1, Sessions I-V. 

Davenport, A. G., 1961, "The Application of Statistical Concepts to the 
Wind Loading of Structures," Proceedings of the Institution of 
Civil Engineers, Vol. 19, pp. 449-471. 

Davenport, A. G., 1964, "Note on the Distribution of the Largest Value 
of a Random Function with Application to Gust Loading," Proceed­
ings of the Institution of Civil Engineers, Vol. 28, pp. 187-196. 

Davenport, A. G., 1967, "Gust Loading Factors," Journal of the 
Structural Division, ASCE, Vol. 93, ST3, pp. 11-34. 

Davenport, A. G., 1976, Discussion on "Wind Pressures on Buildings-­
Probability Densities by Peterka and Cermak (1975)," Journal of 
the Structural Division, ASCE, Vol. 102, ST11, pp. 2235-2237. 

Epstein, B., 1960, "Elements of the Theory of Extreme Values," 
Technometric, Vol. 3, No. 1. 

Gumbel, E. J., 1958, Statistics of Extremes, Columbia University 
Press. 

Mayne, J. R. and Cook, N. J., 1979, "Acquisition, Analysis and 
Application of Wind Loading Data," Proceedings Fifth International 
Conference~ Wind Engineering, Cermak, J. E. (ed.), Fort Collins, 
Colorado, U.S.A., 9-14 July 1979, Pergamon Press, Vol. 2, Sessions 
VI-X. 

Ostrowski, J. S. , Marshall, R. D. , Cermak, J. E. , 196 7, "Vortex 
Formation on Pressure Fluctuations on Buildings," Proceedings of 
the International Seminar on Wind Effects on Buildings and Struc­
tures, Ottawa, Canada, pp. 459-484. 

Peterka, J. A. and Cermak, J. E., 1974, "Simulation of Atmospheric 
Flows in Short Wind Tunnel Test Sections," Technical Report CER73-
74JAP-JEC32, Fluid Dynamics and Diffusion Laboratory, Colorado 
State University, Fort Collins, Colorado. 

Peterka, J. A. and Cermak, J. E. , 1975, "Wind Pressures on Buildings­
Probability Densities," Journal of the Structural Division, ASCE, 
Vol. 101, ST6, June, pp. 1255-1267. - --

Peterka, J. A. and Cermak, J. E., 1979, "Wind-Tunnel Study of Mountain 
Bell Utah State Headquarters Building, Salt Lake City," Technical 
Report CER79-80JAP-JEC14, Fluid Dyanmics and Diffusion Laboratory, 
Colorado State University, Fort Collins, Colorado. 

Peterka, J. A., 1979, Personal communication. 



64 

Rice, S. 0., 1944, 1945, "Mathematical Analysis of Random Noise," Bell 
System Technical Journal, Vol. 23, pp. 282-332, and Vol. 24, 
pp. 46-157. 

Sockel, H., "Local Pressure Fluctuations," 1979, Proceedings Fifth 
International Conference ~Wind Engineering, Cermak, J. E. (ed.), 
Fort Collins, Colorado, U.S .A. , 9-14 July 1979, Pergamon Press, 
Vol. 1, Sessions I-V. 

Templin, J. T. and Cermak, J. E., 1976, "Wind Pressures on Buildings: 
Effect on Mullions," Technical Report CER76-77JTT-JEC24, Fluid 
Dynamics and Diffusion Laboratory, Colorado State University, Fort 
Collins, Colorado. 

University Computer Center, 1976, Computer User's Manual, Colorado 
State University, Fort Collins, Colorado. 

Van der Hoven, I., 1957, "Power Spectrum of Horizontal Wind Speed in 
the Frequency Range from 0. 0007 to 900 Cycles per Hour," Journal 
of Meteorology, 14, pp. 160-164. 

Velozzi, J. and Cohen, E. , 1968, "Gust Response Factors , " Journal of 
the Structural Division, ASCE, Vol. 94, No. ST6, pp. 1295-1313. 

Vickery, B. J., 1966, "Fluctuating Lift and Drag on a Lang Cylinder of 
Square Cross-Section in a Smooth and Turbulent Stream," Journal of 
Fluid Mechanics, Vol. 25, Pt. 3, pp. 481-494. 

Vickery, B. J. , 1970, "On the Reliability of Gust Loading Factors," 
Wind Loads on Buildings and Structures, National Bureau of 
Standards, Building Science Series No. 30, pp. 93-106. 

