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ABSTRACT 
 
 
 

APPLYING MODEL-BASED SYSTEMS ENGINEERING TO ARCHITECTURE 

OPTIMIZATION AND SELECTION DURING SYSTEM ACQUISITION 

 
The architecture selection process early in a major system acquisition is a critical step in 

determining the overall affordability and technical performance success of a program. There are 

recognized deficiencies that frequently occur in this step such as poor transparency into the final 

selection decision and excessive focus on lowest cost, which is not necessarily the best value for 

all of the stakeholders. This research investigates improvements to the architecture selection 

process by integrating Model-Based Systems Engineering (MBSE) techniques, enforcing rigorous, 

quantitative evaluation metrics with a corresponding understanding of uncertainties, and 

stakeholder feedback in order to generate an architecture that is more optimized and trusted to 

provide better value for the stakeholders. Three case studies were analyzed to demonstrate this 

proposed process. The first focused on a satellite communications System of Systems (SoS) 

acquisition to demonstrate the overall feasibility and applicability of the process. The second 

investigated an electro-optical remote sensing satellite system to compare this proposed process to 

a current architecture selection process typified by the United States Department of Defense (U.S. 

DoD) Analysis of Alternatives (AoA). The third case study analyzed the evaluation of a service-

oriented architecture (SOA) providing satellite command and control with cyber security 

protections in order to demonstrate rigorous accounting of uncertainty through the architecture 

evaluation and selection. These case studies serve to define and demonstrate a new, more 

transparent and trusted architecture selection process that consistently provides better value for the 

stakeholders of a major system acquisition. While the examples in this research focused on U.S. 
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DoD and other major acquisitions, the methodology developed is broadly applicable to other 

domains where this is a need for optimization of enterprise architectures as the basis for effective 

system acquisition. The results from the three case studies showed the new process outperformed 

the current methodology for conducting architecture evaluations in nearly all criteria considered 

and in particular selects architectures of better value, provides greater visibility into the actual 

decision making, and improves trust in the decision through a robust understanding of uncertainty. 

The primary contribution of this research then is improved information support to an architecture 

selection in the early phases of a system acquisition program. The proposed methodology presents 

a decision authority with an integrated assessment of each alternative, traceable to the concerns of 

the system’s stakeholders, and thus enables a more informed and objective selection of the 

preferred alternative. 

 It is recommended that the methodology proposed in this work is considered for future 

architecture evaluations.  
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CHAPTER 1:  INTRODUCTION 
 

 This chapter provides background information to frame the rest of the dissertation 

1.1 Content of the Dissertation 

 This dissertation presents a proposed methodology to conduct architecture selection 

decisions that occur early in a system acquisition in order to produce better value while also being 

more transparent and trusted by the stakeholders. The overall content of the dissertation is 

organized as follows. 

Chapter 1 provides the background for the investigation starting with an overview of the 

problem scenario and frequent shortfalls in this vital early activity of the system acquisition 

process. It then presents a literature review to highlight techniques developed in various fields that 

may contribute to the solution space. This includes an overview of Model-Based Systems 

Engineering (MBSE), optimization techniques, the integration of MBSE and optimization, and 

uncertainty analysis within optimization. Chapter 1 closes with a proposed solution to the problem 

that will be evaluated in the rest of the dissertation. 

Chapter 2 presents a specific implementation of the proposed methodology, including an 

exemplar technical execution process with associated tools. The topics covered include reference 

architecture generation, contributing analyses selection, MBSE integration, software 

implementation, and uncertainty and sensitivity analysis. This provides a baseline for the proposed 

methodology that will be executed through three case studies. 

Chapters 3-5 present the three case studies to evaluate the proposed methodology described 

in Chapter 2 and include a case study background, research setup, results generated, and a 

discussion of those results. Chapter 3 presents a satellite communications system-of-systems (SoS) 
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acquisition case study to demonstrate the overall utility of the proposed methodology. Chapter 4 

presents a remote sensing case study with a focus on the specific U.S. DoD Analysis of 

Alternatives (AoA) process to highlight how the proposed methodology directly compares with 

the current methodology for architecture evaluation and selection. Chapter 5 examines a mission 

control service-oriented architecture (SOA) with a focus on cyber security design that highlights 

the potential payoffs of the uncertainty and sensitivity analysis within the proposed methodology. 

Overall Chapters 3-5 present a thorough exercise of the proposed methodology through a range of 

scenarios that demonstrate its utility and benefit over the current methodology. While the case 

studies are focused on U.S. DoD and other large acquisition examples, the methodology explored 

is broadly applicable to any system design scenario where an optimized and agreed-upon 

architectural context is required for success.  

Chapter 6 presents a summary and final contributions of the dissertation. This includes a 

synthesis of the results of the case studies, specific conclusions derived, and recommendations for 

future work. 

1.2 Problem Overview 

In major system acquisitions an early step is an architecture alternatives evaluation and 

selection of the best architecture for the program to acquire. Architecture evaluations are 

performed to compare candidate solutions for the system acquisition on their quality and ability to 

address stakeholder concerns [1], such as technical performance measures and affordability. It is 

a critical early step that has great leverage on the overall success of the ensuing program. An 

exemplar of such a process is the Congressionally-mandated AoA process for Major Defense 

Acquisition Programs (MDAPs), which evaluates materiel solutions on operational effectiveness, 

suitability and life-cycle costs in order to meet capability needs [2].   
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Unfortunately the complexities of modern major systems can make architecture 

evaluations difficult. There are almost always many competing stakeholders, each with a different 

prioritization of objectives for the system. Different stakeholders may also use models with 

different semantics, leading to inconsistencies in understanding [3]. The raw technical complexity 

of the system can also make a comprehensive understanding of the problem space difficult for 

many decision makers, who are often very senior personnel with a large scope of responsibility 

and have to rely on trusted advisors and clear discriminators to inform their decisions. Lastly, 

depending on the type of evaluation, frequently the scope and objectives of the problem space 

change mid-evaluation as world events occur and other competing technologies become available 

and develop stakeholder champions.  

Overall these conditions serve to create a scenario that makes it difficult to execute an 

architecture selection that consistently selects the best value as defined by the decision makers. 

While there is voluminous guidance on how to conduct an architecture evaluation in many 

organizations, especially in Government, how the final selection decision is determined is always 

up to the key decision makers. The conditions described then lead to decisions that frequently are 

determined by subjective measures such as which stakeholder can make the most persuasive 

argument during the critical decision meeting or become overly focused on one quantified 

measure, which is typically cost. This will then lead to decisions that don’t provide best value and 

lack transparency for participants in the critical decision meeting, and can stymie implementation 

of the strategy selected. 

Given the recent rapid and widespread technological advances within the fields of decision 

support tools, operations research, architecture modeling, and systems engineering, a better 
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methodology to inform architecture evaluations and selection for major system acquisition can and 

should be developed, a proposed approach for which is presented in this research.        

1.3 Literature Review 

The following Literature Review was conducted in order to investigate solutions to this 

problem. 

1.3.1 MBSE Overview 

 Model-Based Systems Engineering is a significant change in the fundamental way Systems 

Engineering (SE) is conducted in order to manage the technical baseline of a program. 

Traditionally, a multitude of documents are used to define critical requirements, capabilities, 

interfaces, and other design features of a major system. This has come to be colloquially known 

as “document-based SE” as documents are the authoritative materials to be carefully controlled, 

coordinated, and built to through configuration management processes. A significant issue with 

document-based SE is that as systems grow in complexity, often it is required to maintain a 

multitude of documents in order to describe overlapping requirements, capabilities and interfaces 

that must be tightly controlled and coordinated through several different organizations and 

processes. This significantly raises the risk that changes will not be fully captured and understood 

until an issue is discovered during test or operations. For instance, an update to change the 

telemetry data format of a satellite would have to be carefully coordinated and could involve 

changing system specifications for the spacecraft itself, the mission control segment terminals, the 

flight and mission control software, multiple interface control documents, and a range of test and 

contractual documentation, with each document change representing an opportunity for the update 

to be misunderstood, implemented incorrectly, or implementation overlooked completely. 
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 MBSE alternatively utilizes models to control the technical baseline of the program. In its 

most pure form, a MBSE management implementation would use a single linked model that 

captures all requirements, capabilities, interfaces, and other necessary information to describe the 

system under development. Any coordinated changes would be implemented in the model where 

their affects across the architecture would be instantly captured and accurately reflected in artifacts 

created from the model. If documents were needed, such as to define a contractual requirement, 

they could be instantly and efficiently generated from the model, up to date with all changes 

incorporated. This ensures consistency across all descriptions and views of the system, greatly 

reducing risk and saving effort when compared to document-based SE [4].   

 Implementing a MBSE strategy is not without difficulties however. Utilizing models to 

control the technical baseline can be less intuitive for some participants in the acquisition process 

than using documents, resulting in the models generated being used as end-product descriptions 

rather than the core of the technical management process, thereby defeating the purpose [5]. There 

are also competing tools and languages. Furthermore, MBSE requires additional training and 

software tools to support the MBSE implementation, which is not without cost. While there are 

many successful implementation examples, heightened concern also surrounds MBSE interactions 

with non-technical disciplines.  

There can be particular difficulties where MBSE must be implemented across contractual 

boundaries, which has traditionally relied upon copious documentation and involved supporting 

procurement specialists and business practices that may have difficulty integrating the models [6]. 

Some also attempt to pursue MBSE as a trendy method in order to make up for a poorly-

implemented SE function, discovering too late that no amount of modeling software can overcome 

a lack of proper SE discipline. In fact common challenges with implementing models in design 
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activities are similar to those experienced by document-based processes, and include change 

management, requirements management, and user participation [7]. Given these reasons and the 

additional initial cost to pursue MBSE, some feel that document-based SE may be the safer option 

for many organizations [5].  

 Despite these concerns, MBSE has clearly provided major value when implemented 

correctly and has been gaining momentum as the technical management process of choice for 

leading technical development and acquisition organizations tackling complex systems. It has been 

broadly studied and successfully applied to a number of different disciplines and fields, including 

test and evaluation [8], information and embedded systems [9], and space systems [10]. The 

International Council of Systems Engineering (INCOSE) has committed to MBSE and has 

multiple working groups pursuing the development of guidance for practical MBSE 

implementation [11]. 

MBSE’s effectiveness in flexibly and explicitly addressing many of the challenges 

associated with design problems has allowed it to efficiently integrate activities for conceptual and 

creative development efforts with demonstrated payoffs [12]. The impact is real for an 

organization’s bottom line. A wide-ranging study of MBSE implementations by Sandia National 

Laboratory found that transitioning to a rigorous MBSE process through the lifecycle of a system 

development effort resulted in a “significant advantage” over document-based SE primarily from 

preventing defects, reducing rework and associated cost, and shortening design and acquisition 

schedules [13]. 

 Specific implementations of MBSE can vary with modeling language, software tools, and 

architecting techniques. A widely accepted modeling language for MBSE is the Systems Modeling 

Language (SysML), which has widespread familiarity, applications, and software tool support 
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[14]. Techniques utilizing SysML have been developed for a number of complex system 

applications [15].  

An exemplar MBSE architecting process is the Model-Based Systems Architecting Process 

(MBSAP), which is based on SysML [16]. The architecture can be organized through the use of 

operational, logical, and physical viewpoints [17]. A particularly common MBSE technique is 

developing a generic architecture for the problem space known as a Reference Architecture (RA), 

which can facilitate robust trade studies by serving as a baseline starting point for excursions that 

represent specific implementations of the RA. This has been shown to effectively decrease errors, 

development time, and cost [18].  

 MBSE’s flexibility has been demonstrated through its wide integration with other SE 

management techniques. For instance, it has been combined with a Design Structure Matrix (DSM) 

to create a Model-Based DSM (MDSM) [19]. In particular, the flexibility gained from MBSE has 

been successfully applied, perhaps most critically, to the dynamic environment of early system 

design [20]. 

1.3.2 Optimization Techniques in Engineering 

 The use of optimization techniques to aid in decision making has been around for a 

considerable time (for a classic overview see [21]). This field has recently expanded extensively 

when applied to complex engineering problems. In particular, the ability to select the “best” 

solution given a set of competing objectives, known as “multi-objective optimization,” is a very 

desirable capability because of the competing demands in engineering modern systems, such as 

cost, reliability and performance [22]. For a useful survey of multi-objective optimization 

techniques see [23].  
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 Frequently the constraints presented in modern engineering optimizations include non-

linear and non-differentiable functions. An example of such a case is the use of step functions in 

cost modeling to account for specific equipment package options for the system being designed. 

Problems that include such functions can be much harder and sometimes impossible to directly 

solve analytically. This can drive alternative methods to solve the problem, a popular approach for 

which is to utilize an evolutionary or “genetic” algorithm which leverages a machine learning 

feedback loop to exercise the problem space with potential solutions in an attempt to evolve the 

optimum solution [22].  

 For their flexibility and availability through numerous software tools, genetic algorithms 

have become a ubiquitous component in attempts to solve the extremely complex modern 

engineering optimization problems that have ever-increasing sophistication [24]. Their ability to 

handle multi-objective optimizations has been successfully applied to a wide range of engineering 

fields [25]. Recent research has focused on making genetic algorithms more computationally 

efficient through the use of parallel processors, which can greatly speed up the optimization 

process [26]. The latest techniques have investigated coevolutionary algorithms working 

cooperatively to tackle problems that have too many objectives to optimize efficiently with a single 

optimization algorithm [27]. Concurrent optimizations have enabled a number of creative 

strategies, to include varying a hierarchy of meta-models in order to solve complex optimizations 

in a more computationally efficient manner [28].    

1.3.3 Applications of Optimization to System Design 

Optimization has been successfully applied to architecture evaluations for many system 

design scenarios [23], in most cases informing the architecture selection decision rather than 

determining it. While there are some exceptions, most examples focus on optimizing system 
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performance for a given cost or optimizing cost for a required performance. This can include very 

detailed cost modeling through the subsystem level, evaluation and comparison of discrete 

component modules, parametric relationships of technical performance, and system operational 

context modeling [29]. For most complex systems this is inherently an interdisciplinary endeavor, 

relying on component models from very different engineering or scientific fields [26]. Given the 

rise of computational power, the limits on what can realistically be included in an evaluation, in 

both breadth of options considered and depth of detail, has greatly increased. It has also enabled 

many alternative optimization methods to be investigated, including varying the mathematical 

structure of the objective function itself [30]. 

Genetic algorithms have been applied to system design, and in particular spacecraft design, 

for decades, some of the early examples of which focused on assessing component technology for 

incorporation into the final design [31]. Specifically, architecture evaluators felt this was a useful 

technique in forcing designers to break out of fixation on designs they were comfortable with. 

Since then, there are now numerous examples of engineering optimization occurring in just about 

any system design scenario, including everything from submarines [32], to launch vehicles [25], 

to RF sensors and information systems [33]. 

It’s been postulated that all system architecture trade studies are fundamentally multi-

objective optimizations with the essential struggle being how to represent stakeholder priorities 

mathematically [34]. In particular, there are frequently driving critical assumptions that can 

drastically affect the structure of the objective function and the priorities of the competing criteria. 

This most often results in many differences of opinion amongst the stakeholders about how 

accurately the given objective functions represent their respective desires for the system under 

design and what should be done to improve them. Despite these concerns, attempts to derive 
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mathematical objectives to aid in architecture evaluation and selection decisions are frequent. In 

particular, they can contribute by enabling the identification of “knee in the curve” points on Pareto 

frontiers (essentially local optimums between competing objectives) and emphasizing the 

corresponding architecture alternatives to decision makers, which in itself is a useful activity to 

inform further iterations of the analysis and the final selection [35].  

While it is probably not acceptable to many stakeholders to leave the entire decision about 

an optimum architecture in the hands of a calculation, at least attempting to define a mathematical 

objective can be an illuminating activity [34]. Specifically, by getting stakeholders to define their 

relative priorities for the various decision criteria by forcing the documentation of an objective 

function ensures transparency, traceability, and repeatability in the decision process. In fact, other 

constructs have been proposed specifically to enforce traceability such as through the use of a rule-

based value determination which has been established to be helpful in a varied assortment of 

decision support tools [36]. A mathematical objective can serve a very similar purpose, with 

documented changes to the objective serving as a record of the shifting priorities of the 

stakeholders. This provides insight into each stakeholder’s relative priorities which can help 

facilitate an informed discussion during the final architecture selection.  

This work assumes that systems architecting is ultimately about achieving client 

satisfaction [37]. Interestingly enough that has traditionally resulted in the view that systems 

architecting is more of a qualitative “art” rather than a quantitative “science” such as systems 

engineering [37]. The author seeks to blend the two in this research and indeed show that by 

leveraging quantitative measures in architecting we can achieve better stakeholder satisfaction. 
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1.3.4 MBSE and Optimization Integration 

 The integration of optimization techniques with the comparatively newer processes of 

MBSE was a logical step in the maturation of system design methodologies. In fact, the combined 

management of system modeling with other engineering discipline models has been identified as 

a key part of realizing the benefits from MBSE [38]. The potential advantages posed by this 

integration are great, and it has been demonstrated in practice that optimization tools leveraging 

modeling techniques can evaluate 500 times more potential architectures than the more manual 

methods of a traditional architecture evaluation in the same timeframe [39]. The drawbacks of the 

comparatively higher learning curve and tool access have been mitigated as both MBSE and 

optimization techniques have demonstrated track records of utility in a variety of scenarios which 

lead to flexible and accessible software tool support and a growing cadre of knowledgeable 

practitioners. 

 With its popularity in MBSE, SysML has become one of the main tools to facilitate 

optimization integration. SysML has a metalanguage base, which makes it possible to directly 

integrate with a number of optimization and simulation tools [40]. There are numerous examples 

of this, such as a SysML integration with the space domain-focused Satellite Tool Kit [41]. 

Furthermore, while SysML is not an executable language itself, it can enable executable 

simulations through model transformations, parameter exportation, and automated code generation 

[42]. In fact, most mainstream SysML tools directly support simulation of behavior diagrams. 

Additionally, since it is a language for high level architecture modeling, SysML can be an effective 

integration tool between different modeling environments [43]. Despite this potential for 

interoperability, there are still challenges to implementation in practice [33]. 
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 In the methodology employed in this research, an architecture evaluation that leverages 

optimization starts with defining requirements for the system under design. Next, a trade study is 

developed that translates these requirements into constraints, thresholds, and mathematical 

relationships integrated into an overall objective function. This can include both technical 

parameters such as measures of system performance, and programmatic parameters such as cost 

and development schedule. Then, a corresponding RA is developed that encompasses the various 

options, which has been demonstrated in SysML [32]. It is all integrated through a simulation that 

links the RA with the optimization of the objective function, varying the objective and architecture 

until the optimum and corresponding architecture are selected. This entire process has been 

demonstrated through the use of Mathworks MATLAB® and Microsoft® Excel analyses linked 

to a SysML architecture and exercised in a Phoenix Integration ModelCenter® simulation 

environment through the use of Application Programming Interfaces (APIs) [33]. 

 This methodology of integrating a SysML MBSE implementation with an optimization is 

actually fairly straightforward given the data elements defined by SysML. SysML utilizes a 

“Measure of Effectiveness” stereotype that can be an input to an objective function. Element 

dependencies that are defined by performance relationships can effectively be modeled through a 

Constraint Block, and can be very simple or extremely complex relationships. A general system 

block can be varied in order to represent multiple architecture configurations. Then Parametric 

Diagrams are used to model the constraint relationships. This flexibility can significantly aid in 

designing for adaptability since many modules and components can be compared and evaluated 

quickly. [33]  

The extensibility of this type of integration between optimizations and MBSE through a 

simulation engine is limited only by available computational power and the available effort and 
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understanding of the modelers. Extremely detailed and thorough satellite constellation 

optimizations that include bottoms-up cost models down to the subsystem level and robust 

technical performance models have successfully followed this implementation [29]. A main 

strength of a simulation engine that incorporates API’s, especially if it supports writing a tool-

specific API such as ModelCenter does, means that any model defined in any tool of choice can 

be integrated into the overall simulation to be exercised and optimized through software calls. 

Alternatively, the structure of the objective can also be modified through variations of the 

arrangement of the Constraint blocks, allowing for other optimization strategies [30]. Certainly we 

are far from realizing the limits of the applications of these flexible tools and strategies. 

Unquestionably the ability to integrate MBSE with optimizations has demonstrated utility 

in a variety of scenarios. Not only does it enable the exploration of an expanded trade space, but it 

also enables greater insight into how the selection of the “best” architecture occurs. In fact, it has 

been suggested that SysML conceptual data models be used to ensure consistency and traceability 

for the data in complex system architecture evaluations [44]. 

1.3.5 Uncertainty Analysis in Optimization 

1.3.5.1 Tracking Uncertainty Through Modeling 

The ability to track uncertainty through an optimization is critical in ensuring an 

understanding of the confidence level of the final result. In particular, stakeholders will want to 

know if the architecture corresponding to the identified optimum solution will be likely to return 

value close to what was predicted at the optimum in the model (a more robust architecture), or has 

a greater potential to return a significantly lower value than what is predicted (a more fragile 

architecture). By rigorous analytical accounting for uncertainty, modelers can give increased 

confidence in the results. 
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A basic consideration concerns uncertainty in the data itself, especially in measurements 

of physical systems. When calculating the likelihood that a system or subsystem will meet a 

necessary threshold, a figure of merit known as a k-factor is typically used. This is usually defined 

by margin divided by uncertainty. A Gaussian or Normal distribution is typically assumed for the 

uncertainty, however that may not always be an accurate assumption. If Gaussian uncertainty 

cannot be assumed, then more complex measures have to be taken to estimate and bound for 

uncertainty. Such methods, such as utilizing tolerance intervals rather than confidence intervals, 

have been demonstrated to allow for the statistical analysis of all types of data even for those that 

do not follow a Gaussian distribution. [45]  

One direct approach to account for uncertainty in an optimization is selecting uncertainty 

or risk as one of the criteria in the objective function itself. Techniques have been demonstrated 

for this such as mean-variance optimization to optimize a given return for risk, which was 

developed originally in the 1950s for the financial sector [46]. These techniques have been applied 

to a SoS architecture design optimization in order to optimize expected performance for 

development time risk [47]. This would require a statistical quantification of the risk of all the 

inputs for the objective function as well as limiting the contributing analyses to only those 

relationships formatted to quantify uncertainty. 

Risk may not be one of the criteria desired to be optimized. In this case, as long as the risk 

is understood and can be quantified for all the inputs and relationships, then it can be rigorously 

propagated through the simulation [48]. This will allow for the determination of uncertainty 

bounds for the final optimized result and will give stakeholders an understanding of the likelihood 

the architecture will deliver on its predicted performance. However, this can be difficult in practice 
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because not all the inputs or relationships may be statistically understood. Furthermore, such 

analysis requires additional work and expertise from the modelers and others. 

