THESIS

NONLINEAR FREE VIBRATION OF BEAMS BY ONE-DIMENSIONAL AND

ELASTICITY SOLUTIONS

Submitted by
Abdullah N. Asiri

Department of Civil and Environmental Engineering

In partial fulfillment of the requirements
For the Degree of Master of Science
Colorado State University
Fort Collins, Colorado

Fall 2018

Master’s Committee:
Advisor: Paul Heyliger

Suren Chen
Mike O’Reilly



Copyright by Abdullah N. Asiri 2018

All Rights Reserved



ABSTRACT

NONLINEAR FREE VIBRATION OF BEAMS BY ONE-DIMENSIONAL AND

ELASTICITY SOLUTIONS

In this research, linear and nonlinear free vibration are examined. A three-dimensional
rectangular parallelepiped free—free beam is studied based on the Ritz method. The equation of
motion is derived depending on Hamilton’s principle. A validation of the Ritz method
formulation has been conducted by comparison with the Euler—Bernoulli beam theory. The
impact of three-dimensional beam length has been investigated as well.

In terms of nonlinear analysis, a two-dimensional clamped—clamped beam was studied.
Total Lagrange formulation is adopted for the elasticity method based on the Green—Lagrange
strain tensor and second Piola—Kirchhoff stress tensor. The outcomes of the approximated
method have been compared by using the nonlinear Euler—Bernoulli theory depending on the
Hermite and Lagrange interpolations. The solutions of both theories are computed according to
the direct iteration method. Poisson’s ratio effect is studied with two assumptions, as well as the

impact of the Gauss evaluations.
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Chapter 1 — Introduction

1.1 Overview

In recent days, studying the vibrational behavior of structures has become interesting to
researchers and designers because of the critical role this phenomenon plays in failure
conditions. Elements that have mass and elastic status are qualified to produce vibrational
motions. To understand when vibrations can be observed, most human activities, such as
speaking, running and respiration, include oscillational motion. For the safest results in design,
construction, and operation of a structure, it is important to consider this kind of dynamic
behavior (Rao, 2007).

In Hook’s formulation, Newton’s second law and differential equations help investigate
the vibration of continuous systems such as strings, bars, and beams. For beam vibration,
engineers and designers are concerned with studying the dynamic behavior of vibration,
especially that of earthquake motion. In addition, the importance of a beam lies in its ability to
represent any elements that need to be examined, such as aircraft wings, rocket missiles, or
submarines. Therefore, studying the dynamic behavior of such elements’ geometries is
worthwhile. Consideration of these examples with no external factors such as air or water would
result in linear deformation conditions. However, objects interact with air and water in nature, so
the deformation conditions in this case become nonlinear (Anindya, 2009). Concentrating on
beam vibration, Daniel Bernoulli studied thin beam oscillation in 1735, creating the equation of
motion of transverse vibration. Euler extended this study by applying various boundary
conditions which led to what is now known as Euler—Bernoulli theory, which is the beam theory

adopted by this investigation as recommended by Rao (2007).



However, applying the beam theory for two- or three-dimensional problems tends to be
difficult. Exact solutions provide clear ideas of the oscillations and mode shapes of simple
problems, reflecting the infinite number of series that describe the normal modes of vibration.
However, some vibration problems have complexity in the form of differential equations or
boundary conditions; in such cases, approximate solutions would be preferable. Approximate
solutions have been classified by Rao (2007) in two categories. The first category depends on a
finite number of series, which involve a set of functions that is multiplied by unknown factors.
The set of functions can be formulated according to the approach used. For instance, in the Ritz
method, a set of functions should satisfy three conditions: (a) essential boundary conditions
should be formed homogeneously; (b) they should be built in complexity, meaning functions
start from the simplest form then increase in complexity; and (c) they must be linearly
independent. Hence, the maximum number of series used yields corresponding numbers of
eigenvalues as well as the eigenfunctions which are applied in this research.

The second category is built upon the simple lamping of system properties. The concept
of this approach is, for example, to concentrate the mass of a system on specified points
described as stations; the parts between these stations are called fields, and the stiffness in this
case 1s considered uniformly distributed, neglecting the mass of these fields. This approach tends
to be more conjectural in nature; the Ritz method is considered more analytical, so the latter
approximation is the analytical solution used in this research.

In this research, a three dimensional free—free beam has been examined for linear
vibration analysis according to the elasticity method. The elasticity method was formulated
based on the Ritz approximation method with the series of polynomials in a Cartesian coordinate

system. To investigate the accuracy of the analytical solution, the Euler—Bernoulli beam theory



has been applied to compare its results to those of the elasticity method. The maximum number
of powers related to the polynomial has been tested for 6, 8, and 10 where represented by the
variables of the polynomial in x, y, and z directions with consideration of the effects of increasing
them on the natural frequency as well. The aim of studying the linear vibration refers to the
special case in which nonlinear vibration is generalized from the linear behavior of any structural
element.

Nonlinear investigation was considered for a clamped—clamped rectangular beam. The
approximation function was applied in terms of trigonometric functions instead of the
polynomial function. Total Lagrange formulation was used for the nonlinear elasticity
formulation, based on Green—Lagrange strain tensor and second Piola—Kirchhoff stress tensor.
The nonlinearity of Euler—Bernoulli theory has been investigated using Hermite and Lagrange
interpolations as shape functions in the formulation with various lengths of the beam. The
objective is to compare the frequencies found by the beam theory and the elasticity method with
some of the previous investigations in this field.

1.2 Organization

This research is divided into five chapters: Chapter 1 is the introduction; it describes the
importance of studying vibrational behavior and the reasons for applying the approximated
method. Chapter 2 is a literature review of linear and nonlinear investigations for several
approximated methods. Chapter 3 presents the formulas for the beam theories and the various
approximated methods. Chapter 4 discusses the results of the Ritz approximation and beam
theories, as well as the observed behaviors for linear and nonlinear analyses. Chapter 5, the

conclusion, summarizes the study’s remarkable results and makes suggestions for future study.



Chapter 2 — Literature Review

2.1 Background

In this chapter, previous publications that studied the vibration of continuous systems are
discussed, especially those that applied approximate methods. According to Rao (2007), the
history of using approximate approaches dates to 1877, when the Lord Rayleigh introduced his
book on sound theory. He contributed to computations of fundamental frequency based on
energy, which is now known as the Rayleigh method. Another approximate method extended
from Rayleigh’s method was created by Ritz (1878—-1909), who applied an approximate
approach to boundary value problems. In addition, Galerkin (1871-1945) introduced the
weighted residual approach to the Ritz method. In complex engineering problems, researchers
used to impose the simple approximate method with limited degrees of freedom. However, with
the development of computers and simulation systems, investigators could formulate more
complex problems with multiple degrees of freedom, leading to reduced errors and supporting
the inclusion of more approximate methods in several aspects.
2.2 Linear Vibration

One of the earlier papers on linear vibrations analysis was written by Eer Nisse (1967),
who introduced the vibration analysis of piezoelectric disks. He considered the elastic properties
of electrical phenomena. Analysis has been applied by using variational calculations that depend
on the direct approximation method. The author concluded that the approach gave accurate
natural frequency and mode shape compared to approximations that were used before.

Later, Ohno (1976) developed a free vibration analysis of parallelepiped rectangular

crystal that was extended from Demarest’s cube resource theory. Ohno aimed to determine the



elastic constant from the free vibration frequency of the olivine crystal. He compared his
elasticity constant results to the data of Verma (1960) and Kunazawa and Anderson (1969).

Heyliger and Al-Jilani (1992) studied the free vibration of cylinders and spheres. They
utilized the governing equations, the variational statements, and the Ritz method to compute the
oscillational frequency of cylinders and spheres. The researchers considered three coordinate
systems in their analysis that supported the application of their formulation to several kinds of
geometries. The results possessed remarkable agreement with other approaches.

Regarding dynamical analysis for beams, Reddy (2007) used the various beam theories
to formulate an analytical solution of free vibration with consideration of nonlocality. Hamilton’s
principle has been used to express the variational statements that develop the displacement of
finite elements approach for a simply supported beam. Reddy stated that nonlocal effects play a
role in decreasing the values of natural frequency.

A new Timoshenko beam model was modeled by Ma, Gao, and Reddy (2008). The
investigators considered the microstructure of that model to study various dynamic responses.
Couple stress and Hamilton’s principle are modified to develop the formulation. In terms of free
vibrations, the new model shows higher natural frequency compared with the classical model.
The Poisson effect has significant impact on the natural frequency, especially when v = 0.0.
furthermore, the authors stated that the size effect would be noticeable even when the thickness
of a beam is very small.

Mesut (2010) introduced functionally graded beams with vibrating boundary conditions.
The Lagrange equation was used to formulate the equations of frequencies as well as the
Lagrange multipliers for boundary conditions. Aluminum and alumina were used for a beam

with properties varying through its thicknesses. Mesut concluded that the two formulations used



provided the same amplitude values. In addition, natural frequency increases as the slenderness
ratio increases. Also, Aydogdu (2006) established the vibration analysis of cross-ply laminated
beam. The investigation considered various boundary conditions: free, clamped, and simply
supported.
2.3 Nonlinear Vibration

Compared to linear vibration publications, nonlinear analysis is considered a newer field
of study and therefore, few publications are concerned with the nonlinear vibration of beams.
One of the earlier and more comprehensive investigations of nonlinear analysis was conducted
by Woinowsky-Krieger (1950), who was interested in testing the nonlinear vibration of
transverse loaded supported bars. He found that axial force affects the vibrational behavior in
increasing oscillation as the amplitude increases. Lewandowski (1987) established another
vibrational examination of beams. The author applied the analytical solutions of free nonlinear
vibrations of beams with various boundary conditions. Frequency as well as mode shape were
obtained by using the Ritz approximation. Lewandowski concluded that in a simply supported
beam, the accuracy of the Ritz method was noticeable in comparison to other approximations
due to the smaller frequency errors obtained. He observed that when the flexibility of support is
great in horizontal axis with an increase in vibrational amplitude, the frequencies also increase.

The frequency of beams and plates undergoing large-amplitude free vibration was
investigated by Mei (1973). He considered a large deflection as the assumption of the nonlinear
behavior. The formulations of the stiffness matrix were calculated based on Berger’s approach
(1955), in which the nonlinear vibration of beams is investigated as a special status of plates. The
results of Mei’s assumptions were in agreement with other studies. He concluded that increasing

in the dimensionless amplitude led to the excitation of nonlinear behavior.



Based on large bending theory, Bhashyam and Prathap (1980) formulated the Galerkin
finite-element method to study the nonlinear vibrations of one-dimensional beams. The
researchers applied GFEM to avoid any confusion about the frequency values of axial and
translation displacements (# and w, respectively) due to conjunction of nodal quantity. The
nonlinear eigenvalue problem is computed depending on the linear eigenvalue problem, and the
matrix equation is produced to become an equivalent to the nonlinear matrix by applying the
weighted residual method. Bhashyam and Prathap suggested simplifying computation, especially
for the errors of the axial forces or frequencies that occur with changing of mode shapes that
correspond to amplitude reduce.

Previously, Rao, Raju, and Raju (1976) studied nonlinear free vibration by applying the
strain-displacement relation of one-dimensional beams and plates with S—S and C—C boundary
conditions. The formulations were in remarkable agreement with other studies. Researchers have
also found that nonlinear behavior increases as the number of the mode shapes increase.

Stupnicka (1983) generalized the Ritz approach to determine the approximated nonlinear
frequencies and mode shapes of beams with nonlinear (dynamic) boundary conditions. The idea
of the generalization is to create a homogenous relationship between the Ritz method and the
harmonic balance principle, then apply it to dynamic examples of beams. The authors found that
the mode shape and frequency must be considered as unknown instead of randomly assumed.

To study the nonlinear vibration of several kinds of materials, Ke, Yang, and
Kitipornchai (2010) examined the nonlinear free vibration of composite functionally graded
carbon nanotube beams based on Timoshenko beam theory as well as von Kdrméan geometric
nonlinearity. The eigenvalue equation is obtained by applying Ritz approximation. The

investigators observed that with each increment in the total polynomial powers, the results



become more accurate. As the volume fractions of carbon nanotubes increase, the linear and
nonlinear oscillations also increase.

Extending the investigation of functionally graded beams, Ke, Wang, Yang, and
Kitipornchai (2012) then studied the nonlinear free vibration of size-dependent microbeams.
They aimed to test the material under various factors such as slenderness ratio and boundary
conditions. They concluded that the linear and nonlinear frequencies increased when the
thickness was identical to the length of a beam.

Marur and Prathap (2005) introduced a simplification of the finite elements model of
beams based on quasi-linearization technique, eliminating in-plane displacement, and compiling
both theories together. They compared the new simplifications by using variationally correct
models such as Galerkin, Ritz, and Lagrange type. These simplifications show the incorrect
notion about computing the correct result when they applied together. Furthermore, the
investigators suggested that the variationally correct models are appropriate for nonlinear
vibration problems.

In 1975, Bathe, Ramm, and Wilson introduced the comparison of Lagrange formulations
(total and updated) with a NONSAP program to determine the appropriate finite-element
formulation. The researchers considered large-dynamics behavior (large displacement and large
strains) in the investigation. Elastic, hyperelastic, and hypoelastic materials were considered.
They concluded that the differences obtained in the numerical results depend on assumptions of
material behavior so that, in explicit aspects, the numerical results and theory should be identical.
Later, various elastic bodies were subjected to large deflection in tests by Heyliger and Reddy
(1988b), who applied updated Langrage formulation. Both linear and nonlinear problems were

considered to examine the accuracy and the efficiency of this approach. The finite-element



formulation mixed both approximated displacements and stresses as nodal variables which
increase the stiffness matrix size and the degrees of freedom per nodes. This was due to the
increase of degrees of freedom caused by the mixing procedures. Heyliger and Reddy (1988b)
found good agreements for this approach in comparison with the traditional displacement
formula of the Ritz method. In addition, the higher order theory has been investigated in
rectangular beams to study dynamic and static analyses. To include the large deflection and
rotation impacts, Heyliger and Reddy (1988a) considered the Von Karman strain in the
derivation of the equation of motion as well as the Hamilton principle. For finite element
approximations, the displacement fields of Higher Order Theory. were formed by using the
Lagrange and Hermite interpolations. Regarding vibrational analysis, the obtained oscillations of
various edge conditions showed good agreement in comparison with Timoshenko’s theory and
elasticity results.

Another technique presented by Wilson, Farhoomand, and Bathe (1973) provided a
general solution for the dynamic behavior of structures. The authors concentrated on the errors of
the discrete structure nonlinear equations. The incremental form was also applied to derive the
equation of motion. At the end of this investigation, the authors suggested performing more
research on this formulation, especially regarding the evaluation of matrices.

In addition, Dupuis, Hibbitt, McNamara, and Marcal (1971) introduced the Eulerian
approach to investigate the nonlinearity of shell structure, taking into consideration the impact of
small displacements as well as initial stress. This study also formulated equations by combining
the Eulerian and Lagrange approaches. They believed that this newly introduced approach

yielded good indicators for consideration in nonlinear analysis.



Hibbitt, Marcal, and Rice (1970) developed linear finite-analysis theory depending on
large-displacement and large-strain assumptions. This study’s incremental stiffness equation was
derived using the Lagrange methodology. Significantly, the formulation of finite strain has an
identical level of difficulty as the current small-strain, large-rotation approximation.