Zambrano, T. G. and Peterka, J. A., 1978, "Wind Load Interaction on an 
Adjacent Building," Technical Report CER77 -78TGZ-JAP26, Fluid 
Dynamics and Diffusion Laboratory, Colorado State University, Fort 
Collins, Colorado. 



TABLES 



66 

Table 6.1. Test for Stationarity of Pressure Fluctuation Data 
Obtained at Tap No. 116, WD = 000°. 

Tap No. 116 
WD = 000° 

Interval No. c c pmean prms 

1 0.416 0.133 

2 0.426 0.127 

3 0.425 0.143 

4 0.431 0.131 

5 0.470 0.126 

6 0.427 0.135 

7 0.447 0.112 

8 0.423 0.138 

9 0.476 0.133 

10 0.435 0.123 

11 0.469 0.127 

12 0.443 0.134 

13 0.452 0.143 

14 0.449 0.145 

15 0.434 0.128 

16 0.448 0.135 
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Table 6.2. Chi-square Test Result for the Distribution of 
Continuous Peaks of Tap No. 701. 

TIEe I Model: s=.033 2 9=.874 
Normalized 

Class Observed No. Expected No. Squared Deviation 
Intervals of Occurrences of Occurrences (see E9.uation 5.7) 
1(from A = -8.625) 0 0.25 0.25 
2 0 0.25 0.25 
3 0 0.25 0.25 
4 0 0.25 0.25 
5 0 0.5 0.5 
6 0 0.75 0.75 
7 0 0.75 0.75 
8 2 1.25 0.45 
9 2 1.5 0.17 
10 0 2 2 
11 1 2.75 1.11 
12 3 3.5 0.07 
13 2 4.75 1.59 
14 5 6.25 0.25 
15 4 8.5 2.38 
16 11 11.25 0.006 
17 18 14.75 0.95 
18 20 19.75 0.003 
19 28 26.25 0.117 
20 27 34.75 1.728 
21 45 46.25 0.034 
22 60 61.25 0.026 
23 94 80.75 2.174 
24 111 106.5 0.19 
25 149 140 0.579 
26 182 183.25 0.008 
27 236 238.25 0.02 
28 318 307.75 0.34 
29 387 393.5 0.107 
30 529 496.5 2.127 
31 579 615.5 2.165 
32 778 745 1.46 
33 861 874 0.19 
34 954 983.25 0.87 
35 1034 1046.5 0.149 
36 1073 1034 1.47 
37 898 926 0.847 
38 710 727 0.4 
39 475 479.25 0.038 
40 264 250.5 0.728 
41 109 96 1.76 
42 23 24.5 0.092 
43 7 3.5 3.5 
44(to 11 = 2.125) 1 0 1 

10,000 10,000 34.1 
2 

41=42.7 Xo.o5 
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Table 6.3. Average Time Interval between Continuous Peaks 
for Tap No. 701 

Tap No. 701 
1 tape-record = 4096 data points 

Number of Continuous Peaks 

Tape­
record 
Number 

1 

2 

3 

4 

5 

6 

7 

8 

9 

Average No. 
of Peaks per 
Tape-record 

Average Time 
Interval 
between Peaks 
for Overall 
Series (sec) 

Sample 
Rate=250 HZ 

1145 

1153 

1132 

1136 

1143 

1163 

1156 

1153 

(819) 

Average Time 
Interval 

between Peaks 
(sec) 

.0143 

.0142 

.0145 

.0144 

.0143 

.0141 

.0142 

.0142 

10,000 

1148 

.0143 

Sample 
Rate=1,000 HZ 

1368 

1372 

1363 

1370 

1343 

1318 

1334 

(532) 

Average Time 
Interval 

between Peaks 
(sec) 

.0030 

.0030 

.0030 

.0030 

.0031 

.0031 

.0031 

10,000 

1353 

.0030 



Lag 
No. 

0 

1 

2 

5 

10 

15 
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Table 6.4. Autocorrelation Coefficients between Continuous 
Peaks at Various Lag Times for Tap No. 701. 

SamEle Rate=250 HZ SamEle Rate=1 2000 HZ 
Lag Time Lag Time 

(sec) R (sec) R 

0. 1.000 0. 1.000 

.0143 .256 .003 .356 

.0286 .196 .006 .336 

.0715 .094 .015 .281 

.143 .033 .030 .220 

.215 .004 .045 .178 
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Figure 4.2. Completed Model in Wind Tunnel--Mountain Bell Utah State 
Headquarter Building. 
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