Another common technique to account for uncertainty is Monte Carlo analysis. This would 

require understanding the potential input distributions and variability of all the relationships being 

optimized. A typical Monte Carlo analysis application would follow four steps. First the system 

logic is formalized, which establishes the relationships between the parameters to be varied and 

the output. Next, probability distributions are assigned for each variable, which can be based from 

empirical historical data or known distributions. Then the probability distributions are converted 

to cumulative probability distributions with the cumulative probability on the ordinate to 

correspond with a random input. Finally, the Monte Carlo process is run in accordance with the 

formalized logic, with each run selecting a random number corresponding to each parameter which 

evaluates that parameter based on the cumulative probability distribution, ultimately resulting in 

an output according to the logic. A sample set of runs will then generate a distribution for the result 

with the validity of this distribution corresponding to the fidelity of the logic, the accuracy of the 

input distributions, and the number of trials in the sample. [49] 

A basic implementation of a Monte Carlo analysis in an optimization would first conduct 

the optimization to identify the optimum set of parameters, then use those corresponding 

parameters with appropriate input distributions in the Monte Carlo simulation to recalculate the 

objective. This will give a distribution of the expected return for the originally calculated set of 

optimum parameters. A wider distribution, or one with many of the results, may show that the 

optimum solution does not often deliver on its promised value, and may warrant a re-evaluation 

of the objective.  
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There are other new methods to account for uncertainty. For instance, unscented 

transformations have been proposed and demonstrated for some problems as a less 

computationally demanding alternative to Monte Carlo to describe the effects of uncertainty within 

the optimization [50]. Another method is reliability-based optimization, which uses both 

deterministic constraints and reliability constraints in the objective function. The reliability 

constraints capture probabilistic failure modes and ensure they are below thresholds acceptable to 

the stakeholders [51]. Both these efforts demonstrate creative ways to capture uncertainty given 

limited knowledge about the variability in the scenario and limited computational power, which 

are very common concerns.  

1.3.5.2 Appropriateness of “Subjective” Measurements in Modeling 

One of the main reservations stakeholders have with architectural modeling to make 

decisions is accounting for architectural aspects that are typically thought to be very subjective or 

nebulous to quantify, an example of which is cybersecurity [52]. This is an understandable concern 

as the shortfalls of human judgment in attempting to quantify uncertainty in decision making, 

namely the tendency to replace statistical principles with biologically-ingrained heuristics, has 

been robustly documented [53]. However, these factors can be better understood, and successfully 

compensated for through careful analysis [52], a recent example of which is highlighted in the 

high profile book and Hollywood movie Moneyball [54]. 

Leveraging subjective human measurements is actually a perfect application of uncertainty 

analysis since according to the “subjectivist” or “Bayesian” interpretation of statistics most 

decision makers hold (whether they realize it or not), probabilities are an attempt to quantify lack 

of knowledge about a possible outcome [55]. In that sense, a 90% confidence interval represents a 

90% probability of containing the true value whether it was determined by a human judgment or 
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a physical instrument. In fact, it is precisely a result of Bayesian theory that an expert judgment 

should be viewed as just another measuring tool (albeit with typically a comparatively wider 

confidence interval) that provides a measurement with uncertainty bounds [52].  

The opposing philosophical view in statistics to the “subjectivist” view is known as the 

“frequentist” view. It holds statistical probability can only apply to measurements that are purely 

random, strictly repeatable, and have an infinite number of iterations. Subjective human judgment 

would obviously not fall into this category, but then neither would any real world measurement no 

matter how precise the instrument. In this view probability is purely a mathematical abstraction. 

[52] It may seem hard to understand how this could be, but in the real world, there is always a 

chance an instrument could be mis-calibrated, misapplied or otherwise wrong. For instance, the 

author has personally experienced a precise technical instrument misused and holding a multi-

billion-dollar aerospace system at risk because a human mistakenly applied the Celsius scale to a 

Fahrenheit-calibrated tool. There is no such thing as a purely objective measurement in the real 

world no matter how careful or sure we may think we are [52]. 

It is asserted then that the problem with human judgment compared to physical instruments 

is that human judgments are typically not calibrated very well in providing their confidence 

interval. Humans will tend to be overconfident with confidence interval estimates, although can 

be underconfident. However, they can be calibrated through training to provide accurate 

confidence intervals for their expert judgment measurements. This allows for the incorporation of 

expert judgment into quantitative techniques rather than the qualitative techniques they are 

typically used for. [52] 

Furthermore, it has been consistently demonstrated that quantitative techniques utilizing 

expert judgment, even simplistic ones, consistently outperform qualitative expert judgment in 
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predicting results. [56] [57] The main matter is describing the information in a way that is 

quantifiable. While some try to provide a counter argument that there are just some things that 

appear too nebulous to quantify, that is never actually the case. For instance, take the situational 

awareness of a military user in an operations center, which may appear difficult to quantify. 

However, there are methods to quantify the ability to share information, and the quality of that 

information across a network that could serve as an appropriate model. For instance, it is possible 

to quantify the number of networked participants who have a common relevant operating picture 

(CROP) of the battlespace. [58] While it takes some thought, quantifiable metrics can be derived 

for all real world scenarios. [52] 

 In this manner, a rigorous uncertainty approach will also help gain stakeholder acceptance 

to architectural trades with a great deal of subjective parameters [52].   

1.4 Proposed Solution 

After synthesizing the results of the literature review, several potential techniques emerge 

to address the problem of improving the quality of architecture evaluations and selections in order 

to provide increased value to stakeholders while enabling better transparency into the final 

decision. In particular, the cited work strongly suggests that an integrated application of MBSE 

and optimization will lend structure and improve stakeholder feedback to enable selecting the 

alternative that delivers best value during the evaluation.  

Given MBSE’s demonstrated utility in enabling effective communication of an architecture 

description through its lifecycle, this research starts by applying it in a similar role at the beginning 

of the lifecycle early in the architecture evaluation and selection. The first step is to define a 

reference architecture (RA) for the solution space, including initial requirements, capabilities, and 

other necessary parameters. Then proposed excursions are defined including their impact on the 
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RA. The RA and excursions effectively communicate the boundaries of the solution space to all 

stakeholders. 

In parallel with the MBSE effort, an optimization set up is defined. A principal component 

of this is to force decision makers with stakeholder input to define quantitative evaluation criteria 

with corresponding weightings. This provides an objective function for the optimization. While 

this is a significant departure from current practice given that qualitative criteria are currently 

frequently used in evaluations, enforcing quantitative criteria so that all relevant criteria are 

appropriately treated is critical. A very common occurrence in architecture evaluations now is that 

quantitative criteria such as estimated cost tend to overshadow qualitative criteria.  

Given the criticality of the objective definition step, a robust and authoritative process must 

be created to execute it. This is closely related to, and perhaps simultaneous with, the requirements 

generation process. It is understood that stakeholders will not agree to be beholden to an analysis 

without first seeing the results of the analysis, so this is the initial starting point for the discussion 

of the objective rather than the final solution. Opportunities to iterate the objective function with 

the decision makers come later.  

Next, the MBSE set up is integrated with the optimization. This starts with calculating the 

effect of the excursions of the RA for each of the objective criteria. This leads to the creation and 

indexing of a number of contributing analyses, each one defining a necessary step in calculating 

the objective criterion. Each of these contributing analyses is defined in its own discrete software 

implementation. A flexible simulation tool provides APIs to integrate all of the contributing 

analyses into one simulation scenario through the framework established in the RA with excursions 

in defining the objective. 
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The scenario is then integrated with an optimizer that exercises the excursions of the RA, 

calculating the corresponding contributing analyses and objective. It is likely that this optimization 

function will have to support non-differentiable constraints, leading to the selection of a flexible 

optimization tool such as a genetic algorithm. An optimum solution set of inputs variables is 

identified along with the architecture that corresponds to those variables. Additionally all the 

results of the optimization are captured to identify Pareto frontiers among the criteria.  

In a real-world program, the optimum solution, corresponding architecture, and other 

results would be presented to decision makers during a decision meeting. If the results are not 

accepted, the decision makers will be forced to adjust their objective criteria and weightings, which 

can be informed by the Pareto frontiers identified. Any adjustment to the objective criteria and 

weightings are carefully documented to ensure transparency. The optimization can be iterated as 

often as necessary and presented to stakeholders, with any changes documented, until the results 

are accepted. 

Once the results of the optimization are selected, the architecture identified as 

corresponding to the accepted solution is established as the baseline architecture for the system 

under design. Since this was already built in an MBSE tool, this step will just involve an adjustment 

to the RA to reflect the specific implementation of the excursion selection. This MBSE 

implementation is then incorporated into the technical baseline management process. This ensures 

that the architecture selected by the stakeholders is the architecture that the system designers will 

start building to. 
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CHAPTER 2:  OVERVIEW OF APPROACH 
 

 This chapter provides a detailed overview of the approach taken in the subsequent case 

studies for this research. Following the description of the proposed solution in section 1.4, there 

are five components to this approach. These include Reference Architecture Generation, 

Contributing Analyses Selection, MBSE Integration, Software Implementation, and Uncertainty 

and Sensitivity Analysis. The proposed process will be validated by executing and expanding on 

these components through the case studies and leveraging expert feedback, real-world comparison, 

and direct analytical evaluation of the merit of the solution. 

2.1 Reference Architecture Generation 

2.1.1 Reference Architecture Overview 

The first step in developing an MBSE-enabled implementation of architecture evaluation 

and selection is creating a RA. The RA serves as the baseline to-be architecture for the system 

under design. It is an abstract construct that outlines the logical and functional behavior of a class 

of systems. When physical detail is added to the RA, it becomes instantiated as a physical 

architecture for a specific system implementation. A structured process should be followed for the 

initial creation and instantiation process of the architecture to ensure all appropriate information is 

layered into the architecture while conforming to all appropriate policies and mandates. The 

structured process selected to perform this function for this research is MBSAP, which emphasizes 

an object-oriented approach for architecting in order to best implement MBSE. [16] 

Following MBSAP, there are a number of activities that take place during RA 

development. It starts by defining the abstract behavior, structure, and other defining features of 

the problem space for the system under design. Next, a requirements template is built to capture 
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the requirements for the system that need to be addressed. Then, quality attributes are collected 

which define how to measure value for the architecture. The RA is then modeled in an established 

modeling methodology, with a preference for one that supports an objected-oriented approach. It 

is critical to ensure that any lessons from experience such as best practices are incorporated. The 

last step of RA generation under MBSAP is to validate the RA with customers, subject matter 

experts (SME’s) and other stakeholders. [16] 

2.1.2 SysML Introduction 

Due to its widespread use and software tool support, SysML is the architecture language 

selected for this research. SysML is an object-oriented modeling language that is a profile of the 

Unified Modeling Language (UML) developed to specifically focus on system design. It is an 

evolving language that is also an international standard [59]. SysML was specifically designed to 

support a MBSE approach in the activities of design, specification, analysis, and verification and 

can include hardware, software, personnel, procedures, facilities, and data. It is used to describe 

aspects of a system such as structure, behavior, requirements, and parametric relationships [15]. 

For a more complete description of the diagrams available and the SysML language in general, 

see references [14] [15], but a brief description of key concepts follows. 

SysML utilizes nine different types of diagrams to convey information about the system, 

with each diagram emphasizing a different aspect of the system. However, in a MBSE approach 

each diagram is referencing information contained in the same underlying linked model which 

enforces consistency across any of these views of the system. This blend of flexibility and rigorous 

consistency ensures the SysML model has maximum applicability to the variety of activities 

associated with system design, development, and sustainment, which reduces cost and errors. The 
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diagrams defined by SysML include a requirements diagram, two structure diagrams, four 

behavior diagrams, a parametric diagram, and a package diagram.  

A key concept of SysML is a block, which is a general purpose construct that may represent 

a component or a system. A block can contain features that represent its functions, properties, 

interfaces, and states. Relationships between blocks can include composite relationships, and a 

generalization/specialization relationship. A block definition diagram (BDD) is used to describe 

blocks and their relationships. [15] An example BDD is shown in Figure 1.  
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Figure 1: Example Block Definition Diagram 

Figure 1 shows several constructs of SysML. Starting at the top is a block representing an 

overall satellite system. It is identified by the stereotype <<System>> and has the descriptors of 

values describing the system and operations identifying what it performs. Immediately below it 

are blocks identifying the subsystems Spacecraft and Mission Control Station which are identified 

as Part Properties or Parts of the overall satellite system by the composite relationship shown by a 
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solid diamond. There are one or more space vehicles identified by the “1..*” multiplicity and 

exactly 1 Mission Control System in the overall Satellite System. Below the Space Vehicle block 

are two specialized blocks identified by the empty triangle showing Generalization/ Inheritance 

which specialize the Space Vehicle block to create two generations of Space Vehicles. These 

“specific” versions of the Space Vehicle have some properties inherited from the parent block and 

additional properties for that specific generation. 

Blocks can be further broken down as interconnected elements termed parts with 

interaction points between blocks and parts identified as ports. A construct known as a connector 

connects parts. These elements are shown in an internal block diagram (IBD), an example of which 

is shown in Figure 2.  
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Figure 2: Example Internal Block Diagram 

Figure 2 demonstrates several of the common elements in a SysML IBD. A 

“SpaceVehicle” block contains the “Bus” and “Payload” parts with the “Payload” interacting with 

an external “User Terminal” part. Ports are shown as small squares on the boundaries of parts or 

blocks. Solid lines are connectors which represents flows of matter, energy, and information such 

as electrical power and data carried by radio frequency energy. The IBD is very useful in showing 

interactions in the structure of the system. 

Another important set of SysML diagrams are used to represent behaviors. In particular, 

activity diagrams can be used to model control flow, information object flow, input and output. 

Activities transform inputs into outputs through actions which are carried out in a controlled 
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sequence. Actions can be allocated to components which can be shown through the use of activity 

partitions or swim lanes in the activity diagram. [15] An example activity diagram is shown in 

Figure 3.  

 

Figure 3: Example Activity Diagram 

This example activity diagram shows the behavior interactions between the 

“MissionControlStation” and “SpaceVehicle” subsystem in order to carry out the 

“EstablishCmdLink” activity. Various actions are allocated between the two subsystems in the 

order dictated by the control flow. The control flow starts in the upper left with the initial node and 

ends in the lower left with the activity final node. The data items “Link_Request” and 
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“Handshake_Msg” are created and consumed during the course of the behavior. A diamond 

represents a decision gate which provides for two alternative paths for the activity to follow 

depending on whether or not the criteria are satisfied. 

Another common diagram used to substantiate behavior modeling is the Use Case 

Diagram. The use case diagram is typically applied to define the overall goals of the system such 

as mission objectives. The goals are represented as use cases, which can be associated with the 

subject system and external actors such as human personnel. The use cases can then be further 

expanded through other behavior diagrams. [15] An example use case diagram for the example 

satellite system is shown in Figure 4.  

 

Figure 4: Example Use Case Diagram 

Figure 4 shows several of the use cases represented as ovals down the center of the diagram. 

These use cases reflect the top level goals of the example satellite system and each can be further 

expanded by an activity diagram or other behavior diagrams. They are tied to external actors 

represented by the stick figures. These external actors could be human personnel or an external 
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system the satellite system interacts with. For instance, the “CommUser” actor would include the 

user terminal system that communicates with the satellite, which may also include the human 

personnel that operate that terminal.  

2.2.3 Reference Architecture Organization 

SysML diagrams are created to support the RA generation and organized in order to 

provide Operational and Logical/Functional Viewpoints [17]. A Physical Viewpoint is not created 

until the RA is instantiated as a specific architecture. The various viewpoints will be further broken 

down into various perspectives, such as the structural perspective, the behavioral perspective, the 

data perspective, and the services perspective, with each perspective highlighting a different aspect 

of the architecture. 

In the Operational Viewpoint, the structural perspective will typically have generalized 

domains such as Planning, Information Management, and Communications Management. 

Common internal and external interaction points will be modeled as Ports or Interfaces on the 

blocks that model domains. The corresponding behavioral perspective will contain behavior 

modeling diagrams to identify use cases and generic user roles. The scenarios representing the 

flow of activities in a Use Case are modeled in Activity Diagrams. Ideally the generic operational 

sequence known as a Mission Thread will also be modeled in an activity diagram. The data 

perspective will include a conceptual data model (CDM) describing the relevant data and a services 

perspective, if necessary, will describe any functions that can be called as services. [16] 

In the Logical/Functional Viewpoint, the structural perspective will contain any design 

patterns (generalized, reusable entity descriptions) for systems contained in the RA. The 

behavioral perspective will contain sequence and state machine diagrams describing behavior of 

blocks that correspond to the design patterns. It can also contain more specific timing information 
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for the Mission Threads. The data perspective will contain a logical data model and the services 

perspective will include a Services Catalog that further describes services and their specific 

allocation to blocks. [16] 

2.2 Contributing Analyses Selection 

2.2.1 Criteria for Contributing Analyses 

 Once the RA is understood and the trade space defined, the next step of the proposed 

modified architecture evaluation process is to select contributing analyses that can define and 

quantify objectives in the optimization. This selection is very problem dependent and is informed 

by discussion with the stakeholders and the overall requirements for the system under design. 

Typically top level operational requirements will be provided from users through a carefully vetted 

process; for instance in the U.S. DoD this will typically come from the Joint Capabilities 

Integration and Development System (JCIDS) which validates operational military requirements 

through the Vice Chairman of the Joint Chiefs of Staff [60]. In addition to meeting stakeholder 

goals, however, these contributing analyses must be able to integrate into the overall optimization 

schema in order to be acceptable. 

 A main factor in whether or not a contributing analysis is suitable for this process is whether 

it can be quantitatively measured and modeled as a metric. This ensures that it is compatible with 

an optimization type of methodology. Given the robust development of genetic algorithms and 

other flexible tools to handle non-differentiable problem spaces, the contributing analysis does not 

have to fit any particular form as long as it produces a quantitative metric. Even fairly robust cost 

analyses with complicated step functions have been demonstrated to work with an optimization 

tool [29].  
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 A second factor is whether or not uncertainty data can be captured or calculated for the 

contributing analyses. This can be time consuming to perform, and uncertainty quantification is 

often only done on major projects [61], however it is critical to this process. A relatively common 

example is cost estimating analyses, which will typically have a predicted cost parameterized for 

a level of confidence. While the proposed methodology could be run without uncertainty 

information, the author feels strongly that being able to quantify uncertainty in the optimized 

solution is critical to achieving stakeholder confidence in the final result. That can only be achieved 

if uncertainty in the input parameters and all the contributing analyses can be quantified. Typically 

this means that the model used is based on and validated through large sample sizes of historical 

data, however techniques have been developed to generate defensible, quantified metrics with 

uncertainty bounds from data that comes studies of small sample sizes or subjective expert 

judgment [52]. While this may result in large uncertainty distributions, it is still preferable to 

relying on qualitative assessments. 

 It should be noted that not all contributing analyses directly convert input parameters into 

objectives in the optimization. Sometimes intermediate contributing analyses are required to 

calculate intermediate parameters that then feed into a later set of contributing analyses to generate 

the objectives to be optimized. These intermediate contributing analyses have the same 

requirements for quantification and uncertainty in order to be utilized in this proposed 

methodology.  

 An example of an intermediate contributing analysis could be a satellite architecture 

optimization that includes schedule and cost considerations. Frequently programmatic models 

such as these include inputs for the satellite mass, which is typically itself an output of satellite 

performance models [62]. So while satellite mass is not usually an objective in of itself in the 
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optimization, it is a necessary intermediate contributing analysis for many satellite architecture 

optimizations.  

2.2.2 Potential Programmatic Contributing Analyses 

 Contributing analyses based on validated historical data are attractive in this methodology 

because large sample sizes with many programmatic metrics naturally integrate well into this 

construct rather than more specific technical performance metrics. This is due to the fact that many 

programmatic measures are mandated by oversight authorities to be collected on many large 

acquisition programs. Numerous types of programmatic metrics exist and make good candidate 

contributing analyses dependent on the preferences of the stakeholders. These include metrics on 

program execution, changing requirements, and organizational relationships. 

 A specific source of potentially useful programmatic measures to use as contributing 

analyses are related to Earned Value Management (EVM), which is intended to provide leadership 

insight into program execution. EVM is a mandated management system on all U.S. DoD major 

acquisitions programs that provides reportable cost and schedule information comparing actual 

program execution performance to the predicted programmatic baseline [63]. Available EVM 

metrics include total budget, scheduled and actual expenditures, and schedule and cost variances 

from the approved schedule and cost baselines. With the mandated nature of EVM, these metrics 

are available on nearly all major defense systems, leading to large sample sizes which provides a 

suitable base to calculate uncertainty. 

 EVM derived metrics are attractive precisely because this cost and associated uncertainty 

and risk are calculated through a defined, repeatable process within the normal U.S. DoD 

acquisition processes [64]. These uncertainty analyses are typically used to inform major 

acquisition decisions and as such are conducted with extreme rigor. Furthermore, there are 
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continually efforts underway to validate cost estimation methodologies against historical data in 

an effort to continuously improve them [65]. Given these models already have validation and 

uncertainty quantification performed on them, they are ideal candidates for contributing analyses 

in this proposed architecture evaluation technique. 

 Another source of programmatic metrics are configuration changes within a Government 

system, especially when that system is part of a System-of-Systems (SoS). These changes must be 

tightly controlled, coordinated and documented, typically through a robust Configuration Control 

Board (CCB) process [66]. Whenever there is a commitment of funds to modify a technical 

baseline, there is or should be some sort of controlled CCB approval process to ensure the change 

does not have unforeseen ramifications across segment or system boundaries. This is a necessary 

component of a rigorous SE implementation because the SE model is critical in identifying such 

consequences of a proposed change. 

 While every SoS is different, in the author’s experience there can be 100 or more CCB 

change packages a year in a significant SoS as the capabilities and requirements of the constituent 

systems evolve. The documentation associated with these approvals represents a wealth of 

information to include affected organizations, types of modifications, programs involved, contract 

types, and funding impacts. These documents could potentially be mined to construct suitable 

models for contributing analyses in the new proposed architecture evaluation methodology. These 

models could focus on system adaptability and potentially could have large enough sample sizes 

to quantify uncertainty measures.  

 A few additional sources of programmatic measures are available. In major acquisition 

programs, especially Government programs, there is often rigorous oversight requiring the 

generation of copious documentation, typically proportional to the size of the budget of the 
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program. Some examples come from the defense sector. A US Air Force program of sufficient size 

will have to submit a Monthly Activity Report (MAR) to its Service Acquisition Executive [67], 

a quarterly Defense Acquisition Executive Summary (DAES) to the Office of the Secretary of 

Defense (required for all U.S. DoD Major Defense Acquisition Programs (MDAPs) and Major 

Automated Information Systems (MAISs)) [63], and if it’s an MDAP Acquisition Category 

(ACAT) 1 program (those with the largest budgets or acquiring the systems deemed most critical 

to national defense), it must submit an annual, comprehensive Selected Acquisition Report (SAR) 

to Congress [68]. These documents are in addition to many other management tools U.S. Air Force 

program managers are required to utilize to report program progress to various system stakeholders 

and higher oversight authorities. 