Recently, a nonlinear vibration analysis approach for beams was introduced by Shen
(2011), which depends on the two-step perturbation method. This method considers the small
perturbation factor as having no physical impact; therefore, this factor would be ill-treated by
dimensionless deflection. The nonlinear frequencies have been investigated with and without
consideration of the initial stress, as well as with movable and immovable boundary conditions.
Regardless of foundation type, the study admitted that the boundary conditions affect the
nonlinear vibrational behavior for the Euler—Bernoulli theory.

Shen and Xiang (2013) extended the analysis of nanotube-reinforced composite beams
resting on an elastic foundation. The researchers studied a case of uniform distribution and
functionally graded material. The nonlinear vibration in this investigation was applied by two-
step perturbation method depending on thermal bending stress and displacement fields.

On the other hand, Kitipornchai, Ke, Yang, and Xiang (2009) applied nonlinear vibration
to the cracked edges of Timoshenko beams. The Ritz method and the direct iterative approach
were considered to derive the nonlinear frequency and mode shape. The authors set this beam in
two states, (a) intact and (b) cracked, observing that when they occur at the center of the beam,
the frequency is extremely affected by the cracks. Nonlinear behavior increases as vibrational
amplitude increases.

An investigation of nonlinear free vibration of orthotropic Euler—Bernoulli beam theory

was conducted by Ghasemi, Taheri-Behrooz, Farahani, and Mohandes (2016). This study
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depended on finite strain assumption with consideration of the second Piola—Kirchhoff stress
tensor and Green—Lagrange strain tensor. The contrast of linear and nonlinear mode shapes was
notable in the simply supported beam condition.

Testing nonlinear vibration of beams with various aspects, Hamdan and Shabaneh (1997)
applied a lumped mass in the center of beam, but its rotary inertia and shear deformation were
neglected. They used Hamilton’s principle and single-mode Langrage method, which neglected
the condition of inextensibility. In the second approach, the authors assumed nonlinear
frequencies to be the same as linear ones, expanding space and mode shapes. The results show
that large errors occurred with the increase of the ratio of attached mass. The researchers also
observed that similar behaviors for both linear and nonlinear vibrations occurred, especially
regarding the stiffness of the base and the position and magnitude of attached mass at the small
amplitudes.

Regarding sandwich beams, Kiani and Mirzaei (2016) studied the free vibration caused
by temperature changes on sandwich beam with carbon-nanotube-reinforced faces. The carbon
nanotubes’ faces were studied in both uniformly distributed and functionally graded conditions
based on Timoshenko’s theory. Nonlinear formulation was derived dependent on linear
derivations (Hamilton’s principle). The investigators found, in general, that the nonlinear-to-
linear frequency ratio increased as the temperature increased. In addition, this ratio leads the
uniformly distributed beam to yield values higher than the functionally graded one. Chen,
Kitipornchai, and Yang (2016) also extended the dynamic investigation of sandwich beam with
consideration of both functionally graded and uniformly porous cores with three distribution

forms. The researchers applied a nonlinear formulation based on Von Karman and Ritz
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approaches. The study showed an inverse relationship between the effects of the porosity
coefficient and the nonlinear oscillation size.

A rotor-crafted blade was idealized and represented as a rotating beam to study dynamic
nonlinear behavior based on the finite-element model. To achieve accurate results despite
inaccuracy caused by the interfaces of various displacement components with a large number of
degree-of-freedom points, Apiwattanalunggarn, Shaw, Pierre, and Jiang (2003) introduced the
Galerkin and collocation-based invariant manifold approaches that led to reduced modal order
for the nonlinear finite-element method.

2.4. Significance

In this investigation, the elasticity method functions as an approximated method
represented by the Ritz approach to examine the dynamical behavior of the beams. Various
boundary conditions are taken into consideration as well as two models. The effect of Poisson’s
ratio is studied for the nonlinear natural frequency. Both linear and nonlinear analyses include
the impact of the various lengths of the studied beams on natural frequency and mode shapes.
The approximated method results are then compared with the one-dimensional Euler—Bernoulli
theory. Generally, the contribution of this work to the field is involving the nonlinear two-

dimensional beam model of the elasticity method.
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Chapter 3 — Methodology

In this section, linear analysis is considered the benchmark for nonlinear analysis. Both
linear and nonlinear analysis formulations are discussed.
3.1 Linear Analysis
3.1.1 Overview

Linear analysis is considered the basis of nonlinear formulation. Hence, linear vibration
analysis is described as the Fortran language program in terms of elasticity theory dependent on
stress and strain components. This constitutive relationship is the starting point of vibration
analysis. Because a simple vibrational system is an exchange between potential and kinetic
energies, the Hamilton principle is applied; therefore, it is an appropriate approach for discrete
dynamical problems. The Ritz method is used in addition to the displacement-strain relationship
to compute the approximate solution of the weak form that leads to generalization of the
eigenvalue problem. Euler—Bernoulli beam theory is applied to compare the analytical solution
with the elasticity method analysis.
3.1.2 Ritz Method

Difficult geometries and boundary conditions lead the investigators to apply
approximated methods in order to study the desired phenomena. The Ritz method is one of the
approximation approaches that is an extension of the Rayleigh approach. The concept of the Ritz
method is that the deformation of a continuous system can be evaluated over a domain using a
trial function that should satisfy some conditions to be applicable. The Formulation section of

this chapter describes the Ritz approximation method broadly.
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3.1.3 Discretization

In this research, in order to visualize the deformed shapes, the parallelepiped beam was
divided into 640 hexahedrons with eight nodes per element. This is another type of three-
dimensional discretization beside the tetrahedron and wedge models. Each node was represented
by three displacement components in a Cartesian coordinate system: (a) axial displacement [U];
(b) out-of-plane displacement [V]; and (c) transverse displacement [W] in the x, y, and z
directions, respectively. These enabled visualization of the deformed shapes of the beam that
describe the dynamical behavior. As the number of elements increase, greater accuracy of results
may be obtained. SAP 2000 software has been used for the discretization process; MATLAB

code visualized the final form of the hexahedron elements.

Figure 3.1 Discrete parallelepiped beam visualized by MATLAB software

3.2 Elasticity Method
The governing equations for linear free vibration are derived depending on energy
relations. Lagrange equations are described as the integration of the difference of kinetic energy
and potential energy with respect to the tested volume. Equation (3.1) represents the Lagrange
equation as
L= fV(KE — PE)dvV, 3.1

where the kinetic energy and potential energy are described as
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KE = %pa)zuiui (3.2)
1
PE = ECijklui‘juk,l (33)

and the general constitutive relation considered in linear free vibration is

C11 Ciz Ci3

- 0 0 0y,
[022] Cu Ca Ga 000 ley
033 C31 C3 C33 0 0 0 ||é&s3
033 - 0 0 0 C44_ 0 0 |)/23 |’ (34)
@l 1000 0 G 0|3
ozl 1o 0 0 0 0 Cellre

where g;; is the stress component, C;j, is the elastic stiffness tensor, and £ and y are the
normal and shear deformation the material is subjected to. The stress—strain relationship is
the baseline of the free-vibration problems.3.2.1 Ritz Approximation in the Linear Analysis
The Ritz method was used to compute the approximated solutions for the displacement

vectors. According to Euler—Bernoulli theory, the displacement field is introduced in Equation
(3.11). According to Visscher et al. (2008), the simplest form with which to evaluate the
displacement vector is the power series formulation. The function is applied depending on the
Cartesian coordinate system as:

¢y = xty™z", (3.5)
where A = (I, m,n) are the nonnegative integers. The powers of the polynomial function should
be controlled by the following condition as:

l+m+n<N (3.6)
N here is the allowed maximum number of polynomial function. In this research, N of 6, 8, and
10 has been applied. The Ritz approximation has been formulated as

U@ = go+ ) ax ()

i=1
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V@) = go+ ) b ()

i=1
w(x) = ¢o + Xi'= ¢ * Pa(x), (3.7)

where ¢ refers to the sample’s natural boundary condition status; a, b, and c¢ are the variational
statement; and n is the maximum number of the functions. In Ritz approximation, the boundary
condition is considered in the variational statement; therefore, ¢, has been set zero, as there is no
need to apply this term in that approximation. For the remaining functions, the homogeneity of
the essential boundary condition and the independence of the linear condition must be satisfied
according to Heyliger and Jilani (1992). Hence, u(x), v(x), and w(x) are the displacement fields
in the x, y, and z directions, respectively.

Deriving the weak form refers to the stress—strain relation represented in Equation (3.4).

Hence, the strain-displacement is expressed as:

au av ow
€11 = 37 €2 = 3> €33 = 57
v | aw U | aw av . au
Yoz = 5,1t %, Yiz = 5t 50 )/12—54‘5 (3.8)
Hamilton’s principle can be obtained from Equation (3.4) as:
t
0 = —f f{al(?el + 0,06, + 03063 + 0,04 + 05065 + 050e5}dV dt
0 Jv
1ot ! 2 2
+25f0 J,p(U+V2+W?2)dV dt (3.9)

Substitute Equation (3.8) into the Hamilton’s principle formula. Hence, the weak form will be:

o = J, [(Clla +Clza +Ci az)a:xu (Clza +sza +CZ3E:3VZV)@+

(oGt gt en) T+ on(G+5) (G +5)+
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ou ow 06U aowW ou av 06U o6V
Css (5 +5%) (5 + %) +Cﬁ6(5+a) (EJFE) -

pw?(USU + V6V + WsW)| av (3.10)

Now, apply the Ritz approximation and the values of the variation statements to the weak form.

The generalized eigenvalue problem is given as:

K11 K12 gi3yra M1t 0 0 a
K21 K22 K23 lbl = pwz[ 0 M?2 0 “bl 3.11)
K31 k32 g33]ld 0 0o Mm33lld

The mode shape of the linear elasticity method is computed using the following formulations:

u=Yaxp()  v=Elibrgax)  w =Xl dxd(x). (312
where a, b and c are the eigenvectors related to the model’s nodal value; u, v, and w describe
the displacements on the three directions, respectively; and N is the maximum nth function in the
X, v, and z directions.
3.3 Euler—Bernoulli Theory

The studied beam is considered to be a thin beam, so Euler—Bernoulli theory was applied

to derive the equation of motion and the boundary conditions. In Euler—Bernoulli theory, the
translations’ displacements are taken into consideration, and the rotation of the cross-section is
neglected, which means that the cross-section of the beams sustain the plane, normal to the

centerline after bending. Hence, the displacements filed can be introduced as:

u = —Z% v =0, w = w(x,t), (3.13)

where u, v, and w are the displacements in the x, y, and z directions, respectively. In this research
the Euler—Bernoulli theory was used for comparison with the Ritz method’s results.
3.3.1 Frequency of Euler—Bernoulli Beam Theory

Based on Euler—Bernoulli theory, the solution of a free-vibration beam is:

W(x) = C;sinfBx + C, cos Bx + C5 sinh Bx + C, cosh fx (3.14)
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The values C; through C4 are the integration constants, and sinh and cosh represent the

hyperbolic triangular functions. The natural frequency is computed from:
(3.15)

3.3.2 Boundary Conditions
This section describes the boundary conditions of this research. Free—free ends are

applied to both sides of a parallelepiped rectangular beam.

Figure 3.2: Free—free parallelepiped beam cross-section

Thus, the boundary conditions need to be defined mathematically. Each type of boundary
condition has a mathematical form used to find the frequency of the desired sample. This
satisfies the bending moment and shear force at the free end, so the boundary conditions of the

free—free ends are:

e (3.16a)
ETE0 = 0 or 220 = g (3.16b)
ETYD = gor L9 = g (3.16¢)
E1EYD = gor 20 = g, (3.16d)

where W(x) is the differential equation of the free vibration for the beam, which is described in

Equation (3.14).

After applying the operations of the boundary conditions, it is obtained as:
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a?w) _ B?[C1(— cos fx + cosh Bx) + C,(— cos fx —

dx?
cosh ffx) + C3(— sin Bx + sinh fx) + C4(— sin fx — sinh fx)] (3.17)
d3W(X) _ 3 . . . .
—3 = B°[C;(sin fx + sinh fx) + C,(sin fx — sinh fx) + C5(— cos Bx +

cosh fx) + C,(— cos fx — cosh £x)] (3.18)

From Equations (3.16a and b), we found:

C, = Cy = 00 (3.19)
Thus, Equations (3.16¢ and d) gave:

Ci(—cosfl + coshBl) + C3(—sinfl+ sinh fl) = 0 (3.20)

Ci(sin Bl + sinh Bl) + C3(— cos Bl + cosh Bl) = 0 (3.21)

From Equations (3.20) and (3.21), the solutions of C;and C3 were:

—cos Bl + coshpl —sinPl+ sinh Sl
= (3.22)

sinfBl+sinh Bl  —cos Bl + coshfl
In the case of a free—free end, the shape’s symmetry will give an advantage by reducing

the determinant’s complexity. This will generate two order determinants instead of four. To

reach this, the origin of the coordinate system should be placed at the center of the rectangular

parallelepiped beam. The nth mode pattern of free—free ends beams is:

cos fpl—coshfyl

W, (x) = (cosf,x + coshB,x) — sinfnl_sinh ful

(sinfx + sinhf,x) (3.23)

3.4 Gaussian Quadrature Evaluation

Hamilton’s principle was evaluated using the Gaussian quadrature method. The aim was
to prepare for the nonlinear analysis, which is the goal of the project. Furthermore, it provides
efficiency to the integration of the polynomial function. Gaussian quadrature is used for
evaluating both stiffness and mass matrices; therefore, the Gaussian points and weights were
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considered in the programming process. In the Ritz method, the Gaussian quadrature evaluation
occurs in parent space instead of in Cartesian coordinates. The parent space domain in a one-
dimensional problem is from —1 to 1; however, in a three-dimensional problem, the domain is
counted in the three directions of the parent space (&,1, (). This analysis was performed in the
Fortran computing program using the coded Ritz method and Euler—Bernoulli analysis.
3.5 Nonlinear Analysis
3.5.1 Nonlinear Deflection of Euler—Bernoulli Theory

In this research, the nonlinearity of Euler—Bernoulli beams was applied for use in
comparison with the outcomes of the elasticity analysis. Nonlinear analysis has different
assumptions from the linear procedure. The one-dimensional bending deflection of the Euler—

Bernoulli theory of linear assumption is expressed as:

a2 a%w
0x? (EI axz) —-f=0 (3-24)
2
where 2% is the slope of the cross-section in the bending condition, which is assumed to be less

x2
than 1.0 in the linear analysis. However, according to Reddy (2006), concerning the nonlinear
deformation, the slope is assumed to be large, and the impact of axial force the governing

equation of Euler—Bernoulli in the large deflection is described as:

9 (1 au+1<aW)2 .
0x Oox 2\dx 1=
a2 2w ) aw [ou = 1 fow)2
o Bl 52 —a{EAa[Wz(a) ]}‘f =0, (3.25)
where u is the axial displacement, w is the transverse bending, E is the modulus of elasticity, and
f is the transverse loading. Because the research concerns a free vibration model, the transverse

loading here is O (f = 0). The weak form was found by using integration by parts in Equation

(3.25), which becomes:
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a 1 fow)?
0=[" {EA [£+5(%) ]—vzq} dx—Q¢vy (x,)—Q%vy (%) (3.26)
0 - f’“q Eldzvz d2W+EAdv2 dw au+1<aW)2
B Xp dx? dx? dx dx|dx 2\ox v2f
dv; dv,
—Q5va (%) — Q5(— D] — Q5va(xg) — Q¢ (-22) (3.26b)
14

