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ABSTRACT 
 
 
 

PATTERNS OF DUST-ENHANCED ABSORBED ENERGY AND SHIFTS IN MELT 

TIMING FOR SNOW OF SOUTHWESTERN COLORADO 

 
 
 

Deposited dust layers reduce the surface albedo of snow and accelerate melt by 

this change to the snowpack energy balance. Senator Beck Study Basin in the San 

Juan Mountains of southwestern Colorado monitors the effects of dust on midlatitude 

continental snowpack. Continuous automated measurements include shortwave and 

longwave radiation in addition to conventional micrometeorological variables. Dust layer 

characteristics and snow properties are collected during snow pit excavation throughout 

each ablation period. Both sets of data were used to simulate snowpack under 

observed and dust-free conditions with the snow energy balance model SNOBAL for 

WY2007 to WY2019. Across the 13 years, dust concentrations ranged from 0.16 to 4.80 

mg g-1 resulting in a range of daily mean dust-enhanced absorbed visible energy from 

31 to 50 W m-2 during ablation, with hourly peaks up to 347 W m-2. We found snow melt 

accelerated by 11 to 31 days in a logarithmic response to end-of-year dust 

concentration modified by seasonal variations in snow amount and cloud cover.  
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CHAPTER 1. INTRODUCTION 
 
 
 

1.1. Background 

More than 1/6 of the world’s population depends on snowmelt-derived water 

resources (Barnett et al., 2005) and snow has significant effects on the energy balance 

of the planet (Domine et al., 2007). It is critical to better understand seasonal snow 

behavior and determine quantitative energy balance connections. The spatial 

distributions of snow albedo and snow water equivalent (SWE) are fundamental 

properties of mountain snowpack for understanding timing and magnitude of runoff 

(Painter et al., 2016). Snow albedo is a measure of snow surface reflectivity indicating 

how much solar radiation is reflected versus absorbed by the snowpack. The degree of 

scattering and the amount of absorption differ based on general wavelength (Marks and 

Dozier, 1992). Metamorphism of snow grains due to aging of the snowpack or stage of 

melt decreases snow albedo in the near-infrared (NIR, 0.7 to 1.5 µm) and shortwave-

infrared wavelengths (SWIR, 1.5 to 3.0 µm) (Colbeck, 1982). Wiscombe and Warren 

(1980) developed an albedo decay model for pure snow which behaved similarly to 

observations in NIR wavelengths but in the visible spectrum modeled albedos that were 

consistently higher than observed which they attributed to deposition of atmospheric 

particulates within the snowpack. When at or near the snow surface, light-absorbing 

particulates (LAPs) such as mineral dust, black carbon, ash, or tree litter generally 

decrease snow albedo in the visible wavelengths (VIS, 0.4 to 0.7 µm) (Painter et al., 

2012; Skiles et al., 2018). During melt in midlatitude continental mountain environments, 

the snow surface energy balance is dominated by solar radiation (Marks and Dozier, 
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1992; Oerlemans, 2000). The additional modification of LAPs to snow surface albedo 

could therefore be a significant driver of changes in snowpack energy balance and 

resulting melt.  

The components of snow energy balance have been incorporated into snowpack 

models, yielding a better representation of snowpack processes and greater accuracy in 

simulating actual snow characteristics with more precise energy balance accounting. 

However, temperature-index models (e.g., SNOW17; Anderson, 1976) are commonly 

used in streamflow forecasting in snowmelt-dominated basins (Franz et al., 2008). 

These models use an empirical correlation between air temperature and snowmelt 

calibrated to the historical period of record (Hock, 2003) and are thus at risk of 

increasing uncertainty in an increasingly variable climate (Bryant et al., 2013; Painter et 

al., 2016). Follum et al. (2019) found that a modified temperature-index model produced 

more accurate estimates of snowmelt-derived streamflow than a temperature-index 

model. This modified temperature-index model replaced air temperature with a 

radiation-derived proxy temperature based on elevation, land cover, temperature, and 

cloud cover data and thus indirectly included both longwave and shortwave radiation 

components. However, the shortwave radiation component relied on a snow albedo 

term that only simulated changes from grain metamorphism and did not account for the 

effect of LAPs (Follum et al., 2015). 

Variations in amount and timing of snow accumulation and ablation result in 

variations of both timing and amount of snow-derived water resources (e.g., Stewart et 

al., 2005; Barnhart et al., 2016; Harpold and Brooks, 2018). Worldwide, climate warming 

is expected to decrease high elevation snowpack more than potential winter 
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precipitation increases can offset (Stewart, 2009). A better understanding of the 

physical drivers of changes in snowmelt timing is necessary to adapt water resource 

management facing these projected decreases in total runoff amount. One physical 

driver of variations in snowmelt timing is the increased springtime energy forcing 

exerted by black carbon and mineral dust deposits on snowpack (e.g., Bales et al., 

2006; Flanner et al., 2009). LAP emissions worldwide are projected to increase in 

frequency and magnitude and intensify effects on mountain snow systems already 

perturbed by climate warming (Painter et al., 2007). Since solar radiation is the largest 

energy input to seasonal snowcover at midlatitudes (Painter et al., 2016; Harpold and 

Brooks, 2018) and determines seasonal snow presence and persistence, it is critical to 

better understand LAP-induced changes in albedo and the implications for changes in 

snowmelt timing.  

1.2. Previous Work 

The Southern Rocky Mountains of the western United States have a seasonal 

snowpack particularly sensitive to solar radiation inputs and climate challenges to 

regional water security have made the area a leading research location for 

understanding LAP impacts to seasonal snowcover (Painter et al., 2007; Skiles et al., 

2018). Currently, the Southern Rocky Mountains have a continental snowpack regime 

characterized by a relatively lower peak SWE amount, longer accumulation periods, 

later onset of snowmelt, and lower rates of snowmelt than other North American snow 

regimes (Trujillo et al., 2014). The average date of peak SWE for Colorado occurs in 

mid-April (Serreze et al., 2001). Peak SWE amount sets a threshold for potential runoff 

magnitude but melt rate determines how much snowpack becomes streamflow, 
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indicating that melt magnitude estimates can be refined with a better understanding of 

melt timing (Fassnacht et al., 2017). Under a projected warming climate regime, 

decreases in SWE do not necessarily imply changes in snowmelt timing because of the 

significant relative contribution of latent and radiant energy fluxes to snowmelt (Harpold 

and Brooks, 2018). For the western US in general, timing and rate of snowmelt may 

control the partitioning between evapotranspiration (ET) and streamflow generation, 

with faster snowmelt corresponding to higher streamflow (Painter et al., 2010). Earlier 

melt initiation is connected to overall slower melt rates (Musselman et al., 2017) and 

lower streamflow volume (Barnhart et al., 2016).  

Long-term net radiation data are necessary to determine physical drivers of 

changes in snowmelt rates. After the recommendation of Bales et al. (2006), a study 

basin was selected and instrumented in southwestern Colorado to capture a full suite of 

micrometeorological variables including longwave and shortwave radiation fluxes. 

Senator Beck Study Basin (SBB) has been maintained by Center for Snow and 

Avalanche Studies (CSAS) from 2005 to present and has generated a point-based 

record of hourly net radiation data in parallel with sub-monthly manual snow 

observations (Landry et al., 2014). SBB is located within the San Juan Mountains, which 

rise to the east of the Colorado Plateau and create an orographic barrier which captures 

storms blowing across this arid region (Lawrence et al., 2010). The region is considered 

to be in a mega-drought that is projected to continue (Williams et al., 2020). Increased 

wind erosion of the Colorado Plateau can cause elevated aeolian sediment transport 

(Nauman et al., 2018). Arid regions in Asia could supply some of the aeolian dust found 

in the San Juan snowpack, but there is strong evidence to support regional sources as 
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the source of most spring dust inputs (Lawrence et al., 2010; Reynolds et al., 2020). 

Variations in spatial dust deposition, concentration, and exposure timing yield large 

variation in snow albedo, which drives large variation in net radiation and resulting 

snowmelt rates for the Southern Rocky Mountains (Painter et al., 2017).  

Skiles et al. (2012) compared different degree warming scenarios under climate 

change and found that air temperature increases could increase daily mean longwave 

irradiance and daily mean sensible heating, but these increases are smaller than dust-

enhanced surface shortwave absorption for even seasons with low dust concentrations. 