 In the author’s experience, the MAR, DAES, SAR and other program status documentation 

are typically substantial products requiring significant work across the U.S. DoD. This is a benefit 

to this research though because many, including the MAR, DAES and SAR, are also usually 

readily accessible and can provide a wealth of information beyond just the EVM metrics of cost, 

schedule, and associated deviations. This can include program manager’s and program executive 

officer’s assessments and ratings, contractual information including type and incentive structure, 

risk posture, system regulatory and statutory compliance status, and interoperability status with 

other systems. Given the standardized reporting requirements for some of these products and 

associated sample size across the U.S. DoD, they make excellent sources of programmatic 

information to derive contributing analyses under this proposed methodology.  

2.2.3 Potential Technical Contributing Analyses 

 Identifying contributing analyses for this proposed architecture evaluation methodology 

that deal with technical metrics is often more challenging than those associated with programmatic 
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contributing analyses due to smaller sample sizes and the associated reduced understanding of 

uncertainty, increased specificity of performance requirements, and the sometimes nebulous 

traceability of an operational performance requirement to a quantifiable metric. Despite these 

challenges, being able to identify suitable contributing analyses that capture system technical 

performance requirements is essential to the success of this proposed methodology. Technical 

performance captures what it is that the system must do in order to contribute to an operational 

mission, so naturally these are critical system metrics for stakeholders.   

 The difficulties in determining whether a new system under development will meet 

operational performance goals has been directly addressed by the U.S. DoD. It is hard to predict 

how such a new development system will perform in an operational environment; however it is 

necessary to have some measure to track system development progress to ensure that the system 

will meet its required end state performance goals. To this end, the U.S. DoD has established a 

construct known as Key Performance Parameters (KPPs) to ensure progress can be measured. 

“KPPs are those system attributes considered most critical or essential for effective military 

capability.” [69] Given the criticality of KPPs, both in terms of operational utility for the system 

under design and financial implications for the acquisition authority, they are determined and 

approved through the rigorous and formal JCIDS process. [69] Additionally, private-sector product 

developments can readily employ measures equivalent to KPPs to measures progress against 

performance goals. 

 KPPs must be measurable and as such are quantifiable metrics [69]. KPPs for the final 

system will range from the minimum acceptable, known as the threshold, to a maximum above 

which no further benefit will be realized, known as the objective. Performance against KPPs is 

tracked through system development and with increasingly difficult gates until the prototype or 
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developmental system achieves the threshold requirement. Frequently predictive KPP models are 

used to assess how well a prototype is projected to mature towards achieving its final KPP 

thresholds. Many of these models are analytical relationships based on known physical 

performance calculations, but they can also be parametric models utilizing historic system 

performance from similar systems. In both of these cases, capturing and accounting for uncertainty 

is critical given what is at stake.  

 Some KPPs are not defined by a range but rather are either achieved or not achieved. For 

instance there is a set of Boolean criteria known as the “Net-Ready KPP” that ensure a system 

meets information exchange needs to enable operational effectiveness. This is designed to facilitate 

a warfighting end goal of a “cost effective, seamlessly integrated environment” which leads to 

requirements for interoperability [70]. Despite focusing on system emergent behavior with other 

systems rather than strictly the warfighting performance of the system itself, the Net-Ready KPP 

is treated in the same manner and overseen with the same rigor as any other KPP with the same 

potential consequences if it isn’t met [71]. However, due to its nature it is typically treated as a 

compliance item rather than a variable with a potential tradespace range like other KPPs that have 

a threshold and objective. However, system performance in complying with these Net-Ready KPP 

criteria is definitely measurable and can be tied to a metric, even if that happens to result in a 

binary metric quantified as compliant or not. In such a case, threshold equals objective for 

measuring that KPP’s performance. There are more examples of compliance-only KPPs, but the 

Net Ready KPP is one of the most ubiquitous. 

 If a system is not on track to meet at least the threshold value for a KPP for its production 

units, either the acquisition must be cancelled, or the program must be rebaselined to support 

further development activity (typically with additional funding and/or a schedule extension), or 



37 

the system requirements must be rescoped with approval from the operational command that would 

receive the final system. This choice may even require Congressional approval depending on the 

chosen solution to the deficiency. [69] 

 KPPs aren’t perfect surrogates for operational performance and there are difficulties 

associated with determining KPPs that adequately cover the breadth of operational situations a 

new system is being acquired in order to handle. This is because it is hard to distill everything that 

may determine successful mission performance to a few specific metrics. Despite these difficulties, 

the U.S. DoD still must use these critical metrics in determining and tracking system development 

performance and has established effectiveness measures to ensure the system under design will 

meet its operational goals before it is fielded.  

 To prove that a new U.S. DoD system meets all operational requirements it undergoes what 

is known as Operational Test & Evaluation (OT&E). This process takes place typically at the end 

of a development period and validates that the system can perform its assigned mission in its 

operational environment [63]. There have been cases where a system has met all KPPs and yet 

failed its OT&E [72]. In these cases either there were not a sufficient number of KPPs or the KPPs 

selected did not adequately capture realistic operational goals.  

 A real world example of inadequate KPPs comes from the U.S. Navy P-8A Poseidon 

maritime patrol aircraft, which is meant to conduct Anti-Submarine Warfare (ASW) and other 

missions. The P-8A’s KPPs that had initially been approved through the JCIDS process were that 

it only be able to fly a certain range, carry a certain number of sonobuoys (an expendable, sonar-

capable buoy), and be able to communicate with certain radios. During OT&E, it was identified 

that even though it was meeting these KPPs, those performance requirements alone did not actually 

enable the P-8A to perform its mission in finding and attacking adversary submarines. Based upon 
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these tests, it was recommended that the P-8A program’s KPPs be modified and additional 

development work be required to ensure the production P-8A aircraft will be able to achieve 

successful mission performance. This recommended change was then sent through the JCIDS 

process oversight authority for validation and implementation. [72] 

 These situations of deficient KPPs are handled on a case-by-case basis. In the author’s 

experience sometimes the system is still accepted into operations (often with the noted operational 

deficiency concealed by classification), potentially with additional development work scheduled 

to mitigate the finding. If the situation is critical enough, the system can be held in development, 

with the KPPs to be updated and revalidated through the JCIDS process to ensure the finding is 

fixed before the system goes into production. The important take away to note is that the U.S. DoD 

has an established and accepted process for tying system operational performance to technical 

performance metrics that starts from system requirements generation through final operational 

acceptance.  

 For the purposes of this research this is significant because it shows that even something 

as ill-defined as warfighting ability can be assessed and tracked using as a specific set of 

quantifiable metrics in order to hold programs accountable for achieving specific system 

capabilities. The fact that such a large organization, covering such an wide range of systems and 

missions, and with such a large budget as the U.S. DoD, utilizes this method highlights that 

quantification of performance is not only flexible, but it is critical to managing major acquisitions 

affordably. As such, it offers an explicit counterpoint to parties that say it is too hard to quantify 

operational performance requirements. In fact it suggests that such quantification is indeed 

appropriate to use for technical performance requirements early in the system life cycle, in the 

initial requirements generation stage, before KPPs are defined. Quantification can be used all the 
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way back at the start of the acquisition cycle in the initial architecture selection and evaluation. 

This research explores such an approach with the goal of demonstrating contributing analysis in 

support of architecture optimization. 

2.2.4 Summary of Potential Contributing Analyses 

 For the setup of the new proposed architecture evaluation and selection methodology it is 

necessary to have supporting models to calculate objectives for the optimization function. These 

are identified as contributing analyses. In order to be successfully integrated into this proposed 

methodology these contributing analyses as a whole must adequately capture the desires of the 

stakeholders, and all of them must be quantifiable with uncertainty impacts understood. There may 

be intermediate contributing analyses that don’t directly calculate an objective for the optimization 

but are a necessary intermediate step; the same requirements for quantification and uncertainty 

understanding also apply to these.  

 Contributing analyses can come from either programmatic data, such as cost and schedule 

models, or technical data, such as physics-based performance models. A selection of potential 

contributing analyses is shown in Table 1.  

Table 1: Example Potential Contributing Analyses 

Model Type Source 

Programmatic Models 

Predictive Cost  Parametric Relationship Historical Program 
Performance Data 

Predictive Schedule  Parametric Relationship Historical Program 
Performance Data 

Configuration Stability Parametric Relationship CCB Package Data 

Requirement Stability Parametric Relationship CCB Package Data 
 

Risk Tolerance Analysis Programmatic Reporting 
Documentation 
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Technical Models 

Regulatory Compliance   Analysis-Boolean System Test, Analysis Data 

Technical Performance  
(ex. Aircraft Speed) 

Physics based Simulation Test Data, Physical 
Relationships 

Modularity Analysis System Architecture 
Documentation 

Service Resilience 
(ex. Path Diversity) 

Selected Analytical 
Relationships 

Test Data, Documentation, 
Physical Relationships 

System Supportability Analysis System Documentation, Test 
Data, Analysis Data 

Cybersecurity Analysis Risk Management 
Framework Assessment 

 

2.3 MBSE-Optimization Integration 

2.3.1 MBSE and Optimization Integration Structure 

Once the contributing analyses are defined, the next step is to integrate MBSE with the 

optimization scheme including the contributing analyses. A top level meta-model for such a 

notional structure is shown in Figure 5. This structure would be implemented in a simulation 

environment to enable the linkage of the reference architecture, contributing analyses, and the 

optimizer. This approach to integrate MBSE and optimization has been demonstrated and applied 

to system design [33]. 
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Figure 5: Meta-Model of Notional MBSE-Optimization Integration 

In this meta-model, a RA is the starting point. An initial instantiation of the reference 

architecture is generated, which generates a number of corresponding architecture parameters. 

These parameters then serve as inputs into a series of contributing analyses. The contributing 

analyses can be either an objective contributing analysis (the output of which is an objective to be 

optimized) or an intermediate analysis (not generating an output directly to be optimized but 

necessary for an input to an objective contributing analysis). These contributing analyses can be 

arranged in whatever sequence is necessary to ensure a logical succession of parameter calculation 

and generation without recursion in order to generate all the necessary objective parameters. These 

objective parameters are then ingested into the optimization function to calculate an overall 

architecture value for that particular instantiated architecture.  

Next, the optimizer feeds back an excursion or refinement of the initial reference 

architecture, creating a new instantiated architecture. This generates a new corresponding set of 
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architecture parameters which serve as a new input vector to the contributing analyses. This then 

feeds a new set of objective parameters into the optimizer, calculating a new architecture value for 

the new particular instantiated architecture. Based on how this compares to the first instantiated 

architecture’s calculated value and the optimizer logic, a new perturbation of the architecture 

instance is selected creating yet a new instantiated architecture. The cycle continues with the 

optimizer generating architecture variants to eventually converge on an optimum.  

In the simulation environment, once the perturbations have suitably stabilized (how much 

convergence is “suitable” will depend on the research problem and computational resources at 

hand), the simulation is ended and the optimum is identified. The corresponding specific 

architecture that was used to generate the optimum is also identified as the ideal specific 

architecture [33]. That specific MBSE implementation would then be used to describe the selected 

architecture to stakeholders. 

2.3.2 Variability Block Definition Diagram 

A useful construct to facilitate the integration of MBSE, in particular a SysML 

implementation of MBSE, with an optimizer is known as a Variability BDD. A Variability BDD 

facilitates modeling multiple specific architecture implementations as variants from a general 

system block. This is used to show traceability in the parameters to be optimized to their impact 

on the architecture being optimized [33]. An example Variability BDD that describes a potential 

architecture selection trade space using the example satellite architecture described in Figure 1 as 

the starting point is shown in Figure 6. 
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Figure 6: Example Variability BDD 

In this example Variability BDD the architecture is shown from Figure 1 including the top 

level system block “SatelliteSystem” and its constituent parts, “SpaceVehicle” and 

“MissionControlStation”. The notional trades selected for this diagram are blocks shown down the 

right side of the diagram and encompass both programmatic and technical trades. The results of 

these trades are themselves constituent parts of the selected configuration. The selected 

configuration then specializes the architecture description in order to represent the configuration 

that was selected through the optimization of the trades.  
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This Variability BDD setup will work in an integrated fashion with the meta-model shown 

in Figure 2-5. Each of the trades shown in Figure 2-6 represents something about the architecture 

that can be varied and effectively serves as an input to be optimized. The simulation takes these 

inputs to the architecture, defines the specific architecture configuration and then calculates the 

various parameters necessary through exercising the contributing analyses, with the results fed into 

the optimizer. The optimizer then calculates an overall value for the architecture, decides which 

input parameters should be varied, and makes the corresponding changes, using the results of the 

trades shown in Figure 2-6. These trades then affect the rest of the architecture in the prescribed 

fashion, allowing for generation of the specific configuration of the instantiated architecture and 

the updated calculation of the contributing analyses for the new run. This cycle repeats until the 

simulation achieves completion criterion (scenario dependent, but typically completion is achieved 

when the in the calculated objective achieves a certain stability threshold, such as all new changes 

are within 1% of the total objective).  

2.3.3 Global Optimum Verification 

It is necessary to establish confidence that the optimum identified is a global optimum and 

not a local optimum. Several methods can be used to do so. The most straightforward is to perform 

multiple additional runs of the simulation for confirmation, starting with a different initial 

instantiated architecture and corresponding input vector. These subsequent runs will be executed 

until it is clear that they are converging on the same optimum. If that isn’t the case then the 

simulation is run until a new optimum is identified. Additional runs are conducted until suitable 

confidence is gained that the final result represents the global optimum. This has been 

demonstrated to be an acceptable method of confirmation in similar optimizations with ten trial 

runs [73]. 
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A further alternative is to run the same simulation with a different optimizer. There are 

many potential optimization methodologies available [23] and the simulation environment should 

be modular enough to support easily switching the optimizer and executing again. This will serve 

to alter how the optimizer perturbs the architectures, resulting in a different pattern of exploration 

across the tradespace. 

A final method to confirm that a solution represents a global and not a local optimum is 

analysis of the results themselves. This can be done by plotting the results of all the simulation 

runs over the tradespace. If enough runs were performed, Pareto frontiers will be evident in 

addition to the constraint surfaces. Various local minimums and maximums will be identifiable 

and it should be possible to directly observe if the optimum selected is global or not. This may or 

may not be practicable given the complexity of the tradespace. In particular, if many of the 

constraints and/or contributing analyses were non-differentiable or resulted in large variances in 

the region of the tradespace that enveloped the identified optimum this may be difficult. Still, it is 

an acceptable method to investigate and can potentially confirm with certainty that an optimum is 

global. 

These methods of establishing whether or not an optimum is global are not mutually 

exclusive, and it is advisable to combine them. In particular, first plotting the runs of the initial 

simulation to directly analyze the tradespace can be useful in informing whether additional runs 

are necessary, and regions of the tradespace that may be likely to hold a better optimum. This can 

inform what additional runs should use as an initial input. This is likely to be the most efficient 

approach for confirmation.  
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2.4 Software Implementation 

 This section outlines several software tools that can be used in order to implement the 

various components of this methodology, including the simulation and integration environment, 

the architecture modeling tool, the contributing analyses applications, and the optimizer. 

2.4.1 Simulation and Integration Environment 

 A flexible simulation and integration software suite is the core of this proposed 

methodology. It must be able to interface with many other model formats, architecture modeling 

software, and optimization tools. The tool of choice for this research is ModelCenter® by Phoenix 

Integration, which is marketed as a means of increasing productivity by enabling flexible and 

automated simulation environments [74]. ModelCenter provides an integration environment and 

user interface that allows for the linkage and successive execution of different modeling 

applications. Parameters calculated in one application can be passed to and utilized in the execution 

of another, generating further outputs, or ingested into an optimizer to restart the cycle. It has been 

successfully demonstrated for use in architecture optimization in the past [33], and is flexible 

enough to handle very complicated and detailed cost models covering an array of subsystem 

options [29].  

  ModelCenter utilizes flexible Application Programing Interfaces (API’s) to allow for the 

integration of modeling applications using many different data formats. Some common formats 

are already supported in the base ModelCenter software, such as Microsoft® Excel [75] and 

MATLAB® by Mathworks [76]. Support for many domain specific software suites is also included 

in the base package, such as Systems Tool Kit® by Analytical Graphics, Inc [77]. If an application 

of interest is not covered by an existing API, the environment supports coding of a new interface 

into the ModelCenter simulation through direct manipulation of APIs [74]. ModelCenter has 
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sufficient flexibility to support the integration of nearly any model regardless of the application 

used. 

2.4.2 Architecture Modeling Tool 

 A suitable architecture modeling tool must be used to develop the architecture descriptions 

used in this research. SysML was chosen as the architecture modeling language of choice for this 

research in significant part due to the fact that there are quite a few easily available and established 

software tools that support it. These tools have a variety of options with extensive features, 

including automated code and compliance document generation, simulation support, and 

automated portability to other common engineering views such as DoDAF [78] [79]. For purposes 

of this research, just SysML architecture modeling with traceability was needed.   

 Due to availability, previous experience, and wide use, Rational Rhapsody® by IBM was 

chosen as the architecture modeling tool of choice for this research. It supports SysML architecture 

descriptions and has a number of automated features to support consistency, traceability, 

simulation, and testing. [78] 

 It should be noted that for readability and formatting purposes the diagrams in this 

document were recreated in Microsoft PowerPoint® after first being generated in Rational 

Rhapsody.  

 A potential extension of this research is direct integration of an architecture modeling tool 

with the simulation environment. This would involve generating executable code from the SysML 

model, which is possible, although it can be difficult in practice [40]. Given that was not a focus 

of this research, SysML code execution has not yet been explored. However, it could have utility, 

and the author is aware of several Government system acquisition programs leveraging Enterprise 

Architect® by Sparx Systems Pty Ltd. [79] to investigate automated code and document generation 
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from SysML models in order to enforce consistency, compliance, and improve efficiency of 

requirement analysis and verification.  

2.4.3 Contributing Analyses Applications 

 Due to the use of a flexible modeling and simulation environment with API support, the 

range of potential modeling applications to select for contributing analyses within this 

methodology is virtually limitless. For the purposes of this research, all contributing analyses were 

modeled in Excel and MATLAB. This greatly simplified the integration effort since ModelCenter 

already has built in support for ingesting, manipulating, and executing Excel and MATLAB files 

within the simulation environment [74].  

Exploiting the flexibility inherent in these tools, a sufficient variety of contributing 

analyses were incorporated to comprehensively test this methodology. In fact, even comparatively 

simple mathematics software such as Excel can model very detailed and complex contributing 

analyses, including non-differentiable tradespaces [29]. As integration of more complex and 

purpose-built modeling applications have been demonstrated in the ModelCenter documentation, 

it was not seen as a necessary factor to evaluate in this research [74].  

2.4.4 Optimizer 

 The optimization tool of choice for this research is the Darwin optimizer. This is a built-in 

genetic algorithm that comes standard within the ModelCenter integration and simulation 

environment. A genetic algorithm approach was chosen for its inherent flexibility in being able to 

successfully optimize a wide range of potential objectives including the potential for non-

differentiable tradespaces [23]. 

The Darwin tool has been demonstrated in similar system design studies [33]. Using a 

built-in and supported optimization tool greatly simplifies the integration effort. The Darwin 
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algorithm can be seamlessly integrated with the contributing analyses in a modular fashion in the 

simulation environment. 

2.4.5 Setup Overview 

 A ModelCenter implementation integrating Excel and MATLAB contributing analyses 

with the Darwin optimizer in the form described by the meta-model in Figure 5 is shown below in 

Figure 7. 

 

Figure 7: ModelCenter Example Implementation  

In this ModelCenter implementation, all of the contributing analyses are arranged as 

prescribed by the scenario in order to calculate the objective function. This objective function then 

feeds its objective value into the Darwin optimizer which will then compare it to the input vector 

and modify the input vector. This will run continuously until the simulation is ended either by 
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meeting a set of pre-defined criteria or when it is stopped by the user. While in this specific 

implementation all the contributing analyses are in MATLAB and Excel, that is not a constraint 

on the general applicability of the methodology, and ModelCenter could handle many more 

contributing analysis formats. 

2.5 Uncertainty and Sensitivity Analysis 

 This section highlights relevant information about uncertainty and sensitivity analysis. 

2.5.1 Decision Uncertainty 

Decision Uncertainty is the uncertainty due to changing human goals or decision making 

in the future. This can affect the accuracy of a model if it is predicated on humans operating a 

certain way and they systemically operate differently, for instance the model assumes humans are 

under normal conditions and in reality they are under stress and operate differently. This can be 

handled under other methods to handle systemic uncertainty [80]. 

A further concern in decision uncertainty is if the model represents the desire of the 

sponsors of the model, in the case of this research this would be the stakeholders for the 

architecture selection [80]. The best way to handle this is to enforce using traceable metrics in the 

objective function so that the decision criteria is clearly documented. If the desires of the 

stakeholders change, then the objective function should be updated to reflect that. While this won’t 

perfectly capture all stakeholder desires, in the author’s experience it is certainly more traceable 

and clear than current architecture selection methodologies. 

2.5.2 Subjective Measurement Uncertainty 

 Some measures that are common to be included in architecture assessments may rely on 

subjective expert judgment as the only way to establish a metric, a classic example of which is 

cybersecurity risk. These types of measures can be handled by this methodology and the goal of 
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proper uncertainty analysis is not to replace expert judgment with more objective measures, but 

rather enhance it to allow for validated uncertainty quantification. Specifically, subject matter 

experts need to provide their assessment in a quantitative fashion rather than in some of the more 

esoteric methods typically seen (such as ordinal scales involving low, medium, and high or color 

coded risk matrices). This is typically done through assigning quantified impacts, likelihoods, and 

a confidence interval [52]. In this manner, an expert judgment can be put into the same form as 

any other measuring tool, and can be scrutinized and validated in a similar fashion [81]. In fact, 

expert judgment can be calibrated through feedback and training to provide a more accurate 

measure of confidence in the assessments, the improvement of which can be quantified and 

validated through historical analysis. A common example of which is weather forecasters, who 

tend to be well calibrated in assessing the confidence of their forecasts due to years of repeated 

experience and feedback [82]. 

 Bayesian methods can also provide a powerful tool for estimating probabilities. For 

instance, the probability of a cybersecurity breach could be better determined by expert judgment 

and informed by a penetration test with the original probability updated if that test was positive or 

not. Bayesian methods also allow to use a node probability table (NPT) to account for various 

subordinate probabilities. [52] 

 Beta distributions can also be used to derive probabilities from infrequent events such as 

cybersecurity breaches. This can be done by either starting with a subjective expert judgment, or 

with a uniform distribution. In fact, rigorously applying beta distributions likely provides a more 

accurate probability of cybersecurity breach for firms that have yet to experience a breach due to 

accounting for that firm just getting lucky in the past. [52] 
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 The Lens method can also be used, which involves building a regression model from a 

number of experts providing their opinion on a number of scenarios. This is preferable to asking 

expert judgment directly as it removes expert inconsistency (variation on how the same expert 

judges the same scenario at different times), which accounts for 21% of expert judgment variation. 