Xq
The finite-element approximations of the Euler—Bernoulli theory variables, u, w, and

ow .
— 5, are introduced as:

u = Xj-1 w(x) w = X7 si¢i(x), (3.27)

where u and w are the Lagrange and Hermite interpolations, respectively. By applying Equation

(3.27) to (3.26), the finite-element formulation can be shown to be:

[Kll] [KIZ] u _
[[K21] [KZZ]] [S] - O, (328)
and
g di, dip;
Kt = J EA—Z
Y . dx dx dx
*a1  dwdy;do;
K12 =J ZEpA—2t70
Y v 2 dx dx dx
14
Yo dwdg;dy;
Y . E4 dx dx dx
D
22 _ X d2¢id2¢j Xg 1 dw 2d¢ld¢]
Ki' = [ Bl o A + [ 1S EAGD 0 o0 dx (3.29)

The linear stiffness matrix cannot be neglected in the computational procedures, as the linear

vibration is the initial status of the nonlinear phenomena. The stiffness and mass matrix are taken

as described in Equations (3.30a and b):
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- EA —-EA

- 0 0 — 0 0 |
L L
12EI 6EI —12EI 6EI
0 L3 2 0 L3 2
6EI 4E] —6EI 2EI
K = o Y TE T (3.30a)
‘TEA 0 0 % 0 0 '
—12EI —6EI 12EI —6EI
0 L3 L2 0 L3 L2
o =& Z o X X
o L L L L -
140 0 0 70 0 0
0 156 22L 0 54 —13L
_pa| 0 22L 42 0 13L —3I2
~4a20] 70 0 0 140 0 0 (3.30b)
0 54 13L 0 156 22L
L 0 —13L =312 0 221 4l2

3.5.2 Elasticity Method
The linear analysis was extended to consider the large deformation assumption. The total

Lagrange formulation, introduced in the literature review, was applied to investigate the model’s
nonlinear behavior. The total Lagrange formulation is described by considering the motion of the
body in the Cartesian coordinate system for various configurations at times 0, ¢, and ¢ + At,
which are represented in the following equations as 0, 1, and 2, respectively. In addition, the
target configuration of the computational procedures is at time ¢ + At, and the computation was
applied with respect to the initial configuration at time O as well as the derivatives and integrals.
The benchmark equation of this approach can be expressed as:

STt A Sy pe€p AV = PR, (3.31)
which represents the principle of virtual work, with %R representing the external virtual work.
However, this equation tends to be applied to small displacements. Nonlinearity concerns

problems that undergo large deformation. Thereby, Equation (3.31) can be written as:
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[, 3Sij 65€; d°V, (3.32)

where ¢t4LS

ij is the second Piola—Kirchhoff stress tensor of configuration ¢ + At; this is

computed with respect to the initial configuration (t = 0). Depending on the constitutive relations

in the total Lagrange formulation, the stress—strain relations of elastic materials are given as:
2¢. — 2
05ij = oCijki0€ij (3.33)
Here, 2¢; ; 18 the Green—Lagrange strain. It can be expressed in terms of total

displacements u; in the two directions of x; as:

2
o€ij =

1 ,0%u; | 03u; 6(2,um6(2,um)
2 aox]' aoxi 80xi aoxj

(3.34)

The need to increase the second Piola—Kirchhoff stresses and Green—Lagrange strain through the

configurations can be shown as:
2¢. — 1
05ij = 055 T 0Sij
2c.. = le 4 oo (3.35)
o€ij o€ij T ofij> .
where the 3S; j and L€ ; are the known stress and strain components, respectively. According to
the definition of displacement based on the Green—Lagrange strain tensor, Equation (3.34) is
referred to as the linear component, and the nonlinear incremental displacements can be
expressed as:
1
oflij = 5 oUk,i olk,j (3.36)
The assumption of the total Lagrange formulation is that the strain (€;; at configuration O
is fixed through the motion of body until the configuration at ¢ + At, as follows:
6t+At o€ij = ) o€ij (337)
Equation (3.33) involves the relation between the stiffness tensor and the Green—Lagrange strain.
Thereby, the virtual work equation is:
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J, oCijit o€k 8o€ij AV + [, 6Sij 8o my; dOV = R — J, 0Sij 6o € A°V, (3.38)
where the right-hand side includes the known displacements, and the unknown components are
represented on the left side. This equation will be evaluated via Ritz approximation.

3.5.3 Ritz Method Formulation

The displacement components of the two-dimensional model are described as:

n

u = Z u ;"

j=1
w = ?=1le/JjW, (339)

with the axial and transverse displacements being the investigated components in this case. The

shape function 1; in the nonlinear analysis is expressed as:

Y = sin==2", (3.40)

where n, the maximum number of the shape function, is controlled by the conditions of Equation
(3.6). After evaluating these approximations in Equation (3.38), the weak form becomes:

(6K + 6Kni)u = RO, (3.41)
where {K; and (K, are the linear and nonlinear stiffness, which are provided in Section 3.8.
3.6 Computation Method for Nonlinear Formulation

To compute the assembled nonlinear equations from Equation (3.28), the approximate

solution should be applied. The direct iterative method is recommended for the nonlinear
formulations. The concept of this method is based on the solution of multiple iterations—the
coefficients K;; introduced in Equation (3.29) are the obtained solutions of the previous iteration.

Equation (3.42) describes the concept as:

[K{A]{ay ™+t = {F}, (3.42)
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where {A}" is the solution of the iteration (r). Therefore, the solutions of the coefficients K;; are

computed as:

r+1 _ _ (F}
W= R (3.43)

In the initial iteration—for example, r = 0—the solution will be assumed as {A}° = {0}.
This yields a redaction of the nonlinear stiffness matrix to be treated as a linear matrix. Thereby,
Equation (3.43) produces a linear solution for the equations. The process will be repeated for
every iteration until the errors are reduced. This approach was applied to the computational code
for both the beam theory analysis and elasticity method.
3.7 Poisson’s Ratio

The impact of Poisson’s ratio on the dynamical behavior was considered. The objective
of this investigation is to evaluate the elastic constants’ contribution if the Poisson’s ratio
changes. Poisson’s ratio is the amount of transverse strains divided by the axial strains. Usually
in this assumption, the extended directions are perpendicular to the compressed directions.
Poisson’s ratio impacts the elastic constants. The relationships between Poisson’s ratio and the

module of elasticity (E) and shear module (G) are expressed as:

G = —— (3.44)

2(1+v)’
where v is Poisson’s ratio. For the isotropic material, the components of the elastic stiffness

tensor regarding Poisson’s ratio are given as:

E(w-1)

Cu =C2 = 03 = G0 (3.45)
Ev
Cip = (13 = (3 = T rD@-D) (3.46)
1
Caa = Cs5 = Cge = ¢ (3.47)

The elastic stiffness matrix is described as:
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E(v-1)

Ev

Ev h

w+)(2v-1)  +DCuv-1)  w+D(2v-1) 0 0
_ Ev E(v-1) _ Ev 0 0
(w+1)(2v-1) (v+1)(2v-1) (w+1)(2v-1)
Ev Ev E(v-1)
T w+D@uv-1)  @w+DCu-1)  @+D(2v-1) 000
0 0 0 Lo o
G
0 0 0 0 = 0
G
0 0 0 00 =
- G_

3.8 Stiffness Matrix Equations

oy 0y 0y’
3 i i i
K = f(C13 wr Css—az W) av

LYY 1 ow
213 _ 9pj
nikij” = ,[[Cn dx Ox (2 ax)]dv

Y Py WY oYY oYy ayy
1133 _ i ] i i i i
lKl] f (C33 a aZ + C44 ay ay + 55 ax ax

oYY oYy /10w
21733 _ .0 B i
ik ﬁ}cw 9z ox (zax)]dv
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Chapter 4 — Results and Discussion

4.1 Overview

In this section, the results of the free vibration for the parallelepiped rectangular beam are
provided, as are the linear and nonlinear results involving the frequencies and mode shapes.
Furthermore, the complete deformed shapes of the beam are given. The linear methodology his
compared with the free vibration solutions depending on Euler—Bernoulli theory, and the
nonlinear results are applied in terms of beam theory and the elasticity method, based on the
nonlinearity of the Euler—Bernoulli theory and total Lagrange formulation, respectively.
4.2. Linear Analysis Results

The linear analysis considered a focused beam with the properties shown in Table 4.1.
Ritz method approximation was used for the series functions, for various maximum powers,
when N =6, N =8, and N = 10.

Table 4.1 Properties of the beam

Properties Value
Modulus of elasticity, E 2.0
Length of the beam, L 10
Width of the beam, b 1.0
Poisson’s ratio 0.0
Mass density 1.0
Thickness of beams, A 1.0

The first three natural frequencies of the Ritz method are shown in Tables 4.2, 4.3, and
4.4. The results were compared with the Euler—Bernoulli frequencies computed from Equation

(3.13). As the length increased, the natural frequency becomes smaller.
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Table 4.2 Natural frequency of the Ritz method for N = 6 of a Free—Free beam.
N=6
L=5 L=10 L=20
Ritz E.B. Ritz E.B. Ritz E.B.
App. | Theory | App. | Theory | App. | Theory
0.3266 | 0.3654 | 0.0885 | 0.0913 | 0.0226 | 0.0228
0.7972 1 1.0071 | 0.2386 | 0.2518 [ 0.0633 | 0.0629
1.3783 | 1.9743 | 0.4528 | 0.4936 | 0.1261 | 0.1234

Table 4.3 Natural frequency of the Ritz method for N = 8 of a Free—Free beam.
N=38
L=5 L=10 L=20
Ritz EB. Ritz E.B. Ritz E.B.
App. | Theory | App. | Theory | App. | Theory

0.3266 | 0.3654 | 0.0885 | 0.0913 | 0.0226 | 0.0228
0.7780 | 1.0071 | 0.2320 | 0.2518 | 0.0615 | 0.0629
1.3170 | 1.9743 | 0.4278 | 0.4936 | 0.1185 | 0.1234

Table 4.4 Natural frequency of the Ritz method for N = 10 of a Free—Free beam.
N=10

L=5 L=10 L=20
Ritz E.B. Ritz E.B. Ritz E.B.
App. | Theory | App. | Theory | App. | Theory

0.3267 | 0.3654 | 0.0885 [ 0.0913 | 0.0227 | 0.0228
0.7777 | 1.0071 | 0.2320 [ 0.2518 | 0.0616 | 0.0629
1.3138 | 1.9743 | 0.4271 | 0.4936 | 0.1184 | 0.1234

The mode shapes for these assumptions are given in the following graphs, which were
compared with the patterns of the Euler—Bernoulli mode shapes. The graphs show the
coincidence of mode shapes between the Ritz approximations at various maximum powers and

the Euler—Bernoulli Theory patterns, especially for the first two mode shapes.

28



The researcher has also noted that as the number of mode shapes increases, the accuracy
of the low-power solutions decreases, as compared with the theoretical results. At the fourth
mode, the shape pattern to the maximum power (N = 10) hardly forms mode shapes well as the

Euler—Bernoulli theory’s pattern does, as can be seen in Figure 4.2.
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Figure 4.1 First mode shapes with N =6, 8, and 10
In Figure 4.3, the oscillation values are connected with the length. The first four mode

shapes are given in Appendix A. This assumption was tested with lengths of 10 and 5.
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Figure 4.2 Accuracy of various N values for the fourth mode’s shapes
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The results show that as the beam’s thickness increases, the frequencies tend to be more elastic,

as shown in Figure 4.3, in comparison with the exact oscillations.
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Figure 4.3 Frequencies of various lengths for the third and fourth mode shapes

In addition, the impact of the maximum power (V) in the frequencies was compared to
that of the exact solution. As N increases, the frequencies tend to become more uniformly
distributed. This supports the accuracy of the mode shapes with the increments of N mentioned

above in this chapter.
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Figure 4.4 Frequency values of various maximum powers ()

Figures 4.5, 4.6, and 4.7 show the three-dimensional deformed shapes computed with the
elasticity method. The beam was meshed with hexahedral elements, and the displacements u, v,
and w were applied to each node, as can be seen in the following deformed shapes. The largest
displacements in a specific direction led the beam to deformed about that direction axis for x, y,

or z.

Figure 4.5 Deformed shape of the first mode of a three-dimensional free—free beam
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Figure 4.6 Deformed shape of the second mode of a three-dimensional free—free beam

Figure 4.7 Deformed shape of the third mode of a three-dimensional free—free beam
4.3 Nonlinear Analysis Results
4.3.1 Nonlinear Beam Theory
The nonlinear analysis was based on Lagrange and Hermite interpolations. In nonlinear
vibration, increases in oscillation are caused by the contribution of the axial force to the bending

frequency due to the beam stretching. Various boundary conditions were examined for the
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nonlinear vibrations. All of the results showed good agreement with two publications introduced

in the literature review (Evensen, 1968; Woinowsky-Krieger, 1950). Tables 4.5, 4.6, and 4.7 give
the frequency ratio (wy;/w L)Zof various boundary conditions for 4, 8, and 16 elements.

Table 4.5 (wy; /W L)Zof a simply—simply supported beam

» One—dlmensi(;lréaélell\lonhnear EB I o
n=4 n==8 n=16 {ER),
0.1 1.0027 1.0026 1.0025 1.0025
0.2 1.0109 1.0102 1.0100 1.0100
0.4 1.0434 1.0408 1.0400 1.0400
0.6 1.0977 1.0917 1.0900 1.0900
0.8 1.1736 1.1631 1.1601 1.1600
1 1.2712 1.2548 1.2501 1.2500
1.5 1.6099 1.5730 1.5626 1.5625
2 2.0834 2.0182 1.9998 2.0000
2.5 2.6912 2.5901 2.5611 2.5625
3 3.4326 3.2881 3.2464 3.2500
3.5 4.3068 4.1120 4.0551 4.0625
4 5.3131 5.0609 4.9866 5.0000

Table 4.6 (wy/w L)Zof a clamped—clamped beam

One—dimensional Nonlinear EB Continuum Solutions

alr model — -
ieger vensen
n=4 i n=16 (195g0) (1968)
0.1 1.0009 1.0007 1.0006 1.0006 1.0006
0.2 1.0034 1.0026 1.0024 1.0024 1.0024
0.4 1.0137 1.0104 1.0098 1.0096 1.0096
0.6 1.0307 1.0234 1.0220 1.0216 1.0216
0.8 1.0546 1.0416 1.0390 1.0383 1.0384
1 1.0852 1.0650 1.0609 1.0598 1.0599
1.5 1.1910 1.1459 1.1368 1.1343 1.1349
2 1.3379 1.2587 1.2425 1.2382 1.2398
2.5 1.5246 1.4029 1.3775 1.3708 1.3750
3 1.7496 1.5777 1.5412 1.532 1.5396
3.5 2.0114 1.7824 1.7328 1.7211 1.7350
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The oscillations were taken with consideration of the a/r ratio, for which a is the peak
amplitude and r is the radius of gyrations, aimed at nondimensionalizing the amplitude values.

The results were also compared with those of Evensen (1968).