The snow surface energy flux is dominated by dust radiative forcing to the extent that 

snowmelt rates during the rising limb of the Colorado River hydrograph are insensitive 

to changes in air temperature (Painter et al., 2017). Deems et al. (2013) found that 

variations in dust concentration can alter runoff volume, with “extreme” dust events 

capable of shifting peak snowmelt 3 weeks earlier for the Colorado River and directly 

reducing runoff by 1% with additional potential indirect losses from lengthened periods 

of ET and soil infiltration. Previous studies of SBB snowpack from 2005 through 2012 

have found that deposited desert dust has shortened snow cover duration by 18 to 51 

days (Painter et al., 2007; Skiles et al., 2012). Comparison of two sites within the 

Colorado River Basin show a spatial variability in dust loading and corresponding range 

of melt advancement which implies that SBB may be more heavily influenced by dust 

than the remainder of the basin (Skiles et al., 2015). SBB also has a clear dust signal 

compared to other potential LAPs: previous studies measured black carbon 

concentrations 4-6 orders of magnitude lower than dust concentrations, making it 

relatively negligible in LAP radiative forcing compared to such heavy dust loading 
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(Skiles and Painter, 2017; Skiles et al., 2018). Given the significant observed relation 

between dust loading and melt advancement at SBB for WY2005-2010 (Skiles et al., 

2012) and for WY2005-2013 (Skiles et al., 2015), this project examines a longer period 

of record to characterize the range of radiative forcing from dust and identify interannual 

patterns.  

1.3. Research Motivation 

Dust-on-snow modifications to the amount and timing of snowmelt for the 

Colorado River Basin need to be better characterized to understand broader operational 

consequences, especially for water resources management. Previous examinations of 

the potential uncertainty in streamflow forecasting when dust radiative forcing was not 

accounted for found a shift in runoff prediction bias of 10.0% ± 1.5% and a 1.5 ± 0.6 day 

shift in runoff center of mass for every 10 Wm-2 change in dust forcing (Bryant et al., 

2013). This is an additional refinement of the general trend across western North 

America for the latter half of the 20th century of increasing amounts of streamflow 

occurring 1-4 weeks earlier (Stewart et al., 2004; Clow, 2010; Harpold et al., 2012). 

Using just six years of data for SBB, the change in date of runoff center of mass at the 

Uncompahgre USGS gage was found to have a significant relation with dust-modified 

change in date of seasonal snow melt-out (R2 = 0.75) (Bryant et al., 2013). Variability in 

the date of maximum SWE is projected to increase (Marshall et al., 2019) which 

suggests that timing of runoff will become increasingly variable, although still dependent 

on melt rates and flow path processes such as ET. In general, snowmelt rates across 

the western US are projected to be slower and with an earlier onset (Musselman et al., 

2017). Understanding the physical processes which control the timing and magnitude of 
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melt rates will improve streamflow simulation and forecasting (e.g. Bryant et al., 2013; 

Painter et al., 2017). It will be necessary to combine physical and operational models to 

more accurately represent energy fluxes to the snowpack (e.g., Harpold and Brooks, 

2018; Follum et al., 2019). Latent heat and longwave radiation energy fluxes have a 

larger relative contribution to snowpack loading at humid sites such as the Pacific 

Northwest than at arid or semi-arid sites such as the Intermountain West (Harpold and 

Brooks, 2018). These drier sites are thus more sensitive to solar radiation energy inputs 

and are also more likely to experience higher winter sublimation losses (Sexstone et al., 

2016), earlier melt initiation (Trujillo and Molotch, 2014), slower melt rates (Fassnacht et 

al., 2017), and lower streamflow (Barnhart et al., 2016) under projected climate 

changes. Better understanding of these factors in combination with snowmelt timing 

changes due to dust would improve operational streamflow forecast ability.  

This research seeks to characterize how much additional energy is absorbed by 

the snowpack due to dust and what dust or climate factors act as drivers to changes in 

snowmelt timing. Previous studies have found that end-of-year dust concentration has a 

strong correlation to change in date of snow disappearance (Skiles et al., 2012; Painter 

et al., 2015). The underlying motivation for this work is to further our operational 

understanding of dust- on-snow modifications to snowmelt timing. 
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CHAPTER 2. RESEARCH INVESTIGATION 
 
 
 

2.1. Introduction 

2.1.1. Background 

Solar radiation provides most of the energy for melt in continental mountain 

snowpack (Bales et al.,2006; Painter et al., 2007). Airborne desert dust deposited on 

Colorado snowpack reduces surface albedo (Lawrence et al., 2010; Deems et al., 

2013), altering the snowpack energy balance and accelerating the timing of snowmelt 

by 18 to 51 days (Painter et al., 2007; Skiles et al., 2012). Current National Weather 

Service (NWS) Upper Colorado River Basin streamflow forecasting is based on a 

coupled temperature-index snowmelt model (SNOW-17; Anderson, 1976) and soil 

moisture model (Sac-SMA; Burnash et al., 1973). Temperature-index models have a 

limited ability to account for the radiation components of continental mountain snowpack 

energy balance (Franz et al., 2008; Follum et al., 2019). The combination of dust 

loading with variations in magnitude of SWE and meteorological factors each season 

modifies snowpack energy balance and introduces variations in melt timing (Deems et 

al., 2013; Painter et al., 2017).  These variations may cause considerable uncertainty in 

operational streamflow forecasting (Bryant et al., 2013). We present patterns of dust 

loading and snowpack energy absorption over 13 years to better characterize the 

magnitude of dust influence on snowmelt timing.  

2.1.2. Research Objectives  

We determine the patterns of additional snowpack energy absorption and snow 

melt acceleration due to dust at a small study basin in the San Juan Mountains over 13 
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years. The first objective is to quantify dust-enhanced energy absorption for each year 

and determine the relative influence of certain dust and meteorological variables on 

altering snowpack energy balance. The second objective is to find the difference in 

snow cover duration between actual (dusty) and simulated ideal (clean) snowpack to 

characterize the shifts in melt timing for each year. The third objective is to compare 

differences in melt timing to dust loading, snow characteristics and meteorological 

variables to assess potential drivers of interannual patterns in snow melt acceleration.  

2.2. Study Site and Datasets 

2.2.1. Study Basin and Automated Data 

We examined dust and snowpack characteristics over 13 years (WY2007 

through 2019) at a study site in the San Juan Mountains of southwestern Colorado. 

Senator Beck Study Basin (SBB) is a 2.91km2 continental high-elevation (3362 to 4118 

m) research watershed that sits at the headwaters of the Uncompahgre River (Figure 1) 

in the Upper Colorado River Basin (UCRB).  

Two micrometeorological towers measure data including radiation fluxes and 

energy balance summarized in 1-hour, 3-hour, and 24-hour arrays, with a period of 

record from 2005 to present. The towers are located at 3371 m (Swamp Angel Study 

Plot, SASP) and 3714 m (Senator Beck Study Plot, SBSP) representing the two 

principal terrains of the study basin (subalpine forest and alpine tundra, respectively) 

(Landry et al., 2014). Manual snow profile assessments are collected at both sites 

approximately weekly during ablation within an undisturbed study plot directly alongside 

each automated tower, and those measurements are archived by the Center for Snow 

and Avalanche Studies (CSAS) <snowstudies.org>. 
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2.2.2. Snowpack Development and Dust Timing 

Peak SWE for WY2007 to 2019 at SASP ranged from 543mm (WY2018) to 

936mm (WY2011) with an average peak SWE of 719mm. The average date of peak 

SWE for the period was 13 April, with earliest peak SWE occurring on 18 March in 

WY2012 and latest peak SWE on 1 May in both WY2011 and WY2019 (Figure 2A). 

Date of peak SWE for each individual WY are the defining thresholds to characterize 

dust events as “pre-peak” or “post-peak” (Figure 3). The timing of dust deposition during 

snowpack development is connected to potential dust-enhanced energy absorption, as 

the nominal depth of shortwave radiation penetration into the snowpack is around 30cm 

(Painter et al., 2012). Later-season events can remain closer to the snow surface and 

have an earlier effect on snow albedo. The timing and magnitude of seasonal snowpack 

deposition are fundamentally connected to melt timing and magnitude.  

2.2.3. CSAS Snow Stake Data 

Snow accumulation, wind redistribution, and heterogeneous snowmelt can 

change the gradient of the snow surface around the towers (Painter et al., 2012). 