Expected Opportunity Loss can also be calculated to see if more tests are warranted to collect data 

to reduce uncertainty. [52]  
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CHAPTER 3:  CASE STUDY 1:  SATELLITE COMMUNICATIONS SYSTEM OF 

SYSTEMS  

 

This chapter outlines a case study applying the proposed methodology to conduct an 

architecture selection for a satellite communications SoS.1 

3.1 Case Study 1 Introduction 

This case study implements a MBSE methodology to integrate technical and programmatic 

parameters to solve a best value architecture optimization problem in order to address the needs 

and constraints of U.S. DoD system acquisition. In this manner, this implementation serves as a 

tool for improving stakeholder consensus and capturing more thorough traceability for decision 

factors, while at the same time improving support for variation analysis and iterations on the 

decision criteria with stakeholders. Unlike many previous multidisciplinary optimizations, this 

approach is targeted at acquisition activities prior to system design and focuses on the optimization 

of requirements, including nonfunctional requirements, to be levied on specific systems within the 

SoS enterprise. It employs architecture-centric parametric analysis to this problem space where 

concrete system designs do not yet exist. 

A SoS is defined as a system whose components are systems in their own right with their 

own purposes that will continue to serve those purposes if disassembled from the overall SoS [37]. 

These component systems are managed at least partly for their own purposes rather than the 

purposes of the SoS. The organization responsible for that SoS capability is often challenged by 

                                                 

1 © [2018] Wiley Periodicals Inc. Re-used with minor grammar and formatting changes, with permission, from M. 
LaSorda, J. M. Borky and R. M. Sega, "Model-Based Architecture and Programmatic Optimization for Satellite 
System-of-Systems Architectures," Systems Engineering, vol. 21, no. 4, pp. 372-387, 2018. 
https://doi.org/10.1002/sys.21444.   
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having little or no official budget decision authority over all the constituent systems. These systems 

commonly have competing requirements or priorities, various technology baselines, and 

uncoordinated program schedules, complicating any SoS architecture decision [83]. Much of the 

data that this case study employs is derived from work on a SoS delivering military satellite 

communications. 

MBSE has many potential applications to a space SoS architecture. This case study focuses 

on improving U.S. DoD satellite acquisition to support Air Force Space Command's (AFSPC) 

Space Enterprise Vision (SEV) initiative aimed at enhancing the capability of military space 

systems to operate through a contested environment. Issues include modifying current and planned 

satellites to make them more resilient to threats, linking acquisition timelines to the emergence of 

a credible threat, and driving down the development timelines of a military satellite system in order 

to be more responsive to emergent threats [84]. Critically, this could involve changes to both 

technical performance parameters as well as acquisition processes. Overall, these acquisition 

efforts feed directly into a Space Warfighting Construct (SWC) to maintain space superiority, 

which is the assured ability to operate and survive in space in the face of natural and man-made 

hazards in the 21st century [85]. 

The case study begins by investigating optimization techniques through a MBSE approach 

to shorten the timelines of a satellite system acquisition, while also accounting for cost control and 

architecture resilience. Shortening satellite acquisition timelines is critical to reduce technology 

risk from launching satellites with outdated hardware [86]. Resilience is defined as “the ability of 

an architecture to support the functions necessary for mission success with higher probability, 

shorter periods of reduced capability, and across a wider range of scenarios, conditions, and threats, 

in spite of hostile action or adverse conditions [87].” Recent and ongoing space system acquisition 
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efforts show that these concerns are primarily addressed through trade-offs and optimization 

among design life, mass, aggregating (combining) or disaggregating capabilities on satellites, 

additional primary mission capability, and on-board resilience characteristics. This research 

demonstrates a technique for the predesign phase optimization of a SoS architecture for a given 

set of technical and programmatic parameters. The vital importance to national security of robust 

satellite services, together with a history of persistent difficulty in executing and synchronizing 

acquisition efforts as recently highlighted by U.S. Congressional leadership [88], makes this 

optimization work very relevant. 

MBSE is applied in this work using the Model-Based Systems Architecture Process 

(MBSAP) [16]. Because of its familiarity, wide use, and software tool support, the System 

Modeling Language (SysML) is the language of choice [14]. The results are organized using 

operational, logical, and physical viewpoints [17] as well as the concept of reference architecture 

(RA), which has been shown to reduce errors, development time, and cost, and which can serve as 

a construct for trade studies by providing a baseline that facilitates modeling many excursions [18]. 

Open Systems Architecture (OSA) is emphasized which enables design flexibility [18], allows for 

maximum component reuse between systems, and is supported under the DoD's “Better Buying 

Power” initiative [89].  

3.2 Case Study 2 Research Setup 

3.2.1 Develop a Basic Communications Satellite RA 

The first step of this study is to investigate a communications satellite RA in SysML as the 

basis for optimization studies. Following MBSAP, the first step in that is to document 

requirements. In this particular scenario, the architecture has three specific capability requirements 

as shown in Table 2. 
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Table 2: CommSat Architecture Requirements 

1) Maintain backwards compatibility with current user 
terminals 

2) Maintain access to +/- 65° latitude around the world 

3) Maintain primary services in the Ku frequency band 

 

A communications satellite SoS has three main segments:  the space segment, consisting 

of one or more spacecraft with one or more communications payloads and the support hardware 

bus, the mission control segment on the ground, and the user segment, which consists of the ground 

communications terminals employed by users. Notably, the user segment can be managed, 

acquired, and operated by one or more external organizations that are independent of the 

organization responsible for the space segment. A primary trade involves allocating capabilities 

among the three SoS segments. For instance, architecture optimization could include allocating 

cybersecurity features terrestrially, in space, or in some combination of both, which impacts 

system costs, usability, and supportability. Another potential trade involves OSA concepts to 

enhance modularity, loose coupling, and common standards, leading to shorter development 

timelines. Open interface standards between segments would likely go far to simplify the design. 

An optimum architecture seeks the best value among these and other potentially competing 

concerns. 

Figures 8 and 9 are respectively a top-level SysML Block Definition Diagram (BDD) for 

a Communications Satellite Domain Composition and an Internal Block Diagram (IBD) showing 

a Communications Satellite Operational Context. These diagrams are the foundation for a 

communications satellite RA that can be validated against existing systems and used to establish 

the organization and content of the contributing analyses for an optimization study. The RA 
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captures satellites in orbit and ground and user segments on Earth. This is consistent with a detailed 

example of how to apply SysML to a space architecture as outlined in Friedenthal and Oster [15]. 

 

Figure 8: BDD of a Communications Satellite Domain 
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Figure 9 IBD Communications Satellite Operational Context 

A driving requirement for the space architecture is compatibility with current user 

terminals that lack the capability to track and hand off between satellites to maintain a connection. 

This requires satellites in geostationary orbit, maintaining a fixed direction from the point of view 

of a terrestrial terminal [62]. Another is a requirement to reach high latitudes around the globe, 

demanding a minimum constellation of four satellites relatively evenly spaced in geostationary 

orbit in order to reach acceptable look angles above the horizon for the ground terminals. Both 

these factors are limits on the architecture tradespace. While this served to eliminate evaluating 

different orbits from the present study, orbit selection is certainly a prime candidate for a satellite 

architecture optimization [90] and could be integrated into this methodology. 

 For purposes of this study, it is assumed that each new satellite is potentially a new 

development effort (and potentially the result of a contract competition) in order to enable the 

injection of new capability to meet SEV goals. This assumes that proper OSA methodology is 



59 

followed to ensure modularity and that the existing ground control system and user terminals will 

be compatible with any future iteration of the satellite design. This serves to establish the 

architecture as a SoS, as each satellite iteration, as well as each family of user terminals, is an 

independent, contributing system to the overall satellite communications enterprise in which 

various individual satellites, constellations, and terminal types are integrated, the technical 

dimension of which is the SoS shown in Figure 10. An activity diagram illustrating an interaction 

of the elements of this SoS is shown in Figure 11. 

 

Figure 10: System-of-Systems Enterprise Diagram 
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Figure 11: Activity Diagram of Terminal Establish Link Request 

Essentially there is a need to define the general parameters guiding the spacecraft 

development component of this SoS architecture, such as acquisition strategy, on-board capability, 

and resilience measures, as well as schedule and cost goals (which in turn drive budget planning). 

3.2.2 Investigate Contributing Analyses and Data Sources 

 The second step is to investigate potential contributing analyses and sources of truth data 

to identify quantifiable metrics as inputs to an optimization problem. One focus is on metrics that 

can predict schedule timelines and uncertainty, as one of the goals of the SEV is to drive down 

satellite acquisition timelines [84]. However, the selection of the contributing analyses and data 

sources is dependent on the problem at hand and is easily tailorable. Any model used in a 

contributing analyses must be validated in some way and be quantifiable. A number of data sources 

as identified in section 2.2.4 were considered. 
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3.2.3 Setup of the Optimization Problem 

 Next the parameters to be optimized must be defined. This should be done with maximum 

stakeholder participation to arrive at a set of parameters of interest that can be agreed to by all 

decision makers. In a major defense acquisition, requirements are generated through the very 

robust Joint Capabilities Integration and Development System (JCIDS), which involves the system 

operator and other stakeholders in developing reasonable operational requirements for the ensuing 

acquisition [69]. An oversight process should be required in selecting the optimization parameters 

and weightings for the proposed method to help support stakeholder buy-in to the final 

optimization solution. Also, the factors need to be normalized to one another since otherwise 

factors measuring larger absolute values would dominate the optimization. This normalization is 

done by dividing the weighting by a normalization factor representing the nominal value for that 

parameter, which would be selected by the stakeholders. 

 Since there are numerous potential functions to be optimized, there will typically be 

multiple objective functions and therefore this can be classified as a multi-objective optimization 

problem [22]. A multi-objective optimization can be expressed by Equation (1): 

Eq 1.  𝑔𝑔(𝑥𝑥) = min[
𝛼𝛼1𝑏𝑏1 𝑓𝑓1(𝑥𝑥),

𝛼𝛼2𝑏𝑏2 𝑓𝑓2(𝑥𝑥), … ,
𝛼𝛼𝑘𝑘𝑏𝑏𝑘𝑘 𝑓𝑓𝑘𝑘(𝑥𝑥)] 

subject to 𝑥𝑥 ∈ 𝑋𝑋 , 

where the integer k ≥ 2 is the number of objectives, 𝛼𝛼 is a weighting factor associated with each 

objective function, b is the normalization factor, and X is the feasible set of decision vectors, 

typically defined by constraint functions. 

 The component objective functions are selected based on needs of the stakeholders, with 

consideration for what can be quantitatively measured and predicted with a calculable confidence. 

Based on the sources described above, some of the principal potential contributing analyses to be 



62 

used as objectives would include cost and schedule measures, along with mature measures of 

technical performance. 

 As an example of a notional communications satellite architecture that seeks to meet SEV 

goals and can be used to explore the methodology, four contributing analyses were selected:  time 

to first launch from contract authority to proceed, annual architecture cost, threat effectiveness, 

and excess capability beyond threshold. 

 Time to launch from contract authority to proceed is defined as the time from when 

contractual direction is given to build a satellite, to when that satellite is launched. This 

contributing analysis could be seen as valuable to implementing the SEV which has stressed 

shorter satellite acquisition timelines to respond to emerging adversary threats and the challenges 

of technology obsolescence. The function for this could also reasonably be expected to be 

quantified with some predictive relationship as there are numerous historical examples from 

previous satellite programs to construct an estimating relationship. This function should be 

minimized. It is normalized by dividing the calculated value by 60 months, which corresponds to 

a goal of a launch within five years. 

 Annual architecture cost (cost of a SoS conforming to a given alternative architecture) was 

chosen because system affordability is always a concern. In particular, an annual cost was selected 

versus a per system cost to enable investigation of the design life tradespace. For instance, it might 

be beneficial to launch cheaper satellites more often versus more expensive satellites less 

frequently. This evaluates the system on how much it costs to continuously maintain service, which 

includes launching satellites to replenish failed units. This function is calculated in $M/yr and 

should also be minimized. It is normalized by dividing the calculated value by 600 which 

corresponds to a nominal objective of $600M for the annual architecture cost based on comparison 
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to similar constellations. Furthermore this annual architecture cost function will have a maximum 

constraint of 750 which was selected as an upper limit to simulate the fiscal reality of having to 

make this architecture fit within a departmental budget. 

 Improving space systems’ resilience to threats (including hostile actors and the space 

environment) is a large focus in the SEV, which is why threat effectiveness is a selected function 

of interest. It might appear nebulous to quantify, but there are numerous predictive models for 

various survivability and other performance metrics, such as radiation hardening, that can be 

folded into a threat effectiveness metric. In this way mature measures of technical performance 

that could be quantified, and are acceptable to the stakeholders, would serve as a surrogate for 

evaluating resilience and be folded into a measure of threat effectiveness. This function should be 

minimized. 

 Lastly, capability is always a concern. While capability can be measured in many ways, 

and defined under operational conditions, it is often defined for DoD acquisitions through KPPs 

[60]. These KPPs have to be measurable and therefore are quantifiable metrics. The capability 

tradespace for a Government system is defined as the range between the threshold KPP (the 

minimum required of the system) and the objective KPP (the desired level of capability for the 

system). For a communications satellite system, there are numerous technical models of how a 

satellite's capability is tied to predictive metrics. For instance, size of the effective antenna will 

drive gain which in turn helps establish link margin and supportable data rate [62]. This function 

is defined as the difference between the architecture's capability and the objective value, therefore 

minimizing this parameter is desirable.  
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 Weighting factors for the analyses of interest will have to be decided among all the 

stakeholders. For this research, the weighting factors selected are shown in Table 3. These 

weighting factors can be varied to explore alternative scenarios. 

Table 3: Case Study 1 Objective Function Weighting Factors for Parameters of Interest 

Parameter of Interest Weighting 

Time to First Launch (f1) 0.4 

Annual Architecture Cost  (f2) 0.3 

Threat Effectiveness (f3) 0.2 

Capability to Objective (f4) 0.1 

  

Overall this would result in the multiobjective optimization shown in Equation (2): 

Eq 2.  𝑔𝑔(𝑥𝑥) = min � .460𝑓𝑓1(𝑥𝑥) +
.3600 𝑓𝑓2(𝑥𝑥) + .2𝑓𝑓3(𝑥𝑥) + .1𝑓𝑓4(𝑥𝑥)� 

subject to: 𝑓𝑓1(𝑥𝑥), 𝑓𝑓2(𝑥𝑥), 𝑓𝑓3(𝑥𝑥),𝑓𝑓4(𝑥𝑥) ≥ 0 𝑓𝑓2(𝑥𝑥) ≤ 750 

Other than f2(x), the upper limits of the contributing objective analyses are defined by the 

constraints on their input vectors. 

3.2.4 MBSE and Optimization Integration 

The next step in the case study is to integrate the SysML architecture models with the 

optimization models. A meta-model of the relationships between contributing analyses and the 

optimizer is shown in Figure 12. In this diagram the optimizer takes the outputs of the contributing 

analyses into an objective function and outputs a result. It then tries to improve the output of the 

objective function by changing the current instance of the RA. 
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Figure 12: Case Study 1 Meta-model of Contributing Analyses 

Continuing with the methodology, a Variability BDD is defined describing the trade space 

to be investigated that can contribute to the objective function. Figure 13 shows this Variability 

BDD in SysML. The main trades identified are longer or shorter design life durations for the 

satellites, variable satellite capability, variable satellite resilience, and an option to execute the 

development as a contract option versus a newly competed contract. These options were selected 

because they are reasonable variables to control in the acquisition of a satellite system. They also 

give a range of example trades that could be modeled with this process. The selection of trade 

options would be highly adaptable to the study at hand. 
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Figure 13: Case Study 1 Variability BDD in SysML 

3.2.5 Contributing Objective Analyses Selection 

Based on the above sources, and the trades defined in the Variability BDD, several 

relationships were selected as contributing objective analyses. Some of these are notional for this 

research to protect information that is not publically releasable, but all are based on real-world 

relationships to the maximum extent possible. The intent is to demonstrate how this technique 

could be applied to a real-world problem, and these notional relationships serve as realistic 

surrogates for real-world contributing analyses. There are four models that each correspond to a 

contributing objective function, and a fifth model, Space Vehicle Mass, that is a necessary 

intermediate step for several of the other models. 
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3.2.5.1 Time to First Launch Contributing Analysis 

For the Time to First Launch model, which outlines the length of time in months required 

for a new satellite development, the relationship has been modeled by Equation (3): 

Eq 3.  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑡𝑡𝑡𝑡 𝐹𝐹𝑇𝑇𝐹𝐹𝐹𝐹𝑡𝑡 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ(𝑇𝑇𝑡𝑡𝐹𝐹) = 7.9 +  0.69 (𝑇𝑇 ∗ 2.205)0.408 ∗ 𝐷𝐷𝐿𝐿0.179 + 11.8𝑀𝑀𝑇𝑇 −
7.1𝑂𝑂𝑂𝑂𝑡𝑡 

subject to: 

0 ≤ m ≤ 10000 

0 ≤ DL ≤ 480 

0 ≤ MT ≤ 5 and integer 

Opt = 0 or 1 

where m is the projected mass of the space vehicle in kilograms, DL is the design life of the 

spacecraft in months, MT is the number of mission types on the spacecraft, and Opt is a Boolean 

variable for whether the satellite is being executed as a contract option or new contract competition 

(1 corresponds to a contract option). This function is a schedule estimating relationship (SER) 

based on historical data commonly used for Government spacecraft [91]. Investigating mission 

types and aggregation of multiple missions on one satellite was not investigated in this study (MT 

was set to 1 and not varied) but it is a focus for future work. 

3.2.5.2 Annual Architecture Cost Contributing Analysis 

An Annual Architecture Cost model is less straightforward. The model selected was 

developed to account for regular launches utilizing known cost estimating relationships (CERs) 

which are described below. For a new development program CER, development costs can be 

modeled at a high level by Equation (4): 

Eq 4.  𝐶𝐶𝑡𝑡𝐹𝐹𝑡𝑡($𝑀𝑀) = 1.879 (𝑇𝑇 ∗ 2.205)0.6889 



68 

subject to: 

0 ≤ m ≤ 10000 

where m is the projected mass of an individual space vehicle in kilograms. For this CER it is 

assumed all design considerations such as design life, resilience, and capability are already 

factored into the mass estimate. This CER is from the Unmanned Satellite Cost Model (USCM) 

calculated directly from a study of 16 Government satellite development efforts [92]. This is a 

regression model with a Pearsons R2 of 0.3878. The model is publically releasable, but the actual 

data contains proprietary information and is not; however, the information was available to the 

author from the U.S. Air Force Space and Missile Systems Center.  

To convert this CER into an annual cost for this particular architecture, it was multiplied 

by a factor to average the satellite cost per year at a rate to replenish the needed number of satellites 

on orbit (4 for around the world coverage to meet requirements for this example constellation) at 

their design life. This would equate to the per satellite cost multiplied by DL (which is calculated 

in months) divided by 48. 

Other components of the Annual Architecture Cost include a base annual cost to cover 

sustainment and regular system upgrades for the mission control segment. This was selected to be 

$50M, based on the author’s observations of large Government satellite contracts; however, in a 

real scenario there would be historic data to estimate sustainment costs. It is feasible to break out 

the cost of the mission control segment independently of the space vehicle such as this if proper 

OSA methodology is being followed to ensure modularity [16]. A factor was added using the Opt 

variable to show cost savings of approximately 10% due to competition. This factor would be 

derived from market research and is very dependent on the situation at hand. While savings over 

30% can be realized through contract competition [93], in more highly specialized fields the 
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margin is often narrower due to limited competitors and 10% was assessed to be the best estimate 

for savings that could be expected from competition in this scenario. The full Annual Architecture 

Cost model is shown in Equation (5): 

Eq 5.  𝐴𝐴𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐴𝐴 𝐴𝐴𝐹𝐹𝐿𝐿ℎ𝑇𝑇𝑡𝑡𝑇𝑇𝐿𝐿𝑡𝑡𝐿𝐿𝐹𝐹𝑇𝑇 𝐶𝐶𝑡𝑡𝐹𝐹𝑡𝑡 �$𝑀𝑀𝑦𝑦𝑦𝑦� = 50 + 1.879 (𝑇𝑇 ∗ 2.205)0.6889 ∗ (0.9 +

0.1 ∗ 𝑂𝑂𝑂𝑂𝑡𝑡)/(
𝐷𝐷𝐷𝐷48) 

subject to: 

0 ≤ m ≤ 10000 

0 ≤ DL ≤ 480 

Opt = 0 or 1 

where m is the mass of the spacecraft in kilograms, DL is design life in months, and Opt is a 

Boolean variable where 1 corresponds to the satellite being built as a contract option and 0 as a 

new contract competition. 

3.2.5.3 Threat Effectiveness Contributing Analysis 

The Threat Effectiveness model accounts for the probability that a satellite can be prevented 

from operating properly by an adversary's actions or space environment effects. This model is the 

author’s creation based on experience in spacecraft design and it demonstrates how quantified 

performance against threats on a normalized scale can be integrated into architecture optimization. 

In the architecture, there are three “Resilience Configuration” metrics that each mitigate a different 

threat, and each has a different effect on the mass of the spacecraft. An example Resilience 

Configuration metric could account for radiation shielding to protect against unforeseen radiation-

based threats such as solar flares, which would have a mass impact proportional to the overall mass 

of the space vehicle and the amount of shielding used. While these relationships are notional, they 

are based on experience and were selected to show a range of plausible options. They are linked 
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in the Space Vehicle Mass model to have varying impacts on the final space vehicle mass, which 

is a realistic consideration to add additional capability to a satellite [62]. The largest threat 

effectiveness of the three is taken as the overall threat effectiveness since the resilience of the 

spacecraft is assumed in this model to be measured on the worst potential risk a threat poses to the 

spacecraft to address the spirit of the SEV. The Threat Effectiveness model is shown in Equation 

(6): 

Eq 6.  𝑇𝑇ℎ𝐹𝐹𝑇𝑇𝐿𝐿𝑡𝑡 𝐸𝐸𝑓𝑓𝑓𝑓𝑇𝑇𝐿𝐿𝑡𝑡𝑇𝑇𝐸𝐸𝑇𝑇𝐿𝐿𝑇𝑇𝐹𝐹𝐹𝐹 = max |(1 − 𝑅𝑅𝐶𝐶𝑖𝑖)|𝑖𝑖=1𝑛𝑛  

subject to: 

0 ≤ 𝑅𝑅𝐶𝐶𝑖𝑖 ≤ 1 

where RCi is the resilience configuration and n is the number of different resilience measures being 

considered. For this specific case three were considered, identified as RCa, RCb, and RCc. They all 

are normalized to have a value between 0 and 1 and were selected as representative of how 

different resilience features could impact space vehicle mass. 