Table 4.7 (wyy /W L)Zof a clamped—simply supported beam

One—dimensional Nonlinear Continuum Solutions
ulr EB model :
n=4 | n=8 | n=16 I?f;esgoe)r E(Vlegngg

0.1 [ 1.0015 | 1.0014 | 1.0013 1.0013 1.0013
0.2 [ 1.0063 1.0056 | 1.0053 1.0053 1.0053
0.4 | 1.0252 | 1.0222 | 1.0214 1.0213 1.0214
0.6 | 1.0566 | 1.0499 | 1.0481 1.0479 1.0481
0.8 | 1.1004 | 1.0887 | 1.0856 1.0850 1.0854

1 1.1567 | 1.1385 | 1.1336 1.1323 1.1335
1.5 [ 1.3509 | 1.3103 | 1.2994 1.2947 1.3004

2 1.6196 | 1.5486 | 1.5295 1.5175 1.5340
2.5 | 1.9602 | 1.8509 | 1.8215 1.7978 1.8344

3 2.3695 | 2.2143 | 2.1727 2.1331 2.2015
3.5 [ 2.8441 | 2.6350 | 2.5791 2.5217 2.6354

4.3.2 Nonlinear Elasticity Analysis

The two-dimensional clamped—clamped beam was investigated by using the elasticity
method. The investigation was done using the methodology described in Section 3.3.2, and the
outcomes were compared with the results of continuum solutions and higher-order theory
(Evensen, 1968; Heyliger & Reddy, 1988a; Woinowsky-Krieger, 1950).

The investigation was applied for the approximation functions when N =4 and N = 6,
where N is the maximum number of the approximation functions. The displacement components

u and w (in the two-dimensional case) were targeted in the research, based on Euler—Bernoulli
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theory. The vibrational behavior at N =4 is given in Table 4.8. The frequencies were smaller
than the Euler-Bernoulli frequencies when L = 10 and 20, respectively.

When L = 4, the oscillations become larger than the exact solution, as the elastic
condition was compared with the fixed exact formulations.

Table 4.8 Nonlinear frequency of a clamped—clamped beam of N =4
L=4 L=10 L=20

alr | Ritz Non. Ritz Non. Ritz Non.
App. E.B. App. EB. App. E.B.

0.4 |1.0127 [ 1.0097 | 1.0093 [ 1.0098 | 1.0081 | 1.0098
1 [1.0790 [ 1.0605| 1.0577 | 1.0650 | 1.0505 | 1.0610
1.5 |1 1.1767 [ 1.1358 | 1.1294 | 1.1459 | 1.1133 | 1.1369
2 | 13116 [ 1.2405| 1.2290 | 1.2587 | 1.2006 | 1.2428
2.5 1.4818 11.3741 | 1.3558 | 1.4029 [ 1.3117 | 1.3780
3 |1.6848 |1.5357| 1.5088 | 1.5777 | 1.4459 | 1.5420
3.5 (19174 [ 1.7241 | 1.6867 | 1.7824 | 1.6020 | 1.7340

When N = 6, the frequencies were in good agreement with the results of higher-order
theory, when the Hermite and Lagrange interpolations of the finite elements’ formulation were
applied. As can be seen in Table 4.9, the nonlinear frequencies tend to be larger as the length
decreases.

Table 4.9 Nonlinear frequency of a clamped—clamped beam of N =6

alr L=4 L=10 L=20 | L=40 Heyliger and Reddy
04 | 1.0128 1.0104 1.0101 | 1.0100 1.01065
1 1.0799 1.0645 1.0627 | 1.0622 1.06679
1.5 | 1.1787 1.1445 1.1405 | 1.1395 1.14956
2 1.3148 1.2553 1.2483 | 1.2466 1.26428
2.5 | 1.4858 1.3956 1.3852 | 1.3827 1.41003
3 1.6883 1.5639 1.5498 | 1.5465 1.58596
3.5 | 19178 1.7582 1.7405 | 1.7365 1.79129
4 2.1676 1.9763 1.9556 | 1.9510 2.02538

36



Various a/r ratios were also inspected along the given lengths of this model. On the other
hand, the Gaussian points and weights’ impacts were examined for N = 6 with L = 10 and 20.
The objective of this parameter was to study the accuracy of the elasticity results as the Gaussian
point numbers increase. Table 4.10 shows the effect of the increased Gaussian points and
weights on the nonlinear frequencies and the ratio between them.

Table 4.10 Accuracy of the frequencies based on Gaussian points and weights

Gaussi;lléiz?litrslts and alr=1 alr=2
L=10 L=20 L=10 L=20
24 points 1.0609 1.0571 1.2419 1.2270
8 points 1.0645 1.0627 1.2553 1.2483
Ratio % 0.3436 0.5260 1.0705 1.7035
Heyliger and Reddy 1.06679 1.26428

The impact of increasing the Poisson’s ratio on the natural frequency was studied for this
research. The results show that the frequencies increase when v = 0.3 is in compression with
v =0. However, the (wy,/w L)Z was slightly affected based on the Poisson’s ratio. Tables 4.11
and 4.12 give the first linear and nonlinear frequencies, with the consideration of various
Poisson’s ratios.

The results were compared by length (4, 10, 20, and 40) by the maximum number of used

functions (N). The complete linear and nonlinear results are shown in Appendix A with a/r ratios

of 0.4, 1.0, and 2.0.
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Table 4.11 Linear frequency of v =0 and v = 0.3 for a C—C beam

alr=1.0

alr

=1.0

N=6

N=4

L=10

L=4

L=10

L

=4

v=0

v=0.3

v=0

v=0.3

v=0

v=0.3

v=0

v=0.3

0.00763

0.01099

0.19907

0.25711

0.00853

0.01198

0.20333

0.26372

0.05378

0.07541

1.02448

1.19746

0.05965

0.08476

1.1109

1.35293

0.1381

0.16771

1.22869

1.42461

0.19739

0.27447

1.2337

1.82347

0.1431

0.18132

1.32955

1.81053

0.2055

0.29124

3.03278

3.52172

Table 4.12 Nonlinear frequency of v =0 and v = 0.3 for a C—C beam

alr=1.0

alr

=1.0

N=

6

N=4

L=10

L=

4

L=10

L=4

v=0

v=0.3

v=0

v=0.3

v=0

v=0.3

v=0

v=0.3

0.00812

0.01175

0.21499

0.279259

0.00902

0.01278

0.21938

0.28724

0.05362

0.07434

0.97236

1.127736

0.0595

0.08387

1.03338

1.25177

0.13772

0.16688

1.27453

1.361043

0.19773

0.27404

1.31848

1.90904

0.14294

0.1792

1.33012

1.891309

0.20546

0.29156

2.96741

3.44127

The ratios of nonlinear frequency to the linear frequency was computed. The values were

compared with the ratios of v = 0. Tables 4.13 and 4.14 show that the ratios slightly increased

when the Poisson’s ratio increased.
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Table 4.13 Comparison of (wNL/wL)Z forN=4

N=4 L=4 L=10 L=20 L =40

v=0 1.0127 1.0093 1.0081 1.0080

=04
& v=03| 10144 | 1.0107 | 1.0099 1.0096

v=0 1.0790 1.0577 1.0505 1.0496

=10 05| 10892 | 10669 | 10615 | 1.0598

v=0 1.1767 1.1294 1.1133 1.1114

=15
& v=03| 1.1984 | 1.0615 | 1.1377 1.0615

v=0 1.3116 1.2290 1.2006 1.1975

alr =2.0 =03 | 13467 1.2638 1.2434 1.2375

v=0 1.4818 1.3558 1.3117 1.3072

—
Wr=235 3 15204 | 1.4079 | 13772 1.5294

v=0 1.6848 1.5088 1.4459 1.4401

v=03 1.7393 1.5797 1.5378 1.5276

v=0 1.9174 1.6867 1.6020 1.5954

v=03 1.9671 1.7767 1.7233 1.7121

v=0 2.1755 1.8883 1.7791 1.7723

v=03] 2.1999 1.9957 1.9316 1.9211

Table 4.14 Comparison of (a),\,L/a)L)2 forN=6

N=6 L=4 L=10 L=20 L=40

v=0 1.0128 1.0104 1.0101 1.0100

“r=041",203 | 10139 | roti2 | 1.0109 | 10109

v=0 1.0799 1.0645 1.0627 1.0622

alr = 1.0 = S 0861 1.0693 1.0681 1.0679

v=0 1.1787 1.1445 1.1405 1.1395

r=121""03 | 11903 | 11545 | 11520 | 11516

v=0 1.3148 1.2553 1.2483 1.2466

a/r = 2.0 0 =023 1.3286 1.2709 1.2672 1.2667

v=0 1.4858 1.3956 1.3852 1.3827

alr=2.5 0=03 1.4914 1.4151 1.4109 1.4106

v=0 1.6883 1.5639 1.5498 1.5465

ar=3 v=0.3 1.6619 1.5815 1.5786 1.5790
v=0 1.9178 1.7582 1.7405 1.7365

alr =3.5
v=0.3 1.8108 1.7612 1.7634 1.7654
Wr= 4.0 v=0 2.1676 1.9763 1.9556 1.9510

v=0.3 1.7591 1.9381 1.9526 1.9581
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Chapter 5 — Conclusion

A three-dimensional rectangular parallelepiped beam was examined for linear vibration
analysis using the Ritz approximation method. The Euler—Bernoulli beam theory was also
applied to validate this approximation. For the nonlinear analysis, a two-dimensional clamped—
clamped beam was investigated based on the total Lagrange formulation. The nonlinear Euler—
Bernoulli theory was used to compare the outcomes of the elasticity methods.

5.1 Concluding Remarks

In the linear vibration analysis, the Ritz method was applied for the free—free three-
dimensional beam in terms of power series functions of the Cartesian coordinate system. The
maximum power numbers analyzed were 6, 8, and 10, along with the related degrees of freedom.
The natural frequency of this approximation was computed based on these power series. As part
of the evaluation of the followed formulation, the natural frequency was solved depending on the
Euler—Bernoulli theory, which had good agreement with lengths of the modeled beam of 5, 10,
and 20. In addition, the mode shapes were computed with Ritz approximation. All of the patterns
were compared with Euler—Bernoulli mode shapes. The results show that as maximum power
increased, the mode shapes tended to become closer to the Euler—Bernoulli patterns. However,
the various lengths showed the elastic status of the approximated method, especially when L = 5.
Generally, the outcomes of the free—free beam approximation validated the Ritz method in
comparison with the beam theory results.

For the nonlinear study, a two-dimensional clamped—clamped beam was investigated.
The approximation method was formulated based on the total Lagrange formulation. This
formulation took into consideration the impacts of second Piola—Kirchhoff stresses and Green—

Lagrange strain. The Euler—Bernoulli beam theory was applied for a one-dimensional rectangular
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beam based on Hermite and Lagrange interpolations with various boundary conditions. The
frequencies were found according to elements of 4, 8, and 16. The ratios for natural frequency
based on beam theory were in good agreement with Woinowsky-Krieger (1950) and Evensen
(1968). The solution for the nonlinear equations was applied by using the direct iteration method,
as described in Chapter 3. However, the natural frequency ratios of the elasticity method agreed
with those of higher order theory from Heyliger and Reddy (1988a).

The effects of the number of Gaussian points and weights were examined by considering
8 and 24 points. The frequency tends to be more accurate as the applied Gaussian points
increase, but this does not eliminate the results of the lower Gaussian evaluation. Depending on
the results, the difference in the frequency of the studied Gauss numbers ranges from 0.3% to
1.8%, which is acceptable. The frequencies were computed for both beam theory and the
elasticity method, for various lengths of the modeled two- and one-dimensional beams,
respectively. The Poisson’s ratio was assumed to be 0 or 0.3 for the isotropic material. The ratio
of nonlinear to linear frequency showed a slight increase as Poisson’s ratio increased. The
natural frequencies for the various boundary conditions of the beam theory are provided in

Appendix A, along with the natural frequency of elasticity.
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5.2 Future Work

For the linear model, a work should study the impact of a maximum power larger than 10
for the Ritz approximation on the natural frequency and mode shapes. In addition, future work
should impose various boundary conditions instead of the free—free beam model. Investigations
should also include various kinds of applied functions and their outcomes in the Cartesian power
series. Regarding the nonlinear analysis, the Poisson’s ratio should be increased to 0.5, and other
boundary conditions should be imposed. The two-dimensional model should also be extended to
the three-dimensional model, with consideration of the various martial properties and

geometries, to examine their effects on dynamic behavior.
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Appendix A

In the first section of this appendix, the mode shapes from the linear-vibration analysis
are compared with those from the beam-theory results. In the second section, the mode shapes
from nonlinear Euler—Bernoulli theory are presented. In the last section, the linear and nonlinear
frequencies of the iteration method, as well as the nonlinear frequencies from Euler—Bernoulli
theory, are shown.

A.1 Linear Analysis Results
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Figure A.1.1 First mode shape in comparison with the Euler—Bernoulli mode shape for N = 6
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Figure A.1.2 First mode shape compared with the Euler—Bernoulli mode shape for N = 8
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Figure A.1.3 First mode shape compared with the Euler—Bernoulli mode shape for N = 10
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Figure A.1.4 Second mode shape compared with the Euler—Bernoulli mode shape for N = 6

50



1.5

1

0.5

0

-0.5

-1

-1.5
O 000000 QO0 Q0000000000000 Q0 Q0
O T XN OOFTONOOITOANOOTHANOOT ON © O
SO o ddaAadN®mMSE S NBLGSOOBN~NNGH 0NN G

LENGTH

Normalized UU

Normalized EB

Figure A.1.5 Second mode shape compared with the Euler—Bernoulli mode shape for N = 8

51



N=10

1.5

0.5

0.00
0.40
0.80
1.20
1.60
2.00
2.40
2.80
3.20
3.60
4.00
4.40
4.80
5.20
5.60
6.00
6.40
6.80
7.20
7.60
8.00
8.40
8.80
9.20
9.60
10.00

Normalized VV

Normalized EB

Figure A.1.6 Second mode shape compared with the Euler—Bernoulli mode shape for N = 10
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Figure A.1.7 Third mode shape compared with the Euler—Bernoulli mode shape for N = 6
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Figure A.1.8 Third mode shape compared with the Euler—Bernoulli mode shape for N = 8
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Figure A.1.9 Third mode shape compared with the Euler-Bernoulli mode shape for N = 10
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Figure A.1.10 Fourth mode shape compared with the Euler—Bernoulli mode shape for N = 6
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Figure A.1.11 Fourth mode shape compared with the Euler—Bernoulli mode shape for N = 8
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Figure A.1.12 Fourth mode shape compared with the Euler—Bernoulli mode shape for N = 10
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A.2 The Effect of the Various Lengths on the Linear Mode Shapes

First Mode, N=10
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= ]st Mode shape L=5 == 1st Mode shape L=10 1st Mode shape EB, L=5

Figure A.2.1 First mode shape for L = 10 and 5 compared with the Euler—Bernoulli mode shape
forN = 10
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Second Mode, N=10

1.5
1

0.5 \

0
-0.5 \
-1 3

-1.5

= 2nd Mode shape L=5 ==2nd Mode shape L=10 2nd Mode shape EB, L=5

Figure A.2.2 Second mode shape for L = 10 and 5 compared with the Euler—Bernoulli mode
shape for N = 10
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Third Mode, N=10
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Figure A.2.3 Third mode shape for L = 10 and 5 compared with the Euler—Bernoulli mode
shape for N = 10
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Fourth Mode, N=10

1.5

AVAVAY

-1

o

-1.5

e 4th Mode shape L=5 == 4th Mode shape L=10 4th Mode shape EB, L=5

Figure A.2.4 Fourth mode shape for L = 10 and 5 compared with the Euler—Bernoulli mode
shape for N = 10
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A.3 The Mode Shapes of the Nonlinear Euler—Bernoulli Beam Theory
The figures presented in this section refer to the one-dimensional beam model of
nonlinear Euler—Bernoulli theory; they have various boundary conditions.
Simply=Simply Supported Beam