Therefore, assuming a level snow surface and calculating snow albedo with uncorrected 

visible irradiance can be erroneous. To estimate the local slope and aspect of the 

changing snow surface, CSAS staff manually recorded snow depths from the snow 

stake arrays at both SA and SB from WY2006 to WY2012. The subalpine site had four 

stakes arranged around the central tower whereas the alpine site had six stakes due to 

greater snow surface variability from stronger wind redistribution (Painter et al., 2012). 

We determined the plane of best fit to these snow depth arrays to use in combination 

with seasonal solar position to correct albedo incident angle.  
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2.2.4. CSAS Snow Pit Data 

In addition to the automated continuous micrometeorological tower data, CSAS 

staff collect approximately weekly manual measurements of snow profile characteristics 

at both sites. These profile assessments consist of excavating a snow pit to the ground 

and collecting a temperature profile, describing snowpack stratigraphy (including layer 

interval, grain shape and size) and liquid water content, and measuring bulk SWE. Bulk 

snow density is calculated from the depth and SWE measurements. If dust layers are 

present, dust stratigraphy (depth, number of layers) is measured and dust 

characteristics (approximate grain size, color) are recorded. CSAS assigns numbers to 

each perceptible dust layer within the snowpack to allow tracking throughout 

accumulation and ablation. Bulk dust samples (“all layers merged,” or ALM) are 

collected towards the end of each snow season. 

2.2.5. SNOTEL Site and Data 

Daily SWE and snow depth data were retrieved from the Red Mountain Pass 

(RMP) SNOTEL site from the Natural Resources Conservation Service (NRCS) 

<www.nrcs.usda.gov>. RMP is located approximately 1.8 km SSW of the study basin at 

3413 m elevation in a forested clearing with a western aspect. Bulk snow density was 

calculated at RMP and used to derive daily SWE at SASP from the measured depth, as 

density has less spatial variation than SWE or snow depth (Elder et al., 1991; López-

Moreno et al., 2013). 
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Figure 1. Map of study basin within the Upper Colorado River Basin (UCRB). Yellow 
triangles mark location of meteorological towers SASP (sub-alpine) and SBSP (alpine). 
Stream gauge (SBSG) and third tower (PTSP) are not referenced in this research (after 
Landry et al., 2014). 
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Figure 2. Daily SWE from RMP SNOTEL (A) from WY2007 to WY2019. Average date 

of peak SWE at the station is 25 April (dashed line) whereas at SASP average peak 

SWE is 13 April (solid line). WY2019 had the maximum peak SWE and WY2018 had 

the minimum peak SWE for the period of record, all other years are in grey. 

Precipitation inputs (B) before peak SWE are all larger than inputs after peak SWE for 

SASP. “Pre-peak” and “post-peak” identification is specific to date of peak SWE for the 

individual WY, and precipitation is considered over the entire WY.   
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Figure 3. Dust events recorded at SASP from WY2007 to 2019. “Pre-peak” and “post-

peak” identification is specific to date of peak SWE for the individual WY. Three water 

years had 50% or more dust events deposit after peak SWE (WY2008, WY2010, and 

WY2012).  

 

2.3. Methods 

2.3.1 Albedo Corrections 

Calculating snow albedo with uncorrected radiation flux measurements assumes 

a level snow surface, which can be erroneous given wind redistribution, snow 

accumulation patterns, and heterogenous snowmelt (Painter et al., 2012). We retrieved 

the slope and aspect of the snow surface from snow stake array observations. The time 

series of slope and aspect was linearly interpolated between each weekly set of 

measurements to approximate a daily snow surface. In addition to the geometric 

correction of non-level snow surface, we corrected for seasonally shifting solar position. 



15 

 

Geometric and solar position adjustments are combined with the following relation (after 

Painter et al., 2012): 

 
cos β = cos θs cos θn + sin θs sin θn cos {Φs – Φn}                               (Equation 1)     
 

where β is the local solar zenith angle, θs is the solar zenith angle for the horizontal 

surface, Φs is the solar azimuth angle, θn is the surface slope, and Φn is the surface 

aspect. The scalar (Mβ) by which we corrected measured hourly downward shortwave 

radiation flux (irradiance) values to at-surface irradiances is (after Painter et al., 2007): 

 

  Mβ = 
cos(𝛽𝛽)cos(𝜃𝜃𝜃𝜃)

                                                                                            (Equation 2)           

 

Snow surface albedo was calculated from the corrected irradiance and observed 

reflected flux (Figure 4).  

Snow stake array depth observations were only collected for WY2007-2012, so 

the mean slope and aspect for each calendar day were used to approximate a daily 

corrective Mβ value for WY2013-2019 (Figure 5).  

In addition to correcting for non-level snow surface, we also adjusted for snow 

deposition on the up-facing pyranometers. Accumulation on the up-facing pyranometers 

reduces the measured incoming irradiance compared to the actual incoming amount. 

The alpine site has a more continuous record of irradiance since it experiences higher 

windspeeds which regularly clear the snow off of the up-facing pyranometers (Landry et 

al., 2014). We used the alpine albedo to retrieve the sub-alpine irradiance as follows: 

 

Irradiance (sub-alpine) = 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑅𝑅𝑅𝑅𝑓𝑓𝑓𝑓 (𝜃𝜃𝑓𝑓𝑠𝑠−𝑎𝑎𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅)𝛼𝛼 (𝑎𝑎𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅)

                                  (Equation 3) 
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2.3.2. Dust Concentrations  

 Total dust concentrations were determined from the ALM samples collected 

towards the end of each ablation season. Bulk samples were processed by the U.S. 

Geological Survey of Colorado to yield dust loading and geochemical properties 

(Reynolds et al., 2020). Dust loading (g m-2) was transformed to end-of-year dust 

concentration using the 3cm x 0.5m2 sample volume and the bulk snow density 

observed on the collection date.       

2.3.3. Absorbed Energy Calculations 

We calculated the dust-enhanced energy absorption (DEAE) based on snow 

surface albedo within visible wavelengths. There is an indirect effect from LAPs of 

increased snow albedo due to larger snow grain size from acceleration of grain growth 

and the earlier exposure of darker substrate (Hansen and Nazarenko, 2004) but the 

greater divergence of LAP-influenced snow surface albedo from that of clean snow 

occurs within the visible spectrum (Melloh et al., 2001; Figure 6).  

Surface visible DEAE (W m-2) is calculated after Skiles et al. (2012) as 
 

DEAEVIS = EVIS ΔVIS                                                                                                      (Equation 4) 

                                                                                              

where EVIS is the visible irradiance determined from the difference between broadband 

and NIR/SWIR irradiances and ΔVIS = 0.92 – αVIS (αVIS is calculated visible albedo from 

tower measurements and 0.92 is the observed visible albedo for dust-free snow at the 

study site). Previous studies also calculated the additional NIR/SWIR energy absorption 

due to dust based on an empirical relation to grain coarsening in the absence of dust 

developed with two years of dust and snow observations in the study basin (Painter et 

al., 2007). The total energy absorbed from the combined direct visible effect and indirect 
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NIR/SWIR effect was identified as “dust radiative forcing” (e.g., Painter et al., 2007; 

Skiles et al., 2012; Skiles et al., 2015).  

Daily mean visible DEAE is calculated from 1 April to observed SAG for each 

year, and “springtime” irradiance and precipitation are totaled over the same interval. 

While dust-enhanced energy absorption may begin earlier in the season, this period 

captures typical snowpack ablation from peak SWE to complete melt-out when DEAE 

has the greatest effect on melt timing.              