Expanding on the example above, having no additional radiation shielding would 

correspond to a RCi score of 0 and having the maximum radiation shielding desirable would 

correspond to 1. The RCi score is then translated to have an impact on the final mass of the 

spacecraft in the Space Vehicle Mass model. 

3.2.5.4 Capability to Objective Contributing Analysis 

The Capability to Objective model measures the difference in actual capability to the 

objective capability value. Minimizing this shows increasing capability as the space vehicle's 

performance gets closer to the objective. This is dependent on the capability configuration of the 

spacecraft, which is a measure of additional capability built into the spacecraft and is linked to the 

Space Vehicle Mass model to have an effect on the final mass of the spacecraft. Similar to the 
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Threat Effectiveness model, this is a notional model but is grounded in the reality that additional 

capability will lead to more mass [62]. The overall capability to objective model is shown in 

Equation (7): 

Eq 7.  𝐶𝐶𝐿𝐿𝑂𝑂𝐿𝐿𝐶𝐶𝑇𝑇𝐴𝐴𝑇𝑇𝑡𝑡𝐶𝐶 𝑡𝑡𝑡𝑡 𝑂𝑂𝐶𝐶𝑂𝑂𝑇𝑇𝐿𝐿𝑡𝑡𝑇𝑇𝐸𝐸𝑇𝑇 = 1 − 𝐶𝐶𝐶𝐶 

subject to: 

0 ≤ CC ≤ 1 

where CC is the capability configuration of the spacecraft and is normalized to have a value 

between 0 and 1. For purposes of this study, the objective value was taken as 20% greater than the 

threshold capability, which could be defined by a KPP such as bandwidth. As an example, if a 

bandwidth of 5 GHz was the minimum threshold capability as defined by the stakeholders, it would 

equal a CC score of 0. The corresponding objective bandwidth then would be 6 GHz and 

correspond to a CC score of 1. Throughput requirements such as this can be typical in 

communications satellite programs of this kind, based on a review of historical program data. 

3.2.5.5 Space Vehicle Mass Contributing Analysis 

A contributing analysis that is not a direct input to the objective function but is a necessary 

intermediate step is Space Vehicle Mass. Both Time to First Launch and Annual Architecture Cost 

models are dependent on Space Vehicle Mass while parameters necessary to calculate Threat 

Effectiveness and Capability to Objective are inputs to Space Vehicle Mass. In this sense, the Space 

Vehicle Mass contributing analyses is where many of the tradeoffs happen. The Space Vehicle 

Mass model is shown in Equation (8): 

Eq 8. 𝑆𝑆𝑂𝑂𝐿𝐿𝐿𝐿𝑇𝑇 𝑉𝑉𝑇𝑇ℎ𝑇𝑇𝐿𝐿𝐴𝐴𝑇𝑇 𝑀𝑀𝐿𝐿𝐹𝐹𝐹𝐹(kg) = ��𝐵𝐵𝑇𝑇 ∗ 1.01
𝐷𝐷𝐷𝐷12� ∗ (1 + 0.2𝐶𝐶𝐶𝐶)3 + 181.4 ∗ 𝑅𝑅𝐶𝐶𝑎𝑎� ∗

(1 + 0.15𝑅𝑅𝐶𝐶𝑏𝑏) ∗ 1.3𝑅𝑅𝐶𝐶𝑐𝑐 
subject to: 
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0 ≤ Bm ≤ 10000 

0 ≤ DL ≤ 480 

0 ≤ 𝑅𝑅𝐶𝐶𝑖𝑖 ≤ 1 

0 ≤ CC ≤ 1 

where Bm is the base mass of the space vehicle in kilograms (set to 4082 initially based on the 

author’s experience with large Government communications satellites, but could be changed 

depending on the space vehicle of interest), DL is design life in months, RCa, RCb, and RCc are 

Resilience Configurations A, B, and C respectively with a value between 0 and 1, and CC is 

Capability Configuration with a value between 0 and 1. The model is complex, and is not derived 

from a regression but rather from a series of analytical relationships which are explained below: 

 

- Design life increases mass as more equipment is needed to ensure redundancy and 

engineering margin against the naturally degrading environment of space. This 

contribution was derived from known engineering estimates of annual solar panel 

degradation (a main life limiting constraint on spacecraft) of 3.75% per year and an 

electrical power subsystem representing 30% of the mass of the space vehicle [62]. 

- Capability Configuration exponentially increases the mass based on the physical 

relationship that linearly increasing the aperture (and therefore capabilities) of the payload 

antennae will have a cubic effect on the final mass of the payload, which will then 

proportionally increase the final mass of the space vehicle [62]. While there are other 

factors that contribute to a communications satellite capacity that may not have a cubic 

effect on mass, aperture size was taken as a representative design variable. This technique 

is extensible to more complicated scenarios with multiple design variables [29]. 
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- Resilience Configuration A linearly increases mass with a maximum addition of 181.4 kg 

to the base configuration of the satellite. This is notional but would be analogous to adding 

a specific additional hardware package on the spacecraft in the form of a secondary payload 

that provides a capability linearly scaling with mass. 

- Resilience Configuration B increases the base mass and any added hardware from RCa and 

CC by up to 15%. This is also notional but can be seen as analogous to adding hardware 

that would have a mass impact proportional to the entire spacecraft mass, an example of 

which could be radiation hardening. 

- Resilience Configuration C increases the base mass and mass for all other contributions by 

a 1.3 factor exponentially. This too is notional but represents adding a capability that has 

different returns for additional mass, for example, additional fuel for contingencies. 

 

While all these models contain assumptions and notional components, the intent is to 

display the breadth of applicability with this technique to numerous potential contributing 

analyses. When performing a real-world optimization, many of the contributing analyses will 

likely be proprietary, not publically releasable, or classified, but parameter values will be well 

established for the particular optimization analysis. 

3.2.6 Optimization Software Implementation 

The next step is to convert the Variability BDD into a SysML Parametric Diagram through 

the selected contributing analyses to outline the quantified relationships in this architecture. This 

will take advantage of the relationships discovered during the investigation of truth data phase. 

Figure 14 shows this diagram. 
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Figure 14: Case Study 1 Parametric Diagram in SysML 

Then this Parametric Diagram can be converted into an executable model that can be linked 

with an optimization algorithm. ModelCenter by Phoenix Integration is one platform that provides 

an integration workspace that enables the linkage of contributing analyses with an optimization 

function. The above Parametric Diagram was converted into a ModelCenter implementation. The 

inputs, contributing analyses, and the objective function were built in either Microsoft Excel or 

MathWorks MATLAB. As noted in Chapter 2, ModelCenter is flexible enough to support 

integration of nearly any model regardless of the tool used. 

A non-gradient-based optimization is necessary since elements of the objective function 

are not differentiable [90]. The Darwin genetic algorithm was selected as the optimization 

algorithm due to use in previous demonstrations of similar techniques [33]. The overall structure 

of the ModelCenter setup is shown in Figure 15. Additionally, after the main simulation was 
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complete, several shorter runs were performed to ensure consistency and verify that the converged 

minimum represents a global and not a local minimum. 

 

Figure 15: Case Study 1 ModelCenter Implementation of Overall Objective Function 

3.3 Case Study 1 Results 

3.3.1 Simulation Output 

The simulation was successful in optimizing a satellite architecture both technically and 

programmatically. Once exercised through the Darwin algorithm, the simulation converged on an 

optimum solution per Equation (2) after evaluating 11,853 potential architectures. Optimization 

was ended after 11,853 runs as there was no longer any significant variation in the results, showing 

convergence of the optimization that is acceptably close to the theoretical minimum. Additionally 
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three smaller optimizations were conducted which validated consistency in the results and 

demonstrated that this was a global optimum and not a local optimum. During the 11,853 runs of 

the principal simulation, the objective function value varied between 0.946 at the minimum and 

3.421 at the maximum. The annual architecture cost varied from $257M up to the maximum limit 

with $387M corresponding to the optimum architecture. The selected optimum solution is shown 

in Table 4. Of particular note is the relatively high design life that resulted. 

Table 4: Case Study 1 Optimum Architecture Results 

Parameter Value with Optimum 

Architecture 

Objective 0.9457 

Input DL 199.2 months 

Input RCa 0.752 

Input RCb 0.752 

Input RCc 0.751 

Input CC 0 

Input Opt 1 

Annual Architecture Cost $387,801,000 

Space Vehicle Mass 6710 kg 

 

ModelCenter also conducts sensitivity analysis on the data. Influence factors (partial 

derivatives of the objective result with respect to the input variable) for the inputs on the objective 

about the optimum solution are shown in Table 5. Design life had a large negative influence and 

capability configuration had a large positive influence. 
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Table 5: Case Study 1 Influence Factors for Objective 

Parameter Influence Factor 

Input DL -0.573 

Input RCa -0.188 

Input RCb -0.143 

Input RCc -0.140 

Input CC 0.369 

Input Opt -0.270 

 

Influence factors for Annual Architecture Cost were also calculated to provide greater 

insight into the driving factors in the optimization, and these are shown in Table 6.  

Table 6: Case Study 1 Influence Factors for Annual Architecture Cost 

Parameter Influence Factor 

Input DL -0.716 

Input CC 0.105 

 

3.3.2 Preliminary Validation 

This approach to the SoS optimization challenge requires validation as a prerequisite for 

adoption in the system acquisition process. A promising source of validation involves comparisons 

of the results to historical program data. Earlier sections of this paper have identified the use of 

historical data to define the relations used in the analysis. In addition, the optimization results have 

been compared to existing communications satellite systems that have resulted from conventional 

experience-based design refinement, and the overall agreement is good. For instance, the increase 

to space vehicle design life is in line with military satellite communications trends, which have 
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consistently lengthened to exceed 14 years [94]. The optimum solution identified in the simulation 

had a design life of 16.6 years. Similarly the trend of increasing mass and additional capability is 

validated by historical data. A legacy DoD geosynchronous communications satellite, MILSTAR, 

had an approximate space vehicle mass of 4535 kg while its more capable follow-on DoD program, 

AEHF, had an approximate mass of 6168 kg [95]. The simulation space vehicles, which had 

additional resilience capability, had a mass of 6710 kg at the optimum solution. 

An additional attempt to provide validation involved comparing these results to other 

satellite architecture optimization studies. It proved difficult to find comparable real-world 

analyses that included factors such as shorter design life and increased resilience. Most academic 

studies of space system optimization focus on life cycle cost to the exclusion of other factors. 

However, trades in the results were consistent when similar corresponding trades appeared in other 

studies. For instance, Gross and Rudolph [96] conducted a sensitivity analysis of a rule based 

design approach for an earth sensing satellite system. The mass of the tracking, telemetry, and 

control subsystem, which communicates to the ground, was highly dependent on the data rates it 

was required to support. This is consistent with this analysis, in which additional communications 

capability impacted payload and overall space vehicle mass, resulting in an influence factor of 

0.369 for the CC parameter, the only parameter that had a positive correlation with our objective 

function. The additional mass required for increased capability did not warrant the extra cost as 

selected by the stakeholders for the weightings given in the objective. 

The validation strategy will continue to evolve and be used as an integral part of ongoing 

work to model a wider range of scenarios, analyze sensitivities of the optimization result to various 

analysis factors, and assess the propagation of uncertainties in the data through the analysis. This 

preliminary validation, while incomplete, provides confidence to continue exploring these efforts. 
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3.4 Case Study 1 Discussion 

A full uncertainty analysis will require additional simulations with a range of scenarios and 

is a subject for the next phase of this research in upcoming case studies. Similarly, more data and 

a more in-depth sensitivity analysis is needed to increase confidence in the validity of the model. 

However, this initial optimization study research leads to some key conclusions, and is the basis 

for continuing work. Specific findings include the following: 

 

- Implementing the SEV will be complicated in terms of design trades. Design life, which 

would typically be reduced when acquiring smaller, cheaper satellites to implement SEV 

goals of shorter development timelines, is very negatively correlated with the overall 

objective and with Annual Architecture Cost. In fact, among the input parameters it was 

the greatest influencer of the optimum, likely due to this direct relationship with higher 

cost associated with more rapid satellite replenishment. As a result of this negative 

correlation and the desire to minimize the objective function, the optimum solution actually 

selected a design life higher than the initial set points. 

- Meeting the capability threshold is very stressing under these parameters. The Capability 

to Objective measure was 1 at the optimum solution, meaning that no additional capability 

above threshold was recommended. In fact, the capability configuration input was the 

second largest influencer of the objective function after design life, although this was a 

positive correlation. This was likely due to the significant effect additional capability has 

on space vehicle mass and the resulting impact Annual Architecture Cost and Time to First 

Launch. Since this was a positive correlation, capability configuration was minimized with 

the objective function, all the way to its lower limit of 0. 
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- Resilience as defined in this study is also expensive in terms of mass. Architecture solutions 

around the objective solution implemented all resilience features to a significant degree, 

which raised the space vehicle mass considerably. All the Resilience Configuration metrics 

were approximately equal in the optimum solution, which is reasonable since only the 

lowest (worst) of the three would affect the objective function while increasing resilience 

increased mass. 

- Performing acquisitions utilizing contract options rather than competitions was the 

preferred solution, likely due to its effect on reducing development timelines. This could 

well influence the contracting approach for communication satellite acquisition. While 

current DoD policy mandates competition in most instances [93], modeling techniques 

such as this could identify situations in which waiving that requirement is in the best 

interest of the stakeholders. 

 

The parameters of this simulation drive a solution that leads to larger, more capable, longer 

lasting, more resilient, but more expensive satellites. This seems to be at least partially opposed to 

the spirit of the SEV, one of the goals of which was more rapid satellite acquisition. This suggests 

the objective function should be scrutinized by stakeholders. The results also suggest that the 

feasibility of the SEV with the current acquisition approach is debatable. This might lead to a 

greater urgency for other acquisition constructs, such as a more modular method of building space 

vehicles, perhaps a standard bus approach, that would better support OSA and therefore more rapid 

development timelines. Similarly pursuing mission disaggregation concepts to reduce individual 

vehicle complexity might increase in attractiveness. These are among the excursions from this 

initial scenario to be examined in some of the next case studies. 
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3.5 Case Study 1 Conclusion 

A technique to apply model-based architecture and programmatic optimization to a satellite 

communications SoS acquisition was demonstrated, with a focus on implementing the AFSPC 

SEV. This initial exploratory study provided some useful results which appear reasonable in light 

of the experience of the space acquisition community, such as a tendency to drive towards more 

capable but more expensive solutions. 

Overall, a new implementation of an architecture-centric methodology was developed to 

conduct an architecture and acquisition strategy selection trade study in the early phases of military 

communications satellite acquisition. This new process, an “Architecture and Programmatic 

Optimization Process” is shown in Figure 16. 

 

Figure 16: Case Study 1 Overall Architecture and Programmatic Optimization Process 

This process is important for establishing an approach that not only optimizes a specific 

technical architecture, but also holistically includes programmatic concerns that are critical to a 

program's overall success in meeting cost, schedule, and performance goals. This process will 
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allow for a better informed acquisition decision by highlighting key trades and results among the 

candidate solutions. 

A more ambitious goal is to better understand the uncertainty involved with this process so 

that a decision maker will trust the optimization to actually make architecture decisions. Critically, 

an understanding of the optimum solution's robustness in the face of changing circumstances (all 

too common with lengthy space acquisitions) will need to be understood. These areas will be a 

focus for upcoming research. 
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CHAPTER 4:  CASE STUDY 2:  REMOTE SENSING  
 

This chapter outlines a case study applying the proposed methodology to conduct an 

Analysis of Alternatives (AoA) for a remote sensing satellite constellation and compares the new 

process to the conventional AoA process.2 

4.1 Case Study 2 Introduction 

4.1.1 Current Analysis of Alternatives Process 

U.S. DoD acquisitions undergo an AoA evaluation early in the acquisition lifecycle in order 

to help decision makers understand the tradespace for new materiel solutions to satisfy an 

operational need. This AoA process is an analytical comparison of the operational effectiveness, 

suitability, and life-cycle cost of alternatives that satisfy established capability needs. Successful 

completion of AoAs must be certified to Congress for Major Defense Acquisition Programs 

(MDAPs). Per current DoD guidance, cost analysis is performed separately from measure of 

effectiveness and performance analysis [2]. 

Current AoAs are usually long, expensive processes. Typical recent Air Force AoAs had 

an average cost of $15M and took 21 months to complete [97]. This is considered a worthwhile 

investment as the resultant decisions could impact many billions of dollars of Government 

acquisitions. 

4.1.2 Opportunities for Improvement 

Within the author’s defense system acquisition experiences, the AoA process has 

opportunities for improvement, in particular with how they enable a final decision on a materiel 

                                                 

2 © [2018] IEEE. Re-used with minor grammar and formatting changes, with permission, from M. LaSorda, J. Borky 
and R. Sega, "Model-Based Architecture Optimization for Major Acquisition Analysis of Alternatives," in 2018 IEEE 
Aerospace Conference, Big Sky, 2018. https://ieeexplore.ieee.org/document/8396526/  



84 

solution. While many different criteria are thoroughly analyzed within the current AoA process, 

all too often how that influences a final decision is unclear as the results for the various criteria are 

somewhat subjectively compared at senior-level decision meetings. Frequently during many 

evaluations, the architecture corresponding to the lowest cost for acceptable performance is 

selected as cost is easily quantifiable and therefore stakeholders that push for lowest cost can often 

make the most persuasive argument. The result may not actually be the best value for the 

stakeholders. 

In a resource-constrained environment, it is critical to provide the greatest capability for 

the cost. Very often, the lowest cost to meet the minimum requirements isn’t at that value point. 

The U.S. DoD acquisition community has conducted an initiative known as “Better Buying Power” 

since 2010 focused on improving the value the DoD achieves for each dollar spent. The latest 

version, “BBP 3.0” specifically advocated for identifying better objective measures of value for 

DoD and industry alike [89]. 

By exploiting new MBSE techniques, this research seeks to demonstrate a better, more 

rigorous, model-based analytical approach to objectively measure and select best value from an 

architecture trade study, specifically an AoA. The results can also be applied more generally to 

architecture optimization in many system categories. 

4.1.3 Problem Statement 

 Typically in a Space Acquisition AoA, a handful of driving design characteristics are 

selected to be varied, such as orbit, aggregating (combining) multiple missions on one physical 

satellite, and varying capabilities. A handful of candidate architectures then are generated 

representing the boundary conditions and are independently evaluated on how they perform on 
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various performance measures, risk, and cost per DoD guidance. In practice, these solutions are 

then debated by various groups of stakeholders until concurrence is eventually realized. 

Current U.S. DoD AoAs, especially for DoD space acquisitions, often struggle with being 

able to convey the relative importance of additional capability and other measures against cost, 

which drives the decision toward the cheapest solution that meets the minimum requirements 

rather than selecting what may be the best value. A contributing factor to this is a lack of clear 

guidance on the relative importance of the other measures of success, leading to multiple 

stakeholders having multiple opinions. Cost tends to be a major forcing function, so that 

minimizing cost tends to result when concurrence can’t be reached on what provides the best total 

value. 

Given the push to provide clear, objective definitions of “best value” for DoD systems 

rather than just minimizing cost [89], this research considers potential modifications to the current 

AoA standard process in pursuit of this goal. This case study outlines a modified approach to 

leverage MBSE in AoAs in order to arrive at a best value solution. This new approach is then 

compared to the current standard AoA process and the results appear promising.  

4.1.4 New AoA Approach Application 

This case study will leverage the new approach for architecture selection outlined in 

Chapter 2.  In addition, it will look at applications for stakeholder iteration. While the scenario 

described in Chapter 2 and Case Study 1 is somewhat idealized due to clear, quantifiable 

requirements, the practical reality is that stakeholders and decision makers will likely not agree to 

be committed to the results of an analysis until they actually see those results. For this reason, the 

results should be considered preliminary until validated by the approving authority. This gives the 

opportunity for that authority to modify the weightings or the objective function if the final results 
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are judged inadequate to support the decision. This would also be an opportunity to challenge and 

adjudicate any driving critical assumptions. 

Given the flexibility of the MBSE-enabled optimization, this type of iteration is actually 

not exceptionally difficult since most of the effort was in setting up the model in the first place. 

Therefore, the approving authority may be able to go through several iterations of an objective 

function, with each iteration and weighting being correspondingly rigorously documented. 

Ultimately, an objective best-value measure will be reached that all stakeholders and the approving 

authority can agree on. 

4.2 Case Study 2 Research Setup 

4.2.1 Evaluation Method Grading 

The goal of this part of the research is to compare the new approach outlined in Chapter 2 

to the traditional AoA approach. Based on original interviews with several experts in architecture 

evaluation [98], the following set of criteria were developed to compare the approaches: 

 

- Objectivity: do different stakeholders come to the same conclusions when they review the 

evaluation? 

- Repeatability: can the analysis be performed multiple times by different parties and arrive 

at the same results? 

- Transparency: is it clear to any stakeholder who reviews the architecture evaluation why 

the chosen result was selected? 

- Flexibility: does the architecture evaluation easily allow for changes in scope during the 

evaluation execution? 
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- Resource Intensiveness: how much does the evaluation cost, how long does it take, and 

does it require any hard-to-acquire resources (specific expertise, unique IT requirements, 

etc.)? 

- Selects Best Value: Does the evaluation consistently select the best value solution as 

defined by all the stakeholders? 

- Uncertainty Quantification: is uncertainty in the process and results understood so decision 

makers can have confidence in the results? 

 

In order to compare the two approaches on these criteria, this case study was conducted, both 

using the new modified approach and the more traditional approach allowing an objective 

comparison of the results and methodologies. 

4.2.2 Overview of Scenario and Reference Architecture 

The case study to compare the methods of evaluation is a representative scenario for a 

potential U.S. DoD AoA. The scenario in question is notional to avoid sensitive data, but is defined 

to highlight the applicability and utility of this technique while utilizing publically available 

information. The technique is scalable to a very thorough modeling application that would be 

expected of an AoA as demonstrated by [29]. An extension of this dissertation could be pursuing 

the exploration of these first results to greater details. 

The scenario chosen (identified as “IRSat”) is the acquisition of a new Electro-Optical 

(EO) monitoring capability to support anti-piracy operations in an Area of Responsibility with 

rapidly escalating threats. The requirements included rapid revisit over an equatorial theater with 

a comparatively low fidelity sensor to detect watercraft engaged in suspected piracy activity. Given 
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the heightened attention accorded to this region, standing up a capability quickly has a greater 

priority than in normal acquisitions. 