0.00E+00

-2.00E-01

-4.00E-01

-6.00E-01

-8.00E-01

-1.00E+00

-1.20E+00

Figure A.3.1 First mode shape from nonlinear Euler—Bernoulli theory for a S—S beam
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Free-Free Beam
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Figure A.3.2 First mode shape from nonlinear Euler—Bernoulli theory for a F—F beam
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Clamped-Simply Supported Beam
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Figure A.3.3 First mode shape from nonlinear Euler—Bernoulli theory for a C—S beam
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Clamped-Clamped Beam
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Figure A.3.4 First mode shape from nonlinear Euler—Bernoulli theory for a C—C beam
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Table A.1 Linear natural frequency of E-B theory for S—S and F-F beams (a/r = 1.0)

Simply—Simply Supported Beam

Free—Free Beam

alr = 1.0 alr = 1.0
4 elements 8 elements 16 elements 4 elements 8 elements 16 elements
0.0016 0.0016 0.0016 0.0000 0.0000 0.0000
0.0262 0.0260 0.0260 0.0000 0.0000 0.0000
0.1364 0.1318 0.1315 0.0000 0.0000 0.0000
0.2077 0.1999 0.1980 0.0084 0.0083 0.0083
0.5120 0.4189 0.4158 0.0642 0.0635 0.0634
0.9600 0.8309 0.7998 0.2077 0.1999 0.1980
1.2936 1.0336 1.0160 0.2475 0.2447 0.2437
2.5351 1.9898 1.8285 0.8310 0.6729 0.6663
3.2349 2.1816 2.1095 0.9600 0.8309 0.7998
7.2605 3.8400 3.3237 2.0373 1.5175 1.4882
10.7520 4.1446 3.9163 2.5351 1.9898 1.8285
100.0000 6.5658 5.3424 3.8400 2.9988 2.9078
100.0000 8.1920 6.7024 4.9004 3.8400 3.3237
100.0000 10.1405 7.9591 13.5890 5.2776 5.1667
100.0000 12.6982 10.7844 16.5642 6.5658 5.3424
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Table A.2 Nonlinear natural frequency of E-B theory for S—S and F-F beams (a/r = 1.0)

Simply—Simply Supported Beam

Free—Free Beam

alr = 1.0 alr = 1.0
4 elements 8 elements 16 elements 4 elements 8 elements 16 elements
0.0021 0.0020 0.0020 0.0000 0.0000 0.0000
0.0264 0.0260 0.0259 0.0000 0.0000 0.0000
0.1380 0.1319 0.1312 0.0001 0.0000 0.0000
0.2086 0.2009 0.1990 0.0086 0.0083 0.0083
0.5181 0.4192 0.4150 0.0651 0.0635 0.0631
0.9608 0.8332 0.8021 0.2101 0.2018 0.1995
1.3053 1.0343 1.0140 0.2523 0.2456 0.2435
2.5311 1.9941 1.8333 0.8419 0.6735 0.6620
3.2553 2.1830 2.1052 0.9791 0.8370 0.8070
7.2917 3.8469 3.3324 2.0730 1.5191 1.4796
10.7795 4.1506 3.9078 2.5772 2.0009 1.8424
100.0000 6.5749 5.3567 3.8593 2.9949 2.8891
100.0000 8.2173 6.6858 49710 3.8573 3.3502
100.0000 10.1423 7.9816 13.8109 5.2690 5.1127
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Table A.3 Linear natural frequency of E-B theory for C—C and C—H beams (a/r = 1.0)

Clamped—Clamped Beam

Clamped—Hinged Beam

alr = 1.0 alr = 1.0
4 elements 8 elements 16 elements 4 elements 8 elements 16 elements
0.0084 0.0083 0.0083 0.0040 0.0040 0.0040
0.0646 0.0635 0.0634 0.0421 0.0416 0.0416
0.2077 0.1999 0.1980 0.1894 0.1818 0.1812
0.2541 0.2448 0.2437 0.2077 0.1999 0.1980
0.9097 0.6741 0.6663 0.6678 0.5350 0.5300
0.9600 0.8309 0.7998 0.9600 0.8309 0.7998
2.4882 1.5248 1.4883 1.7752 1.2609 1.2352
2.5351 1.9898 1.8285 2.5351 1.9898 1.8285
6.4596 3.0301 2.9083 4.5254 2.5806 2.4847
100.00 3.8400 3.3237 9.4852 3.8400 3.3237
100.00 5.3629 5.1686 100.00 4.7582 4.5096
100.00 6.5658 5.3424 100.00 6.5658 5.3424
100.00 10.1405 7.9591 100.00 9.2059 7.5879
100.00 10.6854 8.5597 100.00 10.1405 7.9591
100.00 13.7302 11.2646 100.00 13.7302 11.2646
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Table A.4 Nonlinear natural frequency of E-B theory for C—C and C—H beams (a/r = 1.0)

Clamped—Clamped Beam

Clamped—Hinged Beam

alr = 1.0 alr = 1.0
4 elements 8 elements 16 elements 4 elements 8 elements 16 elements
0.0091 0.0089 0.0089 0.0046 0.0045 0.0045
0.0647 0.0635 0.0632 0.0427 0.0417 0.0415
0.2083 0.2003 0.1984 0.1899 0.1808 0.1797
0.2547 0.2452 0.2434 0.2098 0.2020 0.2001
0.9157 0.6749 0.6653 0.6751 0.5352 0.5287
0.9633 0.8328 0.8017 0.9623 0.8337 0.8026
2.5041 1.5264 1.4854 1.7895 1.2618 1.2323
2.5367 1.9943 1.8334 2.5348 1.9951 1.8344
6.4788 3.0263 2.9010 4.5516 2.5823 2.4783
100.00 3.8487 3.3338 9.5222 3.8487 3.3346
100.00 5.3502 5.1519 100.00 4.7582 4.4962
100.00 6.5802 5.3608 100.00 6.5780 5.3609
100.00 10.1753 7.9913 100.00 9.2252 7.5592
100.00 10.6997 8.5214 100.00 10.1665 7.9905
100.00 13.7470 11.3232 100.00 13.7331 11.3099
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Table A.5 Linear natural frequency of E-B theory for S—S and F-F beams (a/r = 0.4)

Simply—Simply Supported Beam

Free—Free Beam

alr = 04 alr = 04
4 elements 8 elements 16 elements 4 elements 8 elements 16 elements
0.0016 0.0016 0.0016 0.0000 0.0000 0.0000
0.0262 0.0260 0.0260 0.0000 0.0000 0.0000
0.1364 0.1318 0.1315 0.0000 0.0000 0.0000
0.2077 0.1999 0.1980 0.0084 0.0083 0.0083
0.5120 0.4189 0.4158 0.0642 0.0635 0.0634
0.9600 0.8309 0.7998 0.2077 0.1999 0.1980
1.2936 1.0336 1.0160 0.2475 0.2447 0.2437
2.5351 1.9898 1.8285 0.8310 0.6729 0.6663
3.2349 2.1816 2.1095 0.9600 0.8309 0.7998
7.2605 3.8400 3.3237 2.0373 1.5175 1.4882
10.7520 4.1446 3.9163 2.5351 1.9898 1.8285
100.0000 6.5658 5.3424 3.8400 2.9988 2.9078
100.0000 8.1920 6.7024 4.9004 3.8400 3.3237
100.0000 10.1405 7.9591 13.5890 5.2776 5.1667
100.0000 12.6982 10.7844 16.5642 6.5658 5.3424
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Table A.6 Nonlinear natural frequency of E-B theory for S—S and F-F beams (a/r = 0.4)

Simply—Simply Supported Beam

Free—Free Beam

alr = 04 alr = 04
4 elements 8 elements 16 elements 4 elements 8 elements 16 elements
0.0017 0.0017 0.0017 0.0000 0.0000 0.0000
0.0262 0.0260 0.0260 0.0000 0.0000 0.0000
0.1366 0.1318 0.1315 0.0000 0.0000 0.0000
0.2079 0.2001 0.1982 0.0084 0.0083 0.0083
0.5130 0.4189 0.4157 0.0643 0.0635 0.0633
0.9601 0.8313 0.8001 0.2081 0.2002 0.1983
1.2955 1.0337 1.0156 0.2483 0.2448 0.2437
2.5345 1.9905 1.8292 0.8328 0.6730 0.6656
3.2382 2.1819 2.1088 0.9630 0.8319 0.8009
7.2655 3.8411 3.3251 2.0432 1.5178 1.4868
10.7564 4.1455 3.9150 2.5417 1.9915 1.8307
100.00 6.5673 5.3447 3.8431 2.9982 2.9047
100.00 8.1961 6.6997 49117 3.8428 3.3280
100.00 10.1407 7.9627 13.6245 5.2762 5.1562
100.00 12.7057 10.7791 16.5971 6.5693 5.3543
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Table A.7 Linear natural frequency of E-B theory for C—C and C—H beams (a/r = 0.4)

Clamped—Clamped Beam

Clamped—Hinged Beam

alr = 04 alr = 04
4 elements 8 elements 16 elements 4 elements 8 elements 16 elements
0.0084 0.0083 0.0083 0.0040 0.0040 0.0040
0.0646 0.0635 0.0634 0.0421 0.0416 0.0416
0.2077 0.1999 0.1980 0.1894 0.1818 0.1812
0.2541 0.2448 0.2437 0.2077 0.1999 0.1980
0.9097 0.6741 0.6663 0.6678 0.5350 0.5300
0.9600 0.8309 0.7998 0.9600 0.8309 0.7998
2.4882 1.5248 1.4883 1.7752 1.2609 1.2352
2.5351 1.9898 1.8285 2.5351 1.9898 1.8285
6.4596 3.0301 2.9083 4.5254 2.5806 2.4847
100.00 3.8400 3.3237 9.4852 3.8400 3.3237
100.00 5.3629 5.1686 100.00 4.7582 4.5096
100.00 6.5658 5.3424 100.00 6.5658 5.3424
100.00 10.1405 7.9591 100.00 9.2059 7.5879
100.00 10.6854 8.5597 100.00 10.1405 7.9591
100.00 13.7302 11.2646 100.00 13.7302 11.2646
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Table A.8 Nonlinear natural frequency of E-B theory for C—C and C—H beams (a/r = 0.4)

Clamped—Clamped Beam

Clamped—Hinged Beam

alr = 04 alr = 04
4 elements 8 elements 16 elements 4 elements 8 elements 16 elements
0.0085 0.0084 0.0084 0.0041 0.0041 0.0040
0.0646 0.0635 0.0634 0.0422 0.0416 0.0416
0.2078 0.2000 0.1981 0.1895 0.1816 0.1809
0.2542 0.2448 0.2437 0.2081 0.2003 0.1984
0.9106 0.6742 0.6661 0.6690 0.5350 0.5298
0.9605 0.8312 0.8001 0.9604 0.8314 0.8002
2.4907 1.5250 1.4878 1.7775 1.2611 1.2347
2.5354 1.9905 1.8293 2.5351 1.9906 1.8294
6.4627 3.0295 2.9071 4.5296 2.5809 2.4837
100.00 3.8414 3.3253 9.4911 3.8414 3.3255
100.00 5.3608 5.1659 100.00 4.7582 4.5075
100.00 6.5681 5.3454 100.00 6.5678 5.3454
100.00 10.1461 7.9643 100.00 9.2089 7.5832
100.00 10.6877 8.5534 100.00 10.1447 7.9642
100.00 13.7329 11.2741 100.00 13.7307 11.2719
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Table A.9 Linear natural frequency whenv = Oandv = 0.3forL = 10and L = 4 of aC-C
beam

alr =1 alr = 1
N =6 N =4
L =10 L =4 L=10 L=4

v=0 v=0.3 v=0 | v=0.3 v=0 | v=0.3 v=0 | v=0.3
0.00763 | 0.01099 | 0.19907 | 0.25711 | 0.00853 | 0.01198 | 0.20333 | 0.26372
0.05378 | 0.07541 | 1.02448 | 1.19746 | 0.05965 | 0.08476 | 1.1109 | 1.35293
0.1381 | 0.16771 | 1.22869 | 1.42461 | 0.19739 | 0.27447 | 1.2337 | 1.82347
0.1431 | 0.18132 | 1.32955 | 1.81053 | 0.2055 | 0.29124 | 3.03278 | 3.52172
0.19659 | 0.28874 | 2.07395 | 2.407 | 0.78956 | 1.12394 | 4.93474 | 7.18986
0.36401 | 0.54664 | 2.82899 | 4.39415 | 1.10108 | 1.17379 | 7.07434 | 7.62127
0.45264 | 0.72602 | 2.85503 | 4.63855 | 1.7736 | 2.64513 | 11.085 | 12.1564
0.80845 | 1.00000 | 5.05284 | 7.21903 | 2.9056 | 3.38022 | 11.6695 | 15.2873
1.09786 | 1.16966 | 6.8616 | 7.57743 | 3.18586 | 4.77808 | 15.2624 | 17.7981
1.14161 | 1.24571 | 7.10324 | 9.81683 | 9.91611 | 10.2288 | 18.16 | 23.7374
1.45506 | 1.55534 | 8.92202 | 9.86309 | 10.1393 | 11.2606 | 19.4474 | 27.8845
2.95785 | 1.60303 | 11.8758 | 12.3833 | 10.9378 | 15.4904 | 19.6473 | 32.3925
4.49225 | 4.84385 | 17.1691 | 18.658 | 14.3842 | 15.513 | 20.194 | 32.9109
10.1349 | 6.70569 | 18.4866 | 25.412 | 17.1065 | 18.7282 | 25.826 | 34.1774
11.0214 | 10.2151 | 19.0419 | 25.9997 | 19.667 | 33.7278 | 27.4635 | 42.625
12.3445 | 11.3237 | 19.1404 | 28.1577 | 19.7391 | 34.4438 | 29.503 | 45.9228
15.3885 | 13.1067 | 19.9502 | 29.75 |24.5179 | 40.5123 | 41.827 | 49.0104
19.3416 | 17.3638 | 21.8361 | 33.0355 | 24.7624 | 42.6435 | 42.9767 | 49.9149
19.457 | 28.3449 | 24.3158 | 35.8981 | 40.0816 | 44.5132 | 61.9757 | 73.235