2.3.4. Snow Energy Balance Model 

We used the point-based snow energy balance SNOBAL to model hypothetical 

snowpack at the sub-alpine site under actual hourly conditions (“dusty”) and snowpack 

with the dust effect removed (“clean”) to understand differences in melt timing. SNOBAL 

approximates the snowpack as two layers: the upper 25cm layer exchanges energy with 

the atmosphere, and the underlying remainder of the snowpack acts as an energy and 

mass storage layer (Figure 7) (Marks and Dozier, 1992; Marks et al., 1992). We ran the 

model over spring melt season at the sub-alpine site using data from manual snow 

assessments and automated tower collection. The starting snow conditions of each 

model run were determined from the field measurements collected closest in time to 13 

April (average date of peak SWE for the study plot). The model calculated hourly 

changes in snow state variables using observed hourly forcing variables (Table 1) and 

precipitation inputs.  
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Table 1. Predicted state variables and required forcing variables for SNOBAL (after 

Marks et al., 1998) 

State Variables Forcing Variables 

Snow depth (m) Net solar radiation (W m-2) 
Snow density (kg m-3) Incoming longwave radiation (W m-2) 

Snow surface layer temperature (°C) Air temperature (°C) 
Average total snowpack temperature (°C) Vapor pressure (Pa) 

Average snow liquid water content (%) Wind speed (m s-1) 

  

“Dusty” model runs were completed with actual recorded conditions. “Clean” 

model runs modified the hourly net solar radiation inputs by removing the DEAE. For all 

runs, total precipitation mass recorded by an electronic weighing gauge at the sub-

alpine site was partitioned into rain or snow based on dewpoint temperature. 

Percentage of precipitation falling as snow and fresh snow density were assigned 

according to Table 2. 

 
 Table 2. Precipitation partitioning table based on dewpoint temperature (after Susong 

et al., 1999) 

Temperature (°C) Percent Snow Snow density (kg m-3) 

T < -5 100 75 
-5 ≤ T < -3 100 100 

-3 ≤ T < -1.5 100 150 
-1.5 ≤ T < -0.5 100 175 

-0.5 ≤ T < 0 75 200 
0 ≤ T < 0.5 25 250 

0.5 ≤ T 0 0 

 

All model runs set soil temperature to 0°C since soil temperatures are generally 

approximately 0°C at time of peak snow accumulation and are considered to have a 

relatively negligible contribution to snowpack energy balance (Marks and Dozier, 1992). 

Snow surface aerodynamic roughness (z0) was set to 0.001 meters (Fassnacht, 2004) 



19 

 

for all model runs based on the determination of Skiles et al. (2012) which found the 

model results not highly sensitive to reasonable z0 values (< 0.005m).  

The accuracy of modeled SWE was assessed by comparing “dusty” SWE to two 

observations of SWE: derived and manually measured. Derived SWE is a combination 

of the calculated daily bulk snow density at Red Mountain Pass SNOTEL and the 

observed daily snow depth at the study site. The manual measurements of SWE were 

collected on an approximately weekly basis by CSAS staff during snow pit 

assessments.  

The difference in melt-out dates (ΔSAG) between the modeled “dusty” scenario 

and the modeled “clean” scenario is a measure of melt acceleration due to amount of 

dust-enhanced absorbed visible energy (DEAE), since the two scenarios are otherwise 

modeled with identical snow state variables and meteorological inputs.  
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Figure 4. Hourly snow surface albedo was corrected for a non-level snow surface and 
seasonally shifting solar position to capture diurnal variation.  
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Figure 5. Observed snow surface correction values for WY2007-2012 (color lines) and approximated surface correction 
value used for WY2013-2019 (black line) over ablation season (April, May, and June). Vertical dashed line is the latest 
observed date of SAG (WY2011) for the period. 
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Figure 6. Comparison of albedo between clean snow (modeled) and dusty snow 

(measured, dust concentration = 0.37 mg g-1) with vertical line at the 0.7µm transition 

from visible spectra to near-infrared/shortwave-infrared spectra (after Painter et al., 

2012).  
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Figure 7. Conceptual diagram of SNOBAL inputs and internal processes (after Marks et 
al., 1998).  
 

2.4. Results 

2.4.1. Daily Mean Visible DEAE 

For WY2007 to WY2019, daily mean visible DEAE during ablation ranged from 

31 W m-2 (WY2015) to 50 W m-2 (WY2019). Cumulative daily mean visible DEAE 

typically did not exceed 3000 W m-2 while snow was present (Figure 8). The outlier is 

WY2019 which had snowpack persist for 33 days longer than the next-latest observed 

SAG (WY2011). These additional days of snowpack persistence result in the longest 

period over which DEAE is cumulated and also occur at the end of ablation season as 
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the amount of incoming solar radiation is increasing. The combination of these two 

effects results in a high average daily DEAE which is an outlier representation of dust-

affected snow dynamics. In comparison, WY2015 had the lowest daily mean visible 

DEAE due to a combination of shorter snow cover duration and dust-on-snow system 

dynamics during ablation. Several late-spring snowfall events in April and May of 2015 

temporarily increased snow surface albedo (Figure 9) which in turn decreased visible 

DEAE after each event and drove the springtime daily mean visible DEAE lower. 

Seasonal average values of DEAE are the result of complex daily dynamics. 

Approximated snow surface correction values (Equation 2) were assessed by 

comparing the resulting scaled incoming visible irradiance to incoming visible irradiance 

scaled with observed snow surface conditions. The average difference between 

observed irradiance values and approximated values over the whole snow season for 

WY2007 to WY2012 was small (-0.04 W m-2). However, comparison of observed to 

predicted irradiance had an RMSE of 8 W m-2 during ablation for WY2007 to WY2012.  

2.4.2. DEAE and Potential Drivers 

 Dust concentration and daily mean visible DEAE have no significant correlation 

for all years and a strong logarithmic correlation when the outlier and WY2008, 

WY2014, and WY2017 are excluded (Table 3). The dust distribution has two modes: 

low-dust years (2007, 2008, 2011, 2012, 2014-2018) have end-of-year dust 

concentrations below 2mg g-1 and high-dust years (2009, 2010, 2013) have 

concentrations above 4 mg g-1 (Figure 10A). Additionally, the range in daily mean visible 

DEAE is 8 W m-2 for low-dust years and 2 W m-2 for high-dust years. The logarithmic 
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increase of DEAE is likely based on the nonlinear optical response of albedo reduction 

to increases in dust concentration (Skiles et al., 2012).  

 Number of dust events and daily mean visible DEAE (Figure 10B) have no 

significant correlation for all years and a weak linear correlation when the outlier is 

excluded (Table 3). Number of dust events has been previously determined to be a poor 

predictor of near-surface albedo or of seasonal DEAE (Painter et al., 2012) without 

additional knowledge of dust layer burial depth and relative amount of irradiance.  

 Cumulative springtime irradiance and daily mean visible DEAE have no 

correlation for all years (Table 3). When the outlier is excluded, two potentially distinct 

linear groups are apparent (Figure 10C). WY2007, WY2012, WY2015, and WY2018 

form one group with strong linear correlation to irradiance (R2 = 0.98). The second group 

(all other WYs) is also linearly correlated to irradiance (R2 = 0.67). Both groups have a 

negative relation of daily mean visible DEAE to cumulative springtime irradiance.  

 Cumulative springtime precipitation and daily mean visible DEAE have no 

correlation for all years (Table 3). A negative linear correlation is evident when the 

outlier and WY2011, WY2012, and WY2018 are excluded (Figure 10D). Springtime 

precipitation that accumulates as snow increases the surface albedo and leads to 

decreased DEAE.  
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Table 3. Correlations of daily mean DEAE with dust and climate variables 

 
Variable 

R2 

(all years) 

 

p Value 
R2 

(some years 
excluded) 

 

p Value 

 
End-of-year dust 

concentration 

 
0.21 

 
0.116 

 
0.86 

(logarithmic) 

 
p < 0.001 

 
Total number of dust 

events 

 
0.15 

 
0.198 

 
0.31  

(linear) 

 
0.059 

 
Cumulative 
irradiance 

 
0.03 

 
0.597 

 
0.98 and 0.67 

(linear, two 
groups) 

 
0.008 and 

0.013 

 
Cumulative 
precipitation 

 

 
0.02 

 
0.653 

 
0.63  

(linear) 

 
0.011 

 

2.4.3. Modeled SWE and Snow Cover Duration 

Overall, SNOBAL simulated observed SWE well (Table 4). The difference 

between modeled and derived SWE is 34mm greater than between modeled and 

manually measured SWE. Typically, model comparisons are poorer for shorter 

timesteps than for longer timesteps (Moriasi et al., 2007) so this performance difference 

between derived SWE (daily timestep) and manually measured SWE (weekly timestep) 

is unsurprising.   

 
Table 4. Two evaluations of SNOBAL model SWE to two empirical SWE measurements 
(see Appendix B for individual WY results).  