There were several options in the tradespace to be considered for this AoA. A small 

constellation of comparatively cheap Low Earth Orbit (LEO) satellites could be built to provide 

the necessary revisit rate, varying in orbital altitudes and constellation size. As an alternative, a 

single, large, geosynchronous orbit (GEO) satellite could also provide the coverage. A further 

option with the GEO satellite would be the opportunity to have an aggregated space vehicle, 

sharing costs, with a new GEO communications satellite that was planning to enter development 

at the same time. Capability could also be varied between threshold and objective values. Finally, 

this scenario incorporates ongoing DoD emphasis on common modular spacecraft parts, which 

must be considered as part of the scope of the AoA. 

Following the methodology outlined in [16], an initial reference architecture was 

developed in order to establish a baseline for modeling trade study excursions. Utilizing MBSAP 

terminology [16], a Domains Composition Block Definition Diagram (BDD) is shown in Figure 

17 and an activity diagram outlining the basic collection behavior for IRSat is shown in Figure 18. 
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Figure 17: IRSat Domains Composition © [2018] IEEE 
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Figure 18: IRSat "ConductSensingOp" Activity Diagram © [2018] IEEE 

To show how the various trade parameters affect the baseline reference architecture, a 

Variability BDD was developed in accordance with the technique developed in [33]. This is shown 

in Figure 19, and clearly identifies how varying the 4 input variables trace to select a specific 

configuration of the reference architecture. 
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Figure 19: IRSat Variability BDD © [2018] IEEE 

4.2.3 Optimization Setup 

This scenario led to the identification of several parameters of interest to be included in an 

AoA. In addition to lifecycle cost, these included capability development schedule, additional 

capability beyond threshold (minimum capability required), and inclusion of modular spacecraft 

parts. In a real world AoA, additional trades could be expected, and this methodology is scalable 

to readily incorporate them. 
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Under the traditional AoA process, the various materiel solutions would be independently 

evaluated on the parameters of interest and costed with the results debated until the key decision 

makers could reach consensus. Under the modified AoA process outlined in section 2, an 

optimization defining the best value for the Government was selected with associated weighting. 

Normalization factors were also selected for the contributing analyses represented as functions in 

this multi-objective optimization. This structure is shown in Equation (9): 

Eq 9.    min � .460𝑓𝑓1(𝑥𝑥) +
.350𝑓𝑓2(𝑥𝑥) + .2𝑓𝑓3(𝑥𝑥) +

.1

.3 𝑓𝑓4(𝑥𝑥)� 
subject to: 𝑓𝑓1(𝑥𝑥), 𝑓𝑓2(𝑥𝑥), 𝑓𝑓3(𝑥𝑥),𝑓𝑓4(𝑥𝑥) ≥ 0 𝑓𝑓2(𝑥𝑥) ≤ 200 𝑓𝑓3(𝑥𝑥) ≤ 1 

In this equation, which is a variant of Equation (2), function 1, with a weighting of 0.4, 

corresponds to time to first satellite launch from contract authority to proceed and is normalized 

for 60 months, function 2, with a weighting of 0.3, corresponds to annual architecture cost and is 

normalized about $50M, function 3, with a weighting of 0.2, corresponds to minimizing the 

difference between actual performance and objective (desired) performance with threshold 

(minimal) performance normalized to 1, and function 4, with a weighting of 0.1, corresponds to a 

modularity ratio normalized to 0.3. All the functions had a lower constraint of 0, and cost had an 

upper constraint of $200M/yr to represent a departmental budget limit. Performance had an upper 

constraint corresponding to the normalized threshold performance of 1 with 0 corresponding to 

objective performance.  
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4.2.4 Contributing Analysis Selection 

4.2.4.1 Altitude and Mass Contributing Analyses 

The initial mass contributing was developed using surrogate mass fractions and other data 

from the earth observing FireSat example (for a LEO EO satellite), Defense Support Program 

(DSP) DoD satellite (for a GEO EO satellite), and the Tracking and Data Relay Satellite (TDRS) 

(for GEO communications satellite) found in [62]. For the LEO regime, a selection of Walker-

orbit constellations ranging from 3 to 9 satellites corresponding with altitudes of 1150 to 660 km 

as identified in [29] as a realistic set of optimum EO LEO constellations were considered. Walker 

circular orbit patterns have become popular for systems required to provide continuous or near 

continuous coverage [99]. 

4.2.4.2 Cost Contributing Analysis 

A number of contributing analyses and supporting models were used in the optimization. 

The principal spacecraft cost model is the same as shown in Equation (4) in Section 3.2.5.2 from 

Case Study 1 and was taken from [92]. 

This is a simplified parametric model based on spacecraft mass (m) in kg but certainly a 

more thorough bottoms up cost estimating methodology could be used as shown in [29] if that 

level of fidelity is available. This model includes spacecraft launch costs. To realize a per year 

architecture cost, the per spacecraft cost was multiplied by the number of spacecraft required then 

divided by the design life in years to reflect the costs of replenishing failed satellites in orbit. LEO 

satellites had a design life of 5 years and GEO satellites had a design life of 10 years based on the 

reference architecture. It is assumed any architecture considered could use existing satellite 

commanding ground infrastructure and services so that wasn’t utilized as an analysis discriminator 

nor used in the cost estimate. The communications space vehicle was costed with the EO space 
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vehicle if the aggregated GEO option was chosen or costed separately and added to the EO mission 

if a disaggregated architecture was chosen, so that both cases reflect the net Government cost for 

the two missions. 

4.2.4.3 Schedule Contributing Analysis 

The schedule model used is the same as shown in Equation (3) in Section 3.2.5.1 from Case 

Study 1 and is from a study of Government satellite acquisition schedule information [91]. 

This model defines the time in months from contract authority to proceed to first satellite 

launch, and is based on space vehicle mass (m), design life (DL) in months and number of mission 

types (MT), which affects this scenario if an aggregated EO/Communications satellite is chosen. 

4.2.4.4 Modularity Contributing Analysis 

A thorough methodology to account for commonality across modular satellite design is 

shown in [100]. In particular the flexible approach identified in [101] is attractive due to its 

simplicity, and from that we derived our estimate of the impact of modularity on cost as shown in 

Equation (10). 

Eq 10.   A($M)=S * [1-∑ (1-yj)*kj] 

In this model, A is the cost of the modular space vehicle, S is the cost of a theoretical 

completely non modular space vehicle, yj is the coefficient of cost for modular component j (a 

coefficient of 0.08 was assumed which is consistent with spacecraft studies referenced in [100]), 

and k is the ratio to the total spacecraft cost for what component j replaces within the spacecraft. 

Increased modularity can have a negative effect on performance as it is assumed common, 

modular components would not achieve the same performance as exquisite, purpose-built 

components. This impact would be determined on a case by case basis for a formal AoA. For our 
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simplified case study, a decrement of 0.1 multiplied by the fraction of the spacecraft that was 

modular was applied to the spacecraft performance score to account for this.  

4.2.5 Optimization Software Implementation 

All the models were integrated using ModelCenter. For this analysis, excel spreadsheets 

were utilized for each of the contributing and supporting analyses and linked together within the 

ModelCenter interface. The ModelCenter setup for this optimization is shown in Figure 20.  

 

Figure 20: Case Study 2 ModelCenter Simulation Setup © [2018] IEEE 

Once a ModelCenter simulation is set up, it can be exercised through the Darwin optimizer 

and executed repeatedly to ensure consistency and convergence on a global, not local, minimum 

as discussed in Chapters 2 and 3.   

4.3 Case Study 2 Results 

4.3.1 Simulation Output 

For the optimization, after evaluating 877 potential architectures, the best value 

architecture was identified corresponding to a LEO constellation of 9 satellites with a maximum 
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modularity fraction of 0.3 and elevated levels of in-built capability capacity to offset the 

performance decrement due to modularity. 

This case study successfully demonstrated the execution of the new methodology examined 

in this research. Other sources [29] have shown the scalability of this methodology to a wide range 

of very detailed modeling. As this research progresses beyond this dissertation, further insights 

and discussion will be developed as more realistic test cases are investigated. 

4.3.2 Evaluation Methodology Comparison 

The two methodologies were conducted and compared on the evaluation criteria, with the 

results shown in Table 7. They were directly compared and the methodology that was assessed as 

concretely better addressing that criteria was marked with a [+], the methodology that performed 

worse with a [-], and cases where neither methodology conclusively performed better are marked 

with a [0]. 

Table 7: Case Study 2 Methodology Comparison 

Criteria Traditional AoA Methodology New Optimization Methodology 

Objectivity [-] Stakeholders may diverge in conclusions 
based on preferences once the individual 
analyses are complete 

[+] Since all decision makers agreed to the 
objective function during the buy-in process, 
they will all have to concur with the final 
results or agree to iterate the objective 

Repeatability [-] Differing stakeholders may choose to 
evaluate parameters of interest very 
differently since qualitative approaches 
could also be included 

[+] While there is still opportunity for 
divergence, enforcing quantifiable measures 
reduces the potential for drastic disagreements 

Transparency [-] While the AoA approach and analysis 
results are documented, how the final 
decision occurred is often not clear  

[+] Methodology approach and results 
through final decision are documented 

Flexibility [-] Changing a parameter of interest or 
expanding the input architecture tradespace 
could often invalidate all work conducted 
before 

[+] As most of the work is up front in setting 
up the model, that work can be easily reused 
as the model is modified to accommodate 
scope changes 

Resource 
Intensiveness 

[0] Initially may be easier to set up, but 
becomes more resource intensive as changes 
occur to the AoA scope 

[0] May require specific MBSE skillsets and 
IT resources, which should be a negligible 
cost given the resources of most AoA efforts 

Selects Best 
Value 

[-] Typically results in selecting lowest cost 
for acceptable performance as the 

[+] As best value was defined by the 
stakeholders early in the process, it can be 
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quantifiable nature of cost causes it to trump 
other criteria 

justified against the lowest cost acceptable 
solution 

Uncertainty 
Quantification 

[-] Cost uncertainty is typically analyzed and 
accounted for in a rigorous process, but other 
measures are not 

[+] Mature, quantifiable metrics should have 
traceable uncertainty bounds similar to the 
level that cost uncertainty is accounted for 

 

4.4 Case Study 2 Discussion 

The new optimization methodology was assessed in table 7 performed as well as or better 

than the traditional methodology in all measures of performance. The following are some 

highlights. 

Transparency is frequently mentioned as lacking in the current AoA process, specifically 

in how it informs the final AoA decision in being reached. There is a sense that in the final decision 

meetings, which ever stakeholder can make the most convincing argument on the spot for their 

cause will win the day. It is easy to see how this could be the case given the typical summary chart 

for a current AoA, which for this case study could look something like Figure 21. 

 

Figure 21: Case Study 2 Representative Current Methodology AoA Output © [2018] IEEE 
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If Figure 21 was given to a mixed group of stakeholders, it is not clear what the decision 

should be based on. For example, the perceived value of receiving the capability 3 or more years 

earlier could be very different across the stakeholders. Since cost is always a high interest topic, 

in the absence of insights like those produced by the new proposed methodology the lowest cost 

is usually selected. 

In contrast, the new AoA methodology provides a clear identification of best value, rather 

than a focus only on cost. Figure 22 shows one way this result could be presented to support an 

architecture selection. 

 

Figure 22: Case Study 2 Representative New Methodology AoA Output, Cost ($M) vs. Objective  

Figure 22 is a visualization of all the optimization runs plotted for cost vs. objective score, 

which is inversely proportional to value as defined by the stakeholders. With this, a stakeholder 

can understand the interplay between the variables in the trade space, with clear boundaries and 

logical groupings of options. Notably, this enables the stakeholders and decision makers to actually 

see how their stated preferences for value as defined when they selected the objective function 
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compare to cost. Relative interdependencies can be clearly visualized by the slopes of the various 

curves. 

A definitive best choice based on the agreed-upon stakeholder objective is also easily 

identifiable, which is not the case in the current AoA process. If this identified best choice is not 

acceptable to the final decision making authority, then this method further provides insight that 

the stakeholders and decision makers could then use to iterate the weightings and the objective 

function in order to make an informed modification to the AoA. 

The assessment of resource intensiveness was inconclusive, with the limited scope of this 

analysis, but given the resources involved in a MDAP AoA, in the worst case the new methodology 

should still be affordable and can reasonably be expected to be considerably cheaper given the 

significant scope increases in a typical AoA. 

A discussion point is that the new methodology will require stakeholder engagement and 

concurrence earlier in the process. While this may involve increased coordination, it should reduce 

the amount of discussion at the end of the process as the final, best-value solution will be more 

readily apparent. 

4.5 Case Study 2 Conclusion 

This case study has described a new methodology to conduct AoAs consisting of 

quantitatively defining best value up front and optimizing for it. On every criteria considered, this 

new approach performed as well or better than the current AoA methodology which consisted of 

independently evaluating parameters of interest and cost and attempting to select the best value 

after the fact. The methodology can be applied to a wide range of other architecture optimization 

challenges.  
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CHAPTER 5:  CASE STUDY 3:  MISSION CONTROL SOA  
 

 This chapter outlines a case study applying the proposed methodology to conduct an 

architecture evaluation for a software focused problem involving a service oriented architecture in 

the trade space applied to a satellite mission control segment selection. 

5.1 Case Study 3 Introduction 

5.1.1 Case Study Focus 

5.1.1.1 Uncertainty Quantification 

A major concern for analysis is tracking uncertainty through the proposed methodology. 

In order to convey confidence in the results to leadership, any proposed architecture evaluation 

technique needs to be able to demonstrate an understanding of how likely is that the evaluation 

results will represent the delivered implementation of the final system. While Case Study 2 did 

investigate uncertainty quantification when comparing the new methodology to the old 

methodology used in U.S. DoD AoAs, it was simply a relative comparison. Demonstrating that 

this new methodology better ensures uncertainty quantification by enforcing traceable metrics is 

the principle objective of this case study.  

There are two different types of uncertainty to account for. Type A uncertainty is typically 

associated with sampling or random error in measurement [102], while Type B uncertainty is 

related to systematic error and associated with having improperly calibrated measuring tools or 

using an incorrect model [103]. A robust treatment of uncertainty should account for both types 

[104]. Several examples of how to approach propagating uncertainty through an analysis are found 

in Chapters 1 and 2.    
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5.1.1.2 Software 

In an effort to demonstrate the flexibility of the methodology proposed in Chapter 2, it was 

desired that a vastly different scenario be investigated than the tradespace focused on hardware 

and physical implementation that was demonstrated in the previous case studies. In particular, this 

scenario is focused on software applications, which is an ever-increasing source of complexity and 

risk in modern systems. As an example, over 90 percent of the functionality in a 5th generation air 

vehicle such as the F-35 is in software [39]. Given this importance, it would be a critical test of 

the proposed methodology to demonstrate if software architecting efforts could be adequately 

handled. 

5.1.1.3 Cybersecurity 

 Another major focus area is that of cybersecurity. Cybersecurity is an architectural concern 

that is continually increasing in importance with recent significant cyber-attacks resulting in 

multiple billions of dollars in losses and including widespread collateral damage [105]. 

Cybersecurity is defined as “prevention of damage to, protection of, and restoration of computers, 

electronic communications systems, electronic communications services, wire communication, 

and electronic communication, including information contained therein, to ensure its availability, 

integrity, authentication, confidentiality, and non-repudiation.” [106]  

As architectures have grown more interconnected, the cyber “attack surface” or the 

exposure of the architecture to exploitable vulnerabilities [107], is also forced to grow, making 

cybersecurity risk management all the more critical in architecture selection decisions. 

Demonstrating the proposed methodology can handle cybersecurity concerns would be a very 

relevant and compelling test for this case study. 
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5.1.1.4 Service Oriented Architectures 

A service-oriented architecture (SOA) is the final focus area for this case study. SOA’s are 

an architecting paradigm where functions can be published, discovered, and used as a shared 

reusable service within the architecture independent of where they are instantiated [108]. They are 

purported to hold many benefits such as increased flexibility, modularity, and efficiency, and align 

well with recent trends in both the public and private sectors to reduce stovepipes and capitalize 

on better information sharing [109]. More variations of SOA designs have been developed to 

provide services of different flavors, to include Infrastructure as a Service (IaaS), Platform as a 

Service (PaaS), and Software as a Service (SaaS) [110], which highlights some of the potential of 

a well-executed SOA approach.   

However, while SOA’s are a flexible and effective way of operating a networked system, 

that inherent flexibility comes with many unique security challenges. That same discoverability 

and portability of services that facilitate their utility can lead to potential cyber attack paths. There 

are effective methods to mitigate some of these challenges including implementing layered access 

controls and federated authentication [111]. Nevertheless, the concern of cybersecurity will always 

be at the forefront given the increased connectivity of modern systems typified by the trend 

towards service-orientation.  

5.1.2 Problem Statement 

 The scenario chosen for this case study is a notional situation meant to represent a realistic 

architecture selection involving software, SOAs, and uncertainty quantification in order to meet 

the desired focus of the case study. While it is not a real-life scenario, it is representative of a 

realistic situation based on the author’s experience and review of appropriate scientific and 

technical literature [62] [16].   
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This scenario focuses on an architecture selection decision for the space mission control 

segment for a scientific research laboratory that controls a number of purpose-built satellite 

missions. These missions are funded by different customers, and as such have differing 

requirements for security and acquisition timelines. There is also independent potential for the 

missions to change requirements or for funding delays and cancellation.   

 At the start of the scenario there are two missions already in orbit and conducting 

operations. These missions include an earth observation satellite (“ImageSAT”) that provides 

high-quality imagery to commercial customers and a scientific research satellite that provides 

radiation monitoring and analysis of solar flares for a Government customer (“RadSAT”). In 

addition, a third mission (“TechSAT”) is planned and currently is in the engineering and 

development phase of system acquisition. This will be an on-orbit technology demonstrator for the 

laboratory itself, primarily demonstrating proprietary autonomy and on-orbit servicing technology 

which the laboratory eventually desires to develop into a commercially viable service. 

 The earth observation mission and the solar radiation monitoring mission both use the 

research laboratory’s ground infrastructure for communicating with the space vehicles. This is 

done through separately scheduling time for use of the laboratory’s single Ku-band parabolic 

antenna dish located on a remote mountain top. While the laboratory operates both spacecraft, the 

software and mission control stations developed to conduct telemetry, tracking and control 

functions, as well as mission planning, were developed and are utilized completely independently 

from each other for both missions. This division was an artifact of the separate contracts, 

development timelines and divergent security requirements for the two missions.   

 With the technology demonstrator mission, the customer was internal to the laboratory 

itself. As an opportunity to realize efficiencies across the ground infrastructure, it was identified 



104 

that potentially the new mission could leverage the existing software and mission control stations 

the laboratory had developed for the other missions. While the laboratory’s software engineers 

were most familiar with developing custom software applications for research, several new hires 

were very familiar with service-oriented architectures, and highlighted that a SOA approach could 

make a lot of a sense for this development effort.   

 However, in addition to the desire to control cost, the laboratory was also very concerned 

about the cybersecurity considerations for their mission operations. A competing technology firm 

had recently been the target of a highly publicized cyber hacktivism campaign for selling imagery 

to the U.S. military. This series of attacks effectively took this firm by surprise and disrupted many 

of their mission operations, resulting in substantial financial loss from forfeiture of production 

contracts and reduced customer confidence. This very public example had caused the laboratory 

to conduct an internal audit which found their ground infrastructure would be susceptible to similar 

cyberattacks. 

Furthermore, the proprietary technology being demonstrated in the mission under 

development was regarded as critical to the future success of the laboratory and represented a 

considerable investment of the research and development budget. It could be crippling if this 

technology was stolen by a competitor or was prevented from being demonstrated in a timely 

fashion. Given this importance, the laboratory decided that it needed to re-evaluate its mission 

control infrastructure for cybersecurity considerations for both the old and new missions. A debate 

arose over whether moving to a SOA helped or hindered this cause. While a SOA may reduce the 

cyber “attack surface,” it was also highlighted that it could increase the consequence of a successful 

cyberattack as now all the missions shared vulnerability if one was compromised due to the greater 

interconnectivity through a networked infrastructure. A choice could be made to keep the missions 
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in separate stovepiped mission control segments to diversify the risk and insulate the missions 

from each other, which may be more attractive if the missions were of varying importance and 

would be optimized at different risk postures. 

A final consideration for the laboratory involved the flexibility of the mission control 

segment architecture. Given that the three mission areas supported all had separate customers, their 

requirements and funding stability were all independently subject to change. It was desired that 

the architecture selection decision should explicitly account for the ability of the architecture 

options under consideration to handle changing requirements or funding. This also could support 

opportunities for technology refreshment, or the ability to integrate completely new missions into 

the architecture. 

In summary, the scenario results in a laboratory decision to conduct an architecture 

selection for an update to its space mission control segments in preparation for a third space 

mission coming online. The decision trade space had to consider a SOA approach, and cover the 

criteria of cost, cybersecurity both from an information assurance and denial of service 

consideration, and ability to handle changing requirements, funding, and extensibility. This 

architecture selection evaluation needed to be conducted with a robust treatment of uncertainty in 

order to convince the laboratory’s leadership that the decision was robust in the face of changing 

circumstances.  

5.2 Case Study 3 Research Setup 

5.2.1 Mission Control Segment Reference Architecture Generation 

The first step of the architecture selection methodology is to define the RA for the problem 

space under consideration. For this problem, this architecture selection involves defining the 
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mission control segment for three satellite missions:  “ImageSAT,” RadSAT,” and “TechSAT.” A 

brief description of the three missions follows: 

 

- ImageSAT provides high quality, visible-spectrum imagery to commercial customers on 

an on-demand basis. Its mission control segment includes unique functionality to plan, 

schedule, and optimize imagery collections as well as manage and troubleshoot the optical 

payload. 

- RadSAT provides constant monitoring for space weather events to a Government 

customer. Its mission control segment includes unique functionality to manage and 

troubleshoot its scientific payloads. 

- TechSAT is a technology demonstrator for autonomy and on-orbit servicing technology 

for the laboratory itself. Its mission control segment includes unique functionality to 

manage and troubleshoot the prototype payloads and flight software and provide advanced 

diagnostics of the on-orbit demonstrations.   

 

The current mission control segment (MCS) controls ImageSAT and RadSAT through 

completely independent command strings, and will have to provide mission control functionality 

to TechSAT in time for its final ground integration testing prior to launch. The existing MCS 

utilizes the same antenna, terminal, and modem to communicate with all space vehicles and that 

is not under consideration to change for the launch of TechSAT. However, the existing MCS 

software and user terminals are completely separate across ImageSAT and RadSAT and that is 

under consideration to change with the launch of TechSAT. 
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 Following MBSAP, the first step to generate a RA is to document requirements [16]. Given 

the scenario for this case study, the applicable RA is for the combined MCS, whether integrated 

or separate, of the ImageSAT, RadSAT, and TechSAT missions. This RA is responsible for the 

top-level requirements as shown in Table 8. 