19.7137 | 29.3876 | 27.8562 | 40.8502 | 61.2716 | 62.3137 | 67.7547 | 85.39
19.7846 | 32.7382 | 28.0766 | 45.1939 | 62.802 | 65.016 | 76.4739 | 114.017
22.464 | 33.3127 | 38.2657 | 45.8408 | 79.5285 | 138.749 | 79.5342 | 137.248
24.3093 | 34.3921 | 39.1086 | 49.5154 | 120.2 | 170.295 | 121.253 | 171.264
26.0748 | 36.7687 | 41.4997 | 56.1388 | 120.269 | 171.5 | 121.972 | 178.251
39.7931 | 40.5673 | 48.1646 | 61.1319 | 170.534 | 210.804 | 172.678 | 215.023
41.0369 | 41.5213 | 56.6427 | 68.2755 | 171.705 | 212.007 | 179.707 | 222.536
42.8502 | 44.4622 | 75.0559 | 91.7543 | 340.157 | 380.558 | 339.787 | 382.258
66.4959 | 47.162 | 75.7637 | 93.1819 | 340.349 | 595.583 | 340.868 | 596.353
71.0189 | 70.9156 | 78.4258 | 106.583 | 380.948 | 596.098 | 384.575 | 599.592
78.2612 | 78.6397 | 79.1337 | 113.397 | 760.57 | 1330.97 | 761.094 | 1331.73
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Table A.10 Nonlinear natural frequency when v =0 and v = 0.3 for L = 10 and L =4 of a C—C
beam (a/r =1.0)

alr=1 alr=1
N=6 N=4
L=10 L=4 L=10 L=4

v=0 v=0.3 v=0 v=0.3 v=0 v=0.3 v=0 v=0.3
0.00812 | 0.01175 | 0.21499 | 0.279259 | 0.00902 | 0.01278 | 0.21938 | 0.28724
0.05362 | 0.07434 | 0.97236 | 1.127736 | 0.0595 | 0.08387 | 1.03338 | 1.25177
0.13772 ] 0.16688 | 1.27453 | 1.361043 | 0.19773 | 0.27404 | 1.31848 | 1.90904
0.14294 | 0.1792 | 1.33012 | 1.891309 | 0.20546 | 0.29156 | 2.96741 | 3.44127
0.19688 | 0.28902 | 1.99255 | 2.224437 | 0.79114 | 1.12335 | 5.04182 | 7.27582
0.33393 | 0.49027 | 2.39158 | 3.688728 | 1.09808 | 1.17429 | 6.9218 | 7.5027
0.48547 | 0.76949 | 3.34394 | 5.210609 | 1.78021 | 2.65207 | 11.1598 | 12.1426
0.81344 | 1.16871 | 5.13996 | 7.209201 | 2.79821 | 3.32279 | 11.8635 | 15.6053
1.0899 | 1.23678 | 6.87736 | 7.997688 | 3.31067 | 4.8692 | 15.0346 | 17.77
1.15087 | 1.59423 | 7.18441 | 9.121198 | 9.92076 | 10.2288 | 16.7626 | 21.236
1.46719 | 1.61522 | 8.86406 | 10.46113 | 10.1394 | 11.261 | 19.4811 | 31.1908
2.96239 | 4.85258 | 11.8467 | 12.36937 | 10.938 | 15.4762 | 19.6565 | 31.8129
4.50934 | 6.73073 | 17.0281 | 18.65132 | 14.3845 | 15.5376 | 21.9848 | 33.4669
10.1349 | 10.2151 | 18.6748 | 25.66501 | 17.1087 | 18.7316 | 25.6273 | 34.2358
11.0213 | 11.3235 | 19.0736 | 26.23572 | 19.668 | 33.7292 | 27.6104 | 42.8666
12.3441 | 13.1068 | 19.2278 | 27.99219 | 19.7397 | 34.4446 | 29.99 | 46.2913
15.3837 | 17.3591 | 20.0902 | 29.90813 | 24.5213 | 40.513 | 41.8369 | 47.1434
19.3361 | 28.2668 | 21.6951 | 32.99942 | 24.7709 | 42.6488 | 43.5094 | 52.4055

19.46 | 29.4661 | 24.4987 | 36.3738 | 40.0816 | 44.5257 | 62.1855 | 73.2847
19.7146 | 32.7416 | 28.0732 | 40.86027 | 61.2716 | 62.314 | 67.7595 | 85.4376
19.7855 | 33.3148 | 28.0844 | 43.61798 | 62.8022 | 65.0169 | 76.4955 | 114.339
22.4686 | 34.3933 | 35.813 | 45.99725 | 79.5289 | 138.75 | 79.5529 | 137.277
24.3199 | 36.7787 | 41.5041 | 49.57926 | 120.201 | 170.295 | 121.291 | 171.266
26.0962 | 40.5682 | 41.6505 | 56.08789 | 120.272 | 171.5 | 122.083 | 178.268
39.7931 | 41.5339 | 48.4723 | 63.02847 | 170.534 | 210.806 | 172.679 | 215.089
41.037 | 44.4818 | 56.5525 | 68.19985 | 171.705 | 212.013 | 179.715 | 222.717
42.8507 | 47.1692 | 75.406 | 91.75829 | 340.158 | 380.558 | 339.818 | 382.258
66.4965 | 70.92 | 75.8258 | 93.16726 | 340.349 | 595.584 | 340.885 | 596.383
71.0179 | 78.6399 | 78.4603 | 107.056 | 380.948 | 596.099 | 384.577 | 599.653
78.2636 | 91.3188 | 79.1842 | 113.704 | 760.571 | 1330.97 | 761.111 | 1331.76
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Table A.11 Linear natural frequency when v =0 and v = 0.3 for L =20 and L = 40 of a C—C
beam (a/r = 1)
alr=1.0 alr=1.0
N=6 N=4
L=20 L=40 L=20 L=40

v=0 v=0.3 v=0 | v=0.3 v=0 | v=0.3 v=0 | v=0.3
0.00051 | 0.00076 | 3.3E-05 | 4.9E-05 | 0.00071 | 0.00096 | 5.7E-05 | 7.8E-05
0.00397 | 0.0059 | 0.00026 | 0.00039 | 0.00576 | 0.00794 | 0.00075 | 0.0009
0.01131 | 0.01602 | 0.00077 | 0.00112 | 0.02185 | 0.02919 | 0.00297 | 0.00351
0.01639 | 0.02247 | 0.00128 | 0.00194 | 0.04935 | 0.07278 | 0.01234 | 0.01819
0.04915 | 0.07217 | 0.00618 | 0.00952 | 0.19739 | 0.27478 | 0.04935 | 0.06826
0.05718 | 0.08567 | 0.01229 | 0.01804 | 0.2732 | 0.29418 | 0.06816 | 0.07359
0.11316 | 0.18079 | 0.02829 | 0.04515 | 0.4434 | 0.66612 | 0.11085 | 0.16682
0.20211 | 0.25052 | 0.05053 | 0.05604 | 0.7264 | 0.81981 | 0.1816 | 0.20306
0.23793 | 0.29256 | 0.05508 | 0.07314 | 0.80627 | 1.20007 | 0.20219 | 0.30033
0.27446 | 0.40214 | 0.06862 | 0.10063 | 2.47903 | 4.00124 | 0.61976 | 1.00595
0.57288 | 0.61276 | 0.18487 | 0.30498 | 9.94085 | 9.96337 | 9.89153 | 9.89716
0.73946 | 1.21831 | 0.28077 | 0.3301 | 10.1398 | 10.2244 | 9.94127 | 9.96269
1.12306 | 1.70985 | 0.31717 | 0.42921 | 12.6076 | 12.8982 | 12.1527 | 12.2261
9.93556 | 9.95561 | 9.88612 | 9.89109 | 13.2988 | 13.7472 | 12.3267 | 12.4425
10.1585 | 10.2389 | 9.94223 | 9.96338 | 19.7318 | 34.3151 | 19.7459 | 34.498
10.5101 | 10.7061 | 10.0364 | 10.0849 | 19.7483 | 34.5321 | 19.7498 | 34.5551
11.8156 | 12.3211 | 10.8962 | 11.0228 | 24.1273 | 39.9752 | 24.0317 | 39.8207
14.6754 | 16.1781 | 12.6743 | 13.0551 | 24.1801 | 42.1437 | 24.0442 | 42.0348
19.6103 | 30.4698 | 19.7095 | 30.7088 | 39.8438 | 42.4591 | 39.7846 | 42.1044
19.6792 | 33.8876 | 19.73 | 34.3675 | 60.3192 | 60.5903 | 60.0799 | 60.1484

19.73 | 34.0817 | 19.738 | 34.4137 | 60.7089 | 61.3054 | 60.1778 | 60.3305
19.7411 | 34.4964 | 19.7441 | 34.5347 | 79.5294 | 139.064 | 79.5296 | 139.148
24.0587 | 37.2361 | 24.0132 | 37.9159 | 120.05 | 170.167 | 120.013 | 170.135
24,4712 | 39.7803 | 24.1131 | 39.5591 | 120.065 | 170.473 | 120.016 | 170.212
39.5583 | 40.4827 | 39.4994 | 39.991 | 170.227 | 210.201 | 170.15 | 210.05
40.083 | 42.2319 | 39.8444 | 40.8639 | 170.522 | 210.502 | 170.224 | 210.126
40.5714 | 42.6491 | 39.9694 | 42.0031 | 340.226 | 380.316 | 340.244 | 380.255
61.6608 | 63.03 | 60.4179 | 60.7878 | 340.275 | 595.474 | 340.256 | 595.446
62.7964 | 64.9133 | 60.7022 | 61.2542 | 380.414 | 595.602 | 380.28 | 595.479
78.8608 | 91.1649 | 78.9415 | 91.0343 | 760.495 | 1330.86 | 760.477 | 1330.83
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Table A.12 Nonlinear natural frequency when v =0 and v = 0.3 for L =20 and L =40 of a C—C
beam (a/r =1.0)

alr=1.0 alr=1.0
N=6 N=4
L=20 L=40 L=20 L=40

v=0 v=0.3 v=0 | v=0.3 v=0 | v=0.3 v=0 | v=0.3
0.00396 | 0.00585 | 0.00026 | 0.00039 | 0.00074 | 0.00102 | 6E-05 | 8.2E-05
0.01131 | 0.01597 | 0.00077 | 0.00112 | 0.00576 | 0.00791 | 0.00075 | 0.0009
0.01639 | 0.02241 | 0.00128 | 0.00193 | 0.02189 | 0.02921 | 0.00297 | 0.00351
0.04916 | 0.07216 | 0.00613 | 0.00919 | 0.04935 | 0.07277 | 0.01234 | 0.01819
0.05547 | 0.08091 | 0.01229 | 0.01804 | 0.19748 | 0.27483 | 0.04935 | 0.06827
0.11549 | 0.184 | 0.02844 | 0.04536 | 0.27309 | 0.29414 | 0.06816 | 0.07358
0.20256 | 0.25036 | 0.05056 | 0.05604 | 0.44373 | 0.66648 | 0.11086 | 0.16683
0.2378 | 0.29254 | 0.05508 | 0.07314 | 0.71799 | 0.81646 | 0.18103 | 0.20288
0.27472 | 0.40263 | 0.06863 | 0.10065 | 0.81603 | 1.20597 | 0.20286 | 0.30071
0.57453 | 0.61802 | 0.18488 | 0.30501 | 2.47938 | 4.00189 | 0.61978 | 1.006
0.7397 | 1.21831 | 0.27498 | 0.32573 | 9.94085 | 9.96337 | 9.89153 | 9.89716
1.13062 | 1.70985 | 0.32537 | 0.43786 | 10.1398 | 10.2244 | 9.94127 | 9.96269
9.93556 | 9.95561 | 9.88612 | 9.89109 | 12.6076 | 12.8983 | 12.1527 | 12.2261
10.1585 | 10.2389 | 9.94223 | 9.96338 | 13.2988 | 13.7473 | 12.3267 | 12.4425
10.5101 | 10.7061 | 10.0364 | 10.0849 | 19.7319 | 34.3152 | 19.7459 | 34.498
11.8157 | 12.3211 | 10.8962 | 11.0228 | 19.7484 | 34.5322 | 19.7498 | 34.5551
14.6753 | 16.1781 | 12.6743 | 13.0551 | 24.1275 | 1.20007 | 24.0317 | 39.8207
19.6108 | 30.4698 | 19.7096 | 30.7088 | 24.1801 | 4.00124 | 24.0442 | 42.0348
19.6794 | 33.8876 | 19.73 | 34.3675 | 39.8438 | 9.96337 | 39.7846 | 42.1044
19.7302 | 34.0817 | 19.7381 | 34.4137 | 60.3192 | 10.2244 | 60.0799 | 60.1484
19.7412 | 34.4964 | 19.7441 | 34.5347 | 60.7089 | 12.8982 | 60.1778 | 60.3305
24.0589 | 37.2361 | 24.0132 | 37.9159 | 79.5294 | 13.7472 | 79.5296 | 139.148
24.4724 | 39.7803 | 24.1132 | 39.5591 | 120.05 | 34.3151 | 120.013 | 170.135
39.5583 | 40.4827 | 39.4994 | 39.991 | 120.065 | 34.5321 | 120.016 | 170.212
40.083 | 42.2319 | 39.8444 | 40.8639 | 170.227 | 39.9752 | 170.15 | 210.05
40.5714 | 42.6491 | 39.9694 | 42.0031 | 170.522 | 42.1437 | 170.224 | 210.126
61.6608 | 63.03 | 60.4179 | 60.7878 | 340.226 | 42.4591 | 340.244 | 380.255
62.7963 | 64.9133 | 60.7022 | 61.2542 | 340.275 | 60.5903 | 340.256 | 595.446
78.8609 | 91.1649 | 78.9415 | 91.0343 | 380.414 | 61.3054 | 380.28 | 595.479
79.3117 | 91.249 | 79.4594 | 91.2314 | 760.495 | 139.064 | 760.477 | 1330.83
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Table A.13 Linear natural frequency when v =0 and v = 0.3 for L = 10 and L = 4 of a C—C beam
(alr=1.5)
alr=1.5 alr=1.5
N=6 N=4
L=10 L=4 L=10 L=4

v=0 | v=03] v=0 | v=03| v=0 | v=03] v=0 | v=03
0.00763 | 0.01099 | 0.19907 | 0.25711 | 0.00853 | 0.01198 | 0.20333 | 0.26372
0.05378 | 0.07541 | 1.02448 | 1.19746 | 0.05965 | 0.08476 | 1.1109 | 1.35293
0.1381 | 0.16771 | 1.22869 | 1.42461 | 0.19739 | 0.27447 | 1.2337 | 1.82347
0.1431 | 0.18132 | 1.32955 | 1.81053 | 0.2055 | 0.29124 | 3.03278 | 3.52172
0.19659 | 0.28874 | 2.07395 | 2.407 | 0.78956 | 1.12394 | 4.93474 | 7.18986
0.36401 | 0.54664 | 2.82899 | 4.39415 | 1.10108 | 1.17379 | 7.07434 | 7.62127
0.45264 | 0.72602 | 2.85503 | 4.63855 | 1.7736 | 2.64513 | 11.085 | 12.1564
0.80845 | 1.16966 | 5.05284 | 7.21903 | 2.9056 | 3.38022 | 11.6695 | 15.2873
1.09786 | 1.24571 | 6.8616 | 7.57743 | 3.18586 | 4.77808 | 15.2624 | 17.7981
1.14161 | 1.55534 | 7.10324 | 9.81683 | 9.91611 | 10.2288 | 18.16 | 23.7374
1.45506 | 1.60303 | 8.92202 | 9.86309 | 10.1393 | 11.2606 | 19.4474 | 27.8845
2.95785 | 4.84385 | 11.8758 | 12.3833 | 10.9378 | 15.4904 | 19.6473 | 32.3925
4.49225 | 6.70569 | 17.1691 | 18.658 | 14.3842 | 15.513 | 20.194 | 32.9109
10.1349 | 10.2151 | 18.4866 | 25.412 | 17.1065 | 18.7282 | 25.826 | 34.1774
11.0214 | 11.3237 | 19.0419 | 25.9997 | 19.667 | 33.7278 | 27.4635 | 42.625
12.3445 | 13.1067 | 19.1404 | 28.1577 | 19.7391 | 34.4438 | 29.503 | 45.9228
15.3885 | 17.3638 | 19.9502 | 29.75 | 24.5179 | 40.5123 | 41.827 | 49.0104
19.3416 | 28.3449 | 21.8361 | 33.0355 | 24.7624 | 42.6435 | 42.9767 | 49.9149
19.457 | 29.3876 | 24.3158 | 35.8981 | 40.0816 | 44.5132 | 61.9757 | 73.235