SWE measurement RMSE (mm) NSE 

Derived SWE (SNOTEL + CSAS) 119 0.81 

Manual Snow Pit SWE (CSAS) 85 0.83 
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Modeled “clean” snowpack has slower melt rates than modeled “dusty” 

snowpack, which has rates similar to observed melt rates (Figure 11). Some divergence 

between modeled and observed SWE is more apparent in years with late-season 

precipitation events (e.g., WY2013 and WY2016). For all years, derived SWE is 

consistently lower than manually measured SWE at the snow pits (average difference of 

93mm). Higher SWE and later observed complete melt-out (e.g., WY2007 and 

WY2014) occur in the snow pit plot.  

For 11 of the 13 WYs, modeled dusty SAG was less than 2 days different than 

observed SAG. The two outliers were WY2016 and WY2019 which modeled melt-out 2 

and 31 days earlier than observed, respectively (Figure 11). The greatest degree of melt 

acceleration due to dust was in WY2009 (31 days earlier) and the least melt 

acceleration was in WY2015 (11 days earlier).   

2.4.4. Snow Cover Duration and Potential Drivers 

 Dust concentration and ΔSAG (Figure 12A) have a weak logarithmic correlation 

for all years and a stronger logarithmic correlation when the outliers and WY2013 and 

WY2012 are not considered (Table 5). When dust concentrations range from 0 to 2 mg 

g-1 the ΔSAG increases rapidly for small increases in dust concentration (range of 16 

days difference from WY2015 to WY2011). As dust concentrations increase above 2 mg 

g-1 the corresponding increase in ΔSAG is less rapid (range of 4 days difference from 

WY2011 to WY2009). This emphasizes that even small dust concentrations can be 

correlated to shifts in snow cover duration.  

 The number of dust events and ΔSAG (Figure 12B) have a weak correlation for 

all years and a strong positive linear correlation when outliers and WY2012, WY2013, 
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and WY2018 are not considered (Table 5). Years when many dust events occurred can 

have a large shift in snow cover duration, however this relation may be misleading given 

the influences of relative timing of these events and degree of dust loading.  

 Cumulative springtime irradiance and ΔSAG (Figure 12C) have no significant 

correlation for all years and a strong positive linear correlation when outliers and 

WY2009, WY2015, and WY2017 are not considered (Table 5). As snowpack receives 

more incoming solar radiation, larger shifts in snow cover duration are possible. 

 Cumulative springtime precipitation and ΔSAG (Figure 12D) have no significant 

correlation for all years and a strong positive linear correlation when outliers and 

WY2009 and WY2015 are not considered (Table 5).  

 
Table 5. Correlations of ΔSAG with dust and climate variables 
 

 
Variable 

 

R2 

 (all years) 

 

p Value 

 
R2 

(some years 
excluded) 

 

p Value 

 
End-of-year 

dust 
concentration 

 
0.30 

 
0.052 

 
0.61 

(logarithmic) 

 
0.013 

 
Total number of 

dust events 

 
0.29 

 
0.055 

 
0.92 

(linear) 

 
p < 0.001 

 
Cumulative 
irradiance 

 
0.08 

 
0.337 

 
0.82 

(linear) 

 
0.002 

 
Cumulative 
precipitation 

 
0.13 

 
0.227 

 
0.65 

(linear) 

 
0.015 
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Figure 8. Cumulative daily mean DEAE for WY2007 to WY2019. Vertical black lines are the observed date of SAG for 

each WY. Daily mean absorbed energy values after these dates are due to the lower albedo of the ground surface and 

are not necessarily dust-enhanced. 
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Figure 9. Snow surface albedo and daily mean visible DEAE (above) compared to snow depth, precipitation inputs, and 

visible irradiance (below) for April and May of WY2015. Vertical grey bars represent dust events. WY2015 was a low-dust 

year (0.51 mg g-1 end-of-year dust concentration) with the smallest ΔSAG (11 days). 
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Figure 10. Daily mean visible DEAE compared to end-of-year dust concentration (A), number of dust events (B), 
cumulative spring broadband irradiance (C), and cumulative spring precipitation (D).  
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Figure 11. Modeled SWE curves and observed SWE curves for WY2007 to WY2019. “Derived” SWE is calculated from 
observed snow density at Red Mountain Pass SNOTEL and observed snow depth at CSAS study plot. Vertical black lines 
indicate date of observed SAG for each year. The red line (modeled SWE under actual conditions) matches the seasonal 
patterns of manually measured bulk SWE (black points) fairly well, in particular capturing late-season melt rates.  
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Figure 12. Difference in snow cover duration (ΔSAG) compared to end-of-year dust concentration (A), number of dust 

events (B), and cumulative springtime irradiance (C) and precipitation (D). 
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2.5. Discussion           
 
2.5.1. DEAE Calculations  

DEAE calculations for all years relied on a snow surface correction to albedo 

which was observed for WY2007 to 2012 and approximated for WY2013 to 2019. 

Generally, the incoming visible irradiance calculated with the approximated snow 

surface correction compared well to the irradiance calculated with the observed 

correction (RMSE of 8 W m-2). The greatest residual was in May of WY2008 which had 

high SWE and above-average spring windspeeds creating a complex snow surface not 

fully represented by the approximated value (Figure 4). We investigated the effect of 

under-estimation and over-estimation of irradiance on a high-dust year (WY2013) and 

found that daily mean visible DEAE could range from 39.5 to 45.5 W m-2. A similar 

investigation of a low-dust year (WY2017) found a range from 32.5 to 38 W m-2. Despite 

the potential scale of uncertainty for daily mean visible DEAE calculations for WY2013 

to WY2019, the overall pattern of DEAE response to increases in dust concentration 

would remain a logarithmic correlation.  

The scale of our DEAE calculations compares well to previous findings over the 

general UCRB region. Remote sensing of particulate-enhanced energy absorption from 

four days in WY2011 over the Uncompaghre Basin found the average instantaneous 

pixel value ranged from about 50 W m-2 in mid-May to 200 W m-2 in mid-June (Seidel et 

al., 2016). This range is likely in part due to their inclusion of all light-absorbing 

impurities, assumption of homogeneous snow grain size, and spatial variability due to 

resolution (13.8 m pixel size). We found hourly visible DEAE to range up to 234 W m-2 

during June of WY2011. Additionally, Bryant et al. (2013) retrieved daily mean radiative 
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forcing from dust in the visible spectrum only and found a range from 20 to 80 W m-2 

(over WY2000 to WY2010). Our point-based study falls within the observed range of 

particulate-enhanced energy absorption for the general study area.  

The pattern of our daily mean DEAE calculations compares well to previous in-

situ studies. Skiles et al. (2015) considered the combined amount of dust-enhanced 

absorbed energy in both the visible and NIR/SWIR spectra at the same study site from 

2005 to 2013. They found a range of daily mean dust-enhanced radiative forcing from 

35 W m-2 (WY2005) to 75 W m-2 (WY2009). Those daily mean values consider the 

surface-darkening effect of deposited dust in combination with dust-modified snow grain 

growth. The combined mean daily energy absorption of surface and grain 

metamorphism effects has been shown to be on average 25 W m-2 higher than energy 

absorption in the visible part of the spectrum alone based on a comparison of two 

modeled scenarios (Skiles et al., 2015; Skiles, 2014). Additionally, Skiles and Painter 

(2017) found broadband snow albedo to be controlled by the visible effect of LAPs 

during the highest dust-loading year on record (WY2013). Broadband albedo (280 to 

2800 nm) combines the reflectivity of both visible (400 to 700 nm) and NIR/SWIR (700 

to 2500 nm) wavelengths, reinforcing that visible albedo of dust-affected snow can 

decrease by greater magnitude than NIR/SWIR albedo (Figure 6) and thus drive energy 

absorption. Despite differences in magnitude of daily mean DEAE, our values follow the 

same pattern with respect to dust concentration increases as that observed by Skiles et 

al. (2012) for WY2007 to WY2010 and by Skiles et al. (2015) for WY2010 to WY2013 

(Figure 10A).  
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2.5.2. Potential Drivers of DEAE 

We compared four independent variables to daily mean visible DEAE in a series 

of simple logarithmic or linear regressions. These comparisons had varying degrees of 

significance (p-values in Table 3) reflected in our summary of correlations (Section 

2.4.2.). One-variable comparisons cannot represent complex natural systems, so these 

results should be understood as preliminary (for a glimpse of the multiple regression 

analysis we are currently exploring, see Appendix C). The exclusion of deviant years in 

these simple regressions could have been prone to “over-fitting” or arbitrary exclusion of 

data points to increase correlation coefficients. To avoid this, we attempted to exclude 

the minimum number of deviant years and understood the patterns in Figure 10 to be a 

guide of correlation but not necessarily of causation. 