Table 8: Combined Mission Control Segment Requirements 

1) Provide telemetry, tracking, and control functionality for 
the ImageSAT, RadSAT, and TechSAT missions  

2) Provide mission specific functionality such as mission 
planning, payload troubleshooting, and mission monitoring 
capability to ImageSAT, RadSAT, and TechSAT 

3) Provide Cybersecurity protections to reduce cybersecurity 
risk to an acceptable level 

4) Enable timely and cost effective future architecture 
changes for technology refresh and to incorporate new 
missions 

 

 In a typical satellite system, the MCS will be responsible for telemetry, tracking, and 

control (TT&C) functionality, working with the TT&C subsystem on each satellite, as well as any 

mission specific functionality. TT&C comprises the functions associated with flying the satellite 

bus, and includes basic status of health information, troubleshooting, and standard bus commands 

such as those for orbit maintenance. Mission specific functionality can be associated with a number 

functions depending on the mission and typically involve controlling the payload. This can include 

collection management (covering planning, scheduling, and optimizing) for sensor missions, 

payload status of health and troubleshooting. Mission specific functions can also include unique 

secondary requirements such as more thorough status of health monitoring if necessary [62].     

 In order to ensure functionality was comprehensively addressed, a more in-depth review 

of mission operations functions was researched. In [112], 13 potential functions were identified as 
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part of mission operations for a space mission. These include nine data processing functions 

(Mission Planning; Activity Planning and Development; Mission Control; Data Transport and 

Delivery; Navigation and Orbit Control; Spacecraft (bus) Operations; Payload Operations; Data 

Processing; and Archiving and Maintaining Mission Database) and four support functions 

(Systems Engineering, Integration and Test; Computers and Communications Support; 

Developing and Maintaining Software; and Managing Mission Operations).  

Not all of these identified functions are necessary for every mission, and any mission 

operations infrastructure should be tailored to the needs of the mission. For instance, a simple 

academic research satellite could constantly broadcast passively collected data and have no 

propulsive capability. Such a system would have minimal or no need for a Navigation and Orbit 

Control Function, or a Mission Planning Function, among others. On the opposite end of the 

spectrum, some systems may have exceptionally complex functionality in certain areas, which 

results in much greater complexity and cost for that function than average. As an example, a very 

complicated and uniquely built scientific collection platform could have a much more costly 

Payload Operations Function than would be typical for a satellite of comparable size due to unique 

and complicated custom payload control software.  

Despite this tailoring, all of these functions could potentially interact with an enterprise 

MCS infrastructure solution. It was assumed for this case study that the Managing Mission 

Operations Function, which is typically a leadership role to maintain the strategic perspective and 

budget, would be handled through the laboratory’s corporate business processes and not through 

the enterprise MCS infrastructure. Therefore, this function will not be included in the architecture 

tradespace. 
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Several of these functions could be allocated in part or completely to the space segment 

rather than the enterprise MCS infrastructure. For instance, comparatively simple autonomy 

capability could be used to aid in station keeping for the space vehicles on orbit, which could 

reduce needed functionality of the Navigation and Orbit Control Function on the ground. These 

types of trades involve allocating costs between the space segment and ground. Frequently, if 

disciplined systems engineering processes are not followed, cost savings are pursued during space 

vehicle development that then lead to unforeseen complexity and large cost impacts during mission 

operations or system sustainment. [62] 

 For this case study, it is assumed that the space vehicles are either already launched or 

otherwise not able to be modified to support modifying the MCS functionality due to existing 

requirements and stressing technical demands on the space vehicles. While this does limit the trade 

space of this case study, in the author’s experience this is not an unrealistic constraint. This could 

occur when different acquisition authorities are acquiring the space vehicles and the MCS system. 

For purposes of the case study, this is assumed to be the result of different business units within 

the laboratory acquiring the MCS and the TechSAT space vehicle, and ImageSAT and RadSAT 

are already on orbit and can’t be modified, which leads to an inflexible allocation of requirements 

to the MCS. 

 A block definition diagram showing the domain composition for an independent TechSAT 

MCS reference architecture is shown in Figure 23. 
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Figure 23: Case Study 3 Independent TechSAT MCS BDD 

 Figure 23 shows all the necessary functionality for the TechSAT MCS. As it was observed 

by the laboratory leadership, a number of the functions, particularly those in the 

TechSATFlightOpsManager and TechSATSupportManager, were very comparable to 

corresponding functions in the RadSAT and ImageSAT MCS’s. An evaluation of what a SOA 

MCS would look like resulted in the SOA MCS domains composition shown in Figure 24.  
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Figure 24: Case Study 3 SOA MCS BDD 

  The MCS shown in Figure 24 collapses the functionality of the RadSAT, ImageSAT, and 

TechSAT MCS’s into one MCS. This provides an alternative architecture for evaluation in this 

case study. Following the methodology established in Chapter 2, a variability BDD is defined in 

order to show traceability between variables and the reference architecture for the architecture 

evaluation, which is shown in Figure 25. 
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Figure 25: Case Study 3 Variability BDD 

 This variability BDD is different from that in Case Study 1 (Figure 13) and Case Study 2 

(Figure 19) because Case Study 3 is essentially selecting between two substantially different 

architecture configurations. Each configuration is evaluated on the trades of interest as part of the 

overall trade study. 

5.2.2 Optimization Setup 

Following the methodology outlined in Chapter 2, an optimization function is defined for 

this architecture selection. This is constructed in the format shown in Equation 1. This function is 
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selected based on the needs of the stakeholders, primarily the leadership of the laboratory for this 

case study. The output of the optimization will correspond with the architecture recommended. 

Following the example from Case Study 2 in Chapter 4, if this recommended architecture does not 

meet the stakeholder desires, the objective function can be iterated in a traceable fashion and re-

evaluated.  

Given the stated objectives and desires of the laboratory leadership, several parameters of 

interest were selected for inclusion in the objective function. This included annual mission 

operations cost, cybersecurity risk, and technology insertion schedule. The relative weightings 

proposed for the initial evaluation of the objective function are given in Table 9. Additionally 

relevant normalization factors were decided on by stakeholders to ensure the variables were scaled 

appropriately to each other with in the objective function.  

Table 9: Case Study 3 Objective Function Weighting and Normalization Factors for Parameters of Interest 

Parameter of Interest Weighting Normalization 

Mission Ops Development Cost (f1) 0.4 1 / $2.4B 

Cybersecurity Risk (f2) 0.3 1 / $2.4B 

Tech Insertion Schedule (f3) 0.3 1 / 2 years 

 

The three parameters of interest are defined by contributing analyses in the evaluation of 

the objective function. The normalization factors addressed what stakeholders established as the 

baseline measurement for the variables; $2.4B was the laboratory’s associated mission control 

segment budget and 2 years was the laboratory’s current average technology insertion timelines to 

integrate a new mission. In keeping with one of the focuses of this case study, these contributing 

analyses must also include some way to address uncertainty to enable propagation of uncertainty 

through the objective function. The functions defining the specific contributing analyses must be 
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defined first before the final objective can be defined in order to identify appropriate normalization 

factors for approval by the stakeholders.  

This optimization has the potential to be very computationally intensive. As the focus of 

this research was not on integration of advanced computation techniques and high performance 

computing resources, this analysis will leverage notional, yet realistic models that require lower 

computational resources when necessary. However, this technique is certainly extensible to high 

performance computing as integration of optimizations has been thoroughly demonstrated at these 

high levels of complexity and resource requirements, including uncertainty analysis. An example 

of a high-performance computing optimization capability with uncertainty analysis is Sandia 

National Laboratory’s Dakota tool [113]. 

5.2.3 Contributing Analysis Selection 

5.2.3.1 Mission Operations Cost Contributing Analysis 

 The first contributing analysis to be investigated is the upfront development cost for the 

MCS solution of choice. A number of relationships were defined to come up with the cost model 

for both the stovepiped TechSAT-only MCS solution and the broader SOA solution.  

It has been shown that development cost and annual sustainment cost for space missions 

operations can be realistically predicted as a percentage of the total development cost of the 

spacecraft [62]. This correlation is due to the relationship that a more expensive spacecraft 

typically is more complicated and has more mission critical functions and operations that need to 

be planned for. Also, as the space vehicle represents a greater investment for an owning 

organization, mission operations have a lower risk tolerance and a correspondingly higher amount 

of oversight, which drives more costs. [62] 
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In order to address SOA architecture costs, a Divide and Conquer approach is 

recommended [114]. In this methodology, a SOA architecture development cost estimate is broken 

down into component parts which are then independently costed and recompiled into a full 

architecture cost estimate. For software components, the migration to a SOA framework can fit 

into four categories as follows [114]: 

 

- Available Service: already existing suitable service from a legacy SOA system or third 

party 

- Migrated Service: a traditional software component that can be used in a SOA with some 

modification or wrapping  

- New Service: a service that needs to be completely developed 

- Combined Service: a service that needs built from the combination of any of the above, 

and could be further deconstructed from the above 

 

For any of these components, a conventional software cost estimation methodology such 

as the Constructive Cost Model (COCOMO) [115] is suitable to be independently applied with the 

final results then compiled into the full architecture cost estimate [114]. This means that for the 

purposes of this analysis, individual service functions will be independently evaluated and 

compiled into a final cost estimate. Similarly, uncertainty can be evaluated at the system level or 

independently calculated for the development and/or transition of the individual software 

components to services and compiled for the final estimate [48]. The migration approach required 

for each software component will affect the complexity of the development effort and the cost 

model.    
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Cost models have been developed that decompose the MCS relative costs by functions 

[116]. This approach enables a method to evaluate costs for a SOA, as redundant functions can be 

identified and collapsed in the SOA as the separate missions are integrated. There is also an 

allotment for various complexities for each function, which can serve as a surrogate for the 

required migration approach to a SOA. A cost model for development of the TechSAT MCS 

broken out by functions is shown in Table 10. A separate cost model for developing TechSAT as 

a SOA suitable for all three missions and transitioning the non-redundant functions in ImageSAT 

and RadSAT to that SOA is shown in Table 11. Development complexity is assessed based on 

expert judgment taking into account mission type and SOA transition methodology.   

In keeping with the estimate formatting in [62], the final cost estimate for each architecture 

is given as a percentage of annual operating cost which in turn is based on a percentage of 

development cost. For this case study, this base annual operating cost was $5M. 

Table 10: TechSAT MCS Development Cost Functional Breakout 

Function Development 
Complexity 

Base Cost % 

Management N/A N/A 

Mission Planning Typical 78 

Command Management Typical 96 

Mission Control Typical 146 

Data Capture Typical 62 

Navigation Typical 78 

Spacecraft Planning and 
Analysis 

Typical 63 

Science Planning and Analysis High 662 

Science Data Processing High 480 
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Data Archive Typical 18 

Systems Engineering, 
Integration, and Test 

Typical 197 

Computers and 
Communications 

Typical 7 

Total (% of base)  = 1887% 

Total ($M)  = $94.35M 

 

Table 11: SOA MCS Development Cost Functional Breakout 

Function Development 
Complexity 

Base Cost % 

Management N/A N/A 

SOA Mission Planning High 169 

SOA Command Management High 334 

SOA Mission Control High 410 

SOA Data Capture High 86 

SOA Navigation High 212 

SOA Spacecraft Planning and 
Analysis 

High 162 

ImageSAT Science Planning 
and Analysis SOA Transition 

Typical 87 

ImageSAT Science Data 
Processing SOA Transition 

Typical 181 

RadSAT Science Planning 
and Analysis SOA Transition 

Low 0 

RadSAT Science Data 
Processing SOA Transition 

Low 0 

TechSAT Science Planning 
and Analysis 

High 662 

TechSAT Science Data 
Processing 

High 480 

SOA Data Archive High 59 

SOA Systems Engineering, 
Integration, and Test 

High 437 
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SOA Computers and 
Communications 

High 25 

Total (% of base)  = 3304% 

Total ($M)  = $165.2M 

 

Another aspect of the model is uncertainty. While the specific cost model used above did 

not include uncertainty metrics as described in [62], uncertainty metrics for similar cost modeling 

strategies are available. For instance, a cost model that breaks mission operations into 91 functions 

individually assessed for complexity successfully predicted operations cost to within 25% for 13 

out of 14 case studies [62] [117]. This can be directly translated into an uncertainty metric and 

provides a representative surrogate for this case study. This results in a normal distribution for the 

cost with the mean as the total cost provided in Tables 10 and 11 and a standard deviation of 

13.86% of that mean. 

5.2.3.2 Cybersecurity Risk Quantification 

 Cybersecurity is the practice of protecting sensitive information resources from threats. 

Cybersecurity risk management requires a rigorous and expertly executed ongoing process of risk 

assessment, governance, safeguards and updates to establish and maintain a secure information 

environment [118]. The U.S. Department of Commerce National Institute of Standards and 

Technology (NIST) provides extensive guidance on the conduct of cybersecurity risk assessments 

[119]. At a high level, a cybersecurity risk assessment should be conducted in alignment with 

organizational processes and in light of organizational objectives. An information system 

cybersecurity risk needs to be translated to a mission/business process risk and then to an 

overarching organizational risk. In this manner, a cybersecurity risk can be interpreted into a 

quantified organizational impact [119].   
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 An example cybersecurity risk assessment process is typified by the Microsoft Threat 

Modeling Process (MSTMP) [118]. This is a five step process that includes:  

 

1) Identify Security Objectives: what information needs to be protected?  

2) Application Overview:  how is that information used and instantiated?  

3) Decompose applications:  identify trust boundaries, data flows, entry and exit points, 

and external dependencies 

4) Identify Threats:  what applicable threats exist against your applications? 

5) Identify Vulnerabilities:  map threats to current architecture to establish which threats 

and potential countermeasures are most warranted for consideration 

- Once these steps are completed, the final step is to close the loop back to Application 

Overview to identify design changes and evaluate whether implemented countermeasures are 

sufficient 

 

 A critical piece for the proposed methodology is being able to translate cybersecurity risks 

into a quantifiable metrics with associated uncertainties. Fortunately such techniques to perform a 

cybersecurity risk assessment to result in a quantified measure of risk have been developed. In 

fact, insurers have made these types of assessments in order to develop cyber insurance products 

[120]. For instance, an example that is in alignment with the NIST guidance and MSTMP-type 

processes broke cybersecurity attacks against financial institutions into six categories (virus 

attacks, denial-of-service attacks, financial fraud, system penetration, theft of proprietary 

information, and unauthorized access), then used Computer Security Institute-Federal Bureau of 

Investigation (CSI-FBI) data to create validated generalized linear models to quantify the cost 
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impacts associated with the potential attacks. This was then used to evaluate the feasibility of 

cybersecurity insurance as a means of Risk Transference [121]. It has been highlighted that a 

cybersecurity quantification metrics can be integrated into a SOA [122]. 

Cybersecurity risk models can be decomposed based on confidentiality, integrity, or 

availability (commonly known as “CIA”) as well as other measures. Any decomposition needs to 

be based on clear, observable, and useful measures [123] and on aspects where there exists 

knowledge since otherwise it is not of much benefit [52].  

 Once the cybersecurity posture of a system is decomposed to a sufficient level of fidelity 

the next step is to quantify those risks. At a top level, a quantified cybersecurity risk has two 

components; a likelihood of occurring over a period of time and an impact which is typically 

translated into dollars lost. Both of these should have some sort of distribution associated with 

them since neither is known with absolute certainty. Establishing appropriate distributions for 

these two aspects is a critical step in this case study. [52] 

An appropriate method to assess likelihood of a cybersecurity breach is to use data from a 

relevant set of similar situations. There is a significant amount of historical information available 

to pull from such as metrics on data breaches within various industries from the Verizon Data 

Breach Investigative Report (DBIR) which not only has metrics on number of breaches in 

industrial categories but includes information on the type of breach as well [124]. A suitable way 

generate a distribution in a conservative fashion is to apply Bayesian logic to create a Beta 

distribution for the likelihood of occurrence. This is done by taken an “uninformed prior 

assumption” (manifested as a Beta distribution with α and β both set to 1 which results in a uniform 

distribution from 0 to 1) as a conservative starting point for uncertainty and updating with relevant 

metrics (add number of successful cybersecurity breaches to the α and the remainder of the sample 
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size to the β). This will result in a Beta distribution that captures the likelihood of the cybersecurity 

risk occurring within the time period of interest. [52] 

 In order to quantify the impact, subject matter experts (SMEs) can provide an appropriate 

distribution with an uncertainty bounds.  Research shows experts can be calibrated to provide this 

estimate for a risk with an appropriate confidence interval. While it may be a large confidence 

interval, that is not in of itself an issue as long as it can be quantified, and there are often rational 

ways to quantify the range for the distribution. For instance, a data breach distribution could have 

a minimum impact associated with writing up an incident report to a maximum impact associated 

with performing some sort of public affairs “penance project” in order to recapture public trust 

(research so far does not seem to indicate cybersecurity breaches have a major long term impact 

on stock prices, any such impacts appear transitory [52]). In this way a confidence interval can be 

established with bounds. A common distribution then to be fitted to this confidence interval is the 

lognormal distribution in order to capture high-impact events. [52] It should be noted that a 

national security scenario would likely be analyzed differently due to the threat and national 

security implications, but this scenario focused on a commercial laboratory. 

Calibrated SME judgment can also be used to establish the likelihood distribution if 

relevant historical information is not available. Also, events can be used to update and provide a 

more accurate or precise Beta distribution. A common example would be a “red team” penetration 

test, the success or failure of which could update the Beta distribution in accordance with SME 

judgment [52].   

For this case study risks were broken down and assessed in two broad loss categories: 

denial of service and industrial espionage. These were assessed for four large software groups: 

each stovepiped mission, and the SOA as a joint software project for a total of 8 cybersecurity 
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risks each with a likelihood and impact distribution that were then folded into the overall 

optimization.  

In this case study, it was assumed that information on a population of similar scientific 

research institutions or software products was available to provide representative sample, even if 

it was small. This resulted in the distributions described in Tables 12 and 13 below: 

Table 12: Stovepiped Cybersecurity Risk Likelihood Metrics 

Risk Successes Population Size Beta dist. α Beta dist. β 
ImageSAT Denial 
of Service 

5 24 6 20 

ImageSAT 
Business 
Espionage 

2 
 

6 
 

3 5 

RadSAT Denial 
of Service 

41 
 

52 
 

42 12 

RadSAT Business 
Espionage 

2 
 

5 
 

3 4 

TechSAT Denial 
of Service 

0 
 

5 
 

1 6 

TechSAT 
Business 
Espionage 

0 
 

6 
 

1 6 

 

Table 13: SOA Cybersecurity Risk Likelihood Metrics 

Risk Successes Population Size Beta dist. α Beta dist. β 
SOA Denial of 
Service 

0 
 

5 
 

1 6 

SOA Business 
Espionage 

0 
 

6 
 

1 7 

 

Cybersecurity risk impact distributions were created by having a calibrated expert estimate 

the risks for each threat with a confidence interval. This was then converted into a lognormal 

distribution in order to adequately capture risks that can have large architecture impacts in keeping 

with modeling cybersecurity [52]. This distribution was then truncated at a max result of $2.4B to 

ensure the highest impact to which was assessed to be the upper loss the company could experience 
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(total bankruptcy). This ensures an unrealistic result (a loss far in exceedance of anything at stake) 

did not skew the average return. The confidence intervals used to calculate the lognormal 

distributions associated with the risk impact distributions are shown in Tables 14 and 15. 

Table 14: Cybersecurity Risk Impacts for Stovepiped Architecture 

Risk 90% CI Lower Bound 90% CI Upper Bound 
ImageSAT Denial of 
Service 

$500 $2,000,000 

ImageSAT Business 
Espionage 

$500,000 
 

$600,000,000 
 

RadSAT Denial of 
Service 

$500 
 

$45,000,000 
 

RadSAT Business 
Espionage 

$500 
 

$5000 
 

TechSAT Denial of 
Service 

$500 
 

$3000000 
 

TechSAT Business 
Espionage 

$500,000 
 

$750,000,000 
 

 
Table 15: Cybersecurity Risk Impacts for SOA 

Risk 90% CI Lower Bound 90 CI Upper Bound 
SOA Denial of 
Service 

$500 
 

$9,000,000 
 

SOA Business 
Espionage 

$500,000 
 

$1,350,000,000 
 

 

 The bounds provided in Tables 14 and 15 came from SME judgment as follows. The 

minimal loss from a cybersecurity incident was at least $500 which was associated with filing an 

incident report. TechSAT and SOA Business Espionage cases had a higher minimum associated 

with having to conduct a new business case analysis with trade secrets being loss (even if that 

information was never acted on). The upper bound was based on the expert-assessed criticality of 

timely service and the sensitivity of the information. ImageSAT had a higher Business Espionage 

upper bound due to the sensitivity of some of the customers of the ImageSAT system. RadSAT 

had a higher Denial of Service impact due to the risk that the entire mission could be invalidated 
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if too much data was not able to be collected. TechSAT had a higher Business Espionage impact 

due to the sensitivity of the technology involved. The combined upper bound SOA impacts were 

summations of the corresponding impacts associated with all of the constituent systems. 

It should be noted that this is a representative top down model at the system level meant to 

capture the differences between the two architectures, and it is expected that in a real world 

cybersecurity risk assessment a greater level of fidelity and decomposition could be achieved. This 

technique is fully extensible to more discrete cybersecurity risks at the component level as shown 

in [125]. In fact, the Monte Carlo technique for calculating the objective could be applied either 

directly to the discrete risks, or to a surrogate model of Monte Carlo results for discrete risks [104]. 

5.2.3.3 Technology Insertion Model 

 A representative technology insertion schedule model was developed based on which 

functions were already provided in the SOA architecture and a comparative level of effort to 

recreate software functions for a new stovepiped system. A comparison of the functional breakout 

shown in Tables 10 and 11 was conducted, which showed a mean reduction in cost of 40% to build 

a MCS for a new mission if it leveraged functionality already provided by the SOA. This was 

interpreted to directly translate into a reduced technology insertion schedule due to reduced 

complexity and lower level of effort for the same laboratory software development workforce. A 

similar normal distribution with a standard deviation of 14% was also used. This is intended to be 

a representative schedule model but any appropriate schedule model with a distribution could be 

used. 
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5.3 Case Study 3 Results 

5.3.1 Simulation Output 

 The Monte Carlo simulation was run for 10,000 trials with the results shown in Figures 26 

and 27 below. 

 

Figure 26: Case Study 3 Histogram of SOA Objective Results 
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Figure 27: Case Study 3 Histogram of Stovepiped Architecture Objective Results 

The distributions captured in the above histograms had the parameters shown in Table 16. 

Table 16: Stovepiped vs. SOA Objective Value Metrics 

Architecture Stovepiped SOA 

Mean 0.50 0.42 

Standard Deviation 0.28 0.19 

Median 0.44 0.39 

Min 0.24 0.24 

Max 2.80 2.75 

 

5.3.3 Comparison 

The SOA architecture had a distribution for the objective that was lower (more optimum), 

had a lower standard deviation, and a lower median. Choosing the SOA architecture was therefore 
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not only a better decision for the criteria selected on average, it was also a more robust selection. 