19.7137 | 32.7382 | 27.8562 | 40.8502 | 61.2716 | 62.3137 | 67.7547 | 85.39
19.7846 | 33.3127 | 28.0766 | 45.1939 | 62.802 | 65.016 | 76.4739 | 114.017
22.464 | 34.3921 | 38.2657 | 45.8408 | 79.5285 | 138.749 | 79.5342 | 137.248
24.3093 | 36.7687 | 39.1086 | 49.5154 | 120.2 | 170.295 | 121.253 | 171.264
26.0748 | 40.5673 | 41.4997 | 56.1388 | 120.269 | 171.5 | 121.972 | 178.251
39.7931 | 41.5213 | 48.1646 | 61.1319 | 170.534 | 210.804 | 172.678 | 215.023
41.0369 | 44.4622 | 56.6427 | 68.2755 | 171.705 | 212.007 | 179.707 | 222.536
42.8502 | 47.162 | 75.0559 | 91.7543 | 340.157 | 380.558 | 339.787 | 382.258
66.4959 | 70.9156 | 75.7637 | 93.1819 | 340.349 | 595.583 | 340.868 | 596.353
71.0189 | 78.6397 | 78.4258 | 106.583 | 380.948 | 596.098 | 384.575 | 599.592
78.2612 | 91.3188 | 79.1337 | 113.397 | 760.57 | 1330.97 | 761.094 | 1331.73
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Table A.14 Nonlinear natural frequency when v =0 and v = 0.3 for L = 10 and L =4 of a C—C
beam (a/r = 1.5)

alr=1.5 alr=1.5
N=6 N=4
L=10 L=4 L=10 L=4

v=0 v=0.3 v=0 | v=0.3 v=0 | v=0.3 v=0 | v=0.3
0.00873 | 0.01269 | 0.23465 | 0.30603 | 0.00963 | 0.01377 | 0.23925 | 0.31604
0.05342 | 0.07301 | 0.92651 | 1.04384 | 0.05931 | 0.08276 | 0.97848 | 1.15711
0.13725 1 0.16583 | 1.2904 | 1.3115 | 0.19815 | 0.2735 | 1.38227 | 1.98388
0.14274 | 0.17658 | 1.35301 | 1.95874 | 0.20541 | 0.29195 | 2.89552 | 3.35006
0.19723 | 0.28934 | 1.89186 | 2.02702 | 0.79311 | 1.12265 | 5.16387 | 7.36186
0.31012 | 0.441 2.2078 | 3.28291 | 1.09441 | 1.17486 | 6.75541 | 7.36977
0.5124 | 0.80358 | 3.58799 | 5.39116 | 1.78838 | 2.66071 | 11.2025 | 12.1284
0.81955 | 1.16829 | 5.24764 | 7.36873 | 2.71414 | 3.25987 | 12.1312 | 15.9841
1.0826 | 1.22648 | 6.89301 | 8.38086 | 3.4165 | 4.97423 | 14.5895 | 17.7127
1.1598 | 1.62959 | 7.28753 | 8.72166 | 9.92657 | 10.2288 | 16.1331 | 19.7004
1.48246 | 1.64061 | 8.80118 | 10.7548 | 10.1395 | 11.2615 | 19.5213 | 31.4282
2.96805 | 4.8635 | 11.8157 | 12.3603 | 10.9384 | 15.4681 | 19.6769 | 33.4825
4.53072 | 6.76182 | 16.8775 | 18.6439 | 14.3848 | 15.5587 | 23.2023 | 33.8315
10.1349 | 10.2151 | 18.8363 | 25.8197 | 17.1114 | 18.7359 | 25.4377 | 34.5502
11.0212 | 11.3234 | 19.1456 | 26.5248 | 19.6692 | 33.731 | 27.8304 | 43.1059
12.3437 | 13.1069 | 19.3032 | 27.9006 | 19.7404 | 34.4457 | 30.5409 | 46.1884
15.3777 | 17.3532 | 20.273 | 30.1701 | 24.5254 | 40.5137 | 41.8501 | 46.8027
19.3293 | 28.182 | 21.591 | 32,9468 | 24.7816 | 42.6555 | 44.1962 | 54.1794
19.4637 | 29.5515 | 24.6846 | 36.9167 | 40.0816 | 44.5412 | 62.449 | 73.3509
19.7156 | 32.7458 | 28.1008 | 40.8718 | 61.2716 | 62.3142 | 67.7655 | 85.4986
19.7868 | 33.3175 | 28.3447 | 42.1674 | 62.8024 | 65.0181 | 76.5231 | 114.742
22.4742 | 34.3949 | 34.5048 | 46.2028 | 79.5294 | 138.751 | 79.5764 | 137.314
24.3332 | 36.7913 | 41.5096 | 49.5258 | 120.202 | 170.295 | 121.338 | 171.268
26.123 | 40.5693 | 42.9709 | 55.9658 | 120.275 | 171.5 | 122.221 | 178.288
39.7931 | 41.5493 | 48.9479 | 65.09 | 170.534 | 210.807 | 172.68 | 215.171
41.0372 | 44.5065 | 56.4437 | 68.1074 | 171.705 | 212.019 | 179.726 | 222.943
42.8514 | 47.1783 | 75.8393 | 91.7632 | 340.159 | 380.558 | 339.858 | 382.258
66.4972 | 70.9255 | 75.9019 | 93.1491 | 340.35 | 595.585 | 340.907 | 596.42
71.0167 | 78.6402 | 78.5038 | 107.64 | 380.948 | 596.101 | 384.58 | 599.731
78.2665 | 91.3188 | 79.2475 | 114.119 | 760.571 | 1330.97 | 761.133 | 1331.79
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Table A.15 Linear natural frequency when v =0 and v = 0.3 for L =20 and L = 40 of a C—C
beam (a/r =1.5)

alr=1.5 alr=1.5
N=6 N=4
L=20 L=40 L=20 L=40

v=0 v=0.3 v=0 | v=0.3 v=0 | v=0.3 v=0 | v=0.3
0.00051 | 0.00076 | 3.3E-05 | 4.9E-05 | 0.00071 | 0.00096 | 5.7E-05 | 7.8E-05
0.00397 | 0.0059 | 0.00026 | 0.00039 | 0.00576 | 0.00794 | 0.00075 | 0.0009
0.01131 | 0.01602 | 0.00077 | 0.00112 | 0.02185 | 0.02919 | 0.00297 | 0.00351
0.01639 | 0.02247 | 0.00128 | 0.00194 | 0.04935 | 0.07278 | 0.01234 | 0.01819
0.04915 | 0.07217 | 0.00618 | 0.00952 | 0.19739 | 0.27478 | 0.04935 | 0.06826
0.05718 | 0.08567 | 0.01229 | 0.01804 | 0.2732 | 0.29418 | 0.06816 | 0.07359
0.11316 | 0.18079 | 0.02829 | 0.04515 | 0.4434 | 0.66612 | 0.11085 | 0.16682
0.20211 | 0.25052 | 0.05053 | 0.05604 | 0.7264 | 0.81981 | 0.1816 | 0.20306
0.23793 | 0.29256 | 0.05508 | 0.07314 | 0.80627 | 1.20007 | 0.20219 | 0.30033
0.27446 | 0.40214 | 0.06862 | 0.10063 | 2.47903 | 4.00124 | 0.61976 | 1.00595
0.57288 | 0.61276 | 0.18487 | 0.30498 | 9.94085 | 9.96337 | 9.89153 | 9.89716
0.73946 | 1.21831 | 0.28077 | 0.3301 | 10.1398 | 10.2244 | 9.94127 | 9.96269
1.12306 | 1.70985 | 0.31717 | 0.42921 | 12.6076 | 12.8982 | 12.1527 | 12.2261
9.93556 | 9.95561 | 9.88612 | 9.89109 | 13.2988 | 13.7472 | 12.3267 | 12.4425
10.1585 | 10.2389 | 9.94223 | 9.96338 | 19.7318 | 34.3151 | 19.7459 | 34.498
10.5101 | 10.7061 | 10.0364 | 10.0849 | 19.7483 | 34.5321 | 19.7498 | 34.5551
11.8156 | 12.3211 | 10.8962 | 11.0228 | 24.1273 | 39.9752 | 24.0317 | 39.8207
14.6754 | 16.1781 | 12.6743 | 13.0551 | 24.1801 | 42.1437 | 24.0442 | 42.0348
19.6103 | 30.4698 | 19.7095 | 30.7088 | 39.8438 | 42.4591 | 39.7846 | 42.1044
19.6792 | 33.8876 19.73 | 34.3675 | 60.3192 | 60.5903 | 60.0799 | 60.1484
19.73 | 34.0817 | 19.738 | 34.4137 | 60.7089 | 61.3054 | 60.1778 | 60.3305
19.7411 | 34.4964 | 19.7441 | 34.5347 | 79.5294 | 139.064 | 79.5296 | 139.148
24.0587 | 37.2361 | 24.0132 | 37.9159 | 120.05 | 170.167 | 120.013 | 170.135
24,4712 | 39.7803 | 24.1131 | 39.5591 | 120.065 | 170.473 | 120.016 | 170.212
39.5583 | 40.4827 | 39.4994 | 39.991 | 170.227 | 210.201 | 170.15 | 210.05
40.083 | 42.2319 | 39.8444 | 40.8639 | 170.522 | 210.502 | 170.224 | 210.126
40.5714 | 42.6491 | 39.9694 | 42.0031 | 340.226 | 380.316 | 340.244 | 380.255
61.6608 63.03 | 60.4179 | 60.7878 | 340.275 | 595.474 | 340.256 | 595.446
62.7964 | 64.9133 | 60.7022 | 61.2542 | 380.414 | 595.602 | 380.28 | 595.479
78.8608 | 91.1649 | 78.9415 | 91.0343 | 760.495 | 1330.86 | 760.477 | 1330.83
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Table A.16 Nonlinear natural frequency when v =0 and v = 0.3 for L =20 and L =40 of a C—C
beam (a/r = 1.5)

alr=1.5 alr=1.5
N=6 N=4
L=20 L=40 L=20 L=40

v=0 v=0.3 v=0 | v=0.3 v=0 | v=0.3 v=0 | v=0.3
0.00059 | 0.00088 | 3.7E-05 | 5.6E-05 | 0.00079 | 0.0011 | 6.4E-05 | 8.8E-05
0.00396 | 0.00579 | 0.00026 | 0.00039 | 0.00576 | 0.00786 | 0.00075 | 0.0009
0.01132 | 0.0159 | 0.00077 | 0.00112 | 0.02193 | 0.02923 | 0.00298 | 0.00351
0.01638 | 0.02232 | 0.00128 | 0.00193 | 0.04936 | 0.07276 | 0.01234 | 0.01819
0.04917 | 0.07214 | 0.00606 | 0.00879 | 0.19758 | 0.27488 | 0.04936 | 0.06828
0.05355 | 0.07553 | 0.01229 | 0.01804 | 0.27295 | 0.29409 | 0.06816 | 0.07357
0.11813 | 0.1875 | 0.02862 | 0.04561 | 0.44413 | 0.66693 | 0.11088 | 0.16685
0.20312 | 0.25017 | 0.0506 | 0.05604 | 0.70942 | 0.81242 | 0.18036 | 0.20265
0.23765 | 0.29253 | 0.05508 | 0.07314 | 0.82629 | 1.2132 | 0.20365 | 0.30117
0.27503 | 0.40323 | 0.06864 | 0.10069 | 2.47981 | 4.0027 | 0.61981 | 1.00605
0.57655 | 0.62438 | 0.1849 | 0.30504 | 9.94085 | 9.96337 | 9.89153 | 9.89716
0.7400 | 1.21934 | 0.26978 | 0.32111 | 10.1398 | 10.2244 | 9.94127 | 9.96269
1.14013 | 1.73791 | 0.3336 | 0.44781 | 12.6076 | 12.8983 | 12.1527 | 12.2261
9.93556 | 9.95561 | 9.88612 | 9.89109 | 13.2989 | 13.7473 | 12.3267 | 12.4425
10.1585 | 10.2389 | 9.94223 | 9.96338 | 19.7319 | 34.3153 | 19.7459 | 34.498
10.5101 | 10.7062 | 10.0364 | 10.0849 | 19.7484 | 34.5322 | 19.7498 | 34.5551
11.8157 | 12.3214 | 10.8962 | 11.0229 | 24.1277 | 39.9753 | 24.0317 | 39.8207
14.6751 | 16.1777 | 12.6743 | 13.0551 | 24.1813 | 42.1445 | 24.0443 | 42.0348
19.6114 | 30.4711 | 19.7096 | 30.7089 | 39.8438 | 42.461 | 39.7846 | 42.1046
19.6796 | 33.8882 | 19.73 | 34.3675 | 60.3192 | 60.5903 | 60.0799 | 60.1484
19.7304 | 34.0819 | 19.7381 | 34.4137 | 60.7089 | 61.3054 | 60.1778 | 60.3305
19.7412 | 34.4966 | 19.7442 | 34.5347 | 79.5294 | 139.064 | 79.5296 | 139.148
24.0591 | 37.2371 | 24.0132 | 37916 | 120.05 | 170.167 | 120.013 | 170.135
24.4739 | 39.7803 | 24.1133 | 39.5591 | 120.066 | 170.473 | 120.016 | 170.212
39.5583 | 40.4832 | 39.4994 | 39.991 | 170.227 | 210.201 | 170.15 | 210.05
40.083 | 42.2359 | 39.8444 | 40.8639 | 170.522 | 210.503 | 170.224 | 210.126
40.5714 | 42.6498 | 39.9694 | 42.0033 | 340.226 | 380.316 | 340.244 | 380.255
61.6608 | 63.0303 | 60.4179 | 60.7878 | 340.275 | 595.474 | 340.256 | 595.446
62.7963 | 64.9133 | 60.7022 | 61.2542 | 380.414 | 595.603 | 380.28 | 595.479
78.861 | 91.1654 | 78.9415 | 91.0347 | 760.495 | 1330.86 | 760.477 | 1330.83
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Table A.17 Linear natural frequency when v =0 and v = 0.3 for L = 10 and L = 4 of a C—C beam
(alr =2.0)
alr=2 alr=2
N=6 N=4
L=10 L=4 L=10 L=4

v=0 | v=03] v=0 | v=03| v=0 | v=03] v=0 | v=03
0.00763 | 0.01099 | 0.19907 | 0.25711 | 0.00853 | 0.01198 | 0.20333 | 0.26372
0.05378 | 0.07541 | 1.02448 | 1.19746 | 0.05965 | 0.08476 | 1.1109 | 1.35293
0.1381 | 0.16771 | 1.22869 | 1.42461 | 0.19739 | 0.27447 | 1.2337 | 1.82347
0.1431 | 0.18132 | 1.32955 | 1.81053 | 0.2055 | 0.29124 | 3.03278 | 3.52172
0.19659 | 0.28874 | 2.07395 | 2.407 | 0.78956 | 1.12394 | 4.93474 | 7.18986
0.36401 | 0.54664 | 2.82899 | 4.39415 | 1.10108 | 1.17379 | 7.07434 | 7.62127
0.45264 | 0.72602 | 2.85503 | 4.63855 | 1.7736 | 2.64513 | 11.085 | 12.1564
0.80845 | 1.16966 | 5.05284 | 7.21903 | 2.9056 | 3.38022 | 11.6695 | 15.2873
1.09786 | 1.24571 | 6.8616 | 7.57743 | 3.18586 | 4.77808 | 15.2624 | 17.7981
1.14161 | 1.55534 | 7.10324 | 9.81683 | 9.91611 | 10.2288 | 18.16 | 23.7374
1.45506 | 1.60303 | 8.92202 | 9.86309 | 10.1393 | 11.2606 | 19.4474 | 27.8845
2.95785 | 4.84385 | 11.8758 | 12.3833 | 10.9378 | 15.4904 | 19.6473 | 32.3925
4.49225 | 6.70569 | 17.1691 | 18.658 | 14.3842 | 15.513 | 20.194 | 32.9109
10.1349 | 10.2151 | 18.4866 | 25.412 | 17.1065 | 18.7282 | 25.826 | 34.1774
11.0214 | 11.3237 | 19.0419 | 25.9997 | 19.667 | 33.7278 | 27.4635 | 42.625
12.3445 | 13.1067 | 19.1404 | 28.1577 | 19.7391 | 34.4438 | 29.503 | 45.9228
15.3885 | 17.3638 | 19.9502 | 29.75 | 24.5179 | 40.5123 | 41.827 | 49.0104
19.3416 | 28.3449 | 21.8361 | 33.0355 | 24.7624 | 42.6435 | 42.9767 | 49.9149
19.457 | 29.3876 | 24.3158 | 35.8981 | 40.0816 | 44.5132 | 61.9757 | 73.235