The dust, snow, and climate variables we examined are bulk approximations of a 

dynamic system with sub-seasonal variation. Visible DEAE can change hourly 

according to incoming visible irradiance and snow surface albedo. Visible surface 

albedo can change sub-daily according to precipitation inputs, timing of dust layer 

deposition, and subsequent emergence of dust layers during melt. A majority of the dust 

events from WY2007 to WY2019 occurred prior to peak SWE (Figure 3). Since the 

depth of light penetration into the snowpack can vary from several to 10s of cm 

(Thomas, 1963), the deeper burial of dust is a delay in the effect on surface albedo. 

Dust events that occur after peak SWE can still be buried by spring storms (Figure 2B) 

which will temporarily increase surface albedo with fresh snow (Figure 9; Figure 13). 

The daily response of albedo and visible DEAE to changing precipitation inputs, dust 

burial depths, and incoming visible irradiance is illustrated by examining April and May 



37 

 

of high-dust WY2009 (Figure 13) and low-dust WY2015 (Figure 9). A storm on 25 April 

2009 buried dust with concurring snowfall, causing a temporary increase in albedo due 

to a fresh snow surface, and then the emergence of the deposited dust by 30 April 

caused surface albedo to decrease until the next snowstorm on 2 May (Figure 13).  

 Increasing daily mean visible DEAE is logarithmically correlated to increasing 

dust concentration (Figure 10A). Deposited dust layers can change surface albedo, 

allowing greater energy absorption. However, this relation is modified by the amount of 

available irradiance and burial depth of dust layers. WY2008 and WY2017 had above-

average irradiance, likely driving the high daily mean visible DEAE for both years. 

Additionally, the majority of dust events in WY2008 were deposited after peak SWE 

(Figure 3) with less than 30% of total SWE accumulating at that same time (Figure 2B). 

The shallow burial of dust layers positions them closer to the snow surface and 

potentially leads to an earlier start of energy absorption. The burial depth of dust layers 

is likely also driving the daily mean visible DEAE lower for WY2014, which received the 

majority of dust before peak SWE (Figure 3). Skiles and Painter (2017) found no 

significant relation between albedo and dust buried below 6cm from the snow surface, 

indicating that deeper burial of dust layers will delay their effect on daily mean visible 

DEAE.  

 The number of events alone has little correlation to daily mean visible DEAE 

(Figure 10B) and two additional variables should be considered: dust concentration and 

depth of burial. Comparison of WY2009 and WY2012 illustrates the importance of 

considering dust concentration: both years have the highest number of dust events yet 

WY2012 has only 30% the dust concentration of WY2009 (1.35mg g-1 compared to 
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4.55mg g-1). The year with higher dust concentration has greater daily mean visible 

DEAE. Comparison of WY2017 and WY2015 illustrates the importance of considering 

burial depth of dust layers. Both years had few dust events and low dust concentration, 

yet WY2015 had lower daily mean visible DEAE. This is likely due to a greater amount 

of late-season snow accumulation in WY2015 which delayed dust emergence at the 

snow surface (Figure 2B). 

 Greater cumulative springtime irradiance is correlated to lower daily mean visible 

DEAE (Figure 10C). Closer examination of two distinct groups of points indicate that the 

negative correlation is likely due to the effect of dust concentration on snow persistence, 

while the grouping is an artifact of SWE amount. The group with lower daily mean 

DEAE values (WY2007, WY2008, WY2012, and WY2015) all have below-average 

SWE. Low SWE leads to fewer days of snow cover and that period of snow cover 

duration can be shortened further by the presence of dust in any concentration. Below-

average peak SWE years with high dust concentrations (e.g., WY2012) will have the 

shortest snow cover duration and thus the shortest cumulative period of irradiance. 

However, during that short period the high dust concentration generates greater DEAE, 

leading to the negative correlation with cumulative irradiance. The second group of 

points indicates similar behavior for average or above-average amounts of SWE. 

Longer snow cover duration is possible with lower dust concentrations, which results in 

larger cumulative irradiance values yet lower daily mean DEAE. 

 There is also a negative linear correlation between cumulative springtime 

precipitation and daily mean visible DEAE (Figure 10D). Spring precipitation falling as 

snow temporarily increases snow surface albedo, leading to low daily mean visible 
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DEAE over the ablation season (Figure 9; Figure 13). However, cumulative irradiance 

and dust concentration can modify that correlation. Years with low spring precipitation 

such as WY2012 and WY2018 had fewer temporary increases in snow surface albedo, 

yet both years also had low daily mean visible DEAE due to below-average incoming 

solar radiation (Figure 10). Additionally, WY2018 had lower dust concentration than 

WY2012 which likely resulted in lower DEAE despite receiving slightly more incoming 

solar radiation. Irradiance can also modify DEAE for years with high spring precipitation. 

WY2011 received the highest amount of spring precipitation, yet also had the highest 

cumulative irradiance driving increased daily mean DEAE.  

2.5.3. Modeling of Snow Cover 

Values of ΔSAG necessarily rely on the accurate representation of snowpack 

evolution by the energy balance model SNOBAL. Snowpack was simulated from 

approximate date of peak SWE through to the end of the ablation season, and not for 

the entire WY, to minimize divergence of modeled and observed snowpack. The energy 

balance simulation of accumulation is complex and would be subject to greater 

uncertainty due to rapidly-changing or inconsistent early-season snow state variables 

(e.g., snow depth). All SNOBAL simulations began at approximately peak SWE to use 

snow state variables from an established snowpack with enough bulk SWE to more 

successfully model energy and mass transfers. There are two consistent 

approximations made across all SNOBAL runs which may have influenced ΔSAG 

results.  

First, an upper limit on net solar radiation of 800 W m-2 is hardcoded into the 

model (Marks and Dozier, 1992) and could be affecting melt rate. This limit does not 
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accurately represent the radiation-dominated continental climate of the San Juan 

Mountains, which experience relatively high irradiances compared to other climates 

such as the cloudy Pacific Northwest (Painter et al., 2012). Every year of “dusty” model 

runs had days with maximum springtime net solar inputs greater than 800 W m-2. 

However, the springtime daily mean net solar input for every “dusty” model run was less 

than 500 W m-2 so the effect on melt rates is likely limited (see Appendix B for individual 

WY net solar input summary). 

Second, the SWE of spring snowfall seems to be consistently under-estimated 

resulting in either divergence between modeled and observed SWE (e.g., WY2011) or 

greater inaccuracy in modeled SAG (e.g., WY2019) (Figure 11). The model runs were 

initiated with state variables from a snow plot several meters away from the tower that 

supplied subsequent forcing variables, thus some divergence in SWE may be due to 

spatial variability of snow depth (Fassnacht et al., 2009). However, the prevalence of 

the under-estimation indicates a systemic error in precipitation inputs. In SNOBAL, 

precipitation has been partitioned to “rain” or “snow” based on dewpoint temperature 

and the snow percentages are based on monitoring in the Sierra Nevada (CA) (Susong 

et al., 1999; Marks et al., 1992). The dewpoint temperature is calculated from daily 

maximum and minimum temperatures and may not capture the dewpoint temperature at 

the specific time of a precipitation event, as the model has an hourly timestep. 

Based only on air temperature, there is variability in the temperature threshold between 

snow and rain for different climate zones (Fassnacht and Soulis, 2002; Rajagopal and 

Harpold, 2016); also, snow can fall at warmer air temperatures in the continental climate 
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of Colorado than in more humid or maritime environments (Fassnacht et al., 2013; 

Jennings et al., 2018).  

Additionally, the fresh snow densities of the partitioning table are based on 

SNOTEL sites in the Wasatch Range (UT) (Susong et al., 1999). These densities may 

not be fully representative of the higher elevation, semi-arid climate of the San Juan 

Mountains (CO). In Colorado climate, fresh snow can have lighter density compared to 

wetter environments (Judson and Doesken, 2000; Meinhardt and Fassnacht, 2020).  

The limit on net solar radiation and the underestimation of precipitation inputs 

may cancel out each other in their combined effects on ΔSAG. The upper threshold on 

net solar radiation restricts the energy available to the modeled snowpack, slowing melt 

rates and lengthening snow persistence. However, the under-estimation of precipitation 

inputs results in lower bulk SWE which would have shorter snow cover duration 

regardless of dust presence. 