A histogram of both plots is shown in Figure 28: 

 

Figure 28: Case Study 3 Objective Histogram Comparison 

After reviewing the results, it appears that the stovepiped architecture, while it was cheaper 

to initially develop, retained a lot of legacy cybersecurity risk in the ImageSAT and RadSAT 

systems that allowed for high-impact cybersecurity breaches at a non-negligible likelihood of 

occurring. The SOA architecture, which was more expensive initially to develop, directly impacted 

that legacy cybersecurity risk by updating those systems, greatly reducing the likelihood of those 

high-impact events. When combined with the benefit from the shorter technology insertion 

schedule, this was enough to ensure the SOA achieved a better objective value on average and 

with less variability than the stovepiped architecture. 



128 

5.4 Case Study 3 Discussion 

5.4.1 Architecture Selection 

 Based on the results provided in section 5.3, it appears clear that the SOA architecture is 

the better choice for the stakeholders as defined in the objective they provided through all the 

associated metrics of the objective. It was clearly more likely at lower (more desirable) objective 

values and less likely at high objective values than the stovepiped architecture. However, that only 

tells part of the story.  

Upon reviewing the results, it was somewhat fortuitous that this example had such a clear 

differentiation, and in fact it is very possible in an architecture evaluation like this for an option to 

have a lower mean but a higher standard deviation and potentially be more likely at some more 

desirable objective evaluations. Effectively it could result in a wider histogram bin distribution 

that is more likely at both the best cases and worst cases. This means that stakeholders should 

carefully think through what metric associated with the outcome is the one they want to correspond 

with their selected architecture. It could be the architecture with the better mean, the better standard 

deviation, the better median, or one selected by some other metric. However, it is important to note 

that this methodology captures and clearly displays the uncertainty distribution for the objective 

allowing stakeholders to iterate their selection criteria in a traceable fashion until they arrive at an 

acceptable result.  

5.4.2 Satisfaction of Case Study Focus Areas 

 This case study adequately addressed all four of the focus areas identified. Software 

assessments are a mature area of study and were directly translatable into the new proposed 

methodology. SOA’s were also directly translatable, and, in fact, the proposed methodology 

handled SOA’s well by enforcing a functional decomposition through MBSE, enabling the clear 
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tracking of functions across stovepiped and SOA options which in turn make allocation of 

contributions to metrics of interest straightforward.  

Cybersecurity was also satisfactorily incorporated through the use of techniques to quantify 

cybersecurity risk based on historical information and expert judgment. This is likely a significant 

finding, as all too often cybersecurity is not considered in architecture trade studies. In the author’s 

experience, it is just assumed that cybersecurity will be addressed through the application of the 

Risk Management Framework (RMF) [126] or some other community-standard cyber security 

management program to whichever architecture is chosen. This means the long-term cybersecurity 

implications from the architecture decision itself aren’t accounted for. It is interesting that cost, 

which is frequently a driving decision factor for architecture selections, is similarly highly variable 

and is deemed sufficiently addressed by expert evaluation [64]. Given that, it is likely that 

cybersecurity risk, if properly quantified, can become more of a major driver in future architecture 

decisions. 

Addressing uncertainty was the main expansion of the proposed technique explored in this 

case study. In general, by enforcing traceable metrics the new methodology handles uncertainty 

better than conventional architecture evaluations and selections, which tend to avoid analyzing 

metrics that have high degrees of uncertainty. This is typified by how cybersecurity, a metric 

typically considered highly variable, is often viewed as a Boolean variable in most DoD 

architecture KPP evaluations (the architecture is either compliant or not with Information 

Assurance guidance) [71]. This unfortunately oversimplifies cybersecurity which is increasingly 

important in development activities. 
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5.4.3 Utility in Assessment Flexibility and Excursions 

One of the principal purported benefits of this methodology was handling flexibility in the 

architecture trade studies as identified in Case Study 2, due predominantly to most of the work 

being contained in the creation of the model setup rather than the execution of the analysis. This 

allows for simple changes to the model to encompass a wide range of flexible scenarios with 

relatively little manpower required. Case Study 3 results supported this and it would require 

comparatively less manpower than a traditionally-conducted architecture evaluation to update the 

model and execute the analysis again. 

Furthermore for Case Study 3, the inclusion of explicitly quantifying uncertainty does 

enable a wider range of potential further excursion analyses for the architecture decision makers 

to consider. In particular, sensitivities can be captured that convey how much the analytical 

elements of the architecture evaluation contribute to the resultant objective value uncertainty 

distributions that are used as input to the final stakeholder decision. This could allow decision 

makers, who may be dissatisfied with the level of uncertainty in the results, to fund further analysis, 

testing, or other research to reduce uncertainty in those high-payoff parameters. This would be 

especially critical if there were substantial overlap in the objective uncertainty distributions, 

leading to an unclear decision recommendation. 

Through the further application of Bayesian logic, the impact of uncertainty reducing 

measures can be quantified and propagated through the analysis to see if they sufficiently reduce 

the end result decision in order to warrant being pursued. The combining of probabilities to update 

a prior estimate is known as Bayesian Inference, and can be measured by Bayes Theorem shown 

in Equation (11). 

Eq 11.   P(A|B) = P(B|A) * P(A) / P(B) 



131 

Equation 11 calculates how the estimate of the probability of event A occurring given event 

B had occurred [127]. This could also be extended to continuous probability distributions such as 

those used in this case study as shown in Equation (12): 

Eq 12.   fX|Y=y(x) = fY|X=x(y) * f(x) / f(y) 

In Equation (12), Bayes Theorem applies where A = {X = x} and B = {Y = y}. Since this a 

probability density, the terms become 0 when the variables are evaluated at discrete values. It is 

assessed that this can be handled for purposes of a simulation like Case Study 3 by using the 

functions identified as distribution inputs into the Monte Carlo simulation, which in turn would 

generate an updated distribution. 

As an example extension of the scenario in Case Study 3, assume that the laboratory 

decision makers were dissatisfied with the amount of uncertainty and overlap in distributions for 

the objective values in the options evaluated. Upon review of the analysis, it was identified that a 

significant amount of the uncertainty in the final objective was due to the uncertainty in the 

cybersecurity risk assessment inputs. It was then identified that there was an option to “buy down” 

that uncertainty by pursuing a cybersecurity “red team” assessment on prototype versions of an 

MCS implementation for both the SOA and TechSAT stovepiped configurations, the completion 

of which with no vulnerabilities identified would indicate the proposed implementations should 

be at a reduced cybersecurity risk. The laboratory decision makers needed to decide if that increase 

in fidelity and discrimination in the architecture evaluation would be worth funding the red team 

assessment.    

Using Equation (12), fX|Y=y(x) would correspond with the updated cybersecurity risk 

distribution assuming a “passed” red team evaluation, fY|X=x(y) would correspond with the 

distribution associated with cybersecurity risk for systems that pass this type of red team evaluation 
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(either provided by a calibrated SME or some other source such as historical information provided 

by the red team), f(x) would correspond with the original or “prior” uncertainty cybersecurity risk 

distribution, and f(y) corresponds with the chance of passing the red team evaluation (again 

provided by a SME or other relevant data). Notably there could be other formulations for Bayesian 

Inference that could be used if different parts of the relationship were better understood, effectively 

swapping elements of what is the input and output of the calculation to better leverage the 

knowledge available of the situation [52].  

For purposes of this case study it is assumed that values for fY|X=x(y) and f(y) could be 

represented as beta distributions calculated from information of suitable representative populations 

of previous red team certifications updating an uniformed prior assumption similar to the process 

for establishing the original value of f(x). It was assessed that the same values would apply to all 

the cybersecurity risks in this case due to the similarities in the TechSAT and SOA cybersecurity 

approaches, but it could be calculated individually. The alpha and beta values for these 

distributions is shown in Table 17 below. 

Table 17: Beta Distribution Parameters for Red Team Certification 

Distribution Successes Population Size Beta α Beta β 
fY|X=x(y) 
 

1 30 2 30 

f(y) 
 

8 10 9 3 

 

After calculating the new distribution, and leveraging the flexibility of the modeling 

approach, then the updated cybersecurity risk posture for the TechSAT MCS and SOA MCS can 

simply be inserted into the simulation and the Monte Carlo evaluation executed again to see how 

the final results were impacted. This was done using realistic representative distributions for the 
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elements of Equation (12) for 10000 trials with the results shown in Table 18 which can be 

compared to Table 16:     

Table 18: Stovepiped vs. SOA Objective Value Metrics for Passed Red Team Assessment 

Architecture Stovepiped SOA 

Mean 0.48 0.39 

Standard Deviation 0.25 0.06 

Median 0.43 0.39 

Min 0.23 0.27 

Max 2.83 2.70 

 

A graphical depiction of the new uncertainty distributions compared to the originals is 

shown in Figure 29.  

 

Figure 29: Comparison of Red Team Passed and Original Architectures Objective Values 
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Directly comparing the results in Table 17 with the results in Table 16, the discrimination 

improves between the means (the original results had a difference of 0.0789 compared to the new 

difference of 0.0862) which corresponds with an approximately 9% improvement in 

discrimination if comparing by mean alone. However, by far the biggest difference is the standard 

deviation for the SOA architecture objective value which was reduced by 67% (the Stovepiped 

architecture objective standard deviation was also reduced, but not nearly as much). So, the 

effective “overlap” of the uncertainty distributions in the final result is likely reduced by 

significantly more than just comparison by the mean alone would indicate. Visual inspection of 

the histograms confirms an improvement in discrimination, although it is not intuitively obvious 

to the author that it is significant. Upon reviewing the analysis, it is likely the reduction in high-

impact cyber-events in the SOA architecture that passed a red team assessment (represented in the 

long tail on the right side of the histogram) is the principal driver for the difference in standard 

deviation, which is logical given the nature of the red team assessment. 

Whether the effect on the objective uncertainty distributions and improved decision 

discrimination is worth the cost of the red team assessment would depend on the laboratory 

management’s desires and the cost of the assessment, but at least leveraging the uncertainty 

quantification in this methodology would enable a decision informed by the impact on uncertainty 

the red team would provide. It would be a very worthwhile avenue for future research to investigate 

how uncertainty distributions should be compared in architecture selections, including how 

discrimination should be measured and improved. For this case study, since the inputs were 

directly tied to programmatic measures (cost, cybersecurity cost risk, and schedule), they could be 

translated to dollar values which would imply the overlap of the final objective distributions could 

also be quantified as such, enabling a direct comparison to the cost on executing uncertainty “buy-
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down” options such as the red team assessment in this example. This would enable a fairly direct 

and informed decision on whether or not to spend resources on the option to buy down uncertainty. 

Notably accounting for the corollary of the uncertainty buy down option (a red team 

assessment that did discover a vulnerability in this example) should also be accounted for in the 

value proposition. This would likely require a separate Monte Carlo simulation since otherwise 

blending the two results would result in a wider uncertainty distribution and imply less insight into 

the decision, which would not follow Bayesian logic as both cases, discovered vulnerabilities or 

not, improve knowledge of the decision, reducing uncertainty.  

5.4.4 Optimization and Uncertainty Integration 

While Case Study 3 has focused on the selection between two architecture options, the 

promise of the methodology proposed in this research was to select the optimum architecture based 

on stakeholder needs, which could include continuous distributions for input variables. Therefor a 

meaningful extension of Case Study 3 to be investigated would be an optimization for a continuous 

input variable and the selection of an optimum that is based on some measure of an uncertainty 

distribution. 

A plausible and useful excursion then would be to investigate a trade between permanently 

expanding the software development team to reduce the technology insertion timeline, which was 

one of the contributing analyses to the objective. The cost impact of attempting to accelerate 

software development by leveraging additional manpower has been studied [128] [129] [130], and 

generally found to be inefficient from a direct cost perspective as more manpower results in greater 

rework from less shared knowledge. However this inefficiency may be worthwhile in a highly 

schedule driven field such as technology development and provided that the additional manpower 

is not added late in the project, which tends to increase project duration [130]. 
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By leveraging the COCOMO II cost model [128], a relationship between schedule 

reduction through expanded manpower and cost ratios was defined as seen in Equation (13): 

Eq 13.   y = x-1.138 

where y is the cost multiplier and x represents the acceleration scaling factor (equal to the 

accelerated schedule duration divided by the baseline duration). As the schedule is reduced due to 

increased manpower, cost increases through a power function. Essentially this relationship 

provides another variable for the laboratory management in this case study to control, and while it 

is a programmatic variable (expanding the standing manpower pool) rather than a technical aspect 

of the final design, it may alter which technical configuration is the most attractive based on the 

defined objective function.   

This relationship between cost and schedule was inserted into the simulation along with an 

“acceleration scaling factor” variable to be exercised from 0.5 to 1 along with a Boolean variable 

of selecting a SOA or not. The optimization was set up similar to Case Studies 1 and 2 with the 

Darwin algorithm again used as the optimization algorithm. However, for this case study a nested 

Monte Carlo simulation was run for each configuration according to the input distributions defined 

in section 5.2.3 in order to account for uncertainty.  The mean of 10,000 runs for each configuration 

was taken as the assessed objective value that would be input into the optimizer for that architecture 

configuration. A sample size of 10,000 runs was selected as a large enough sample size to achieve 

a suitable stability in the mean output for the computation resources at hand. 

When the simulation was executed, it evaluated 379 scenarios through the full 10,000 

Monte Carlo simulations. The results are shown in Figure 30. 
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Figure 30: Objective vs. Acceleration Scaling Factor 

In the results, the optimum configuration corresponded to a SOA architecture with a 

manpower that results in an acceleration scaling factor of 0.9901 which resulted in an objective 

evaluation of 0.392.  Figure 30 uses multiple colors to discriminate the results of the SOA and 

Stovepiped architecture for ease of viewing, but the two configurations were evaluated 

simultaneously in the same optimization. Of note, while the SOA outperformed the Stovepiped 

architecture at the optimum, that wasn’t the case across the entire range of possible acceleration 

scaling factors. This highlights the differing sensitivities the configurations had to changes to the 

inputs and in their contributing analyses outputs.    

The results are interesting for a number of reasons. Clear parabolic trends emerged for both 

the SOA and the Stovepiped configurations, which would indicate that the number of runs in the 

nested Monte Carlo simulations likely resulted in means of sufficient stability to conduct a 
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meaningful analysis and provide visibility to stakeholders. Standard deviation was calculated for 

this optimum selection with the result being 0.0007. The standard deviation near the optimum 

solution for most optimum stovepiped architecture result was also low, at 0.0028. However, 

indications of the impact this underlying uncertainty due to the input distributions caused are 

evident, foremost being that visual inspection would appear to indicate that a SOA with an 

acceleration scaling factor of 1 (that is, no acceleration), would be the optimum, however that was 

not what was actually selected. A SOA with an acceleration scaling factor of 1 was evaluated with 

an objective value of 0.393. This is very close to the selected optimum and is likely due to the 

variability introduced by using an input distribution rather than a discrete input.  

With this technique, it would appear that the optimization algorithm will always struggle 

to identify the true optimum once the differences between evaluated objectives falls within the 

variability in the output introduced by the input distributions. If more computational power is 

available, more nested Monte Carlo runs could be executed to reduce variability in the means being 

evaluated by the optimizers. A proposed alternative to this technique could also be to fit a surrogate 

model to the results and directly solve that for the objective. How to properly set up such a 

simulation in an appropriate fashion to account for uncertainty and how to interpret the results 

should be an area for further research. 

5.5 Case Study 3 Conclusion 

 This case study provided an example of how to incorporate uncertainty analysis into the 

new proposed architecture selection methodology. This new methodology proved very capable of 

incorporating uncertainty, including, specifically uncertainty of what has traditionally been 

associated as measurements that are too subjective to be part of an architecture trade study such as 

cybersecurity. Overall, this case study lends credence to the benefits of this new methodology.  
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CHAPTER 6:  SUMMARY 
 

This chapter summarizes the results of this research, draws conclusions, and provides 

recommendations for future research. 

6.1 Synthesis of Results 

 This work explored a new methodology for conducting architecture evaluation and 

selection activities that integrated MBSE while enforcing selection of quantitative decision criteria 

by a decision authority in order to mathematically select the optimum architecture. It uses MBSE 

to frame the flow of the optimization analysis. Since an architecture selection decision occurs very 

early in an acquisition program, before any system design work has been accomplished, the 

starting point is a reference architecture that defines the characteristics of the system category in 

which the acquisition is being executed. A key element of the RA is a high level SysML BDD (see 

Figure 1) that defines the basic structure of such a system. This is then transformed into a 

Variability BDD that explicitly declares the specific system configuration corresponding to an 

alternative under evaluation. Finally, the values from this diagram are input into Model Center, 

using the Darwin algorithm to compute the overall optimization value for that alternative, which 

also enables a robust treatment of uncertainty. In all three of the case studies conducted, this was 

able to select an architecture in a fashion that ensured traceability of the final decision to the 

original decision criteria.  

6.1.1 Case Study Summaries 

 Case Study 1 evaluated a satellite communications SoS architecture in light of U.S. Air 

Force Space Command’s SEV initiative. The purpose of this case study was to demonstrate the 

initial feasibility of this methodology technique to a real world problem. The results of the case 
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study selected an architecture that relied on a large, expensive space vehicle, which at face value 

would not achieve the desired strategic direction of the SEV. This reflects the reality and the 

realized difficulty of achieving the SEV with existing acquisition approaches to satellite 

constellations.   

 Case Study 2 evaluated a satellite remote sensing architecture highlighting trades in 

mission aggregation and modularity. The purpose of this case study was to directly compare the 

new proposed methodology to the existing method by which architecture trade studies for major 

government acquisitions are typically conducted. Criteria for this comparison were objectivity, 

repeatability, transparency, flexibility, resource intensiveness, selects best value, and uncertainty 

quantification. In all criteria, the new methodology was evaluated to be better than the current 

methodology with the exception of resource intensiveness which was inconclusive. 

 Case Study 3 evaluated a satellite MCS SOA decision with a focus towards cybersecurity 

and uncertainty quantification. The purpose of the case study was to expand the types of 

architectures evaluated, including criteria that are traditionally thought to be very subjective, as 

well as to show how a rigorous treatment of uncertainty could be incorporated. Overall this was 

successful in selecting an architecture while meaningfully communicating uncertainty in the 

architecture options to the decision authority.  

6.1.2 Preliminary Validation 

 This work has been reviewed and published in several peer-reviewed publications. Some 

of the case study results are also in line with real world experience which has been highlighted 

where applicable. Lastly, a panel of five U.S. DoD acquisition experts from Government service 

or employed by a Federally Funded Research and Development Corporation, who all had 

experience in architecture selection decisions, was consulted to evaluate this methodology. These 
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experts all had held senior technical or managerial positions in the aerospace industry, had a 

minimum of 25 years of experience and three held a Ph.D. in an engineering discipline. While 

there were some reservations primarily due to skepticism regarding the feasibility of simplifying 

an architecture evaluation to a quantifiable problem, that view was in the minority and the 

methodology was assessed to be a useful decision aid. 

6.2 Conclusions Derived 

6.2.1 Enhancement and Comparison to Prior Methods 

The primary contribution of this research lies in improved support to critical decisions in 

the early stages of an acquisition program arising from an integrated optimization analysis vs. 

individual analyses of decision factors. Figure 31 summarizes this comparison.  
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Figure 31: Comparison of Existing to Proposed Methodology 

On the left, a high level summary of the existing AoA methodology, extracted from the 

DoD Analysis of Alternatives Handbook [97], is centered on a series of individual analyses of 

decision factors that include cost, risk performance, and schedule, which are presented to the 

decision authority. That authority then weighs the analyses and makes a judgment about the 

preferred alternative. In the proposed approach, an integrated optimization process draws on the 

best available supporting data and relationships and computes an overall value for each alternative, 

with factor weights agreed to by program stakeholders. The decision authority can then make a 
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selection based on a synthesis of the decision factors, and will also have insight into their relative 

importance. The result is better, more rigorous information support to these critical decisions. 

While no methodology is perfect, the proposed approach demonstrably performed better 

than the current methodology in every comparison criteria with the exception of resource 

intensiveness which was inconclusive. This criteria is likely less of an issue for major architecture 

decisions and the new methodology is also likely actually less resource intensive for large 

architecture evaluations due to scope changes.  

Ironically, the main initial criticism received of this methodology is the thought that it 

oversimplifies a complex problem. However, the current architecture selection methodologies tend 

to oversimplify even more in practice. When complex parameters such as cybersecurity are even 

considered in current architecture selections, they are typically included in a very ad hoc, 

subjective fashion. This is likely not useful since subjective methods of evaluating risk that rely 

on ordinal descriptions, such as risk cubes, have recently been questioned in utility, with some 

claiming they actually provide no or negative value due to human tendencies to interpret them 

differently [131].  

In fact simple scoring methods have gained in popularity mostly because they are simple 

and easy to use, but in actuality appear to have no documented or provable benefit [132]. 

Paradoxically more mathematical methods may be discouraged because they are more prone to 

audit when simpler (and much worse) ordinal scales are not. [52]  

6.3 Recommendations for Future Work 

The methodology proposed in this research demonstrates great promise in improving the 

quality of architecture selection decisions. This research established the basic methodology, 

evaluated it through three case studies, and conducted several excursions comparing it to the 
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existing common methodology and highlighting its utility.  However, there is much further work 

that could be done to confirm and expand on this research.  

Basic areas for future research could include applying this methodology to different 

scenarios and utilizing different tools. More robust sensitivity analysis could be explored, in 

particular on the weightings and normalization factors selected in the objective function, as that is 

one of the principal inputs provided by the decision makers. Furthermore, optimizations of greater 

complexity could be conducted, perhaps leveraging high-performance computing capability. In 

particular, advances in the integration of MBSE and simulation tools could be investigated, for 

instance ModelCenter can now directly generate simulation code from SysML diagrams, further 

improving traceability in architecture selection decisions [133].   

An area with great potential for further analysis is the expansion of the application of 

rigorous uncertainty quantification. Further exploration of explicitly accounting for Type B as well 

as Type A uncertainty should be conducted. As highlighted in Case Study 3, uncertainty 

quantification and presentation to stakeholders can better inform a decision and highlight potential 

excursions to improve knowledge of the decision space. A robust exploration should be conducted 

of what measure of the objective such as mean, median, standard deviation, or something else, 

should be used for the selection decision, as well as how to integrate and interpret uncertainty in 

an optimization. In fact, some of the answers may be based on organizational preferences, 

regulations, or situational realities. Lastly, more analytical, as opposed to stochastic, methods to 

account for uncertainty could also be investigated. 

A final area of investigation includes exploring validation of the methodology. Potential 

avenues to pursue this could include soliciting expert feedback, historical data analysis on program 
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or project performance and decision aid usage similar to this methodology, and direct analytical 

decomposition of the decision set up. 

6.4 Disclaimer 

The views expressed in this dissertation and the component case studies are solely the 

author’s and do not represent the position of the U.S. Department of Defense, the U.S. Air Force, 

the Space and Missile Systems Center, Colorado State University or any other organization. 
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