19.7137 | 32.7382 | 27.8562 | 40.8502 | 61.2716 | 62.3137 | 67.7547 | 85.39
19.7846 | 33.3127 | 28.0766 | 45.1939 | 62.802 | 65.016 | 76.4739 | 114.017
22.464 | 34.3921 | 38.2657 | 45.8408 | 79.5285 | 138.749 | 79.5342 | 137.248
24.3093 | 36.7687 | 39.1086 | 49.5154 | 120.2 | 170.295 | 121.253 | 171.264
26.0748 | 40.5673 | 41.4997 | 56.1388 | 120.269 | 171.5 | 121.972 | 178.251
39.7931 | 41.5213 | 48.1646 | 61.1319 | 170.534 | 210.804 | 172.678 | 215.023
41.0369 | 44.4622 | 56.6427 | 68.2755 | 171.705 | 212.007 | 179.707 | 222.536
42.8502 | 47.162 | 75.0559 | 91.7543 | 340.157 | 380.558 | 339.787 | 382.258
66.4959 | 70.9156 | 75.7637 | 93.1819 | 340.349 | 595.583 | 340.868 | 596.353
71.0189 | 78.6397 | 78.4258 | 106.583 | 380.948 | 596.098 | 384.575 | 599.592
78.2612 | 91.3188 | 79.1337 | 113.397 | 760.57 | 1330.97 | 761.094 | 1331.73
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Table A.18 Nonlinear natural frequency when v =0 and v = 0.3 for L = 10 and L =4 of a C—C
beam (a/r =2.0)

alr =2 alr=2
N=6 N=4
L=10 L=4 L=10 L=4

v=0 v=0.3 v=0 | v=0.3 v=0 | v=0.3 v=0 | v=0.3
0.00958 | 0.01397 | 0.26174 | 0.34159 | 0.01048 | 0.01514 | 0.26669 | 0.35516
0.05315 | 0.07117 | 0.87754 | 0.93852 | 0.05905 | 0.08124 | 0.92388 | 1.0527
0.13659 | 0.16435 | 1.28288 | 1.25856 | 0.19874 | 0.27277 | 1.44892 | 2.05987
0.14246 | 0.17298 | 1.39971 | 1.792 | 0.20535 | 0.29248 | 2.80856 | 3.23674
0.19773 | 0.28975 | 1.75896 | 2.02391 | 0.79585 | 1.12169 | 5.31704 | 7.2074
0.28626 | 0.38865 | 2.05558 | 2.8894 | 1.08944 | 1.17558 | 6.5559 | 7.44446
0.54009 | 0.83637 | 3.8092 | 5.41804 | 1.79965 | 2.67277 | 11.227 | 12.1124
0.82783 | 1.16875 | 5.39946 | 7.70433 | 2.62851 | 3.18381 | 12.5055 | 16.486
1.0747 | 1.21341 | 6.90707 | 8.30597 | 3.53258 | 5.10928 | 13.8733 | 17.5001
1.16999 | 1.64836 | 7.43349 | 8.81817 | 9.9347 | 10.2287 | 15.8222 | 18.5041
1.50395 | 1.70192 | 8.73037 | 11.0457 | 10.1397 | 11.2622 | 19.5741 | 31.0448
2.97598 | 4.87878 | 11.7799 | 12.3629 | 10.9388 | 15.461 | 19.7061 | 34.086
4.5607 | 6.80498 | 16.698 | 18.6347 | 14.3853 | 15.584 | 24.3175 | 34.2011
10.1349 | 10.2151 | 18.9243 | 25.7779 | 17.1153 | 18.742 | 25.2405 | 36.7159
11.021 | 11.3232 ] 19.2992 | 26.9194 | 19.6709 | 33.7335 | 28.2169 | 43.354
12.343 | 13.1071 | 19.3759 | 27.9463 | 19.7413 | 34.4471 | 31.2455 | 45.3209
15.3693 | 17.345 | 20.5297 | 30.6338 | 24.5313 | 40.5148 | 41.8699 | 47.5864
19.3197 | 28.0789 | 21.5614 | 32.8572 | 24.7965 | 42.6648 | 45.1946 | 56.2664
19.4688 | 29.6554 | 24.8967 | 37.6084 | 40.0816 | 44.563 | 62.8202 | 73.4533
19.7171 | 32.7518 | 28.1356 | 40.6403 | 61.2717 | 62.3146 | 67.7742 | 85.5871
19.7887 | 33.3212 | 28.7232 | 40.8854 | 62.8026 | 65.0196 | 76.5626 | 115.31
22.4819 | 34.397 | 33.2741 | 46.51 | 79.5301 | 138.752 | 79.6092 | 137.366
24.3518 | 36.8089 | 41.5175 | 49.3892 | 120.203 | 170.295 | 121.405 | 171.271
26.1605 | 40.5708 | 44.0473 | 55.7995 | 120.281 | 171.5 | 122.415 | 178.317
39.7932 | 41.5706 | 49.7694 | 67.557 | 170.534 | 210.81 | 172.682 | 215.285
41.0374 | 44.5415 | 56.2981 | 67.9818 | 171.705 | 212.028 | 179.741 | 223.26
42.8524 | 47.1911 | 76.0058 | 91.7697 | 340.161 | 380.558 | 339.914 | 382.258
66.4982 | 70.9332 | 76.4377 | 93.1245 | 340.35 | 595.586 | 340.938 | 596.472
71.0151 | 78.6407 | 78.5658 | 108.443 | 380.948 | 596.104 | 384.584 | 599.839
78.2707 | 91.3188 | 79.3366 | 114.754 | 760.572 | 1330.97 | 761.163 | 1331.85
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Table A.19 Linear natural frequency when v =0 and v = 0.3 for L =20 and L = 40 of a C—C
beam (a/r =2.0)

L=20 L=40 L=20 L=40

v=0 v=0.3 v=0 v=0.3 v=0 v=0.3 v=0 v=0.3
0.000514 | 0.000761 | 3.28E-05 | 4.89E-05 | 0.000707 | 0.000963 | 5.73E-05 | 7.78E-05
0.003965 | 0.005902 | 0.00026 | 0.000394 | 0.005757 | 0.007944 | 0.000754 | 0.000904
0.011308 | 0.016022 | 0.000767 | 0.00112 | 0.021851 | 0.029194 | 0.002966 | 0.003506
0.016394 | 0.022472 | 0.001281 | 0.001936 | 0.049348 | 0.072783 | 0.012337 | 0.018194
0.049148 | 0.072171 | 0.006184 | 0.009516 | 0.19739 | 0.274782 | 0.049347 | 0.068263
0.057184 | 0.08567 | 0.012287 | 0.018043 | 0.273202 | 0.294183 | 0.068162 | 0.073591
0.11316 | 0.180791 | 0.02829 | 0.045152 0.4434 | 0.666124 | 0.11085 | 0.166818
0.202114 | 0.250518 | 0.050528 | 0.056043 | 0.726401 | 0.819806 0.1816 | 0.203059
0.237926 | 0.292555 | 0.055083 | 0.073144 | 0.80627 | 1.200069 | 0.202187 | 0.300334
0.274464 | 0.402145 | 0.068616 | 0.10063 | 2.479029 | 4.001244 | 0.619757 | 1.005953
0.572885 | 0.612758 | 0.184866 | 0.304979 | 9.940853 | 9.96337 | 9.891528 | 9.897158
0.739464 | 1.21831 | 0.280766 | 0.330102 | 10.13981 | 10.22441 | 9.94127 | 9.962689
1.123063 | 1.709855 | 0.317172 | 0.429211 | 12.60757 | 12.89825 | 12.15272 | 12.22611
9.935563 | 9.955609 | 9.886118 | 9.891087 | 13.29878 | 13.74717 | 12.3267 | 12.44246
10.15848 | 10.23886 | 9.942226 | 9.96338 | 19.73181 | 34.31511 | 19.74585 | 34.49796
10.51006 | 10.70615 | 10.03638 | 10.08487 | 19.74834 | 34.53212 | 19.7498 | 34.55513
11.81563 | 12.32114 | 10.89618 | 11.02277 | 24.12728 | 39.97523 | 24.03166 | 39.82066
14.6754 | 16.17808 | 12.67426 | 13.05513 | 24.1801 | 42.14375 | 24.04422 | 42.03478
19.61033 | 30.46977 | 19.70954 | 30.70883 | 39.84379 | 42.45909 | 39.78458 | 42.10445
19.67923 | 33.88756 | 19.72998 | 34.36745 | 60.3192 | 60.59028 | 60.07988 | 60.1484
19.73003 | 34.08166 | 19.73805 | 34.41369 | 60.70885 | 61.30539 | 60.17777 | 60.33049
19.74112 | 34.49645 | 19.74414 | 34.53471 | 79.52937 | 139.0644 | 79.52963 | 139.1485
24.05871 | 37.23607 | 24.01318 | 37.91591 120.05 | 170.1669 | 120.0125 | 170.1354
2447121 | 39.78031 | 24.11311 | 39.55905 | 120.0653 | 170.473 | 120.0162 | 170.2122
39.55834 | 40.48271 | 39.49942 39.991 | 170.2271 | 210.2012 | 170.1505 | 210.0503
40.08302 | 42.23185 | 39.84444 | 40.86388 | 170.5218 | 210.502 | 170.2243 | 210.1255
40.57139 | 42.6491 | 39.96943 | 42.00305 | 340.226 | 380.3159 | 340.2439 | 380.2554
61.66077 | 63.03005 | 60.41787 | 60.78776 | 340.2746 | 595.4737 | 340.256 | 595.4464
62.79635 | 64.91327 | 60.70219 | 61.25418 | 380.414 | 595.6023 380.28 | 595.4785
78.86084 | 91.1649 | 78.94152 | 91.03431 | 760.4954 | 1330.859 | 760.4767 | 1330.832
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Table A.20 Nonlinear natural frequency when v =0 and v = 0.3 for L =20 and L =40 of a C—C
beam (a/r =2.0)
alr =2 alr =
N=6 N
L=20 L =40 L =20 L =40
v=0 v=0.3 v=0 v=0.3 v=0 v=0.3 v=0 v=0.3
0.00064 | 0.00096 | 4.1E-05 | 6.2E-05 | 0.00085 | 0.0012 | 6.9E-05 | 9.6E-05
0.00396 | 0.00571 | 0.00026 | 0.00038 | 0.00576 | 0.0078 | 0.00076 | 0.0009
0.01133 | 0.0158 | 0.00077 | 0.00111 | 0.02199 | 0.02925 | 0.00299 | 0.00352
0.01637 | 0.02221 | 0.00128 | 0.00192 | 0.04937 | 0.07273 | 0.01234 | 0.01818
0.04919 | 0.06884 | 0.00597 | 0.00825 | 0.19774 | 0.27496 | 0.04937 | 0.06829
0.05119 | 0.07212 | 0.01229 | 0.01804 | 0.27276 | 0.29402 | 0.06815 | 0.07355
0.12146 | 0.1917 | 0.02886 | 0.04594 | 0.4447 | 0.66755 | 0.11091 | 0.16688
0.2039 | 0.24991 | 0.05065 | 0.05604 | 0.69951 | 0.80701 | 0.1795 | 0.20235
0.23745 | 0.29253 | 0.05507 | 0.07314 | 0.83856 | 1.22309 | 0.20469 | 0.30181
0.27547 | 0.40406 | 0.06866 | 0.10073 | 2.48042 | 4.00383 | 0.61985 | 1.00612
0.57928 | 0.63291 | 0.18492 | 0.30509 | 9.94085 | 9.96337 | 9.89153 | 9.89716
0.74042 | 1.22013 | 0.26427 | 0.31571 | 10.1398 | 10.2244 | 9.94127 | 9.96269
1.15354 | 1.75988 | 0.34335 | 0.46067 | 12.6076 | 12.8983 | 12.1527 | 12.2261
9.93556 | 9.95561 | 9.88612 | 9.89109 | 13.299 | 13.7475 | 12.3267 | 12.4425
10.1585 | 10.2389 | 9.94223 | 9.96338 | 19.732 | 34.3155 | 19.7459 | 34.498
10.5101 | 10.7062 | 10.0364 | 10.0849 | 19.7484 | 34.5323 | 19.7498 | 34.5551
11.8157 | 12.3216 | 10.8963 | 11.0229 | 24.1281 | 39.9753 | 24.0317 | 39.8207
14.6748 | 16.1775 | 12.6742 | 13.0551 | 24.1822 | 42.1451 | 24.0443 | 42.0349
19.6122 | 30.4721 | 19.7096 | 30.709 | 39.8438 | 42.4626 | 39.7846 | 42.1047
19.6799 | 33.8887 | 19.7300 | 34.3675 | 60.3192 | 60.5903 | 60.0799 | 60.1484
19.7307 | 34.0821 | 19.7381 | 34.4137 | 60.7089 | 61.3055 | 60.1778 | 60.3305
19.7413 | 34.4967 | 19.7442 | 34.5347 | 79.5295 | 139.065 | 79.5296 | 139.148
24.0594 | 37.238 | 24.0132 | 37.9161 | 120.05 | 170.167 | 120.013 | 170.135
24.476 | 39.7804 | 24.1134 | 39.5591 | 120.066 | 170.473 | 120.016 | 170.212
39.5583 | 40.4836 | 39.4994 | 39.991 | 170.227 | 210.202 | 170.15 | 210.05
40.083 | 42.239 | 39.8444 | 40.8639 | 170.522 | 210.503 | 170.224 | 210.126
40.5714 | 42.6504 | 39.9694 | 42.0036 | 340.226 | 380.316 | 340.244 | 380.255
61.6608 | 63.0305 | 60.4179 | 60.7878 | 340.275 | 595.474 | 340.256 | 595.446
62.7963 | 64.9133 | 60.7022 | 61.2542 | 380.414 | 595.603 | 380.28 | 595.479
78.8611 | 91.1658 | 78.9415 | 91.0349 | 760.495 | 1330.86 | 760.477 | 1330.83
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