2.5.4. Potential Drivers of Snow Cover Duration 

 We compared four independent variables to ΔSAG in a series of simple 

logarithmic or linear regressions. These comparisons had varying degrees of 

significance (p-values in Table 5) reflected in our summary of correlations in Section 

2.4.4. One-variable comparisons cannot represent complex natural systems, so these 

results should be understood as preliminary (for a glimpse of the multiple regression 

analysis we are currently exploring, see Appendix C). The exclusion of deviant years in 

these simple regressions could have been prone to “over-fitting” or arbitrary exclusion of 

data points to increase correlation coefficients. To avoid this, we attempted to exclude 

the minimum number of deviant years. There was also some consistency in the group of 
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deviant years excluded; when comparing ΔSAG to dust characteristics WY2012 and 

WY2013 were identified as displaying atypical “dust response” and when comparing 

ΔSAG to climate characteristics WY2009, WY2015, and WY2017 were identified as 

displaying atypical irradiance or precipitation behavior. We understood the patterns in 

Figure 12 to be a guide of correlation but not necessarily of causation.  

 Dust concentration and ΔSAG have a logarithmic correlation which implies that 

increases in dust concentration lead to increased difference in snow cover duration for 

“dusty” compared to “clean” snowpack scenarios (Figure 12A). This relation can be 

modified by the magnitude of the seasonal snowpack. Below-average SWE implies 

shorter snow persistence regardless of dust, which results in lower ΔSAG (Skiles et al., 

2012) as seen in WY2012 and WY2013. Peak SWE for WY2012 (561mm) and WY2013 

(566mm) are both below-average compared to the period of record (an average peak 

SWE of 719mm from WY2007 to 2019). High dust concentrations can be correlated to 

large changes in snow cover duration when the SWE amount is considered.  

The number of dust events has a strong linear correlation to increased ΔSAG 

(Figure 12B). Simplistically, more dust deposition events can correspond to heavier dust 

loading and contribute to increased difference in snow cover duration. However, 

WY2012, WY2013, and WY2018 all had below-average SWE driving shorter snow 

persistence despite above-average numbers of dust events. Additionally, the high 

number of dust events for WY2012 and WY2018 does not correspond to heavy dust 

loading as both years had end-of-year dust concentration below 2mg g-1. The number of 

dust events is only one component of dust loading and correlation with ΔSAG should 

consider dust concentration and amount of SWE.  
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Generally, increases in cumulative springtime irradiance and precipitation are 

correlated to slight increases in ΔSAG (Figure 12C, 12D). The correlation of springtime 

irradiance and ΔSAG seems to be primarily driven by amount of SWE, with above-

average peak SWE years receiving more cumulative irradiance and below-average 

peak SWE years receiving less due to length of snow cover duration. Similarly, the 

correlation of increased springtime precipitation and increased ΔSAG can be attributed 

to spring snow events temporarily increasing snow surface albedo and adjusting snow 

persistence by adding to bulk SWE. However, dust concentration can influence the 

relation of irradiance and precipitation to ΔSAG as illustrated by WY2009, WY2015, and 

WY2017. WY2009 is a high-dust year with a cloudy spring compared to other high-dust 

years (e.g., WY2010) yet experiences the largest ΔSAG possibly due to a combination 

of above-average peak SWE leading into a spring with little new snow accumulation 

(Figure 13). WY2015 and WY2017 are low-dust years which received enough late-

season precipitation to lengthen snow cover duration and inflate cumulative irradiance 

values (e.g., Figure 9). This corroborates the finding of Painter et al. (2007) that greater 

SWE accumulation allows a longer period of dust influence, leading to greater 

divergence in snow cover duration.  
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Figure 13. Snow surface albedo and daily mean visible DEAE (above) compared to snow depth, precipitation inputs, and 

visible irradiance (below) for April and May of WY2009. Vertical grey bars represent dust events. WY2009 was a high-dust 

year (4.7mg g-1 end-of-year dust concentration) with the largest ΔSAG (31 days). 
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2.6. Conclusion 
 

We found the daily mean visible DEAE to be primarily driven by end-of-year dust 

concentration with modifications from snow amount, springtime solar irradiance 

conditions and precipitation timing. The amount of dust-enhanced absorbed visible 

energy ranged from a daily mean of 31 to 51 W m-2. Calculated hourly visible DEAE was 

as high as 480 W m-2. Interannual variations in daily mean DEAE are primarily driven by 

variations in end-of-year dust concentrations. 

Snow cover duration decreased under dusty conditions for all years modeled, 

with the range of melt acceleration from 11 to 31 days. Earlier melt was not directly 

driven by daily mean visible DEAE. The bulk amount of SWE influences snow cover 

duration, regardless of dust, and timing of springtime irradiance and precipitation can 

also influence snow cover melt rate. Our results emphasize that bulk seasonal averages 

of SWE, dust concentration, irradiance, and precipitation do not fully capture the sub-

daily shifts in snow-dust-climate system dynamics leading to earlier snowmelt. 

Incorporation of individual dust layer burial depth, dispersal distance of dust layers 

throughout the snowpack, and the relative timing of irradiance and precipitation inputs 

would potentially improve simulations of snowmelt. Future development of operational 

streamflow forecasting for the UCRB will benefit from continued monitoring and 

quantification of those sub-seasonal effects. 
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CHAPTER 3. IMPLICATIONS AND FUTURE WORK 
 

 

 

Projected warming in the southwestern USA will increase potential drought, 

disturbance, and desertification (Munson et al., 2011) which can lead to increased dust 

loading of southwestern Colorado snowpack. Snow deposition timing and amount are 

also projected to become increasingly variable in the region (Barnett et al., 2006; Fyfe et 

al., 2017). We found that deposited dust layers can increase the mean visible energy 

absorbed by the snowpack up to an additional 51 W m-2 per day during ablation season 

in the UCRB. This accelerated melt from 11 to 31 days when only considering energy in 

the visible spectrum; previous studies have found melt advanced up to 51 days when 

also considering NIR/SWIR effects (Skiles et al., 2012). 

Further investigation of the impact of dust on snowpack energy balance is 

needed since the connection between dust loading and melt acceleration is not direct. 

Skiles and Painter (2017) found a log-linear relation between dust concentrations and 

visible snow surface albedo, implying that even small increases in dust amount can lead 

to large decreases of albedo. Through this effect on snow surface albedo, dust in snow 

has been shown to increase the solar radiation absorbed by snowpack (Wiscombe and 

Warren, 1980; Painter et al., 2007; Skiles et al., 2012). This dust-enhanced radiative 

forcing has potentially shortened snow cover in southwestern Colorado by up to 51 days 

(Skiles et al., 2012) accelerating timing of snowmelt runoff in the region (Painter et al., 

2010; Deems et al., 2013).  

Timing and magnitude of snow deposition are projected to become increasingly 

variable in the Mountain West (Barnett et al., 2006; Fyfe et al., 2017). Additionally, 

drought conditions in the Colorado Plateau are expected to worsen with climate 
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warming, leading to increased desertification and aeolian dust transport (Nauman et al., 

2018; Williams et al., 2020) and potentially increasing dust loading of snowpack in 

southwestern Colorado. The effect of dust on melt rates has already been shown to 

introduce bias in operational runoff predictions for the UCRB (Bryant et al., 2013; 

Painter et al., 2018). Accounting for the dust-enhanced radiative effect on the snowpack 

energy balance will somewhat reduce the uncertainty of runoff predictions (Follum et al., 

2019).  

Continued investigation of interannual and sub-seasonal patterns of dust loading 

is necessary to better inform operational snowmelt projections in the UCRB. Our results 

indicate that dust concentration magnitude is not directly responsible for accelerated 

melt rates and that sub-seasonal combinations of SWE magnitude, irradiance, and 

precipitation all influence snow cover duration. Daily analysis of dust, snow, and climate 

dynamics by Skiles and Painter (2017) over a high-dust and low-SWE ablation season 

(WY2013) showed that even small dust concentrations can decrease albedo and snow 

depth declined 50% faster than years of similar depth and lower dust. Understanding 

the relation of snowpack development and dust concentration may require 

measurements at a finer temporal resolution than bulk seasonal averages. There is also 

the need by water managers to expand beyond point-based studies and ascertain melt 

acceleration changes across larger basins. Bryant et al. (2013) proposed the adoption 

of the MODIS Dust Radiative Forcing in Snow product (MODDRFS) as a qualitative 

approximation of dust-enhanced absorbed energy that could be used to manually adjust 

melt factors in temperature-index models. However, MODDRFS determines the 

instantaneous radiative forcing by dust caused only by surface darkening and does not 
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capture the effects of accelerated snow grain growth. Future calibration of remote-

sensing products and forecasting of melt acceleration will depend on direct monitoring 

of snowpack energy balance at multiple locations. 

This research characterized historical point-based bulk snow and dust dynamics. 

Next steps would be to understand individual dust layer dynamics in relation to sub-

seasonal snow and climate variables, to incorporate weather forecasts into snowpack 

energy balance modeling, and develop a real-time dust-enhanced energy absorption 

forecast product for operational end-users. 
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APPENDIX A. DATASETS 
 
 
 

Table A-1. Instrumentation at CSAS meteorological towers (from Landry et al., 2014) 
 
Variable Sensor Units 

Precipitationa ETI Noah II mm 

Wind speed and direction RM Young Wind Monitor 05103-
5 

meters per second 

Air temperature Vaisala HMP50YA (SB, SA), 
Vaisala CS500 (SA) 

Celsius 

Humidity Vaisala HMP50YA (SB, SA), 
Vaisala CS500 (SA) 

percentage 

Incoming solar radiation 
(broadband) 

Kipp & Zonen CM21 
Pyranometer 

Watts per m2 

Incoming solar radiation 
(NIR/SWIR) 

Kipp & Zonen CM21 RG695 
NIR/SWIR Pyranometer  

Watts per m2 

Diffuse incoming solar 
radiation 

Kipp & Zonen CM21 RG695 
NIR/SWIR Pyranometer (SB), 
Swiss ASRB Shadow Arm (SA) 

Watts per m2 

Incoming thermal radiation Kipp & Zonen CG-4 
Pyrgeometer 

Watts per m2 

Barometric pressure Vaisala PTB101B (SA) millibars 

Snow depth CSI SR50 ultrasonic distance 
ranger 

meters 

Reflected solar radiation 
(broadband) 

Kipp & Zonen CM21 
Pyranometer 

Watts per m2 

Reflected solar radiation 
(NIR/SWIR) 

Kipp & Zonen CM21 RG695 
NIR/SWIR Pyranometer 

Watts per m2 

Infrared snow surface 
temperature 

AlpuG SnowSurf Celsius 

a only collected at SA site 
 
Sub-alpine plot 1-, 3-, and 24-hour datasets:  
<https://snowstudies.org/archived-data/> 
 
Alpine plot 1-, 3-, and 24-hour datasets:  
< https://snowstudies.org/archived-data/> 
 
CSAS Sensor Status Workbooks (Snow Stake Array Depths dataset):  
< https://snowstudies.org/archived-data/> 
 
CSAS Snow Pit Profile archive for SBB:  
< http://www.codos.org/sbb#snowprofiles-sbb> 
 
Red Mountain Pass SNOTEL dataset:  
< https://wcc.sc.egov.usda.gov/nwcc/site?sitenum=713> 
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APPENDIX B. INDIVIDUAL MODEL RESULTS 
 
 
 

Table B-1. SNOBAL model run results under “dusty” scenario (actual conditions) 

WY Start pit date Days of snow 
modeled 

Modeled SAG Observed 
SAG 

2007 4/18/2007 49 6/5/2007 6/5/2007 

2008 4/14/2008 65 6/17/2008 6/16/2008 

2009 4/15/2009 38 5/21/2009 5/21/2009 

2010 4/12/2010 48 5/30/2010 5/29/2010 

2011 4/11/2011 74 6/24/2011 6/23/2011 

2012 4/16/2012 26 5/12/2012 5/11/2012 

2013a 4/16/2013 31 5/16/2013 5/18/2013 

2014 4/16/2014 49 6/3/2014 6/6/2014 

2015 4/14/2015 63 6/15/2015 6/15/2015 

2016a 4/13/2016 54 6/5/2016 6/9/2016 

2017 4/6/2017 64 6/8/2017 6/10/2017 

2018 4/8/2018 36 5/13/2018 5/16/2018 

2019 3/26/2019 75 6/9/2019 7/10/2019 

a = upper limit of Net Solar input parameter was set to 800 W m-2  

 

Table B-2. SNOBAL model run results under “clean” conditions (where net solar input 

was decreased according to DEAE to simulate dust-free conditions)  

WY Start pit date Days of snow 
modeled 

Modeled SAG 

2007 4/18/2007 68 6/25/2007 

2008 4/14/2008 88 7/10/2008 

2009 4/15/2009 69 6/22/2009 

2010 4/12/2010 71 6/21/2010 

2011a 4/11/2011 101 7/21/2011 

2012 4/16/2012 39 5/25/2012 

2013 4/16/2013 49 6/3/2013 

2014 4/16/2014 73 6/27/2014 

2015 4/14/2015 74 6/26/2015 

2016 4/13/2016 73 6/25/2016 

2017 4/6/2017 78 6/23/2017 

2018 4/8/2018 50 5/27/2018 

2019 3/26/2019 98 7/2/2019 

a = upper limit of Net Solar parameter was set to 800 Wm-2 
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Table B-3. RMSE and NSE results for modeled dusty SWE compared to observed  

WY Daily derived SWE curves Irregular manual measured 
SWE 

RMSE (mm) NSE RMSE (mm) NSE 

2007 64 0.89 59 0.91 

2008 120 0.81 26 0.98 

2009 57 0.95 35 0.94 

2010 60 0.86 30 0.94 

2011 91 0.90 80 0.79 

2012 59 0.76 20 0.97 

2013 37 0.97 156 -2.45 

2014 58 0.89 119 0.64 

2015 70 0.67 49 0.87 

2016 70 0.93 119 -1.96 

2017 52 0.92 108 0.46 

2018 85 0.53 98 -4.80 

2019 287 -0.19   

overall     

 

 

Table B-4. Maximum net solar springtime inputs (over 1 April to June 30) and 

springtime daily mean net solar input (taken from 0900 to 1700 hours) 

 Dusty Scenario Clean Scenario 

WY Maximum Net 
Solar (W m-2) 

Daily Mean Net 
Solar (W m-2) 

Maximum Net 
Solar (W m-2) 

Daily Mean Net 
Solar (W m-2) 

2007 1006 349 535 221 

2008 981 349 528 230 

2009 1024 381 548 221 

2010 1004 407 530 243 

2011 942 311 513 213 

2012 999 469 537 270 

2013 1016 460 548 261 

2014 1016 375 534 229 

2015 1105 319 567 208 

2016 979 347 516 216 

2017 999 389 522 244 

2018 996 457 537 263 

2019 931 291 494 199 
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APPENDIX C. MULTIPLE REGRESSION ANALYSIS 

 

Table C-1. Cross-correlation (R2) between the independent variables 

  
Number of 
dust events 

Cumulative 
springtime 
irradiance 

Cumulative 
springtime 

precipitation 

 
1 April SWE 

Percent of 
dust events 
post-peak 

SWE 

End-of-year 
dust 
concentration 

 
0.293 

 
0.172 

 
0.094 

 
0.008 

 
0.001 

Number of 
dust events 

 0.187 0.042 0.008 0.108 

Cumulative 
springtime 
irradiance 

   
0.618 

 
0.511 

 
0.006 

Cumulative 
springtime 
precipitation 

    
0.157 

 
0.069 

1 April SWE     0.143 

 

Table C-2. Multi-variate linear regression results 

 ΔSAG Daily mean visible DEAE 

Constant -11.1 -12.5 14.8 19.9 

End-of-year dust 
concentration 

2.42 2.48 6.11 5.91 

Number of dust 
events 

15.6 17.2 10.8 5.15 

Precipitation 7.06 3.73 -20.6 -8.53 

1 April SWE 31.3 28.9 18.9 27.3 

Percent of dust events 
post peak SWE 

-4.95 -5.64 -3.05 -0.551 

Irradiance -6.26  22.7  

Adjusted R2 0.884 0.895 0.688 0.654 

NSE 0.942 0.939 0.844 0.798 

Standard error 2.02 1.92 3.01 3.18 
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